PEARL

01 University of Plymouth Research Outputs

University of Plymouth Research Outputs

2023-08-02

Quality assessment of life cycle inventory data for composites

Moutik, B

https://pearl.plymouth.ac.uk/handle/10026.1/21162

All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author.

Quality assessment of

life cycle inventory data

for Composites

Badr Moutik

John Summerscales, Jasper Graham-Jones, and Richard Pemberton

UNIVERSITY OF

YMOUTH

Background

- To conduct a data quality assessment of key composite materials life cycle inventory "LCI" datasets
- To identify opportunities for enhancing the data quality of composites materials LCI datasets

Part of ongoing Ph.D. research: Life Cycle Assessment of Luxury Yacht Manufacture

Acceptability & Interpretation

LCA is the "compilation and evaluation of the inputs, outputs and the potential environmental impacts of a product system throughout its life cycle" (*ISO,2006*)

Data Quality in LCA

ISO 14040/44:2006

"the characteristics of data that relate to their ability to satisfy **stated requirements**"

"Data Quality requirements shall be specified to enable the goal and scope of the LCA to be met"

LCA Data Quality Requirements

"where a study is intended to be used in comparative assertions intended to be disclosed to the public, the [following] data quality requirements" shall be addressed, (150,2006)

Data Quality in LCA: open interpretation?

It does not specify to which component, or level, data quality analysis should be applied

Main methodologies for LCI data quality assessment (DQA)

ISO 14040/44:2006

U.S Life Cycle Inventory Database

Pedigree matrix

Indicator score	1	2	3	4	S (delault)
Reliability	Verilled ⁹ data based on measurements ⁶	Verilled data partly based on assumptions or non-verilled data based on measure- ments	Non-verified data partly based on quali- fied estimates	Qualified estimate (e.g. by industrial ex- pert)	Non-qualified estimate
Completeness	Representative data from all sites relevant for the market consid- ered, over an ade- quate period to even out normal fluctuations	Representative data from >50% of the sites relevant for the market considered, over an adequate period to even out normal fluo- tuations	Representative data from only some sites (<<50%) relevant for the market considered or>50% of sites but from shorter periods	Representative data from only one site nelevant for the market considered or some sites but from shorter periode	Representativeness unknown or data from a small number of sites and from shorter periods
Temporal cor- relation	Less than 3 years of difference to the time period of the dataset	Less than 0 years of difference to the time period of the dataset	Less than 10 years of difference to the time period of the dataset	Less than 15 years of difference to the time period of the dataset	Age of data unknown or more than 15 years of difference to the time period of the dataset
Geographical correlation	Data from area under study	Average data from larger area in which the area under study is included	Data from area with similar production con- citions	Data from area with slightly similar produc- tion conditions	Data from unknown ou distinctly different area (hioth America in- stead of Middle East, OECD-Europe instead of Russia)
Further tech- nological cor- relation	Data from enterprises, processes and mate- rials under study	Data from processes and materials under study (i.e. identical technology) but from different enterprises	Data from processes and materials under study but from differ- ent technology	Data on related proc- esses or matorials	Data on related proc- osses on laboratory scale or from different technology

Major LCI data sources

Fiber Reinforced Composite Materials

Fiber Reinforced Composite Materials

Unsaturated polyester resin formulation

(Polymerdatabase, 2022)

Unsaturated polyester resin process data set

Ecoinvent/MS360	
acetic anhydride	
adipic acid	
chemical factory, organics	
electricity, medium voltage	
ethylene glycol	
heat, district or industrial, natural gas	
heat, district or industrial, other than	
natural gas	
phthalic anhydride	
propylene glycol, liquid	
Water, cooling, unspecified natural origin	
Water, unspecified natural origin	

Sphera
Electricity grid mix
Thermal energy from natural gas
Propylene glycol
Maleic anhydride (MA) (from n-butane)
Phthalic anhydride (by oxidation of
xylene)
Styrene (ESBM dehydrogenation)
Nitrogen (gaseous)
Water (desalinated; deionised)
Catalyst

Eu Cia
Dicyclopentadiene based unsaturated
polyester resin
Isophthalic acid based unsaturated
polyester resin
Orthophthalic acid based unsaturated
polyester resin
Maleic unsaturated polyester resin
production

