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Abstract

Lichen zonation on rocky seashores is a classic model of niche differentiation along an 

environmental gradient, yet the adaptations that have led to this distinct community 

structuring are not fully understood. Here, we explore the distribution of lichen functional 

traits across the eulittoral, mesic-supralittoral, and xeric-supralittoral zones of UK coastlines. 

Our results show that traits are unevenly distributed across the three zones and roughly 

correspond to the established black-orange-grey model of marine-maritime lichen zonation. 

The eulittoral is dominated by lichens that reproduce via perithecioid apothecia and harbours 

a significantly higher proportion of lichens with immersed thalli and cyanobionts than the 

xeric-supralittoral. The upper xeric-supralittoral is dominated by lichens that produce 

lecanorine apothecia, while the middle mesic-supralittoral hosts a high proportion of black 
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lichens and lichens that exhibit traits characteristic of the two other zones. We discuss the 

adaptive significance of these traits and highlight the need for further research into the 

ecophysiology and evolution of marine and maritime lichens.
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Introduction

Lichenised fungi are a major component of coastal marine ecosystems. Their distribution 

transitions through a range of distinct environmental pressures that span from daily 

immersion in seawater to fully terrestrial ecosystems, sometimes within the space of only a 

few metres (Hawksworth 2000). Natural environmental gradients such as these are important 

for investigating ecological and evolutionary mechanisms due to their ability to drive shifts in

species assemblage, niche differentiation, and local adaptation (Prieto et al. 2017). On rocky 

shores a variety of interacting factors across this gradient (e.g. salinity (Grube & Blaha 2005; 

Delmail et al. 2013), light (Sonina 2012), grazing (Higgins et al. 2015), and water availability

(Kranner et al. 2008)) have led to the formation of lichen ‘zones’. These zones correspond to 

distinctive coloured bands that begin at the top of the regularly submerged intertidal (black) 

and pass through parts of the shore exposed to regular sea spray/splashing (orange), to the 

upper zone that is only influenced by sea spray/splashing during storms (grey), before 

extending to fully terrestrial (i.e. non marine influenced) habitats. First delineated according 

to colour alone by Knowles (1913), lichen zones were investigated extensively by Fletcher 

(1973a, b) who categorised the rocky shore into the littoral, littoral fringe, mesic-supralittoral,

submesic-supralittoral, xeric-supralittoral, and xeric-terrestrial based upon the extent of 

lichen species distribution. Lichen zonation has since been observed to occur on rocky shores
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worldwide (Sheard & Ferry 1967; Sheard 1968; Søchting & Gjelstrup 1985; Smith & 

Simpson 1985; Pentecost 1987; Ryan 1988; Wolseley et al. 1996; Chu et al. 2000; 

Boaventura et al. 2002; Brodo & Sloan 2004; Chappuis et al. 2014; Vail & Walker 2021). 

Despite this established understanding of lichen zonation with its clear relevance to 

coastal ecology, remarkably little is known about the adaptations of marine and maritime 

lichens that contribute to this distinct niche differentiation (Sonina & Androsova 2020). In 

recent years, the use of lichen functional traits has emerged as a powerful tool to investigate 

the response of species and species assemblages to environmental variables (Ellis et al. 

2021). Here, we apply a qualitative traits-based approach to littoral and supralittoral lichens 

on UK coastlines to examine the distribution of morphological characteristics between zones 

and discuss the ecological implications of these traits.

Method

A list of lichens from intertidal and supralittoral zones was generated using the British

Lichen Society database (www.britishlichensociety.org.uk: accessed 15/5/22). First, a subset 

of the database was created based upon the records containing the “Ma” (Maritime) scale 

habitat. A total of 7,359 records were explicitly stated as being from maritime environments, 

including a total of 699 species. Species with < 5 records were discarded leaving a total of 

296 species. Distributions maps of each of these were examined by eye and any species with 

extensive non-coastal records were excluded from further analysis, retaining key species with

occasional inland records (e.g. Ramalina siliquosa (Huds.) A.L. Sm. (1918), Anaptychia 

runcinata (With.) J.R. Laundon (1984)), leaving a final list of 54 accepted species of 

maritime and marine lichens (Supplementary file 1).

