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Abstract 17 

Marine spatial management requires accurate data on species and habitat distributions. In 18 
the deep sea, these data are lacking. Habitat suitability modelling offers a robust defensible 19 
means to fill data gaps, provided models are sufficiently reliable. We test the performance 20 
of published models of two deep-sea habitat-forming taxa at low and high resolutions (~1 21 
km and 200 m grid-cell size), across the extended EEZs of UK and Ireland. We construct new 22 
data-rich models and compare new and old estimates of the area of habitat protected, 23 
noting changes in the protected area network since 2015.  Results of independent validation 24 
suggest all published models perform worse than expected considering original cross-25 
validation results, but model performance is still good or fair for Desmophyllum pertusum 26 
reef, with poorer performance for Pheronema carpenteri sponge models. High-resolution 27 
models using multibeam data out-perform low-resolution GEBCO-based models. Newly 28 
constructed models are good to excellent according to cross-validation. New model spatial 29 
predictions reflect published models, but with a significant reduction in predicted extent. 30 
The current marine protected area network and the European Union ban on bottom 31 
trawling below 800m protect 40% and 60% of D. pertusum reef-suitable habitat 32 
respectively, and 11% and 100% of P. carpenteri suitable habitat respectively within the 33 
model domain. We conclude high-resolution models of D. pertusum reef distribution are a 34 
useful tool in spatial management. The poorer performing P. carpenteri model indicate 35 
areas for more detailed study. Whilst low-resolution models can provide conservative 36 
estimates of percentage area-based conservation targets following the precautionary 37 
principle, high-resolution sea-floor mapping supports the development of better-performing 38 
models. 39 
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1. INTRODUCTION 43 

As we begin the UN Decade of Ocean Science for Sustainable Development, the call for more 44 

holistic management of the marine environment is clear. Marine spatial planning (MSP) is an 45 

important tool supporting implementation of the ‘ecosystem approach’ to environmental 46 

management. An approach outlined in the Convention on Biological Diversity (CBD), and 47 

enshrined in the UN Sustainable Development Goals (UN General Assembly 2015). Maps lie 48 

at the heart of spatial management including maps of human uses, socio-economics, political 49 

and legal arrangements, and critically biophysical conditions and assemblages or communities 50 

of marine organisms, such as kelp forests and coral reefs. There is a pressing need to develop 51 

reliable accurate maps of the spatial distribution of marine ecosystems to support 52 

conservation initiatives.    53 

Efforts to map benthic marine communities have largely focused on shallow water 54 

environments (Andrefouet et al. 2006, Traganos et al. 2018). Mapping deep-water 55 

communities is much more difficult because there is no direct equivalent to optical remote 56 

sensing which provides wide coverage of high-resolution data with direct observation of 57 

terrestrial and shallow (<10m) coastal habitats. The majority of deep-water benthic biological 58 

mapping has been achieved using modelling approaches.  Species distribution modelling, also 59 

called habitat suitability modelling, uses data on the presence, absence, abundance or 60 

biomass of a species, assemblage or community, and relevant environmental data, to produce 61 

a statistical model of the relationship between species and their environmental drivers. The 62 

model can be used to make predictions of the distribution of the target species/community 63 

based on environmental data alone (Bryan & Metaxas 2007, Rengstorf et al. 2014, Howell et 64 

al. 2016). This type of mapping lends itself well to use in the marine environment as the 65 
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physical environment is often cheaper and simpler to measure than the biological 66 

components. There are a wealth of local, regional and global physical spatial models of the 67 

marine environment including oceanographic, bathymetric and productivity models. Benthic 68 

biological data are generally available for coastal marine areas and together with physical 69 

environmental data, offer great potential to produce relatively data-rich modelled maps. 70 

However, availability of benthic biological data decreases as you move away from the coast 71 

and into the deep sea (Webb et al. 2010), and this can present challenges in the development 72 

of reliable models.  73 

The deep sea is increasingly subject to human use and there is an urgent need to implement 74 

more effective, integrated management of deep-sea ecosystems, through use of area-based 75 

management tools and marine spatial planning. The last 15 years has seen a growing trend in 76 

the use of predictive mapping techniques to generate models of the distribution of key 77 

species and assemblages in the deep sea (e.g. Bryan & Metaxas 2007, Guinan et al. 2009, 78 

Howell et al. 2011, Rengstorf et al. 2014, Robert et al. 2016, Howell et al. 2016, Pearman et 79 

al. 2020). These efforts have focused particularly on those species and assemblages that 80 

appear in key marine conservation legislation, and have produced modelled maps from a wide 81 

range of regions, of different extents and spatial resolutions. Models that provide large spatial 82 

coverage of a scale useful to national and regional MSP efforts, tend to use low-resolution (>1 83 

km2) modelled global environmental datasets in their production (Howell et al. 2016). Higher-84 

resolution environmental datasets, such as multibeam bathymetry, and regional or site-85 

specific oceanographic models, tend to only be employed in the construction of models with 86 

a more limited spatial extent (Pearman et al. 2020), rendering them less useful for national 87 

and regional scale MSP, but still informative.  88 
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While the potential applications of modelled maps in MSP have been demonstrated (Ross & 89 

Howell 2013, Howell et al. 2016, Stirling et al. 2016, Rowden et al. 2017), models are not yet 90 

widely used despite their obvious potential (Marshall et al. 2014, Reiss et al. 2015). This 91 

contrasts with many other fields, for example fisheries and climate science, where models are 92 

routinely used to forecast future scenarios, and the results used to make management and 93 

policy decisions (Hilborn 2012, IPCC 2014). The reasons for this are not clear. Addison et al. 94 

(2013), in their review of common objections to the use of models in environmental decision-95 

making, identify nine key objections that are symptoms of three fundamental issues: (1) 96 

misconceptions about the role of models in decision-making, (2) poor modelling practice and 97 

(3) a lack of effective communication and/or trust between modellers and decision-makers. 98 

Objections around modelling practice and outputs include issues with model accuracy and 99 

uncertainty. Model performance is usually tested using random subsampling from the full 100 

model build dataset, so called cross-validation. However, the lack of true independence 101 

between testing and training data sets, as well as spatial sorting bias is known to artificially 102 

inflate model performances (Veloz 2009, Hijmans 2012) leading to a phenomenon where 103 

many models appear to perform well yet provide very different spatial predictions (Piechaud 104 

et al 2015; Howell et al 2016). This may serve to compound concerns around model accuracy 105 

and uncertainty, and highlight the need for independent validation of model performance to 106 

help allay these concerns and encourage wider use of model output. 107 

In the North East Atlantic habitat suitability models for scleractinian cold water coral reef and 108 

an aggregation forming deep-sea sponge Pheronema carpenteri have been developed for the 109 

continental shelf claim areas of the UK and Ireland (Ross & Howell 2013, Ross et al. 2015). 110 

Desmophyllum pertusum reef is widely recognised as a distinct biological community or 111 

‘biotope’, and occurs as thickets, discrete reefs, and giant carbonate mounds up to 300 m 112 
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high and several km in diameter. Within this region reefs have been observed on Hatton, 113 

George Bligh and Rockall Banks, the Wyville-Thomson Ridge, and in Explorer and Dangaard 114 

Canyons (Howell 2010, Howell et al. 2010), the Porcupine Seabight (Foubert et al. 2005, 115 

Huvenne et al. 2005), Porcupine Bank (Kenyon et al. 1998), southern Rockall Bank (Mienis et 116 

al. 2006, Wienberg et al. 2008) and Outer Hebrides (Roberts et al. 2005) as well as further 117 

north and south (Wheeler et al. 2007). Observations occur over depths from ~120 m to ~1000 118 

m, with most reported from 600-800 m. Reef structures are highly biodiverse (Roberts et al. 119 

2006), and have an important role as essential fish habitat (Husebø et al. 2002, Auster 2005). 120 

 P. carpenteri is a small spherical glass sponge that occurs singularly or in dense aggregations, 121 

predominantly (but not exclusively) on fine sandy mud and mud substrata. Within UK and 122 

