
University of Plymouth

PEARL https://pearl.plymouth.ac.uk

Faculty of Science and Engineering School of Engineering, Computing and Mathematics

2023-08-09

Bivariate copula regression models for

semi-competing risks

Wei, Yinghui

https://pearl.plymouth.ac.uk/handle/10026.1/21197

10.1177/09622802231188516

Statistical Methods in Medical Research

SAGE Publications

All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with

publisher policies. Please cite only the published version using the details provided on the item record or

document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content

should be sought from the publisher or author.



Original Research Article

Bivariate copula regression models for
semi-competing risks

Yinghui Wei1 , Małgorzata Wojtyś1, Lexy Sorrell1 and
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Abstract
Time-to-event semi-competing risk endpoints may be correlated when both events occur on the same individual. These
events and the association between them may also be influenced by individual characteristics. In this article, we propose
copula survival models to estimate hazard ratios of covariates on the non-terminal and terminal events, along with
the effects of covariates on the association between the two events. We use the Normal, Clayton, Frank and Gumbel
copulas to provide a variety of association structures between the non-terminal and terminal events. We apply the
proposed methods to model semi-competing risks of graft failure and death for kidney transplant patients. We find that
copula survival models perform better than the Cox proportional hazards model when estimating the non-terminal event
hazard ratio of covariates. We also find that the inclusion of covariates in the association parameter of the copula models
improves the estimation of the hazard ratios.
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1 Introduction
Often in medical studies, patients who are lost to follow-up, or do not experience the event of interest during the study period,
leave a censored observation. However, with semi-competing risk endpoints, the non-terminal event has the possibility of
also being censored by the terminal event.1 One example of semi-competing risks, which will be analysed later in this
article, is graft failure and death following kidney transplant, where the non-terminal event is graft failure and the terminal
event is death.

The Cox proportional hazards model is widely used in practice to analyse time-to-event outcomes. The Cox model was
originally developed to analyse all-cause mortality,2 of which there is no competing risk. The hazard ratios estimated from
the Cox model, assuming an independent censoring mechanism, are potentially biased when analysing a non-terminal
event.3 Some authors use copula regression models to jointly model non-terminal and terminal events. Peng and Fine,4

Hsieh et al.5 and Chen6 proposed semiparametric copula models for the regression on the marginal distributions. The
analysis on the terminal event can be conducted using common survival analysis methodology. For instance, Peng and
Fine4 model the terminal event with a proportional hazards model marginally within their copula model. Hsieh et al.5 used
a copula model, which allows for different dependence structures between covariate groups. The Bayesian normal induced
copula estimation model is developed by Fu et al.7
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Copulas are multivariate distribution functions which can model the marginal distributions separately, along with the
dependence structure between them. Sorrell et al.8 introduced bivariate copula models to estimate the correlation between
semi-competing risk endpoints, using the following four copula functions, the Normal, Clayton, Frank and Gumbel copulas.
However, the hazard rates of the non-terminal and terminal events, along with the association parameter between them,
may be influenced by covariates. Including covariates into the analysis of the correlation between survival endpoints can
help understand how the association may be influenced by individual characteristics. Covariates may also be included in
the analysis of marginal distributions, which allows the estimation of hazard ratios and subsequently the comparison of
risks of survival endpoints between groups.

In this article, we develop copula survival regression models by using conditional copulas,9 which allow both the asso-
ciation parameter between the survival endpoints and the hazard rates to depend on multiple binary covariates. This is
an extension from the copula survival model introduced by Sorrell et al.,8 where no covariates are included. We esti-
mate the hazard ratio using copula survival regression models with binary covariates. We also estimate the effects of
these binary covariates on the association between semi-competing risks. By jointly modelling the non-terminal and
terminal events and including the correlation between them, we hope to improve the inference about the non-terminal
event.

We focus on the inclusion of covariates in the analysis of survival data with a semi-competing risk using conditional
copulas. In the semi-competing risk setting, Chen6 developed a model allowing the association parameter of the copula
function to vary with categorical covariates. A model allowing each covariate group to assume a separate Archimedean cop-
ula function is introduced by Hsieh et al.5 This allows different dependence structures describing the association between
the semi-competing risk events for each covariate group. The effect of a discrete covariate on the non-terminal and ter-
minal event and the association parameter between the semi-competing risk events is investigated by Ghosh.10 Peng and
Fine4 studied the effect of a covariate on the non-terminal event and the association parameter, by proposing a model
with a time-dependent copula and applying the methods to survival endpoints following AIDS diagnosis. Similarly, Zhu
et al.11 proposed a copula regression approach to examine covariate effects on the non-terminal and terminal events using
a two-stage approach. In stage 1, the covariate effects on the marginal events are estimated and in stage 2, the associa-
tion parameter of the copula model is estimated. Zhu et al.11 prefered the two-stage approach, compared to the one-stage
approach by Peng and Fine,4 as it allows for separate identification of misspecification of the marginal regression models
and the copula model.