The boundaries between zones based on species distributions as delineated by 

Fletcher may vary depending on multiple factors (e.g. exposure and aspect), and in some 
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cases certain species and corresponding zones may appear absent altogether. To address this, 

we used a simplified scheme based upon tide and wave action alone, assigning lichens to one 

of three primary zones. Lichens that are found predominantly within the range of high and 

low tide (including those that are infrequently found above the high-water mark e.g. 

Collemopsidium halodytes (Nyl.) Grube & B.D.Ryan (2016) are classified as eulittoral 

(equivalent to Fletcher’s littoral). Lichens that are frequently found above the upper limit of 

the high-water mark (including some that can occasionally occur below the high-water mark 

e.g. Hydropunctaria maura (Wahlenb.) C. Keller, Gueidan & Thüs (2009)) are classified as 

mesic-supralittoral (equivalent to Fletcher’s littoral fringe, mesic- and submesic-supralittoral 

zones). Lichens that are only found above regular influence of wave action are classified as 

xeric-supralittoral (equivalent to Fletcher’s xeric-supralittoral zone). Zones were determined 

using species descriptions in the Lichens of Great Britain and Ireland (Smith et al., 2009) and

Orange (2012).

For each lichen, the following traits were considered: primary photobiont 

(chlorococcoid, trentepohlioid, or cyanobacteria); thallus (black/brown-black, orange/yellow, 

white/grey/yellow-grey, green/olive/brown, immersed/superficial); growth form (crustose, 

foliose, fruticose, or squamulose); ascocarp type (lecanorine, lecideine, lirelliform, zeorine, 

aspicillioid, arthonioid or perithecioid); vegetative reproductive strategy (soredia or isidia). 

These traits were chosen for analysis based upon existing literature (Matos et al. 2015; Koch 

et al. 2019; Nimis et al. 2020; Käffer et al. 2021) and to cover a broad range of functionality 

within lichen ecology and life cycle. Pycnidia were not included as a trait owing to 

insufficient information pertaining to conidiomata for many of the species within the dataset.

All statistical analysis was conducted in R 4.0.3 software (R Core Team 2020). Non-metric 

dimensional scaling (NMDS) was carried out on a Jaccard distance matrix calculated from a 

presence/absence matrix of species traits using the metaMDS function in vegan (Oksanen et 
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al. 2018) and plotted in ggplot2 (Wickham 2016). Overall trait composition was compared 

between zones by permutational multivariate analysis of variance (PEMANOVA) using the 

pairwise.adonis function (Martinez Arbizu 2020). Distribution of specific traits between 

zones was tested by counting numbers of species displaying each trait and performing a 

Fisher’s exact test with subsequent pairwise posthoc comparisons on specific characters using

the fisher.multcomp function from the RVAideMemoire package (Hervé 2021). 

Results and discussion

A total of 54 lichen species were included in the dataset from the eulittoral (8 species), mesic-

supralittoral (15 species), and xeric-supralittoral (31 species) zones. After determining 

functional traits presented by each species, 24 unique trait combinations were identified 

(Table 1). 

The trait combinations were unevenly spread across the three zones (Figure 1), with 

overall trait distributions significantly different between the eulittoral and mesic-supralittoral 

(pairwise PERMANOVA, F = 4.8, R2 = 0.19, p.adjusted = 0.009*), eulittoral and xeric-

supralittoral (pairwise PERMANOVA, F = 7.96, R2 = 0.18, p.adjusted = 0.003**), and the 

mesic-supralittoral and xeric-supralittoral (pairwise PERMANOVA, F = 3.64, R2 = 0.076, 

p.adjusted =  0.009*). These findings roughly correspond to recognised patterns of lichen 

zonation based on species composition, suggesting that conditions along the coastal 

environmental gradient are driving both community assemblage and adaptive traits. Of all the

traits included in the analysis, three were found to show significant differences between 

zones; primary photobiont (Fisher’s exact, p = 0.0023**) (Figure 2B), thallus pigmentation 

(Fishers exact, p < 0.001***) (Figure 2C) and ascocarp type (Fisher’s exact, p < 0.001***) 

(Figure 2 D). 
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Primary photobiont

Lichens with cyanobacterial photobionts were significantly more frequent in the eulittoral 

zone compared to the mesic-supralittoral and xeric-supralittoral zones (Figure 2B). 