Irish waters, aggregations are a recognised biotope, and communities composed of this 123 

species have been described from 1250 m in the Porcupine Seabight (Rice et al. 1990), 1100 124 

m in the Hatton-Rockall Basin (Hughes & Gage 2004, Howell et al. 2014), and from 1450 m on 125 

Goban Spur (Lavaleye et al. 2002), with historical records of additional aggregations from 126 

Ireland to Spain in 1000-2000 m water (Le Danois 1948) and in the Northern Rockall Trough 127 

(Wyville-Thomson 1874). Aggregations are associated with an increase in abundance and 128 

richness of macrofauna observed within spicule mats and sponge bodies (Rice et al. 1990, 129 

Bett & Rice 1992). Recent studies have suggested that known aggregations may be poorly 130 

connected (potentially isolated) (Ross et al. 2019) and experience a substantive impact from 131 

bottom trawl fishing (Vieira et al. 2020). From a policy perspective both D. pertusum reef and 132 

P. carpenteri aggregations are considered Vulnerable Marine Ecosystems (VME) under United 133 

Nations General Assembly Resolution 61/105, and as ‘threatened and/or declining species 134 

and habitats’ under the OSPAR Convention for the Protection of the Marine Environment of 135 



6 
 

the north-east Atlantic 1992. Understanding their distribution is therefore an important 136 

component to the development of area-based management of the region.  137 

The Ross & Howell (2013) models were constructed using global scale environmental data 138 

layers and are at a resolution of ~1 km2. The Ross et al. (2015) models were constructed using 139 

high resolution multibeam datasets and are at a resolution of 200x200 m grid cell size.  Both 140 

models were produced using the same underlying presence / absence biological dataset for 141 

each response variable , D. pertusum reef habitat and P. carpenteri species. All four models 142 

performed well when tested using cross-validation methods, and in general high-resolution 143 

models performed better than low resolution models according to threshold-dependent 144 

evaluation. However, the spatial predictions and resulting maps derived from models of 145 

different resolution were notably different. The aim of this study is to undertake independent 146 

validation of these published models of VME distribution in the UK and Irish ECS claim areas, 147 

in order to assess model performance and inform future use in MSP and conservation. 148 

Specifically, we will 1) independently validate model performance using newly collected 149 

independent data, 2) construct new relatively data-rich models using the same modelling 150 

method as the prior publications, 3) quantify changes in predicted distributions and 151 

assessments of percentage protection targets for each VME (VME indicator taxa in the case 152 

of P. carpenteri) as a result of new models.   153 

 154 

2. MATERIALS & METHODS 155 

2.1. Site and Model Description 156 



7 
 

The study considers the full extent of the Irish, and a partial extent of the UK’s extended 157 

continental shelf claim area in the N E Atlantic (Fig 1). A network comprising three different 158 

types of Marine Protected Area (MPA) exists in this area for the protection of deep-sea 159 

habitats (Fig 1). These are Special Areas for Conservation, OSPAR MPAs and North East 160 

Atlantic Fisheries Commission (NEAFC) closures to bottom trawling for the protection of 161 

VMEs. While the sites do not constitute a coherently designed MPA network, they enable 162 

illustration of the potential use of habitat maps in area-based management. In addition, there 163 

is a ban on bottom trawling below 800 m in European and UK waters.  164 

Ross & Howell (2013) and Ross et al. (2015) scleractinian reef models were predominantly 165 

constructed using Desmophyllum pertusum reef presence / absence data. However, a small 166 

number of presence points for Solenosmilia variabilis reef were also included in the models. 167 

In our experience S. variabilis appears to occupy the same topographic niche as D. pertusum 168 

but occurs in deeper water. Records included in the models were at the shallow end of their 169 

distribution only. The resulting models largely predicted the niche of D. pertusum reef but 170 

with a slightly deeper reach. This study evaluates and builds upon the original models using 171 

new D. pertusum reef data alone with S. variabilis reef data omitted. Ross & Howell’s (2013) 172 

models are of resolution 750x750 m grid cell size, and cover the full extent of both Irish and 173 

UK continental shelf limit. Ross et al. (2015) models are of resolution 200x200 m grid cell size 174 

and cover the full extent of the Irish, and partial extent of the UK’s continental shelf limit in 175 

the N E Atlantic. Both studies used their models to assess progress towards percent protection 176 

conservation targets, and reported between 20 – 29% of scleractinian reef suitable habitat 177 

and 1.9-2.9% of P. carpenteri suitable habitat is within the MPA network.    178 

 179 
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2.2. Biological Data 180 

New data for both P. carpenteri and D. pertusum reef were compiled from five research 181 

cruises to the northeast Atlantic: i) Eurofleets2 funded DeepMap cruise CE15011 (2015), with 182 

ROV Holland I;  ii) NERC funded Deep Links JC136 (2016), with ROV ISIS; iii, iv, v) Sea Rovers 183 

RH17001 (2017), RH18002 (2018) and CE19015 (2019), jointly funded by the Irish Government 184 

and EU, with ROV Holland I. These research cruises were not conducted for the sole purpose 185 

of model validation, but this was a consideration in transect line planning for all cruises. 186 

Transect lines ranged from approximately 100m to 3.1 km, with an average length of 1.3 km. 187 

Collectively these research cruises provide a dataset consisting of 195 high definition ROV 188 

video transects spread across the study area (Fig 1). This collective dataset is referred to 189 

throughout as the new dataset. 190 

For the original datasets presence of target habitat was determined from both quantitative 191 

and qualitative analysis of stills image data taken at 1 minute intervals along transects as 192 

described in Howell et al. (2010). P. carpenteri presence was determined from species lists 193 

from analysed sample data. D. pertusum reef habitat description follows that provided in 194 

Howell (2010), and subsequently adopted for use in the UK Deep Sea Habitat Classification 195 

(Parry et al. 2015). For the new independent dataset presence of the target habitat / species 196 

was determined by expert evaluation of image-based data alone. Habitat identification was 197 

undertaken by two annotators and designated when the habitat extent satisfied the OSPAR 198 

minimum biotope area threshold (25 m2). For quality assurance, 5% of transects were 199 

independently analysed by Howell following inter-observer agreement standards used in 200 

published evidence (MacLeod et al., 2010). 201 

 202 
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2.3. Original Model Validation  203 

For each of the four published models, the new biological dataset was plotted in ArcGIS on 204 

raster grids of published model output, in their respective output projections, and ROV point-205 

based position data were reduced to one point per cell to avoid over-/under-weighting the 206 

importance of specific environmental conditions. Where cells contained any ROV position 207 

points interpreted as presence points, the one point per cell was denoted as a presence, all 208 

other points were denoted as absence. As the original models were masked for novel 209 

climates, new data points that did not sit on old model predictions were removed from the 210 

dataset as they were considered out of the original model domain. The final independent 211 

validation datasets for the 200 x 200m model included 2018 data points for D. pertusum reef 212 

and 1937 data points  for P. carpenteri aggregations; for the 750 x 750 m model, the 213 

independent validation datasets included 646 data points for D. pertusum reef and 597 data 214 

points for P. carpenteri aggregations (Table 1). To assess the potential effect of spatial 215 

autocorrelation in inflating model performance, independent validation was also undertaken 216 

by reducing the datasets to one point per ROV transect. For each response variable a single 217 

presence point was randomly selected within each transect, and a single absence point from 218 

absence transects. This provided 173 and 163 validation points for the D. pertusum and P. 219 

carpenteri 200x200m models respectively and 186 and 182 validation points for the D. 220 

pertusum and P. carpenteri 750x750 models respectively. 221 

The probability values from published model layers (coglog Maxent output) were extracted 222 

for each data point. Threshold independent metrics of model performance (Area Under the 223 

Receiver Operator Curve, AUC) for each model were calculated and compared to the original 224 

published models. Threshold dependent metrics of model performance (specificity, 225 
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sensitivity, and percent correctly classified) were also calculated by converting extracted 226 

probability  values to binary presence-absence using 1) the thresholds defined in the original 227 

publications, and 2) new thresholds that maximised model performance against the new 228 

dataset. 229 

 230 

2.4. Construction of new models 231 

Newly collected high-resolution multibeam bathymetry data (Supplementary Material 1.0) 232 

were added to that described in Ross et al. (2015) and used to create grids of cell size 200x200 233 

m that were re-projected from their original projection (WGS84) into Goode Homolosine 234 

