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RESEARCH ARTICLE

A phenomics approach reveals interspecific differences in
integrated developmental responses to chronic elevated
temperatures
Jamie C. S. McCoy*, John I. Spicer, Simon D. Rundle and Oliver Tills

ABSTRACT
Phenomics, high-dimensional organismal phenotyping, is advanced
as a solution to quantifying complex developmental responses to
elevated temperatures. ‘Energy proxy traits’ (EPTs) measure the
phenotype as a spectrum of energy values across different temporal
frequencies from pixel value fluctuations of video. Although they have
proven effective in measuring the biology of complex and dynamic
developing organisms, their utility in assessing environmental
sensitivity of different species is untested. Using EPTs, we assess
the relative thermal sensitivities of embryos of three species of
freshwater snail with marked differences in their developmental event
timings. Embryos of Lymnaea stagnalis, Radix balthica and Physella
acuta were videoed hourly for the duration of their embryonic
development at two temperatures: 20°C and 25°C. The video was
used to calculate EPTs for the duration of their embryonic
development, and during discrete physiological windows in
development. Changes in energy spectra during development
identified marked differences in thermal sensitivities between
species, and suggest a relatively heightened sensitivity of gross
rates of embryonic physiology and behaviour in embryos of R.
balthica, developmental-window-specific thermal responses that
reflect ontogenetic differences in observable physiologies, and
temperature-induced changes in physiological event timing. EPTs
enabled comparison of high-dimensional spectral phenotypes,
providing a unique capability for assessing sensitivity continuously
in developing individuals. Such integrative and scalable phenotyping
is a prerequisite for improved understanding of the sensitivity of early
life stages of different species.

KEYWORDS: Development, Thermal biology, Embryo, Comparative
physiology, Phenotyping, Gastropods

INTRODUCTION
Assessing the thermal sensitivity of the phenotype during early
development is central to predicting how species will respond to
forecasted climate change (Burggren, 2018, 2021). Chronic
elevated temperatures affect processes at every level of biological
organisation (Hochachka and Somero, 2002; Iverson et al., 2020),

resulting in altered absolute and relative timings of organismal
development (Johnston, 1993; Gillooly et al., 2002; Gomez-Mestre
and Buchholz, 2006; Klimogianni et al., 2004), and rates of
numerous aspects of organismal physiology (Birchard and Reiber,
1996; Styf et al., 2013; Du and Shine, 2015), behaviour
(Oppenheim and Levin, 1975; Peterson and Robichaud, 1983;
Peterson et al., 2004; Du and Shine, 2015; Tills et al., 2018) and size
at hatch (Pepin et al., 1997; Angilletta and Dunham, 2003; Mitz
et al., 2019). Despite such broad-scale changes, current approaches
to measuring the response of the phenotype typically rely on
reductionist approaches involving the measurement of single or a
small numbers of traits with some pre-established functional
significance, or in some cases, the use of gross indicators of
organismal performance (e.g. metabolic rate, developmental rate,
size at hatch).

It is widely acknowledged that measurement of a small number of
traits may lead to erroneous conclusions over the significance of an
environmental stressor in influencing the sensitivity of a developing
individual, as absence of plasticity in an observed trait may be
compensated for by plasticity in another, unobserved trait (Pigliucci
and Preston, 2004; Houle et al., 2010; Valladares et al., 2007;
Whitman andAgrawal, 2009). Although such univariate approaches
are important in providing indications of organismal performance
and fitness, understanding the physiological mechanisms
underlying such broad-scale organismal changes requires
approaches capable of quantifying high-dimensional phenotypic
change (Forsman, 2015), in a manner comparable to the global
approaches used in the global molecular-omics (Todgham and
Hofmann, 2009; Meyer et al., 2015; Clark et al., 2017; Collins et al.,
2017). Phenomics, the high-throughput acquisition of phenotypic
data at the scale of the whole organism (Houle et al., 2010), is a
technology-enabled approach that overcomes these limitations, and
is routinely used within experimental contexts of plant biology and
their interactions with environmental change. However, its use to
understand animal responses to global environmental change is still
in its infancy (Lürig et al., 2021).

