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A B S T R A C T   

A wealth of functional magnetic resonance imaging monetary incentive delay task (MIDT) research has shown 
alcohol dependency is associated with a hypoactive striatal response during gain anticipation (gain > neutral) 
and loss anticipation (loss > neutral). Electroencephalography (EEG) holds clinical advantages over fMRI (high 
temporal resolution, low cost, portable) however its use to study reward processing in alcohol dependence is 
limited.  We aimed to carry out the first EEG MIDT (eMIDT) study in alcohol dependence. 21 abstinent alcohol 
dependent individuals and 26 controls performed an MIDT while neural activity was recorded using 64-channel 
EEG. Trial averaged event-related potentials (ERPs) and single-trial machine learning discriminant analyses were 
applied to EEG data. Clinical variables related to severity of dependence were collected and relationships with 
ERP data explored.  Alcohol dependent individuals, compared with healthy controls, had blunted cue-P3 am-
plitudes for gain and loss anticipation (interaction: p = 0.019); and elevated contingent negative variation 
amplitudes for all conditions (gain, loss, neutral)(main effect: p < 0.001) which was associated with increased 
alcohol consumption (p = 0.002). The machine learning analyses demonstrated alcohol dependent individuals 
had reduced ability to discriminate between loss and neutral cues between 328 – 350 ms (p = 0.040), 354 – 367 
ms (p = 0.047) and 525 – 572 ms (p = 0.022). The eMIDT approach is demonstrated to be a low-cost, sensitive 
measure of dysfunctional anticipatory reward processing in alcohol dependence, which we propose is ideal for 
big data approaches to prognostic psychiatry and translation into clinical practice.   

Introduction 

Converging research suggests that disruption of the neurobiological 
networks responsible for reward processing increases vulnerability and 
supports the maintenance of addiction [1]. The functional magnetic 
resonance imaging (fMRI) monetary incentive delay task (MIDT) 
(fMRI-MIDT) has been used extensively to investigate reward function in 
drug and alcohol dependence. Its strength is the ability to probe both 
appetitive and consummatory phases of reward processing without 
excessive demand upon executive function [2,3]. Supporting the 
‘reward deficiency syndrome’ theory of addiction [4], the majority of 
fMRI-MIDT studies of drug and alcohol dependence report hypo-
activation of key reward processing regions, including the ventral 

striatum, during both monetary gain and loss anticipation [3,5–8]. 
Other fMRI-MIDT studies, however, did not replicate these findings, 
instead reporting comparable striatal sensivity during anticipatory 
reward processing in alcohol dependent partcipants and controls 
[9–11]. 

Despite the popularity of the fMRI-MIDT in addiction research, the 
temporal resolution of the fMRI blood-oxygen-level-dependent (BOLD) 
signal (in the range of seconds) is not optimal for studying reward- 
related processing that occurs in the sub-second range [12,13], 
possibly contributing to inconsistent findings within the fMRI-MIDT 
literature. In contrast to fMRI, the electroencephalography (EEG) 
signal is a more direct measure of neural activity, with a temporal res-
olution in the range of milliseconds, ideal for indexing the range of 
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neural processes that occur during anticipatory and consummatory 
reward. Disadvantages of EEG include a relatively poor spatial resolu-
tion compared with fMRI and issues with detecting signal from deeper 
brain sources, meaning EEG is unable to precisely measure activity 
within subcortical reward regions [14]. However, combined EEG-fMRI 
research suggests EEG is able to probe reward function by detecting 
cortical downstream consequences of subcortical reward network acti-
vation [15]. An additional advantage of EEG is its low setup (£17,000 - 
£75,000) and running costs [16], whereas fMRI has prohibitive costs (~ 
£2.5 million investment, ~£500/hour rental) which potentially limit 
study design and present a barrier for translation into clinical practice 
[17]. The cost effectiveness of EEG is more amenable to widespread 
clinical use, big data approaches to clinical risk/ treatment response 
prediction and other ambitious study designs (i.e., large longitudinal 
studies or neuropharmacological studies investigating multiple drug 
doses). 

EEG versions of the MIDT (eMIDT) have been used successfully to 
study reward processing in healthy controls (HC), highlighting the cue- 
P3 event-related potential (ERP) to be an important neurophysiological 
marker of reward [18–20]. This broad positive wave typically arises 
between 250 – 600 ms post stimulus onset and is commonly broken 
down into early cue-P3a and late cue-P3b subcomponents within eMIDT 
literature [18,21,22]. The cue-P3a and cue-P3b are theorised to reflect 
stimulus-driven attentional mechanisms and memory/salience process-
ing, respectively [18,23] and have been highlighted as potential clinical 
markers of alcohol dependence in a recent review article [24]. 

Research has shown the broad cue-P3 wave (250 – 500 ms) is 
potentially modulated by central dopamine systems [25]. eMIDT studies 
with HC demonstrated cue-P3 amplitudes are generally enhanced for 
monetary gain anticipation [18,20,21,26] and loss anticipation [18,20] 
and covary with fMRI ventral striatal MIDT response [15]. These find-
ings reflect the ventral striatum BOLD response reported in fMRI-MIDT 
studies with HC [6–8] and taken together demonstrate the cue-P3 
component reliably indexes appetitive neural processing within the 
reward network. 

