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ABSTRACT 

FORAMINIFERAL DISTRIBUTION AND SEQUENCE STRATIGRAPHY OF 
OXFORDIAN SUCCESSIONS IN THE WESSEX/ANGLO-PARIS BASIN. 

The use of micropalaeontology within a sequence stratigraphic context is rapidly emerging as 

a valuable tool for the recognition of ancient cycles and sequences. This study shows how 

micropalaeontology can be used to develop insights into sequence stratigraphic interpretations. 

A micropalaeontology study of two Upper Jurassic, Oxfordian successions from the South . 

Dorset Coast, U.K. and the Normandy Coast, France provide the basis for this study. 

A near continuous succession of the Oxfordian from South Dorset and Normandy were 

obtained, and foraminifera extracted. Examination of the fauna revealed representatives from 

23 families, comprising 36 genera and 126 species. All species were identified and the 

taxonomy of each studied and described. The abundance and distribution patterns of the 

foraminifera were used to identify sequence stratigraphic horizons (such as Maximum 

Flooding Surfaces) and the correlation between the two successions was carried out. 

Detailed research and examination of the >63^m size fraction lead to the discovery of 

Oxfordian planktic foraminifera from samples in South Dorset. These are the first known 

occurrences of planktic foraminifera from the Oxfordian of England and are coeval with 

previously reported occurrences of planktic taxa in the Oxfordian of Normandy and Seine 

Maritime (France). 

This study demonstrates how detailed micropalaeontological data can be combined 

with sequence stratigraphy to reveal a more accurate picture of the controls on basin fill than 

can be provided by sedimentology alone. It has demonstrated the importance of the 

preservation upon the fossil assemblages recovered and how this can influence the 

establishment of biozones. 
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CHAPTER 1: INTRODUCTION 

1.0 ORGANISATION OF THE THESIS 

The thesis is organised into nine chapters. Chapter 1 initially outlines the reasoning behind the 

study and introduces the aims and objectives. The second part of the chapter introduces the 

general concepts of biostratigraphy and sequence stratigraphy. 

Chapter 2 presents an outline of the geological history of the Wessex Basin. This 

includes an introduction to the chronostratigraphic framework used in the thesis, and the 

localities and successions sampled during the investigation. Chapter 3 includes detailed 

sedimentological descriptions of the sampling localities, and provides a basic framework for 

the sequence stratigraphical interpretations found in Chapter 7. 

Chapter 4 includes the taxonomy of the species of foraminifera used in this study. 

Systematic descriptions of all taxa are given, together with their stratigraphical distribution. 

Chapter 5 addresses foraminiferal distributions. The first part of the chapter analyses 

the distribution of foraminifera from Dorset with the second half of the chapter analysing the 

distribution of foraminifera from Normandy. Towards the end of the chapter a comparison of 

the two areas is presented and discussed. Chapter 6 introduces the concept of foraminiferal 

palaeoecology and discusses the problems of taphonomy. Towards the end of Chapter 6 

foraminiferal assemblages are described and discussed. 

Chapter 7 summarises previous sequence sfratigraphic interpretations of the Dorset and 

Normandy successions. The main part of the chapter discusses how the foraminiferal 

distributions, palaeoecology and sedimentology have been used to refine the previous 

sequence stratigraphic models. The chapter also discusses the identification of key sfratal 
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surfaces and how the foraminiferal data have been used to correlate key surfaces and systems 

tracts across the study successions. 

Chapter 8 deals with the exciting discovery of Oxfordian planktic foraminifera from 

the U.K and discusses the importance of this occurrence. Chapter 9 is a general summary of 

the major findings and main conclusions of the study. Data collected during the study are 

found in a tabulated form in the Appendices. Appendix A presents range charts for all the 

fauna identified. Appendix B presents brief thin section descriptions for the samples that were 

not successfiilly processed for foraminifera. Publications arising from the research follow the 

Appendices (in accordance with University of Plymouth PhD Regulations). 

1.1 AIMS 

The aims of the thesis are; 

• Sample the Oxfordian succession exposed on the Normandy and Dorset Coasts; 

• Examine the stratigraphical distribution of the Oxfordian foraminifera in these successions; 

• Identify species or assemblages that correlate to stratigraphic units (sequences, systems 

tracts, parasequences) or key stratal surfaces (marine flooding surfaces, sequence 

boundaries); 

• Evaluate the effect of preservation upon foraminiferal assemblages; and 

• Demonstrate how applied palaeoecological studies are useful tools in the development of a 

sequence stratigraphic model. 
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1.2 OBJECTIVES 

The primary objective of the study is to obtain detailed micropalaeontological data from the 

Oxfordian successions in Dorset and Normandy and to integrate these with previoiB sequence 

stratigraphic frameworks so that a more accurate placement of key stratal surfaces and 

stratigraphic units can be presented. 

The second objective of the study is to correlate the Dorset and Normandy 

successions using foraminiferal distributions. 

The final objective is to evaluate the integration of biostratigraphy wdthin a sequence 

stratigraphic framework. 

1.3 BIOSTRATIGRAPHY: INTRODUCTION 

Biostratigraphy uses the chronostratigraphic ranges of fossil species to correlate stratigraphic 

sections and their palaeoenvironmental preferences to provide information on depositional 

settings (Emery and Myers, 1996). The most useful fossil groups to use in biostratigraphic 

studies are those that evolved quickly, with distinct and rapid morphological chants, over a 

wide area in significant numbers (Emery and Myers, 1996). Both macrofossils and 

microfossils are useful in biostratigraphic studies with the integration of key marker species 

from several different fossil groups resulting in more accurate chronosfratigraphic 

interpretations. This study will concentrate on the use of microfossils, more specifically 

foraminifera, to link biostratigraphy to sequence sfratigraphic interpretations of the Oxfordian 

strata in the area of Dorset and Normandy (See Chapter 7). 
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13.1 HISTORICAL REVIEW OF BIOSTRATIGRAPHY 

The application of micropalaeontology has gone through inmiense changes since the early 

1890s when Josef Grzybowski correlated wells in Poland using foraminifera 

(www.ucl.ac.uk/geolsci/Grzybowski/gf.htm). In the 1920s the Cushman Laboratory for 

Foraminiferal Research was established in Sharon, Massachusetts, and this was the first 

commercial operation that used foraminifera within the petroleimi industry, with 

micropalaeontology routinely applied to wells in the Gulf Coast. During this time exploration 

for oil in the Middle East was strongly supported by micropalaeontologists (Simmons and 

Lowe, 1996). 

By the 1950s most major oil companies of that time (e.g., BP, Shell, Amoco, etc) had 

set up their own palaeontological laboratories, whose efforts were concentrated upon dating 

well and outcrop samples which were sent from wherever in the world exploration was taking 

place. Some of these laboratories (e.g., BP) also carried out valuable research into the 

stratigraphic distribution of various microfossil groups (Simmons and Lowe, 1996). During 

this time the emphasis was on the use of microfossils for dating purposes (i.e., providing an 

age in terms of zones, stages or eras) with the palaeoenvironmental significance somewhat 

overlooked. 

The 1970s and 1980s saw the establishment of major consultancy companies (e.g., 

Robertson Research International Limited) and also a slight change in the way biostratigraphy 

was used within the companies. There was more focus on the integration and production of 

local biozonation schemes and on palaeoecological interpretations (Simmons and Lowe, 

1996). 

The 1990s saw the link between micropalaeontology and sequence stratigraphy 

http://www.ucl.ac.uk/geolsci/Grzybowski/gf.htm
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recognised. Sequence stratigraphy was originally seen, by some, as a rival to biostratigraphy 

(Sinmions, 1998) although the two disciplines have a strong relationship. The framework of 

sequence stratigraphy is time, with biostratigraphy providing the framework in which 

sequence stratigraphy operates (i.e., the biostratigraphic framework in which to place the 

organisation of sequence boundaries and maximum flooding surfaces; Simmons, 1998). 

Biostratigraphic data are used to recognise key stratal surfaces, systems tracts and 

parasequences as a result of the intimate link between organisms and changes in relative 

paleobathymetry. It can also be used to relate local relative sea-level changes to global charts 

(Simmons, 1998). The application of sequence stratigraphy to biostratigraphy is documented 

in a number of paper (e.g., Armentrout, 1987; Vail and Womardt, 1990; Armentrout and 

Clement, 1991; Armentrout et al, 1991; Ainsworth et al, 1998a, b; Partington et al, 1993; 

Jones, 1996). These various approaches are discussed in Chapter 6. 

In the late 1990s, high resolution biostratigraphy was applied to the directional 

drilling of oil wells (see Shipp and Marshall, 1995) as well as a wide range of other drilling 

and geological problems. 

Although major advances in biostratigraphy have taken place since the work of 

Grzybowski, the fundamental basis of integrated biostratigraphic work remains the correct 

identification of the fossil taxa used (see Chapter 4). 

1.4 JURASSIC FORAMINIFERAL RESEARCH 

Taxonomic research into Jurassic foraminifera began in the late 19* Century and concentrated 

primarily upon the Lias (Lower Jurassic). This early work, although concentrating upon the 

Lias, is very important, as it is the basis of much of the taxonomic framework produced for 

Jurassic foraminifera. European workers were involved in the early work into Jurassic 
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foraminifera (Bomemaim, 1854; Terquem, 1858 and onwards; Berthelin, 1879; Hausler, 

1881). Accordmg to Barnard (1950), the work of Bomemaim (1854) provided one of the 

clearest studies of Liassic foraminifera from the continent, and illustrated the problems created 

by the highly variable nature of Jurassic foraminifera. 

Terquem's work describes a large number of new foraminifera species, although 

this work has been criticised for the identification of new species based upon only slight 

morphological variations. Shipp (1981) mentions that there are problems with some of this 

early work as new species are often poorly illustrated, with the result that a number of separate 

species exist for variations within the same species. 

Some English workers also began research into Liassic faunas in the 19* Century and 

this includes the work of Strickland (1846), Jones and Parker (1860), Brady (1867) and Crick 

and Sherbom (1891-92). 

Research on Upper Jurassic foraminifera was primarily undertaken in the 20 

Century with notable early papers by Giimbel (1862); Schwager (1865) and Deeke (1886) 

describing the foraminifera from the equivalent of the Oxford Clay in Germany. Subsequently 

Hausler (1883) published a usefiil paper on the agglutinated foraminifera from Switzerland 

while Wisniowski (1890, 1891) published a series of papers on the Polish Jurassic. 

The early part of the 20* Century records notable papers by Wickenden (1933) who 

studied a largely nodosariid assemblage from subsurface rocks in Alberta and Saskatchewan, 

with Sandidge (1933) describing nodosariids from Sundance Rocks in Montana. South of the 

Tethyan zone Macfayden (1935) described an Upper Oxfordian (Argovian) assemblage from 

Somaliland. This is equivalent to the Lower Callovian of Britain and again the difficulties in 

Jurassic taxonomic nomenclature are highlighted. 
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Bartenstein and Brand (1937) produced a large, well illustrated, paper in which they 

attempted to zone the German Lias with some success. In 1948, Cushman's publication 

entitled 'Foraminifera' increased the number of known genera, with Loeblich and Tappan 

(1964) adding a considerable number of new genera. 

1.4.1 BRITISH FORAMINIFERAL RESEARCH DURING THE 20™ CENTURY 

In the middle part of the 20* Century a number of papers on Liassic foraminifera from the UK 

were published. Barnard (1950-1960) published a plethora of papers concentrating on the 

systematic description of foraminifera from the Lower and Upper Lias. In his paper in 1950(b) 

Barnard describes how the attempts to assign species to the genus Lenticulina axe exfremely 

difificult due to the highly variable nature of the group. He treats the Lenticulinae as an whole 

within an evolving plexus group and thus removes the error of the identification of new 

species based on slight morphological variations. He also notes that juvenile specimens have 

often been assigned a different species name to that of their adult counterparts; a common 

problem encountered when dealing with Jurassic foraminifera. 

In 1952 Barnard published a paper on the foraminifera from the Oxford Clay of 

England. The fauna from the Upper Oxford Clay of Warboys, Himtingdonshire, was studied 

and described with two new species recorded {Frondicularia pseiidosulcata and Spirillina 

infima (Strickland), 1846 emend. Barnard, 1952). The following year Barnard (1953) 

published a paper on the foraminifera of the Oxford Clay of Redcliff Point, Dorset in which he 

describes four new species (Ammobaculites minuta, Haplophragmoides rotunda, 

Pseudoglandulina ovegi and Tristix triangularis). In this publication he also notes that the 

presence or absence of some fauna maybe facies related. Both papers are well illustrated and 

set the trend for publications from the British Oxfordian. 

8 
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Ciffelli (1959, 1960) concentrated upon the Bathonian of England and noted that 

the fauna was dominated by Lagenidae that are highly variable and, as a result, difficult to 

speciate. He advised caution when dealing with the variation seen in the evolving lineages of 

Lagenidae. 

Lloyd (1959) described the agglutinated foraminifera fi-om the Kimmeridgian on 

the Dorset Coast. He presented systematic descriptions of the agglutinating taxa and described 

three new species. As part of the investigation Lloyd (1962) described the Polymorphinidae, 

Miliolidae and Rotalidae fi-om the same Kimmeridgian sections of the Dorset Coast 

succession. 

Cordey (1962), as a result of his doctoral research, published a paper on the 

foraminifera fi-om the Jurassic of Scotland (Staffin Bay, Isle of Skye). In this he cfescribes the 

morphological variations in the species and provided systematic descriptions for the 

foraminifera he had studied. Gordon (1962-1970) also investigated the Upper Jurassic 

foraminifera from the UK. In 1962 he published a paper on the Ampthill Clay from 

Cambridgeshire, describing at least one new species. In 1965 he published a paper on the 

Corallian Beds of southern England recording fifty species, including four new taxa. Most of 

the species he described belong to the family Lagenidae; the most abimdant and variable 

family in the Jurassic. In 1967 he described the fauna from the Corallian succession of Brora 

(N. E. Scotland), in which the systematic descriptions of fifty foraminifera are given and an 

attempt is made to compare the faunas with those from other areas of the UK and Europe. In 

1970 Gordon presented a synthesis of the Upper Jurassic foraminifera and attempted to 

characterise their palaeogeography and palaeoecology. He identified (Gordon, 1970):-

A. Shelf Assemblages: 
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1. Nodosariid and nodosariid-mixed assemblages; 

2. Dominantly simple agglutinated assemblages; 

3. Assemblages where calcareous benthic species are conspicuous; 

a. Epistominidae conspicuous. 

b. Ophthahnidiidae conspicuous. 

c. Bulimindae conspicuous. 

B. Tethyan Assemblages: 

1. Complex agglutinated species dominant; 

2. Planktic assemblages. 

Gordon concludes that little is really known about the ecology of Jurassic foraminifera and 

that a comparison with the modem-day fauna is of limited value (e.g., the nodosariids 

occupied a different set of ecological niches in the Jurassic than they do at the present time 

and were far more abundant in the Jurassic). 

It was in the 1980s that the first edition of the "Stratigraphical Atlas of Fossil 

Foraminifera" (Jenkins and Murray, 1981) was published. This was the first real attempt at 

documenting the stratigraphically important foraminifera fi-om the Phanerozoic of the British 

Isles. The atlas provides brief taxonomic descriptions and illustrations of foraminifera with the 

Jurassic section split into four parts; 1. Hettangian to Toarcian; 2. Bajocian to Callovian; 3. 

Callovian to Portlandian; 4. Summary. The Jurassic section of the "Stratigraphical Atlas" was 

expanded and much improved when the 2"** edition was published in 1989 (see below). 

It was also in 1981 that a publication by Barnard et al. provided the first really 

comprehensive work on Callovian and Oxfordian foraminifera fi-om England and presented a 

taxonomic list of all the foraminifera found within the Oxford Clay of Britain. Over seventy 

10 
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species are described, with morphological variations within taxa illustrated and discussed. 

Palaeogeographic maps and palaeoecological discussions were also included in this 

publication, making it a standard reference for all subsequent studies of Upper Jurassic 

foraminifera. 

A field guide for the 20''' European Micropalaeontological Colloquium entitled 

"Mesozoic and Cenozoic Stratigraphical Micropalaeontology of the Dorset Coast" was 

published in 1987 by Lord and Bown. Although useful, the volume only lists the taxa recorded 

from a limited range of spot samples taken throughout the succession on the Dorset Coast and, 

therefore, provides little stratigraphical information on the foraminifera listed. 

Gregory (1989) described the Lower Kimmeridgian of the Hehnsdale-Brora Outlier 

in northeast Scotland with twenty four species of foramimfera illustrated He also discusses 

the palaeoenvironmental significance of the fauna, but unfortunately the bulk of his doctoral 

thesis is, as yet, unpublished. 

In 1989 Jenkins and Murray edited a revised "Stratigraphical Atlas of Fossil 

Foraminifera" with the Upper Jurassic section improved as a result of the inclusion of data 

from the work of Barnard et al. (1981). Sections on depositional history, palaeoecology, 

environmental significance and faunal associations were added, and the taxonomy updated. A 

figure showing the chronostratigraphy of the British Upper Jurassic is also included. 

Nagy et al. (1990) published a paper on the distribution of foraminifera in the 

Jurassic of the North Sea Basin, and attempted to relate the composition of the foraminiferal 

assemblages to aspects of their depositional environment. Nagy (1992) extended this work by 

applying the morphogroup concept to Lower and Middle Jurassic faunas with varying success. 

11 
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although this was the first time that the morphogroup concept had been applied to Jurassic 

faunas. 

Partington et al (1993) used biostratigraphy (micropalaeontology and palynology) 

to subdivide and correlate the North Sea Jurassic. Their approach has enabled a number of 

sequences to be traced across the North Sea Basin and aided the production of a high 

resolution model of the evolution of the basin. 

Henderson (1997, thesis) provided palaeoecological and biostratigraphic 

interpretations for the Oxfordian foraminifera from a series of boreholes in north Dorset (UK). 

Illustrations and systematic descriptions for over 153 species of foraminifera and holothurian 

sclectites are given. Henderson also identified 21 biohorizons within the Oxfordian of north 

Dorset with some of these horizons being coincident with lithological boundaries and/or 

previously defined unconformities recognised within the Oxfordian succession. His 

investigation used fresh material collected from boreholes and a comparison of the number of 

species of foraminifera found in Henderson's study with the number of species of foraminifera 

found from outcrop sampling in this study is interesting and will be discussed in Chapter 6. 

Ainsworth et al. (1998a, b) integrated ostracod, foraminifera and dinocystdata and 

proposed a detailed biostratigraphic zonation within the Portland-Wight Basin and adjacent 

areas. They integrated these data with lithostratigraphic information to develop an applicable 

sfratigraphic framework for the area. 

1.4.2 NON-BRITISH 20™ CENTURY RESEARCH 

Research into Upper Jurassic foraminifera during the 2(f' Century is well represented. A 

limited foraminiferal assemblage from Malone Mountain of western Texas is described by 

Albritton (1937), with Lalicker (1950) describing a fauna from the Bathonian and Callovian 

12 
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parts of the Ellis Group of Montana. Foraminifera from the Lower, Middle and Upper Jurassic 

of the Arctic Slope of Alaska were described by Tappan in 1955. A fiirther publication by 

Loeblich and Tappan (1959) described faimas from the Callovian of Montana, North Dakota, 

South Dakota and Wyoming. 

South of the Tethyan zone little work has been published although Homibrook 

(1953) described a fauna from New Zealand while Said and Barakat (1958) recorded a series 

of Bajocian, Bathonian and Oxfordian faunas from Sinai, although their illustrations are not 

particularly good. Espitalie and Sigal (1963a) concentrated on foraminifera of the Lower, 

Middle and Upper Jurassic of Madagascar. 

In 1958 Bizon described the foraminifera and ostracoda from the Lower Oxfordian 

succession of Villers-sur-Mer, Normandy. He described thirty nine species of foraminifera, 

and twenty-one species of ostracoda, providing distribution charts of some of the more 

important species of foraminifera that may be useful for biostratigraphy in the Anglo-Paris 

Basin. He also provided a detailed log and sketch map of the sampling locality along the 

'Falaise des Vaches-Noires' (Vaches-Noires Cliffs). 

Bignot and Guyader (1966), in an important paper, describe the discovery of 

planktic foraminifera in the Oxfordian of Le Havre (Seine-Maritime). This paper suffers, 

however, from poor illustrations and the lack of a detailed sampling locality description. Their 

later (1971) paper on "observations nouveles sur Globigerina oxfordiana Grigelis" provided a 

few SEM images of the planktic species. 

Wemli (1971) described the taxonomy of foraminifera from the Dogger (Aalenian-

Callovian) of the southern part of the Jura Mountains in the east of France. More recently 

work by Barnard and Shipp (1981) on the Kimmeridgian foraminifera from the Boulonnais 

13 
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described a solely agglutinating assemblage. Following on fi"om the work of Bignot and 

Guyader (1966), Samson et al. (1992) published a paper entitled "Les Globigerines 

(Foraminiferes Planctoniques) de I'Oxfordien inferieur de Villers-sur-Mer". This is a well 

produced paper with a good field map of the locality and descriptions of the foraminifera 

foimd, including Jurassic planktic foraminifera. The Middle and Upper Jurassic of the 

Mediterranean has been studied by Colom (1955) with planktic foraminifera fi-om the 

Oxfordian of Ibiza published by Colom and Ranghead (1966). 

Bielecka and Pozaryski (1954) described the foraminifera of the Upper Malm (Middle 

Jurassic equivalent) of central Poland including 16 new species. Bielecka (1960) has also 

described the foraminifera fi-om the Lower Malm of southern Poland with good descriptions 

given and the ranges of the foraminifera correlated with the ammonite zones. 

Norling (1972) published the first work on foraminifera fi-om the Jurassic of Scania 

(Sweden). He gives a detailed account of the important species in a well-illustrated paper that 

describes fifty species, four of which were new. A new zonal scheme was presented, based on 

the distribution of foraminifera in the Jurassic of western Scania. 

Recent Scandinavian studies of the Jurassic include areas of Norway and the 

Norwegian North Sea Basin. L0falidi and Nagy (1980) also discuss the foraminiferal 

stratigraphy of Kongsoya, Svalbard, with the paper mainly concentrating on Jurassic (Lower 

Jurassic, Callovian and Oxfordian) agglutinated foraminifera. A publication in 1983 by Nagy, 

Lofalidi and Bomstad described a Bajocian fauna from the Yons Nab Beds of the Yorkshire 

Coast where a predominantly agglutinated assemblage is described, although a calcareous 

benthic assemblage is present which is dominated by the genera Citharina. Lefalidi and Nagy 

(1983) described the Jurassic and Cretaceous foraminifera fi-om Spitsbergen and discussed the 

14 
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significance of the low diversity agglutinated fauna. Nagy (1985a, b) studied the foraminiferal 

facies from the Stat^ord area of the northern North Sea Basin and provided an interpretation 

of the palaeoenvironment based on the succession of foraminiferal assemblages that had 

developed in the marine deltaic conditions. In 1990 Nagy, Lefalidi, Backstrom, and Johansen 

described the Middle Jurassic to lowermost Cretaceous of Central Spitsbergen. 