Ocean (GHO) equal-area projection in order to allow for correct calculation of derived 235 

topographic layers and area.  236 

 237 

2.4.1 Variable selection 238 

Seven topographic variables were derived from the bathymetric data using the ArcGIS Benthic 239 

Terrain Modeller add-in (Walbridge et al. 2018): terrain ruggedness, curvature, plan 240 

curvature, profile curvature, slope, broad-scale bathymetric positions index (BBPI) and fine-241 

scale bathymetric position index (FBPI). Information on the calculation and use of each of 242 

these variables can be found in the existing literature (Guinan et al. 2009, Ross & Howell 243 

2013). The inner and outer radii for BBPI were 5 and 50 raster cells, respectively, facilitating 244 

identification of topographic features at 10 km scale such as canyons and hills. For FBPI, the 245 

inner and outer radiuses were 1 and 5 raster cells, respectively, allowing for the identification 246 

of features within the <1 km scale such as gullies. Generalised Additive Models (GAMs) were 247 



11 
 

used to build bottom temperature and salinity layers using in-situ CTD data from ROV and 248 

drop camera transects, as well as archived CTD casts from the British Oceanographic Data 249 

Centre (BODC) database. GAMs were implemented in R (R Core Team 2020) using the ‘mcgv’ 250 

package (Wood 2011) with depth, latitude and longitude used as explanatory variables. A 251 

detailed description is given in Supplementary Material 2.0.  New and original biological 252 

datasets for each of D. pertusum reef and P. carpenteri presence / absence were combined, 253 

reprojected into GHO and plotted in ArcGIS on raster grids of environmental data. ROV/drop 254 

camera point-based position data were reduced to one point per cell, where cells containing 255 

any presence observations were denoted as a presence, all other points were denoted as 256 

absence. Environmental data were extracted for each data point.  257 

Maximum Entropy (MaxEnt) modelling (Phillips et al. 2006, Elith et al. 2011) is a presence-258 

background modelling technique that has a successful performance record (Elith et al. 2006), 259 

particularly in studies with low prevalence (low number of presence records). Although 260 

MaxEnt was designed to account for covariation in datasets and can perform well with 261 

correlated variables (Feng et al., 2019), previous studies have found that pre-selection of 262 

variables leads to better-performing models (Ross and Howell, 2013). Environmental 263 

variables were therefore first assessed for covariance using correlation matrices and Variance 264 

Inflation Factors in R. Strong correlations and VIFs between variables (≥ ±0.7 and ≥ 3, 265 

respectively) were addressed by removing one variable from each correlated pair based on 266 

the jackknife procedure. Jackknifing calculates the individual contribution of variables to a 267 

model and produces model performance statistics (termed ‘gain’ in MaxEnt) for each. Once 268 

correlates were removed, a model with all remaining variables was built. Following principles 269 

of model parsimony, final sets of variables were selected by systematically removing the 270 

variable contributing the least to the model (based on model gain with and without that 271 
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variable) until the drop in overall performance was deemed unacceptable. This process is 272 

described in detail in Supplementary Material 3.0 and 4.0. 273 

 274 

2.4.2 Modelling 275 

If used with presence-only data, MaxEnt randomly selects a specified number of ‘background’ 276 

points that are considered to represent locations with an equal likelihood of having been 277 

sampled that act as the absence points to inform the model (Elith et al. 2011). Whilst 278 

‘absence’ points are presented in this study for each target taxa/habitat, it is not possible to 279 

be certain that they are not present somewhere within a 200 m grid cell due to the limited 280 

field-of-view of camera equipment compared to the size of grid cells, and therefore the data 281 

within this study represent ‘pseudo-absences’. Having pseudo-absence data allowed for the 282 

MaxEnt samples-with-data (SWD) approach to be used whereby environmental values are 283 

provided in a spreadsheet for both the presence and pseudo-absence points, instead of 284 

allowing MaxEnt to randomly select background points to act as absences.  The benefit of the 285 

SWD approach is that as both the presence and pseudo-absence points come from the same 286 

sampling campaigns, it allows for the control of some bias in sampling locations and 287 

experimental design that can facilitate improved predictive performance (Phillips & Dudík 288 

2008).  289 

Preliminary models with different parameters were systematically trialed, including the 290 

changing of feature classes (linear, quadratic, product, hinge and threshold) and the 291 

regularisation parameter (0.1, 0.5, 1, 3, 5, 10) to avoid over-fitting/-smoothing (Phillips & 292 

Dudík 2008). The final feature classes selected for both target habitat models were linear, 293 

quadratic and product features. Through trialing, hinge and threshold features were removed 294 



13 
 

due to lack of ecological applicability in this study; with these features turned on, the response 295 

curves produced did not make biological sense. The D. pertusum reef model used a 296 

regularisation parameter of 1, whilst the P. carpenteri model used 0.5. These parameters 297 

were chosen because they struck a balance between the model overfitting and over-298 

generalising - this was apparent from the shape of the response curves and AUC scores. The 299 

final MaxEnt models were projected onto the study area in a raster format and constrained 300 

to sampled conditions using the MaxEnt novel climates output (i.e. areas where 301 

environmental values fall within those on which the model was trained). Environmental data 302 

layers used in the final models are plotted in Supplementary Material 5 and final model details 303 

are provided in Supplementary Material 6.  304 

 305 

2.5. Evaluation of New Models 306 

Both presence and pseudo-absence records were used to evaluate the MaxEnt models’ 307 

performance by partitioning the data using a 70/30 split 10 times to create 10 sets of training 308 

and test data. These datasets were compiled manually rather than using the automated 309 

MaxEnt splitting tool to reduce spatial autocorrelation in the data. To achieve this, datasets 310 

were split such that whole transects fell into either a training or testing dataset. This avoided 311 

a scenario where a single transect would be split into training and testing points, leading to a 312 

within-transect testing point validating the same transect (Howell et al. 2011). The prevalence 313 

within each test and training dataset was compared to the prevalence of the full dataset and 314 

any datasets identified as having >+/-1% change in the amount of presence data were 315 

discarded and another random partition made until all test and train datasets satisfied the 316 

criteria. Using the partitioned data, 10 new models were built for each habitat and evaluated 317 
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using the ‘PresenceAbsence’ package (Freeman & Moisen 2008) in R, employing both 318 

threshold-independent (AUC) and threshold-dependent metrics.  319 

Three thresholding techniques were used to assess model performance, as suggested in Liu 320 

et al. (2009), and recognising that different thresholding methods seek to achieve different 321 

ends. Chosen thresholds were sensitivity-specificity equality (Sens=Spec), sensitivity-322 

specificity sum maximisation (MaxSens+Spec) and minimum distance to the top left corner in 323 

the receiver operating characteristic curve plot (MinROCdist). Using the 324 

presence.absence.accuracy() function, the thresholding techniques and resulting model 325 

performances were assessed using three widely used indices: sensitivity, specificity and 326 

percent correctly classified (PCC). True skill statistic (TSS) can be calculated from sensitivity 327 

and specificity and is used in place of Cohen’s kappa as it corrects the overall accuracy of the 328 

model predictions using the accuracy expected to occur by chance (Allouche et al., 2006). For 329 

both AUC and threshold-dependent metrics the mean and standard deviation for each metric 330 

was calculated for the 10 partitioned datasets and for the full model. 331 

 332 

2.6. Quantification of Habitat Distribution and Marine Protected Area Analysis 333 

The thresholding technique that gave the highest average of performance across the three 334 

chosen indices was selected for use in the final models.  A binary raster of predicted presence 335 

and absence was produced as well as a raster of probability of predicted presence. Model fit 336 

was visualized by plotting the match-missmatch of binary predictions (Supplementary 337 