A further component of interest is the contingent negative variation 
(CNV), a slow wave related to anticipatory attention and preparation of 
motivated responses [27,28]. Although, to our knowledge, there are no 
previous eMIDT studies with substance use disorder or AD participants, 
our previous eMIDT study with young adult at-risk drinkers showed a 
trend towards hyperactive CNV salience response (monetary incentive >
neutral cues) [21]. A further eMIDT study demonstrated an enhanced 
CNV salience response (monetary > verbal reward cues) in young adults 
who had their first drink of alcohol during puberty compared to those 
who first drank alcohol post-puberty [29]. 

Here, we carried out the first eMIDT study in alcohol dependence 
with the aim of investigating anticipatory reward processing with high 
temporal precision. In addition to traditional ERP analyses, we 
employed an exploratory whole-brain multivariate linear discriminant 
machine learning (LD-ML) approach [30,31]. By decoding the experi-
mental conditions across the whole-brain and exploiting information 
across all electrodes and trials, this method avoids a priori electrode 
choice and achieves improved signal-to-noise ratio (SNR) [32]. Our 
prior research identified this LD-ML method to have greater sensitivity 
over traditional ERP methods for detecting reward dysfunction in 
young-adult at-risk drinkers [21]. We hypothesised AD participants, 
relative to HC, would exhibit 1) a hypoactive cue-P3 gain and loss 
anticipatory response [3,5–8,15], 2) a hyperactive CNV salience antic-
ipatory response [21,29], and 3) the magnitude of cue-P3 and CNV 
would be associated with clinical symptoms of AD (including levels of 
alcohol consumption and obsessive-compulsive thoughts about alcohol). 

Materials and methods 

Participants 

This study included 21 abstinent AD participants (13 male) (mean 
abstinence duration: 25 months, range: 1 – 130 months; mean age: 45.1 
± 9.3, range: 29 – 60 years) and 26 HC participants (17 male) (mean age: 
40.7 ± 10.8, range: 24 – 60 years) (Table 1). We recorded EEG data from 
50 participants but excluded 3 due to their failure to complete the task 
correctly (Supplementary 

Methods). Participants were recruited from the University of Hud-
dersfield (UK) campus and local community via flyers, posters, email 
campaigns, word of mouth, and Facebook groups. AD participants were 
also recruited from alcohol services in Huddersfield (flyers/posters) and 
surrounding areas via a targeted Facebook advertising campaign. 

All participants had normal or corrected-to-normal vision, normal 
hearing and were able to read, comprehend and record information in 
English. AD participants met the DSM-V criteria for severe alcohol use 
disorder (i.e., score > 6 out of a total score of 11) in their most recent 
year of drinking alcohol prior to their current period of abstinence 
(DSM-V mean score: 10.76, score range: 9 - 11), had never met the DSM- 
V criteria for any other substance use disorder (except nicotine) [33] and 
were abstinent from alcohol for a minimum of 4 weeks prior to study 
participation (there was no upper limit for abstinence duration). HC 
participants had never met the DSM-V criteria for alcohol or drug 
dependence (except nicotine) [33] and had no first-degree relatives with 
a history of drug or alcohol dependence. Nicotine dependence was not 
part of the exclusion criteria for the study. A more detailed description of 
exclusion criteria is included within the Supplementary Methods. 

The study was approved by the University of Huddersfield Depart-
ment of Applied Sciences Ethics Committee (reference: SAS-SREIC 
1.5.19–1). 

Table 1 
Demographic and clinical measures.   

Healthy 
Control 

Alcohol 
Dependent 

p 

Demographic variables (mean ± SD) 
Sex (Male/Female) 17/9 13/8 1.000 
Age 40.73 ± 10.86 45.10 ± 9.33 0.152 
IQ (predicted WAIS based on 

WTAR) 
111.46 ± 4.33 108.04 ± 8.17 0.092 

Smoking status (Smoking/Non- 
Smoking) 

11/15 11/10 0.6935 

Handedness (EHI > 0 /EHI ≤ 0) 22/4 18/5 0.466 
Clinical variables (mean ± SD)    
Age of first alcoholic drink 16.05 ± 3.59 12.33 ± 3.01 <

0.001 
Alcohol units per adult year of 

drinking 
968.64 ±
770.19 

7409.03 ±
3177.83 

<

0.001 
AUDIT 4.11 ± 4.07 34.35 ± 3.50 <

0.001 
OCDS 1.5 ± 2.75 11.3 ± 9.18 <

0.001 
BDI 6.46 ± 5.76 15.45 ± 11.23 0.003 
GAD-7 3.31 ± 4.76 5.35 ± 5.54 0.196 
CTQ 42.08 ± 11.12 49.50 ± 27.25 0.263 
UPPS-NU 22.65 ± 6.87 35.65 ± 7.52 <

0.001 
UPPS-PU 19.38 ± 4.67 31.5 ± 10.96 <

0.001 

Note: Group differences were evaluated using independen t-tests for continuous 
variables and Chi-squared test for categorical variables (i.e., sex and smoking 
status). IQ = Intelligence Quotient; WAIS = Wechsler Adult Intelligence Scale; 
WTAR = Wechsler Test of Adult Reading; IQ = Intelligence Quotient; EHI =
Edinburgh handedness inventory score; AUDIT = Alcohol Use Disorder Identi-
fication Test; OCDS = Obsessive Compulsive Drinking Scale; Beck’s Depression 
Inventory = BDI; GAD-7 = Generalised Anxiety Disorder Assessment; CTQ =
Childhood Trauma Questionnaire; UPPS-NU = UPPS Negative Urgency; UPPS- 
PU = UPPS Positive Urgency). 
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Experimental sessions 

Telephone screening was conducted to verify whether participants 
met basic eligibility criteria before they were invited to a face-to-face 
clinical screening which included: written informed consent; alcohol 
breathalyser and urine drug test (AllTEST™ 10 panel); Mini- 
International Neuropsychiatric Interview (M.I.N.I.) [34] and DSM-V 
interview for drug or alcohol dependence; drug and alcohol timeline 
follow-back interview; Edinburgh Handedness Inventory (EHI) [35]; 
Wechsler Test of Adult Reading (WTAR) [36]; an online battery of 
questionnaires (hosted by Qualtrics) which collected demographic and 
clinical information (Table 1); and 30 practice trials of the eMIDT. 