Phenomics has enabled the tackling of key challenges including
the production of drought-resistant crops in plant sciences, and
identifying disease phenotypes in biomedicine (Furbank and Tester,
2011; Großkinsky et al., 2015; Neto and Borém, 2015; Alexandrov
et al., 2016; Tardieu et al., 2017; Davatzikos et al., 2018). Despite
the pressing need to assess phenotypic sensitivity to global climate
change, the use of phenomics in environmental physiology and
developmental biology remains comparatively scarce (Tills et al.,
2018, 2021, 2023). However, ‘energy proxy traits’ (EPTs) have
emerged as a tractable approach to phenomics when using early life
stages as objects of study (Tills et al., 2018, 2021). EPTs are a
spectrum of energy within different temporal frequencies in the
pixel brightness fluctuations in videos of developing embryos.Received 10 February 2023; Accepted 26 May 2023
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Rather than identifying and then targeting specific aspects of
physiology or behaviour, EPTs integrate all biological sources of
fluctuations in average pixel brightness in video as a spectrum of
energy across discrete temporal frequency bins. Given that EPTs
measure changes in pixel values in video, rather than targeting
specific aspects of organismal physiology, behaviour or
morphology, they should be amenable to transferability between
species with markedly different developmental itineraries, and
periods of development with differences in observable phenotypes.
Previous work suggested that EPTs may be related to biochemical
energy turnover in developing embryos (Tills et al., 2021), and
although EPTs have proven effective at characterising acute and
chronic responses to environmental stress in embryos of aquatic
invertebrates (Tills et al., 2018, 2021), they remain untested in their
capacity for interspecific comparisons. This is a major prerequisite
to establishing their utility as a comparative approach to phenomics,
and in assessing species-specific thermal sensitivity.
Biological development is characterised by high degrees of

functional and spatial change, necessitating a focus on small
windows of development, or applying limited phenotyping
approaches that are applicable to observable traits between stages
of development that vary in their observable phenotypes.
Furthermore, biological development involves a large number of
traits, with individual trait plasticities leading to considerable
complexity in considering the effects of environmental drivers such
as temperature (Hochachka and Somero, 2002; Iverson et al., 2020).
These factors, combined with substantial variation in the timings of
physiological development between closely related species
(‘heterochrony’; Smith, 2002; Bininda-Emonds et al., 2007;
Smirthwaite et al., 2007; Keyte and Smith, 2014), have resulted in
an obstacle to organismal development being routinely considered
in assessing sensitivity to environmental drivers, despite a general
acknowledgement that responses at this stage are critical (Fuiman
et al., 1998). Previous solutions to these limitations have centred on
the use of standardised indicators of development stages such as
ontologies when comparing interspecific responses at various
stages of development (Walls et al., 2019), and the use of equivalent
developmental events for interspecific comparisons (e.g.
Smirthwaite et al., 2007). However, these approaches rely on
collapsing the high-dimensional continuum of biological
development into a simplified framework, potentially reducing the
power of the resulting research, and its transferability to other non-
model species of interest.
Consequently, herewe test the thermal sensitivity of the phenome of

embryos alongside pre-established heterochronic differences in
physiological event timings. Additionally, we aimed to understand
how thermal responses of the phenome of embryos varied between
windows of development that vary in their observable physiologies,
hereafter referred to as ‘physiological windows’. To do this, we applied
EPTs to test the relative thermal sensitivities of three species of
freshwater pulmonate gastropod (Lymnaea stagnalis, Radix balthica
and Physella acuta) to chronic elevated temperatures. These species
can occur in highly thermally variable habitats, and although data are
available on acute responses of adults (Hoefnagel and Verberk, 2017;
Johansson and Laurila, 2017), data on integrated developmental
responses to different chronic temperatures remain limited. These
species belong to the first invertebrate clade for which heterochrony
was empirically revealed, in a broad range of physiological
developmental events. Evolutionary differences in the relative
timings of physiological events during their development
(heterochronies; Gould, 1977) included species within the family
Physidae (Physella acuta) exhibiting a significantly earlier onset of

attachment to the wall of the egg capsule and commencement of
muscular crawling relative to the onset of cardiovascular function, and
a number of other physiological events. Conversely, in the
Lymnaeidae (Lymnaea stagnalis and Radix balthica), embryos
develop cardiovascular function during a free-swimming stage prior
to this attachment and onset of muscular crawling (Smirthwaite et al.,
2007). Consequently, these species provide an excellent model for
assessing differential thermal sensitivity in high-dimensional
phenotypic space, underpinned by evolutionary divergences in
development, enabled by EPTs.

