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Despite its remoteness, human activity has impacted the deep sea and changes to

the structure and function of deep-sea ecosystems are already noticeable. In

terrestrial and shallow water marine environments, demonstrating how

ecosystems support human well-being has been instrumental in setting policy

and management objectives for sustainable resource use. Foundational to this

approach is a framework of ecosystem service (ES) classification and a synthesis

of the knowledge base, which can then be used to structure decision-support tools

such as ecosystem accounts or Environmental Impact Assessments. At present, no

such framework exists for the deep sea. There is thus an urgent need to determine

and assess the ES provided by deep-sea habitats and species before (potentially

irreversible) decisions are made about deep-sea habitat use and governance. As a

first step towards the incorporation of ES in such decision-making, we undertake

two systematic reviews of the scientific literature based on the principles of the

Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA)

systematic process. This was to define a comparative ES framework and

synthesise the current evidence base for how deep-sea habitats support

ecosystem services. Our framework proposes four supporting services, three

regulating services, four provisioning services and three cultural services for which

there is an established and growing body of evidence for the role of deep-sea

habitats. The ES framework presented here provides a structure for deep-sea

ecosystem services. In its next phase of development, this could provide the

foundation for the development of habitat-ecosystem service matrices, which are

a critical component for truly accounting for ES in decision-making, particularly

spatial management. This framework has significant implications for deep-sea

management, conservation and policy, as it provides an ecosystem services-based

tool that can be used in any deep-sea ecosystems management across the planet,

and it also shows how critical these data gaps are for today’s decisions and how

seriously they should be considered in decision-making processes.

KEYWORDS

deep sea, millennium ecosystem assessment, supporting services, CICES, final services,
nature’s benefits
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1 Introduction

Marine ecosystems are some of the most heavily exploited in the

world (Barbier, 2017). Oceans are facing unprecedented threats

from over-exploitation (Arora and Mishra, 2020; Winther et al.,

2020), climate change (Armstrong et al., 2019; Morato et al., 2020),

pollution and declining biodiversity (Danovaro et al., 2008; Rogers

et al., 2020). Interest in understanding human effects, including

cumulative impacts, on marine habitats is increasing rapidly in the

eyes of both governing bodies and the public (Santos et al., 2019).

The deep sea supports one of the most biodiverse ecosystems on

Earth (Hessler and Sanders, 1967; Sanders and Hessler, 1969;

Snelgrove and Smith, 2002), maintaining important biological and

mineral resources (Ramirez-Llodra et al., 2010). The development

of marine technologies has allowed the exploration and

consequently exploitation of several deep-sea regions (Ramirez-

Llodra et al., 2010; Santos et al., 2019). Although many human

activities in the deep sea are likely to increase in coming decades

(Ramirez-Llodra et al., 2010), there is still much to learn about the

full impacts of the exploitation of deep-sea resources (Ramirez-

Llodra et al., 2010; Jobstvogt et al., 2014; Santos et al., 2019).

One of the considerations around human use of the marine

environment is the potential impact of activities on ecosystem

services (ES). Marine ES are processes, functions and structures of

the marine environment that directly or indirectly contribute to

social welfare, health and economic activities (Beaumont et al.,

2007; Liquete et al., 2013). Thus, human well-being depends on

such services in multiple ways. The Millennium Ecosystem

Assessment (MEA) (MEA, 2005) described ‘ecosystem services’ as

the linkage of ecosystems to human well-being, and classified them

into four categories:
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- Supporting services are the underlying ecosystem functions

that are essential for the production of the other services.

These are considered to influence human well-being

indirectly. See Figure 1 for further details.

- Provisioning services are those obtained directly from the

ecosystems and are used by humans, such as fish, oil and

gas.

- Regulating services contribute to the natural production and

resilience of habitats and ecosystem processes, such as

climate regulation, carbon sequestration and storage.

- Cultural services are the non-material benefits people obtain

from habitats through education, recreational and spiritual

elements (Figure 1).
For this study, we group natural processes, ecosystem services

and human needs as part of the biosphere (Figure 1). This concept

derives from the cascade framework theory ((Haines-Young and

Potschin, 2010) by linking ecological systems and human needs.

Supporting services, such as primary production or nutrient cycling,

are distinguished from final services (regulating, provisioning,

cultural) which generate the goods and benefits, such as the

provisioning of fish and algae (Haines-Young and Potschin, 2010;

Potts et al., 2014; Hooper et al., 2019b). However, the final services

depend on the delivery of supporting services (Figure 1) (Haines-

Young and Potschin, 2010).

Provisioning services are more readily understandable than

supporting services. For example, food provisioning in the form

of fisheries has been addressed extensively (Aanesen and

Armstrong, 2016; Diz et al., 2017). However, the underlying

ecological functions and processes supporting this provisioning

service’s delivery are more problematic to quantify (Diz et al.,
FIGURE 1

The biosphere captures natural processes, ecosystem services and human needs. The cascade framework of (Haines-Young and Potschin, 2010)
demonstrated the conceptual flow between ecological and social systems. This framework establishes that ecosystem processes (abiotic
components) and ecosystem structures (biotic components) link to ecosystem functions (e.g. primary production) to provide ecosystem services
(e.g. fish) that can be realised as a good or benefit (e.g. food) (Rees et al., 2022).
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2017) and map. This dichotomy is reflected in the peer-reviewed

literature. Whilst the number of studies on marine ES is increasing,

the services considered are still largely limited to provisioning

services that provide benefits to commercial fisheries, and

communities; and infrastructure that benefit from coastal

protection (Liquete et al., 2013; Mace et al., 2015; Culhane et al.,

2018). Assessments of supporting services have fallen behind in the

global agenda, as they sit behind those ES that more directly

influence the realisation of benefits within the social system

(Culhane et al., 2018). More recently, within the UK context,

supporting services have been recently re-named as ‘output

processes’ (van Rein, H, pers. comm.). This is a valuable

description that places supporting services within the ecological

system. However, for this research, we have used the term

supporting services to maintain alignment with current

international processes.