Material 7) In addition, the relative probability maps from all ten partitioned test/training 338 

models were used to produce standard deviation rasters to convey spatial uncertainty in the 339 

model predictions (Supplementary Material 8). The number of predicted presence raster cells 340 
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within different MPA polygons and below 800 m were calculated and then expressed as 341 

percentages of total presences in the whole study area, UK waters, and Irish waters. Values 342 

derived from published and new models were compared.  343 

 344 

3. RESULTS 345 

3.1. Original Model Validation  346 

Results of the independent validation suggest that all published models perform worse than 347 

expected based on cross-validation results for both threshold dependent and independent 348 

metrics (Table 2 and 3). Model performance is still considered good (0.8–0.9) or fair (0.7–0.8) 349 

for scleractinian cold-water coral reef habitat models, with poorer performance for the 350 

Pheronema carpenteri models, particularly at low resolution. Independent validation using 351 

the thinned dataset of one point per ROV transect (removing effects of spatial 352 

autocorrelation) gave similar results.  The extremely low prevalence of the P. carpenteri 353 

dataset (Table 1) mean that model performance as measured by PCC is very much influenced 354 

by correct prediction of absences (specificity), this also means threshold selection will be 355 

strongly influenced by specificity and might explain why the new thresholds are all very low . 356 

High-resolution models out-performed low-resolution models for both taxa.  357 

 358 

3.2. New Models 359 

Results of variable correlation analysis and step-by-step documentation of the variable pre-360 

selection procedure are provided in Supplementary Material 3.0 and 4.0. 361 

 362 
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3.3. New Model Evaluation 363 

Consideration of common performance indices (Table 4) allowed for selection of final 364 

thresholding methods. For both models, Sens=Spec was selected as the chosen thresholding 365 

method, providing thresholds for D. pertusum reef and P. carpenteri aggregations of 0.44 and 366 

0.37, respectively. For D. pertusum reef, the AUC value for the full internally validated model 367 

and all cross validation models was deemed excellent (0.9+).The 0.44 threshold determined 368 

by Sens=Spec generated good (0.8+)results for PCC, sensitivity and specificity for all models.  369 

For P. carpenteri, the AUC value for the full and all cross validation models was deemed 370 

excellent. When thresholded at 0.26, all threshold-dependent metrics (PCC, sensitivity and 371 

specificity) for the full and training P. carpenteri models were classified as excellent (0.9+ full 372 

model and training sensitivity) or good (0.8-0.9 for training PCC and specificity) when 373 

internally validated. All cross-validation models were classified as good (0.8-0.9). 374 

 375 

3.4. New Model Variable Importance 376 

When variables are considered in isolation for D. pertusum reef, model gain is highest for 377 

temperature (70.5% contribution), followed by rugosity (23.3%) and FBPI (6.2%) as depicted 378 

in the jackknife plot (Supplementary Material 6.0). Temperature also decreased the model 379 

gain the most when removed as a variable, further illustrating its importance as the major 380 

variable on which predictions are reliant. For the P. carpenteri model, when variables are 381 

considered in isolation, model gain is highest for depth (41%) followed closely by temperature 382 

(35.9%), then BBPI (20.1%) and profile curvature (3%). When omitted from the complete 383 
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model the variable that decreased model gain the greatest was depth, closely followed by 384 

temperature. 385 

3.5. Old (data poor) vs. New (data rich) high resolution models 386 

Model performance determined by cross-validation suggests new models (Table 4) are 387 

comparable but of lower performance than old models (Table 3). New model spatial 388 

predictions in general follow those of the Ross et al. (2015) models, however, there are some 389 

notable differences (Fig. 2). Cold-water coral reef is predicted present on all banks, seamounts 390 

and the continental slope in the region, but the distribution is more restricted than that 391 

predicted by Ross et al. (2015). As with the previous model, P. carpenteri is predicted present 392 

on the continental slope, Porcupine Seabight, Rosemary Bank Seamount, around the Hatton-393 

Rockall Plateau, and particularly in the Hatton-Rockall Basin. Presence is also predicted near 394 

the Wyville-Thomson Ridge where historical records refer to “the Holtenia grounds” (Wyville 395 

Thomson, 1874). The most noticeable difference is in the change in predicted distribution in 396 

the south-west section of the Hatton-Rockall Basin (circled in Fig. 2 c & d). Presence is 397 

predicted for both taxa inside the existing MPA network but, following the overall trend, the 398 

predicted distribution for D. pertusum reef is a contracted version of the 2015 predictions 399 

(Fig. 3 a and b). Predictions for P. carpenteri presence inside MPAs has changed little from the 400 

2015 model.    401 

 402 

3.6. Comparison of percentage area protected by 2015 MPA network 403 

For both taxa there is a significant reduction in predicted extent of suitable habitat in km2 in 404 

the new models when compared to the Ross & Howell (2013) and Ross et al. (2015) models 405 
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(Table 5). The difference is most striking for D. pertusum reef where the low-resolution 2013 406 

model predicts an extent 39 times larger, and the 2015 model 6 times larger, than the new 407 

model for the whole study area. Some of this reduction will be due to the removal of all S. 408 

variabilis data points from the model data, which will have led to a slight contraction in 409 

predicted depth range, however it is clear from Fig. 3 that there is a general contraction in 410 

predicted distribution between new and old models. As D. pertusum reefs are only found 411 

shallower than 1200m in this region, consideration of only those areas shallow than this depth 412 

reveal the same over-all trend. However, there is an increase in the estimates of the 413 

percentage of suitable habitat contained within the 2015 MPA network when calculated from 414 

the new model as compared to old models.   415 

 416 

3.7. Assessment of percentage area protected by the MPA network present in 2020 417 

Assessment of the proportion of suitable habitat included within the present day MPA 418 

network (Table 6) found that D. pertusum reef suitable environments are the most well 419 

protected within the study area (~40% contained within MPAs) with protection at national 420 

levels varying from 84% in UK to 24% in Irish waters. This is a significant increase from the 12-421 

32% protection under the 2015 network assessed using all models (Table 5). P. carpenteri 422 

suitable habitat is the least well-protected of the two habitats assessed, with ~11% of 423 

predicted suitable environments included within a current MPA, with protection at national 424 

levels varying from ~49% in UK to ~4% in Irish waters. However, this again is a significant 425 

increase on the 2015 MPA network, where the new model suggests only 7% of suitable 426 

habitat was protected by the 2015 MPA network.  The addition of new MPAs in UK waters 427 

between 2015 and 2020 have taken the UK from around 59% to 84% protection for D. 428 
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pertusum reef and from 25% to 49% protection for P. carpenteri. It should be noted however 429 

that the Ross et al. (2015) and new model only cover a partial extent of the UK’s continental 430 

shelf limit and data are biased to those areas that have been designated as MPAs. Thus, 431 

estimates of percentage protection are likely substantial overestimates. The EU ban on 432 

bottom trawling below 800m is estimated to protect 100% of the habitat suitable for P. 433 

carpenteri, and 42% of D. pertusum reef suitable habitat. Measured against IUCN targets both 434 

habitats are within or above the 20-30% protection level recommended. 435 

 436 

4. DISCUSSION 437 

4.1. Original Model Validation 438 

Habitat suitability modelling (HSM) is a potentially valuable tool in the field of marine 439 

environmental management, but there remain questions around the true accuracy and 440 

reliability of modelled maps that may serve as a barrier to growth in use.  In this study we 441 

have tested the performance of four published models at two different resolutions, 750x750 442 

m (Ross & Howell 2013) and 200x200 m (Ross et al. 2015). Two for scleractinian cold water 443 

coral reef habitat and two for the sponge species Pheronema carpenteri. In the original 444 

published papers, all models performed well when tested using cross-validation methods, 445 

and performance was mixed when comparing low and high resolution models, according to 446 

threshold-dependent evaluation. While high-resolution D. pertusum reef models out 447 

performed low-resolution models, low-resolution models for P. carpenteri performed as 448 

well as high-resolution models according to threshold-dependent evaluation, and better 449 

than high resolution models according to threshold-independent evaluation (AUC). Our 450 

study has shown that when tested using independent data all models perform worse than 451 
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expected based on published cross-validation results for both threshold-dependent and 452 

independent metrics. Although models perform worse than under cross-validation, model 453 

performance is still considered good (0.9–0.8) or fair (0.8–0.7) for scleractinian cold-water 454 

coral reef habitat models, with poorer performance for the P. carpenteri sponge models, 455 

particularly at low resolution and when measured by sensitivity. High-resolution models 456 

out-performed low-resolution models for both taxa when assessed using  independent  457 

data.  458 

Our findings are in broad agreement with the very small number of comparable studies that 459 

have independently validated deep-sea sponge and coral HSM published models, with some 460 

notable differences. Rooper et al. (2016, 2018) independently validated HSM for corals and 461 

sponges in the eastern Bering Sea slope, outer shelf in Alaska and Aleutian Islands. These 462 

models were developed based on data from bottom trawl surveys at a resolution of 463 