Ascoli (1976) has described the foraminiferal and ostracod biostratigraphy of the 

Mesozoic-Cenozoic of the Scotian Shelf, Atlantic Canada, refining this zonation in 1981 and 

producing a new zonation scheme for the Late Jurassic of the Scotian Shelf using foraminifera 

and ostracods. In 1984 he presented a biostratigraphic zonation scheme based upon 

epistominids that can be utilised across the Jurassic/Cretaceous bovmdary of the northwestern 

Atlantic margin. 

Work by the Russian workers must not be forgotten as illustrations are often of a good 

standard, although the text is often in Russian. Many of these papers describe new taxa and 

are, therefore, significant. Of particular note are the papers by Dain (1972) and Azbel and 

Grigelis(1991). 

Research on Jurassic planktic foraminifera has mainly centred on Eastern Europe and 

the Former Soviet Union. In a recent review Simmons et al. (1992) have provided an 

assessment of the key taxa and summarised the available literature (much of which is difficult 

to obtain in the west). 

1.5 SEQUENCE STRATIGRAPHY: INTRODUCTION 

The study of sea-level changes, and their relationship with sediment accumulation patterns, 

has received at great deal of attention in the last two decades as a result of the development of 

sequence stratigraphy. The concept of sequence stratigraphy dates back to the early work of 

15 
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Edward Suess (1906) who discussed the concept of eustacy and attributed the patterns of onlap 

and oflflap of sediments to global sea level changes (Emery and Myers, 1996). Although there 

was a general lack of support for the ideas of Suess, a number of American geologists began to 

develop concepts of global controls on unconformity development; including Chamberlin 

(1898, 1909), Wheeler (1958, 1959), Weller (1960) and Sloss (1962, 1963). It was not until 

the 1960s and 1970s when the development of digitally recorded seismic data became 

available that the next major breakthrough in sequence stratigraphy took place (Emery and 

Myers, 1996). Seismic stratigraphy was developed within the Carter Oil Company and 

subsequently at the Exxon Production Research Corporation (Vail and Wilbur, 1966; Mitchum 

et al, 1976). This led to the development of more detailed modem sequence stratigraphic 

concepts (Wilgus et al., 1988) and the application of sequence stratigraphy to outcrops, wells 

and seismic sections (see Van Wagoner et al., 1990). 

Today, three main models have been developed for the prediction of sediment 

accumulation patterns; the Exxon Production Research Model, the Einsele (1985) model and 

Galloway (1989) model. The latter two models put less emphasis on the daninance of sea-

level change as a forcing mechanism (Wignall, 1991). The similarities and differences 

between the models are summarised below. 

1.5.1 EXXON PRODUCTION RESEARCH MODEL 

The principal hypothesis of the Exxon Production Research Model (EPRM) is that sediments 

are divided into packages that are separated by several types of bounding surface such as 

sequence boundaries, maximum flooding surfaces (MPS) and ravinement surfaces. The model 

recognises that different scales of sediment packages are present within sequences and 

introduces the concept of parasequences and systems tracts. Parasequences are the smallest 
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imit, consisting of coarsening-upwards packages bounded by marine flooding surfaces, which 

are the commonest type of bounding surface (Wignall, 1991). Systems tracts are built of 

parasequences, with three main systems tracts recognised; the Lowstand Systems Tract (LST), 

the Transgressive Systems Tract (TST) and the Highstand Systems Tract (HST). The LST is 

deposited during intervals characterised by relative sea-level fall followed by subsequent slow 

relative sea-level rise (Posamentier and Vail, 1988). The TST is deposited in the phase of the 

sea-level fall/rise cycle when accommodation space is increasing faster than sediment 

accumulation/supply (Emery and Myers, 1996). The HST is deposited during the eustatic 

highstand of the sea-level fall/rise cycle when the rate of accumulation of accommodation 

space is less than the rate of sediment supply (Emery and Myers, 1996). 

The EPRM is intimately linked to an hypothetical sinusoidal sea-level curve, which is 

thought to be a fiandamental control of sediment accumulation patterns. The MPS corresponds 

to the inflexion point of sea-level rise (Wignall, 1991). The main disadvantage with this model 

is that other factors, such as subsidence and sediment supply can result in systems tracts 

varying from one basin to another. Despite these limitations this is the most widely used 

model and terminology. 

1.5.2 GALLOWAY MODEL 

The Galloway Model is similar to the EPRM, as it attempts to explain the controls operating 

on prograding sediment packages in shelf margin situations. The model differs in that it 

considers that the MPS represents a time of major sediment re-organisation in a basin and is, 

therefore, a suitable horizon for stratigraphic subdivision (Sharlande/ al., 2001). The MPS is, 

therefore, used instead of sequence boundaries as the prime reference point. 

This approach has been criticised for one major reason. As the definition stands, a 
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hiatus producing an unconformity will lie within a Genetic Stratigraphic Sequence; i.e., that a 

Genetic Stratigraphic Sequence, as defined by Galloway, does not represent continuous 

deposition (Sharland et al, 2001). 

1.5.3 EiNSELE MODEL 

Einsele's (1985) Model differs fi-om the EPRM and the Galloway Model in that he considers 

that sediment accumulation patterns are more specific to particular deposition sites and 

conditions, with the other two models being more generally applicable to several sediment 

basins (Wignall, 1991). His model is principally derived fi-om the German Mesozoic, and 

applies to sediment accumulation at the margin of slowly subsiding basins subject to only 

gradual changes of sea-level (Wignall, 1991). He also uses the storm wave base as his base 

level (the other two models use sea level) and does not recognise condensed horizons 

(Wignall, 1991). 

1.5.4.SUMMARY 

This thesis will use the EPRM model of sequence stratigraphy and will attempt to constrain 

the model using micropalaentology. 
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Chapter 2 

2.0 INTRODUCTION 

This chapter is divided into two parts. The first half of he chapter discusses the regional 

geology of the Wessex Basin. The second half of the chapter describes the successions and 

sampling strategies used in this study. 

2.1 REGIONAL GEOLOGY OF THE WESSEX/ANGLO-PARIS BASIN 

The Wessex Basin is part of a larger intra-cratonic basin that covers most of southern England, 

the English Channel and parts of northern France (Hunsdale et al., 1998). It may be considered 

to represent a series of extensional sub-basins that form a component of a more extensive 

network of Mesozoic intra-cratonic basins that covered much of North West Europe (Ziegler, 

1990). The Wessex Basin (as used here) covers an area similar to that of the ancient kingdom 

of the West Saxons and includes the present counties of Hampshire, Dorset, parts of east 

Devon, Somerset and Wiltshire (Underbill and Stoneley, 1998). The term 'Wessex Basin' was 

suggested by Kent (1949) for 'the downwarped area in which a broad deep basin extended 

fi"om the Cotswolds southwards to Dorset and eastwards to Kent'. The ancient name for this 

area was Wessex, and hence the term 'Wessex Basin' was chosen. The names Wessex-Weald 

Basin and Wessex Sub-Basin are used by some authors (e.g.. Brooks and Glennie, 1987; 

Taylor et al., 2001) but this terminology relates to only the western portion of the Wessex 

Basin as defined by Kent (1949). The Wessex Basin was recognised as a northern extension of 

the Paris Basin by Kent (1949) and, today, the term the 'Anglo-Paris Basin' is used by many 

authors (e.g., Rioult et al., 1991) to describe the western border of the Anglo-Paris Basin with 

the areas of Dorset, Normandy and Maine included as part of the 'Anglo-Paris Basin'. The 

Wessex Basin (Figure 2.1) is boimded to the south-west and west by the Armorican and 
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Comubian Massifs, to the north by the London Platform (also known as the LondonBrabant 

Massif), and to the south by the Central Channel High (Underhill and Stoneley, 1998). Its 

north-western and north-eastern boundaries are less precisely defined, with the north-western 

limit taken to be marked by a poorly defined boundary extending fi-om the Quantock Hills 

across the Central Somerset Trough south of the Mendips to the western extension of the 

London Platform (Underhill and Stoneley, 1998). The Wessex Basin can be divided into 

smaller sub-basins and highs as a result of the complex tectonic history that has led to its 

development. The complex history of the basin, its sedimentology and importance for 

petroleum exploration has made the Wessex Basin the subject of numerous studies (e.g., Kent, 

1949; Hallam and Sellwood, 1976; Ziegler, 1981; Stoneley, 1982; Underhill and Stoneley, 

1998). 

2.1.1 TECTONICS 

The Wessex Basin consists of a series of post-Variscan sedimentary depocentres and intra-

basinal highs that developed across central southern England and adjacent offshore areas 

(Underhill and Stoneley, 1998). The occurrence of major thrusts, intense folding, regional 

metamorphism and intrusion of major granitic batholiths (such as the Dartmoor Granite) all 

attest to the severity of Variscan orogenic processes, with the deformed Devonian-

Carboniferous sediments lying beneath a marked unconformity (Underhill and Stoneley, 

1998). From Permian to early Cretaceous times the area was subject to a protracted phase of 

extension with differential subsidence controlled by major fault zones. This extensional phase 

led to the formation of a series of half grabens and intervening highs (Taylor e/ al., 2001). The 

sedimentary fill began during the Permian within the Variscan fold-and-thrust belt hinterland 
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and continued until the late Cretaceous (Underbill and Stoneley, 1998). North-South extension 

culminated in the mid-Cretaceous, with active crustal extension ceasing in the Aptian and the 

region undergoing widespread subsidence (Himsdale et al, 1998). During the early Tertiary 

the Wessex Basin underwent inversion as a result of north-south compressive stresses 

associated with Alpine movements further to the south (Ziegler, 1987; Hunsdaleef al, 1998). 

The last phase of development occurred in the Oligocene-Miocene, with extensional faulting 

that is well developed along the Dorset Coast (Hunsdale, et al., 1998). 

The Wessex Basin records the effect of intraplate contraction and structural 

inversion, with two significant structural components; the Pewsey Fault System and the 

Central Channel High defining the northern and southern margins of the Wessex Basin, and 

the Purbeck-Isle of Wight Disturbance (Figure 2.2). This, together with the underlying 

Mesozoic Purbeck-Isle of Wight Fault System, effectively separates the Channel (or Portland-

Wight) Basin to the south from the South Dorset Shelf and the Hampshire-Dieppe (or 

Cranbome-Fordingbridge) intra-basinal highs (Underbill and Stoneley, 1998). 

Other structural elements having a significant structural effect are two East-West 

trending extensional faults which define a narrow South Dorset Basin (otherwise known as the 

Winterboume Kingston Trough or Ceme Basin) within the South Dorset Shelf. The Wardour 

and Portsdown Fault Systems represent important sets of intrahasinal extensional growth 

faults prior to their reverse reactivation in the Tertiary. The largely sub-surface NNE-SSE 

trending Watchet-Cothelstone-Hatch Fault System transects the Basin. 
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Figure 2.1. Jurassic outcrops in the western border of the Anglo-Paris Basin. 
Modified fi-om Rioult etal. (1991). 



Figure 2.2. Map of southern England showing principal structural features. 
Modified fi-om Wright and Cox (2001). 
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2.1.2 DEPOSITIONAL HISTORY 

The Wessex Basin evolved in four distinct phases; the Permo-Triassic, the Jurassic to early 

Cretaceous, the late Cretaceous and the Tertiary to Recent (Stoneley and Selley, 1991). The 

first two phases are briefly described. 

The Permo-Triassic was dominated by continental (in places desert) sedimentation 

with local fan breccias and braided streams concentrated in the west of the basin (Stoneley and 

Selley, 1991). Towards the end of the Triassic a shallow intracratonic sea was gradually 

established, leading to the deposition of interbedded lime mudstones and shales in the Lower 

Lias of the earliest Jurassic (Oliver, 1997). A cyclic sedimentation pattern of clays, sand and 

limestones deposition then dominated the Jurassic (Arkell, 1933, 1936, 1947; Stoneley and 

Selley, 1991; Coe, 1992, 1995; Callomon and Cope, 1995; De Wet, 1998; Newell, 2000). 

By the end of the Jurassic a gradual emergence of the entire region took place, with 

sedimentation dominated by the development of sabkhas and brackish to fresh water deposits 

(Stoneley and Selley, 1991). 

2.2 SAMPLING PROGRAMME 

One of the aims of this investigation (see Chapter 1) was to sample and examine Oxfordian 

strata from successions on the Dorset and Normandy Coasts. Dorset and Normandy outcrop 

successions were selected for the study as they provide almost continuous stratigraphical 

coverage of the Oxfordian of the Wessex Basin. These successions are composed of 

carbonate, clastic or mixed sediments, and vary between fluvio-marine to sub-tidal 

environments. The Dorset and Normandy successions are well exposed, natural exposures and 

are generally accessible on a falling tide. 
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2.2.1 STRATIGRAPHIC AND SAMPUNG CONSIDERATIONS 

Many factors need to be taken into consideration when studying palaeobiological patterns. Are 

the samples taken from one vertical section of a locality representative of the entire 

succession? What do the effects of sampling, facies control and facies changes have upon the 

foraminiferal data acquired? Are replicate samples required to estimate species proportions at 

a locality; i.e., is there a variation in the proportions of fauna between samples needing an 

average to be taken? 

Successions on either side of the Wessex/Anglo-Paris Basins have been investigated 

with regard to their microfossil component. The aim has been to collect a comprehensive set 

of samples of suitable lithologies (clays, mudstones, shales) from accessible Oxfordian 

sections with the samples sfratigraphically located as accurately as possible. The Upper 

Jurassic has a sophisticated zonation scheme (e.g., Sykes and Callomon, 1979; Cope, e/ al., 

1980) and most sections can be zoned with reasonable accuracy using ammonites (Figure 2.3). 

2.2.2 CHRONOSTRATIGRAPHY 

The base of the Upper Jurassic is drawn at the base of the Oxfordian stage, which was 

established by d'Orbigny in 1850. The traditional means of sub-dividing stages in the Jurassic 

is by the ammonite faunas, although this can be problematic within the Oxfordian as a result 

of marked faunal provincialism. Britain, during the Jurassic, was mid-way between the 

Tethyan and Boreal Realms with a Boreal Province in which cardioceratid ammonites 

predominated over much of northern Britain, and perisphinctid ammonites (characterising a 

sub-Boreal Province) dominating the waters flirther south. In Britain, separate zonal schemes 

have been developed from the two provinces (Wright and Cox, 2001) whilst in Europe three 

schemes have been developed for the Boreal, North West European and Sub-Mediterranean 
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Realms (Sykes and Callomon, 1979). The zonal scheme traditionally applied to the Corallian 

of the Dorset Coast is predominantly based on perisphinctid ammonites. In Normandy the 

Boreal, Sub-Boreal ammonite zonation is followed as proposed by Sykes and Callomon 

(1979). 

2.2.3 MAIN SAMPLING LOCALITIES 

Two main areas were chosen on the opposing sides of the Wessex Basin; the coastal section in 

Dorset (UK) and the coastal section in Normandy (France). In the UK, Oxfordian strata 

outcrop in a narrow strip extending from the South Coast to the Yorkshire Coast. Dorset was 

chosen as the best UK section to study, as a result of its completeness and accessibility 

(Figures 2.4 and 2.5). The Normandy coastal region, extending from Houlgate to Villerville, 

was chosen, as a complete succession is present and accessible (Figure 2.6). Additional 

sampling localities were later included in the study (see Section 2.2.4; Additional sampling 

localities) as a result of the discovery of planktic foraminifera (see Chapter 8). All sampling 

was subject to local "collecting" rules (in the UK see www.english-nature.org.uk). 

2.2.3.1 Dorset 

Five principal sections were studied on the South Dorset Coast in the area around the seaside 

town of Weymouth. The Dorset Coast displays one of the best Jurassic successions in the 

world and has played a significant role in the establishment of a biostratigraphical scale for the 

Jurassic, with almost all of the Dorset rocks yielding fossils. In this area an almost complete 

succession of Oxfordian strata was sampled at the five localities (Figure 2.7). A complete 

Oxfordian succession is not present along the Dorset Coast as a number of imconformities are 

known to exist: these are located between the Upper Oxford Clay and the Nothe Grit 
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Formation; the Nothe Grit and Preston Grit Formation; the BenclifFGrit and Osmington Oolite 

Formation; the Osmington Oolite and Nodular Rubble and between the Nodular Rubble and 

Trigonia Clavellata Formation (see Figure 2.3). On the Dorset Coast, therefore, sampling was 

not possible within these 'missing' intervals. 

2.2.3.1.1 The Fleet 

Along the shore of the Fleet, more specifically near Tidmoor Point (SY 643787), exposures of 

the Oxford Clay Formation are found. House (1989) describes the locality as "this 

unpromising exposure is the type section for the Furzedown Clays" and although not 

magnificent in any terms, small cliff sections are present from where samples were taken. 

Chapman (1997, 1999) uses the ammonite fauna from Tidmoor Point and the 

surrounding areas to help to the Callovian/Oxfordian bounday. The access to the section is 

good with Haven Holiday Park occupying the land immediately to the north with parking (and 

refreshments) available nearby. 

2.2.3.1.2 Furzy Cliff 

At Furzy Cliff the Lower Oxfordian is exposed, with the Oxford Clay Formation overlain by 

the Nothe Grit Member of the Redcliff Formation. The lower part of the cliff section is badly 

slipped with a recently constructed sea wall covering most of the clays. The Nothe Grit 

Formation is accessible by means of a short scramble up the cliff section. 
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2.23.1.3 Redcliff 

Redcliff Point is located to the east of the car park at Bowleaze Cove and is easily accessible. 

Here sections through the Lower Oxfordian are exposed with the Nothe Grit Formation and 

Redclifif Formation accessible. The Nothe Grit Formation forms the lower half of the cliff 

sections with the Preston Grit Member prominent as a harder unit jutting out from the cliffs. 

Above this the Nothe Clay Member is seen. A lateral variation in bed thickness is visible 

along the section. The assemblages of trace fossils preserved in these sediments are 

particularly noteworthy with forms such as Skolithos and Chondrites (Ftirisch, 1973, 1974, 

1975, 1976, 1977). In 1953 Barnard published a paper on foraminifera from the Upper Oxford 

Clay at Redcliff Point. This work was based upon samples from an up-faulted block of Oxford 

Clay from the Cordatum zone. The results were comparable to those from a previous paper 

(Barnard, 1952), which described the foraminifera from the Oxford Clay of Warboys, 

Cambridgeshire. Unfortunately no map, log section or any mention of the size fraction he 

studied is given in the paper. 

2.2.3.1.4. Osmington-Ringstead 

This traverse can be undertaken from Osmington Mills, working up the succession which is 

dipping gently towards the east. Working eastwards from Osmington Mills (SY734816) the 

Nothe Clay Member is overlain by the BenclifiF Grit Member, Osmington Oolite Formation, 

Trigonia Clavellata Formation and Sandsfoot Formation. The overlying Ringstead Waxy 

Clays are seen occasionally in Ringstead Bay, depending upon the level of the beach shingle. 
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2.2.3.1.5 Black Head 

The Black Head section can be accessed either by walking east from Bowleaze Cove, or by 

walking west from the private car park at Osmington Mills. The traverse can only be done at 

low tide. At Black Head the base of the Nodule Rubble Member of the Osmington Oolite 

Formation is exposed with the overlying Trigonia Clavellata and Sandsfoot Formations also 

present. There is no apparent difference in the formations present to the east or west of 

Osmington Mills, although the degree of landsliding was an important factor considered by the 

author before sampling. A lateral thickness variation of beds is observed along the traverse as 

well as a lack of continuity in some of the nodule beds. The author has, where possible, shown 

sampling localities on logs taken in the field. Published sections may differ due to the lateral 

thickness variations found in the cliff sections. Brookfield (1973) used foraminifera and 

ostracoda from Black Head in his thesis to deduce palaeoenvironmental interpretations for the 

Dorset area during the Jurassic. He based his models on those from the Gulf of Mexico and 

deduced that the Trigonia Clavellata and Sandsfoot Formations were deposited in an open, 

high salinity, bay environment with the Ringstead Waxy Clay deposited in a lagoon. 

2.2.3.2 Normandy 

Three important localities were studied in Normandy: Houlgate, Villers-sur-Mer, and the 

traverse from Trouville-sur-Mer - Hennequeville - Villerville. These localities are shown in 

Figure 2.6. An almost complete succession of Oxfordian strata was sampled (Figure 2.8). 

2.2.3.2.1 Houlgate 

At Houlgate, the most westerly section studied, the Lower Oxfordian is exposed. The cliff 

section studied was approximately 1.5 km from Houlgate and is an impressive, rather 
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overpowering, section with approximately 30 metre high cliffs present. A temporary beach 

section exposed 10 metres of the Mames de Dives Formation. The main cliff exposes the 

Mames de Villers-sur-Mer Formation and the Oolithe Ferrugineuse de Villers Formation. 

Twenty-two samples were taken throughout the section. Access to the whole of the section is 

aided by a set of steps leading up to a campsite on the cliff top, which allows sampling to be 

undertaken throughout the succession. Previous work on the section has been carried out by 

Rioulte/o/. (1991). 

2.2.3.2.2 Villers-sur-Mer 

At Villers-sur-Mer the Lower Oxfordian is magnificently exposed in the 'Vaches Noires' cliff 

section to the west of the 'Centre nautique' (Figure 2.9). Here the succession from the 

'Oxfordien Inferieur' overlain unconformably by the 'Cenomanien' is clearly visible with the 

Mariae and Cordatum Zones accessible. The whole of the cliff section is prone to landsliding 

as overlying oolitic rocks rest upon unstable clays and sands. 

Seventeen samples were taken at metre intervals from the Mariae and Cordatum 

Zones. Above this height the cliff sections were deemed unsafe by the author, with the cliff at 

lower levels covered by landslides and vegetation. Previous work on the Villers-sur-Mer, 

'Falaise de Vaches Noires' cliff section includes that of Bizon (1953) and, more recently, 

Samson et al. (1992). It is in the latter publication that the planktic foraminiferid 

Globuligerina oxfordiana (Grigelis, 1958) is described from the Scarburgense Subzone 

(Mariae Zone) along with an associated benthic assemblage. 
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2.2.3.2.3 TrouviUe-ViUerviUe 

The 4km traverse fix)m Trouville-sur-Mer through to Hennequeville and Villerville allows 

access to the Middle and Upper Jurassic successions. The near horizontal strata dip very 

gently towards the north and this allows the succession to be studied along the Roches-noires 

cliflFs. 

From Trouville, beginning with the Calcaire d'Auberville Formation, the succession 

can be traversed imtil the Mames de Villers Formation is exposed near to Villerville. By 

following the succession along the section, lateral discontinuities in bed thickness can be 

observed. 

Dugue (1995) reported syn-sedimentary deformation structures in the sediments of 

the Upper Oxfordian 'Calcaire greseux de Hennequeville' Formation. He suggested that the 

style of deformation present is indicative of an earthquake of magnitude up to 5 on the Richter 

scale. De Wet (1998) suggested that these structures in the 'Calcaire greseux de 

Hennequeville' Formation are identical to those present within the Bencliff Grit in Dorset, and 

similarly interprets them as indicators of paleo-seismicity. Rioult et al. (1991) provide 

sedimentary logs and sequence stratigraphical interpretations for the succession. 