In marine systems, frameworks for describing ES that can be

directly useful for integration into decision support tools have been

developed (Beaumont et al., 2007; Liquete et al., 2013; Culhane

et al., 2018). By making marine ES more explicit, the ES approach

can promote better-informed discussions about ES trade-offs in

different marine spatial planning scenarios and ultimately recognise

the multiple interactions within ecosystems where humans are an

integral part. The use of an ES approach is meant to inform the

spatial distribution of existing and emerging seas uses, use-conflict

reduction, ecosystem health and protection and sustainable use of

ES (Galparsoro et al., 2021). Mapping and assessment of ES can

become a framework that links different sectorial and

environmental policies (Galparsoro et al., 2021).

The use of a habitat-service matrix approach to link ecological

and economic systems has gained attention in the last decade (Potts

et al., 2014; Campagne and Roche, 2018; La Bianca et al., 2018;

Hattam et al., 2021). The matrix approach has been increasingly

used to support natural resource management, particularly for

terrestrial systems. Prior to the development of a habitat-service

matrix that is project-specific for local and regional scale ES

mapping and assessment, the most fit-for-purpose classification

system for ES should be chosen (Heink et al., 2016). However,

within these classification systems, which were designed for shallow

water ecosystems, supporting services, represented in deep-sea

ecosystems, were often not considered as these are accounted for

as part of the final services whose benefits to human systems are

realised closer to the coast. In these existing frameworks, concern

has been raised that separating the role of supporting services from

provisioning, regulating and cultural services could result in double

counting and lead to error in economic assessments (Armstrong

et al., 2012). Nevertheless, in the context of the deep sea, assessing

these supporting services and their linkages to benefits is critical.

Deep-sea supporting services represent extensive and complex

biogeochemical cycles fundamental for terrestrial life, including

humans (Dell’Anno and Danovaro, 2005). For example, the

decomposition by viruses in deep-sea sediment undergo fast

decay releasing ~37-50 megatons of carbon per year that

represent an important source of labile organic compounds in

deep-sea ecosystems (Dell’Anno et al., 2015). Thus, virus

decomposition provides an important deep-sea ecosystem
Frontiers in Marine Science 03
function that plays a crucial role in nutrient cycling within the

largest ecosystem of the biosphere (Dell’Anno et al., 2015).

Including supporting services, as in ecological functions and

structures, in habitat-service matrices can help in explicitly

recognising the ecosystem functions that underpin the rest of the

services. Ultimately, this will present a more holistic approach

where detailed picture of the interactions among species, and

species and their habitats, are factored in, with the ambition to

maintain the health and productivity of deep-sea systems.

Classifying and quantifying ES of the deep sea is difficult, due to

the paucity of data, knowledge and understanding. In recent years,

progress has been made in defining the potential linkages between

humans and deep-sea ecosystems using existing ES classifications

(Armstrong et al., 2012; Thurber et al., 2013) but this approach has

yet to be applied in marine management (particularly in a spatial

context). These authors linked deep-sea ES to the MEA

classification by highlighting potential provisioning services and

the importance of deep-sea supporting services. Through their work

and others, these efforts show that the deep sea provides many

valuable supporting services that are crucial to sustaining human

well-being (Ramirez-Llodra et al., 2010; Folkersen et al., 2018; Levin

et al., 2019). Although (Armstrong et al., 2012; Thurber et al., 2013)

discussed the existence of deep-sea ES for the first time, we ought to

recognise that these reviews report conceptual ecological systems

and socio-ecological system knowledge that lacks an operational

format aimed to support decision making that could be used in

ecosystem accounts or Environmental Impact Assessments. To

integrate deep-sea ES in local, regional and national accounting

valuation, a standardised list of deep-sea ES can facilitate the flow of

information between scientists, policy makers and other

interested stakeholders.

ES, Economic valuation approaches, which favour geographical

locations where an economic value is transferred into the human

system (e.g. coastal), have potentially led to a systemic downgrading

of the role of the deep sea in ‘supporting’ life-critical aspects of

human well-being. In 2021, the System of Environmental Economic

Accounting-Ecosystem Accounting (SEEA-EA) compiled an

accounting framework at the regional level to economically value

the functions of ecosystem assets and the ES they produce to inform

policy development (Committee of Experts on Environmental-

Economic Accounting, 2021). Remarkably, this framework

considers broad categories within the deep sea (e.g. submarine

canyons, abyssal plains) with no consideration of its faunal

heterogeneity and biophysical processes that underpin the entire

system, which eventually would diminish the spatial accountability

of deep-sea ES and make it impossible to elaborate any meaningful

Environmental Impact Assessment. The deep sea has lagged behind

in the global, national and local economic accounts that could

generate (potentially irreversible) decisions for deep-sea uses

and governance.

Currently, studies have yet to discuss the practical application of

ES frameworks in deep-sea ecosystem management and research.

With the present study, we aim to develop a deep-sea ES framework

that is compatible with existing marine ES frameworks, and update

existing reviews on deep-sea ES to incorporate directly into current

processes the role that deep-sea ES have in supporting human well-
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being. This will determine the sustainable (and equitable) use of

deep-sea resources.
2 Methods

2.1 Literature search

We conducted two systematic reviews based on existing marine

ES frameworks and deep-sea ES to develop a common language for

deep-sea ES. These two systematic literature reviews were based on

the main principles of the PRISMA framework (Preferred

Reporting Items for Systematic Reviews and Meta-analysis)

(Moher et al., 2010) and adapted to the scope of our reviews. The

first literature review aimed to collate published marine ES

frameworks, while the second sought to update reviews by

Armstrong et al. (2012) and Thurber et al. (2014) on deep-sea ES.

The bibliographic search was performed with the Web of Science

engine; Scopus engine; Science Direct engine and Google Scholar.

When the search provided more than 100 hits, we sorted the

database according to relevance and exported the first 100

articles. The first screening of the literature was carried out by

reading the title of each article, removing those not of relevance to

this analysis and duplicates. Non-English publications were omitted

from this review.