The rest of the article is organised as follows. The motivating data for this article are described in Section 2. We then
introduce our proposed copula regression survival methods to estimate the effect of covariates on the semi-competing risk
events and on the association parameter using a variety of conditional copula functions in Section 3. In Section 4, we apply
our proposed methods to the motivating data, followed by a simulation study to compare the copula models in Section 5.
We conclude with a discussion.

2 Motivating data
The motivating data are from the United Kingdom Transplant Registry (UKTR), held by the National Health Service
(NHS) Blood and Transplant. The outcomes, time to graft failure and time to death since kidney transplantation, are semi-
competing risks. Our study population is kidney transplant recipients, who had their single and first transplant between 1995
and 2016 in the UK, with known age, sex and donor type at the time of transplantation. We present a novel application by
using our proposed copula survival regression models.

We included 40, 348 single and first kidney transplants between 1995 and 2016 in the UK. For 78.0% of patients the
graft failure time is censored, for 80.0% of patients the death time is censored and for 64.3% of patients both events are
censored.

Table 1 shows the baseline characteristics of interest. The covariates to be included in the application later in this arti-
cle are donor type (deceased or living), recipient’s sex (male or female), and recipient’s age (> 50 years or ≤ 50 years).
Donor type indicates whether a recipient had received a deceased donor or living donor kidney for their transplantation.
These covariates were included as they are important factors influencing transplant outcomes according to the literature
as follows. As reported by Terasaki et al.12 and Port et al.,13 living kidney donor recipients have improved survival com-
pared to deceased donor recipients. Moreover, recipient’s age has been shown to be a factor affecting survival following
transplant.14–16 In Fabrizii et al.,15 the five-year survival was found to be affected by recipient age group, however, these
differences were not evident after controlling for confounding.
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Table 1. Baseline characteristics for single and first kidney transplant recipients from the UK Transplant Registry data set between
1995 and 2016. The number of recipients (n) with the particular characteristic is given alongside the percentage (%) in brackets.

Variable n (%)

Donor type Deceased 27, 971 (69.3)
Living 12, 377 (30.7)

Recipient’s sex Male 24, 945 (61.8)
Female 15, 403 (38.2)

Recipient’s age (years) ≤ 50 23, 208 (57.5)
> 50 17, 140 (42.5)

3 Methods
In this section, we describe methods to include covariates in copula functions to examine the effects that they have on the
semi-competing risk events. We let the association parameter of the copula function, along with the hazard rates from the
marginal survival distributions be conditional on covariates. We use conditional copulas, first introduced by Patton9 who
extended Sklar’s theorem17 to account for the conditioning of the random variables on covariates.

Let T1 denote the time to the non-terminal event and T2 denote the time to the terminal event with censoring time, C.
The time to the first event is denoted by X = min(T1, T2, C) with event indicator d1 = 1 if T1 ≤ min(T2, C) and d1 = 0
otherwise. The time to the second event is denoted by Y = min(T2, C) with event indicator d2 = 1 if T2 ≤ C and d2 = 0,
otherwise.

We let the marginal hazard rates and the association parameter depend on covariates, W = (W1,… , Wp). The marginal
survival functions are given by ST1|W(t1|w) = P(T1 > t1|w) and ST2|W(t2|w) = P(T2 > t2|w) for the non-terminal and
terminal events, respectively. The marginal probability density functions (PDFs) are denoted by fT1|W(t1|w) and fT2|W(t2|w)
for the non-terminal and terminal events, respectively.

We estimate the association between the survival probabilities of individuals, using univariate survival functions in
the copula function. This changes the interpretation of association between the endpoints,18 compared to the use of the
cumulative distribution function (CDF) by Patton.9 We represent the joint survival function using the copula function, C

𝜃
,

with association parameter 𝜃,

SB(t1, t2|w) = P(T1 > t1, T2 > t2|w) = C
𝜃
(ST1|W(t1|w), ST2|W(t2|w)|w) (1)

where the subscript B is used to indicate the bivariate nature of the function.
Then, the copula density function is as follows

c
𝜃
(ST1|W(t1|w), ST2|W(t2|w)) =

𝜕
2C

𝜃
(ST1|W(t1|w), ST2|W(t2|w)|w)
𝜕ST1|W(t1|w)𝜕ST2|W(t2|w)

(2)

The joint PDF can be expressed using the copula density function and the marginal PDFs,

fB(t1, t2|w) = c
𝜃
(ST1|W(t1|w), ST2|W(t2|w)|w)fT1|W(t1|w)fT2|W(t2|w) (3)

We consider four different types of copula, the Normal, Clayton, Frank and Gumbel copulas, for which the definitions are
given by Sorrell et al.8 These copula functions cover a range of dependence structures and offer different shapes of the
joint survival function in equation (1). For each of these copulas, the association parameter 𝜃 is univariate. For the marginal
distributions for both events, we consider the Exponential, Weibull and Gompertz distributions, which are commonly used
parametric survival models. We use them to illustrate the methods and applications, however, these can be easily extended
to other parametric survival distributions.
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Table 2. Link functions for the association parameter 𝜃.

