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1. Introduction

In strong-field QED, there are two external field configurations that play a special role: the constant field, and the plane-wave one. Both
are not only important from the physics point of view, but also special mathematically, since they allow for an exact solution of the Dirac
equation in the field, which makes it possible to perform non-perturbative calculations in such fields (see, e.g., [1,2]). Nevertheless, beyond
the simplest special cases such calculations tend to be extremely lengthy and tedious [3-24]. For example, the one-loop QED vertex [25]
in a plane-wave field has been calculated only very recently.

For the constant-field case there exists an alternative approach, based on Feynman’s worldline path integral formulation of QED [26,27]
and concepts originally borrowed from string theory [28,29], that has been shown to offer various technical advantages for closed-loop
photonic processes [30-33] and recently also for amplitudes involving open scalar [34] and fermion [35] lines - for reviews of this
formalism see [36,37].

The plane-wave case has attracted much attention in recent years because of its relevance for laser physics [38-40]. However, the
application of the worldline formalism to this case has turned out to be less straightforward. A calculation of the scalar and spinor QED
vacuum polarisations along these lines was achieved by A. Ilderton and G. Torgrimsson [42], but it is not obvious how to extend their
approach to the general N-photon amplitudes. Here we will use a slightly different approach, based on a direct rewriting of the worldline
path integral as a gaussian one, to construct compact master formulas for the scalar and spinor QED N-photon amplitudes in a plane-wave
background.

We start in the following section with a short summary of the worldline representation of the N-photon amplitudes in vacuum (for
details see [36]). The following two sections are devoted to the derivation of master formulas for the N-photon amplitudes in a plane-wave
background, first for scalar and then for spinor QED. As a check, in section 5 we work out the N =2 cases and recover the results of [42].
In the final section we shortly summarise our results and point out possible generalisations.

2. N-photon amplitudes in the worldline formalism

The starting point for the calculation of the scalar QED N-photon amplitudes in the worldline formalism is Feynman’s [26] worldline
representation of the one-loop effective action [scy[A]:
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The path integral runs over all closed trajectories in spacetime obeying the periodicity condition x(T) = x(0) in proper time. The N-photon
amplitudes are obtained from this by expanding the “interaction exponential” and Fourier transformation, which leads to the “vertex
operator representation” of the N-photon amplitude:

00
Tscal(k1, €15 ... kN, &N) = (—ie)N/ dTT e T / Dxe Jo dr iy Ve kel VD Tkn, en] (2)
0 x(0)=x(T)
Here each photon is represented by the following photon vertex operator, integrated along the trajectory:
T
vy lkel= /dts - x(7) elkx(® (3)
0

After a formal exponentiation &; - x; elki = efi-&itiki-xi l¢; the path integral can be done by gaussian integration using the basic correlator

Vot NPy ’ / (t — 77/)2
(X" (1) =-G(r, )", G, t)=lt-7 | == (4)
This results in the following “Bern-Kosower representation” of the N-photon amplitude [43,28,29],

o0

dT
Dscal(ki, €15 .. .5 kn, EN) = (—ie)N(zﬂ)Da(Zk,-)/TmnT)*%e*sz
i 0
N T N 1
X H/dl’i exp{.z [icijki -kj—iGjjei - kj+ EGUSi . é‘j]} o16s e (5)
i=1p i,j=1
Here a ‘dot’ denotes a derivative acting on the first variable,

. T—1 .. 2
G(r.t')=sign(t — 1) — 2%, G(t,t)y=28(t — 1) — T (6)

and we abbreviate G;; = G(t;, 7;) etc. The factor (471T)‘% represents the free Gaussian path integral determinant factor, and the

(27r)D5(Z,~ ki) factor is produced by the integration over the zero mode xg = % OT dt x*(t) of the path integral. The exponential must

still be expanded and only the terms that contain each polarisation vector &; linearly be retained:

N
.. 1
— (_nN
eXp{.}|8]€2m€N = (—1)" Pn(Gjj, Gij) exp[z 'Z] Gijki 'kj] (7)
i,j=
with certain polynomials Py.
For spinor QED, a generalization of (1) suitable for analytical calculations is given by the Feynman-Fradkin representation [27,44]

[o.¢]
1 ,dT T . T . v
Uspin[A] = —E/T/DX/DW o= Jo AT (3@ +3 YU+ jiex- A —iey Fuy()y"”) (8)
0

Here ¥ (1) is a Lorentz vector whose components are Grassmann functions, {y¥*(t), ¢¥" (')} =0, and the path integral fDx// has to be
taken over antiperiodic such functions, ¥*(T) = —y*(0). Note that it is already gaussian as it stands.
Applying the same procedure as for the scalar case above, one obtains the following generalization of (2) to the spinor QED case:

o0
1 . dT . 2 (T % Taclyai
Fspm(lq,el;...;kN,em:—i(—ze)”fTe mT / Dxe~Jo 475 wae Jodvzviry Y Tk ex]---VEL Tk, enl.  (9)
0 x(0)=x(T)

The photon vertex operator for spinor QED VS);in differs from the scalar one (3) by a second term representing the interaction of the
fermion spin with the photon,
T
v — ’ i ik-x(T)
Vpinlk: 8]=fdr (6 %@) =i (@) - £ p(0)] e¥HC (10)
0

with fHY =kMeV — gHk¥ the photon field-strength tensor. Thus the N-photon amplitude is naturally obtained in terms of a spin-orbit
decomposition
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N
1_‘spin,N = ZFNS , Ins= Z Fg\lllslzmlS} , (11)
5$=0
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where S denotes the number of spin interactions, and the sum Z{ runs over all choices of S out of the N photons as the ones

itiy..is) ut ol
assigned to those interactions. It is then straightforward to arrive at the following master formula for Fxlslz""s i

e N T
F}\lllslz...ls} — —2(—€)N/ T (47TT)7% efsz H/dri W(kil , 81'1; L kis, 81'5)13;\;1512'”15}37 Zl—,]’=1 G;]k1-k] . (‘12)
0 i=1 0

Here the polynomials P,{\jgiz"'is} are now defined by (compare with (7))

eXij=t (—iCij€i~’<j+%5ij€f'€j)| = (—i)N-Spfite-ist (13)

& =~~~=8,’5=0| ~Eiy

Sigyr”
where the notation on the left-hand side means that one first sets the polarisation vectors &;,, ..., &;; equal to zero, and then selects

all the terms linear in the surviving polarisation vectors. In particular, one has the extremal cases P,{\}O =Py, P,{\,]f,‘“N} = 1. For the Wick-
contraction of the spin interaction terms we have introduced the notation

W ki, €iys ... ki, €ig) E<1/fi1 Sy Wiy Vi - fis '1/fi3> (14)
to be evaluated with the basic correlator
1
(yH (Y’ (th) = 5 Gr (T, ", Gr(r,t))=sgn(r — 7). (15)

This object possesses the following closed-form description [45]. Define a “Lorentz cycle of length n” Z, by

o 1\ "
Zn(iqin...ip) = (5) tr(H fij) (16)
j=1
and a “fermionic bi-cycle of length n” by

Gr(i1iz...in) = GFi i, GFiyis - - - GFigiy Zn(i1i2 .. .1n) (0 >2). (17)

Then we can write

Wki, &5 ks, e9) = > (=D Gr(iria. .. in)GE(iny1- - ingny) -+ GEGnyt gy 141 -+ Iy tngy) (18)
partitions
Here the sum runs over all inequivalent possibilities to distribute the indices 1, ..., S among the arguments of any number cy of bi-cycles,

and n, denotes the length of the bi-cycle k. Working out (18) up to S =4, we find

W(ki,€1)=0,
W k1, €1; k2, €2) = —Gr(12),
W k1, €15 k2, €2; k3, €3) = —Gp(123),
W k1, €1; k2, €25 k3, €3; ks, €4) = —GF(1234) — Gp(1243) — Gr(1324)
+Gr(12)Gr(34) + Gr(13)Gr (24) + GF(1H)GF(23). (19)
3. N-photon amplitude in a plane-wave background (scalar QED)