Participants found to be eligible during the clinical screening 
attended an EEG recording session during which they completed an 
alcohol breathalyser and urine drug test (AllTEST™ 10 panel), 30 
practice trials of the eMIDT and the full eMIDT which consisted of 240 
trials. Participants were reimbursed for travel costs and received £10 for 
attending the clinical screening and £11 - £14 for the EEG recording 
(depending on eMIDT performance). HC participants could select from 
Amazon/Sainsbury’s vouchers for reimbursement, however, AD partic-
ipants were given solely Amazon vouchers, since the visibility and 
accessibility of alcohol in supermarkets may have been problematic. 

Experimental design 

Participants performed an EEG version of the MID task (Fig. 1), 
adapted from that originally used by Knutson with fMRI [2]. A cue 
symbol was presented for 250 ms which informed participants of the 
trial type (gain, loss, neutral). A square containing an ascending arrow 
indicated the potential to win 50p (i.e., gain trials); a square containing 
a descending arrow indicated the potential to lose 50p (i.e., loss trials); 
and a square containing a horizontal line indicated there would be no 
financial outcome (i.e., neutral trials). A white fixation cross was then 
presented (random jitter of 2000 – 2500 ms) during which participants 
prepared their motor response for a square target which was presented 
immediately after. 

Participants were instructed to press the space bar as quickly as 
possible (not more than one time) when the target appeared. A staircase 
algorithm adapted the target duration to maintain an accuracy of ~66% 
within each trial type. If accuracy rose above 66% and the participant hit 
the target, the duration was reduced by 16.67 ms. If accuracy was less 
than or equal to 66% and the participant missed the target, the duration 
was increased by 16.67 ms. On all other trials, the target duration 

remained unaltered. The algorithm ensured target duration did not fall 
below 150 ms or go above 350 ms. The starting point for the target 
duration was informed by the participant’s reaction time (RT) on the 30 
practice trials. 

Following target response, a white fixation cross was presented 
(random jitter of 1000 – 1200 ms) and participants prepared to view 
their feedback (shown for 1000 ms). On gain and loss trials participants 
were shown a tick if they hit the target and a cross if they missed the 
target, leading to a total of four different outcomes: (1) gain hit trials, a 
tick was shown and monetary earnings increased by 50 pence; (2) gain 
miss trials, a cross was shown and monetary earnings stayed the same; 
(3) loss hit trials, a tick was shown and monetary earnings stayed the 
same; (4) loss miss, a cross was shown and monetary earnings decreased 
by 50 pence. Neutral trials had no impact on monetary earnings and no 
performance feedback was given, instead a horizontal line was shown in 
place of the tick and cross. Each participant completed 5 blocks of 48 
trials each lasting ~4.7 min. The task comprised of 80 win, 80 loss and 
80 neutral trials and lasted ~24 min (excluding breaks). 

Experimental stimuli and setup 

Our eMIDT task included 3 cue stimuli (Fig. 1) (170 × 141 pixels) 
which have been validated in prior fMRI-MID task research published by 
members of our research group [7,37]. Other symbols included a square 
target (90 × 90 pixels), tick feedback symbol (158 × 98 pixels), cross 
feedback symbol (157 × 82 pixels) and line feedback symbol (160 × 37 
pixels). All symbols were presented in white on a black background. The 
task was programmed with Psychopy version 1.90.1 [38] (https://www. 
psychopy.org/). It was presented at a frame rate of 60 Hz, using a 
computer running on Windows 10 (64 bit, 3GB RAM, nVidia GeForce GT 
710 graphics card), on a monitor with a resolution of 1920 × 1080 
pixels. Participants sat 50 cm from the monitor and responded by 
pressing the space bar on a USB keypad with the index finger on their 
dominant hand. 

EEG data acquisition and pre-processing 

EEG data were recorded at a sampling rate of 1000 Hz from 64 Ag/ 
AgCl active electrodes, using a 10–20 layout and online reference 
channel of FCz (ActiCap – Brain Vision, Brain Products, Germany). 
Channel impedances were kept below 25 kΩ. Pre-processing was per-
formed in EEGlab Toolbox [39] running on Matlab R2019b. Raw data 
were first downsampled to 500 Hz and high pass filtered at 0.1 Hz to 
attenuate slow frequency noise. EEG segments where instructions/-
breaks occurred were removed to improve subsequent channel rejection 
and independent component analyses (ICA). 