2.1.1 Marine ES frameworks
The first review aimed to collate relevant peer-reviewed

evidence on existing marine ES frameworks (see supp. materials

for a diagram of the systematic review process). The search included

any paper or review ever published until 22/03/2022 with the

following terms found in title, keywords, abstract or topic:

(“ecosystem services framework”, “ecosystem approach” or

“ecosystem services matrix”) and (“marine” or “deep sea”). This

was the last date that we conducted our searches, however, we

acknowledge there may a few relevant papers published after this

date that are not included in our database.

2.1.2 Deep-sea ES frameworks
Our second systematic literature review focused on recent studies

on deep-sea ES since the publication of Armstrong et al. (2012) and

Thurber et al. (2014). We extracted ES relevant to deep-sea habitats

from Armstrong et al. (2012) and Thurber et al. (2014), and adjusted

the categories based on existing frameworks and services. Our aim was

to search for deep-sea supporting, regulating, provisioning and cultural

services, as these were the categories identified in the first review. For

the second review, we used the existing ES terminology and integrated

them around the main ecosystem processes in line with the selected

literature. Second review included any paper or review published from

2014 until 23/03/2022 with the following terms found in the title,

keywords, abstract or topic: (“nursery ground” or “nutrient cycling” or

“chemosynthetic primary production” or “secondary production” or

“habitat resilience” or “carbon sequestration” or “antibiotic” or

“bioprospecting” or “pharmaceutical” or “genetic material” or “fossil
Frontiers in Marine Science 04
fuels” or “fisher*” or “bioaccumulation” or “bioremediation” or “oil

and gas extraction” or “climate regulation”) and (“marine” or

“deep sea”).
2.2 Integration of deep-sea habitat
complexity in ES frameworks

To develop an integrated framework, it is important to

recognize the abiotic processes of an ecosystem. These

components play a role in ecosystem processes in terms of the

causal contributions of their parts to an ecosystem activity (Teixeira

et al., 2019). Abiotic services derive from “non-living components

of the ecosystems and include water for industrial use, energy and

space and waterways (such as for military activity, shipping and for

the transit and landfall of cables and pipelines)” (Hooper et al.,

2019). That said, there has been a lack of consistency in whether

abiotic services should be included within ES frameworks (Hooper

et al., 2019). MEA IMEA, 2005) and The Economics of Ecosystems

and Biodiversity (TEEB) (De Groot et al., 2010) exclude abiotic

processes to prioritize the value of biodiversity, which implies the

analysis of biotic components only. In some cases, the inclusion of

abiotic components may be deemed essential. For example, when

considering the application of ES frameworks for environmental

impact assessments (EIA), integrating abiotic services should be

adequate in treating the ecosystem as a whole and minimize

potential damage towards less obvious ecological processes

(Hooper et al., 2019). The Common International Classification

for Ecosystem Services (CICES) includes abiotic services (Haines-

Young and Potschin, 2018). For the scope of this study, the

integration of abiotic services in deep-sea ES frameworks was

considered important to recognize the existing ecological

processes that help regulate the ecological balance as we know it.

Herein, waste disposal in the deep sea is considered as a biotic

service, within the description of 3.3.2.5 Mediation of wastes or

toxic substances of anthropogenic origin by living processes. No

review was conducted on the dumping, accumulation and burring

of human waste in the deep sea. Using the deep sea as a dumping

ground is not considered a service within this framework, as no

biotic or abiotic processes degrade or ameliorate the problems

associated with this type of waste (Thurber et al., 2014). It is also

important to note that storage of gas, including CO₂, in the deep sea

is also mentioned in the literature. This framework does not include

this activity; its impacts may limit the expansion of CO₂ storage in

the deep sea from experimentation to realized service (Thurber

et al., 2014).
2.3 Developing a deep-sea ES framework

In summary, we gathered the information from the literature

reviews, synthesized what applied to deep-sea ecosystems from

current ES frameworks and integrated it with updated knowledge on

deep-sea ES. Here we propose a ES framework tailored for deep sea.
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3 Results

3.1 Literature reviews

Our first research question was to collate a list of marine ES

frameworks potentially applicable to deep-sea habitats. For the first

review, the results summed to 2444 papers. From this first sift, 194

papers were selected for the second screening. During the second

screening attention was given to studies that mention marine

ecosystem-based approach and marine ES. Studies were included

for further eligibility assessment if they specifically used ES in the

marine and deep-sea context. Studies were excluded if they

investigated exclusively freshwater and transitional waters;

economy orientated, blue economy, blue growth; policy and

marine spatial planning; human activities and human impacts on

coastal and marine ecosystems. From the 151 papers abstracts, only

12 papers fulfilled our scope and included at least a type of marine

ES framework in their analysis.

Our second research questions were to update the existing deep-

sea ES since Armstrong et al., 2012 and Thurber et al., 2014. For the

second review, the results summed up to 3236 papers. Papers that

were related to ecosystem economic valuation, terrestrial

assessment, biodiversity indicators, and conservation management

tools were omitted from the analysis. From this first sift, 555 papers

were selected for the abstract’s eligibility. Of 555 paper abstracts,

182 papers discussed deep-sea ES to some extent and were

considered relevant to our analysis.
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3.2 Marine ES frameworks

The first revision of the selected studies allowed the comparison of

all marine ES frameworks published up to 22/03/2022. Eight marine ES

frameworks were found from our search, which recognised two types

of ES classification: 1) supporting and final services and 2) final services

only. The MEA (MEA, 2005), (Beaumont et al., 2007), TEEB (De

Groot et al., 2010); Armstrong et al., 2012; Liquete et al., 2013; Thurber

et al., 2014. included supporting/habitat services, regulating,

provisioning and cultural services. While the Common International

Classification for Ecosystem Services (CICES) is comprised of only final

services (Haines-Young and Potschin, 2018). The proposed scheme is

not a new classification, but an adaptation of existing published

frameworks based on our reviews of the literature that combines the

two types of ES classifications.
3.3 Deep-sea ES

Our proposed framework consists of four supporting services and

three final services categories i.e. three regulating, four provisioning and

three cultural services, based on our review of current ES frameworks

and recent literature on deep-sea ES (Table 1). This study found that,

since 2014, more papers have been published on some functions,

processes and benefits (e.g., nitrogen cycles, genetic materials and deep-

sea mining), than others (e.g., biological regulation, waste absorption

and detoxification), which have lagged behind (Figure 2). For
TABLE 1 A list of ecosystem services provided by benthic deep-sea ecosystems.