In general, a plane-wave field can be defined by a vector potential A(x) of the form
eAy (x) =ay(n-x) (20)
where n# is a null vector,
n?=0 21
and, as is usual, we will further impose the light-front gauge condition
n-a=0 (22)

Note that we absorb the charge e in the definition of a,. Repeating the procedure of the previous section with the addition of the potential
a, to the worldline Lagrangian, we straightforwardly get a representation of the N-photon amplitude in the plane-wave background that
generalises the vacuum formula (2),
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T
0

Fixing the zero-mode problem as usual by separating off the average position xg of the trajectory, x*(7) = xg + g*(t), we note that,
differently from the vacuum case, it now appears not only in the exponents of the vertex operators, but also in the argument of a, (n - x).
Thus it will now be convenient to introduce (euclidean) light-cone coordinates adapted to the null vector n* [41]. Thus we set n#* =
%(0, 0,1,i), and define x* =n-x= %()ﬁ + ix*) (“light-front time”) and x~ = LZ(—X3 + ix%). We will further denote xt = (x!, x?).

+ =

Defining also k \iﬁ(ik3 +ik*%), and using the decomposition

k-x=—ktx™ —k xT +klx! + kx> (24)

allows us to integrate out xg but for its x(J)r component:

_ (T 2 i .
/Dxe Jo de[ i anmoly Y iy, eq]--- VY [kn. en]

o0

= 2n8( KSR K) /

T
N
. _ a2 .. . R
o 5 DI T [ [ pger H ot ancs smaon] o5f s
i=1

p £182-EN
i=1}

(25)

The calculation of the functional integral at first sight looks like an intractable problem, since the integration variable gq(t) appears in
the argument of the unknown function a,,. In [42] this problem was solved for the two-point case using the fact that the plane-wave
path integral possesses the gaussian property that its semiclassical approximation is exact. For the N-point generalization, we find it more
convenient to exhibit the crypto-gaussian nature of the path integral using the relations (21) and (22). In principle, we could do the
functional integral by expanding

T T T
2
T 4eig . —i . .
e—jo drlq-a(X(J)r+n~q(T))=] —i/dTQ'a(X0++n~q(‘[))+ ( 2’) /d'(] a1 ,a(x3‘+n,ql)/dt2q2.a(x0++n.q2)+... (26)
0 S0 0
and then Taylor-expanding
1
@ (xg + 1+ Gm) = @ (xg) + @, () (1 Gm) + 270 (x5) (- qm)* + - (27)

(Note that we use a ‘prime’ for the derivative of a function with respect to its argument, while the ‘dot’ will be used for the total derivative
with respect to proper time.) Now, we observe that a factor n - q; can neither be Wick contracted with another such factor because of

(21), nor with a factor of g, -a(k>(x0+) because of (22). Thus each n - g, has to be contracted with the exponential el (iki-qi+ei-4i)  and
this will convert it into

N
n-qm—n- Z[—icmiki + Cmis,-] (28)
i=1

We can then resum (27) into

N
au(xg +n-qm) — ay (xa' +n- Z[—iGmiki + Cm,-s,-]) (29)
i=1
and subsequently also (26),
e—foT drig-a(g +n-q(T) __, o o drig-a(xg+n-Y N [—iG(z, tki+G (T, T)eq]) (30)

where we can now, with some abuse of notation, replace

N
au (x5 +n- D=6 (T, Toki + G(T, T)Ei]) = au(7) (31)
i=1

Thus we have removed the functional integration variable from the argument of a,, and converted the functional integral (25) into a
gaussian one. Now the usual “completing-the-square” procedure can be applied, and yields

2 . ) .
/ Dge~ Jo de[% +ig-a@)] oo Giki-giteidi)
— (4n T)7% ef%fg dr fOT de'G(r,t)a(r)-a@) -y N fOT dr[G(r,t)a(r) ki+iG (T, 1)a(r)-&] ezyjzl[%G,-jl<,--l<j—iCijs,-~kj+%éije,--sj] (32)
The first term in the exponent on the right-hand-side can, by introducing the worldline average

4
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T

=g [ds@ (33

0

and using (6), be rewritten as

T T

1 .