The Clean Rawdata EEGlab plug-in (version 2.0) (https://github. 
com/sccn/clean_rawdata) was used to reject bad channels (including 
flat and correlated) which were subsequently interpolated. The Clean-
Line EEGlab plug-in (version 1.04) (https://www.nitrc.org/projects/ 
cleanline) was used to remove 50 Hz power noise. ICA was employed 
with principal component analysis enabled to reduce dimensions based 
on a new data rank, accounting for rank deficiency due to channel 
rejection and average referencing [40]. The Multiple Artefact Rejection 
Algorithm (http://github.com/irenne/MARA) was used to ensure ICAs 
were only rejected if there was a high probability (>98%) they repre-
sented artefact. The data were low pass filtered at 40 Hz to attenuate 
high-frequency noise. Finally, the ERPlab plugin [41] (https://erpinfo. 
org/erplab) was used to extract cue-locked epochs from the contin-
uous data, with a 500 ms prestimulus and 2000 ms poststimulus period. 
All epochs were baseline corrected by subtracting the mean voltage of 
the prestimulus interval between − 200 and 0 ms from each epoch, this 
was done separately for each channel. To conserve as much of the 
original EEG dataset as possible, epoch rejection was not conducted as 
part of the pre-processing pipeline. In line with our prior research [31, 
42], this maintained trial-by-trial variability which is important for the 

Fig. 1. EEG monetary incentive delay task paradigm. 
Note: Schematic representation of the eMIDT experimental paradigm. On each 
trial, one of three cue symbols was presented for 0.25 s indicating if participants 
could win or lose 50p, or if the trial would have no impact on earnings (i.e., 
neutral). Following a jittered delay of 2 – 2.5 s a square target was presented. 
Following a jittered delay of 1 – 1.2 s feedback was shown. A jittered inter-trial 
interval of 1 – 1.2 s was presented before the next trial began. 
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LD-ML analyses. Furthermore, it ensured the maximum number of trials 
were available for the ERP analyses (80 per condition) thus avoiding 
reduced statistical power which may result from rejecting bad data 
epochs prior to trial averaging to form ERPs [43]. However, individual 
subject ERPs were reviewed manually to ensure data cleaning methods 
had been effective. 

Event related potential (ERP) analyses 

Based on prior eMIDT literature, the cue-P3 was broken down into 
the cue-P3a and cue-P3b subcomponents, which were quantified over a 
parietal electrode group (P1, P2, POz, Pz) [21,22,44] and measured as 
the mean amplitude over 300 – 450 ms and 450 – 600 ms following cue 
onset, respectively. CNV was measured as the mean amplitude 1800 to 
2000 ms post cue onset over a centro-frontal electrode group (C1, C2, 
FCz, Fz) [21,44]. 

Mixed model analyses of covariance (ANCOVA) were conducted on 
mean ERP amplitudes to evaluate group differences. Age, IQ and 
smoking status were included as covariates based on prior research 
which has shown these demographic variables can affect the neural 
response to reward and loss processing [45–47]. The 3 × 2 ANCOVA 
models used condition (i.e., gain, loss, neutral) as the within-subjects 
factor and group (i.e., HC group, AD group) as the between-subjects 
factor. These tests were performed separately for all ERPs (cue-P3a, 
cue-P3b, CNV). 

ERP data entered into the ANCOVA models were checked using 
Mauchly’s Test of Sphericity, if a violation occurred, a Greenhouse- 
Geisser correction was applied. When ANCOVA tests revealed signifi-
cant overall results, Tukey post-hoc tests were conducted to investigate 
which conditions differed significantly from one another. For all statis-
tical tests we used a significance level of p < 0.05. R software (version 
4.0.5) was used for all ERP statistical analyses. 

Associations between ERP data and clinical severity 

For the three time windows of interest (cue-P3a, cue-P3b, CNV), we 
explored associations between ERP data (ERP difference waves (µV): 
gain-minus-neutral, loss-minus-neutral; and ERP mean amplitude (µV): 
gain, loss) and clinical variables of lifetime alcohol consumption 
(alcohol units consumed per adult year of active drinking) and Obsessive 
Compulsive Drinking Scale (OCDS) score (based on an amended version 
of the OCDS which did not include questions relating to alcohol con-
sumption, see Supplementary Methods) [48], yielding 24 two-way 
linear regression models (Supplementary Methods). The p.adjust func-
tion from The R Stats Package [49] was used to apply false discovery rate 
(FDR) correction for multiple comparisons (24 models). Only models in 
which ERP data or ERP data by group interaction term was significantly 
associated with a clinical variable following FDR correction (p < 0.05) 
are included in the results. Diagnostic plots were evaluated from all 
models and outliers removed (Cook’s distance > 0.5). This resulted in 
the removal of a single data point from three regression models. 

Within two-way linear regression models, the intercept/constant 
term refers to the estimated mean Y-value for the reference group, and 
model coefficients relate to expected changes in mean Y-value relative to 
this reference [49]. As the present study is focused on identifying reward 
processing abnormalities associated with alcohol dependency, the AD 
group was initially specified as the reference group. In models where the 
ERP data by group interaction term was found to be significant, the 
linear regression model was rerun specifying HC as the reference group 
to confirm how the nature of the association differed between groups. R 
software (version 4.0.5) was used for all regression analyses. 

Machine learning analyses 

We conducted multivariate LD-ML on the single-trial epoched EEG 
data [21,31]. For each participant, we conducted binary discriminations 

across the loss anticipation (loss-vs-neutral) and gain anticipation 
(gain-vs-neutral) dimensions of reward processing. We estimated a 
linear weighting contribution (i.e., spatial weighting vector w(τ) or 
spatial filter) for each EEG electrode across the whole brain that gave 
maximum discrimination between conditions of interest Eq. (1). The 
LD-ML analyses were conducted across temporally unique training 
windows, each with a fixed length of δ = 60 ms and centre times τ 
varying from − 200 to 2000 ms after cue onset (increasing in increments 
of 10 ms). A regularised Fisher discriminant estimated w(τ) which pro-
vided maximum discrimination between electrode signals x(t) for two 
conditions (further details are provided in the Supplementary Methods). 

yi(τ) =
1
N

∑t = τ + N/2

t = τ− N/2

w(τ)T xi(t) (1) 

To evaluate discriminator performance at each training window, we 
calculated the area under a receiver operating characteristic (ROC) 
curve (Az) using a leave-one-trial-out (LOTO) cross validation approach 
randomizing the labels for each trial. The randomisation procedure was 
repeated 100 times, producing a probability distribution for Az and 
allowing estimation of the Az which gave a significance level of p < 0.05. 