Copula C𝜃 Link function for 𝜃 Range of 𝜃

Normal 𝜃 =
exp(2(b0 + b1W1 +⋯ + bpWp)) − 1

exp(2(b0 + b1W1 +⋯ + bpWp)) + 1
𝜃 ∈ [−1, 1]

Clayton 𝜃 = exp(b0 + b1W1 +⋯ + bpWp) 𝜃 ∈ (0,∞)

Frank 𝜃 = b0 + b1W1 +⋯ + bpWp 𝜃 ∈ (−∞,∞)

Gumbel 𝜃 = exp(b0 + b1W1 +⋯ + bpWp) + 1 𝜃 ∈ [1,∞)

3.1 Likelihood
Let Θ be a vector of the parameters of the marginal distributions and the association parameter 𝜃 that are conditional on
covariates. Then, the likelihood function is given as follows:

L(Θ) =
n∏

i=1

(
c
𝜃
(ST1|W(ti,1|wi), ST2|W(ti,2|wi)|wi)fT1|W(ti,1|wi)fT2|W(ti,2|wi)

)di,1di,2

×

(
𝜕C

𝜃
(ST1|W(ti,1|wi), ST2|W(ti,2|wi)|wi)

𝜕ST1|W(ti,1|wi)
fT1|W(ti,1|wi)

)di,1(1−di,2)

×

(
𝜕C

𝜃
(ST1|W(ti,1|wi), ST2|W(ti,2|wi)|wi)

𝜕ST2|W(ti,2|wi)
fT2|W(ti,2|wi)

)(1−di,1)di,2

×
(
C
𝜃
(ST1|W(ti,1|wi), ST2|W(ti,2|wi)|wi)

)(1−di,1)(1−di,2) (4)

where n is the total number of individuals.
Below, we give the formulae for the likelihood when the four types of copula, the Normal, Clayton, Frank and Gumbel,

are used. Table 2 summarises the different link functions for each copula that are used to ensure the association parameters
are within the permissible ranges within the respective copula functions.

For the Normal copula, the association parameter 𝜃 = 𝜌, where 𝜌 is the Pearson correlation coefficient, and the likelihood
function of equation (4) is given by

LN (Θ) =
n∏

i=1

(
1√

1 − 𝜌2
exp

(
1

2(1 − 𝜌2)

× 2𝜌Φ−1(ST1|W(ti,1|wi))Φ−1(ST2|W(ti,2|wi)) − 𝜌
2(Φ−1(ST1|W(ti,1|wi))2

+ Φ−1(ST2|W(ti,2|wi))2)
)

fT1|W(ti,1|wi)fT2|W(ti,2|wi)

)di,1di,2

×

(
Φ

(
Φ−1(ST2|W(ti,2|wi)) − 𝜌Φ−1(ST1|W(ti,1|wi))√

1 − 𝜌2

)
fT1|W(ti,1|wi)

)di,1(1−di,2)

×

(
Φ

(
Φ−1(ST1|W(ti,1|wi)) − 𝜌Φ−1(ST2|W(ti,2|wi))√

1 − 𝜌2

)
fT2|W(ti,2|wi)

)(1−di,1)di,2

×
(
C
𝜌
(ST1|W(ti,1|wi), ST2|W(ti,2|wi)|wi)

)(1−di,1)(1−di,2) (5)

where Φ is the CDF of the standard normal distribution.
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For the Clayton copula, the likelihood function is given by

LC(Θ) =
n∏

i=1

(
(1 + 𝜃)

(C
𝜃
(ST1|W(ti,1|wi), ST2|W(ti,2|wi)|wi))1+2𝜃

(ST1|W(ti,1|wi)ST2|W(ti,2|wi))1+𝜃

× fT1|W(ti,1|wi)fT2|W(ti,2|wi)

)di,1di,2

×
⎛⎜⎜⎝

(
C
𝜃
(ST1|W(ti,1|wi), ST2|W(ti,2|wi)|wi)

ST1|W(ti,1|wi)

)1+𝜃

fT1|W(ti,1|wi)
⎞⎟⎟⎠

di,1(1−di,2)

×
⎛⎜⎜⎝

(
C
𝜃
(ST1|W(ti,1|wi), ST2|W(ti,2|wi)|wi)

ST2|W(ti,2|wi)

)1+𝜃

fT2|W(ti,2|wi)
⎞⎟⎟⎠

(1−di,1)di,2

×
(
C
𝜃
(ST1|W(ti,1|wi), ST2|W(ti,2|wi)|wi)

)(1−di,1)(1−di,2) (6)

For the Frank copula, the likelihood function is given by

LF(Θ) =
n∏

i=1

(
𝜃e𝜃C

𝜃
(ST1 |W(ti,1|wi),ST2 |W(ti,2|wi)|wi)(e𝜃C

𝜃
(ST1 |W(ti,1|wi),ST2 |W(ti,2|wi)|wi) − 1)

(e𝜃ST1 |W(ti,1|wi) − 1)(e𝜃ST2 |W(ti,2|wi) − 1)