USLCI
Diesel, combusted in industrial equipment - RNA
Disposal, solid waste, unspecified, to municipal
incineration
Disposal, solid waste, unspecified, to sanitary landf
Disposal, solid waste, unspecified, to waste-to-
energy
Electricity, at grid - RNA
Ethylene glycol, at plant, kg
Ethylene glycol, at plant, kg
Ethylene, at plant, kg
Maleic anhydride, at plant
Natural gas, combusted in industrial boiler - RNA
Neo pentyl glycol, at plant
Petroleum coke, at refinery - RNA
Phthalic anhydride, at plant
Polyethylene terephthalate, PET, virgin resin, at
plant, kg
Propylene Glycol, liquid, at plant
Propylene Glycol, liquid, at plant
Purified terephthalic acid, PTA, at plant, kg
Purified terephthalic acid, PTA, at plant, kg
Styrene, at plant - RNA
Tetrabromophthalic acid, at plant
Transport, combination truck, diesel powered - RN
Transport, train, diesel powered - RNA
Water

DQA: Unsaturated Polyester Resin Unspecified

2002

Orthophthalic acid/Isophthalic acid/DCPD/Maleic UP Resin - BPA epoxy-based vinyl ester resin (per kg)

DQA: Orthophtalic acid based - Isophtalic acid based - DCPD based - Maleic - BPA epoxy based vinyl ester resin

Epoxy resin formulation

Epoxy resin process data set

Ecoinvent 3.9/Eu Cia
bisphenol A, powder
chemical factory, organics
electricity, medium voltage
epichlorohydrin
heat, district or industrial, natural gas
heat, from steam, in chemical industry
nitrogen, liquid
sodium hydroxide, without water, in 50%
solution state
tap water
wastewater, average
wastewater, average

Sphera DE
Electricity grid mix
Water (desalinated; deionised)
Epichlorohydrin (by product calcium chloride,
hydrochloric acid)
Bisphenol A
Isopropanol
Hydrochloric acid (100%) by-product
epichlorohydrine, calcium chloride
Nitrogen (gaseous)
Sodium hydroxide (caustic soda) mix (100%)
Catalyst
Hazardous waste (non-specific) (C rich, worst
case scenario incl. landfill)

Sphera RER/Plastics Europe Diesel, combusted in industrial equipment -RNA Bisphenol A by (phenol) (Acetone) Epichlorohydrin by (allyl chloride) production Natural Gas Production Crude Oil production Solvent Sodium hydroxide

Ecoinvent 3.5
bisphenol A, powder
chemical factory, organics
electricity, medium voltage
epichlorohydrin
heat, district or industrial, natural gas
heat, from steam, in chemical industry
nitrogen, liquid
sodium hydroxide, without water, in 50%
solution state
tap water
wastewater, average
wastewater, average

DQA: Epoxy Resin

Glass fiber input process data set

Ecoinvent 9.5	
Aluminium oxide	
Boric acid, anhydrous, power	
Chemical, organic	
Clay	
Flat glass factory	
Fluorspar	
Lime	
Lubricating oil	
Nylon 6	
Silica Sand	
Silicone product	
Tap water	
Electricity	
Heat, natural gas	

USLCI
Boric acid
Calcium borates
Clay
Electricity
Epoxy resin
Ethylene glycol
imestone
iquefied petroleum gas
Natural gas, in boiler
Quicklime
Residual fuel oil
Silicone dioxide
Soda power
Fransport combination truck
「ransport
Water

	Sphera
Quartz sand	
Colemanite	
Clay	
Fluorspar	
Limestone fl	our
Phenolic res	in
Dolomite	
Electricity	
Natural gas	
Lubricants a	t refinery
Kaolin	

GFE
Silica sand
Kaolin
Limestone
Dolomite
Electricity
Natural gas
Chemicals

DQA: Glass fiber

USLCI Sphera GFE EI 3.8

Estimat	GLASS FEBRE EUROPE
	2.5
ate	Basic
Estim	ei ecoinvent

High

	· / 1697 / 697.02 / 955									
Original Document	Databases/Platforms		ex							
ongina bocament	Databases/Trationins		Pe	edigre	ee		US EF	PA		
ife cycle assessment of CFGF – Continuous Filament Glass Fibre Products by pwc	EuCia	1	2	2	1	1	2	1		
DE: Glass fibres	Sphera	2	2	2	1	2	2	1		
-glass, US	USLCI	1	2	2	1	1	2	1		
ife cycle inventories of building prodcuts – Ecoinvent Data v2.0 by Hishier R. 2007, Glass fiber production	Ecoinvent/MS360	1.4	1.6	5	1.4	1.3	2	5		
ife cycle inventories of building prodcuts – Ecoinvent Data v2.0 by Hishier R. 2007, GRP Polyester resin hand lay up	Ecoinvent	4	4	5	3	1	2	5		
ife cycle inventories of building prodcuts – Ecoinvent Data v2.0 by Hishier R. 2007, GRP Polyester resin injection moulding	Ecoinvent	4	4	5	3	1	2	5		

ALESESS

Carbon fiber (per kg)

equivalent to the average energy consumed by an electric car in about one month and half ~ 1157 km