5/a!r/dr’c(r,r/)a(r)-a(r’) = T(((az)) - ((a)>2) (34)
0 0

Similarly, we can rewrite

N T N

> [arbmam - e=2y(atw - @) -« (35)

i=19 i=1

For the integral involving G(t, 7;), we introduce the periodic integral function

T

1,(1) E/dr’(aﬂ(r’) - ((a,,))) (36)

0

Integrating by parts, we get

i=1

T N
[z b mam k=23 "k (1@ - () (37)
0 i=1
Putting the pieces together, we get the following master formula for the scalar QED N-photon amplitude in a plane-wave background'

N N N o0
Pscat(ki, 1} @) = (—i0)N 21)*8(D " ki)s(> k)8 (Y ki) / dxg eixg Lo k;

i=1 i=1 i=1
oodT N T
, N . L
hatell - A [—G,"ki-k'—lC,"SiJ(‘-l-—C,“S,‘-S']
X/T(4nr)zl—[/d-gle =117 Gijkikj—1Gijéikj+ 5 Gijéie;
0 =19
« e—(m2+(@) = (@) T+2 X1 ki- (1) — (1) =21 T, (a(m) - (@) - (38)

E1-EN
Note that the appearance of the polarization vectors in the argument of a, makes it still messy to extract the terms linear in all of them.
Further substantive simplification can be achieved by choosing the ¢; such as to obey
n-g=0 (i=1,...,N) (39)

which is possible for generic momenta by a gauge transformation, and will be assumed for the rest of this paper. This will reduce (31) to

N
au(7) :a,L(x(J)r —iZG(T,ri)k,.J”) (40)

i=1

The master formula (38) can then be written more explicitly as

i=1 i=1

N N N o0 00 N T
Docal (ki 61} @) = (—e)N(2n)38(Zk})6(Z k?)(?(Z kr)/ dx0+ e—ix0+ pIEY / dTT (4 T)_% e—(m2+<(a2)>—<(a>)2)T 1_[ / dt;
i=1 =1}

3
o
i

x P e Xijor Gigkickj+2 0% ki- (1z) = (1)) (41)
where the polynomials By are defined by (compare (7))
ezyj:] (—iC,‘jEi-l<j+%E;ijé‘yé‘j)—ziZlN:l (a(t,-)—((a)))-e,- |£ . = (_l)N;BN . (42)
1"¢N

1 The reader familiar with the worldline formalism may wonder why we could drop the additive constant % from this Green’s function, which is customary but relies

on momentum conservation. It is easy to verify that here, in light-cone coordinates, the removal of the constant requires only that ZN kht

i1 k>~ =0, not full momentum
conservation.
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4. N-photon amplitude in a plane-wave background (spinor QED)

Proceeding to the spinor QED case, the same argument that we applied above to eA,, =a, can be used to convert also the argument
of the eF,, =nyaj, — a’un,, appearing in the spin part of the worldline Lagrangian in (8) in the same way as in (29). Thus the only new
element is that the fermionic Wick-contraction rule (14) now has to be calculated with a generalised worldline Green’s function inverting

the field-dependent operator

v d . .
0= Td_ + za;L(t)nv — inyd,(t) (43)

The appropriate generalisation of (15) is

1

WY ) =58, ), (44)

where
T2
&k (r, 1) = {8“” +2in* 7V (t, Ty + 2ig* (T, )’ + Z[JZ(T, ') — Z(<a’>>2]n"n” }Gp(r, ') (45)
and we have further defined
T
Ju(®)= / dt’(a, () = (@) (46)
0
/ / T. / /

j[/,(tst)E.]/L(T)_J[L(t)_EG(‘E;‘E)«GM))' (47)
Note that the modified Green’s function has a non-zero coincidence limit,