× fT1|W(ti,1|wi)fT2|W(ti,2|wi)

)di,1di,2

×
(

1 − e𝜃C
𝜃
(ST1 |W(ti,1|wi),ST2 |W(ti,2|wi)|wi)

1 − e𝜃ST1 |W(ti,1|wi)
fT1|W(ti,1|wi)

)di,1(1−di,2)

×
(

1 − e𝜃C
𝜃
(ST2 |W(ti,2|wi),ST2 |W(ti,2|wi)|wi)

1 − e𝜃ST2 |W(ti,2|wi)
fT2|W(ti,2|wi)

)(1−di,1)di,2

×
(
C
𝜃
(ST1|W(ti,1|wi), ST2|W(ti,2|wi)|wi)

)(1−di,1)(1−di,2) (7)

Finally, for the Gumbel copula the likelihood function is given by

LG(Θ) =
n∏

i=1

(
1

ST1|W(ti,1|wi)ST2|W(ti,2|wi)(− log(C
𝜃
(ST1|W(ti,1|wi), ST2|W(ti,2|wi)|wi)))2𝜃−1

× C
𝜃
(ST1|W(ti,1|wi), ST2|W(ti,2|wi)|wi)(− log(ST1|W(ti,1|wi)))𝜃−1(− log(ST2|W(ti,2|wi)))𝜃−1

× (𝜃 − 1 − log(C
𝜃
(ST1|W(ti,1|wi), ST2|W(ti,2|wi)|wi)))fT1|W(ti,1|wi)fT2|W(ti,2|wi)

)di,1di,2

×

(
C
𝜃
(ST1|W(ti,1|wi), ST2|W(ti,2|wi)|wi)(− log(ST1|W(ti,1|wi)))𝜃−1

ST1|W(ti,1|wi)(− log(C
𝜃
(ST1|W(ti,1|wi), ST2|W(ti,2|wi)|wi)))𝜃−1

fT1|W(ti,1|wi)

)di,1(1−di,2)

×

(
C
𝜃
(ST2|W(ti,2|wi), ST2|W(ti,2|wi)|wi)(− log(ST2|W(ti,2|wi)))𝜃−1

ST2|W(ti,2|wi)(− log(C
𝜃
(ST2|W(ti,2|wi), ST2|W(ti,2|wi)|wi)))𝜃−1

fT2|W(ti,2|wi)

)(1−di,1)di,2

×
(
C
𝜃
(ST1|W(ti,1|wi), ST2|W(ti,2|wi)|wi)

)(1−di,1)(1−di,2) (8)

For the Normal, Clayton and Gumbel copulas, the variance of the estimator of the association parameter 𝜃 can be approx-
imated using the Delta method. We present the derivations for the case of one covariate as well as for several covariates
in the Supplemental Materials, in Section 1.2 for the Normal, Section 1.3 for the Clayton and Section 1.4 for the Gumbel
copulas, respectively.
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3.2 Event times models
We consider the Exponential, Weibull and Gompertz distributions for the marginal distributions of event times. For each
model, we specify the link function for marginal parameters. An Exponential model assumes a constant hazard rate, while
the Weibull and Gompertz models allow for increasing, constant or decreasing hazard rates. Our proposed methods can be
easily extended to other parametric survival distributions such as a Log-normal or Log-logistic distributions.

Exponential event times Assume that the marginal distributions for both events follow the Exponential distribution
with hazard rates 𝜆1 and 𝜆2 for the non-terminal and terminal events, respectively. Then, the survival functions are given by
ST1|W(t1) = exp(−𝜆1t1) and ST2|W(t2) = exp(−𝜆2t2) for the non-terminal and terminal events, respectively. We incorporate
covariates W1,… , Wp into the hazard rates of both events:

𝜆1 = exp(a0 + a1W1 +⋯ + apWp) (9)

𝜆2 = exp(c0 + c1W1 +⋯ + cpWp) (10)

where a0,… , ap are regression coefficients for the non-terminal event and c0,… , cp are regression coefficients for the
terminal event. The hazard ratios of a binary covariate Wk , where k ∈ {1,… , p}, are given by

HRNT =
exp(a0 + ak)

exp(a0)
= exp(ak) (11)

HRT =
exp(c0 + ck)
exp(c0)

= exp(ck) (12)

for the non-terminal (NT) and terminal (T) events, respectively.
Weibull event times
Assume that the marginal distributions for both events follow the Weibull distributions with the PDFs

fTj|W(tj) = 𝛽j𝛼jt
𝛼j−1

j exp(−𝛽jt
𝛼j

j )

for j = 1, 2, where 𝛼j is the shape parameter and 𝛽j is the scale parameter and tj represents the event time for the non-terminal
and terminal events, respectively.