Ecosystem Services Frameworks Ecosystem Services
Categories Deep-sea Ecosystem Services

Millennium Ecosystem Assessment (MEA) Supporting

Nutrient cycling

Chemosynthetic primary production

Secondary production

Biologically mediated habitat

Common international Classification Ecosystem
Services (CICES)

Provisioning

Medicinal, biochemical, and genetic resources

Wild animals used for nutritional purposes

Mineral substances used for material purposes

Mineral substances used for as an energy source

Regulating

Mediation of wastes or toxic substances of anthropogenic origin by living
processes

Pest and disease control

Regulation of chemical composition of atmosphere and oceans; Atmospheric
composition and conditions

Cultural

Intellectual and representative interactions with natural environment

Spiritual, symbolic and other interactions with natural environment

Other biotic characteristics that have a non-use value
These ecosystem services are adapted from MEA (2005), IPBES (Diaz et al., 2015) and CICES (Haines-Young and Potschin, 2018).
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completeness, a full list of references per each service is included in the

Supplementary Materials.

3.3.1 Deep-sea supporting services
Our proposed framework consists of four supporting services

(Table 2) based on the review of Armstrong et al. (2012) and

Thurber et al. (2014).

3.3.1.1 Nutrient cycling

We include ‘Nutrient cycling’ as a supporting and regulating

service, which is included in five out of six marine ES frameworks

analysed in this review. In the last decade, an effort has been put into

understanding the complexity of microbial processes in deep-sea

habitats (Danovaro et al., 2014; Corinaldesi, 2015; Dombrowski

et al., 2017; Lin et al., 2021); the role of viruses, protists and

prokaryotes in nutrient cycling (Dell’Anno et al., 2015; Xu et al.,

2017; Huang et al., 2019; Gooday et al., 2020; Langlet et al., 2020);

and the role of sponges, which are identified as nutrient providers

for the marine environment, recycling organic matter into various

forms of bioavailable nutrients such as ammonium and nitrate (Li

et al., 2016; Dunham et al., 2018; Rooks et al., 2020; Bart et al., 2021;

Maldonado et al., 2021). Shallow and deep water system connection

is an important aspect of ecosystem functionality (Vilas et al., 2020)
Frontiers in Marine Science 06
and including ‘Nutrient cycling’ services can help in addressing the

complexity of water system interactions.
3.3.1.2 Chemosynthetic primary production

‘Chemosynthetic primary production’ service is not considered

in any existing marine ES framework. Both deep-sea ES reviews,

Armstrong et al. (2012) and Thurber et al. (2014), highlight the

importance of such services for deep-sea habitats. Chemosynthesis

in the deep sea occurs everywhere but is perhaps best known from

hydrothermal vent and cold seep ecosystems (Armstrong et al.,

2012). In the last decade, scientists have hypothesised the potential

links between chemosynthetic functionality, climate regulation and

fishery resources (Grupe et al., 2015; Higgs et al., 2016). An

important discovery found connections between chemosynthetic

producers and lobster fisheries in shallow waters (Higgs et al., 2016).

Higgs et al. (2016) show that commercial Caribbean spiny lobsters

obtain 20% of their diet from seagrass beds clams. These clams host

chemoautotrophic bacterial symbionts in their gills that synthesise

organic matter using reduced sulfur compounds, providing

nutrients to their hosts (Higgs et al., 2016). Although these

linkages were established in shallow water, similar functional

links between deep-sea habitats and human society are likely to

occur. Although deep-sea chemosynthetic ecosystems are attracting
FIGURE 2

Services are pattern-coded according to type: full=supporting services; blank=provisioning services; diagonal lines=regulating services; dots=cultural
services. The ecosystem services correspond to: 1=nutrient cycling; 2=chemosynthetic primary production; 3=secondary production; 4=biologically
mediated habitat; 5=individual genes extracted from organisms for the design and construction of new biological entities;6=wild animals used for
nutritional purposes; 7=mineral substances used for materials; 8= mineral substances used as an energy source; 9=mediation of wastes or toxic
substances of anthropogenic origin by living processes; 10= pest and disease control; 11=regulation of chemical composition of atmosphere and
oceans, atmospheric composition and condition; 12=cultural services.
TABLE 2 List of deep-sea supporting services.

This review MEA
(2005)

Beaumont
et al. (2007)

TEEB (De Groot et al., 2010) Armstrong
et al. (2012)

Thurber et al.
(2014)

Liquete et al.
(2013)

Nutrient cycling Nutrient
cycling

Nutrient cycling No equivalent Nutrient cycling Nutrient cycling Ocean nourishment
(regulating service)

Chemosynthetic
primary production

Primary
production

No equivalent No equivalent Chemosynthetic
primary production

Chemosynthetic
primary production

No equivalent

Secondary
production

No
equivalent

No equivalent No equivalent No equivalent Secondary
production

No equivalent

Biologically
mediated habitat

No
equivalent

Biologically
mediated habitat

Maintenance of life cycles of
migratory species (incl. nursery
service)

Habitat No equivalent Life cycle
maintenance
The table presents a comparison between different frameworks for each service [adapted from: MEA (2005); Beaumont et al. (2007); TEEB (De Groot et al., 2010); Armstrong et al. (2012);
Thurber et al. (2014); Liquete et al. (2013)].
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the interest of researchers from an ES perspective (Grupe et al.,

2015; Levin et al., 2016), substantial knowledge gaps exist in

adequately measuring or even describing the ES of methane seeps

and other deep-sea chemosynthetic ecosystems (Grupe et al., 2015).