We statistically compared group averaged discriminator perfor-
mance, Az values, using SPM1d version 0.4.7 (open-source MATLAB 
software available from http://www.spm1d.org/), as demonstrated in 
our prior research [21]. SPM1d calculates a scalar trajectory output 
statistic, SPM{t}, for individual time nodes across a 1D continuum; 
where time nodes represented onset times τ for the multivariate 
discriminant analyses and the 1D continuum were pre-hypothesised 
time windows for components of interest (e.g., cue-P3 and CNV). The 
SPM{t} represents only the magnitude of differences between group Az 
values over the 1D continuum, therefore using this scalar trajectory 
alone will not give conclusive evidence to reject or accept the null hy-
potheses (i.e., no significant differences in group averaged Az values). 
Random field theory (RFT) was therefore used to define a critical 
threshold (α) that no greater than 5% (α < 0.05) of random data that is 
equally smoothed would be likely to cross. We therefore were able to 
reject the null hypotheses if SPM{t} exceeded the critical threshold at 
any time node [50]. 

Results 

Behavioural responses 

The mixed model ANCOVA for RT, 3 (condition) x 2 (group) (age, IQ 
and smoking status as covariates) showed a significant main effect of 
condition on RT (F(2, 84) = 34.84, p < 0.001, ηp

2 = 0.453). Tukey’s post- 
hoc tests revealed that RT for the neutral condition was significantly 
longer than RT for the gain (p < 0.001) and loss (p < 0.001) conditions 
(Table 2). Consistent with prior fMRI-MIDT literature with AD partici-
pants [6–8], we found no significant group effects or interactions for RT. 

Table 2 
Behavioural data.   

Healthy Control Alcohol Dependent 

Reaction time (mean ± SD) 
Gain (ms) 243 ± 31 241 ± 40 
Loss (ms) 238 ± 33 238 ± 38 
Neutral (ms) 269 ± 35 263 ± 47 
Success rate (mean ± SD)   
Gain (%) 66 ± 1.7 66 ± 1.5 
Loss (%) 66 ± 0.1 66 ± 1.4 
Neutral (%) 65 ± 5.9 65 ± 2.3 

Note: Rection time is the time taken by participants to respond to the square 
target (i.e., time between target onset and keyboard response). The success rate 
of ~66% demonstrates the staircase algorithm employed within the task was 
functioning correctly. 
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Effects of alcohol dependency on the cue-P3 

For the cue-P3a we found a significant main effect of condition (F(2, 
84) = 7.25, p = 0.001, ηp

2 = 0.148) but no main effect of group (F(1, 42) 
= 0.04, p = 0.826, ηp

2 = 0.001) or group by condition interaction (F(2, 
84) = 0.01, p = 0.991, ηp

2 < 0.001). Tukey’s post-hoc tests revealed cue- 
P3a amplitude was significantly larger for the gain condition compared 
to the neutral condition (p = 0.004) (Fig. 2a and b). 

For the cue-P3b we found a significant main effect of condition (F(2, 
84) = 6.47, p = 0.002, ηp

2 = 0.134) and a group by condition interaction 
(F(2, 84) = 4.18, p = 0.019, ηp

2 = 0.091), but no main effect of group (F 
(1, 42) = 1.16, p = 0.289, ηp

2 = 0.027). Tukey’s post-hoc tests revealed 
cue-P3b amplitude was significantly larger for the gain condition 
compared to the neutral condition (p = 0.019) and loss condition 
compared to the neutral condition (p < 0.001) within the HC group but 
not the AD group (Fig. 2a and b). The HC group displayed a parietal 
distribution (Fig. 2c) aligned with prior eMIDT literature with controls 
[20,26], whereas the AD group exhibited a centro-frontal distribution 
(Fig. 2d). Negative sensor weightings (i.e., blue topography) within the 
AD group (Fig. 2d) indicate that neural processing for the neutral con-
dition was elevated relative to the gain condition. 

Association between OCDS score and loss-minus-neutral cue-P3a 

The model testing for an association between OCDS score, group and 
loss-minus-neutral cue-P3a difference wave was significant (F(3, 42) =
15.05, pcorr < 0.001, R2 = 0.48). For the AD group, there was a signif-
icant negative association between OCDS score and cue-P3a (t = − 3.43, 
pcorr = 0.002)(Fig. 2e). The group interaction term was significant (t =
2.96, pcorr = 0.005); and the follow-on regression confirmed cue-P3a was 
not associated with OCDS score in the HC group (Fig. 2e). 