During the three-year period of this study the successions at both localities have 

become badly degraded. During a visit to Normandy in October 2001, it was discovered that 

the locality at Villers-sur-Mer is no longer accessible to the public (Figure 2.10). There is 

extensive slumping near Houlgate and at Trouville-sur-Mer new sea defences and the 

overgrowth of the section was noticeable (Figure 2.11). In Dorset, slumping of the sections 

was also noticeable. The excessive rainfall probably caused much of this damage in the 

autumn and winter of 2000-2001. 
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Figure 2.10. Problems encoimtered during the sampling of 'Les 
Falaise des Vaches Noires' in Normandy. 

Figure 2.11. Slumping, overgrowth and basic sea defences at 
Trouville-sur-Mer. 
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2.2.4 ADDITIONAL SAMPLING LOCALITIES 

Additional sampling localities were visited after the discovery of planktic foraminifera from 

the Furzedown Clay Beds of Dorset. This is an important discovery, as planktic foraminifera 

have rarely been mentioned from the Oxfordian strata of the UK (see Chapter 8 for further 

details). 

2.2.4.1 Warboys Clay Pit 

Warboys Clay Pit lies approximately 1.8 km north of Warboys village, Cambridgeshire 

(Wright and Cox, 2001). The former brick pit is presently used as a landfill site and is owned 

by Femside Waste Management Ltd. Permission is required to enter the quarry where new 

exposures of the Oxford Clay Formation are being dug and infilled with household refuse on a 

weekly basis. The site provides the zonal standard for for much of the East Midalnds 

Oxfordian (Wright and Cox, 2001). Page and others previously collected samples from 

Warboys Clay Pit in 1996, and these residues have been studied, primarily for planktic 

foraminifera. The site was visited by the author and Dr M.D. Simmons (CASP, Cambridge) in 

July 2001 when sampling was undertaken in two locations; a pit to the east of the quarry and 

the face illusfrated by Wright and Cox (2001, Figure 3.8). These samples were sent for 

preparation by Dr M.D. Simmons (CASP, Cambridge) in search of planktic foraminifera, 

calcareous nannofossils and dinoflagellate cysts. The results of this study are presented in 

Chapter 8. 
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2.2.4.2 North Yorkshire 

2.2.4.2.1 Cornelian Bay 

A cliff section at the southern end of Cornelian Bay, 50m due west of the headland known as 

Osgodby Nab, includes the stratigraphical boundary between the Oxfordian and the underlying 

Callovian (Wright and Cox, 2001). Sampling of the Oxford Clay Formation, especially the 

Mariae Zone, was undertaken at this locality (See Ch^ter 8). 

2.2.4.2.2 Cayton Bi^ 

At Cayton Bay the cliff section known as Tenants Cliff was sampled. At this locality the 20m 

vertical cliff displays the entire Oxfordian succession. Samples were taken from the Mariae 

Zone and processed primarily for planktic foraminifera. These results are discussed in Chapter 

8. 

2.3 RECONNAISSANCE METHODS 

Sampling for foraminiferal studies does not involve the removal of large quantities of material 

from cliff sections and, therefore, minimal damage is caused. In the field, qjproximately 250-

300 grammes of sediment were collected, and put into labelled bags. At each locality a log 

section was drawn, with sampling points accurately positioned. No sections were damaged and 

all aspects of the "Code of Conduct" for geological fieldwork were observed. This is 

particularly important as many are designated Sites of Special Scientific hiterest and under 

statutory protection by English Nature (see www.english-nature.org.uk). 
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2 J . l SAMPLE PREPARATION 

After the samples were bought back to the laboratory they were divided, with half the sample 

retained unprocessed as a safeguard against contamination or loss. At this stage the samples 

were described and any particular features (i.e., shell fragments, ooliths etc.) were recorded. 

Approximately 150 grammes of material from each sample were processed. This was 

chosen in order that approximately one gram of residue would be obtained after processing the 

very clay rich samples. The samples from both the Normandy and Dorset sections were 

predominately clay or sand rich and the widely used solvent method (Brasier, 1980) was 

employed, as this is particularly effective on indurated argillaceous lithologies. The samples 

were placed into labelled plastic containers (which had previously been weighed) and the 

weights recorded. 

The sediment was then manually broken down into fragments of around 5-10mm 

diameter. The samples were then weighed before being dried at 60°C in an oven for 12 hours 

before being re-weighed. They were then soaked in White Spirit for approximately 8 hours 

ensuring that all safety regulations were followed. The White Spirit was then decanted off 

(and retained for re-use after filtration) and the sample soaked in distilled water for around 8 

hours. Distilled water (buffered) was used to soak the samples instead of 'normal' tap water as 

the 'normal' tap water in Plymouth (where the processing was undertaken) is slightly acidic 

and thus a dissolution risk to the samples. It was, therefore, decided to remove this risk by 

using buffered distilled water. The residues were then washed with water through a 63|im 

sieve. During the washing process the use of soap, usually 'washing-up liquid', was used as 

this seemed to speed up the separation of the clay from the residual and aided the 
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disaggregation process (Howe, 1941). The sieve was washed between each sample by using an 

ultrasonic bath to remove the risk of contamination. The residues were fmally dried in an oven 

at 60''C, reweighed and stored in labelled plastic flip-top tubes prior to picking. 

The processing of some of the samples in water alone was tried but this method did 

not result in a suitable level of disaggregation and, therefore, the solvent method was required. 

In some samples the repetition of soaking in White Spirit, distilled water and re-sieving was 

required. The solvent method was successfully used on most of the samples; the exceptions 

being those that were carbonate rich. For these samples many methods were tried. The 

replacement of distilled water with a hot solution of washing soda (NaiCOa) resulted in more 

eflScient disaggregation of some of the more clay rich samples although the more indurated 

and/or carbonate rich samples did not disaggregate using this method. The carbonate rich 

samples were studied using thin sections as no adequate way of processing them has yet been 

perfected. Crushing, under water, in a pestle and mortar does not work on these lithologies. 

23.2 PICKING RATIONALE 

From the micropalaeontological literature it is clear that there is very little consensus over 

several issues: 

• initial consideration of the sieve size used; 

• whether to split the samples; and 

• a valid method for the picking of foraminifera from the residues in order to gain a 

representative measure of the abundance and diversity of the fauna in the sample. 

In this study the 63jun sieve fraction was chosen as the size fraction over which to sieve for 

the following reasons: 

1. This fraction allowed a good ratio of residue to fossils whilst removing the clay and silt 
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size fractions. 

2. Sieving over a larger size fraction, such as 75nm, would have meant the loss of the smaller 

sized foraminifera, potentially leading to distorted results. 

3. To allow the author to examine all size fractions and thus have a comprehensive insight 

into the foraminifera present. 

The number of specimens examined per sample seems to vary from worker to worker 

depending on the study being undertaken. Counts usually range from between 200 to 1000 

specimens per sample, although approximately 300 specimens are usually counted. Phleger 

(1960), based on experience and on an equation derived by Drysden (1931) for counting heavy 

mineral grains, suggested that 300 specimens provided sufficient accuracy for most 

quantitative examinations (Patterson et al., 1989). In the current investigation a minimum of 

301 foraminifera were picked per sample as this count is above the accuracy level derived by 

Drysden (1931). 

The author decided to adhere to the picking rationale of 301 specimens per sample for the 

following reasons: 

1. Picking 301 specimens would give a reasonably accurate indication of the relative 

proportions of the fauna present. It is widely believed that counts above 300 do not provide 

any gain in accuracy in the relative proportions of faima. 

2. 301 specimens were present in most samples. If the author had decided to pick 301 

individuals per size fraction then problems would have been encountered in the larger size 

fractions due to lack of specimens. Poorly preserved samples, especially from Dorset 

would have led to a bias in total abundances if the entire fauna had to be extracted from a 

particular fraction. 
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3. By using a gridded tray the temptation to pick only the large or nicely preserved specimens 

was removed, and a systematic picking regime was introduced and maintained. 

2 3 J EXAMINATION AND IDENTIFICATION 

The residues obtained were examined on a black gridded tray using an Oljmipus SZ-PT 

binocular microscope and 301 individuals were picked from each sample. A JEOL JSM-5200 

Scanning Electron Microscope (SEM) was used to inspect microfossils at higher 

magnifications. A well preserved individual (where possible) was picked, mounted on a 

carbon coated stub and coated with gold, before being examined under the SEM, Digital 

photography was captured using a JEOL Semafore digital slow-scan image recording system 

and stored on a ZIP Disk. Thin sections were studied using a Nikon Alphaphot-2 YS2 

petrological microscope. (See Appendix B for thin section descriptions). 
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3.0 INTRODUCTION 

This chapter is divided into two sections; the first section describes the lithostratigraphy and 

the sedimentology of the Oxfordian succession on the Dorset coast, with the second section 

describing the lithostratigraphy and sedimentology of the Oxfordian succession on the 

Normandy Coast. 

It is the present authors' intention to give a brief overview of the lithology and 

sedimentology of the Oxfordian of the Dorset and Normandy successions. Both areas have 

been the subject of comprehensive research for many years and there is a large, and growing, 

literature on the subject (see, for example, Arkell, 1933, 1936, 1947; Cope, 1969; Brookfield, 

1973, 1978; Fiirisch, 1973, 1974, 1975, 1976, 1977; Talbot, 1973; Doreet al., 1977; Enay e/ 

al., 1980, Megnien et al., 1980, Wright, 1986a,b; House, 1989; Sun, 1989, 1990; Allen and 

Underbill, 1990; Rioult et al., 1991, Coe, 1992, 1995; Callomon and Cope, 1995; Henderson, 

1997; Oliver, 1997; De Wet, 1998; Wright and Cox, 2001,and references therein). 

3.1 LITHOSTRATIGRAPHY OF THE MID-UPPER JURASSIC TRANSITION OF THE 

DORSET COAST 

The Oxfordian mixed carbonate-siliciclastic succession is well exposed on the coastline 

around the town of Weymouth (Figure 2.5). During the Mid-Late Jurassic, Dorset lay at a 

latitude of approximately 35°N, well to the north of the Tethyan belt of limestone deposition 

but often still to the south of the basins of predominantly siliciclastic sedimentation that 

characterise the more Boreal regions (Callomon et al., 1995). A mixture of siliciclastic and 

carbonate rocks represents the Jurassic of Dorset, with faunas intermediate between the Boreal 
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and Tethyan Realms. The Jurassic stratigraphy of Dorset has been the subject of many studies 

(recently summarised by Wright and Cox, 2001, and references therein). 

The principal lithostratigraphical subdivisions of the Oxfordian are the Upper Oxford 

Clay Formation and the Corallian Group. The lithostratigraphy of this succession has recently 

been changed (Coe, 1992, and references therein) from the historical names to ones of 

formations and members (Oxford et al, 2000). The Corallian Group has been divided into six 

formations by Coe (1992); in ascending order, these are the Nothe Grit, Redclifif, Osmington 

Oolite, Trigonia Clavellata, Sandsfoot and Ringstead Formations. The RedclifiF Formation is 

further subdivided into three members; the Preston Grit, Nothe Clay and BenclifiF Grit 

Members. The Osmington Oolite Formation is fiirther subdivided into three members; the 

Upton Member, Shortlake Member and Nodular Rubble Member. The Trigonia Clavellata 

Formation is subdivided into 4 members; the Sandy Block, Chief Shell, Clay Band and Red 

Bed Members. A summary of these formations and members is shown in Figure 3.1. 

In the author's opinion the re-naming of the units within the Oxfordian by Coe (1992) 

is not particularly advantageous. Units such as the Shortlake Member, which is only 3.2 

metres thick in the Dorset succession, for example, cannot be considered as a mappable unit. 

Formation names such as the Trigonia Clavellata Formation, named after a fossil, are also not 

ideal, as the fossil is not found in all the members of this unit. It would, therefore, appear that 

the re-naming of the succession from the historical names to ones of formations and members 

has, to some extent, been cosmetic rather than a fimdamental re-evaluation of the 

lithostratigraphy. 
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3.1.1 OXFORD CLAY FORMATION (WEYMOUTH MEMBER) 

The Oxford Clay Formation represents the basal part of the Callovian/Oxfordian succession 

that is easily accessible in the Dorset area. It is divided into 3 members; the Peterborough 

Member, Stewartby Member and Weymouth Member (Wright and Cox, 2001). The 

geographical epithets represent the areas where the members have been known or are exposed 

(Wright and Cox, 2001). The Weymouth Member, also known as the Upper Oxford Clay, can 

be fiirther divided in the field into (in ascending order) the Furzedown Clay Beds, Jordan CUff 

Clay Beds and Bowleaze Clay Beds (Figure 3.1). The Furzedown Clay Beds are best exposed 

at Tidmoor Point (House, 1989, Figure 14), and are also sometimes exposed in the centre of 

the Redcliff Anticline at Shortlake (Wright and Cox, 2001). The Jordan Cliff Clay and 

Bowleaze Clay Beds are exposed on the northemside of Redcliff Point, with the Bowleaze 

Clay also exposed in Bowleaze Cove (Wright and Cox, 2001). 

3.1.1.1. Furzedown Clay Beds 

This clay unit is poorly exposed on the Dorset coast. The fauna consists of abundant Gryphaea 

dilatata and pyritized ammonites, including Q. mariae, Quenstedtoceras spp. and early 

cardioceratids (House, 1989). 

3.1.1.2 Jordan Cliff Clay Beds 

This fissile clay unit is overlain by a silty blocky mudstone. The fauna consists of abundant 

Gryphaea dilatata and Modiolus bipartitus (Wright and Cox, 2001). The type locaHty for the 

Jordan Cliff Clay is at Furzy Cliff but recently constructed sea defences make the lower part of 

the clay succession inaccessible. 
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3.1.1.3 Bowleaze Clay Beds 

This unit is represented by very fine-grained clays with frequent sandy clay incursions 

(Wright, 1986b). A double row of red-weathering sideritic nodules, known as the Red Nodule 

Bed, is present at about the middle of the unit (Wright and Cox, 2001) above which the pale, 

fine-grained clay continues. This unit is fossiliferous with abundant ammonites (cardioceratids 

and perisphinctids) present. This unit is present in the cliff section at Redcliff Point. 

3.1.2 NOTHE GRIT FORMATION 

The Nothe Grit Formation comprises fine-grained, sub-rounded and fairly well sorted sand 

that is pervasively bioturbated and contains occasional oysters, serpulids and ammonites (Coe, 

1995). The formation has been divided into two small-scale coarsening-upwards facies 

sequences (parasequences), which show a slight but definite increase in grain size and are 

capped by prominent, coarse grained, bioclastic sandstone beds (Oliver, 1997). The Nothe Grit 

is best exposed at Ham Cliff, although a small exposure occurs at Osmington Mills east of the 

slipway. 

3.1.3 REDCLIFF FORMATION 

This formation consists of the Preston Grit, Nothe Clay and Bencliff Grit Members. The 

Preston Grit Member is exposed in the low cliffs extending from the Bowleaze holiday camp 

to Redcliflf Point (Wright and Cox, 2001). The lower 8m of the Nothe Clay Member is 

exposed at Redcliff, with the upper contact between the Nothe Clay Member and the Bencliff 

Grit Member exposed in cliffs east of Osmington Mills. 
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3.1.3.1 Preston Grit Member 

The Preston Grit Member consists mainly of medium-grained, shelly, calcareous sandstone 

(Wright and Cox, 2001). It is divisible into two beds. The lower bed is composed of a 

cemented fine-grained, sub-rounded, moderate to poorly sorted sand with a small amount of 

clay and scattered shells. The upper bed is argillaceous sand with occasional carbonde ooids 

and pebbles, relict primary cross-lamination and a diverse and abundant assemblage of fossils 

(Coe, 1995). The Preston Grit Member can be interpreted as a single shoreface stack (sensu 

Ainsworth and Pattison, 1994) representing one coarsening-up parasequence (Oliver, 1997). 

3.1.3.2 Nothe Clay Member 

The Nothe Clay Member is a grey mudstone with bands of nodular limestone. There is a 

gradual increase in the clastic content of the clay upwards towards the jimction with the 

Bencliff Grit Member (Wright and Cox, 2001). 

3.1.3.3 Bencliff Grit Member 

This member is composed of an heterolithic sandstone and mudstone facies. The sandstone 

forms approximately 80-90% of the member, with the sand units separated by heterolithic 

facies which contain climbing and non-climbing ripples with mudstone drapes, giving rise to a 

lenticular and flaser-bedded appearance (Coe, 1995). Unusual bedforms analogous to swaley 

cross-stratification, or amalgamated hummocky cross-stratification can be seen within 

enormous 1-2 m diameter calcareous concretions that develop in the sandier parts of the 

sequence (Figure 3.2) and have been the subject of several interpretations (Allen and 

Underhill, 1990; Coe, 1992; Oliver, 1997). The generally accepted interpretation is that the 

Bencliff Grit Member was deposited in a storm dominated shore-face environment. Between 
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the concretions, poorly cemented clay-rich sand has an oil-rich aroma with occasional oil 

staining that shows that the rock was once an oil reservoir (Wright and Cox, 2001). 

3.1.4 OsMiNGTON OOLITE FORMATION 

This formation consists of the Upton, Shortlake and Nodular Rubble Members. The type 

section for the Upton Member is below Upton House, Bran Point, with a similar exposure at 

Black Head (Wright and Cox, 2001). The type section of the Shortlake Member is in the rock 

platform between Shortlake Steps and Black Head (Wright and Cox, 2001). The Nodular 

Rubble Member is exposed at Bran Point. 

3.1.4.1 Upton Member 

This member consists of a series of limestones and mudstones. The basal bed of the member 

contains burrows, which extend down into the Bencliff Grit Member of the Redcliff 

Formation. The burrows are oolite-filled and emphasise the abrupt contact between the 

Bencliff Grit and the Upton Members. The base of the Upton Member is oolitic and is 

succeeded by the development of a thin pisolite or oncolite (Wright and Cox, 2001). The 

overlying clay contains calcareous nodules that are thought to be the infilling of 

Thalassinoides burrows. A sandy bioturbated marl and limestone completes the member 

(Wright and Cox, 2001). 

3.1.4.2 Shortlake Member 

The Shortlake Member is composed of cross-bedded oolite alternating with bioturbated oolite 

and clay (Wright and Cox, 2001). Bioturbation is commonly seen towards the top of the 

member. The bioturbation consists primarily of escape burrows, and is indicative of a rapid 

increase in the rate of sediment deposition towards the top of the member. 
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3.1.4.3 Nodular Rubble Member 

The Nodular Rubble Member is primarily bedded limestone and mudstcne. Coe (1995) 

describes the member as being 'composed of nodular Rhaxella biomicrites with shells and a 

small Eimount of ooids'. The limestones are indeed markedly nodular, and alternate with 

calcareous clay in 0.5m bands (Wright and Cox, 2001). Excellent Thalassinoides burrow 

networks are seen within the limestone and are believed to be the origin of the calcareous 

nodules according to Wright and Cox (2001). Ammonites are found and mc\\xAePerisphinctes 

(Perisphinctes) pumilus Enay and P. (P) parandieri de Loriol (Wright and Cox, 2001). 

3.1.5 TRIGONIA CLAVELLATA FORMATION 

This formation has previously consisted of the Sandy Block, Chief Shell Bed, Clay Band and 

Red Beds Members (Coe, 1995). Wright (in press) now includes the Sandsfoot Clay Member 

as part of the Trigonia Clavellata Formation, with the previous members becoming the lower 

Clavellata Member of the Clavellata Formation (Wright and Cox, 2001). The Trigonia 

Clavellata Formation is exposed at Bran Point although the exposure has deteriorated since 

Arkell studied the section in 1939 (Wright and Cox, 2001). The favoured exposure for the 

Trigonia Clavellata Formation is now at Black Head (Wright and Cox, 2001). 

3.1.5.1 Sandy Block Member 

This member is formed of sandy limestone with occasional ooids. Five beds can be 

differentiated that are separated by sandy mud-rich partings. The member is bioturbated with 

frequent Thalassinoides burrows. 
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3.1.5.2 Chief Shell Bed Member 

The Chief Shell Bed, as is indicated by its name, contains abundant bivalves, mainly 

Myophorella clavellata (Coe, 1995). The bivalves are mostly preserved in a disarticulated 

state, although some entire specimens are found. The lithology is an impure oolite, with 

disseminated siderite that weathers to give the member a pale reddish colour (Wright and Cox, 

2001). 

3.1.5.3 Clay Band Member 

The Clay Band Member consists primarily of a grey silty mudstone. Some ooids are present 

within the member as well a broken shell fragments. 

3.1.5.4 Red Beds Member 

The Red Beds Member consists of mud-rich oolites alternating with sideritic limestones. The 

limestones contain scattered oolites and fine shell debris (Coe, 1995), with weathering giving 

the unit a distinctive bright red colouration. Ammonites are common and are excellently 

preserved (Wright and Cox, 2001). 

3.1.5.5 The Sandsfoot Clay Member 

The Sandsfoot Clay Member is predominantly a silty, calcareous mudstone. Variations in the 

percentage of silt occur throughout the member, with the lower bed sandier than the upper 

ones. Wright and Cox (2001) indicate that the lower beds are highly fossiliferous with 

numerous bivalves and ammonites, although the author did not observe any fossils in the 

member. 
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3.1.6 SANDSFOOT FORMATION 

The Sandsfoot Formation has recently been revised and now comprises the Sandsfoot Grit 

Member, Ringstead Clay Member and the Osmington Mills Ironstone Member (Wright and 

Cox, 2001). 

3.1.6.1 Sandsfoot Grit Member 

Brookfield (1978) divided the Sandsfoot Grit into three units. Unit I consists of poorly 

cemented sand with occasional limonite ooids. Unit II comprises of soft un-cemented clayey 

sand while Unit III consists of fine to medium-grained iron-rich sandstone. The three divisions 

of the member are visible at Black Head, where Unit III is seen as a hard red band and is 

bioturbated. Coe (1995) observes relict cross-lamination near the base of Unit III, as well as a 

rich bivalve fauna, ooids and scattered black quartz pebbles towards the top of the unit. 

3.1.6.2 Ringstead Clay Member 

This member, also known as the Ringstead Waxy Clay Member is formed of a dark grey 

mudstone with a low silt content. A reddish mudstone is present above the grey clay. This is 

siltier than the underlying mudstone and contains some siltstone lenses, sideritic concretions 

and nodules (Wright and Cox, 2001). The exposure available for inspection in Ringstead Bay 

is dependent on beach conditions and can be completely covered by shingle. 

3.1.6.3 Osmington Mills Ironstone Member 

This member consists of a sandy lithology with ferruginous ooids and an abundant bivalve 

fauna. The Ringstead Coral Bed is now regarded as a facies of this member and can be 

observed at Black Head. There is a degree of thickness variation within this member, with 
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26cm of this member visible to the west of the headland at Black Head, and 37cm of the 

member visible on the eastern side. 