Cyanobacteria have a requirement for liquid water (Lange et al. 1993, 1996) that is readily 

available as seawater in the intertidal zone, and can make use of carbon concentrating 

mechanisms to account for reduced rates of diffusion of CO2 when saturated (Raven et al. 

1990; Palmqvist 1993; Máguas et al. 1995) which may be advantageous during tidal 

inundation.

It is important to consider that the absence of cyanolichens from the xeric-supralittoral

here only accounts for lichens with a strictly maritime distribution. Several cyanolichens that 

are non-maritime specific can be found in the xeric-supralittoral (e.g. Lathagrium auriforme 

(With.) Otálora, P.M. Jørg. & Wedin (2013), Placynthium nigrum (Huds.) Gray (1821)). The 

acquisition of a photobiont adapted to survival in seawater could be an important factor in 

allowing marine cyanolichens such as Lichina pygmaea (Lightf.) C. Agardh (1821) to survive

with regular seawater coverage (Ortiz-Álvarez et al. 2015; Chrismas et al. 2021). In the 

xeric-supralittoral where freshwater inputs dominate, this requirement is unnecessary and 

non-marine specialised cyanolichen communities with typical terrestrial Nostoc photobionts 

may be favoured.

While there was no significant difference in overall frequency of lichens with 

chlorococcoid photobionts between zones, further species differentiation exists within 

chlorococcoid photobionts that has not been examined here. For example, whereas terrestrial 

green algal photobionts such as Trebouxia may be favoured in the xeric-supralittoral due to 

their ability to resist desiccation and use water vapour (e.g. sea mist and fog) in 

photosynthesis (Matos et al. 2015), marine lineages such as Paulbroadya and 

Pseudendoclonium dominate in crustose lichens of the eulittoral and lower mesic-supralittoral

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150



such as Wahlenbergiella mucosa (Wahlenb.) Gueidan & Thüs (2009) and Hydropunctaria 

maura (Wahlenb.) C. Keller, Gueidan & Thüs (2009) (Thüs et al. 2011; Darienko, & 

Pröschold 2017; Černajová et al. 2022). Furthermore, differential response of photobionts to 

salt concentrations (Gasulla et al. 2019) indicates that photobiont halotolerance is an 

important factor in determining marine lichen distributions and could be a further ‘sub-trait’ 

to be explored. 

Thallus pigmentation

Characteristics of lichen thalli roughly follow the established black-orange-grey model of 

marine-maritime lichen zonation (Figure 2). The xeric-supralittoral contained a significantly 

higher proportion of grey/yellow-grey lichens compared to both the mesic-supralittoral and 

the eulittoral zones, at least in part due to a higher frequency of lichens containing usnic acid 

(e.g. Ramalina spp.). Usnic acid has UV protective and antioxidant properties (Kosanić and 

Ranković 2019; McEvoy et al. 2006) and may play a role in alleviating oxidative stress in 

maritime lichens (Françoise et al. 2014). The orange pigment parietin has similar properties 

(Kosanić and Ranković 2019), yet despite the dominance of parietin-rich lichens in the 

mesic-supralittoral a significant difference in the number of true maritime lichens with orange

pigmentation was not detected. In this case, the abundance of key species (e.g. Caloplaca 

thallincola (Wedd.) Du Rietz (1921)) should be considered in addition to absolute species 

count, while also taking into account the fact that other broadly distributed species not 

included in this study (e.g. Xanthoria parietina (L.) Th. Fr. (1860)) also contribute to the 

mesic-supralittoral and xeric-supralittoral communities.

Black lichens were significantly more abundant in the mesic-supralittoral compared to

the xeric-supralittoral. Black pigmentation is usually attributed to melanin (Mafole et al. 

2019) and is likely an adaptation in polyextreme environments (Gostinčar et al. 2012; 
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Muggia et al. 2013, 2021). Specific adaptive significance of melanin in marine lichens is yet 

to be established, but likely increases resilience to osmotic pressure (Money et al. 1998; 

Cordero & Casadevall 2017) and aids retention of osmolytes (Kogej et al. 2007) thereby 

contributing to salinity tolerance (Ravishankar et al. 1995; Lud et al. 2001; Grube & Blaha 

2005), as well as offering anti-herbivory (Higgins et al. 2015) and photoprotective properties 

(Grube & Blaha 2005). Extension of highly melanised thalli into the xeric-supralittoral may 

be suppressed by the tendency of melanin to cause overheating and subsequent damage to the

photosynthetic apparatus (McEvoy et al. 2007), and in the mesic-supralittoral there is a likely

trade-off between the advantages and disadvantages of melanised thalli.