100x100 m grid cell size and validated using camera-based surveys. These studies found that 464 

while model performance decreased when comparing cross-validation to independent AUC 465 

scores, performance was still acceptable for coral models. This taken with our own findings 466 

suggest that high resolution models (<200x200 m grid cell size) of deep-sea coral 467 

distributions can be accurate and can provide useful information for spatial management of 468 

these vulnerable taxa.   469 

However, low-resolution models may not perform well. Bowden et al. (2021) recently 470 

evaluated 47 HSM from eight published studies, all focused on the area around New 471 

Zealand, using independent data. All models were at 1km or 30 arc-seconds grid cell size, 472 

and in all cases model performance was lower than in published cross-validation values. 473 

Anderson et al. (2016) found that their models of the distribution of four scleratinian species 474 
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(not Desmophyllum pertusum) across the South Pacific Regional Fisheries Management 475 

Organisation area and adjoining EEZs were not successful in accurately predicting suitable 476 

habitat for reef-forming deep-sea corals when independently validated. These models were 477 

also constructed on a 30 arc-second grid (~1 km2) and data resolution was given as a 478 

possible explanation for model failure in the face of independent testing. Specifically, these 479 

authors cited the limitations of the bathymetry dataset used, which in turn affected the 480 

precision of each of the environmental predictor variables. Both studies report on models of 481 

comparable resolution to the low-resolution Ross & Howell (2013) model tested here.  482 

Interestingly the Ross & Howell (2013) model appears to have performed better than the 483 

Anderson et al. (2016) models in the face of independent data. Anderson et al. (2016) cite 484 

missing critical predictor variables, particularly substrate type, lack of true absence data, 485 

spatial bias in distribution of presence records, and aspects of the topography in the study 486 

area, as possible reasons for their model’s poor performance. Ross & Howell‘s (2013) model 487 

did make use of background data to account for spatial bias in the dataset, which may have 488 

resulted in better performance when subjected to independent testing. However, a 489 

principal difference between the Anderson et al. (2016) models and the Ross & Howell 490 

(2013) model is the focus of the models. Ross & Howell (2013) modelled scleractinian reef 491 

habitat where Anderson et al. (2016) modelled scleractinian species presence. The 492 

difference is important as the former occupies a restricted subset of the environmental 493 

niche of the latter (Howell et al. 2011), and a narrower niche width can result in a better 494 

performing model (Kadmon et al. 2003, Tsoar et al. 2007).  This concept is used to explain 495 

the possible poor performance of Rooper et al.’s (2016, 2018) sponge models. These 496 

authors suggested that the difference they observed in their high-resolution (100x100 m 497 

grid cell size) coral and sponge model performance may be a result of lumping species 498 
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together into a large taxonomic group called ‘sponge’. This essentially merged species with 499 

very different habitat preferences, ultimately giving the group a wide environmental niche. 500 

The coral group in their study was dominated by a single family (Primnoidae) and thus was 501 

less affected by this pooling action.  502 

Niche width is unlikely to explain the poor performance of the P. carpenteri model. This 503 

hexactinellid (glass sponge) is found predominantly on fine sediments where it loosely 504 

anchors to the substrate using long spicules at the base of the organism. Aggregations in the 505 

NE Atlantic are found over a very narrow depth range from 1000 to 1300 m (Rice et al. 506 

1990) and appear to occupy a very specific niche. Cross-validation of HSMs created for this 507 

species suggested model performance was excellent (Ross & Howell 2013, Ross et al. 2015). 508 

However, independent validation suggests that while the models have fair to good PCC and 509 

specificity, they have poor sensitivity, meaning that the resulting maps may be indicating an 510 

absence where there is in fact a presence. Examination of the spatial distribution of false 511 

negatives suggests most (25 of 28 data points) are found on offshore seamounts and banks. 512 

These habitat types, and therefore this particular aspect of P. carpenteri’s environmental 513 

niche, was not represented in the dataset used to build the published models and could 514 

help explain why the models partially fail. However, aspects of the ecology of P. carpenteri 515 

may also explain the poor model performance.    516 

P. carpenteri, in common with other deep-sea sponge species that form aggregations, are 517 

thought to be associated with regions of enhanced bottom currents related to the 518 

interaction of internal waves with sloping boundaries (Rice et al. 1990, Klittgaard et al. 1997, 519 

Davison et al. 2019) and raised features like the Mid-Atlantic Ridge (van Haren et al. 2017). 520 

The causal link is suggested to be an increase in the supply of food as a result of the 521 
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resuspension of organic matter (Rice et al.1990). Oceanographic variables (and variability) 522 

may therefore be of critical importance in determining the distribution of P. carpenteri. The 523 

omission of such predictor variables from the Ross & Howell (2013) and Ross et al. (2015) 524 

models may also explain why both models partially fail when tested with independent data. 525 

The inclusion of oceanographic variables in deep-sea marine SDM has been found to 526 

improve model performance when tested with cross-validation (Rengstorf et al. 2014, 527 

Pearman et al. 2020) further supporting their inclusion in any future model development.   528 

Our results suggest that for both scleractinian reef and P. carpenteri, the high-resolution 529 

models out-perform the low-resolution models when tested with independent data. This is 530 

an important finding as it suggests our ability to produce useful models of deep-sea benthic 531 

species and habitat distribution is dependent on availability of high-resolution 532 

environmental data including bathymetry data. Current maps of the seafloor are derived 533 

using satellite altimetry, which gives an average achievable resolution in the order of 8 km 534 

(Mayer et al. 2018). The percentage of the seafloor that has been measured by echo-535 

sounders is considerably less than 18% and only about 9% of the seafloor is covered by high-536 

resolution multibeam sonar data (Mayer et al. 2018). Recently an international effort has 537 

begun with the objective of facilitating the complete multibeam mapping of the world 538 

ocean by 2030. The Nippon Foundation GEBCO Seabed 2030 Project has the potential to 539 

improve significantly the quality of HSM it is possible to produce for deep-sea taxa by 540 

providing high-resolution bathymetry data. However, access to high-resolution 541 

oceanographic model output, as well as un-biased datasets of the distribution of target 542 

species and assemblages, and a good understanding of the biology and ecology of those 543 

species and assemblages, are also necessary to improve the quality of models. Targeted 544 
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efforts to collect these data over the next decade (Howell et al. 2020a,b) will be important 545 

in the further development of this field. 546 

The good performance of the high-resolution scleractinian reef habitat model suggests that 547 

it may be a useful tool in the spatial management of cold-water coral reef in this region. 548 

Cold-water coral reef is considered a Vulnerable Marine Ecosystem (VME) under United 549 

Nations General Assembly Resolution 61/105, and, in the North East Atlantic is also classed 550 

as ‘threatened and/or declining habitat’ under the OSPAR Convention. Within European 551 

waters it is also recognised as an Annex I habitat under the EU Habitats and Species 552 

Directive (92/43/EEC). Collectively these policies require relevant management authorities 553 

to take actions to protect cold-water coral reef habitat. Specifically, UNGA 61/105 states “In 554 

respect of areas where vulnerable marine ecosystems, including seamounts, hydrothermal 555 

vents and cold water corals, are known to occur or are likely to occur based on the best 556 

available scientific information, to close such areas to bottom fishing and ensure that such 557 

activities do not proceed unless conservation and management measures have been 558 

established to prevent significant adverse impacts on vulnerable marine ecosystems”. 559 