Effects of alcohol dependency on the CNV 

We found a significant main effect of condition (F(2, 84) = 13.26, p <
0.001, ηp

2 = 0.240). Tukey’s post-hoc tests revealed CNV amplitude was 
significantly larger for the gain compared to the neutral condition (p <

0.001) and loss compared to the neutral condition (p < 0.001). We also 
found a main effect of group (F(1, 42) = 5.62, p = 0.022, ηp

2 = 0.118). 
Tukey’s post-hoc tests revealed CNV amplitude was significantly larger 
in the AD group compared to the HC group, for the gain (p < 0.044), loss 
(p < 0.043), and neutral condition (p < 0.016) (Fig. 3a and b). The group 
by condition interaction was not significant (F(2, 84) = 0.48, p = 0.620, 
ηp

2 = 0.011). 

Association between alcohol consumption and CNV 

The models testing for an association between alcohol units 
consumed per adult year of drinking, group, CNV gain (F(3, 39) = 43.48, 
pcorr < 0.001, R2 = 0.75) and CNV loss (F(3, 39) = 15.05, pcorr < 0.001, 
R2 = 0.76) were significant. For the AD group, there was a significant 
negative association between CNV gain (t = − 3.95, pcorr = 0.008) 
(Fig. 3c) and CNV loss (t = − 3.79, pcorr < 0.001)(Fig. 3d). The group 
interaction terms were significant for both models (CNV gain: t = 3.45, 
pcorr = 0.002; CNV loss: t = 3.33, pcorr = 0.002), and follow-on re-
gressions confirmed these ERP components were not associated with 
alcohol units in the HC group (Fig. 3c and d). 

Effects of alcohol dependency on discrimination between loss and neutral 
cues 

For the HC group, there was a sustained period of significant loss 
anticipation discrimination (loss-vs-neutral) spanning the entire cue-P3 
window (i.e., 300 – 600 ms) (Fig. 4a), whereas the AD group did not 
exhibit significant loss discrimination following 500 ms (Fig. 4b). At the 
midpoint of the cue-P3b window (525 ms) the HC group had a parietal 
distribution which was absent in the AD group (Fig. 4a and b). Within 
the CNV window, the HC group demonstrated two peaks of significant 
discrimination (1830 ms, 1932 ms) which were absent in the AD group 
(Fig. 5a and b). 

The SPM1d analyses revealed significant group differences in loss 
anticipation discrimination within the cue-P3a and cue-P3b window. 
Significant supra-threshold clusters were found between 328 – 350 ms 
(pcluster = 0.040, Z = 2.36), 354 – 367 ms (pcluster = 0.047, Z = 2.36) and 

Fig. 2. ERP results for the cue-P3a and cue-P3b time windows. 
Note: Average cue-P3 ERP components for the HC group (a) and AD group (b), computed over parietal electrodes [P1, P2, POz, Pz]. The first and second grey shaded 
bars depict the time windows for the cue-P3a and cue-P3b respectively. Scalp topographies are shown for the HC group (c) and AD group (d), for the peaks of the 
gain–minus-neutral difference wave (315 – 355 ms) and the loss-minus-neutral difference wave (555 – 575 ms) which occurred within the cue-P3 time window (300 – 
600 ms). Note that ERPs are plotted with the negative y-axis pointing up. (e) Association between cue-P3a amplitudes (computed for the loss-minus-neutral dif-
ference wave over parietal electrodes [P1, P2, POz, Pz]) and OCDS scores. A single data point is included for each HC participant (N = 26) and AD participant (N =
20) who completed the online clinical questionnaires. The grey shaded region represents a 95% confidence interval for the linear regression lines shown in red (HC 
group) and blue (AD group). 
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525 – 572 ms (pcluster = 0.022, Z = 2.32). Across suprathreshold time 
windows, Az values for loss anticipation discrimination were signifi-
cantly larger in the HC group compared to the AD group. We found no 
significant between group differences in loss vs neutral discrimination 
within the CNV time window. 

Effects of alcohol dependency on discrimination between gain and neutral 
cues 

For both the HC and AD groups, we found a broad window of sig-
nificant gain anticipation discrimination (gain-vs-neutral) spanning the 
entire window of cue-P3a and cue-P3b (Fig. 4c and d). At the midpoint 
of the cue-P3b time window (525 ms) the HC group demonstrated a 
parietal distribution (Fig. 4c). In contrast, the AD group had a centro- 
frontal distribution with negative sensor weightings (i.e., neural pro-
cessing for neutral was elevated relative to gain) (Fig. 4d). Within the 
CNV window, the HC group and AD group exhibited a significant peak of 
discrimination at 1943 ms and 1830 ms, respectively (Fig. 5c and d). We 
found no significant between group differences in the magnitude of gain 
vs neutral discrimination across the cue-P3a, cue-P3b or CNV windows. 

Discussion 

Hypoactive cue-P3b response is evident in alcohol dependency 

We aimed to investigate the temporal dynamics of reward dysfunc-
tion in alcohol dependence by using an EEG version of the monetary 
incentive delay task. As hypothesised, we found a hypoactive cue-P3 
neural response to gain and loss anticipation vs neutral anticipation in 
AD compared to control participants. This occurred during the cue-P3b 
phase and therefore may reflect reduced memory processing of moti-
vationally salient cues in alcohol dependency [18,23]. Whilst this 
finding of hypoactivation during anticipation of motivationally salient 
outcomes is consistent with prior fMRI-MIDT literature in substance 
dependence that also report blunted anticipatory reward processing 
[5–8] it stands in contrast to other studies which do not report abnormal 
ventral striatal activity during reward anticipation in alcohol dependent 
individuals [9–11]. 