Lichens with immersed or superficial thalli were significantly more frequent in the 

eulittoral compared to the mesic- and xeric-supralittoral. Lichens with thalli fully immersed 

in the substrate i.e. Collemopsidium foveolatum (A.L. Sm) F. Mohr (2004) and 

Collemopsidium sublitorale (Leight.) Grube & B.D. Ryan (2002) often grow on shells of 

barnacles, limpets, and oysters and are frequent in the eulittoral zone where suitable biogenic 

substrates are present although these species may also be saxicolous on shores comprised of 

calcareous rock. Interestingly, where C. halodytes appears on rock a superficial thallus is 

present, indicating a possible relationship between substrate preference and thallus 

development in this poorly understood genus (Mohr et al. 2004). 

Ascocarp type

Ascocarp type is a key trait defining the boundary between the eulittoral and the two 

supralittoral zones, shown by a by a significant switch from lecanorine apothecia in the xeric-

and mesic-supralittoral to perithecioid apothecia in the eulittoral (Figure 2D). These findings 

mirror observations in non-marine aquatic lichens, where enclosed perithecioid apothecia are 

frequent and more common than lecanorine apothecia (Nascimbene & Nimis 2006). It is 
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worth noting that the zeorine apothecia of the two Lichina species are similarly enclosed 

within a thalline exciple. This characteristic may have adaptive significance in marine 

environments, since developing ascospores within enclosed fruiting bodies have less chance 

of encountering surrounding water during tidal cycles and splashing, leading to a higher 

chance of survival relative to those of more open ascocarps such as lecanorine apothecia 

(Aptroot & Seaward 2003; Sonina & Androsova 2020). This implies a sub-aerial rather than 

sub-aquatic mode of dispersal in marine lichens and further research into the timing of 

ascospore discharge and viability of ascospores will be important to establish the influence of

seawater on reproduction in lichenised fungi.

Conclusions

Our results indicate that while there are differences between lichen traits found in the 

eulittoral, mesic-, and xeric-supralittoral zones, absolute boundaries between the zones are 

not clear. Many features of eulittoral lichens can be found in lichens of the mesic-supralittoral

where traits common with the xeric-supralittoral can also be found. The mesic-supralittoral 

may then be interpreted as an ecological boundary zone or ecotone, supporting an increased 

diversity of traits that accommodate the wide variety of ecological pressures that lichens 

within this zone are exposed to.

The qualitative traits used here provide an overview of traits contributing to lichen 

zonation on rocky seashores and may be used as a basis for more quantitative studies. In the 

intertidal, low lichen diversity means that absolute species counts as used here may not 

represent the most robust way of interpreting lichen ecology and by incorporating species 

abundance into our understanding of trait distributions we may better understand the 

processes driving variation in lichen community assemblage in this complex and dynamic 

environment. Furthermore, some marine species (e.g. Hydropunctaria orae Orange (2012)) 
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are poorly represented in the BLS database and more extensive surveys of coastal habitats are

essential to establish their true distributions. 

Finally, more research is necessary to investigate the effect of dispersal mode, 

secondary metabolite production, and photobiont specificity on marine and maritime lichen 

fitness and physiology to better understand lichen adaptations to this unique environment. 
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Table 1. Species included within the dataset indicating all assigned traits and zones.
Currently  accepted  synonyms  of  recently  revised  taxa  in  the  BLS  database
(accessed 15/5/22) are indicated in parentheses.