The survival function and hazard function are given as follows

STj|W(tj) = exp(−𝛽jt
𝛼j

j )

hTj|W(tj) = 𝛽j𝛼jt
𝛼j−1

j

for j = 1, 2.
We consider the case where the shape parameters 𝛼1 and 𝛼2 are constant and the scale parameters 𝛽1 and 𝛽2 depend on

the covariates W = (W1,… , Wp) using the following functions:

𝛽1 = exp(a0 + a1W1 +⋯ + apWp)
𝛽2 = exp(c0 + c1W1 +⋯ + cpWp)

where a0,… , ap are regression coefficients for the non-terminal event and c0,… , cp are regression coefficients for the
terminal event.

Therefore, the hazard ratios for a binary covariate Wk , where k ∈ {1,… , p}, are given by

HRNT =
exp(a0 + ak)𝛼1t𝛼1−1

exp(a0)𝛼1t𝛼1−1
= exp(ak)

HRT =
exp(c0 + ck)𝛼2t𝛼2−1

exp(c0)𝛼2t𝛼2−1
= exp(ck)

respectively. These are in the same form as for the Exponential event times described in equations (11) and (12).
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Gompertz event times
Assume that the marginal distributions for both events follow the Gompertz distributions with the PDFs

fTj|W(tj) = 𝜆j exp
(
𝛾jtj −

𝜆j

𝛾j

(exp(𝛾jtj) − 1)
)

for j = 1, 2, where 𝛾j is the shape parameter and 𝜆j is the rate parameter and tj represents the event time for the non-terminal
and terminal events, respectively.

The survival function and hazard function are given as follows

STj|W(tj) = exp
(
−
𝜆j

𝛾j

(exp(𝛾jtj) − 1)
)

hTj|W(tj) = 𝜆j exp(𝛾jtj)

for j = 1, 2.
We consider the case where the shape parameters 𝛾1 and 𝛾2 are constant and the rate parameters 𝜆1 and 𝜆2 depend on

the covariates W1,… , Wp using the following functions:

𝜆1 = exp(a0 + a1W1 +⋯ + apWp)
𝜆2 = exp(c0 + c1W1 +⋯ + cpWp)

where a0,… , ap are regression coefficients for the non-terminal event and c0,… , cp are regression coefficients for the
terminal event.

Therefore, the hazard ratios for a binary covariate Wk , where k ∈ {1,… , p}, are

HRNT =
exp(a0 + ak) exp(𝛾1t)

exp(a0) exp(𝛾1t)
= exp(ak)

HRT =
exp(c0 + ck) exp(𝛾2t)
exp(c0) exp(𝛾2t)

= exp(ck)

respectively. These are in the same form as for the Exponential and Weibull event times.
For all three marginal models, the variances of the hazard ratios can be approximated by

Var(HRNT ) = exp(2âk)Var(âk) (13)

Var(HRT ) = exp(2ĉk)Var(ĉk) (14)

using the Delta method described in Section 1.1 in the Supplemental Materials.

3.3 Estimation
The regression coefficients for the marginal distributions and the association parameters are estimated by maximising the
log-likelihood, that is, the logarithm of (4). This is achieved by using the function optim in package R19 in the practical
application presented in this article. The 95% confidence intervals (CIs) are constructed using the Fisher information
matrix.

4 Application
We apply the methods described in Section 3 to the UKTR data set introduced in Section 2. The data set contains time to
graft failure and time to death of kidney transplant recipients. To illustrate the use of the methods, we include the following
binary covariates, recipient age group (> 50 years and ≤ 50 years), recipient sex (female and male) and donor type (living
and deceased donors), in the analysis of both survival endpoints. We allow both the hazard rates and the association between
the survival endpoints to vary with these covariates. We estimate the hazard ratios of the non-terminal and terminal events
along with the regression coefficients of the covariates for the association parameter between graft failure and death.
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We use Exponential, Weibull and Gompertz distributions to model the survival time. We apply four different copula
functions to describe the association between the survival endpoints and we select the best fitting models using the Akaike
information criterion (AIC).20 The estimated hazard ratios for each covariate and the regression coefficients of the covariates
for the association parameter are provided in Tables 3 to 5 for the Exponential, Gompertz and Weibull survival distributions,
respectively. The results for the Cox model are presented in Table 3. Moreover, in Tables 3 to 5 the computational time for
each model is reported for a computer with processor 11th Gen Intel (R) Core(TM) i7-1165G7 CPU @ 2.80 GHz.

4.1 Hazard ratios
4.1.1 Graft failure following transplant
Across all considered models, sex is not found to be associated with the risk for graft failure. Compared to a deceased
donor transplant, living donor transplant is associated with lower risk for graft failure. Older age (> 50 years) is found to
be associated with increased risk across all considered copula models except for two cases: Normal and Gumbel copulas
with Weibull survival model, where there is no association found. This is in contrast with the Cox model where the older
age group is found to be associated with lower risk of graft failure (HR: 0.911, 95% CI: 0.872–0.952, Table 3). This may
be in part due to the censoring of graft failure by death in the Cox model, the older individuals who die before experiencing
graft failure may be seen as less likely to experience graft failure.