3.3.1.3 Secondary production

Secondary production is the formation of biomass-fuelled by

organic carbon degradation and assimilation, resulting in the

provision of biomass for human consumption (Thurber et al.,

2013). Recent evidence found that deep-sea fauna respond with

greater sensitivity to food quality changes than shallow-water fauna,

potentially reflecting the overall scarcity of food that makes this a

limiting factor (Campanyà-Llovet et al., 2017) in the deep sea. In

their study, (Campanyà-Llovet et al., 2017) recorded increased

abundance of deep-sea benthic meiofauna with increasing lipids

and proteins, while no such pattern was observed in shallow

habitats. For benthic organisms, infaunal functions such as

bioturbation significantly influence nutrient fluxes, mineral

dissolution rates, pollutant, trace metal cycling and organic

carbon preservation (Snelgrove et al., 2014). Therefore,

(Campanyà-Llovet et al., 2017) suggest that food quality

influences benthic food webs and affects key ecosystem functions

such as bioturbation and nutrient cycling.

3.3.1.4 Biologically mediated habitat

Biologically mediated habitat service is the benefit derived from

habitats formed by living marine organisms (Beaumont et al., 2007).

The service represents the structure of living organisms such as reef

formation and sponge grounds. These natural habitats provide

nursery grounds, breeding spaces, hiding places from predators

and surfaces for feeding (Beaumont et al., 2007). This service is the

building block of many other services. Cold-water corals, and the

reef structures they can form, are some of the best-known examples

of biogenic habitat that forms complex structures and support

biodiversity (Baillon et al., 2012) and ecosystem functioning in

the deep sea (Bongiorni et al., 2010; Thurber et al., 2014), including

commercially valuable fisheries in some regions (Armstrong et al.,

2014; Henderson et al., 2020).

3.3.2 Deep-sea final services
We consider ‘final services’ as those that result from the

interactions of functions, namely regulating, provisioning and

cultural services. This selection was based on the reviews of

Armstrong et al. (2012) and Thurber et al. (2014). For example,

corals and sponges create habitats where fish and their prey

aggregate (structure), generating trophic interactions and

secondary production (function). This function is significant to

humans as it may affect the fish harvest in a designated fishing zone

(service). Combined with various degrees of human input, it can

lead to socioeconomic benefits as food and livelihood provision

(Haines-Young and Potschin, 2010; Le et al., 2017). All marine ES

frameworks from our review included final services; however, we

acknowledge significant gaps in knowledge of the flow from

structure-function-service-benefit for deep-sea ecosystems.
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Due to the several classifications found in our literature reviews,

we compared existing classification schemes to understand the

compatibility of the existing classes (Table 3). We adopted CICES

v.5 scheme (Haines-Young and Potschin-Young, 2018), which is

versatile and the most common ES classification now used

internationally, to ensure that ES are defined in a consistent and

common format. This allowed us to map the component parts and

to input into decision support tools such as ecosystem accounting

(Maes et al., 2015; Hooper et al., 2019a; Hooper et al., 2019b; Rees

et al., 2022).

3.3.2.1 Medicinal, biochemical and genetic resources

Extraction molecules and genetic material alongside food is

included in all existing ES frameworks. The role of natural products

as a potential source of novel antibiotics has historically been of

crucial importance. Although academic and industrial interests in

deep-sea biotechnology have increased (Moloney, 2016; Harden-

Davies, 2017; Tortorella et al., 2018; Collins et al., 2021; Jiang et al.,

2021; Keeler et al., 2021; Ma et al., 2021; Quemener et al., 2021), the

regulating and supporting ES provided by fauna of interest have

often been overlooked in bioprospecting research (Ottaviani, 2020).

Deep-sea sponges and their associated bacteria and fungi are some

of the targeted fauna, as a potential novel source of bioactive

metabolites for biotechnological applications such as anti-tumour,

antibacterial, antiviral, toxin inhibitors and anti-inflammatory

metabolites (Rateb and Ebel, 2011; Batista-Garcıá et al., 2017;

Koch et al., 2021). For this review, it is important to highlight

that the biodiscovery pipeline could generate monetary and non-

monetary values. Data, information, scientific cooperation, training,

capacity building and technology are all non-monetary benefits that

occur at each stage of the pipeline, while monetary values are

obtained towards the end of the production stages (Harden-Davies,

2017; Edrada-Ebel et al., 2018).

The field of bioprospecting is emerging globally and its

development has posed management challenges to the

Biodiversity of Areas Beyond National Jurisdiction (BBNJ)

negotiations. A key issue of which relates to how to share the

benefits of bioprospecting in Areas Beyond National Jurisdiction

(ABNJ) fairly (Harden-Davies, 2017). Of interest is the recent effort

in developing a qualitative evaluation of services provided by deep-

sea sponges and pioneering the economic appraisal of these fauna

using TEEB ((Ottaviani, 2020). From an ES perspective, this is the

first attempt to qualitatively assess the functions and services

provided by deep-sea sponges.
3.3.2.2 Wild animals used for nutritional purposes

Fisheries is considered by both Armstrong et al. (2012) and

Thurber et al. (2014) and it is classified in CICES as ‘wild animals

used for nutritional purposes’. Despite the limited primary

productivity, fishing in the deep sea has become a reality in the

last 60 years and deep-sea fish are increasingly harvested for human

consumption ((Pitcher et al., 2007; Armstrong et al., 2012). Deep

water fisheries include species like orange roughy (Hoplostethus

atlanticus), oreos (Allocyttus niger, Pseudocyttus maculatus),
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roundnose grenadier (Coryphaenoides rupestris), Bigeye grenadier

(Macrourus holotrachys), blue ling (Molva dypterygia), black

scabbardfish (Aphanopus carbo), beaked redfish (e.g. Sebastes

mentella , S. marinus.), Greenland halibut (Reinhardtius

hippoglossoides) and a number of deep-water dogfish (e.g.