O (T, 1) = —iT (' ((@")) = ((@*)n") (48)
and satisfies the anti-symmetry relation &¢(t’,7) = —Qﬁ;(r, 7’). Proceeding as in the vacuum case, we get a spin-orbit decomposition as
n (11) with

N N oo oodT N T
. N -
Fie 9 = 2o am s (K K) [ dge Tk [T gyt et @@ ] g
i=1 i=1 i=1 % 0 i=1}
N N
X W(kiy, iy - -5 ki, ig) P {i1i...is} %ZU:] Gijkikj+2 > i ki-(I(z)—{(I))) ) (49)
The polynomials 3ys now are defined by
er,’j:] (—iGijeikj+1Cieief)—2i LN (ﬂ(fx’)*<(a>))~61| _____ | = (=N S;B i1iz...is} ’ (50)
&iy==8ig=0leig ey
and 2W(k;, , &i,; .. .; kig, &i5) denotes the correlator (14) evaluated with the modified fermionic Wick contraction (44). For the calculation

of this correlator we can still use the cycle decomposition formula (18), only that the fermionic bicycle (17), now must be replaced by

.. . 5
Gr(iriz...in) = (3)"tr(fi, - SFiriy - fiy - GFigiz -+ fin - OFiniy) (51)
Note that, differently from the case of a constant external field [31,33], the fermionic path-integral determinant factor is not affected by
D
the presence of the plane-wave field, and remains at its free value 22.

5. Thecase N =2

As a check, let us show that the above master formulas correctly reproduce the results of [42] for the N =2 case. We first give the
general off-shell results before specialising to the on-shell helicity flip process studied there. We work throughout with the gauge choice
(39) for convenience and note that momentum conservation in the + direction gives I<§L = —kT.

5.1. Off-shell

Using the notation introduced in (11), for I'yg we find from (50)

‘13{2}0 = G12G2161 - ka&z - k1 — G161 - &2 +2<C1281 “ka& - (a(t) — (@) + Gare1 - (a(Tr) — ((a))) &2 'k1)

+4e1 - (a(t1) — ((a)))e2 - (a(r2) — ((a))) (52)
WO=1, (53)

which is sufficient to produce the scalar QED result when substituted into (12). Furthermore, for the spinor case we also require

6
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B = Garer ki +262 - (a(r2) — (@) (54)
1 .
W(k1,€1) = —Etr(ﬁF(ﬁ, ) - f1) =—iTk{e1 - (@) (55)
which, with the corresponding results under 1 <> 2, can be used to construct I'7. Finally, we determine I';; from
12
Phy =1 (56)
1
Wiky, &1; k2, €2) = —Gp(12) + Ztl'(@r(fl, ) - fi)tr(BF (12, 2) - f2) (57)

where (Jjj = J (7i, Tj), 0ij = sgn(t; — Tj))

T2 .
—6r(12) = 2’<T’<§r[81 x> (.7122 - X((a/))z) +2¢e1 - Ja182 - J12]012021 - Zlk;’[ﬁ kaga - J12 — €1 - &2k2 -312]012021

. 1
- Zlk;[é“z kg1 - Ja1 — &1 - 82k ~J21]012021 - Etl"(ﬁ - f2)012021 . (58)

These lead to a spin-orbit decomposition

[ee) o0 T
Fspinz(lq,s];kz,gz)=—2e2 / dx(J)r e_”‘o (k1-+k2)™ / (47-[]-)—— —(m +((a®)) (<a>>2)T/dr1/dr2 eclzk1-l<z+22,-2:1k,—-(l(r,-)—((l)))

—0 0
x {‘1390 + 2k, £1)Byy + Wika, £2)PL + Wik, e1: k282)} : (59)

where we have omitted the momentum conserving §-functions in the + and L directions. The term in the exponent 21.2:1 ki - (I(ri) — ((1)))
at the two-point level could be removed by imposing on a,,, instead of (22), the stronger gauge condition of full transversality, a* =a~ =
0. To see this, it is easiest to return to (37). Using the conservation of momentum along the + and transversal directions together with
(40), and choosing a function b, (x) such that b;L =ay, we have