Actions have so far been limited to those areas where cold water coral reef has been 560 

observed either through visual or physical sampling means. However, the high-resolution 561 

model provides best available scientific information on where cold-water coral reef is likely 562 

to occur in this region, and thus could be used to support decisions around further 563 

measures.  564 

Similarly, the good performance of the high-resolution P. carpenteri model in terms of PCC 565 

and specificity, and fair AUC score, suggests it also may be a useful tool in the spatial 566 

management of the region. However, it must be noted that this is a presence / absence 567 
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HSM, and therefore it only indicates likely presence / absence of suitable habitat for the 568 

species (a VME indicator taxa), not the aggregation (a VME). This, together with the notable 569 

deficiencies in the model outlined above, suggests it is less useful than the scleractinian reef 570 

habitat model, but may still have value in indicating areas for further consideration given 571 

the precautionary principle. 572 

 573 

4.2. New Model performance and interpretation 574 

The newly constructed high-resolution models for D. pertusum reef and P. carpenteri have 575 

been developed using more than twice the input data used in the original Ross et al. (2015) 576 

models (Table 1), and consideration of oceanographic predictor variables (temperature and 577 

salinity) as terms in the models. Cross-validation suggests good performance for both models. 578 

In general, model performance increases with increasing sample size, however the nature of 579 

this relationship is variable and can depend on modelling method, prevalence, and species 580 

range size (Stockwell & Peterson 2002, Wisz et al. 2008, van Proosdij et al. 2016). The inclusion 581 

of oceanographic variables in deep-sea HSM has also been found to improve model 582 

performance (Rengstorf et al. 2014, Pearman et al. 2020). This suggests that the new models 583 

should perform better than the original 2015 models, although this can only be assessed using 584 

new independent data.  585 

In this study we have used a presence – background approach rather than a presence-absence 586 

approach since our model input data are drawn from multiple surveys using multiple gear 587 

types and spanning more than 30 years. In our opinion, absences cannot be inferred from our 588 

dataset with certainty, and so we opted to be cautious in our use of absence data. However, 589 

it should be noted that evidence suggests presence-absence models perform better than 590 
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presence-only models, particularly where species / assemblages occupy all suitable habitat, 591 

making absence data reliable (Brotons et al. 2004), although Maxent has been found to 592 

perform equally as well as presence-absence models (González-Irusta et al. 2014). Future 593 

modelling efforts may wish to consider use of presence-absence approaches where authors 594 

feel absence data are reliable.  595 

Temperature was a significant term in both new models and is a fundamental variable that 596 

controls species distributions. D. pertusum has been observed living under a wide range of 597 

temperatures (4–13 °C) (Freiwald et al. 2004), with an upper thermal tolerance of 15 °C 598 

(Brooke et al. 2013). Response curves for Maxent models for D. pertusum reef 599 

(Supplementary Material 6.0) suggest the highest likelihood of occurrence of reef habitat in 600 

the study area is at temperatures of ~8°C, which is almost the center of the species thermal 601 

niche. There are no data available on the thermal niche of P. carpenteri. Howell et al. (2016) 602 

reported this species to occur over a temperature range of 2.73–20.9 °C (mean 5.17 °C, 603 

standard deviation 2.03) in the northern North Atlantic. Response curves for Maxent models 604 

for P. carpenteri (Supplementary Material 6.0) suggest this species occupies a narrow thermal 605 

niche, with peak likelihood of occurrence at between 6-8°C, falling sharply to no occurrences 606 

below approximately 3°C or above 10°C. The wide range reported in Howell et al. (2016) is 607 

likely a result of poor position data from the older records used in that model in order to 608 

provide whole North Atlantic data coverage.    609 

New model spatial predictions in general follow those of the Ross et al. (2015) models. 610 

However, there are some notable differences, particularly in the spatial prediction for P. 611 

carpenteri in the southern region of the Hatton-Rockall Basin (Fig. 2 c, d). In this region 612 

available CTD data suggest the temperature is cooler than that at equivalent depths in the 613 
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Rockall Trough and on the European continental slope, making this region less suitable for P. 614 

carpenteri than predicted by the 2015 model, which did not include temperature. 615 

Interestingly the Howell et al. (2016) model, which did include temperature, also predicted 616 

this area as suitable habitat, however the thermal niche of P. carpenteri was likely incorrectly 617 

defined in that model as previously noted. The principal difference in the spatial predictions 618 

for the D. pertusum reef model is a general contraction of the 2015 predictions in the current 619 

model.  This is well illustrated in Fig. 3 a and b where current model predictions are much 620 

more focused than those of the 2015 model.     621 

 622 

4.3. Re-assessment of current area closures and percentage protection targets for these VMEs 623 

For both taxa there is a significant reduction in predicted extent in the new models when 624 

compared to the Ross & Howell (2013) and Ross et al. (2015) models (Table 5). The 2013 625 

low-resolution models predicted 39 times and 4 times greater extent for D. pertusum reef 626 

and P. carpenteri respectively. This difference has important implications for onward use of 627 

models in decision-making. For example, calculations of ecosystem services such as carbon 628 

sequestration (Barnes et al. 2019; Barnes et al., 2021) or nutrient cycling (Hoffman et al. 629 

2009) based on modelled extent may be grossly overestimated if based on low-resolution 630 

models. Similarly, the 2015 models predicted a greater extent of suitable habitat than the 631 

new model by 6 times and 1.4 times for D. pertusum reef and P. carpenteri respectively, 632 

suggesting that  estimates of extent based on model predictions should be used with 633 

caution and considered likely overestimates.      634 

In contrast, estimates of percentages of predicted suitable environments protected by the 635 

regional MPA network increased when calculated using the new model compared to the 636 
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2013 and 2015 models. The Convention on Biological Diversity originally set out a target of 637 

10% of marine areas to be protected by 2010 (UNEP/CBD/COP/DEC/VII/5) (later moved to 638 

2020 (UNEP/CBD/COP/10/27)), and that is now being followed up with calls for 30% by 2030 639 

(CBD, 2020). While these percentage area targets are not habitat specific, Aichi Target 11 640 

makes specific reference to ‘ecologically representative and well-connected systems of 641 

protected areas’ (UNEP/CBD/COP/10/27/Annex), which implies that different marine 642 

habitat types should be protected at that level. The independently validated 2015 models 643 

suggest that for the area modelled and the 2015 MPA network, both the UK and Ireland 644 

have surpassed the original 10% protection target for D. pertusum reef, while the UK have 645 

also surpassed this for P. carpenteri suitable habitat. In addition, the UK have surpassed the 646 

30% target for D. pertusum reef habitat in the modelled area. The picture is the same for the 647 

new model. However, in both the 2015 and new model, Ireland protects <10% of suitable 648 

habitat for P. carpenteri, implying that further MPAs may be required. Ireland has 649 

committed to protecting 30% of its habitat by 2030 (Marine Protected Area Advisory Group, 650 

2020) and data such as these can help guide that process.   651 

The situation is broadly similar when considering the 2020 MPA network although the 652 

estimates of percentage of habitat protected in UK waters are much higher. It must, 653 

however, be noted that the current MPA network is not ‘strictly protected’ in line with IUCN 654 

specifications and in some cases management measures have yet to be drawn up. It is also 655 

important to remember that the modelled area in UK waters is much more limited than that 656 

modelled in Irish waters due to the limited availability of multibeam mapping in UK waters. 657 

The areas that have been mapped (and thus modelled onto) in UK waters tend to be 658 

associated with protected status, thus the UK figures are likely gross overestimates. 659 

Estimates of percentage of suitable habitat made from the low resolution 2013 model are 660 
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lower than all other estimates, and, reiterating the findings of Ross et al. (2015), suggests 661 

that low-resolution models result in conservative estimates in this context, which is in line 662 

with the precautionary principle and suggests low-resolution models may have a use in this 663 

area. 664 

An interesting finding is that the ban on bottom trawling below 800 m in EU waters (UK is 665 

currently following) protects >30% of both habitats estimated from the new model with 100% 666 

of P. carpenteri suitable habitat protected. While a significant achievement, it is important to 667 

again consider the issue of representativeness in Aichi Target 11. Cold-water coral reefs 668 

occurring at different depths support different assemblages of associated species in line with 669 

the well-documented turnover of species along the depth gradient (Rowe & Menzies 1969, 670 