Portuguese shark Centroscymnus coelolepis) (Victorero et al.,

2018). Since 1950 to 2015, at least 72 fish species or species

groups were caught primarily with bottom trawls mostly at

depths greater than 400 m (Victorero et al., 2018). Research on

deep-sea fishing has shed light on the impact of some fishing

methods upon benthic habitats (Thurber et al., 2014; Clark et al.,

2016; Bueno-Pardo et al., 2017; Victorero et al., 2018). Since the

1970s, a decline in the abundance of commercial fish species in the

northeast Atlantic, where much of the fish biomass is extracted, has

been recorded (Clarke et al., 2015) and in part resulted in the

introduction of the fishing ban using bottom trawling beyond 800 m

in the European Exclusive Economic Zones (EEZ) and United

Kingdom EEZ at present. Lessons from shallower marine

ecosystems demonstrate that fishing activity across the ocean has

expanded in line with the technological innovation and market

demand for fish and shellfish protein. This demand and expansion

has resulted in unsustainable fishing practices that have led to the

collapse of stocks and loss of supporting ecosystems (e.g. nursery

areas) (Pauly et al., 2003; Pauly, 2007; Clark et al., 2016). The

complicated reality of commercial fishing exists also beyond

national territories, and has been proven to be unprofitable

without subsidies and low labour costs (Sala et al., 2018). At the

global level, many fish stocks are already below the sustainable levels

(FAO, 2018). The opportunity of integrating the ecosystem

approach in deep-sea fisheries management would allow a holistic

view of food provisioning and potential economic return of the

sector and evaluation of the impact of different fishing strategies on

other services (e.g. (Hooper et al., 2019b). It would also help in

reducing the loss of potential ES that would result in high costs

for society.
3.3.2.3 Mineral substances used for materials

Deep-sea mining is classified as a provisioning service in both

(Thurber et al., 2014) and (Armstrong et al., 2012), and is classified in

the ‘mineral substances used for materials’ class in CICES v.5

(Haines-Young and Potschin, 2018). Large areas of concentrated

metals reserves exist on the abyssal floor, and at certain hydrothermal

vents and seamounts there are reservoirs of rich crusts of minerals

(Thurber et al., 2014). Interest and investment in deep-sea mining has

increased since the 1970s and the International Seabed Authority

(ISA) has issued 31 contracts (by March 2022) for the exploration of

deep-sea polymetallic nodules, polymetallic sulphides and cobalt-rich

ferromanganese crusts located in the Clarion-Clipperton Fracture

Zone, Central Indian Ocean Basin, Western Pacific Ocean, South

West Indian Ridge, Central Indian Ridge, Mid-Atlantic Ridge and

Western Pacific Ocean. Environmental concerns over the

consequences of mining such as direct impacts on marine fauna

have generated a growing urgency for the development of regulations

for commercial exploitation of such minerals (Gollner et al., 2017;

Dunn et al., 2018; Niner et al., 2018; Santos et al., 2019; Boldy et al.,
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2021). Our review identified 52 papers that deal with deep-sea

mining, of which 12 articles mention ‘ecosystem services’. The

existing evidence that links deep-sea mining and ES advocates for

the following priority actions: the identification of which ES are

vulnerable to potential mining impacts; evaluation of the role of

ecological functions in providing ES; development of ES indicators;

valuation of ES, and implementation of ES concepts (Le et al., 2017;

Durden et al., 2018).

3.3.2.4 Mineral substances used for as an energy source

Oil and gas activities are represented by ‘mineral substances

used for as an energy source’ class in CICES v.5 (Haines-Young and

Potschin, 2018). Up to today, drilling for oil and gas is performed in

waters of greater than 200 m depth in offshore Australia, Africa,

Southeast Asia, India, South America, the Gulf of Mexico, the

Northern Atlantic Ocean and the Arctic Ocean (Cordes et al., 2016;

Mejjad and Rovere, 2021). The growing demand for oil and gas

already discussed in (Armstrong et al., 2012) and (Thurber et al.,

2014) has posed difficult questions to environmental management

approaches on the impacts of these activities (Ramirez-Llodra et al.,

2011). Although we already know of the environmental

consequences on deep-sea habitats caused by accidental oil and

gas spills (Cordes et al., 2016; Joye et al., 2016) and the effects on

other activities like offshore fishing industries (Pascoe and Innes,

2018), poor understanding of impacts in areas proposed for oil and

gas extraction is often linked to paucity of ecosystem data and the

lack of access to specific environmental impact assessment (EIA)

data, which ultimately prevents a better description and recognition

of biodiversity and spatial habitat distribution to interested

stakeholders (Almada and Bernardino, 2017). Another issue

linked to the extraction of oil and gas, as well as for other human

activities in the deep sea, is the protection of habitats other than

cold-water corals that provide important ES including sponge

grounds, sea-pen fields and seeps. Extractable oil and gas

resources are often associated with the presence of methane

seepage and chemosynthetic communities, and studies have

shown that cold seeps are often overlooked during the creation of

marine protected areas (MPAs) in favour of other more charismatic

habitats, such as cold-water corals, despite their ecological

importance for associated faunal communities (Amon et al., 2017;

Bendia et al., 2021). The integration of ES frameworks in

comprehensive environmental assessments as part of baseline

research should be considered to help the evaluation of status and

changes in ecosystem functions and ES.

3.3.2.5 Mediation of wastes or toxic substances of
anthropogenic origin by living processes

These two services are considered in (Armstrong et al., 2012)

and (Thurber et al., 2014) as ‘waste absorption and detoxification’, a

regulating service. Although CICES v.1 (Haines-Young and

Potschin, 2018) consider ‘bioremediation’ and ‘filtration’ as two

separate services, in this study we merge these two services into one,

as bioremediation and filtration, storage and sequestration depend

on similar marine biological processes that store, bury and

transform many waste materials through assimilation and
Frontiers in Marine Science 10
chemical transformation, directly and indirectly (Armstrong et al.,