In the fitted Cox model for graft failure, there was evidence for non-proportional hazards for all three covariates. Using
Grambsch and Therneau’s approach21 to diagnose non-proportionality, we obtained P-values of 0.091, 0.017 and <0.001
for sex, age and donor type, respectively.

4.1.2 Death following transplant
For all considered models, including the Cox model and all copula models, all three covariates: sex, age and donor type,
are found to be associated with death after transplant. In particular, female sex, living donor transplant and younger age
(≤ 50 years) are associated with lower risk of death. In contrast, male sex, deceased donor transplant and older age (> 50
years) are associated with higher risk of death. These findings are consistent across all models and the estimated hazard
ratios are fairly similar.

In the fitted Cox model for death, there was evidence for non-proportional hazards for donor type (P < 0.001), whilst
there was insufficient evidence for non-proportional hazards for sex (P = 0.936) and age (P = 0.882).

4.2 Association between graft failure and death
The results from all the copula survival models showed that the association between graft failure and death is stronger for
individuals in the older age group compared to the younger age group.

In most of the fitted copula models, we observed no difference between female and male recipients for the association
between graft failure and death. The exceptions are the Clayton copula models and Frank copula Gompertz model which
show stronger association between these two end points for female recipients. Similarly, in most of the fitted copula models,
we observed no difference between living and deceased donors for the association between graft failure and death. The
exceptions are the Clayton copula models and Frank copula Exponential model which showed stronger association between
these two end points for living donor recipients.

4.3 Results for the preferred model
In our real data analyses, we reported the AIC value for each model. However, we did not compare Cox model with the
copula models using AIC. This is because the Cox model was fitted to graft failure and death, separately, and the Cox
model has a partial likelihood instead of a full likelihood. In contrast, the copula survival model analysed graft failure and
death jointly, and has a full likelihood. Hence, the AIC values for the Cox model and the copula-based parametric survival
models are not comparable. However, we used the AIC to compare between the copula survival models. For each survival
distribution, the Frank copula model is preferred according to the AIC (Tables 3 to 5). Moreover, for each copula model,
the Weibull survival distribution provides the lowest AIC.

In the Frank copula Weibull survival model, the association between graft failure and death is affected by age, with
individuals in the older age group having a stronger association compared to those in the younger age group. Living donor
recipient group is at lower risk for graft failure and death, with respective hazard ratios 0.560 (95% CI: 0.532–0.588) and
0.519 (95% CI: 0.490–0.549). Female sex is associated with lower risk for death compared to men, with hazard ratio 0.920
(95% CI: 0.882–0.957). The hazard ratio of graft failure for the older age group is 1.202 (95% CI: 1.152–1.251) and the
hazard ratio of death is 3.734 (95% CI: 3.565–3.903), indicating the older age group is at higher risk of graft failure and
death.
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Figure 1. Estimated hazard functions for two subgroups of patients: male recipients above 50 years with deceased donor and
female recipients aged below 50 years with living donor, using Frank copula with Weibull survival times: (a) graft failure; (b) death.

The Frank copula Weibull survival model suggests that in general male patients above 50 years who received a transplant
from a deceased donor are at highest risk for death following kidney transplant. At the other extreme, younger female
patients who received a transplant from a living donor are at the lowest risk for death. The hazard functions estimated from
the preferred model are presented in Figure 1 for these two subgroups, respectively. For both subgroups, the hazard for
graft failure is greatest immediately following the transplant and gradually decreases within 4 years where it is stabilised
(Figure 1(a)). The hazard for death is stable over time since transplant (Figure 1(b)). For male recipients aged > 50 years
with a deceased donor, for the first 2 years following kidney transplant, the hazard for graft failure is greater than for death
and after that the order is reversed.

5 Simulation study
We conduct two simulation studies. In simulation study 1, we aim to assess the performance of the proposed bivariate
copula regression models for semi-competing risk data. We simulate data to mimic the real example of renal transplant
data. We compare the performance of three models: the Cox proportional hazards model; the bivariate copula regression
models with predictors for the hazard rates (copula model 1); and the bivariate copula regression models with predictors
for both hazard rates and the association parameters (copula model 2).

In simulation study 2, we aim to assess the effect of misspecification of the survival distributions on the estimation of the
model parameters. We use the AIC value to select the best fitting model for the simulated data and calculate the percentage
that the underlying survival model is correctly selected.

5.1 Design
We simulate data with known marginal hazard rates for the non-terminal and terminal events, and the correlation between
the two event times. We assess the accuracy of the estimates for the hazard ratios of the non-terminal and terminal events,
HRNT and HRT , respectively. The number of replications in both simulation studies was 1000. The simulation algorithm is
provided below.

1. We generate the binary covariates, Wk , where k = 1,… , p for p covariates, in proportions that represent the renal
transplant data.

2. We generate Pearson’s correlation coefficient for the Normal copula, or association parameters for the Clayton, Frank
and Gumbel copulas, respectively, as described in Table 2, with chosen bk .

3. Hazard rates for the non-terminal event, 𝜆1, and terminal event 𝜆2, with chosen ak and ck , are generated by using
equations (9) and (10), respectively.