A range of 70 kg CO2 eq □ kg CO2 -eq 100 90 equivalent to the carbon el ecoinvent footprint of a short domestic 80 flight of 367 km 70 ~ Glasgow - Belfast 60 50 Eco Impact X Calculator 40 30 20 The Japan Carbon Fiber Manufacturers Association 10 0 **Carbon Fiber**

Carbon fiber input process data set

Eu Cia

Ecoinvent 3.9 GLO

Acrylonitrile butadiene styrene co polymer
GLO
chemical factory, organics
Injection moulding
Electricity, low voltage
heat, district or industrial, natural gas

JCMA
Acrylonitrile (AN)
Comonomer
Polymerization catalyst
Solvent
PAN fiber oil (PG)
Carbon fiber sizing agent
Electrolyte (sulfuric acid)
Packaging film (PE)
tap water
Paper tube
Outer packaging material
Electricity Consumption
Steam Consumption
Fuel consumption
Utility gas (nitrogen)
Water consumption

Polyacrylonitrile fibres (PAN) from
acrylonitrile and methacrylate, prod.
mix
Water, decarbonised
Epoxy resin, liquid
Sulfuric acid
Ammonium bicarbonite
Polydimethylsiloxane
Unwinding primary electricity
Oxidation primary electricity
Carbonization LT primary electricity
Carbonization HT primary electricity
Exhaust gas treatment primary
electricity
Elektrolysis primary electricity
Elektrolysis primary gas
Washing primary electricity
Washing primary gas
Drying-II primary electricity
Drying-II primary gas
Spooling primary electricity
Spooling primary gas

Sphera RER
Polyacrylonitrile Fibres (PAN)
Epoxy Resin (EP)
Hexamethylenediamine (HMDA;
from acrylonitrile via adiponitrile)
Nitrogen (gaseous)
Ammonium hydrogen carbonate
(Ammonium bicarbonate)
Deionised water- open input
electricity
Deionised water- open input
electricity
Electricity grid mix

Eu Cia

		Sph	era																										
		JCN	ЛA			E	El 3.8	3																					
2.3	2025	2024	2023	2022	2021	2020	2019	2018	2017	2016	2015	2014	2013	2012	2011	2010	2009	2008	2007	2006	2005	2004	2003	2002	2001	2000			
Estimate Sphera																						FURTHER	a tern						
3.5 Basic Estimate en ecoinvent																					Relie	ennoor and and a state	A COLOS	of concere	ocess oriention	Condete	ACCESSION AS	aien	
							0	rigina	al doo	cume	nt							Da	tabas	es/Pl	atfor	rms –		[Data q	uality	index		
								0												•				Pe	digre	e		US E	PA
3.3	Carbor	n fibre	e reir	nforce	ed pla	istic,	inject	ion n	nould	led - (glo	Ecoi	nvent					Eco	oinver	nt/MS	5360		4	5	4	5	4	5	2
anate sasic	Overvi	iew o	f LCI (data f	for Ca	rbon	Fiber	[.] by J(CMA									NA					1	2	1	1	1	2	1
Calculator	Carbor	n fibe	r RER	R sphe	era													Sp	nera				3	3	2	1	3	1	2
	Carbor	n Fibe	er by l	EuCia														Eu	Cia				3	4	4	3	2	5	4
																		-	Go	od <							•	Poor	
																				1		2		3		4		5	

DQA: Carbon Fiber

Case study / Scenario analysis

Fiberglass composite hull

Materials	Total Weight	MJ	kg CO2-eq
	(%)	(%)	(%)
E-glass	53	29	31
UP Resin	29	51	52

Hull of outboard powerboats

IPCC 2021 GWP (kg CO2-eq)

kg CO2-eq

Cumulative energy demand (MJ)

Uncertainty analysis /Monte Carlo simulation for UP resin IPCC 2021 GWP

Uncertainty analysis /Monte Carlo simulation for UP resin Cumulative energy demand (MJ)

Common LCI data quality

Acceptability

5

4.5

3

1

0.5

Conclusion and future work

- Defining a best-case LCI dataset or dataset range for composite materials (i.e., FU, SB...)
- Establishing acceptability criteria or "DQA goals" specific to composites LCI datasets in sector platforms would provide a standardized framework for evaluating data quality.
- The development of sector-specific guidelines for background data analysis would be valuable.
- Harmonizing the data quality assessment (DQA) methodology with the ILCD handbook, and to use in sector platforms datasets, would promote consistency and comparability in LCI data evaluations.

- **Southern Counties Materials Minerals**
- and Mining Society (SCMMMS) webinar
- 25 January 2024 (TBC)
- Save the date, Join us

UNIVERSITY OF

Ы

LYMOUTH