2012). Our review found one recent paper that provides some

evidence of the benthic-pelagic coupling of deep-sea sponges and

assessed the economic value associated with seawater filtration by

sponges (Pham et al., 2019). It is noted that our knowledge of the

ecological functions of sponges is mostly derived from shallow-

water species due to operational constraints. Evidence shows that

through water pumping, sponges are capable of filtering vast

volumes of water to feed on bacteria and dissolved organic matter

(DOM) (Ottaviani, 2020). DOM is the primary source of food for

shallow water sponge species, which is often measured in dissolved

organic carbon (DOC). (Pham et al., 2019) describe a few examples

of shallow and deep sponges species and their ecological roles

including shallow glass sponges Aphrocallistes vastus (Yahel et al.,

2007; Kahn et al., 2015) and Rhabdocalyptus dawsoni (Yahel et al.,

2007); deep demosponges Geodia barretti, G. atlantica, and G.

macandrewii (Kutti et al., 2013; Cathalot et al., 2015; Leys et al.,

2018). For some species, DOM uptake has been suggested (Leys

et al., 2018), and for others it was not found (Yahel et al., 2007; Kahn

et al., 2015). Only one deep-sea sponge species has shown DOC

uptake, using laboratory-made stable-isotope enriched DOM (Rix

et al., 2016). Direct evidence of ambient DOM uptake by deep-sea

sponges is still not available at present (Bart et al., 2021). An

increasing body of evidence shows that sponges with low

microbial abundances are capable of consuming DOC. However

there are still too few available data on sponge carbon fluxes to fully

understand the key functional traits that determine the strategy of

sponges to process dissolved organic matter (DOM) (Bart et al.,

2021). Nevertheless, the efficiency of sponges in removing bacteria

from the water column is extremely high and affects the turnover of

several nitrogen nutrients; their removal would likely affect the

delicate ecological balance of deep-sea benthic ecosystems (Pham

et al., 2019; Ottaviani, 2020).
3.3.2.6 Pest and disease control

This service is the contribution of marine ecosystems to the

maintenance of natural healthy population dynamics to support

ecosystem resilience through maintaining food web structure and

flows, interactions between species and genotypes including

biological pest control (Thurber et al., 2014). This service stems

from a ‘biologically mediated habitat’ and indicates the ability of the

habitat to persist over time and to recover from pressures. One of

the oldest examples of ‘biological regulation’ service from shallow

water ecological studies is the interaction between herbivorous

parrot fish and coral reefs. Experimental and observational

studies have found that parrotfish grazing can exert top-down

impacts on the cover of macroalgae on reefs (Mumby, 2009;

Cramer et al., 2017). This grazing behaviour benefits corals by

helping to limit algal competitors and minimise the intensification

of coral disease and bleaching epidemics. These benefits have been

studied since the 1960s, generating many controversial opinions on

the natural and anthropogenic threats posed to coral reefs (Russ

et al., 2015) including those linked to impacts from fisheries

targeting parrot fish. Similar trophic cascade examples are lacking

from the deep-sea literature, meaning that future research would
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need to address this valuable and important service provided by

benthic trophic assemblages.

3.3.2.7 Regulation of chemical composition of
atmosphere and oceans; atmospheric composition
and conditions

‘Climate regulation’ is included in all existing marine ES

frameworks as a regulating service. This service is linked to

nutrient cycling and involves biological processes transporting

organic material from the ocean surface to deeper layers. In the

last decade, several aspects of the role of deep-sea habitats in

sequestering carbon have been investigated (Dunlop et al., 2016;

Boyd et al., 2019; Huang et al., 2019; Hilmi et al., 2021). Recent

important findings for the deep-sea benthos include the role of dead

coral framework and associated microbial communities in nutrient

cycling, and potential implications for carbon storage (Maier et al.,

2021); the role of bacteria in short-term carbon cycling (Sweetman

et al., 2019) and the role of glass sponge reefs in carbon

sequestration (Dunham et al., 2018).

3.3.2.8 Educational, spiritual and recreational
(cultural) services

Defining cultural services has been extensively debated in the

social sciences in the last two decades and, for the scope of this

study, we adopt the original definition of cultural services published

by MEA, which describes them as ‘the non-material benefits people

obtain from ecosystems through spiritual enrichment, cognitive

development, reflection, recreation and aesthetic experiences’

(MEA, 2005). Despite the profound scientific, spiritual and

imaginative inspirations that the deep sea has evoked in humans

(Armstrong et al., 2012; Thurber et al., 2014), integration of cultural

services into any marine management protocols, and specifically

into MSP, has been slow due to the non-spatial nature of many

cultural services (Gee et al., 2017). Our review found a few papers

that discuss the importance of cultural services linked to the deep

sea. Some evidence exists on the educational and spiritual

connections between humans and the deep sea. New ocean

literacy media have pushed the boundaries of public engagement

in deep-sea science by using simulated dives and deep-sea

exploration through virtual learning (Salazar et al., 2019; Sánchez

et al., 2020; Morais et al., 2022). Recently, another aspect that has

raised interest is the spiritual dimension associated with deep-sea

habitats, including links with religion, cultural traditions, art and

literature (Turner et al., 2020). Exploration for mineral resources in

the ABNJ has also raised many cultural concerns. Cultural, social

and religious issues were raised against deep-sea mining in the

Bismarck Sea of Papua New Guinea, the world’s first deep-sea mine

site known as Solwara 1 (Childs, 2022). Another aspect is also the

archaeological and historical heritage of the Middle Passage

seascape in the Atlantic seabed (Turner et al., 2020). Thus,

African diasporic cultural memory not only has raised awareness

of the cultural heritage of the Area, but also pushes regulators, like

the ISA, to consider ways to respect those who lost their lives and

came to rest on the seabed prior to mineral exploitation (Turner

et al., 2020). Contextualisation and local knowledge are recognised
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as important to robustly incorporate these values into decision-