Howell et al. 2002, Carney 2005). In order to be representative, protection for cold-water 671 

coral reef sites must span its known depth range (thermal niche) necessitating protection of 672 

sites shallower than 800 m. In addition, the twin threats of ocean acidification and global 673 

warming mean that shallower areas of predicted suitable habitat in this region may be key 674 

refuge sites for cold-water coral reef (Jackson et al. 2014). Ocean acidification is causing the 675 

aragonite saturation horizon (ASH) to shoal exposing deep-water coral reefs to waters that 676 

are corrosive to coral skeletons (Guinotte et al. 2006). In parallel, seawater temperatures are 677 

increasingly exposing reefs to novel conditions. While live D. pertusum can tolerate long-term 678 

exposure to combined end-of-the-century temperature and pCO2 scenarios (Hennige et al. 679 

2015, Büscher et al. 2017), the dead coral skeletons that make up the reef framework are 680 

weakened by acidified conditions and become more susceptible to bioerosion and mechanical 681 

damage (Hennige et al. 2015). This ultimately leads to crumbling, collapse, and loss of 682 

complexity of the larger habitat, and resulting ecosystem services (Hennige et al. 2020). In 683 

this region, the East Mingulay Special Area of Conservation (SAC), Wyville Thomson Ridge SAC, 684 
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and North West Rockall Bank SAC represent important strongholds for reef habitat (Jackson 685 

et al. 2014) and therefore the 800 m bottom-trawling ban alone will not meet the qualitative 686 

aims of Aichi Target 11.  687 

 688 

5. CONCLUSION 689 

Independent testing of four published models has shown that for the taxa considered, high-690 

resolution models (<200x200 m grid cell size) can be accurate and can provide useful 691 

information for spatial management of these vulnerable taxa. With respect to UNGA 692 

Resolution 61/105, the high-resolution cold-water coral reef model provides best available 693 

scientific information on where this VME is likely to occur in this region, and thus could be 694 

used to support decisions around further measures. Our ability to produce useful models of 695 

deep-sea benthic species and habitat distribution is highly dependent on the availability of 696 

high-resolution environmental data including bathymetry data. To improve model 697 

performance significant research effort is needed to map the seafloor, oceanographic 698 

environment, and distribution of species and assemblages (presence, absences, density) in 699 

order to provide more, better quality, model input data. In addition, further research effort 700 

is needed to provide a more complete understanding of the importance of environmental 701 

variables to target taxa, and their interactions at a variety of scales. For well performing 702 

high-resolution models (200x200m), estimates of extent based on model predictions should 703 

be used with caution and considered likely overestimates. Low-resolution models 704 

(750x750m) may be useful in providing conservative estimates in progress towards 705 

percentage protection targets but are not recommended for use in estimates of extent. For 706 

D. pertusum reef and P. carpenteri the UK and Ireland have made good progress towards 707 
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the 10% CBD target for conserving habitats and species within MPAs. This together with the 708 

EU ban on bottom trawling below 800 m, provide a level of protection for both, however 709 

representativity needs to be considered in these assessments. Assessment of UK progress is 710 

limited by a lack of available multibeam data. 711 

 712 
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Table 1: Breakdown, total (presence/absence), of biological datasets used to build habitat 970 
suitability models and independently validate Ross & Howell (2013) and Ross et al. (2015).  971 

 Ross & Howell 
2013 

(GEBCO) 

Ross et al. 2015 
(200m) 

Howell et al. 
2021 

Ross & Howell 
2013 

(GEBCO) 
Validation 

Ross et al. 2015 
(200m) 

Validation 

D. pertusum 864 (75/789) 1,284 
(116/1,168) 

3,291 
(227/3,064) 

646 (64/582) 2,018 
(122/1896) 

P. carpenteri 864 (53/811) 1,284 
(74/1,210) 

3,196 
(139/3,057) 

597 (32/565) 1,937 (66/1871) 

  972 
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Table 2: Performance statistics for the published Ross & Howell (2013) models according to 973 

original cross validation and new independent validation. Threshold values are predicted 974 

probabilities of presence. SD = Standard deviation. 975 

 Method PCC 
(SD) 

Sens. 
(SD) 

Spec. 
(SD) 

TSS  
(Sens+ 
Spec-1) 

AUC 
(SD) 

Thresh
old 
values 

D. pertusum reef 

Original cross 
validation with original 
threshold (Ross & 
Howell 2013) 

MinROCdist 0.82 0.75 0.82 0.57 0.86 0.48 

Independent validation 
with original threshold.  

 0.68 
(0.02) 

0.78 
(0.05) 

0.67 
(0.02) 

0.45 0.74 
(0.02) 

0.48 

Independent validation 
but tuned to maximize 
model performance 
(new threshold 
selected) 

Sens=Spec 0.70 
(0.02) 

0.70 
(0.06) 

0.70 
(0.02) 

0.40 0.74 0.50 

Independent validation 
with original threshold 
and thinned dataset.  

MinROCdist 0.77 
(0.03) 

0.71 
(0.08) 

0.78 
(0.03) 

0.49 0.79 
(0.04) 

0.48 

Independent validation 
but tuned to maximize 
model performance 
(new threshold 
selected) using thinned 
dataset 

Sens=Spec 0.73 
(0.03) 

0.74 
(0.07) 

0.73 
(0.04) 

0.47 0.79 
(0.04) 

0.44 

P. carpenteri 

Original cross validation 
with original threshold 
(Ross & Howell 2013) 

MinROCdist 0.95 0.96 0.95 0.91 0.99 0.19 

Independent validation 
with original threshold. 

 0.91 
(0.01) 

0.34 
(0.09) 

0.95 
(0.01) 

0.29 0.65 
(0.05) 

0.19 
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Independent validation 
but tuned to maximize 
model performance 
(new threshold 
selected) 

MaxSens+ 
Spec 

0.92 
(0.01) 

0.34 
(0.09) 

0.95 
(0.01) 

0.30 0.66 
(0.05) 

0.45 

Independent validation 
with original threshold 
and thinned dataset.  

MinROCdist 0.89 
(0.02) 

0.31 
(0.12) 

0.95 
(0.02) 

 
0.26 

0.71 
(0.07) 

0.19 

Independent validation 
but tuned to maximize 
model performance 
(new threshold 
selected) using thinned 
dataset 

MaxSens+ 
Spec 

0.90 
(0.02) 

0.31 
(0.12) 

0.95 
(0.02) 

0.26 0.71 
(0.07) 

0.375 

 976 

Table 3: Performance of the published Ross et al. (2015) models according to original cross 977 

validation and new independent validation. Threshold values are predicted probabilities of 978 

presence. SD = Standard deviation. 979 

 Method PCC 
(SD) 

Sens. 
(SD) 

Spec. 
(SD) 

TSS  
(Sens+ 
Spec-1) 

AUC 
(SD) 

Thresh
old 
values 

D. pertusum reef 

Original cross validation 
with original threshold 
(Ross et al. 2015) 

MinROCdist 0.85 0.85 0.85 0.70 0.91 0.43 

Independent validation 
with original threshold. 

 0.72 
(0.01) 

0.88 
(0.03) 

0.70 
(0.01) 

0.58 0.87 0.43 

Independent validation 
but tuned to maximize 
model performance 
(new threshold 
selected) 

Sens=Spec 0.77 
(0.01) 

0.75 
(0.04) 

0.77 
(0.01) 

0.52 0.87 
(0.01) 

0.48 

Independent validation 
with original threshold 
and thinned dataset.  

 0.82 
(0.03) 

0.82 
(0.07) 

0.82 
(0.03) 

0.64 0.90 
(0.03) 

0.43 
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Independent validation 
but tuned to maximize 
model performance 
(new threshold 
selected) using thinned 
dataset 

Sens=Spec 0.82 
(0.03) 

0.82 
(0.07)) 

0.82 
(0.03) 

0.64 0.90 
(0.03) 

0.435 

P. carpenteri 

Original cross validation 
with original threshold 
(Ross et al. 2015) 

MinROCdist 0.96 0.96 0.96 0.92 0.96 0.34 

Independent validation 
with original threshold. 