One possible reason for discrepant findings in neural responses 
during reward anticipation in AD may be MID task design. The large 
number (240 trials) of fast-paced low-incentive trials in our eMIDT (50 
pence at stake for incentive trials, requiring a response every ̴ 5 s) may be 
more sensitive in revealing brain motivational deficits compared with 
the less demanding shorter fMRI-MIDT paradigms. The latter contained 
fewer than 100 slow paced trials (~10 - 30 s) with medium ($1 - $5 

Fig. 3. ERP results for the CNV time window. 
Note: Average CNV ERP components for the HC group (a) and AD group (b) computed over central electrodes [C1, C2, FCz, Fz]. The grey shaded bars depict the time 
for the CNV. Scalp topographies are included for peak of the incentive–minus-neutral difference wave (1890 – 1920 ms) which occurred within the CNV time window 
(1800 – 2000 ms). ERPs are plotted with the negative y-axis pointing up. Regression plots are shown demonstrating the association between (c) gain amplitudes 
(computed over central electrodes [C1, C2, FCz, Fz]) and alcohol units consumed, and (d) CNV loss amplitudes (computed over central electrodes [C1, C2, FCz, Fz]) 
and alcohol units consumed. A single data point is included for each HC participant (N = 22) and AD participant (N = 21) who had consumed alcohol in their lives. 
The grey shaded region represents a 95% confidence interval for the linear regression lines shown in red (HC group) and blue (AD group). 
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stake) [9,10] or high incentives ($10 stake) [11]. Comparable task 
performance between HC and AD participants in the current study 
indicate AD participants were able to perform the eMIDT despite high 
attentional demands. Although the participants in [9] had a longer mean 
duration of abstinence than our study (36 months vs 25 months, 
respectively), similarly we did not find any associations between absti-
nence duration and neural signal of reward anticipation in exploratory 
regressions (see Supplementary Results). Taken together these findings 
suggest that abstinence duration to has little effect on the spatial and 
temporal aspects of the reward processing neural signal in alcohol 
dependency. 

Another possible reason for contradictory findings between our 
study and prior research in long term abstinence [9] may be modality 
specific; we propose the high temporal resolution of EEG may be ideal 
for detecting subtle neural abnormalities that persist into protracted 
abstinence. In our AD group, it is possible that compensatory neural 
adaptations occurred to maintain long-term abstinence despite reward 
deficits. For example, the enhanced CNV response in our sample (dis-
cussed later) may have compensated for blunted cue-P3b response to 
ensure successful task performance. Whilst the millisecond resolution of 
EEG is ideal for detecting discrete neural events that occur in opposite 
directions (such as the cue-P3b and CNV), the poor temporal resolution 
of fMRI may conflate these neural events, preventing their detection. 

Our LD-ML results were in agreement with our ERP findings for the 
cue-P3b. The AD group had significantly reduced LD-ML cue-P3b 
discriminator performance for loss anticipation (loss-vs-neutral) be-
tween 525 – 572 ms. Whilst we did not find group differences in the gain 
anticipation (gain-vs-neutral) discriminator performance which mea-
sures absolute differences in the EEG amplitudes, topographic plots 
revealed that effects were in opposite directions within each group. For 
the HC group, discrimination was driven by an enhanced neural 
response for gain compared to neutral cues, whereas in the AD group, 
discrimination was driven by enhancement for neutral compared to gain 
cues. The LD-ML and ERP analyses therefore corroborate one another 
and support the overall hypothesis that the appetitive cue-P3b response 
is blunted in AD. We propose this reduced P3b processing is a down-
stream consequence of dysfunctional ventral striatal processing as found 
in prior fMRI-MIDT studies in alcohol dependence. The eMIDT cue-P3b 
is thus highlighted as a neurophysiological marker of dependence, 
differentiating AD from HC even in protracted abstinence and could 
have application when investigating novel treatments for addiction. 

Hypoactive cue-P3a loss anticipation is associated with increased OCDS 
score 

The ERP analyses did not reveal group differences in anticipatory 

Fig. 4. LD-ML results for the cue-P3a and cue-P3b time windows. 
Note: Results are averaged over all participants (mean line in blue ± se across participants, represented by the shaded blue area). The dotted red line represents the 
Az leading to a significance level of p = 0.05. The forward models (topographical scalp maps) are presented at the midpoint of the cue-P3a (375 ms) and cue-P3b 
(525 ms) time windows. (a) Single-trial linear discriminant machine learning (LD-ML) performance (Az) between loss and neutral cues as a function of cue-locked 
time for the HC group. (b) Single-trial LD-ML performance (Az) between loss and neutral cues as a function of cue-locked time for the AD group. (c) Single-trial LD-ML 
performance (Az) between gain and neutral cues as a function of cue-locked time for the HC group. (d) Single-trial LD-ML performance (Az) between gain and neutral 
cues as a function of cue-locked time for the AD group. 
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processing for the cue-P3a (300 – 450 ms) whilst the LD-ML analysis did 
reveal reduced loss vs neutral discrimination in this time period. In-
consistencies between the ERP and LD-ML results may be explained by 
enhanced SNR offered by the LD-ML approach [21,32] which linearly 
integrated data from all trials and electrodes across the whole brain 
rather than averaging data across trials (i.e., ERP). Although the cue-P3a 
ERP response did not significantly differ from controls when averaging 
data across the AD group, the regression analysis suggests variation 
within the group, such that AD participants with increased 
obsessive-compulsive thoughts about alcohol exhibit blunted cue-P3a 
loss anticipation. This finding is consistent with a prior fMRI-MIDT 
study in alcohol dependence that found a similar association between 
striatal activation and OCDS score [8]. The cue-P3a may therefore 
represent a neurophysiological marker of persistent vulnerability and 
relapse risk during protracted abstinence. 