3.2 LrmOSTRATIGRAPHY OF THE NORMANDY COAST 

The Normandy coast offers an easily accessible section through the Middle-Upper Jurassic of 

the western border of the Anglo-Paris Basin. The Jurassic geology of Normandy has been 

studied by various workers including Dore et al. (1977), Enay et al. (1980), Megnien et al. 

(1980), Rioult et a/. (1991, and references therein). 

The Middle to Upper Jurassic rocks are divided into 4 major lithological units 

separated by erosional surfaces with biostratigraphic gaps; Aalenian-Bajocian, Bathonian, 

Callovian-Lower Oxfordian and Middle-Upper Oxfordian (Rioult et al., 1991). Each of these 

units encompasses several formations with members limited by various sedimentological 

markers; discontinuities are accompanied by sharp changes in lithology, exotic pebbles, 

terrigenous clastic input, reworked and condensed beds, authigenesis, and sudden variations in 

the sedimentation rate (Rioult et al, 1991). The sub-divisions of the formations and members 

are shown in Figure 3.3, with a simplified map of the Normandy coast shown in Figure 2.6. 

3.2.1 MARNES DE DIVES FORMATION 

The Mames de Dives Formation is represented by thick clay that contains large numbers of 

Gryphaea. This formation is divisible into three informal members; lower, middle and upper. 

The formation is well exposed on the Vache-Noires cliffs, and not so well exposed at Houlgate 

(Figure 2.6). 
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The lower member is characterised by a series of clastic incursions into the mudstone. 

Variations in the percentage of silt grade material within the clay are seen, with the unit 

seeming to fine upwards. 

The middle member lacks the clastic component of the lower member (less than 5% 

coarse silt) and is bioturbated (Rioult et al, 1991). The top of the middle member corresponds 

to the Henrici/Lamberti subzonal boundary where a crushed ammonite fauna can be observed, 

although this is rarely exposed on the Houlgate coastal cliffs (Rioult et al., 1991). 

The upper member of the Mames de Dives Formation is represented by a thick 

mudstone, with little evidence of clastic input. 

3.2.2 MARNES DE VILLERS FORMATION 

The Mames de Villers Formation (Mariae and Praecordatum subzones) is composed primarily 

of thick mudstone and has been subdivided into 3 parasequences by Rioult et al. (1991). The 

thick mudstone appears to be homogeneous although it is badly slumped on the 'Vaches 

Noires' cliff sections with only the upper part of the formation (10-15 metres maximum) 

accessible at Villers-sur-Mer. The upper part of the Mames de Villers Formation at the 

location immediately west of Villers-sur-Mer is composed of mudstone. Towards the top of 

the formation two yellow bands are prominent in the cliff section (Figure 3.4). The lower 

yellow band is composed of a wackestone that is heavily burrowed. The upper yellow band is 

composed of concretions, which have an average diameter of 30cm, and form 2 bands 

approximately 0.5 metres apart. The mudstones in between the yellow layers are very 

fossiliferous with articulated bivalves and infilled burrows present. A 10cm band of cmshed 
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fossils appears approximately 10cm above the higher yellow band and is laterally continuous 

across the Vaches Noires at Villers-sur-Mer. 

At Houlgate, the Mames de Villers Formation is exposed with the yellow bands and 

crushed fossil layer again present. Here greater than 20 metres of the Mames de Villers 

Formation is present with the mudstone containing entire, large Gryphaea. Samson et al. 

(1992) studied the Mames de Villers Formation at Villers-sur-Mer and reported the occurrence 

of both planktic and benthic foraminifera. 

3.2.3 OOLITHE FERRUGINEUSE DE VILLERS FORMATION 

The Oolithe Ferragineuse de Villers Formation consists of "3 to 5 bioturbated brown marl and 

biomicrite (wackestones) alternations with scattered goethitic ooids" (Rioult et al, 1991). At 

Villers-sur-Mer this formation forms a distinct red band across the cliff section, where five 

main hardbands (cemented lithologies) are present, along with the occasional scattered 

concretion rich layer (Figure 3.5). The five hardbands are composed of highly burrowed iron-

rich oolitic limestones with shell fragments. The mud in between the red bands is silty and 

ooid rich towards the base of the Oolithe Ferrugineuse de Villers Formation, with ooid 

abundances decreasing towards the top of the formation. The mud is extremely fossiliferous 

with abimdant Gryphaea and Modiolus present. The ironshot oolite is "reputed for its richness 

in fossils particularly ammonites" (Rioult et al., 1991), and while the author would agree that 

ammonites are present they are not abundant. 
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3.2.4 ARGILES A LOPHA GREGAREA FORMATION 

The Argiles a Lopha gregarea Formation is composed of dark grey silty mudstone with the 

occasional concretion or cemented bed. The mudstone is dark grey, silty with scattered 

ferruginous ooids, and contains abundant Lopha gregarea and Gryphaea. Two prominent 

hardbands are present in the Villers-sur-Mer section. The lower hardband is a wackestone, 

which is highly burrowed and contains oysters, Lopha, belemnites and arrmionites. The upper 

hardband has an erosional base and is heavily bioturbated and cemented. It is a packstone-

wackestone with abundant broken bivalve and oyster fragments. The top of this hardband 

contains Lopha-type bivalves. Silty mudstones rich in oysters are present above the hardbands. 

3.2.5 CALCAIRE D'AUBERVILLE FORMATION 

Dugue (1989) divided the Calcaire d' Auberville Formation into three informal members; the 

Lower Member, Middle Member and Upper Member. Rioult et al. (1991) described these 

members using sedimentological and lithological changes in the sections of the 'Vaches 

Noires' cliffs. At Villers-sur-Mer only the Lower Member of the Calcaire d'Auberville 

Formation is accessible as a result of the cliff sections being badly degraded. 

The Lower Member consists of silty mudstone with beds of cemented ferruginous 

ooid sands. The mudstone is highly fossiliferous with abimdant bivalves and oysters. The 

cemented beds vary in thickness and are not always laterally continuous. 

At Houlgate the Lower and Middle Members, as defined by Dugue (1989), are 

present, although the Middle Member is poorly exposed and prone to landsliding. It is 

composed of a carbonate rich mud with occasional scattered limestone hard-beds. 

The Upper Member is present in the Roches-Noires cliffs (between Trouville and 
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Villerville). It is a carbonate-rich facies with highly fossiliferous beds of limestones 

interbedded with thinner beds of silty-sandy mudstone. 

3.2.6 CALCAIRE OOLITHIQUE DE TROUVILLE FORMATION 

This formation is predominantly carbonate-rich, with alternations of oolitic limestones and 

highly carbonate-rich mudstone. The author was unable to distinguish between the top of the 

underlying Calcaire d'Auberville Formation and the base of this formation due to a lack of 

exposure. At the Vaches Noires cliff section this formation was not accessible, and on the 

traverse from Trouville to Villerville the beach covered the section. Rioult et al. (1991) 

confirm that 'the base of the lower member of the Calcaire oolithique de Trouville Formation 

is not yet known with precision and rarely outcrops on the beach'. 

The formation is divided into two Members (Upper and Lower) by Rioult et al. 

(1991). The Lower Member, between Trouville and Heimequeville, is composed of a grey 

muddy oolite, which is highly bioturbated with both Thalassinoides and vertical burrows. The 

Upper Member is primarily composed of white oolitic limestone, which can be divided into 

shallowing-upwards sequences (Rioult et al, 1991). 

3.2.7 CORAL RAG FORMATION 

Along the Trouville-Villerville section, the Coral Rag Formation is composed of cross-bedded 

limestone with some silty mudstone horizons. A fauna of gastropods and rare coral fragments 

are present within the mudstone, which is also bioturbated. Only a metre of this formation is 
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present along the Trouville-Villerville section and, again, it must be questioned whether this 

can really be called a formation (i.e., a mappable unit). 

3.3.2 CALCAIRE DE BLANGY FORMATION 

This formation is composed of approximately 30cm of mudstone in the Trouville-Villerville 

section. Oolites are present vsdthin the mud, which is also bioturbated. This bed appears 

condensed in the field, and it is difficult to correlate between localities. It must be questioned 

as to whether this lithostratigraphic unit is worthy of formational status. 

3.2.9 CALCAIRE GRESEUX DE HENNEQUEVILLE FORMATION 

The formation overlies a silty limestone hardground known as the Surface de Blangy (Figure 

3.6). The Calcaire greseux de Hennequeville is split into three Members (Lower, Middle and 

Upper) by Rioult et al. (1991). 

The Lower Member is similar in composition to the Calcaire de Blangy Formation and 

is composed of silty mudstones alternating with harder thin limestone bands.The Middle 

Member has thin beds of spiculitic sandstone that is strongly bioturbated (Rioult e/ al, 1991). 

Some of these beds show cross-bedding. The Upper Member consists of a strongly 

Thalassinoides burrowed sandstone fining into a silty mudstone, and capped by a hardground 

known as the Surface de Villerville (Rioult e/ al, 1991). 

3.2.10 MARNES DE VILLERVILLE FORMATION 

This formation is present in the Roches Noires cliffs towards Villerville. The clay is silty and 
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contains bivalves and an occasional harder band of cemented mudstone. The favmal 

component decreases away from the Villerville surface, with only a few mefres of the 

formation present in the cliff section (Figure 3.7). 

67 



Substage 

Upper 
Oxfordian 

Middle 
Oxfordian 

Lower 
Oxfordian 

Upper 
Callovian 

Ammonite Zone 

Regulare 

S erratum 

Glosense 

Tenuiserratum 

Densiplicatum 

Cordatum 

Mariae 

Lamberti 

Formation 

Mames de Villerville 

Calcaire greseux 
de 

Hennequeville 

Calcaire de Blangy 

Coral Rag 

Calcaire oolithique 
de Trouville 

Calcaire d'Auberville 

Argiles a Lopha gregarea 

Oolithe femigineuse 
de Villers 

Mames de Villers 

Mames de Dives 
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Figure 3.4. Vaches Noires CliflF Section looking West towards Wlerville. 
Note yellow bands prominent in the cliff section. 

Figure 3.5. Vaches Noires CUff Section. The five prominent hardbands 
of the Oolithe Femigineuse de Villers Formation (Hammer 50cm long). 
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Figure 3.7. Section 0.3km south west of Villerville showing the lithological change 
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4.0 INTRODUCTION 

This chapter begins with a description of some of the problems encountered when studying 

Jurassic foraminifera. This includes historical difficulties caused by the morphological 

variations within foraminiferal groups and the different approaches used in various parts of 

Europe. The chapter then presents a systematic description for all of the foraminifera recorded 

during this study, together with their stratigraphic ranges. 

4.1 BACKGROUND TO CLASSIFICATION 

In attempting to understand many of the taxonomic problems it is necessary to look back in 

time and consider the classification of foraminifera. The early pioneering work of Schultze 

(1854) and Reuss (1861) in the 19*̂  Century was extremely important, but due to a lack of 

communication they established the Nodosarida (Schultze, 1854) and the Lagenidae (Reuss, 

1861) for the same family. 

The research of Terquem into Liassic foraminifera spans an eleven year period (185S 

1866) and although very important, the validity of the large number of new species he named 

has been questioned as many of the species are not adequately described and erected on the 

basis of only slight variations from the original type, or without consulting previous literature 

(Henderson, 1997), 

The problem of erecting species on morphological variation is also seen in the early 

20* Century through the work of Franke (1936), where a large number of species were 

recognised on the basis of slight variations in morphology. The difficulties created by the 

variability exhibited by many of the foraminiferal species are highlighted below. 
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4.1.1 MORPHOLOGICAL VARL^TION WITHIN SPEOES 

Within the Jurassic there is a high degree of variability within the foraminiferal species, 

especially those of the Nodosariidae, and this has resulted in the identification of a wide range 

ofmorphotypes. 

Barnard et a/. (1981) note that the variation of Lenticulina 6rev/5p/ra(Wisnowski) 

includes Lenticulina- and Marginulina-like forms, whilst Lenticulina protracta (Bomemann) 

includes Vaginulina-like forms as well as Lenticulina- and Marginulina- like forms. 

Lingulina, Citharina, Frondicularia and Citharinella are also closely related. The 

variation of Frondicularia nikitini includes Citharinella- as well as Frondicularia- like forms 

(Barnard et al, 1981). The genera Lingulina and Frondicularia are so closely related that it is 

difficult to distinguish between them in some cases. The sutures of Lingulina are convex 

whilst in Frondicularia they are an inverted v-shape and this is a biocharacteristic used to 

distinguish the two genera (Barnard, 1963). The sutures, therefore, allow for some 

differentiation between the two genera, although problems still arise as sutures not only vary 

from individual to individual but also in the ontogeny of species (Barnard, 1963). The 

apertures of Lingulina and Frondicularia are also different with Lingulina having a radiate 

aperture and Frondicularia having a slit shaped aperture. Unfortunately in badly preserved 

specimens the apertures are often missing. 

Within the Lagenidae difficulties also occur, particularly between the genera 

Nodosaria and Dentalina. At certain horizons the differences between the two genera become 

so slight that the genera appear to grade into each other (Barnard, 1963), creating difficulties 

for the taxonomy. Loeblich and Tappan (1998) use test architecture and coiling mode, aperture 
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form and accessory structure (ribs, etc.), and internal structures to distinguish between genera. 

However, vsdthin the Lagenina this does not allow a clear distinction between the subfamilies 

Vaginulinidae and Nodosariidae, as both can include arcuate to uncoiled genera (Hylton, 

2000). 

Some species of foraminifera could not be reliably identified as a result of poor 

preservation and these specimens have been categorised as unidentifiable, either at the species, 

genus or superfamily level. 

4.1.2 Notes on classification 

The generic and supra-generic classification used in this chapter is, for the most part, that of 

Loeblich and Tappan (1987). Where there are variations fi-om this classification, a definition 

will follow the taxonomic heading with short comments provided and, where needed, an 

explanation of other possible classifications. A fiill monographic treatment of the fauna has 

not been undertaken and, in the case of well-known taxa, only a short diagnosis will be given. 

Where a taxon is less well known, or may be new, a description has been 

included. Any additional information is given in the remarks section. Reference lists are 

limited to the original designation with subsequent references only included to illustrate the 

major generic changes. Additional references are only included if illustrations and/or 

descriptions are similar to the present author's diagnosis of the taxon. 

Strati graphic ranges of the taxa are the ranges found during this study. As this study 

only covers the Oxfordian it is obvious that the fiill stratigraphic ranges of the foraminifera 

are not given. Range A is the range for the Dorset faima and Range B for the Normandy fauna. 

The ammonite stratigraphy for both ranges is standardised to that of Dorset for ease of 
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comparison (Appendix A). Jurassic foraminiferal collections from the Natural History 

Museum, London, were examined and comparisons made with the fauna in this study. The 

foraminiferal collection of Henderson (1997), housed at Plymouth University, was also 

examined. 

SEM digital photomicrographs captured using a JEOL SemAfore digital slow-scan 

image recording system on a JEOL JSM-5200 SEM illustrate almost all of the taxa. The taxa 

are presented in Plates 1-11. Some of the taxa mentioned within the thesis are not illustrated 

due to the lack of suitable specimens recovered in this study. 

4.2 SYSTEMATIC DESCRIPTIONS. 

Order FORAMINIFERIDA Eichwald, 1830 

Suborder TEXTULARIINA Delage and Herouard, 1896 

Superfamily ASTRORHIZACEA Brady, 1881 

Family SACCAMMINIDAE Brady, 1884 

Subfamily SACCAMINIINAE Brady, 1884 

Genus Lagenammina Rhumbler, 1911 

Type Species: Lagenammina laguncula Rhumbler, 1911 

Lagenammina difflugiformis (Brady) 1879 

Pl.l,FigsA, B. 

1879 Reophax difflugiformis, Brady, p.51, pi. 4, fig. 32b 

1959 Proteonina difflugiformis (Brady); Lloyd, p.305, pi. 54, figs 1-4 
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1965 Lagenammina difflugiformis (Brady); Gordon, p. 832, text-fig. 3 (8-11). 

Diagnosis: A small to medium-sized species of Lagenammina with a flask-shaped test. The 

chambers produce a sub-spherical body, which has greatest width around the mid-point of the 

chamber. The aperture is circular and terminal at the end of the elongate neck. The 

agglutinated wall normally consists of medium sized quartz grains. 

Remarks: Only a few specimens were recovered, some of which are compressed. 

Material: 62 specimens 

Stratigraphic Range A: Costicardia Zone-Baylei Zone 

Stratigraphic Range B: Not found in Normandy 

Superfamily HORMOSINACEA Haeckel, 1894 

Family HORMOSINIDAE Haeckel, 1894 

Subfamily REOPHACINAE Cushman, 1910 

Genus Reophax de Montfort, 1808 

Type species Reophax scorpiurus de Montfort, 1808 

Reophax helvetica (Hausler) 1881 

1881 Dentalina helvetica Hausler, p.34, pi. 2, fig. 45. 

1959 Reophax helvetica (Hausler); Lloyd, p.308, pi. 4, fig. 8. 

1965 Reophax agglutinans (Terquem); Gordon, p. 832, text-fig. 3, (23, 24) 

1972 Reophax helvetica (Hausler); Norling, p.41, fig. 14 A-B 
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Diagnosis: A small elongate species of Reophax with a slender test that has its greatest width 

at the base of the final chamber. There are 2-4 sub-rectangular chambers that gradually 

increase in width as added, becoming progressively higher with the last chamber up to twice 

as high as wide. The sutures are distinct, impressed and constricted. The aperture is round and 

terminal at the end of a short neck. The agglutinated wall consists of mediimi sized quartz 

grains. 

Material: 1 specimen 

Stratigraphic Range A: Not found in Dorset 

Stratigraphic Range B: Parandieri Zone 

Reophax multilocularis Hausler, 1883 

1883 Reophax multilocularis Hausler, p.26. 

1967 Reophax multilocularis Hausler; Gordon, p.449, pi. 1, fig. 12 

Diagnosis: A small, elongate, slender species of Reophax. There are approximately 6 

chambers that increase gradually in size, and are equidimensional and barrel-like in shape, 

unless compressed. The sutures are distinct, impressed and straight. The aperture is rounded, 

indistinct, central, terminal and slightly produced on a short neck. Agglutinated wall is 

composed of quartz grains and larger lithoclasts, and is generally poorly sorted 

Remarks: Compression has occurred in some specimens. 

Material: 9 specimens 
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Stratigraphic Range A: Baylei Zone 

Stratigraphic Range B: Not found in Normandy 

Reophax sterkii Hausler, 1890 

1890 Reophax sterkii Hausler, p. 26, pi. 3, fig. 23. 

Diagnosis: A large species of Reophax with an elongate simple test. The initial chambers are 

small and rapidly increase in size, with the final chamber large, forming approximately half 

the length of the test. The sutures are distinct, horizontal, straight and impressed with the 

periphery lobate. The aperture is slightly produced, circular and terminal. The agglutinated 

wall is composed of coarse quartz grains and shell fragments. 

Material: 1 specimen 

Stratigraphic Range A: Not found in Dorset 

Stratigraphic Range B: Henrinci Zone-Antecedens Zone 

Reophax variabilis Herrmann, 1917 

1917 Reophax variabilis Herrmann, p.286, pl.2, fig. 19a-c. 

1959 Reophax cf variabilis Herrmann non Hausler 1885; Lloyd, p.307, pi. 54, fig. 13. 

Diagnosis: A species of Reophax with 3-4 globular chambers arranged curvilinear or 

irregularly. The chambers are circular with the fmal chamber inflated. The aperture is 

terminal, circular and produced on a prominent thin neck. The wall is agglutinated and 
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composed of medium grained quartz grains. 

Material: 4 specimens 

Stratigraphic Range A: Not found in Dorset 

Stratigraphic Range B: Mariae Zone 

Family HAPLOPHRAGMOIDIDAE Maync, 1952 

Genus Haplophragmoides Cushman, 1910 

Type species: Nonionina canariensis d'Orbigny, 1839 

Haplophragmoides sp. cf. H excavatus Cushman and Waters. 

1927 Haplophragmoides excavatus Cushman and Waters, p. 82, pi. 10, fig. 3. 

1990 Haplophragmoides cf excavatus Cushman and Waters; Nagy et al. p. 991, pi. 2, 

figs 6-7. 

Diagnosis: A small inflated species of Haplophragmoides, with 5-6 inflated subtriangular 

chambers. The sutures are slightly impressed with the periphery seen to be slightly lobate. The 

species is parallel sided with the aperture obscured by agglutinated particles from the test. 

Remarks: The specimens identified are similar to those illustrated by Nagy e/ al. (1990) from 

the Jurassic of Spitsbergen as H. cf excavatus. 

Material: 3 specimens 

Stratigraphic Range A: Cautisnigrae Zone 

Stratigraphic Range B: Not found in Normandy 
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Haplophragmoides haeusleri Lloyd, 1959 

1959 Haplophragmoides haeusleri Lloyd, p. 314, pi. 54, fig. 22, textfig. 5i, j . 

Diagnosis: A species of Haplophragmoides with 6 chambers in the final whorl. The chambers 

gradually increase in size and are more inflated towards the final chamber. The sutures are 

impressed and radial. The aperture is a basal marginal thin slit. The agglutinated wall is 

composed of very coarse quartz grains. 

Material: 2 specimens 

Stratigraphic Range A: Cautisnigrae Zone 

Stratigrapliic Range B: Not found in Normandy 

Haplophragmoides kingakensis Tappan, 1955 

1955 Haplophragmoides kingakensis Tappan, p. 43, pi. 10, figs 1-6. 

Diagnosis: A species of Haplophragmoides with 5-8 globular chambers that show variable 

levels of compression, although the fmal chamber is often inflated. The periphery is lobate and 

the sutures are radial with the umbilicus small and deep. The aperture is a small arch at the 

base of the final chamber. The agglutinated wall is composed of fine to medium quartz grains 

Remarks: Some specimens have been compressed laterally creating a variable appearance 

between compressed and uncompressed individuals. 
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Material: 30 specimens 

Stratigraphic Range A: Antecedens Zone-Cautisinigrae Zone 

Stratigraphic Range B: Cautisinigrae Zone 

Haplophragmoides tryssa Loeblich and Tappan, 1950 

PI. l,Fig. C. 

1950 Haplophragmoides tryssa Loeblich and Tappan, p. 41, pi. 11, fig. 2a, b. 

Diagnosis: A compressed species of Haplophragmoides with a lobate periphery. There are 5 

rapidly expanding chambers in the final whorl, with the final chamber often enlarged and 

extended. The sutures are slightly depressed and radial with the aperture consisting of a low 

basal slit. The agglutinated wall is composed of fine to medium quartz grains. 

Remarks: This species is similar to Haplophragmoides kirki Wickenden (1955) but has 5 

chambers instead of 4 in the final whorl; a difference adhered too due to a lack of material. 

Material: 3 specimens 

Stratigraphic Range A: Not found in Dorset 

Stratigraphic Range B: Mariae Zone 

Haplophragmoides sp. 1 

Diagnosis: A small species of Haplophragmoides with 5 chambers in the last whorl that 

rapidly increase in size. 