4. We use the conditional distribution method22 to simulate time to the non-terminal and terminal events from a specified
copula.
(a) (U , V ) have the joint distribution function of the chosen copula, where U represents the uniformly transformed time

to the non-terminal event, and V represents the uniformly transformed time to the terminal event.
(b) Generate U from Uniform(0, 1).
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(c) Generate V from C−1(v|u), which is the inverse of the conditional copula distribution function of V given U .
5. We obtain T1 and T2 from the respective inverse marginal survival functions,

T1 = S−1
T1
(U),

T2 = S−1
T2
(V ).

Here T1 =
− log(U)

𝜆1
and T2 =

− log(V )
𝜆2

, when the survival distribution is Exponential for both events.

6. We simulate censoring time, C, independently from a uniform distribution.
7. Set the time to the non-terminal event, X = min(T1, T2, C), with event indicator d1 = 1 if T1 ≤ min(T2, C) and d1 = 0,

otherwise.
8. Set the time to the terminal event, Y = min(T2, C), with event indicator d2 = 1 if T2 ≤ C and d2 = 0, otherwise.

In simulation study 1, the simulated data are analysed using Cox model, and the models with underlying copula function.
For example, when analysing the simulated data generated using the Clayton copula, we use the Clayton copula model.
Sorrell et al.8 conducted an extensive simulation study to evaluate the effect of misspecification of copula functions and
we will not duplicate that simulation in this article.

5.2 Choice of parameters
We generate data sets with 3000 individuals with hazard rates and association parameters mimicking the real data analysis
from the UKTR data set. The binary covariates are generated from a Bernoulli distribution with parameters mimicking
the real data. Specifically, the age group > 50 years with probability 0.40, females with probability 0.38 and living donor
recipients with probability 0.30.

The regression coefficients are set to be equal to those in Supplemental Materials Tables S1 and S2 for simulation studies
1 and 2, respectively. The censoring time, C, is generated independently from Uniform(0, 25) distribution, representing a
maximum follow-up time of 25 years.

5.3 Performance measures
We maximise the log-likelihood described in Section 3 using the optim function in R to estimate the regression coefficients
for the marginal and association parameters. The performance of the maximum likelihood estimates is evaluated using the
bias, the mean squared error (MSE) and the coverage probability.

5.4 Results of simulation study 1: Performance of the proposed bivariate copula
regression models

For the non-terminal event, the hazard ratio of age group estimated from the Cox model has the following coverage probabil-
ities, 11.7%, 0.0%, 0.0% and 18.9%, if data were simulated from Normal, Clayton, Frank and Gumbel copulas, respectively
(Table 6). These coverage probabilities are far below the nominal level. In copula regression model with covariates included
for the hazard rate but not for the association parameter (copula model 1), the equivalent coverage probabilities are 0.0%,
90.3%, 56.7% and 45.5% (Table 6). Using copula model 2, where covariates were included for the hazard rates and the
association parameter, the coverage probability is around the nominal level for each copula, 94.6%, 95.1%, 94.5% and
95.2% (Table 6). We observe a reduction in the bias and MSE of the non-terminal event’s hazard ratio of the age group in
copula model 2, as compared to the Cox model. This explains the discrepancy in the findings between the Cox model and
the copula model in the real data analysis.

For the hazard ratios of sex and donor type for the non-terminal event, both the Cox model and copula model 2 result
in coverage probabilities close to the nominal level. However, the results from the copula models show slight reductions in
bias and MSE. For example, when using the Cox model for data generated from the Normal copula, the bias and MSE of
the hazard ratio are 0.240 and 0.062, respectively, for the non-terminal event with covariate age group. Comparing this to
copula model 2, we find the bias to be −0.003 and the MSE to be 0.007.

The results for the hazard ratios of the terminal event are similar between the Cox model, copula models 1 and 2 with
coverage probability close to 95%. This is expected, because the terminal event cannot be censored by the non-terminal
event. However, using copula model 1 the coverage probability is 90.3%, for the hazard ratio of age group for the non-
terminal event, where data are generated from the Clayton copula. When including the covariate age group in the association
parameter, in copula model 2, we find the coverage probability increases to 95.1%.
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5.5 Results of simulation study 2: Effects of the misspecification of survival
distributions

We evaluate the use of alternative survival distributions and the effects of misspecification of the survival distribution. For
the simulation studies investigating misidentification, we simulate data mimicking the real data set using four different
copula distributions, with true values given in Supplemental Material Table S2. We also evaluate the use of AIC to select
the survival distributions. We simulate data with the following combinations of survival distributions and copula functions,
Exponential, Weibull and Gompertz survival distributions and Normal, Clayton, Gumbel and Frank copulas.