MATERIALS AND METHODS
Embryo collection
Adult snails Lymnaea stagnalis (Linnaeus 1758), Physella acuta
(Draparnaud 1805) andRadix balthica (Linnaeus 1758)were collected
from field sites in Devon and Somerset, UK (L. stagnalis and P. acuta
– Exeter Canal, 50°41′57.8″N 3°30′43.7″W,April 2021; R. balthica –
South Drain, 51°11′23.9″N 2°52′47.9″W, April 2017), at field
temperatures within the range of 14.6–16°C. Adults were returned to
the laboratorywithin 24 h of collection in buckets containingwater and
pondweed from the collection site. There, they were maintained in
standard laboratory conditions in rearing aquaria (volume=14 litres)
containing constantly aerated artificial pond water (APW) (CaSO4 –
120 mg l−1, MgSO4 – 245 mg l−1, NaHCO3 – 192 mg l−1, KCl –
8 mg l−1) at 15°C under a 12 h:12 h light:dark regime. Stock
populations were maintained for a minimum 2-week acclimation
period to minimise confounding effects owing to the recent thermal
histories of individuals (Terblanche and Chown, 2006; Calosi et al.,
2010). Approximately 45 adults of each species were maintained
across nine containers (three containers per species, N=15 per
container, volume=12 litres). During this time, water was changed
weekly and adults were fed spinach and lettuce ad libitum. Eggmasses
(L. stagnalis N=3, R. balthica N=6, P. acuta N=3) were removed from
thewalls of rearing aquaria using a thin piece of laminate plastic within
24 h of deposition. On inspection (10–40×, HM-4, Microtech, UK),
those that had not developed beyond the 4-cell stage were extricated
from the egg mass and removed. Eggs from each egg mass were then
evenly distributed between two microtitre plates (Nunc, Microwell, 96
wells, 350 µl well−1), with each microtitre plate held at one of two
different temperatures (20 or 25°C).

Temperature exposure and bioimaging
An open-source autonomous video microscope (OpenVIM) (Tills
et al., 2018) was used to record embryonic development from the
4-cell stage to hatching. Two microtitre plates containing embryos
from each of the egg masses were placed into incubation chambers
(H101-K-Frame, Okolab, Italy) of two separate imaging systems,
each corresponding with a different rearing temperature (20 or
25±0.2°C). A total of 96 embryos was used for each species (N=48
per temperature treatment). The temperature of these incubation
units was controlled by circulation of water through the chamber
supplied by a temperature bath (H101-CRYO-BL, Okolab), and air
was supplied using an air pump (OKO AP, Okolab). Air was pre-
humidified using a humidity module to minimise evaporation in
wells (Okolab), and water levels were checked every 48 h and
topped up using Milli-Q water (Merck, Germany) as required.

A charged couple device digital camera (resolution: 2048×2048
pixels, Pike F421B, Allied Vision, Germany) attached to an
inverted lens at 200× magnification (VH-200R, Keyence, UK) was
used to acquire image sequences of individual embryos. Dark field
illumination was achieved using an LED ring light placed above the
incubation chamber (LDR2-42-SW2, CCS, UK). The position of the
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incubation chamber relative to the camera was controlled using a
motorised XY stage (SCAN130×85,MärzhäuserWetzlar, Germany).
Camera and motorised stage were controlled autonomously for the
duration of the experiment using the ImageJ plugin µManager
(Edelstein et al., 2010). Embryos were imaged every hour for 30 s at
30 frames s−1 and a resolution of 1048×1048 pixels for R. balthica,
and at 48 frames s−1 and a resolution of 512×512 pixels for both P.
acuta and L. stagnalis. Video for R. balthica was obtained from a
previous study, described in Tills et al. (2018, 2021).

Image analysis
Manual analysis of the video time series for each developing
embryo (N=48 for each species and temperature) was carried out
to ascertain the timings of a number of key physiological
developmental events. These events were: (i) the onset of ciliary
driven rotation; (ii) the onset of cardiovascular function (determined
by first visible heart beat); (iii) attachment to the wall of the egg
capsule and the transition to muscular crawling behaviour using the
foot; and (iv) the onset of radula function (the last developmental
stage before emergence from the egg capsule in all three species)
(Smirthwaite et al., 2007). These developmental events were used to
delineate major physiological windows of developing embryos.
EPTs were calculated from the individual image sequence

captured at each time point for each replicate embryo using an
open-source Python package Embryo Computer Vision
(EmbryoCV) (Tills et al., 2018). Within each 30 s time point,
mean pixel values were calculated for each frame across the entire
area of a bounding box surrounding the embryo, segmented
autonomously by EmbryoCV. Signal decomposition of fluctuations
in these mean pixel values between frames using Welch’s method
was used to calculate EPTs (Welch, 1967). Temporal frequency data
were binned (0.1 Hz intervals to a maximum frequency of 6 Hz),
producing a total of 60 frequency bands. Data were restricted to this
frequency to minimise the influence of frequencies greater than
those associated with any signal observable from the embryos
(J.C.S.M., personal observation). Total energy, the sum of energy in
all frequency bands for each time point, was calculated to produce a
proxy for gross rates of embryonic physiology and behaviour (Tills
et al., 2018, 2021). To standardise rates of development and enable
direct comparisons between species and temperatures, the absolute
timings from the 4-cell stage to hatching were converted to relative
time (0–1).