Description: A planispirally coiled and involute to partially evolute test with septa formed by 
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the continuation of the outer wall. The chambers are inflated with the final chamber large, 

flaring and reaching into the umbilicus. The periphery is rounded, with the sutures impressed 

and radial. The aperture is a simple elongate equatorial slit at the base of the apertural face. 

The agglutinated wall is composed of fine to medium grained quartz. 

Material: 400 specimens 

Stratigraphic Range A: Costicardia Zone-Baylei Zone 

Stratigraphic Range B: Not found in Normandy 

Haplophragmoides /Trochammina spp. indet. 

Remarks: This includes both the broken and/or pyritised species that cannot be distinguished. 

Haplophragmoides and Trochammina look very similar when only fragments are available 

and the author has been forced to group the two together for the sake of statistical analysis. 

Material: 172 specimens 

Stratigraphic Range A: Not found in Dorset 

Stratigraphic Range B: Cautisnigrae Zone 

Family LITUOLIDAE de Blainville, 1827 

Subfamily AMMOMARGINULININAE Podobina, 1978 

Genus Ammobaculites Cv&hman, 1910 

Type Species: Spirolina agglutinans d^Orhigny, 1846 
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Ammobaculites agglutinans (d'Orbigny) 

PL l,Fig.D. 

1846 Spirolina agglutinans d'Orbigny, p. 137, pi. 7, figs 10-12 

1937 Ammobaculites agglutinans (d'Orbigny); Bartenstein and Brand, p. 186, pi. 4, fig. 14; 

pi. 15, figs 7,8; pi. 6, fig. 40a, b; pi. 8, fig, 38a, c; pi. 10, fig. 45a, b; pi. 11a, fig. 19a, b; pi. 

1 lb, fig. 28a, b; pi. 12a, fig. 22; pi. 13, fig. 23; pi. 14b, fig. 19. 

\962 Ammobaculites agglutinans (d'Orbigny); Gordon, p. 521, text^g. 1(4). 

Diagnosis: A small species of Ammobaculites with 4-5 sub-triangular chambers that slowly 

increase in size as they are added. The test comprises a proportionally large planispiral portion 

with a small, depressed umbilicus and a uniserial portion that is arranged in a rectilinear series 

of 2-6 chambers. The uniserial portion is twice as wide as high but does not exceed the width 

of the planispiral portion. The sutures are distinct, impressed, constricted and straight on the 

uniserial portion, and are straight and impressed on the planispiral portion. Agglutinated wall 

composed of fine quartz with additional larger angular grains. 

Remarks: This species is similar to Ammobaculites fontinensis Terquem (1870) but it has a 

less coarsely agglutinated wall. Three variants have been recognised by Lloyd (1959) based on 

the evolute/involute nature of the coil, the degree of depression of the sutures and umbilicus, 

and the size of the coil. 

Material: 99 specimens 

Stratigraphic Range A: Vertebrale Zone-Baylei Zone 

Stratigraphic Range B: Henrici Zone-Parandieri Zone 
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Ammobaculites sp. cf. Ammobaculites agglutinans (d'Orbigny) 

1846 Spirolina agglutinans d'Orbigny, p.l37, pi. 7, figs 10-12. 

1951 Ammobaculites cf. agglutinans (d'Orbigny); Bartenstein and Brand, p. 269, pi. 2, 

figs 33-35. 

1951 Ammobaculites cf. agglutinans (d'Orbigny) Form a; Bartenstein and Brand, p. 269, 

pi. 2, fig. 28. 

Diagnosis: A compressed variant of Ammobaculites sp. cf. Ammobaculites agglutinans with 

an initial planispire of 5-6 chambers followed by a uniserial portion of 4-6 barrel-like 

compressed chambers. 

Remarks: Bartenstein and Brand (1951) refer to compressed specimens as "A. cf. 

agglutinans" and "/4. cf agglutinans (d'Orbigny) Form a". The author has identified 

compressed specimens of ̂ 4. agglutinans within this category. 

Material: 28 specimens 

Stratigraphic Range A: Cordatum Zone-Antecedens Zone 

Stratigraphic Range B: Mariae Zone-Praecordatum Zone 

Ammobaculites barrowensis Tappan, 1955 

1955 Ammobaculites barrowensis Tappan, p. 45, pi. 11, figs 7-12. 

Diagnosis: A medium sized species of Ammobaculites with a distinctive lobate periphery and 
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uniserial portion. The 3-6 sub-triangular, inflated chambers rapidly increase in size as they are 

added, with the imiserial portion consisting of 2-4 inflated chambers that are constricted 

distally. The final chamber is often inflated or pyriform. The sutures are distinct, deeply 

impressed, radial and straight in the planispire. The aperture is circular and terminally 

produced. The species has a small deep umbilicus on one side. 

Remarks: If damaged, and the uniserial portion missing, then the appearance of this species is 

close to that of a species of Haplophragmoides. 

Material: 61 specimens 

Stratigraphic Range A: Antecedens Zone-Baylei Zone 

Stratigraphic Range B: Mariae Zone-Antecedens Zone 

Ammobaculites canui (Cxishman) 1930 

PI. l ,FigsE,F. 

1930 Haplophragmoides canui Cushman, p. 133, pi. 4, fig. la, b. 

1959 Ammobaculites laevigata Lozo sensu Lloyd, p.313, pi. 54, fig. 14, text^g. 4a. 

Diagnosis: A medium-large species of Ammobaculites that is biconvex with a slightly lobate 

outline and sub-angular periphery. The 8-11 chambers are arranged in an involute planispiral 

coil, although there is the tendency for uncoiling to have occurred, especially in the last few 

chambers where they may be added outside of the plane of coiling. The sutures are impressed, 

radial, straight to slightly curved and they also tend to curl backwards distally. 

The aperture is oval to circular, large and centrally placed on the apertural face. The wall is 
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finely agglutinated. 

Material: 215 specimens 

Stratigraphic Range A: Cordatum Zone -Parandieri Zone 

Stratigraphic Range B: Mariae Zone -Cautisnigrae Zone 

Ammobaculites coprolithiformis (Schwagef), 1867 

PI. 1, Figs G-J. 

1867 Haplophragmium coprolithiformis Schwager, p. 654, pi. 34, fig. 3. 

1952 Haplophragmium aequale (Roemer); Bartenstein, p.325, pi. 1, figs 2, 11; pi. 2, 

figs 17-26; pi. 3, figs 1-6; pi. 6, figs 6-8. 

1954 Ammobaculites coprolithiformis (Schwager); Bielecka and Pozaryski, p. 160, table. 3, 

figs 6,7. 

1960 Haplophragmium aequale (Roemer); Lutze, p.438, pi. 26, figs 1,2,5,6; pi. 27, 

figs 1,2. 

1972 Ammobaculites coprolithiformis (Schwager); Wemli, p.310, pi. 11, figs 6-7; pi. 1, 

fig 16. 

Material: 1599 specimens 

Stratigraphic Range A: Mariae Zone-Baylei Zone 

Stratigraphic Range B: Henrici Zone-Cautisnigrae Zone 

Megalospheric (A) form 

PI. l,Fig. H 
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Diagnosis: A large form of Ammobaculites coprolithiformis that is initially compressed and 

planispiral, and then has a slender well developed uniserial portion. The width of the species is 

similar in proportion to the diameter of the planispire. There are 3-6 sub-triangular chambers 

that gradually increase in size as added with the last chambers of the planispire reaching back 

towards the initial chamber. There are usually 2-4 chambers in the uniserial portion. The 

sutures are distinct, depressed, radial and straight in the planispire, sloping towards initial 

chambers of the planispire in the uncoiled portion. The aperture is large, circular, terminal and 

centrally placed, sometimes at the end of a short neck. 

Remarks: There is a high degree of variabiUty in this form in the number and shape of the 

chambers. It is distinguishable from A.coprolithiformis form 'B ' by its size and the extremely 

coarse nature of the test. 

Microspheric (B) form 

PI. 1, Figs G, I, J 

Diagnosis: A relatively large form of Ammobaculites coprolithiformis that is circular and 

inflated. There are 5-7 chambers that increase in size gradually as added, with the last chamber 

seen to be widest and most inflated. The species has an initial planispiral form followed by a 

uniserial portion, and has a small depressed umbilicus. The uncoiled portion has 1-3 large 

inflated chambers that are up to twice the width than height. The sutures are distinct, 

impressed, radial and straight to curved, with the aperture seen to be large and circular, 

sometimes radial and terminal. It is centrally placed and produced on a short neck. The wall is 
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finely or coarsely agglutinated. 

Remarks: Variation in the size and type of agglutinated medium (from small quartz grains to 

ooids) are seen. This form is commonly found in flood abundances and often associated with 

other agglutinated taxa, possibly the result of the dissolution of the calcareous taxa. 

Ammobaculites deceptorius (Hausler) 

PL 1, Fig. K. 

1890 Reophax sp. indet Hausler, p. 30, pi. 3, fig. \3,sensu Lloyd, 1959 

1890 Bigenerina deceptoria Hausler (pars), pi. 74, pi. 12, figs 11-13, (non figs 8-10). 

1959 Ammobaculites deceptorius (Hausler); Lloyd, p. 310, pi.54, fig. 24a, b. 

Diagnosis: A small-medium sized species of Ammobaculites with a restricted initial coil of 2-

3 globular chambers. The uniserial portion has 3-5 chambers that are sub-globular and 

gradually increase in size, with the final chamber usually inflated. The aperture is circular, 

centrally placed and produced on a short neck. 

Material: 39 specimens 

Stratigraphic Range A: Costicardia Zone-Antecedens Zone 

Stratigraphic Range B: Mariae Zone-Praecordatum Zone 

Ammobaculites fisheri Crespin 

1953 Ammobaculites fisheri Crespin, p. 29, pi. 5, figs 4, 5. 
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Diagnosis: A small elongate species of Ammobaculites. An initial planispiral coil is followed 

by an uncoiled portion. The planispire consists of approximately 4 chambers that are 

subtriangular, increasing in size as added, and producing a sub-polygonal outline to the test. 

The uncoiled portion is rectilinear with approximately 5 chambers that decrease in size as 

added, with the first chamber twice as wide as high and the later chambers equal in height aid 

size. The sutures are constricted and the aperture is indistinct. The wall is finely agglutinated 

with occasional larger grains of quartz and ooids. 

Remarks: This species is similar in appearance to Ammobaculites agglutinans and may be a 

variant of it, despite being much smaller. Both species are found together suggesting that two 

individual species are present, and that the size difference is not coimected vsdth ecology. 

Material: 35 specimens 

Stratigraphic Range A: Vertebrale Zone-Caustinigrae Zone 

Stratigraphic Range B: Mariae Zone-Cautisnigrae Zone 

Ammobaculites fontinensis Terquem 

1870 Haplophragmium fontinense Terquem, p. 235, pi. 24, figs 29, 30. 

\9%9 Ammobaculites fontinensis (Terquem); Morris and Coleman, p.218, pi. 6.3.6, fig. 3 

Diagnosis: A small to medium sized species of Ammobaculites. The planispire consists of 2-3 

whorls that have approximately 6 sub-triangular chambers per whorl. Prior to uncoiling the 

chambers are barrel shaped and twice as wide as high. The uniserial portion has 3-4 chambers 
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that are added rectilinearly and are of similar size. The sutures are depressed distinct and 

straight. The aperture is centrally placed and terminal with the agglutinated wall composed of 

poorly sorted quartz and larger particles of lithic fragments. 

Remarks: If damaged, and the uniserial portion missing, the appearance of this species is 

close to that of a species ofHaplophragmoides. 

Material: 28 specimens 

Stratigraphic Range A: Not found in Dorset 

Stratigraphic Range B: Praecordatum Zone-Antecedens Zone 

Ammobaculites godmani (Bamaid), 1953 

PI. 1, Fig. L, PI. 2, Fig. A. 

1953 Ammobaculites minuta Barnard, p. 185, pi. A. fig. 3a-c. 

1955 Ammobaculites godmani Barnard, in Thalmann, 1955, p. 53. 

1981 Ammobaculites godmani (Barnard); Barnard et al., p.390, pi. 1, fig. 5. 

Diagnosis: A small species of Ammobaculites with 4-6 chambers in the uniserial portion that 

are wider than high initially and increase gradually in height as added, with the final chambers 

often seen to be inflated. The sutures are slightly impressed in the uniserial portion and lobate 

in the periphery. The aperture is circular and terminal. 

Remarks: Size and other differences may represent megalospheric and microspheric variants. 

The species is similar to Ammobaculites agglutinans but smaller in size. Both species are 

found together suggesting that two individual species are present, and that the size difference 
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is not an ecological factor. 

Material: 191 specimens 

Stratigraphic Range A: Mariae Zone-Caustinigrae Zone 

Stratigraphic Range B: Mariae Zone-Parandieri Zone 

Ammobaculites spp. indet. 

Remarks: Individuals of Ammobaculites that are unidentifiable due to them being pyritised 

and/or broken, 

Material: 176 specimens 

Stratigraphic Range A: Antecedens-Baylei Zone 

Stratigraphic Range B: Mariae-Cautisnigrae Zone 

Subfamily FLABELLAMMININAE Podobina, 1978 

Genus 7>//»/aj'/a Reuss, 1854 

Type species: Triplasia murchisoni Reuss, 1854 

Triplasia sp. 1 

Diagnosis: A species of Triplasia with an extreme variation in size, morphology and aperture. 

Description: During the early stage this species is planispirally enrolled, later becoming 

uncoiled with a rectilinear series of 4-6 chambers. The final chamber is inflated and reaches 

back over the previous chambers and is angular in section. The sutures are arched on the faces 
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of the test, distinct, impressed and chevron shaped. The wall is coarsely to finely agglutinated 

with some extra large quartz grains and sponge spicules. The aperture is terminal, rounded and 

produced on a neck at the mid-point of the apertural face. 

Material: 12 specimens 

Stratigraphic Range A: Antecedens Zone-Evoluta Zone 

Stratigraphic Range B: Not found in Normandy 

Family PLACOPSILINIDAE Rhumbler, 1913 

Subfamily PLACOPSILININAE Rhumbler, 1913 

Genus/*/acopj/7/>w d'Orbigny, 1850 

Type species: Placopsilina cenomana d'Orbigny, 1850 

'Placopsilina' sp. cf. Placopsilina cenomana d'Orbigny 

1850 Placopsilina cenomana d'Orbigny, p. 259 

1882 Placopsilina cenomana d'Orbigny; Hausler, p. 27, pi. 3, fig. 1. 

1992 'Placopsilina'cenomanad^Orhigny, 1850 

Diagnosis: An attached species of Placopsilina consisting of an initial small planispirally 

arranged coil followed by 2-4 barrel like chambers. The initial coil is quadrate in outline with 

approximately 4-5 sub-triangular chambers. The aperture is circular and at the open end of the 

final chamber. 

Remarks: Hodgkinson (1992) has recently reviewed the status of this species and indicated 
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that Cushman's (1920) designation of P.cenomana as the type species of the genus 

Placopsilina may have been in error. While the taxonomy of this species andgenus is resolved 

Hodgkinson (1992) indicates that the generic name be used in inverted commas (Henderson, 

1997). 

Material: 4 specimens 

Stratigraphic Range A: Not found in Dorset 

Stratigraphic Range B: Vertebrale Zone 

Superfamily SPIROPLECTAMMINACEA Cushman, 1927 

Family SPIROPLECTAMMINIDAE Cushman, 1927 

Subfamily SPIROPLECTAMMININAE Cushman, 1927 

Genus iS5!7/>op/ectoOT/Mz>7a Cushman, 1927 

Type species: Textularia agglutinans d'Orbigny var. biformis Parker and Jones, 1865 

Spiroplectammina sp. aff. S. suprajurassica Kosyreva. 

1972 Spiroplectammina suprajurassica Kosyreva, in Dain, pi. 20, figs 7-16. 

Diagnosis: A small, compressed, slender species of Spiroplectammina with a iobate periphery. 

There are 3-4 chambers arranged in a planispiral coil, with the initial chambers wider than the 

coil, with the later chambers added regularly and arranged within the plane of the coiling. The 

last 2 chambers are slightly inflated and tend towards imiserial development. The sutures are 

straight, distinct and impressed with the aperture indistinct. The agglutinated wall is composed 
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of finely agglutinated quartz grains. 

Remarks: This species of Spiroplectammina is similar to that of S.suprajwassica as figured 

by Dain (1972), althou^ the initial spire is much reduced. 

Material: 32 specimens 

Stratigraphic Range A: Evoluta Zone 

Stratigraphic Range B: Mariae Zone 

Spiroplectammina sp. 1 

Diagnosis: A small species of Spiroplectammina with chambers orientated towards the 

aperture. 

Description: A small elongated test with the early portion planispiral, later becoming biserial 

with a breadth equal to that of the early coil, and finally uniserial. The sutures are slightly 

depressed and slant upwards, with the edges of the chambers seen to have small flanges 

extending beyond the margin of the test. The wall is very finely agglutinated with the aperture 

simple, terminal and slightly produced on a short neck. 

Material: 3 specimens 

Stratigraphic Range A: Not found in Dorset 

Stratigraphic Range B: Mariae Zone 

Superfamily TROCHAMMINACEA Schwager, 1877 

Family TROCHAMMINIDAE Schwager, 1877 

Subfamily TROCHAMININAE Schwager, 1877 
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Genus Trochammina Parker and Jones, 1859 

Type species: Nautilus inflatus Montagu, 1808 

Trochammina canningensis Tappan 1955 

PI. 2, Fig B 

1865 Trochammina globigeriniformis Parker and Jones, pi. 1, fig. 12, text-fig.6C 

1955 Trochammina canningensis Tappan, p. 49, pi. 14, figs 1S19. 

1990 Trochammina canningensis Tappan; Nagy et al., p. 995, pi. 4, figs 13-16. 

Diagnosis: A small species of Trochammina with 3-5 sub-globular chambers visible on the 

ventral side. There are approximately 6 chambers per whorl and these are especially visible on 

the dorsal side of the specimens. The sutures are distinct and impressed with the aperture seen 

as an elongate slit at the base of the final chamber. 

Material: 28 specimens 

Stratigraphic Range A: Not found in Dorset 

Stratigraphic Range B: Mariae Zone 

Trochammina globigeriniformis (Parker and Jones), 1865 

PI. 2, Fig. C 

1965 Lituola nautiloidea Lamarck var. globigeriniformis Parker and Jones, p.407, pi. 15, 

figs 46,47. 
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1937 Trochammina globigeriniformis (Parker and Jones); Bartenstein and Brand, p. 189, all 

figs. 

1971 Trochammina globigeriniformis (Parker and Jones); Wemli, p. 315, pi. ^ figs 4, 9. 

1981 Trochammina globigeriniformis (Parker and Jones); Barnard et al., p. 393, 

pi. l.fig. 12, text-fig. 6C. 

Diagnosis: A small species of Trochammina with 3- 4 whorls arranged in a low trochospire. 

There are approximately four chambers per whorl with the chambers of the last whorl tending 

to be globular and inflated. 

Remarks: many compressed specimens are found but the final 4 inflated (or squashed) ventral 

chambers are always visible. The determination of this species has been questioned by 

Chamock and Jones (1990) following the suggestion of Bronnimann and Whittaker (1988) 

that the lectotype established by Loeblich and Tappan (1964) for Lituola nautiloidea Lamark 

var. globigeriniformis Parker and Jones, 1865, is virtually unrecognisable. 

Material: 140 specimens 

Stratigraphic Range A: Mariae Zone-Baylei Zone 

Stratigraphic Range B: Henrici Zone-Cautisnigrae Zone 

Trochammina sp. cf. Trochammina inflata (Montagu), 1808 

PI. 2, Fig. D. 

1808 Nautilus /n/Zato Montagu, p. 81, pi. 18, fig. 3 

1960 Trochammina inflata (Montagu), Lutze, p. 447, pi. 28, figs 1-3 
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Diagnosis: A medium sized species of Trochammina with a globose form. There are 

approximately 3 whorls in a low trochospire with 4-5 chambers in the final whorl. The dorsal 

side is rounded and smooth. The wall is finely agglutinated. 

Remarks: The poor preservation, with most specimens incomplete, prevents the author fi-om 

assigning these individuals more precisely. 

Material: 27 specimens 

Stratigraphic Range A: Caustinigrae Zone 

Stratigrapbic Range B: Cordatum Zone-Cautisnigrae Zone 

Trochammina kosyrevae Levina, 1972 

PI. 2, Figs E, F. 

1972 Trochammina kosyrevae Levina, in Dain, p. 83, pi. 22, figs S9, pi. 29, fig. 4. 

1990 Trochammina kosyrevae Levina; Nagy, Lofaldi, Backstrom and Johansen, p. 995, pi. 4, 

figs 17-20. 

Diagnosis: A compressed species of Trochammina with a low trochospire. There are 6-7 

chambers in the final whorl with both the dorsal and ventral sides convex. The chambers 

gradually increase in size as added and the sutures are distinct, depressed and curve back 

towards the periphery on the dorsal side. The wall is fmely agglutinated. 

Material: 38 specimens 

Stratigraphic Range A: Not found in Dorset 
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Stratigraphic Range B: Vertebrale Zone 

Trochammina sp. cf. Trochammina rosaceaformis Romanova 

PI. 2, Fig. G. 

1972 Trochammina aff. rosaceaformis Romanova; Dain, pi. 28, figs 4-6. 

Diagnosis: A compressed species of Trochammina with 6-7 chambers that increase rapidly in 

size. The sutures are flush and the umbilicus is shallow and wide. The wall is medium to 

finely agglutinated. 

Remarks: 

Most specimens are compressed and difficult to assign accurately. 

Material: 4 specimens 

Stratigraphic Range A: Evoluta Zone 

Stratigraphic Range B: Not found in Normandy 

Trochammina squamata Parker and Jones, 1860 

PI. 2. Fig. H. 

1860 Trochammina squamata Parker and Jones, p.304 

1937 Trochammina squamata Parker and Jones; Bartenstein and Brand, p. 190, pi. 6, fig. 41 

pi. 1 lb, fig. 6 pi. 15c, fig. 22a, b. 

1965 Trochammina squamata Parker and Jones; Gordon, p. 838, text-fig. 3, (33-35). 
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Diagnosis: A compressed species of Trochammina with three whorls comprising 

approximately six chambers per whorl. The periphery is irregular, lobate and slightly concavo-

convex, with the umbilicus small and indistinct. The sutures are distinct and impressed, radial 

and curving backwards. The wall is finely agglutinated and opaque. 

Material: 1888 specimens 

Stratigraphic Range A: Mariae Zone-Baylei Zone 

Stratigraphic Range B: Henrici Zone-Cautisnigrae Zone 

Trochammina taboryensis Levina 

1972 Trochammina taboryensis Levina, in Dain, p.89, pi. 25, figs 1-3 pi. 29, fig. 8. 

Diagnosis: A species of Trochammina with a low trochospire, consisting of three whorls of 5-

6 chambers per whorl. The final whorl is separated slightly from the initial whorls, and the 5 

chambers are visible on the ventral side. The chambers extend towards the small umbilicus. 