, T T
Z/dr G, 1)a(t) - ki =/dr (G(t,11) — G(T, ©2))a(T) - ke
i=1g 0
A d
k*/dffkl b(xg —lZG(r 7k}
0
= k_+ -(b(T) —b(0)) =0 (60)

1

5.2. On-shell

In the on-shell case and for N =2 photons we gain additional simplifications due to the mass shell condition which, by conservation
of momentum in the + and L directions, implies the additional condition k; = —k; so that k; =k = —k; with k% = 0. This removes
the exponent eS12k1%2 from (59). Further imposing the transversality conditions &1 - k =0 =k - &5, the components of the spin orbit
decomposition reduce to

Py — —Crze1 - £2 + 461 - (a1 — ((a))ez - (a2 — (@) (61)
Ph > 262 (a2 — (@), P5 — 261 (@1 — ((a)) (62)
Wk, &) - —iTk e - ({a)) (63)
T2
Wik, e1: kaea) > k*2[ 261 - £2(Th — - (@)?) +de1 - Tizer - Ton +T2e1 - (@) ez (@) (64)

5.3. Helicity flip

For the purpose of comparing with the helicity-flip calculation of [42] we can further put &1 - €2 =0, resulting in

Tspin2(k1, £1: ka, £2) = —2€2 /dxof—(mﬂ)" e~ (M (@)~ <<">>2)T{4e1-(a1 — ((a)))&2 - (a2 — ((a)))

= 20Tk o1 (@)e2 - (a2 = (@) = &1 - (a1 — ((@))e2 - ((@)]
+2[4e1 - Tioer - Tor + 21 - (l@hez - (] |- (65)
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This indeed correctly reproduces the corresponding parameter integrals determined in [42], (34) - (37), as can be easily seen using the
integral representations

T
1
Jiop = —5012/dw(r — 110 (T — 12)a),(T)
0
- ) T T
3122 — I((a’))2 = —zanfdr/dt’o*(r —mo(T—tho(t' —n)d (v) -dT). (66)
0 0

6. Summary and outlook

We have used the worldline formalism to construct a master formula for the N-photon amplitudes in a general plane-wave background
field, for both scalar and spinor QED. In the scalar QED case, our approach is not essentially different from the one used in [42] in the
vacuum polarisation case, while in spinor QED our use of an appropriately chosen worldline Green’s function for the evaluation of the
Feynman spin factor should simplify the algebra at higher N. As usual in applications of the worldline formalism to QED, the formalism
unifies the scalar and spinor cases in the sense that any spinor QED calculation yields the corresponding scalar QED quantity as a side
result. Similarly to the well-tested master formula for the N-photon amplitudes in a constant field, we expect this new master formula
to substantially reduce the algebraic part of the work in this type of calculation, although of course the final parameter integrals will
be of the same type as the ones encountered by more standard methods, which usually can be computed only by numerical means.
Moreover, starting with the four-photon case the more global parametrization of the worldline formalism comes into play, that combines
the various propagators in the loop and makes it possible to avoid the break-up of the amplitude into partial amplitudes with a fixed
ordering of the photons. In the vacuum and constant-field cases, it has turned out to be possible to further optimise the calculation of
the N-photon amplitudes in the worldline formalism using a certain integration-by-parts algorithm that exhibits the underlying worldline
supersymmetry [28,29,33,46,47]; further work will be required to see whether this strategy can be extended to the plane-wave case.

In a more extensive publication, we will give a more detailed derivation, including an alternative approach using the worldline super-
formalism for the spinor QED case, and explore the N =3 and N =4 cases. It should also be interesting to generalise the mapping
of worldline averages to spacetime averages, introduced in [42], to the N-point case. Also under consideration is the extension of the
formalism to the open-line case, i.e. the photon-dressed scalar and spinor propagators in a plane-wave background.
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