Dimensionality reduction and statistical analyses
All data were analysed in R v4.0.3 (https://www.r-project.org/).
Interspecific differences in the developmental response to chronic
elevated temperatures were investigated using a repeated-measures
ANOVA of time series of total energy data. Post hoc analyses
(Tukey’s HSD) were used to test for pairwise differences between
temperature treatments in total energy at each point in relative
developmental time. To investigate differences in response to
chronic elevated temperatures between different physiological
windows in development, principal component analysis (PCA)
was applied using the R function prcomp() (package stats, v4.0.3).
Mean values of energy within each frequency band were calculated
at four key stages of development outlined above (rotation, heart,
crawling and radula) for each temperature (20°C and 25°C). PCA
was applied to logged EPT data and eigenvectors were used to
investigate combinatorial signals from EPTs at different
temperatures and physiological windows of development.
To record how responses to chronic elevated temperatures change

between different physiological windows, pairwise differences in

energy within discrete temporal frequency bands between
temperatures within each physiological window were analysed
using a multivariate Kruskal–Wallis test. To minimise false
discovery rates, a Bonferroni correction was applied (P=0.00083).

RESULTS
Interspecific differences in the developmental response to
chronic elevated temperatures
Time series of all energy across the EPT spectrum (hereafter referred
to as total energy) at each hourly time point revealed differences in
the magnitude of response to chronic elevated temperatures between
embryos of each species (Fig. 1D). Total energy (the sum of energy
within all frequency bands at a particular time point) showed the
greatest magnitude of change in R. balthica, which was significantly
increased at 25°C relative to 20°C (repeated-measures ANOVA,
F1,99=67.94, P<0.0001). Embryos at 26–62% of relative
developmental time exhibited a significant increase in total
energy at 25°C (Tukey’s HSD, P<0.0059; Fig. 1B; Table S1).
Conversely, in P. acuta, we observed a considerably lower
magnitude of change and increases in total energy at far fewer
points in relative developmental time (repeated-measures ANOVA,
F1,99=3.16, P<0.0001) (22–36% relative developmental time,
Tukey’s HSD, P=0.034; Table S1) (Fig. 1C). However, in L.
stagnalis, we observed both significant increases and decreases in
total energy at 25°C relative to 20°C (F1,99=21.16, P<0.0001). At
approximately 22–30% relative developmental time, we observed a
decrease in total energy (Tukey’s HSD, P<0.042; Table S1),
whereas at 38–58% relative developmental time, total energy was
increased (Tukey’s HSD, P<0.0001; Table S1) (Fig. 1A).

Temperature-related differences in the relative timings of
development were also evident from time series of total energy
(Fig. 1). For L. stagnalis, these shifts in timing were evident as the
total energy time series trend at 25°C being shifted forward in
relative developmental time, relative to that at 20°C (Fig. 1A).
Manual determination of the absolute timings of major
developmental events used in this study showed that all were
accelerated at 25°C relative to 20°C (Kruskal–Wallis, P<0.001;
Table 1; Table S2). Temperature-induced changes in physiological
event timings were also observed in R. balthica, and manual
quantification of developmental events revealed an acceleration of
the onset of muscular crawling and cardiovascular function
(Kruskal–Wallis, P<0.001; Table S2).

Differences in thermal responses between physiological
windows in development
Lymnaea stagnalis and P. acuta both pass through comparable
physiological windows, separated by developmental events
including ciliary driven rotation, cardiovascular function and
muscular crawling. In L. stagnalis, there was no significant effect
of temperature on energy within any frequencies during both ciliary
driven rotation and cardiovascular function. However, during
muscular crawling (i.e. when the embryo had attached to the wall
of the egg capsule and commenced muscular crawling), there were
significant increases in energy at 25°C relative to 20°C in
frequencies within the ranges of 0.6–0.9 and 1.8–2.1 Hz.
Additionally, significant increases in energy were observed during
the onset of radula function in embryos reared at 25°C for
frequencies within the range of 1.8–2.1 Hz (multivariate Kruskal–
Wallis, P<0.00083; Fig. 2; Table S3).

In R. balthica embryos, we observed significant increases in
energy at 25°C relative to 20°C within a broad range of frequency
bands throughout development. Embryos during ciliary driven
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rotation also had greater energy at 25°C within the ranges of 0.1–
1.7, 4.1–4.7 and 5.9–6.0 Hz. During cardiovascular function, there
was a significant increase in energy at 25°C in frequencies within
the ranges of 0.4–1.8 and 2.6–6.0 Hz. During muscular crawling,
energy in frequencies within the ranges of 0.1–2.7 and 3.2–6.0 Hz
were significantly increased at 25°C. Finally, following the onset of
radula function embryos showed a significant increase in energy at
25°C in frequencies within the ranges of 0.3–1.1, 1.8–2.5 and
3.4–6.0 Hz (multivariate Kruskal–Wallis, P<0.00083; Fig. 2;
Table S3).
Finally, in P. acuta during ciliary rotation, embryos exhibited a

significant increase in energy at 25°C relative to 20°C in frequencies

within the ranges of 0.1–0.4 and 4.4–6.0 Hz. During muscular
crawling, temperature effects were limited to significant increases in
energy at 0.5 and 4.6–5.0 Hz. However, after the appearance of
cardiovascular function there were significant increases in energy at
25°C within frequencies within the ranges of 0.4–1.0 and 1.8–
2.5 Hz. During radula function, energy was significantly greater at
25°C than 20°C in the frequencies of 0.5 and 2.0–2.7 Hz
(multivariate Kruskal–Wallis, P<0.00083; Fig. 2; Table S3).