Hyperactive CNV is associated with increased alcohol consumption 

During preparation for motor response, we observed a hyperactive 
CNV signal in alcohol dependence, with amplitudes elevated across all 
conditions, and greater hyperactivity associated with greater alcohol 
consumption. Since the AD participants in this study were not actively 
detoxifying from alcohol (i.e., they were all > 4 weeks abstinence 

duration) and exploratory regression analyses (see Supplementary Re-
sults) confirmed the CNV signal was not associated with abstinence 
duration, it is unlikely that this hyperactive CNV signal can be explained 
by CNS hyperexcitability which occurs during acute alcohol withdrawal 
[51]. 

Our results deviate from prior literature reporting reduced CNV 
amplitudes in dependent active drinkers [52] which may be explained 
by the differing clinical samples. Our cohort had maintained successful 
abstinence which relies upon neurobiological changes during the tran-
sition from dependence [53]. Despite EEG abnormalities uncovered in 
alcohol dependency, the groups had comparable RT and success rates. 
CNV hyperactivity discovered here may therefore indicate a compen-
satory mechanism, which manifests as more proactive motor inhibition 
and increased attentional allocation [54,55] in alcohol dependency to 
achieve the same behavioural eMIDT performance as controls. Poten-
tially, participants who were most severely dependent (i.e., consumed 
more alcohol) exert greater attentional resources to respond accurately 
to the eMIDT target (which relies upon successful motor inhibition to 
prevent premature responses), resulting in the hyperactive CNV signal. 

Prior fMRI motor inhibition studies with abstinent drug and alcohol 
dependent participants also report a hyperactive signal and unimpaired 
behavioural responses, hypothesised to reflect recovery of cognitive 
control mechanisms underlying successful abstinence [37,56]. Further 

Fig. 5. LD-ML results for CNV time window. 
Note: Results are averaged over all participants (mean line in blue ± se across participants, represented by the shaded blue area). The dotted red line represents the 
Az leading to a significance level of p = 0.05. The forward models (topographical scalp maps) are presented at the midpoint of the CNV time window (1900 ms). (a) 
Single-trial linear discriminant machine learning (LD-ML) performance (Az) between loss and neutral cues as a function of cue-locked time for the HC group. (b) 
Single-trial LD-ML performance (Az) between loss and neutral cues as a function of cue-locked time for the AD group. (c) Single-trial LD_ML performance (Az) 
between gain and neutral cues as a function of cue-locked time for the HC group. (d) Single-trial LD-ML performance (Az) between gain and neutral cues as a function 
of cue-locked time for the AD group. 
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longitudinal research is required to determine whether CNV hyperac-
tivity is a risk marker for high alcohol consumption, or conversely, 
represents enhanced control mechanisms required to maintain absti-
nence despite severe dependence. 

Strengths and limitations 

Recruitment of an abstinent medication free AD group allowed us to 
isolate reward dysfunction associated with alcohol dependency and 
ensure exclusion of the effects of psychoactive substances. This study 
faced recruitment challenges due to stringent exclusion criteria and 
covid-19 pandemic lockdowns, which led to a relatively low sample size. 
There was a wide range in abstinence duration (from 1 month to 130 
months) within the AD group which consisted of 21 participants. 
Notably, the mean abstinence duration was 25 months and most par-
ticipants (14 out of 21) had been abstinent for 23 months or less. 
Exploratory analyses (see Supplementary Results) confirmed there were 
no associations between cue-P3a, cue-P3b or CNV data and duration of 
abstinence, thus this study cannot make inferences about the impact of 
protracted vs. short-term abstinence on reward-related EEG measures. 
The long duration of abstinence within some participants may call into 
question the reliability of the alcohol consumption measures reported. 
However, although AD participants had not been actively drinking for 
months or years, in general they had experience of reporting their 
alcohol consumption in the time leading up to their abstinence, which is 
an important and memorable part of the alcohol recovery process, and 
thus they could easily recall these measures during the clinical assess-
ment process. 

Despite these limitations we demonstrated EEG to be a sensitive low- 
cost approach for detecting reward processing dysfunction in alcohol 
dependence with both ERP and LD-ML methods. We recommend the 
clinical utility of the proposed eMIDT risk markers to be validated in 
large, clinically representative samples (e.g., predict relapse, treatment, 
progression to alcohol use disorder in ‘at risk’ drinkers). Machine 
learning analysis of a dataset of hundreds of young adults, including 
fMRI-MIDT functional markers, personality, cognitive and environ-
mental factors, have been successful at predicting future adolescent 
alcohol misuse [57]. However, translation into the clinical domain have 
been limited. It has been argued that much larger training datasets are 
needed for clinical translatability [58]. Due to the widespread avail-
ability, portability, and cost-effectiveness and sensitivity of EEG, we 
propose the eMIDT to be suitable for future big data approaches to 
clinical diagnosis and risk prediction. 

Conclusion 

Here, we demonstrated eMIDT sensitivity to a hypoactive cue-P3 
response to gain and loss anticipation in alcohol dependency, support-
ing the ‘reward deficiency’ theory of addiction. In contrast, during 
preparation for motor response we found increased alcohol consumption 
was associated with a general hyperactive CNV signal in alcohol de-
pendency. The eMIDT markers of alcohol dependency identified here 
hold potential for big data approaches to clinical diagnosis, prognosis, 
and clinical translation. 
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