 0.90 
(0.01) 

0.47 
(0.06) 

0.91 
(0.01) 0.29 

0.69 
(0.04) 0.34 

Independent validation 
but tuned to maximize 
model performance 
(new threshold 
selected) 

MaxSens+ 
Spec 

0.84 
(0.01) 

0.67 
(0.06) 

0.84 
(0.01) 0.51 

0.74 
(0.04 0.07 

Independent validation 
with original threshold 
and thinned dataset.  

 
0.86 

(0.03) 
0.47 

(0.13) 
0.90 

(0.02) 0.37 
0.75 

(0.08) 0.34 

Independent validation 
but tuned to maximize 
model performance 
(new threshold 
selected) using thinned 
dataset 

MaxSens+ 
Spec 

0.84 
(0.03) 

0.6 
(0.13) 

0.86 
(0.03) 0.46 

0.75 
(0.08) 0.175 

980 
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Table 4: Threshold-dependent evaluation indices for training, test, and full models. Final thresholds and associated evaluation metrics shaded.  

 Average Training –  
Internal validation 

Average Test –  
Cross validation 

Full Model –  
Internal validation  

 

Thresholding 
approach 

PCC  
(SD) 

Sens. 
(SD) 

Spec. 
(SD) 

PCC  
(SD) 

Sens. 
(SD) 

Spec. 
(SD) 

PCC  
(SD) 

Sens. 
(SD) 

Spec. 
(SD) 

Threshold 

D. pertusum reef 

Sens=Spec 0.83 
(0.01) 

0.82 
(0.03) 

0.83 
(0.01) 

0.83 
(0.01) 

0.83 
(0.05) 

0.83 
(0.01) 

0.83 
(0.01) 

0.82 
(0.03) 

0.83 
(0.01) 

0.44 

MaxSens+ 
Spec 

0.81 
(0.01) 

0.89 
(0.02) 

0.80 
(0.01) 

0.80 
(0.01) 

0.90 
(0.04) 

0.79 
(0.01) 

0.78 
(0.01) 

0.91 
(0.02) 

0.77 
(0.01) 

0.41 

MinROCdist 0.82 
(0.01) 

0.87 
(0.03) 

0.81 
(0.01) 

0.81 
(0.01) 

0.88 
(0.04) 

0.80 
(0.01) 

0.81 
(0.01) 

0.88 
(0.02) 

0.81 
(0.01) 

0.42 

P. carpenteri 

Sens=Spec 0.88 
(0.01) 

0.88 
(0.03) 

0.88 
(0.01) 

0.89 
(0.01) 

0.89 
(0.05) 

0.89 
(0.01) 

0.88 
(0.01) 

0.88 
(0.03) 

0.88 
(0.01) 0.37 

MaxSens+ 
Spec 

0.85 
(0.01) 

0.96 
(0.02) 

0.85 
(0.01) 

0.87 
(0.01) 

0.97 
(0.02) 

0.86 
(0.01) 

0.84 
(0.01) 

0.97 
(0.01) 

0.84 
(0.01) 0.21 

MinROCdist 0.87 
(0.01) 

0.94 
(0.02) 

0.86 
(0.01) 

0.89 
(0.01) 

0.93 
(0.04) 

0.89 
(0.01) 

0.87 
(0.01) 

0.93 
(0.02) 

0.86 
(0.01) 0.31 
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Table 5: Area of predicted suitable habitat broken down into entire model extent, and model extent in UK and Irish jurisdictions. Percentage of 

predicted suitable habitat protected by the MPA and NEAFC Closure network used by Ross et al. (2015) for the purpose of comparison, also 

broken down by national MPAs and NEAFC Closures.    

 D. pertusum reef P. carpenteri 

Ross & 
Howell 
2013 

GEBCO 
Model 

Ross et al. 
2015 

200m2 

Model 

New Model Ross & 
Howell 
2013 

GEBCO 
Model 

Ross et al. 
2015 

200m2 
Model 

New Model 

Entire 
Model 
Extent 

Predicted 
Suitable 
Habitat 

185,240.25 
km2 

30,106.10 
km2 

4748.32 
km2 

218,725.88 
km2 

73,709.68 
km2 

54,289.48 
km2 

Predicted 
Suitable 
Habitat 
within 

MPAs/NEAFC 
Closures 

12.81% 20.00% 31.61% 1.29% 2.64% 6.62% 

Model 
extent 
within UK 
Shelf Claim 

Predicted 
Suitable 
Habitat 

57,425.06 
km2 

8,281.48 
km2 

1,244.00 
km2 

87,516.00 
km2 

9,514.00 
km2 

8,886.76 
km2 

Predicted 29.84% 56.00% 58.95% 2.60% 11.20% 25.23% 
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Suitable 
Habitat 
within 

MPAs/NEAFC 
Closures 

Model 
extent 
within Irish 
Shelf Claim 

Predicted 
Suitable 
Habitat 

48,139.31 
km2 

21,665.48 
km2 

3,412.36km
2 

49,343.63 
km2 

63,525.96 
km2 

43,936.44 
km2 

Predicted 
Suitable 
Habitat 
within 

MPAs/NEAFC 
Closures 

13.67% 12.60% 21.65% 1.10% 
 

1.39% 
 

2.86% 
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Table 6:  Area of predicted suitable habitat for D. pertusum reef and P. carpenteri broken down into entire model extent, and model extent in 

UK and Irish jurisdictions. Percentage of predicted suitable habitat protected by the most up to data MPA/NEAFC Closure network and the EU / 

UK 800m trawl ban, also broken down by nation. 

 D. pertusum reef P. carpenteri 

Entire Model Extent Predicted Suitable 
Habitat 

4,748.32 km2 
 

54,289.48 km2 

800m Trawl Ban 60.11% 100.00% 

2020 MPA/NEAFC 
Network 

40.26% 11.45% 

Model extent within UK 
Shelf Claim 

Predicted Suitable 
Habitat 

1,244.00 km2 8,886.76 km2 

800m Trawl Ban 48.74% 100.00% 

2020 MPA/NEAFC 
Network 

83.64% 49.30% 

Model extent within 
Ireland Shelf Claim 

Predicted Suitable 
Habitat 

3,412.36 km2 43,936.44 km2 

800m Trawl Ban 64.25% 100.00% 
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2020 MPA/NEAFC 
Network 

24.45% 3.79% 
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Figure 1: Map of the UK and Ireland’s Continental Shelf Limits (black line) showing the original 

dataset from Ross & Howell (2013), and Ross et al. (2015) together with the new dataset 

(compiled from five different surveys over 5 years) used to independently validate the models 

and subsequently build new models. The current network of deep-sea Marine Protected 

Areas is shown, together with the 800m isobath, below which bottom trawling is prohibited. 

Bathymetry shown is the 200 x 200 m gridded multibeam dataset (see text below for detail) 

shaded for depth with contours of 200m, 500m, 1000m and intervals of 1000m thereafter 

shown in grey. Map projected in British National Grid for aesthetic reasons 
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Figure 2: Above threshold full model prediction maps for: (a) scleractinian cold-water coral 

reef distribution from Ross et al. (2015); (b) D. pertusum reef distribution with the new 

dataset; (c) P. carpenteri aggregation distribution from Ross et al. (2015); (d) P. carpenteri 

aggregation distribution with the new dataset. The Hatton-Rockall Basin is circled in red in c 

and d. White background indicates the prediction has been masked for novel climates. Maps 

projected in British National Grid for aesthetic reasons. 
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Figure 3: Examples of changes to protected area model predictions. (a) scleractinian cold-

water coral reef distribution within the North-West Porcupine Bank MPA from Ross et al. 

(2015); (b) D. pertusum reef distribution within the North-West Porcupine Bank MPA with the 

new dataset. ROV transects plotted showing presences as yellow stars and absence as white 

circles. Maps projected in British National Grid for aesthetic reasons.  

 