The results of simulation study 2 are given in Supplemental Material Table S6. Here we give a summary of findings from
this simulation study. Our simulation study shows that AIC can be used to select the survival distributions. The survival
distribution is chosen correctly in almost 100% cases for the Weibull distribution, roughly 91% or above for Gompertz
distribution, and around 78% or above for Exponential distribution. Where the underlying Exponential distribution is not
correctly identified, about 10% of the times the survival distribution is misspecified as Weibull and about 10% as Gompertz
distribution. However, the estimation is in general robust to the misidentification of the Exponential distributions by Weibull
or Gompertz distribution. The summary of performance of the models selected by the lowest AIC shows that the coverage
probability is close to the nominal level.

6 Discussion
We propose a set of copula regression models to allow both the hazard rates and the association between times to non-
terminal and terminal events to vary by covariates. We use conditional copulas9 with predictors for the hazard rates of the
semi-competing risk events and the association parameters. The advantage of our proposed method is the estimation of the
hazard ratios by taking into account the correlation between the semi-competing risks and the flexibility of using a variety
of copulas to describe different patterns in the relationship between the survival endpoints.

Our work demonstrates the importance of considering the correlation between the semi-competing risks. In the real data
analysis, different conclusions were found for the effect of age group, where Cox model showed older age was associated
with lower risk of graft failure (HR: 0.911, 95% CI: 0.872–0.952), while our proposed copula models showed older age was
associated with higher risk of graft failure from all copula models. The estimated hazard ratio from Frank copula Weibull
survival model, which has the lowest AIC, is 1.202 with 95% CI: 1.152–1.251 (Table 5). We conduct simulation studies to
assess the performance of the copula regression models and to evaluate the use of AIC to choose survival distributions. The
estimation of the hazard ratio for the non-terminal event is improved by using copula model 2, with coverage probability
around the nominal level, compared to using the Cox model which has coverage probability 0% in some scenarios (Table
6). These results corroborate the findings from Leffondré et al.23 For the non-terminal hazard ratio, we found a reduction
in bias and MSE using the copula regression models compared to the Cox model. Our work highlights the importance of
acknowledging the semi-competing risk when analysing the effect of a covariate on an endpoint, where the covariate has a
strong effect on the competing risk.

We have considered the effect of misspecification of survival distributions. Our simulation studies show that the AIC can
be used to select the survival distributions in the majority of cases. In the remaining cases, misspecification is more likely
to occur when the underlying distribution is Exponential or Gompertz. However, in our simulation studies, miss-specifying
these two distributions by a Weibull distribution still holds good properties in terms of the parameter estimates. Further
research may also investigate other parametric survival distributions or the use of non-parametric methods to model the
marginal survival functions.

We have used a full maximum likelihood approach for estimating the model parameters. We acknowledge the two-stage
estimation procedures for the association parameter may be more efficient for copula survival models.24 In the two-stage
approach, the association parameter and the parameters in the marginal survival distributions are estimated separately. In
stage 1, parameters in the marginal distributions are estimated assuming they are independent. In stage 2, the association
parameter is estimated by fixing the two marginal distributions at the estimates from stage 1. This approach ignores the
dependency structure in stage 1, however, it offers the advantage of being practically efficient, especially when the models
become more complex. The application of the two-stage approach in our proposed models and the comparison with the
one-stage full maximum likelihood approach is a topic for future research. Another possible extension could be to estimate
the marginal survival function using non-parametric methods25 or Cox proportional hazards model.26 It would be also of
interest to investigate the use of grid search methods to find starting values for optimising the likelihood function.

In this article, we have extended our recent work in bivariate semi-competing risk models by including covariates.
Another topic of future research could be to extend the model to include frailty terms to account for unmeasured covariates.



16 Statistical Methods in Medical Research 0(0)

Since we have bivariate semi-competing risk data, this extension will require to model the frailty terms by using a bivariate
distribution to account for the potential correlation between the two frailty terms.

We have used Exponential, Weibull and Gompertz distributions to illustrate the methods and applications of our proposed
models. However, this can be readily extended to other parametric survival distributions. We have assessed the performance
of our proposed copula survival models using simulation studies and compare between them using AIC. Assessing the
goodness-of-fit of the copula survival models may be developed in future research.

As this article focuses on describing copula regression models with binary covariates, the dichotomous age groups (> 50
years or ≤ 50 years) representing younger and older age were included for illustration purpose. We acknowledge that age
should be best analysed with more categories or as a continuous variable. In our follow-up work, we are developing copula
regression models to include more categories for age or include age as a continuous variable.

Further research may investigate the inclusion of continuous and categorical covariates. We have considered a linear
function to incorporate covariates into the hazard rates and association parameter, however, alternatives may be considered.
Acar et al.27 have developed methods to compare potential functions that describe the association parameter of the copula
function’s relationship with the covariate by using a generalised likelihood ratio test. We have used available case analysis
to illustrate the application of our methods. Future research can use multiple imputation to deal with missing data when
using our proposed methods. This could be time consuming when the normal copula model is used.

As can be seen in Tables 3 to 5, it takes 2 to 4 h to optimise the likelihood for normal copula models. Future research may
investigate how to speed up the optimisation process for the analysis of a single data set, and the use of parallel computing
in R for conducting simulation studies.
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