Combinatorial analysis of EPTs
Multivariate analysis of EPT spectra were used to test for high-
dimensional thermal and species-specific differences during multiple
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windows of physiological development. Reduction of EPT data (0–
6.0 Hz) at each physiological window in development to three
dimensions using PCA, revealed distinct clustering based on

temperature and developmental stage. The first three principle
components (PCs) of PCA analyses on each species cumulatively
explained 93.15, 87.30 and 90.50% of the variance for L. stagnalis,

Table 1. Timings of physiological events used in this study

Species Physiological event Temperature (°C) Absolute timing (h) Relative timing

Lymnaea stagnalis Rotation 20 41.19±1.96 0.13±0.01
25 28.23±1.34 0.11±0.02

Crawling 20 194.27±5.45 0.63±0.03
25 139.22±3.63 0.54±0.08

Heart 20 146.32±2.75 0.48±0.02
25 96.57±2.36 0.38±0.06

Radula 20 229.33±6.86 0.75±0.04
25 164.15±4.69 0.64±0.09

Hatching 20 307.14±12.43 1
25 263.97±46.07 1

Radix balthica Rotation 20 48.33±7.15 0.19±0.03
25 32.83±3.03 0.19±0.02

Crawling 20 168.75±9.99 0.68±0.04
25 107.11±3.88 0.62±0.03

Heart 20 141.31±4.30 0.57±0.02
25 95.41±2.75 0.55±0.02

Radula 20 214.62±9.93 0.86±0.04
25 146.78±10.78 0.85±0.06

Hatching 20 248.89±6.20 1
25 173.41±4.41 1

Physella acuta Rotation 20 27.11±2.29 0.12±0.01
25 16.25±1.45 0.12±0.01

Crawling 20 94.24±4.02 0.42±0.02
25 57.02±2.07 0.41±0.02

Heart 20 111.63±3.16 0.49±0.02
25 69.85±2.10 0.50±0.02

Radula 20 159.75±4.63 0.70±0.03
25 102.99±4.01 0.73±0.04

Hatching 20 227.36±7.20 1
25 140.77±4.85 1

Absolute timings of developmental events were recorded by manual observation of video of developing embryos of L. stagnalis (20°C, N=32; 25°C, N=26), R.
balthica (20°C,N=40; 25°C,N=37) andP. acuta (20°C,N=43; 25°C,N=41). Relative timings were calculated by standardising absolute timing data between the 4-
cell stage and hatching. Data are means±s.e.m.
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25°C. Rotation, onset of ciliary driven rotation; Heart, onset
of cardiovascular function; Crawling, attachment to the wall
of the egg capsule and onset of muscular crawling;
Radula, onset of radula function. Arrow indicates
sequence heterochrony between crawling and heart
function in P. acuta (Smirthwaite et al., 2007).
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R. balthica and P. acuta, respectively. For L. stagnalis, separation of
points between temperatures during ciliary-driven rotation and
muscular crawling was predominantly along the axis of PC2
(Fig. 3A). Variance along the axis of PC2 was driven by frequencies
ranging from 0.03 to 1.0 Hz, indicating that temperature differences
during these physiological windows of development were driven by
changes in energy within these frequencies (Table S4). Furthermore,
during radula function, differences between embryos reared at 20 and

25°C were driven by changes in energy within frequencies ranging
from 1.8 to 2.1 Hz, given that points were separated predominantly
along the axis of PC3, and variance along this axis driven by these
frequencies (Table S4; Fig. 3A).