The wall is finely agglutinated. 

Remarks: The aperture is not visible in any of the specimens examined. 

Material: 4 specimens 

Stratigraphic Range A: Baylei Zone 

Stratigraphic Range B: Not found in Normandy 
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Trochammina sp. 1 

Diagnosis: A large species of Trochammina with an initial proloculus that is followed by 

small spherical chambers that increase rapidly in size. 

Description: A trochospiral test with chambers increasing gradually in size as added. There 

are 4-5 chambers in the final whorl with the sutures radial, distinct and the periphery rounded. 

The wall is coarsely agglutinated. The earlier chambers are covered completely by later 

chambers. 

Remarks: The aperture is not visible in any of the specimens examined, and this has 

prevented the author from assigning the few specimens more precisely. 

Material: 3 specimens 

Stratigrapbic Range A: Vertebrale Zone 

Stratigraphic Range B: Not found in Normandy 

Trochammina sp. 2 

Diagnosis: A minute species of Trochammina with a h i ^ trochospiral test. 

Description: The test is trochospiral with the chambers increasing gradually in size as added 

and arranged conically in approximately 4 whorls. There are 4 chambers per whorl, with the 

last 3 in the final whorl enlarged and inflated. The sutures are depressed, straight and triradiate 

with the periphery rounded. The wall is finely agglutinated, with the aperture an interio-

marginal, umbilical-extraumbilical arch with narrow bordering lip. The earlier chambers are 

covered completely by later chambers. 

Remarks: This species is similar to Trochammina squamata in appearance, although it is 
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smaller and has fewer chambers. 

Material: 42 specimens 

Stratigraphic Range A: Caustinigrae Zone 

Stratigraphic Range B: Not found in Normandy 

Superfamily VERNEUILINACEA Cushman, 1911 

Family VERNEUILINIDAE Cushman, 1911 

Subfamily VERNEUILINOIDINAE Suleymanov, 1973 

Genus Verneuilinoides Loeblich and Tappan, 1949 

Type species: Verneuilina schizea Cushman and Alexander, 1930 

Verneuilinoides tryphera Loeblich and Tappan 1950 

1950 Verneuilinoides tryphera Loeblich and Tappan, p. 42, pi. 11, fig. 16a, b. 

1989 Verneuilinoides tryphera Loeblich and Tappan; Morris and Coleman, p. 220, pi. 6.3.6, 

fig. 17. 

Diagnosis: A very small species of Verneuilinoides with a triangular test and lobate periphery. 

The chambers are sub-globular and increase gradually in size with the last set of chambers 

inflated. There are 4-5 sets of diambers, with the length of the species up to three times the 

width. The sutures are distinct and impressed, with the aperture a large rounded arch that is 

situated towards the penultimate chamber. 

Material: 2 specimens 
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Stratigraphic Range A: Not found in Dorset 

Stratigraphic Range B: Praecordatum Zone-Parandieri Zone 

Verneuilinoides sp 1 

PI. 2, Fig. I. 

Diagnosis: A small species of Vemeuilinoides with a triangular test that flares rapidly towards 

the last few chambers. 

Description: A species with a multilocular test, in which the early stage is trochospiral, 

triserial or biserial, and which later may be uniserial. The chambers are generally subglobular 

and have a 4-5 set arrangement. The chambers are rapidly increasing in size as added. The 

wall is agglutinated and composed of medium to coarse grained quartz. The sutures are 

impressed although they can be indistinct. 

Remarks: The aperture is not visible in this specimen due to the coarse nature of the 

agglutinated grains. 

Material: 1 specimen. 

Stratigraphic Range A: Not found in Dorset 

Stratigraphic Range B: Mariae Zone 

Subfamily VERNEUILININAE Cushman, 1911 

Genus Gaudryina d'Orbigny, 1839 

Type species: Gaudryina rugosa 6.''Orhigay, 1840 
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Gaudryina sherlocki (Bettenstaedt), 1952 

1952 Gaudryinella sherlocki Bettenstaedt, p. 268, pi. 1, figs 1-5. 

1960 Gaudryina uvigeriniformis E. and I.Seibold, p. 34, text-fig. 8f, pi. 7. fig. 4. 

1960 Gaudryina sp. 2 Lutze, p. 447, pi. 27, figs 6,7. 

1968 Gaudryina sp. 2 Lutze; Guyader, p. 125, pi. 26, fig. la-d. 

1981 Gaudryina sherlocki Bettenstaedt; Barnard et al., pi. 1, fig. 17, text. fig. 

6A,B 

1989 Gaudryina sherlocki Bettenstaedt; Shipp, p. 252, pi. 6.4.1, fig. 7. 

Diagnosis: An elongate, cuniform species of Gaudryina with an initial trochospiral portion 

followed by a biserial portion. The aperture is seen as a cresentric basal slit. 

Remarks: This species was originally described from the Lower Cretaceous, but has been 

described from the mid-Jurassic by Barnard et al. (1981), Shipp (1989) and Henderson (1997). 

It would appear, therefore, that the range of this taxon may extend into the Mid-Jurassic 

although originally described from the Lower Cretaceous. 

Material: 14 specimens 

Stratigraphic Range A: Not found in Dorset 

Stratigraphic Range B: Mariae Zone 

Superfamily TEXTULARIACEA Ehrenberg, 1838 

Family EGGERELLIDAE Cushman, 1937 

Subfamily EGGERELLINAE Cushman, 1937 
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Genus Îggere/Zfl Cushman, 1935 

Type Species: Vemeuilina bradyi Cushman, 1935 

Eggerella? meentzeni (Klingler) sensu Lloyd 

PI. 2, Fig. J. 

1955 Valvulina meentzeni KWngleT, p. 201, pi. 12, fig. 13a-c 

1959 Eggerella? meentzeni (Klingler); Lloyd, p. 317, pi. 54, fig. 32; text-fig. 5f-h 

Diagnosis: A small wedge shaped species of Eggerella with a rounded and lobate periphery. 

There are approximately 15 chambers that are arranged in an initial trochospire but are then 

triserial. Initially the chambers are not inflated but then become sub-globular and inflated. The 

sutures are distinct and impressed, with the aperture a medium arch in the middle of the final 

chamber. The agglutinated wall is composed of fine quartz with some larger opaque mineral 

grains. 

Remarks: Due to the pjoor preservation of the specimens it is difficult to be certain about their 

precise identification. The author follows Lloyd (1959) in assigning this species to the genus 

Eggerella. 

Material: 4 specimens 

Stratigraphic Range A: Antecedens Zone 

Stratigraphic Range B: Praecordatum Zone 
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Family TEXTULARIIDAE Ehrenberg, 1838 

Subfamily TEXTULARIINAE Ehrenberg, 1838 

Genus 5ige«en»a d'Orbigny, 1826 

Type species: Bigenerina nodosaria d'Orbigny, 1826 

Bigenerina clavellata Loeblich and Tappan 

1946 Bigenerina clavellata Loeblich and Tappan, p. 245, pi. 35, figs 7-8. 

1951 Bigenerina clavellata Loeblich and Tappan; Bartenstein and Brand, p. 275, pi. 4, figs 

75-76. 

Diagnosis: An elongate, narrow species of Bigenerina with a biserial and uniserial portion. 

The biserial portion consists of 5 pairs of chambers with impressed sutures that follow the 

initial proloculus. The uniserial portion has 5 barrel like chambers that are rectilinear and 

increase in height gradually. The sutures are constricted and impressed. The aperture is 

terminal and ovate. 

Remarks: If the species is broken, leaving the biserial portion isolated, then its appearance 

may resemble that of Textularia jurassica (Giimbel) due to the similarity in size of the two 

species. 

Material: 2 specimens 

Stratigraphic Range A: Antecedens Zone 

Stratigraphic Range B: Not found in Normandy 
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Textularia pugiunculus (Schwager) 

PI. 2, Figs K, L. 

1865 Textularia pugiunculus Schwager, p. 140, pi. 7, fig. 16 

1965 Textularia pugiunculus (Schwager); Gordon, p. 834, text^g. 3 (20-22). 

Diagnosis: A small slender species of Textularia with 12-14 chambers that are initially v\dder 

than high. The chambers are compressed and slowly increase in size with the later chambers 

inflated, globular and semi-spherical. The sutures are impressed, distinct wdth the lateral 

sutures straight to curved, sloping towards the periphery from the central zigzag suture. The 

aperture is an indistinct basal arch that is located in an excavated portion of the apertural face. 

Remarks: The species is very variable in chamber size and inflation. It may be a variant of 

Textularia jurassica as there are similarities in the number of chambers and apertural 

characteristics. 

Material: 223 specimens 

Stratigraphic Range A: Mariae Zone-Baylei Zone 

Stratigraphic Range B: Mariae Zone-Cautisnigrae Zone 

Textularia jurassica Giimbel 

PI. 3, Figs A, B 

1862 Textularia jurassica Giimbel, p. 228, pi. 4, fig. 17a, b. 

1965 Textularia jurassica (Giimbel); Gordon, p. 835, text-fig. 3 (19). 
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Diagnosis: A small species of Textularia with a triangular test of 10-14 chambers that slowly 

increase in size as added. The final chamber is slightly inflated with its width equal to ib 

height. The sutures are impressed, straight and distinct, with a central zig-zag suture that is 

indistinct. The aperture is a basal arch and is medianly placed on the apertural face. The wall 

is finely agglutinated with some irregularly sized particles. 

Remarks: Similarities between this and other species of Textularia, such as Textularia 

pugiunculus (Schwager), are common especially when entire specimens are not present. 

Material: 237 specimens 

Stratigraphic Range A: Cordatum Zone-Evoluta Zone 

Stratigraphic Range B: Henrici Zone-Cautisnigrae Zone 

Textularia sp. 1 

Diagnosis: A large, squat species of Textularia with large globular chambers that have a 

loose, biserial arrrangement. 

Description: The test is biserial throughout with the chambers large and globular, sutures 

depressed and the margins lobate. The aperture is a thin basal sUt and the wall is finely 

agglutinated. 

Material: 1 specimen 

Stratigraphic Range A: Not found in Dorset 

Stratigraphic Range B: Antecedens Zone 
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Suborder INVOLUTININA Hohenegger and Filler, 1977 

Family INVOLUTINIDAE Butschli, 1880 

Subfamily INVOLUTININAE Butschli, 1880 

Genus 7roc/jo//«aPaalzow, 1922 

Type Species: Involutina conica Schlumberger, 1898. 

Trocholina nodulosa Seibold and Seibold. 

PL 3, Figs C, D. 

1960 Trocholina nodulosa Seibold and Seibold, p. 376, text-fig. 7i, m, n, pi. 7, fig. 1. 

1989 Trocholina nodulosa Seibold and Seibold; Shipp, p. 255, pi. 6.4.1, figs 17, 18. 

Diagnosis: A small species of Trocholina with chambers coiled in a low trochospire of 4-5 

whorls following an initial small proloculus. The final chamber is wide and covers 

approximately half of the ventral side producing a deep umbilicus. The ventral side is concave 

and covered in small nodules with the dorsal side convex. The aperture is at the open end of 

the penultimate chamber and is flattened and circular. 

Remarks: The low trochospire with an apical angle of approximately 120 degrees 

distinguishes this species from that of Trocholina conica (Schlumberger). 

Material: 2964 specimens 

Stratigraphic Range A: Vertebrale Zone-Baylei Zone 

Stratigraphic Range B: Mariae Zone-Cautisnigrae Zone 
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Suborder SPIRILLININA Hohenegger and Filler, 1975 

Family SPIRILLINIDAE Reuss and Fritsch, 1861 

Genus iS/o/W/Z/wa Ehrenberg, 1843 

Type species: Spirillina vivapara Ehrenberg, 1843 

Spirillina andreae Bielecka 

1960 Spirillina andreae Bielecka, p. 144, pi. 8, fig. 65. 

Diagnosis: A very small plano-concave species of Spirillina. The small proloculus is followed 

by 4-5 whorls which increase in width as they are added, with the later whorls becoming 

higher and thinner and producing a small initial depression. The final whorl is wider and seen 

to be flat against the penultimate whorl. 

Material: 4 specimens 

Stratigraphic Range A: Antecedens Zone 

Stratigraphic Range B: Mariae Zone 

Spirillina infima (Strickland) emend. Barnard, 1952 

1846 Orbis infimus Strickland, p. 13, text-fig. a. 

1952 Spirillina infima (Strickland); Barnard, p. 906, text-figs 1-3. 

1960 Trisegmentina sp. 1 Lutze, p.493, pi. 33, fig, 4. 

1962 Spirillina infima (Strickland); Lloyd, p. 374, pi. 1, figs 2a-b, 3a-b. 
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1981 Spirillina infima (Strickland); Barnard et ah, p. 427, pi. 4, figs 1, 2. 

Diagnosis: A small planispirally enrolled form of Spirillina that is sometimes trochospiral. 

The globular proloculus is followed by 5-8 whorls which gradually increase in size and width 

producing a shallow umbilicus. The final whorl is generally larger that the penultimate whorl 

and embraces the previous whorls. The aperture is seen at the open end of the fmal chamber. 

Remarks: The presence of pores in this specimen places it within the genus Spirillina. 

Barnard's (1952) thorough re-description of the species is followed here. 

Material: 1 specimen 

Stratigraphic Range A: Not found in Dorset 

Stratigraphic Range B: Mariae Zone 

Spirillina tenuissima Giimbel, 1862 

1862 Spirillina tenuissima Giimbel, p. 214, fig. 12a, b. 

1875 Spirillina numismalis Terquem and Berthelin, p. 17, pi. 1, fig. 13. 

1981 Spirillina tenuissima Gumbel; Barnard et al., p. 428, pi. 4, figs 4, 8. 

Diagnosis: A small species oi Spirillina that is planispirally enrolled with 7-11 whorls that 

gradually increase in width following a small spherical proloculus. The whorls are evolute and 

of similar size and width. The aperture is found at the open end of the tube. 

Material: 67 specimens 

Stratigraphic Range A: Antecedens Zone-Caustinigrae Zone 
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Stratigraphic Range B: Mariae Zone 

Suborder MILIOLINA Delage and Herouard, 1896 

Superfamily CORNUSPIRACEA Schultze, 1854 

Family CORNUSPIRINAE Schultze, 1854 

Subfamily CORNUSPIRA Schultze, 1854 

Genus Cornuspira Schultze, 1854 

Type Species: OrbisfoliaceusV\\i^Tpp\, 1844 

1 Cornuspira s^. 1. 

PI. 3, Figs E, F. 

Diagnosis: A concavo-convex species of Cornuspira with a circular lateral view. 

Description: A free, discoidal test with an initial globular proloculus that is followed by a 

second chamber that is spirally wound then trochospiral into 3-4 coils. The second chamber 

becomes flattened and irregular towards the periphery, with the last whorl developing a central 

groove and becoming pinched towards the periphery. The test is calcareous, porcellaneous, 

and imperforate, with occasional transverse growth lines. The aperture is at the open end of 

the tube. 

Material: 11 specimens 

Stratigraphic Range A: Cordatum Zone-Antecedens Zone 

Stratigraphic Range B: Henrici Zone-Mariae Zone 
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Corrmspira sp. 2. 

Diagnosis: An extremely compressed species of Comuspira with a planispirally enrolled 

second chamber. 

Description: A free, discoidal test with an initial small proloculus is imdivided and 

planispirally enrolled. The test is calcareous, porcellaneous, and imperforate, with a smooth 

wall surface and occasional transverse growth lines. The aperture is at the open end of the 

second chamber and is slit like. 

Material: 2 specimens 

Stratigraphic Range A: Baylei Zone 

Stratigraphic Range B: Not found in Normandy 

Family NUBECULARIIDAE Jones, 1875 

Subfamily NUBECULINELLINAE Avnimelech and Riess, 1954 

Genus iVM6ecM//«e//a Cushman, 1930 

Type species: Nubeculinella bigoti Cushman, 1930 

Nubeculinella bigoti Cushmsm, 1930 

PL 3, Figs G, HC 

1930 Nubeculinella bigoti Cushman, p. 134, pi. 4, figs 3,4. 

1962 Nubeculinella bigoti Cushman; Adams, p. 162, pi. 22, figs 1-7, text-fig. 10, G.F. 

1968 Nubeculinella bigoti Cushman; Guyader, p. 128, pi. 19, fig 12,pi. 26, fig. 5a, b 
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Diagnosis: A species of Nubeculinella with an attached test consisting of an initial coil 

followed by a number of pyriform chambers tapering to a tube4ike end, where they join to the 

base of the subsequent chambers. The aperture is simple and consists of a semi-circular 

opening at the end of the tube against the attached substrate. 

Remarks: The species usually occurs in floods. Specimens are commonly found attached to 

large foraminifera (e.g., Ammobaculites coprolithiformis (Schwager) and Lenticulina munsteri 

(Roemer)) or to macrofossil debris. 

Material: 516 specimens 

Stratigraphic Range A: Mariae Zone-Vertebrale Zone 

Stratigraphic Range B: Henrici Zone-Cautisnigrae Zone 

Nubeculinella tibia (Jones and Parker), 1860 var. bulbifera (Paalzow), 1932 

PI. 3, Fig H 

1860 Nubecularia lucifuga Defrance var. tibia Jones and Parker, p. 445, pi. 20, fig. 48. 

1932 Nodobacularia bulbifera Paalzow, p. 96, pi. 5, figs 4-6 

1962 Nubeculinella tibia (Jones and Parker) var. bulbifera (Paalzow); Adams, p.l65, pi. 23, 

fig. 9. 

1968 Nubeculinella tibia (Jones and Parker); Guyader, p. 130, pi. 26, fig. lOa-c. 

Diagnosis: A variable species of Nubeculinella with an attached test consisting of irregularly 

arranged chambers. The chambers are aludel in shape and pustulose on the initial part of the 
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test. 

Remarks: A large degree of variation within the chamber shape and arrangement of these 

specimens suggests that there may be more than one species represented. 

Material: 41 specimens 

Stratigraphic Range A: Not found in Dorset 

Stratigraphic Range B: Vertebrale Zone 

Family OPHTHALMIDIIDAE Wiesner, 1920 

Genus Ophthalmidium Kiibler and Zwingli, 1870 

Type species Oculina liassica Kiibler and Zwingli, 1870 

Ophthalmidium compressum Barnard et al., 1981 

1981 Ophthalmidium compressum Barnard et al., p. 398, pi. 1, figs 24, 27, 

text-fig. 9A, 1-9. 

Diagnosis: A compressed species of Ophthalmidium with a variable outline and an acute, 

sometimes keeled, periphery. The aperture is extended on a long neck and surroimded by a 

small lip, which is circular and terminal. 

Remarks: Barnard et al. (1981) first described this species where the complete range of 

chamber arrangements was presented. 

Material: 60 specimens 

Stratigraphic Range A: Antecedens Zone 
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Stratigraphic Range B: Mariae Zone-Cordatum Zone 

Ophthalmidium strumosum (Giimbel) 1862 

PI. 4, Figs A-C. 

1862 Guttulina strumosa GiJanhel, p. 227, pi. 4, figs 13, 14. 

1955 Ophthalmidium strumosum (Gumbel), Seibold and Seibold, p. 102, pi. 3, figs h, i. 

Diagnosis: An elongate and compressed species of Ophthalmidium with approximately 8 

chambers arranged as two per whorl, following a small proloculus. The final two chambers are 

inflated and thicker than the previous chambers and are aborally swollen. The aperture is 

simple and circular to slightly ovate. It is terminal and extended on a short neck, often with a 

small 'v' shaped incision on the rim of the neck. 

Remarks: This species has a very variable morphology. There appears to be a variable 

rugosity fi-om very little to specimens that are almost totally hispid. 

Material: 654 specimens 

Stratigraphic Range A: Cordatum Zone-Vertebrale Zone 

Stratigraphic Range B: Henrici Zone-Cautisnigrae Zone 

Superfamily MILIOLACEA Ehrenberg, 1839 

Family SPIROLOCULINIDAE Wiesner, 1920 

Genus Spiroloculina d'Orbigny, 1826 

Type species: Spiroloculina depressa d'Orbigny, 1826 
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Spiroloculina variablilis Barnard et al., 1981 

PI. 4, Figs D, E 

1981 Spiroloculina variablilis Barnard et al., p. 402, text-figs 1 IB, a-g. 

Diagnosis: A compressed and smooth species of Spiroloculina with an ovate outline. 

Remarks: The species is highly variable with a chamber arrangement that lies between 

Quinqueloculina and Spiroloculina. 

Material: 40 specimens 

Stratigraphic Range A: Cordatum Zone-Caustinigrae Zone 

Stratigraphic Range B: Lamberti Zone-Cautisnigrae Zone 

Family HAUERINIDAE Schwager, 1876 

Subfamily HAUERININAE Schwager, 1876 

Genus Ma5'5///>;a Schumberger, 1893 

Massilina sp. cf. M dorsetensis Cifelli 

cf \959 Massilina dorsetensis Cifelli, p. 286, pi. 1, figs 1S17. 

Diagnosis: A small species of Massilina with an oval to sub-oval outline. There are 6-8 

chambers, with two per whorl increasing in size as added. The test is initially quinqueloculine 
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with later chambers added in opposition. The sutures are flush and the aperture indistinct and 

terminal. 

Material: 48 specimens 

Stratigraphic Range A: Mariae Zone-Antecedens Zone 

Stratigraphic Range B: Mariae Zone-Cautisnigrae Zone 

Type species Quinqueloculina secans d'Orbigny, 1826 

Genus Quinqueloculina d'Orbigny 

Type species: Serpula seminulum Linne, 1758 

Quinqueloculina horelli Barnard et al., 1981 

PI. 4, Figs F-I 

1981 Quinqueloculina horelli Barnard et al., p. 405. pl.l, fig. 24, text-figs 

1 lA, a-c. 

Diagnosis: A small elongate species of Quinqueloculina with an ovate to sub-rectangular test. 

It consists of five chambers, two large and embracing, with the last chamber inflated at the 

proximal end. The aperture is terminal, extended on the end of a short neck, is bordered by a 

thin lip that is circular and contains a small tooth. 

Remarks: The species displays variable coiling that falls between Quinqueloculina and 

Spiroloculina. This variability means that the specimens cannot always be assigned with 

certainty. 
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Material: 624 specimens 

Stratigraphic Range A: Mariae Zone-Antecedens Zone 

Stratigraphic Range B: Mariae Zone-Cautisnigrae Zone 

Quinqueloculina sp. 1. 

Diagnosis: A distinct species of Quinqueloculina with an elongate test 

Description: The test is ovate in outline with the chambers long, narrow and quinqueloculine 

in shape. The sutures are distinct and impressed with the aperture a simple circular opening 

extended on the end of a long neck. The wall is calcareous, imperforate and porcellaneous. 

The aperture is ovate, flush with the surface, and provided with a bifid tooth. 