support tools (Knox, 2017). Effective participation is crucial to this

and one such method is through participative mapping exercises

(Gee et al., 2017). Although time-consuming and requiring expert

capacity, the incorporation of a community-based narrative into

socio-ecological frameworks is an opportunity to identify

traditional knowledge linked to the deep sea that is particularly

strong yet largely undocumented (Levin et al., 2021). This is

demonstrated by the interest of deep-sea mining off Pacific

Islands, where indigenous peoples and local communities’ insights

has been brought to the knowledge of a wider public (Tilot et al.,

2021; Childs, 2022). Recently, an interdict to stop seismic activity off

the South African coast was successful, partly due to local

communities’ cultural and ancestral connection the deep sea

(Lombard, A., pers. comm.). Integrating cultural services in

ecosystem assessments has a significant responsibility in securing

the protection of indigenous peoples’ human rights and the

human rights of other communities whose identity and

livelihoods are intrinsically linked to marine biodiversity and

humans (Knox, 2017).
4 Discussion

Our study proposes a standardised deep-sea ES framework

comprising four supporting services and ten final services

including three regulating services, four provisioning services, and

three cultural services. Our review shows that healthy deep-sea

ecosystems provide at least 14 ES that contribute to human needs

and well-being across the globe. These services include nutrient

cycling, habitat provisioning for other species, climate change

mitigation, food from fishing, genetic resources for medical

purposes, and minerals for technological use and human cultural

development. This framework is compatible with existing marine

ES frameworks and represents an important step towards

developing an applied framework for decision-support in deep-

sea contexts. Armstrong et al. (2012) and Thurber et al. (2014)

outlined and structured deep-sea ES based on the MEA (2005)

framework, which is a theoretical framework that lacks direct

applicability in ecosystem accounting such as the Common

International Classification of Ecosystem Services (CICES)

scheme (Haines-Young and Potschin, 2018). The framework

provided in this study builds on their work to provide a

standardised list of services using terminology from CICES

(2018). A recent publication, Le et al. (2017), has proposed an ES

framework based on TEEB (2010), a previous framework version of

CICES. One of the advantages of using CICES, as shown in Table 3,

provides additional details for each service unit. This results in ease

of comparisons of ES trade-offs amongst geographically different

areas and type of ecosystem.

Structured frameworks, modelling and ecological indicators are

some tools that can help transfer ecological knowledge to

ecosystem-based management approaches. Successful spatial

planning uses scientific and geospatial information to address

conflicts and allocate ocean space to human activities while
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maintaining ecosystem health, function and services (Ehler and

Douvere, 2009). Our framework represents an important step

towards operationalising area-based management approaches by

providing a standardised classification of deep-sea ES applicable to

the global deep-sea benthos. This is a prerequisite for developing a

habitat-service matrix that enables researchers, local managers and

decision-makers to represent ecosystem services spatially. The

framework outlined in this study is part of a preparatory stage

that considers those service types in the deep sea, making them

explicit units that allow the integration of better-informed

discussions in different deep-sea spatial planning scenarios where

humans play an integral part. A second stage involves attributing

services to different habitat types, and the final stage requires

mapping of habitat types across a study region. This framework is

an important tool to account for deep-sea ES provision within

spatial planning.

Data deficiency in many marine areas has been described as the

most significant obstacle in the advancement of this type of ES

assessment (Eigenbrod et al., 2010) and the deep sea is widely

recognised as being data-poor (Webb et al., 2010; Howell et al.,

2020; Cordier et al., 2022). To overcome the data paucity challenge,

limited funding and restricted project-specific timeframes, expert

elicitation is often a complementary assessment stage and requires

experts with extensive knowledge of the area and ES of interest. The

lack of evidence in deep-sea ES provisioning may necessitate the use

of shallow and coastal water examples to support some expert

scores and identify potential ecological processes carried out by

analogous deep-sea habitats. However this can also result in

pushback and a lack of trust in output. As use of expert opinion

is fraught with challenges, guidelines have been developed to

encourage transparency and limit biases in evaluating of each

service (Campagne and Roche, 2018). The framework outlined in

our study establishes the foundations to develop a service matrix;

however, it will require the adoption of a deep-sea habitat

classification system to operationalise its use in local, national and

international decision-making, and the development of habitat

maps of regions of interest (e.g. Howell, 2010; McQuaid et al., 2020).

There remain, however, substantial knowledge gaps for deep-

sea ES. Some fundamental questions on the mechanisms

underpinning the role of deep-sea functional groups in service

delivery remain entirely neglected (Danovaro et al., 2008; Leduc

et al., 2013; Howell et al., 2020; Manea et al., 2020). While in

principle there are already international guidelines and practices on

applying the ecosystem approach to fisheries management (FAO,

2009; Kenny et al., 2018), we are lagging behind and in fact our

study shows that we do not yet have enough understanding to this

well. Additionally, a lack of practical guidelines on how best to

incorporate cultural services into deep-sea spatial planning was

evident. Deep-sea remoteness should not be an excuse for excluding

cultural services, but we are at an early stage of considering ES in

marine environmental management let alone in the environmental

management of the less accessible deep sea. Although this is beyond

the scope of this study, future research in this area should address

the role of cultural services for deep-sea policy and decision-making
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and explore new ways by which to classify and value them. We

advise on including different stakeholders from various disciplines

and sectors in participative-based assessments to bridge the current

knowledge gaps in assessing ES. Despite the data gaps identified in

this review, our proposed framework also shows how important

these data gaps are for today’s decisions and how seriously they

should be considered in the decision-making processes. This study

also resonates with the research needs outlined in Howell et al.

(2020), and echoes a need for substantial research effort over the

next decade on the links between organisms, their functions and

ES provision.
5 Conclusions

Globally, the expansion of human activities has led to concerns

over the health of marine ecosystems and the impact of poor health on

the ES they provide to humans. Previous reviews set out a structure that

links deep-sea ecosystems to human society, but these were conceptual.

Our study builds on these foundations to operationalise these concepts

into a practical framework consisting of four supporting services, three

regulating services, four provisioning services, and three cultural

services. Moving forward, we need to build knowledge on the flow

from structure-function-service-benefit for deep-sea ecosystems. This

will enable the scientific community to feed deep-sea ES information

into different spatial and temporal scales required for specific projects

and spatial planning. Relevant stakeholders at local, regional, national

and global scales should be engaged in the formulation and

implementation of management decisions. Ultimately, this would

contribute to the maintenance of long-term benefits from deep-

sea ecosystems.
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