In R. balthica, during ciliary-driven rotation and cardiovascular
function, embryos at different temperatures were principally separated
along the axis of PC1, and these differences were driven predominantly
by frequencies in the range of 1.8–2.5 Hz. During muscular crawling,
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Fig. 3. Principal component analysis (PCA) of energy proxy trait data across species and physiological windows in development. PCA was applied
to mean energy within 60 temporal frequency bins at two temperatures (20°C and 25°C) and four physiological windows in development (ciliary driven
rotation, crawling on the wall of the capsule, cardiovascular function and radula function) during the embryonic development of (A) L. stagnalis,
(B) R. balthica and (C) P. acuta.
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separation of embryos at each temperaturewas distributed evenly across
the axes of both PC1 and PC2, differences that were driven by changes
in energywithin frequencies ranging from 0.03 to 0.8 Hz (PC2) and 1.9
to 2.5 Hz (PC1). Additionally, during radula function, embryos reared
at different temperatures were separated along the axis of PC3, variance
in which was driven by changes in energy within frequencies of
0.1–0.6, 1.5–1.7 and 3.0–3.2 Hz (Table S4; Fig. 3B).
Finally, in P. acuta, during ciliary-driven rotation, frequencies

ranging from 2.0 to 4.0 Hz were predominantly driving differences
between embryos at 20°C and 25°C, given that these embryos were
mainly separated along the axis of PC1. During cardiovascular
function and radula function, embryos were separated along the axes
of both PC1 and PC2, variance in which was driven by changes in
energy within frequencies ranging of 2.0–4.0 and 0.03–1.0 Hz,
respectively. Additionally, embryos during cardiovascular and
radula function were driven by frequencies ranging from 2.0 to
2.4 Hz, separated along the axis of PC3 (Fig. 3C; Table S4).

DISCUSSION
We applied a phenomics approach to test thermal sensitivity of the
phenome of developing embryos of three species of freshwater snail
with pre-established evolutionary differences in physiological event
timings. Additionally, we aimed to understand how thermal
responses of the phenome varied between physiological windows
in development that vary in their observable phenotypes. EPTs
revealed interspecific differences in relative sensitivities to chronic
elevated temperatures, and differences in thermal responses between
physiological windows in development. Additionally, temperature-
induced changes to the timings of physiological development were
identified from EPT time series. In summary, EPTs exhibited
marked differences in the magnitude and direction of thermal effect
between species and physiological windows in development.

EPTs reveal interspecific differences in the developmental
response to chronic elevated temperatures
Major interspecific differences were evident in the thermal sensitivity
of time series of total energy. Total energy is the sum of energy across
all frequencies for each hourly 30 s video, and it integrates all sources
of biological movement present in video. Given that temperature
affects rates of processes at every level of biological organisation,
responses in total energy under chronically elevated temperatures is
indicative of such broad-scale thermodynamic changes.Radix balthica
showed the greatest magnitude of response in total energy from 20°C
to 25°C compared with L. stagnalis and P. acuta (Fig. 1), suggesting
heightened thermal sensitivity in embryos of R. balthica (Hochachka
and Somero, 2002; Iverson et al., 2020). Lower magnitudes of change
were observed in total energy in P. acuta and there were even
reductions in total energy in L. stagnalis (Fig. 1A,C,D). The
comparatively lower thermal sensitivity in total energy in embryos
of L. stagnalis and P. acutamay reflect a number of scenarios. Firstly,
this could represent considerably lower thermal sensitivity of rates of
observable embryonic physiology and behaviour at these stages of
development; however, this is unlikely given the obvious effects on
energy at frequencies associated with cardiovascular function (Figs 2,
3; see Results). Secondly, this may indicate a decoupling of levels of
overall embryo activity and maintenance of basic physiological
function under chronically elevated temperatures (Pörtner, 2010).
Rates of many observable organismal physiologies and behaviours
continue to increase until a thermal optimum is reached, beyond which
rates rapidly decline (Huey andKingsolver, 1989; Angilletta, 2006). In
species that can behaviourally thermoregulate or that experience
relatively mild variations in temperature in their environments,

behavioural thermal ranges are generally assumed to match
physiological tolerance limits (Hernández and Bückle, 2002;
Monaco et al., 2017). However, when behavioural thermoregulation
is not an option, rates of activitymay decline at lower temperatures than
those of physiological function. For example, Monaco et al. (2017)
showed that in six species of intertidal gastropod, the CTmax of
crawling speed was less than that of heart rate. Furthermore, species
occupying greater shore heights and therefore greater temperature
extremes generally exhibited a greater degree of decoupling between
these traits. Finally, the comparatively lower magnitude of change in
total energy in embryos of L. stagnalis and P. acuta may indicate that
embryos have already moved past their thermal optimum such that
total energy appears to have declined (Angilletta, 2006). The observed
reduction in total energy in embryos of L. stagnalis at 25°C may
suggest some form of limitation on these embryos, thereby reducing
energy allocated to gross rates of physiology and behaviour. Previous
research applying EPTs to the embryonic development of R. balthica
showed that development at 30°C resulted in a major reduction in
energy across the whole period of embryonic development, indicating
depressed rates of organismal movement, despite an increase in heart
rate (Tills et al., 2018). This highlights a limitation of the methodology
used in this study. Given that two temperatures were used (20°C and
25°C), we were unable to identify specific temperatures at which
physiological performance began to decline, e.g. through the
construction of a thermal performance curve (Angilletta, 2006).
Consequently, future research could be directed towards establishing
thermal performance curves for EPTs for these species. Given that
frequencies within energy spectra correspondwith different observable
physiologies and behaviours, EPTs may provide an effective means
with which to construct thermal performance curves for whole-
organismal physiology and behaviour.