Material: 4 specimens 

Stratigraphic Range A: Not found in Dorset 

Stratigraphic Range B: Henrici Zone-Mariae Zone 

Suborder LAGENINA Delage and Herouard, 1896 

Superfamily ROBULOIDACEA Reiss, 1963 

Family ROBULOIDIDAE Reuss, 1963 

Genus Fa/50pa/mM/a Bartenstein, 1948 

Type Species Flabellina tenuistriata Franke, 1936 

Fahopalmula sp. cf F. deslongchampsi (Terquem) 
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1864 Flabellina deslongchamps Terquem, p. 216, pi. 10, fig. 13 

1960 Falsopalmula deslongchampsi (Terquem); Lutze, p. 464, pi. 32, fig. 15 

Diagnosis: A small species of Falsopalmula which is compressed and parallel sided. The 

sutures are impressed and distinct with the 4 chambers arranged in an initial citharinid-like 

coil followed by chevron chambers. 

Remarks: Only 2 specimens are recorded and cannot be assigned to this species with 

certainty. 

Material: 2 specimens 

Stratigraphic Range A: Not found in Dorset 

Stratigraphic Range B: Mariae Zone 

Superfamily NODOSARIACEA Ehrenberg, 1838 

Family NODOSARIIDAE Ehrenberg, 1838 

Subfamily NODOSARIINAE Ehrenberg, 1838 

Genus Dentalina Risso, 1826 

Type species A ôcfoj'flr/a (Dentalim) cuvieri d'Orbigny, 1826 

Dentalina bicomis Terquem 

1870 Dentalina bicornis Terquem, p. 268, pi. 29, figs 13-17 

1965 Dentalina bicornis Terquem; Gordon, p. 843, text-fig. 7, (1-3) 
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Diagnosis: An elongate irregular species of Dentalina with an initial proloculus followed by 6 

chambers. The chambers rapidly increasing in size initially and then constantly, becoming 

inflated later, with the final chamber slightly pyriform. The sutures are initially flush 

becoming impressed, sloping obliquely fi-om apertural margins to non-apertural margin. The 

periphery is initially smooth, later becoming lobate, especially on the non-apertural margin. 

The aperture is radiate, terminal and peripheral produced on a short neck. 

Material: 2 specimens 

Stratigraphic Range A: Vertebrale Zone 

Stratigraphic Range B: Not found in Normandy 

Dentalina sp. aff. D. communis d'Orbigny^en '̂w Cifelli 

PI. 4, Fig. J 

1959 Dentalina sp. aff. D. communis d'Orbigny; Cifelli, p. 307, pi. 4, figs 14-15 

Diagnosis: A small species of Dentalina with a curvilinear test of inflated chambers that 

rapidly increase in size. The initial chambers are small and irregular with the larger chambers 

inflated and globular. The sutures are impressed and almost straight with the aperture terminal, 

slightly produced and radiate. 

Remarks: As only one specimen was recorded it cannot be confidently assigned to this 

species. 

Material: 1 specimen 

Stratigraphic Range A: Evoluta Zone 
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Stratigraphic Range B: Not found in Normandy 

Dentalina debilis (Berthelin) 

1880 Marginulina debilis Berthelin, p. 35, pi. 3, fig. 28. 

1951 Dentalina debilis (Berthelin); Bartenstein and Brand, p. 310, pi. 10, figs 239-240. 

Diagnosis: A small elongate, thin, delicate species of Dentalina with distinct sutures that are 

impressed sharply and slope from the apertural to non-apertural margin. The apertural margin 

is distinct and entire with the non-apertural margin lobate. The aperture is produced on the end 

of the final chamber and is simple and circular on a short neck. 

Remarks: This species is originally described from the Cretaceous of the Gault clay. 

Material: 27 specimens 

Stratigraphic Range A: Baylei Zone 

Stratigraphic Range B: Henrici Zone-Cautisnigrae Zone 

Dentalina giimbeli Schwager, 1865 

PI. 4, Fig. K 

1865 Dentalina giimbeli Schwager, p. 101, pi. ii, fig. 20. 

1952 Dentalina giimbeli Schwager; Barnard, p. 346, fig. a, 7. 

Diagnosis: An elongate and narrow species of Dentalina with approximately 9 chambers 
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following an ellipsoidal proloculus. The sutures are depressed and slightly constricted. The 

chambers are barrel-like and gradually increase in size. The final chamber is inflated and 

slightly pyriform. The apertural is terminal and radiate. 

Remarks: The considerable variation in test shape observed in this species, from arcuate to 

straight, makes this species a "potential dustbin" for Dentalina. 

Material: 50 specimens 

Stratigraphic Range A: Mariae Zone-Evoluta Zone 

Stratigraphic Range B: Mariae Zone-Cautisnigrae Zone 

Dentalina marsupifera Schwager 

PI. 4, Fig. L 

1865 Dentalina marsupifera Schwager, p. 110, pi. 3, fig. 27, pi. 4, figs 7, 9. 

Diagnosis: A small species of Dentalina with three globular chambers and a lobate periphery. 

The initial large globular proloculus is followed by two inflated chambers, with the final 

chamber slightly pyriform. The aperture is radiate, terminal and produced on a short neck 

Material: 2 specimens 

Stratigraphic Range A: Vertebrale Zone 

Stratigraphic Range B: Praecordatum Zone 

Dentalina torta Terquem, 1858 

PI. 5, Fig. A. 
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1858 Dentalina torta Terquem, p. 599, pi. 2, fig. 6a, b. 

1941 Dentalina torta Terquem; Macfayden, p. 41, pi. 2, fig. 36. 

1981 Dentalina torta Terquem; Barnard et ah, p. 406. pi. 2, fig. 1. 

Diagnosis: A species of Dentalina with six chambers in which the test often appears to be 

twisted. The sutures are constricted, initially sloping and later becoming horizontal. The 

aperture is radiate, marginal and terminal. 

Material: 92 specimens 

Stratigraphic Range A: Mariae Zone-Antecedens Zone 

Stratigraphic Range B: Henrici Zone-Cautisnigrae Zone 

Dentalina varians Terquem emend. Barnard 

1866 (pars) Dentalina varians Terquem, p. 412, pi. 15, fig. 19b, c (pars. 19d) 

1950 Dentalina varians Terquem; Barnard, p. 22, text-fig. 13. 

Diagnosis. An elongate species of Dentalina with 3-6 chambers following a large proloculus. 

The sutures are constricted with small neck-like junctions between the chambers The aperture 

is terminal, marginal and radiate. 

Remarks: The emendation of Barnard (1950) confirmed the smoothness of the test. 

Material: 9 specimens 

Stratigraphic Range A: Not found in Dorset 

123 



Chapter 4 

Stratigraphic Range B: Mariae Zone-Cautisnigrae Zone 

Dentalina vetusta d^Orhigay, 1850 

PI. 5, Fig. B 

1850 Dentalina vetusta d'Orbigny, p. 242, no. 258 

1941 Dentalina vetusta d'Orbigny; Macfayden, p. 41, pi. 2, fig. 37. 

1981 Dentalina vetusta d'Orbigny; Barnard et ah, p. 406, pi. 2, fig. 3. 

Diagnosis: A small species of Dentalina with 6-8 chambers. The sutures are flush and not 

constricted, with both margins entire. The aperture is large and terminal on a short neck, with 

approximately 10 radiating grooves terminating at a junction with the final chamber. 

Material: 13 specimens 

Stratigraphic Range A: Not found in Dorset 

Stratigraphic Range B: Henrici Zone-Mariae Zone 

Nodosaria sp. cf Nodosaria balteata Loeblich and Tappan 

1950 Nodosaria balteata Loeblich and Tappan, p. 13, pis. 6-8. 

Diagnosis: A small ribbed species oiNodosaria with 8 chambers that increase rapidly initially 

and then uniformly. The sutures are straight and flush with an ornament of 12 low, blade-like 

ribs, which extend from the base of the proloculus vertically across the whole test. 

Remarks: The aperture is not visible in this specimen. As only one specimen was recorded it 
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is difficult to make a firm identification. 

Material: 1 specimen 

Stratigraphic Range A: Not found in Dorset 

Stratigraphic Range B: Lamberti Zone 

Nodosaria corallina Giimhel, 1862 

1862 Nodosaria corallina Giimbel, p. 218, pi. 3, fig. 10a, b. 

1955 Nodosaria corallina Giimbel; Seibold and Seibold, p. 113, pi. 13, fig. 10a, b, text-fig. 

2k,l. 

1960 Nodosaria corallina Gumbel; Lutze, p. 475, pi. 28, fig 20. 

1962 Nodosaria cf hortensis Terquem; Cordey, p. 390, pi. 47, fig. 26. 

Diagnosis: An elongate species of Nodosaria consisting of a large spiral proloculus and 2-5 

subglobular chambers arranged in a rectilinear series, with the first chamber smaller than the 

proloculus. Ornamentation comprises 8-10 vertical ribs extending over the entire test and 

terminating at the aperture, which is terminal and radiate. 

Remarks: There is considerable variation in chamber size within this species, although the 

morphology of the second chamber is always distinctive. 

Material: 19 specimens 

Stratigraphic Range A: Costicardia Zone-Caustinigrae Zone 

Stratigraphic Range B: Henrici Zone-Cordatum Zone 
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Nodosaria opalini Bartenstein 

PI. 5, Figs C, D 

1937 Nodosaria opalini Bartenstein in Bartenstein and Brand, p. 147, pi. 8, fig. 13a, b, pi. 10, 

fig. 18a, b, table 7. 

Diagnosis: A minute species of Nodosaria with 7-8 chambers arranged in a rectilinear series 

with an acuminate initial portion. The chambers increase slowly as added imtil the fifth 

chamber is reached, after which the chambers maintain a constant diameter. The ornament 

consists of numerous longitudinal striae and the aperture is radiate and terminal. 

Material: 38 specimens 

Stratigraphic Range A: Cordatum Zone-Baylei Zone 

Stratigraphic Range B: Henrici Zone-Cautisnigrae Zone 

Nodosaria sp. cf. N rudis d'Orbigny 

1846 Nodosaria rudis d'Orbigny, p. 33, pi. 1, figs 17-19. 

1965 Nodosaria sp. cf N rudis d'Orhigay; Gordon, p. 848, text-fig. 7 (20, 21) 

Diagnosis: A medium sized species of Nodosaria with a very distinctive chamber 

arrangement. The ovate chambers increase in size as added. They narrow sharply towards the 

sutures, which are distinct, constricted and depressed. Ornament consists of many minute 

spines and the aperture is flush or slightly produced on a thin neck and is radiate. 
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Remarks: As only 5 specimens are recorded it is difficult to assign them to a species more 

accurately. 

Material: 5 specimens 

Stratigraphic Range A: Antecedens Zone 

Stratigraphic Range B: Praecordatum Zone 

Nodosaria simplex (Terquem) 

1858 Dentalina simplex Terquem, p. 599, pi. 2, fig. 5a, b. 

1937 Nodosaria simplex (Terquem); Bartenstein and Brand, p. 144, pi. 13, fig. 8. 

Diagnosis: A small species of Nodosaria with a large proloculus and a smooth test. The 

chambers are slightly inflated although usually imiform in size. The sutures are constricted and 

straight. 

Remarks: The aperture is not visible in the limited number of specimens recovered. 

Material: 8 specimens 

Stratigraphic Range A: Vertebrale Zone 

Stratigraphic Range B: Henrici Zone-Mariae Zone 

Genus/'.yeMi/o«octojar/af Boomgaart, 1949 

Type species: Glandulina discreta Reuss, 1850 

Pseudonodosaria vulgata (Bomemann) 
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PL. 5, Fig. E. 

1854 Glandulina vM/ĝ o/o Bomemann, p. 31, pi. 2, figs 1-2. 

1972 Pseudonodosaria ex.gr. vulgata (Bomemann); Norling, p. 86, pi. 46 A-C 

1981 Pseudonodosaria vulgata (Bomemann); Barnard et al., p. 410, pi. 3, 

figs 9, 11. 

Diagnosis: A small species of Pseudonodosaria with sub-globular chambers. The final 

chamber is inflated. The sutures are slightly impressed and the aperture is radiate and terminal. 

Material: 9 specimens 

Stratigraphic Range A: Not found in Dorset 

Stratigraphic Range B: Mariae Zone-Vertebrale Zone 

Subfamily LINGULININAE Loeblich and Tappan, 1961 

Genus Lingulina d'Orbigny, 1826 

Type Species Lingulina carinata d'Orbigny, 1826 

Lingulina cernua (Berthelin), 1879 

PI. 5, Figs F-H. 

1879 Frondicularia cernua Berthelin, pi. 1, p. 32, figs 7-8 

1936 Lingulina cernua (Berthelin); Franke, p. 61, pi. 6, fig. 8b, c 

1956 Lingulina cf cernwa (Berthelin); Barnard, p. 274, pi. 1, fig. 6a, b. 
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Diagnosis: A compressed species of Lingulina with 6-8 elongate chambers. The large 

spherical proloculus is followed by chambers that gradually increase in size. The sutures are 

distinct, impressed and straight, with the aperture terminal, flush and oval in shape. 

Remarks: There is some variation in the size of this species, with micro- and megalo-spheric 

variations apparent. The first chamber may be smaller than the proloculus. 

Material: 47 specimens 

Stratigraphic Range A: Vertebrale Zone-Antecedens Zone 

Stratigraphic Range B: Lamberti Zone-Cautisnigrae Zone 

Lingulina laevissima (Terquem), 1866 

1866 Frondiculina laevissima Terquem, p. 481, pi. 19, fig. 19a, b. 

1968 Lingulina laevissima (Terquem); Guyader, p. 161, pi. 23, fig. 7, pi. 28, fig. 2a-k 

Diagnosis: A very thin species of Lingulina with 5-7 chambers. The chambers increase slowly 

as added with the final chamber sometimes inflated and pyriform. The sutures are faint, 

slightly impressed and straight to slightly convex-up. The aperture is terminal and ovate. 

Material: 214 specimens 

Stratigraphic Range A: Mariae Zone-Baylei Zone 

Stratigraphic Range B: Henrici Zone-Cautisnigrae Zone 

Lingulina nodosaria (Terquem) 1870 
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1870 Frondicularia nodosaria Terquem, p. 319, pi. 22, figs 2S29, 30. 

1960 Frondicularia nodosaria Terquem; Lutze, p. 468, pi. 32, fig. 13. 

1971 Lingulina nodosaria (Terquem); Wemli, p. 326, pi. 6, fig. 13. 

1981 Lingulina nodosaria (Terquem); Barnard et al., p. 411, pi. 3, fig. 3. 

Diagnosis: A compressed species of Lingulina with parallel sides. The small proloculus is 

followed by 6-10 chambers, which gradually increase in size as added. The sutures are arcuate 

to straight, and slightly constricted. Ornamentation consists of long, fine striae, which are 

variable in shape and number. The aperture is terminal, produced and slit4ike. 

Material: 41 specimens 

Stratigraphic Range A: Mariae Zone-Evoluta Zone 

Stratigraphic Range B: Henrici Zone-Cautisnigrae Zone 

Lingulina pupa (Terquem) 

1866 Marginulina pupa Terquem, p. 429, pi. 17, fig. 7a-f 

1971 Lingulina pupa (Terquem); Wemli, p. 329, p. 5, figs 13-16. 

Diagnosis: A small species of Lingulina with 4 inflated chambers. A large proloculus is 

followed by 3 inflated chambers, which increase in size as added, the fmal chamber being 

inflated and slightly pjriform. The aperture is flush and ovate. 

Material: 12 specimens 
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Stratigraphic Range A: Vertebrale Zone 

Stratigraphic Range B: Mariae Zone-Cautisnigrae Zone 

Lingulina spp. indet 

PL 5, Figs I-K. 

Remarks: This includes indeterminate specimens and specimens which are broken and/or 

pyritised. 

Material: 66 specimens 

Stratigraphic Range A: Costicardia Zone-Caustinigrae Zone 

Stratigraphic Range B: Mariae Zone-Praecordatum Zone 

Subfamily FRONDICULARIINAE Reuss, 1860 

G&mxs FrondiculariaT>QfrancQ, 1826 

Type Species: Renulina complanata Defi-ance, in de Blainville, 1824 

Frondiculariafranconica Giimbel, 1862 

PI. 5, Fig. M, PI. 6, Fig. A 

1862 Frondiculariafranconica Gtimbel, p. 219, pi. 3, fig. 13a-c 

1952 Frondiculariafranconica Gumbel; Barnard, p. 340, fig Al 

1960 Frondiculariafranconicafranconica Gumbel; Lutze, p. 470, pi. 32, figs 3,5. 

1961 Frondiculariafranconica Gumbel; Cordey, p. 387, pi. 47, figs 20-21, text-figs 31,36. 

1981 Frondiculariafranconica Gumbel; Barnard et ah, p. 406, pi. 2, fig. 16, 
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text- fig. 13. 

Diagnosis: An elongate flaring form of Frondicularia, with a lobate periphery. The 7-8 

chevron shaped chambers are arranged rectilinearly after the spherical proloculus. The sutures 

are impressed and distinct. The aperture is roimd, terminal and sUghtly produced. 

Remarks: This species is highly variable with some forms developing a concave-up depressed 

sulcus on the median line. 

Material: 49 specimens 

Stratigraphic Range A: Mariae Zone-Vertebrale Zone 

Stratigraphic Range B: Henrici Zone-Cautisnigrae Zone 

Frondicularia sp. cf. F. ligaoria Terquem 

1866 Frondiculari ligaoria Terquem, p. 480, pi. 19, fig. 14 

1971 Frondiculari ligaoria Terquem; Wemli, p. 319, pi. 6, figs 9-11. 

Diagnosis: A small species of Frondicularia with a large proloculus, which is followed by 10 

chevron, shaped chambers. The chambers gradually increase in size until the fifth chamber 

where a sudden increase in growth occurs. The sixth and succeeding chambers are large. The 

test is compressed and parallel sided. The sutures are slightly depressed. 

Material: 8 specimens 

Stratigraphic Range A: Not found in Dorset 

Stratigraphic Range B: Vertebrale Zone 
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Genus Saracenaria Defrance in de Blainville, 1824 

Type Species: Cristellaria triquetra Giimhel, 1862 

Saracenaria oxfordiana Tappan 

PI. 6, Figs B, C 

1862 Cristellaria triquetra Giimbel, p. 225, pi. 3, fig. 28a-c 

1955 Saracenaria oxfordiana Tappan, p. 64, pi 26, fig. 27 

1981 Saracenaria oxfordiana Tappan, Barnard et al., p. 459, pi. 3, fig. 13 

Diagnosis: An elongate species of Saracenaria with 2-6 chambers arranged rectilinearly, 

producing a triangular cross-section. Sutures are marked by low ribs. The aperture is terminal 

and radiate. 

Remarks: The aperture is sometimes produced on a short neck. 

Material: 30 specimens 

Stratigraphic Range A: Mariae Zone-Baylei Zone 

Stratigraphic Range B: Henrici Zone-Cautisnigrae Zone 

Family VAGINULINIDAE Reuss, 1860 

Subfamily LENTICULININAE Chapman, Parr and Collins, 1934 

Genus Lenticulina Lamarck, 1804 
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Type Species: Lenticulites rotulata, Lamark 1804 

Lenticulina brevispira (Wisniowski), 1890 

1890 Cristellaria brevispira Wisniowski, p. 22, pi. 10, fig. 6a, b. 

1962 Lenticulina brevispira (Wisniowski); Cordey, p. 378, pi. 46, fig. 2. 

1981 Lenticulina brevispira (Wisniowski); Barnard et ah, p. 411, pi. 2, fig. 26, 

text. fig. 18. 

Diagnosis: A small involute species of Lenticulina with 5-6 triangular chambers in the final 

whorl that increase rapidly in size. The apertural face is roimded, with the aperture radiate, 

terminal and produced on a short neck. The sutures are distinct, depressed, radial and slightly 

curved back ventrally. In peripheral view the final chambers are inflated and flask shaped. 

Remarks: There is a tendency for the test to uncoil in some specimens producing a more 

uniserial form. 

Material: 204 specimens 

Stratigraphic Range A: Mariae Zone-Evoluta Zone 

Stratigraphic Range B: Henrici Zone-Antecedens Zone 

Lenticulina ectypa (Loeblich and Tappan), 1950 

PI. 6, Figs D, E 

1950 Astacolus ectypus Loeblich and Tappan, p. 179, pi. 1, fig. 10 
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1960 Lenticulina (Lenticulina) cf. ectypa (Loeblich and Tappan); Lutze, p. 42, text-fig. 1 la 

Diagnosis: A species of Lenticulina with a biconvex test that is slightly inflated wdth an acute 

carinate periphery. The coiling is involute becoming uncoiled, with 7-9 chambers in the final 

whorl, gradually increasing in size as added, becoming twice as wide as high. The sutures are 

strongly acute, depressed and curve back towards the periphery. There are prominent ribs 

which are parallel, distal to the sutures, raised and distinct. The ribs converge towards the 

umbilicus where they coalesce in an umbilical rib. The keel is pronounced and extends part 

way round the periphery, until it disappears distally. The periphery is convex and triangular to 

sub-triangular. The aperture is terminal, radiate and produced on a short neck. 

Remarks: This species is distinguished from L. quenstedti by means of longitudinal section. 

In addition, L. ectypa has a deep recess posterior to the rib on each chamber. The species has a 

tendency to uncoil. 

Material: 339 specimens 

Stratigraphic Range A: Mariae Zone-Baylei Zone 

Stratigraphic Range B: Henrici Zone-Cautisnigrae Zone 

Lenticulina major (Bomemann), 1854 

PI. 6, Fig. F. 

1854 Cristellaria major Bomemann, p. 40, pl. 4, fig. 13. 

1963 Lenticulina major (Bomemann); Cordey, pl. 46, fig. 3, text-figs 4-9. 

1968 Astacolus major (Bomemann); Guyader, p. 143, pl. 20, figs 27-30 
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Diagnosis: A species of Lenticulina with an elongate and compressed test that is elliptical in 

cross-section. It has a planispiral, then uniserial, arrangement with the periphery acute to 

rounded, entire and smooth dorsally. The sutures are depressed ventrally becoming flush 

towards the dorsal periphery, sloping towards the ventral side of the coil. The ornament is 

marked by distinct sutural ribs, which are distal to the sutures and extend from the ventral 

margin, increasing in width dorsally though not quite reaching the dorsal periphery. The ribs 

are less well pronounced on more distal chambers and usually absent on the last chamber. The 

apertural face is convex, roimded and elongate, with the size dependent on the last chamber. 

The aperture is terminal, peripheral, radiate and produced on a small neck. 

Remarks: This is an highly variable species in its external morphology with an initial coil that 

can be prominent or obscured. The periphery is rounded, andentire to lobate. There is a 

variation in the degree of inflation of the final chamber. 