Species
Trait

comb. Growth form Ascocarp
Vegetativ

e Photobiont Thallus Zone
Acrocordia macrospora

17
Crustose Perithecioid Absent Trentepohlioid White/Grey/Yellow-

grey
Xeric-Supralittoral

Anaptychia runcinata 19 Foliose Lecanorine Absent Chlorococcoid Green/Olive/Brown Xeric-Supralittoral
Arthonia phaeobaea

1
Crustose Arthonioid Absent Trentepohlioid Green/Olive/Brown Mesic-

Supralittoral
Aspicilia leprosescens

2
Crustose Aspicillioid Isidia Chlorococcoid White/Grey/Yellow-

grey
Xeric-Supralittoral

Bacidia scopulicola 9 Crustose Lecideine Isidia Chlorococcoid Green/Olive/Brown Xeric-Supralittoral
Buellia subdisciformis

11
Crustose Lecideine Absent Chlorococcoid White/Grey/Yellow-

grey
Xeric-Supralittoral

Caloplaca aractina
6

Crustose Lecanorine Absent Chlorococcoid Black/Brown-black Mesic-
Supralittoral

Caloplaca britannica
3

Crustose Lecanorine Isidia Chlorococcoid Orange/Yellow Mesic-
Supralittoral

Caloplaca littorea 3 Crustose Lecanorine Isidia Chlorococcoid Orange/Yellow Xeric-Supralittoral
Caloplaca sorediella

4
Crustose Lecanorine Soredia Chlorococcoid White/Grey/Yellow-

grey
Xeric-Supralittoral

Caloplaca thallincola
7

Crustose Lecanorine Absent Chlorococcoid Orange/Yellow Mesic-
Supralittoral

Caloplaca verruculifera 3 Crustose Lecanorine Isidia Chlorococcoid Orange/Yellow Xeric-Supralittoral
Collemopsidium foveolatum 16 Crustose Perithecioid Absent Cyanobacteria Immersed/Superficial Eulittoral

Collemopsidium halodytes 16 Crustose Perithecioid Absent Cyanobacteria Immersed/Superficial Eulittoral
Collemopsidium sublitorale 16 Crustose Perithecioid Absent Cyanobacteria Immersed/Superficial Eulittoral

Diploschistes caesioplumbeus
8

Crustose Lecanorine Absent Chlorococcoid White/Grey/Yellow-
grey

Xeric-Supralittoral

Diplotomma chlorophaeum 
11

Crustose Lecideine Absent Chlorococcoid White/Grey/Yellow-
grey

Xeric-Supralittoral

 Flavoplaca (Caloplaca) marina
7

Crustose Lecanorine Absent Chlorococcoid Orange/Yellow Mesic-
Supralittoral

Flavoplaca  (Caloplaca) maritima 7 Crustose Lecanorine Absent Chlorococcoid Orange/Yellow Xeric-Supralittoral
Flavoplaca (Caloplaca) microthallina

7
Crustose Lecanorine Absent Chlorococcoid Orange/Yellow Mesic-

Supralittoral
Halecania ralfsii

8
Crustose Lecanorine Absent Chlorococcoid White/Grey/Yellow-

grey
Mesic-

Supralittoral
Heterodermia leucomelos

18
Foliose Lecanorine Soredia Chlorococcoid White/Grey/Yellow-

grey
Xeric-Supralittoral

Hydropunctaria amphibia
13

Crustose Perithecioid Absent Chlorococcoid Black/Brown-black Mesic-
Supralittoral

Hydropunctaria maura
13

Crustose Perithecioid Absent Chlorococcoid Black/Brown-black Mesic-
Supralittoral

Hydropunctaria oceanica
13

Crustose Perithecioid Absent Chlorococcoid Black/Brown-black Mesic-
Supralittoral

Lecania aipospila
8

Crustose Lecanorine Absent Chlorococcoid White/Grey/Yellow-
grey

Xeric-Supralittoral

Lecania atrynoides
8

Crustose Lecanorine Absent Chlorococcoid White/Grey/Yellow-
grey

Xeric-Supralittoral

Lecanora helicopis
8

Crustose Lecanorine Absent Chlorococcoid White/Grey/Yellow-
grey

Mesic-
Supralittoral

Lecanora poliophaea
8

Crustose Lecanorine Absent Chlorococcoid White/Grey/Yellow-
grey

Mesic-
Supralittoral

Lecanora praepostera
8

Crustose Lecanorine Absent Chlorococcoid White/Grey/Yellow-
grey

Xeric-Supralittoral

Lecidella asema
11

Crustose Lecideine Absent Chlorococcoid White/Grey/Yellow-
grey

Xeric-Supralittoral

Lecidella meiococca
11

Crustose Lecideine Absent Chlorococcoid White/Grey/Yellow-
grey

Xeric-Supralittoral

Lichina confinis
21

Fruticose Zeorine Absent Cyanobacteria Black/Brown-black Mesic-
Supralittoral

Lichina pygmaea 21 Fruticose Zeorine Absent Cyanobacteria Black/Brown-black Eulittoral
Myriolecis actophila 