Our understanding of climate drivers on aquatic animals is based
predominantly on studies of sexually mature adults, often ignoring
earlier developmental stages. This is despite periods of early
development showing equivalent, if not greater, sensitivities to
numerous types of environmental change (Burggren, 2018, 2021).
However, current approaches to phenotyping periods of early
development are often not transferable between species that vary in
their relative timings of development as they (a) fail to integrate the
considerable structural and functional changes associated with
embryonic development, and (b) use reductionist approaches centring
on small numbers of observable phenotypes rather than integrating the
widespread changes to observable phenotypes typically associated with
the response to chronic elevated temperatures (Burggren, 1987; Spicer
and Burggren, 2003; Forsman, 2015). In the present study, phenomics
through the application of EPTs revealed major differences in the
relative sensitivities of embryos ofR. balthica, L. stagnalis andP. acuta
to chronic elevated temperatures, as well as differences in thermal
sensitivity between various physiological windows in these embryos.
Whilst high-dimensional phenotyping approaches are well established
for early developmental stages of model species such as the zebrafish
Danio rerio (Xu et al., 2010; Peravali et al., 2011; Spomer et al., 2012),
the nematode Caenorhabditis elegans (White et al., 2010; Olmedo
et al., 2015) and the fruit fly Drosophila melanogaster (Chung et al.,
2010; Levario et al., 2016), approaches that are transferable between
non-model species of interest are lacking. The indiscriminate nature by
which embryonic movements comprising observable physiologies and
behaviours are captured by EPTs may facilitate transferability between
non-model species of interest. Expansion of animal models beyond
common model species, to support biological research across a greater
breadth of diversity, would improve the evidence base for the effects of
climatic change on early development (sensu Krogh, 1929; Burggren,
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2021). However, there are still limitations associated with applying this
approach to novel species. Although EPTs enable transferability
between species and physiological windows of development,
interpretation of their responses in a de novo sense does present
difficulties. In the present study, the use of known physiological
windows in development allowed for the interpretation of results within
the context of a number of known embryonic physiologies and
behaviours. However, if applied to a new species for which the
developmental itinerary is not known, interpretation of the results in the
absence of this ‘scaffold’ of developmental event timings becomes
more difficult. Despite this, the capacity to integrate all observable
forms of embryonic movement and analyse these in a combinatorial
fashion has allowed for the detection of stress responses to various
environmental toxicants (Rudin-Bitterli et al., 2014), and EPTs can be
used in the detection of known aspects of organismal physiology
(Ibbini et al., 2022).
Shifts in the relative timings of physiological development between

embryos reared at 20°C and 25°Cwere also apparent from total energy
time series. In L. stagnalis, increases in total energy associated with the
onset of ciliary driven rotation, as well as decreases in energy
associated with the onset of intermittent resting behaviours (J.C.S.M.,
unpublished observations), both commenced earlier in relative
developmental time, reflecting an acceleration of the timings of
these events at 25°C (Fig. 1). We also observed a decoupling of these
two events in R. balthica, where the onset of ciliary-driven rotation
remained unchanged, and the onset of intermittent resting accelerated
at 25°C.Manual quantification of the timing of these events confirmed
that differences mirrored these transitions evident in total energy time
series (Table S2). Acceleration of the relative timings of developmental
events has been observed in a number of species, and so has
uncoupling of the timings of different developmental events. For
example, in embryos of the herring Clupea harengus exposed to
elevated temperatures, the timings of various developmental events
exhibited different thermal sensitivities. Increased developmental
temperature resulted in differences to the relative timing of
organogenesis (spinal cord, pectoral fin buds and myotomal muscle
fibres), whilst the timings of tissue differentiation remained almost
unchanged (Johnston, 1993). EPT spectral time series indicate that
although for L. stagnalis, growth at a higher temperature results in an
acceleration of the majority of the developmental itinerary, for R.
balthica (and P. acuta) there is a decoupling of these major
developmental transitions in relative developmental time. This is of
particular interest as plasticity in the timings of developmentmay act as
a driver of evolutionary change (Spicer and Rundle, 2007; Spicer et al.,
2018). Selection typically acts on multiple traits simultaneously
(Lande and Arnold, 1983; Phillips and Arnold, 1999), and given that
EPTs integrate a number of observable embryonic physiologies and
behaviours, it is not unreasonable to question whether EPTs, and
temperature-induced changes in the timings of total energy, may act as
objects of multivariate selection.

Differences in thermal responses between physiological
windows in development correspond with ontogenetic
changes to observable phenotype
Changes in observable embryonic phenotype as development
progressed were reflected in differences of the response of EPTs
between physiological windows in development. For example, during
muscular crawling in L. stagnalis, temperature differences were
predominantly driven by changes in energy within frequencies likely
corresponding with observable physiologies including body flexing
and mantle muscle control (0.6–0.9 Hz) (Meshcheryakov, 1990;
Smirthwaite et al., 2007). Conversely, during radula function,

temperature differences were mainly driven by changes in energy at
1.8–2.1 Hz, frequencies corresponding with observable heart beating
(Voronezhskaya et al., 2007). Similarly, in P. acuta, changes in energy
following the onset of cardiovascular and radula function were also
mainly within frequencies associated with a heartbeat (1.8–2.5 Hz and
2.0–2.7 Hz, respectively) (Seeland et al., 2013), as well as changes in
energy within frequencies likely associated with body flexing and
mantle muscle control (0.4–1.0 Hz). Rather than targeting specific
aspects of embryonic physiology or behaviour, spectral phenotyping
through the application of EPTs quantifies changes in pixel value
fluctuations, thereby facilitating transferability between stages of
development, despite considerable differences in observable
phenotype.

EPTs enabled the continuous measurement of phenotypic change
across major transitions in the observable phenotype. However,
comparison of EPT spectra during discrete physiological windows also
enabled robust analysis of EPT spectra during periods consisting of
specific observable embryonic phenotypes. Embryonic development
encompasses unrivalled levels of structural and functional change,
rendering the continuous quantification of environmental effects on
developmental phenotype particularly problematic (Burggren, 1987;
Spicer and Burggren, 2003). Assessment of phenotypic responses
throughout embryonic development often necessitates quantification
of changes in specific traits or broad-scale indicators of organismal
performance, for example rates of oxygen consumption (Pörtner et al.,
2011) and tolerance limits to forms of environmental stress (Kuramoto,
1978; Hammond and Hofmann, 2010; Storch et al., 2011; Truebano
et al., 2018), at discrete times or stages in developmental time. In
his recent review, Burggren (2021) highlighted that a significant
limitation of physiological measurements at discrete points in
development is that they may be inaccurate, and that by considering
development as a continuum, physiological measurements can be put
into the context of an organism’s entire development. Continuous
quantification of phenotypic change rather than measuring discrete
points in developmental time will be central to robust measures of
developmental responses to climatic change (Burggren, 2021).

Finally, the observed changes in EPTs under elevated temperatures
stimulate the idea that such changes in EPT spectra may have
implications for organismal performance and fitness. Previous
relationships were established between EPTs and a developmental
outcome (growth rate), suggesting that EPTs may provide a visual
proxy for rates of biochemical energy turnover in developing
embryos (Tills et al., 2021). Here, we observed differences in both the
magnitude of change in total energy and shifts in EPT time series in
relative developmental time following exposure to chronic elevated
temperatures. Allocation of energetic reserves to various behavioural
and physiological functions is hypothesised to be a careful trade-off
based on the environmental conditions under which an organism
finds itself (Brafield and Llewellyn, 1982). If EPTs are directly
related to biochemical energy turnover in developing embryos, visual
quantification of levels of biochemical energy turnover within
different temporal frequencies could provide useful proxies for how
energy is allocated into various processes throughout the whole
period of development, rather than characterising energetic turnover
at discrete points (Attard and Hudon, 1987; Stackley et al., 2011).
Such a proxy may provide useful insights into the effects of climatic
change on performance and fitness of developing embryos, via
quantification of biochemical energetic turnover.

Conclusions
Assessing phenotypic responses to elevated temperatures during early
development should be central to predicting how species might
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respond to climatic change (Burggren, 2018). The application of EPTs
revealed interspecific differences in relative sensitivities to chronic
elevated temperatures, temperature-induced changes in the relative
timings of development, and differences in thermal responses between
physiological windows in development that each largely coincidewith
ontogenetic differences in observable phenotypes. Crucially, EPTs
provided an approach to high-dimensional organismal phenotyping
that is transferable between species that vary in their early
development, and between physiological windows in development
that vary in their observable phenotypes. Furthermore, the
indiscriminate nature of EPTs results in the integration of all
observable embryonic phenotypes, and analysis of these data in a
combinatorial fashion, rather than focusing on small numbers of
observable embryonic phenotypes. Understanding the broader
implications of climate change on early life stages of aquatic
animals requires phenotyping approaches that are applicable to non-
model species favoured by the Krogh principle (Feder, 2006;
Burggren, 2021), and to assess phenotypic change continuously
through early development, rather than simplifying the dynamic
process of embryonic development into small sets of discrete
developmental stages.
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