8
Crustose Lecanorine Absent Chlorococcoid White/Grey/Yellow-

grey
Xeric-Supralittoral

Myriolecis fugiens
8

Crustose Lecanorine Absent Chlorococcoid White/Grey/Yellow-
grey

Xeric-Supralittoral

Opegrapha cesareensis
12

Crustose Lirelliform Absent Trentepohlioid White/Grey/Yellow-
grey

Xeric-Supralittoral

Ramalina cuspidata 23 Fruticose Lecanorine Absent Chlorococcoid White/Grey/Yellow- Xeric-Supralittoral
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grey
Ramalina siliquosa

23
Fruticose Lecanorine Absent Chlorococcoid White/Grey/Yellow-

grey
Xeric-Supralittoral

Rhizocarpon richardii
11

Crustose Lecideine Absent Chlorococcoid White/Grey/Yellow-
grey

Xeric-Supralittoral

Roccella fuciformis
22

Fruticose Lecanorine Soredia Trentepohlioid White/Grey/Yellow-
grey

Xeric-Supralittoral

Roccella phycopsis
22

Fruticose Lecanorine Soredia Trentepohlioid White/Grey/Yellow-
grey

Xeric-Supralittoral

Roccellographa circumscripta
5

Crustose Lecanorine Soredia Trentepohlioid White/Grey/Yellow-
grey

Xeric-Supralittoral

Solenopsora holophaea 24 Squamulose Lecideine Soredia Chlorococcoid Green/Olive/Brown Xeric-Supralittoral
Solenopsora vulturiensis 24 Squamulose Lecideine Soredia Chlorococcoid Green/Olive/Brown Xeric-Supralittoral

Syncesia myrticola
12

Crustose Lirelliform Absent Trentepohlioid White/Grey/Yellow-
grey

Xeric-Supralittoral

Toninia mesoidea 10 Crustose Lecideine Absent Chlorococcoid Green/Olive/Brown Xeric-Supralittoral
Verrucaria ditmarsica 14 Crustose Perithecioid Absent Chlorococcoid Green/Olive/Brown Eulittoral

Verrucaria halizoa 14 Crustose Perithecioid Absent Chlorococcoid Green/Olive/Brown Eulittoral
Verrucaria internigrescens 

15
Crustose Perithecioid Absent Chlorococcoid White/Grey/Yellow-

grey
Xeric-Supralittoral

Verrucaria prominula
15

Crustose Perithecioid Absent Chlorococcoid White/Grey/Yellow-
grey

Mesic-
Supralittoral

Wahlenbergiella (Verrucaria)
striatula 14

Crustose Perithecioid Absent Chlorococcoid Green/Olive/Brown Eulittoral

Wahlenbergiella (Verrucaria)
mucosa 14

Crustose Perithecioid Absent Chlorococcoid Green/Olive/Brown Eulittoral

Xanthoria aureola
20

Foliose Lecanorine Absent Chlorococcoid Orange/Yellow Mesic-
Supralittoral



Figure 1. Non-metric dimensional scaling (NMDS) plots of lichen functional traits on
rocky shores. Points represent unique combinations of traits. Convex hulls outline
combinations of traits found in the eulittoral (black), mesic-supralittoral (orange) and
xeric-supralittoral  (white)  zones.  Plots  are  faceted  to  highlight  the  following  trait
categories A - E: A = growth form, B = photobiont, C = thallus, D = ascocarp type,
and E = vegetative reproduction type. F = NMDS biplot showing vectors for traits
found to be significantly different as determined by pairwise Fisher’s Exact tests (red
diamonds  are  trait  combinations  as  in  A-E,  clustered  points  indicate  individual
species).
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Figure 2. Relative abundance of functional traits in lichens of the eulittoral (n = 8),
mesic-supralittoral (n = 15), and xeric-supralittoral (n = 31) zones. Trait categories
shown are as follows A – F: A = growth form, B = photobiont, C = thallus colour, D =
ascocarp  type,  and  E  =  vegetative  reproduction  type.  Significantly  different
comparisons as determined by pairwise Fisher’s Exact tests on presence/absence
counts for each trait are indicated.
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