Material: 331 specimens 

Stratigraphic Range A: Mariae Zone-Baylei Zone 

Stratigraphic Range B: Henrici Zone-Cautisnigrae Zone 

Lenticulina ex. group miinsteri (Roemer) 1839 

PI. 6, Figs. G-1 

1839 Robulina miinsteri Roemer, p. 48, pi. 20, fig. 29 

1970 Lenticulina (Lenticulina) miinsteri (Roemer); Wemli, p. 321, pi. 4, fig. 29 

1972 Lenticulina miinsteri (Roemer); Norling, p. 67, fig. 351a-c 

136 



Chapter 4 

Diagnosis: A large, lenticular to elongate, uncoiled species of Lenticulina with an acute to 

sub-acute periphery, entire to sub-angular. The chambers are thin, elongate, sub-triangular, 

gradually increasing in size as they are added, reaching three times as wide as high. The last 

chamber is sometimes inflated. The sutures are sigmoidal, convex distally, but becoming 

radial at the periphery. The umbilical area is covered by a large transparent disc that is usually 

flush with the test. It may be raised, with the earlier chambers obscured. The periphery 

sometimes pinches, giving the impression of a keel. The apertural face is flat or slightly 

convex and bordered by limbate sutures, giving the impression of lateral flanges. The aperture 

is produced on a slight neck and is round, terminal and peripheral. 

Remarks: This species shows variability in sutures (from flush to slightly raised), keel (may 

be present or absent), the degree of elevation of the umbilical disc and coiling (from closely 

coiled with an extended last chamber to true uncoiled forms). This is a commonly occurring 

species with no real stratigraphic value as a result of its variability making it the 'dustbin' for a 

wide range of Lenticulina species in both the Jurassic and early Cretaceous. 

Material: 2007 specimens 

Stratigraphic Range A: Mariae Zone-Baylei Zone 

Stratigraphic Range B: Henrici Zone-Cautisnigrae Zone 

Lenticulina sp. cf. L. polonica var. g/aZ)ra(Wisniowski) sensu Cordey 

1962 Lenticulina cf. var. glabra (Wisniowski); Cordey, p. 75, pi. 46, fig. 4. 
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Diagnosis: A compressed species of Lenticulina with a rounded periphery. The outline in 

apertural view is sub-angular with 8-9 chambers in the last whorl increasing rapidly in height 

as added. The sutures are slightly impressed and swept backwards towards the periphery and 

away from the aperture. The aperture is produced, circular and radiate. 

Material: 13 specimens 

Stratigraphic Range A: Cordatum Zone-Vertebrale Zone 

Stratigraphic Range B: Not found in Normandy 

Lenticulina polygona (Paalzow) 

PI. 6, Fig. J, PI. 7, Fig. B 

1917 Cristellariapolygona Paalzow, p. 43, pl. 47, fig. 2. 

Diagnosis: A large inflated species of Lenticulina with a sub-angluar periphery. Nine 

chambers are present in the final whorl, slowly increasing in size as added. The sutures are 

incised and distinctly curve backwards away fi-om the apertural end of the test. The umbiUcus 

is small and shallow with the terminal, radiate aperture produced on a short distinct neck. The 

sutures are very distinct and are swept backwards towards the periphery. They are flush in the 

earlier chambers becoming depressed towards the later chambers. Some chambers are inflated. 

Material: 94 specimens 

Stratigraphic Range A: Mariae Zone-Baylei Zone 

Stratigraphic Range B: Henrici Zone-Mariae Zone 
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Lenticulina protracta (Bomemann), 1854 

PI. 6, Fig. K. 

1854 Cristellaria protracta Bomemann, p. 31, pi. 4, fig. 27. 

1867 Cristellaria suprajurassica Schwager, pp. 95, 130, pi. 6, figs 1 la-b, 12a-c. 

1952 Planulariaprotracta (Bomemann); Barnard, p. 343, fig. C (a-d). 

Diagnosis: A small, highly variable, species of Lenticulina vsdth both close coiled and 

uncoiled forms. The close coiled forms have approximately six chambers in the final whorl, 

with the sutures initially flush, becoming impressed by the final chamber. In the uncoiled 

forms the chambers vary in number fi-om 2-5, with the sutures generally flush but they may be 

impressed, particularly distally. The uniserial portion varies from near-circular to compressed. 

The aperture is radiate and produced on the end of a small neck. 

Remarks: Morphological variation within this species is very marked and embraces several 

genera, including Lenticulina, Marginulina and Planularia. 

Material: 433 specimens 

Stratigraphic Range A: Mariae Zone -Baylei Zone 

Stratigraphic Range B: Henrici Zone -Cautisnigrae Zone 

Lenticulina quenstedti (Gtimbel), 1862 

PI. 6, Fig. L 

1862 Cristellaria quenstedti Gumbel, p. 226, pi. 4, fig. 2a, b. 
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1971 Lenticulina quemtedti (Giimbel); Wemli, p. 322, pi. 4, figs 14, 21, 23, 25, 27, 28; 

pi. 10, fig. 1. 

1972 Lenticulina quenstedti (Giimbel); Norling, p. 69, fig. 36a-c. 

Diagnosis: A species of Lenticulina with a biconvex, biumbilicate test that is planispirally 

enrolled. The periphery is acute to subacute. The species is involute wdth approximately 1.5 

whorls present, although the test has a tendency to become imcoiled. Later chambers are still 

in contact with the coil on the ventral side. The chambers are sub-triangular and increase 

gradually in size as added, with 7-9 chambers seen in the last whorl. The sutures are acute, 

convex distally and ornamented by distinct radial ribs that curve backwards toward the 

periphery where they join the raised circular umbilical rib enclosing the umbilicus. The 

apertural face is smooth, convex and elongate, bordered by the sutural ribs, which become 

lateral flanges. The aperture is terminal, circular, peripherally placed at the apex and extended 

on a pronounced neck. 

Remarks: 

This species displays variation in the nature of the coiling, the test shape and shape of the 

apertural face. 

Material: 364 specimens 

Stratigraphic Range A: Antecedens- ZoneBaylei Zone 

Stratigraphic Range B: Henrici Zone-Cautisnigrae Zone 

Lenticulina subalata (Reuss), 1854 

PI. 7, Figs A, C, D. 
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1854 Cristellaria subalata Reuss, p. 68, pi. 25, fig. 13a, b 

1960 Lenticulina (Lenticulina) subalata (Reuss); Lutze, p. 451 

1971 Lenticulina subalata (Reuss); Wemli, p. 323, pi. 4, fig. 24. 

Diagnosis: A species of Lenticulina with an acute to sub-acute keeled periphery. The species 

is with involutel.5-2 whorls and 9-11 chambers in the last whorl. The chambers are sub-

triangular initially and increase gradually in size. The sutures are convex distally, arcuate and 

curve towards the periphery. The keel is sharp to rounded, prominent in earlier chambers and 

reduced in later chambers. Ornamentation comprises of a number of ribs that converge 

towards the umbilicus where they join with a large calcitic umbilical plug/boss that be seen 

clearly in apertural view. The apertural face is flat, to slightly convex, triangular and varies in 

height. It is bordered by raised sutural ribs which become lateral flanges. The aperture is 

terminal, rounded and produced slightly at the periphery. 

Remarks: Most specimens are coiled with elongated final chambers, although some uncoiling 

of is recorded. This species can be distinguished from Lenticulina miinsteri by the presence of 

a sharp keel and strongly raised sutural ribs. If these features are not apparent thenLenticulina 

subalata appears to grade into Lenticulina miinsteri. 

Material: 167 specimens 

Stratigraphic Range A: Vertebrale Zone-Baylei Zone 

Stratigraphic Range B: Henrici Zone-Mariae Zone 

Lenticulina tricarinella (Reuss) 
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1863 Cristellaria (Cristellaria) tricarinella Reuss, p. 68, pi. 7, fig. 9, pi. 12, figs 24. 

1964 Lenticulina tricarinella (Reuss); Gordon, p. 840, text-fig. 6 (6-8) 

1965 Planularia tricarinella (Reuss); Barnard et ah, p. 422, pi. 2, figs 23-24, 

text-fig. 25C (1-4). 

Diagnosis: A species of Lenticulina with a tendency to uncoil. There are 7-8 chambers in the 

final whorl with sutures curved distally, raised and distinct, merging with a prominent 

marginal rib on both sides of the test. The periphery is acute to carinate with the apertural face 

extending back towards tiie initial coil. The aperture is terminal and peripheral. In most forms 

the keel extends around the entire test on the apertural margin although it is sometimes absent 

on the initial chambers. 

Remarks: The majority of the specimens are parallel sided, but some forms flare towards the 

non-apertural margin and become wedge shaped. 

Material: 23 specimens 

Stratigraphic Range A: Antecedens Zone-Baylei Zone 

Stratigraphic Range B: Mariae Zone 

Lenticulina varians (Bomemann), 1854 Form B Lutze, 1960 

1854 Cristelleria vonan^ Bomemann, p. 41, pi. 4, figs 32-34 

1937 Cristelleria (Lenticulina) varians Bomremann Form b, Bartenstein and Brand, 

p. 176, pi. 2B, fig. 32, pi. 3, fig. 32. 
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1960 Cristelleria (Lenticulina) varians Bomemann Form B; Lutze, p. 450, pi. 28, fig. 10. 

1981 Cristelleria varians Bomemann Form B; Lutze; Barnard et al, p. 417, 

pi. 2, fig. 25, text-fig. 19. 

Diagnosis: A species oi Lenticulina with a compressed test and 6-8 chambers in the final 

whorl. The chambers are triangular, gradually increasing in size and with the final chamber 

inflated. The sutures are distinct and curve back towards the periphery where they are raised 

into distinct, thin ribs. The final sutures are impressed. The aperture is distinct, radiate and 

terminal wdth the apertural face smooth and rounded. 

Remarks: Specimens vary from those with well marked strong ribs to those wdth faint ribs. 

Some show true uncoiling with 1-2 chambers in an uniserial position but, more commonly, the 

majority of specimens have an astacolid-like chamber arrangement. Some specimens are 

similar to Lenticulina major, but generally smoother and less likely to show uncoiling. The 

last suture is impressed rather than raised. 

Material: 434 specimens 

Stratigraphic Range A: Vertebrale Zone-Baylei Zone 

Stratigraphic Range B: Henrici Zone-Cautisnigrae Zone 

Juvenile Lenticulina spp. 

PI. 7, Figs F, G. 

Remarks: This category includes a mixture of juvenile forms that are difficult, or impossible 

to assign to specific taxa. 
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Material: 225 specimens 

Stratigraphic Range A: Mariae Zone-Baylei Zone 

Stratigraphic Range B: Henrici Zone-Cautisnigrae Zone 

Lenticulina spp. indet. 

Remarks: This category included several species of Lenticulina which are broken into 

fragments. The category also includes species that are coated in carbonate. All are difficult, or 

impossible, to assign to specific taxa. 

Material: 2410 specimens 

Stratigraphic Range A: Mariae Zone-Baylei Zone 

Stratigraphic Range B: Henrici Zone -Cautisnigrae Zone 

Subfamily N4ARGINULININAE Wedekind, 1937 

Genus Marg/ww/wa d'Orbigny, 1826 

Type Species: Marginulina raphanus d'Orbigny, 1826 

(non Nautilus raphanus Linne, 1758) 

Marginulina batrakiensis (Myatluik) 1939 

PI. 7, Figs E, H. 

1939 Cristellaria batrakensis Myaluik, pp. 61, 74, figs 52-53 

1962 Marginulina batrakiensis (Myatluil^; Cordey, p. 383, pi. 46, fig. 7. 
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1968 Marginulina batrakiensis (Myatluik); Guyader, p. 145, pi. 31, fig. 8, pi. 26, fig. 18a-d. 

Diagnosis: An elongate species of Marginulina with chambers arranged in a curvilinear series 

which may occasionally be irregular. The chambers are sub-globular, increasing gradually as 

added. The dorsal margin is generally entire, with the ventral margin lobate. The sutures are 

distinct and constricted. The ornament consists of numerous, discontinuous, sub-vertical 

costae which extend over the entire test. The aperture is distinct and extended on a short neck 

which is peripheral and terminal. 

Remarks: The ornamentation is restricted to each chamber and is not continuous between 

chambers. Some specimens exhibit smaller, inflated, final chambers. 

Material: 27 specimens 

Stratigraphic Range A: Mariae Zone-Baylei Zone 

Stratigraphic Range B: Mariae Zone 

Marginulina spp. indet 

PI. 7, Fig. I 

Remarks: This category includes specimens of Marginulina which are either broken, 

juveniles or badly degraded. They cannot be assigned to any specific taxon. 

Material: 4 specimens 

Stratigraphic Range A: Mariae Zone 

Stratigraphic Range B: Not found in Normandy 
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Subfamily VAGINULININAE Reuss, 1860 

Genus Citharina d' Orbigny, 1839 

Type Species: Vaginulina (Citharina) strigillata Reuss, 1846 

Citharina flabelloides (Terquem), 1868 

1868 Marginulinaflabelloides Terquem, p. 102, pi. 6, fig. la, b. 

1960 Citharina flabelloides (Terquem); Lutze, p. 459, pi. 6, fig. 11. 

1968 Vaginulina flabelloides (Terquem); Guyader, p. 153, pi. 22, figs 7-8. 

Diagnosis: A large species of Citharina with a compressed and flaring test which is palmate 

or elongate triangular. The proloculus is followed by 9-12 chambers that are sloping or curved 

gently towards the apertural margin follow. The species is generally parallel-sided but 

occasionally triangular. There is an ornamentation of fine ribs, which vary in number fi-om 8-

15 per side. The apertural margin is straight, with the non-apertural margin sinuous and lobate. 

The aperture is terminal and radiate. 

Material: 33 specimens 

Stratigraphic Range A: Vertebrale Zone-Baylei Zone 

Stratigraphic Range B: Vertebrale Zone-Cautisnigrae Zone 

Citharina heteropleura (Terquem), 1868 
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1868 Marginulina heteropleura Terquem, p. 117, pi. 7, figs 22, 23. 

1868 Marginulina clathrata Terquem, p. 75, pi. 2, fig. 26a-b. 

1981 Citharina heteropleura (Terquem); Barnard et ah, p. 423. pi. 2, fig. 7, 

text-fig. 27. 

Diagnosis: A compressed species of Citharina with 8-12 chambers. An initial coil of 2-3 

chambers is followed by 6-9 chambers that increase in size producing a concave non-apertural 

margin. Ornamentation consists of strong continuous ribs with the sutures distinct and flush. A 

keel is developed in some specimens and the aperture is produced, terminal and radiate. 

Material: 31 specimens 

Stratigraphic Range A: Mariae Zone-Baylei Zone 

Stratigraphic Range B: Cordatum Zone-Cautisnigrae Zone 

Citharina lepida Schwager, 1867 

PI. 7, Fig. K, PI. 8, Figs A, B. 

1867 Citharina lepida Schwager, p. 657. pl. 34, fig. 9. 

1890 Vaginulina harpa Romer war. Jurcatamihi, MacFadyen, p. 12, pl. 1, fig. 8a,b. 

1960 Citharina lepida (Schwager); Lutze, p. 461, pl. 30, figs 2-4, 7, 8, text-fig. 14. 

Diagnosis: A species of Citharina with an ornamentation of strong, thick, blade-like ribs 

running obliquely over the surface of the test. A small spherical proloculus is followed by 8-9 

chambers that increase rapidly in size, giving the appearance of an initial coil with 2-3 
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chambers. The sutures are distinct and slightly depressed with the aperture produced, terminal 

and radiate. Most of the ribs begin at the base of the proloculus and continue onto the final 

chambers with a single rib forming a keel. On non-apertural margins a keel is also developed. 

Material: 8 specimens 

Stratigraphic Range A: Vertebrale Zone-Baylei Zone 

Stratigraphic Range B: Mariae Zone 

Citharina serratocostata (Giimbel), 1862 

PI. 7, Fig. J. 

1862 Marginulina serratocostata Gumbel, p. 222, pi. 3, fig. 23a,b. 

1862 Marginulina flabellata Giimbel, p. 223, pi. 3, fig. 24a-c. 

1962 Citharina serratocostata (Gumbel); Gordon, p.531, text-fig. 2(11). 

1965 Citharina serratocostata (Gumbel); Gordon, pp. 856-857, text-fig. 10 (22-27). 

1968 Vaginulinaflabellata (Gumbel); Guyader, p. 151, pi. 21, figs 19-29; pi. 27, fig. 7. 

1971 Vaginulina serratocostata (Giimbel); Wemli, p. 335, pi. 4, figs 7, 8 and 11. 

Diagnosis: A compressed species of Citharina with a lanceolate-triangular outline. An 

ellipsoidal proloculus is followed by 6-9 parallel-sided chambers which curve towards the 

non-apertural margin with the sutures flush. Ornamentation consists of fine to coarse ribs that 

are raised and continuous. The ribs are branching and sometimes sinuous, fanning out towards 

the apertural face where they disappear. The aperture is raised, terminal and radiate. 

Remarks: There is some variation in test morphology, from elongate to thin to broadly 
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triangular. There is also a variable number of ribs which show a range of size and shape. 

Gordon (1965) details three styles of ornamentation. Citharina serracostata and Marginulina 

flabellata are synonymous, with serratocostata having priority (first mentioned by Gumbel 

(1862) on p.222, compared Wiihflabellate on p.223). 

Material: 7 specimens 

Stratigraphic Range A: Mariae Zone-Baylei Zone 

Stratigraphic Range B: Vertebrale Zone-Cautisnigrae Zone 

Citharina tenuicostataLutzc, 1960 

PI. 8, Fig. C. 

1960 Citharina tenuicostata Lutze, p. 463, pi. 30, figs 5, 6. 

Diagnosis: A small compressed species of Citharina with a small proloculus followed by 5-9 

chambers. Ornamentation is formed of up to 9 fine, continuous striae that run obliquely across 

each side of the test. The apertural margin is broadly rounded with the non-apertural margin 

slightly concave. The aperture is produced on a small neck surrounded by the distal ends of 

the striae. 

Material: 14 specimens 

Stratigraphic Range A: Vertebrale Zone-Baylei Zone 

Stratigraphic Range B: Vertebrale Zone-Cautisnigrae Zone 
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Genus Citharinella Marie, 1938 

Type Species: Flabellina karreri Berthelin, 1880. 

Citharinella exarata Loeblich and Tappan 

1950 Citharinella exarata Loeblich and Tappan, p. 58, pi. 16, figs 4-8. 

Diagnosis: A species of Citharinella with a compressed elongate test. An ellipsoidal 

proloculus is followed by 8-12 chambers that become chevron-shaped and increase gradually 

in height. The initial arrangement is in a Citharina-like coil with the sutures initially 

impressed, becoming flush. Ornamentation consists of numerous arcuate striae that are 

restricted to the height of each chamber. The aperture is radiate, terminal and produced on the 

endof a short neck. 

Remarks: A large degree of variability is seen in the ornamentation and chamber 

arrangement. Some individuals have a Citharina-like coil, and produce forms with 

appearances similar to Frondicularia. 

Material: 28 specimens 

Stratigraphic Range A: Vertebrale Zone-Baylei Zone 

Stratigraphic Range B: Lamberti Zone-Vertebrale Zone 

Genus P/anu/ana Defrance, 1826 

Type Species: Peneroplis auris Defrance in Blainville, 1824 
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Planularia angustissima (Wisniowski), 1891 

PI. 8, Fig. D 

1891 Cristellaria angustissima Wisniowski, p. 212, pi. 9, fig. 15. 

1962 Planularia cf angustissima (Wisniowski); Cordey, p. 382, pi. 46, fig. 8. 

1968 Marginulina angustissima (Wisniowski); Guyader, p. 144, pi. 21, figs 3-4 

Diagnosis: A species of Planularia with a narrow, smooth compressed test of approximately 

12 chambers, 3-6 of which are in contact with the proloculus which is completely enclosed. 

The sutures are distinct and depressed. The aperture is simple, terminal and at the end of a 

short neck. 

Remarks: Some specimens have faint, rare striae near to the aperture, although these are 

absent in others. 

Material: 23 specimens 

Stratigraphic Range A: Mariae Zone-Antecedens Zone 

Stratigraphic Range B: Mariae Zone-Cautisnigrae Zone 

Planularia beierana (Giimbel) 1862 

PI. 8, Figs E, F. 

1862 Marginulina beierana Giimbel, p. 221, pl. 3, fig. 20a, b. 

1959 Planularia beierana (Giimbel); Cifelli, p. 559, text-fig. 3. 
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Diagnosis: A species of Planularia with a smooth, compressed test of 4-10 chambers. The 

proloculus is followed by 3-4 chambers. In the microspheric generation the proloculus is 

completely enclosed. The sutures are distinct, and usually depressed, with a poorly developed 

keel present on some of the earlier chambers. The aperture is simple, circular, and terminal on 

a short neck. The ornament consists of 1-2 fine striae on the apertural margin of the last few 

chambers. 

Remarks: An initial keel is observed in some specimens. 

Material: 325 specimens 

Stratigraphic Range A: Mariae Zone-Baylei Zone 

Stratigraphic Range B: Henrici-Cautisnigrae Zone 

Planularia eugenii (Terquem), 1864 

1864 Cristellaria eugenii Texqaem, p. 414, pi. 9, fig. 16a-b 

1959 Planularia eugenii (Terquem); Cifelli, p. 303, pi. 3, figs 16-17 

Diagnosis: A compressed species of Planularia with a distinctive ornamentation of oblique 

striae which are variable in number. An initial coil of 3-5 chambers follows a sub-spherical 

proloculus with 9-11 chambers in total. The sutures are slightly depressed and the aperture is 

produced, terminal and radiate. A keel fi-equently develops on the non-apertural margin. 

Remarks: A variation in the number and definition of the striae is apparent. A keel may be 

present, but is rarely complete. The number of chambers in contact with the proloculus also 

varies fi-om 2-5. 
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Material: 17 specimens 

Stratigraphic Range A: Evoluta Zone 

Stratigraphic Range B: Mariae Zone-Cautisnigrae Zone 

Planularia listi (Bomemann) 

PI. 8, Fig. G 

1854 Cristellaria listi Bomemann, p. 40, pi. 4, fig. 28a-c. 

Diagnosis: A small species of Planularia with up to 9 chambers. The concave non-apertural 

margin is lobate, with the apertural margin broadly rounded. A small proloculus is followed by 

low, wide triangular chambers which increase rapidly in size at first. The sutures are flush 

becoming impressed, and swept back towards the periphery. The aperture is produced, radiate 

and circular. 

Material: 29 specimens 

Stratigraphic Range A: Antecedens Zone-Caustinigrae Zone 

Stratigraphic Range B: Mariae Zone-Cautisnigrae Zone 

Planularia sutaralis (Terquem), 1866 

PI. 8, Fig. H. 

1866 Cristellaria sutaralis Terquem, p. 441, pi. 8, fig. 1 la-c. 

1870 Cristellaria semi-involuta Terquem, p. 437, pi. 11, figs 3, 13, 22, 26a-b, pi. 12, figs 
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4a-b, 18, 21; pi. 13, fig. 6, not figs 1-5. 

1981 Planularia sutaralis (Terquem); Barnard et al., p. 421, pi. 2, fig. 30, text-figs 25B, 26. 

Diagnosis: A compressed species of Planularia with 9-10 chambers. There are up to 5 

chambers in the initial coil followed by 4-5 chambers which increase in height as added. Final 

chambers reach back and are in contact with the initial coil, with the last chamber less wide 

and stepped back from the non-apertural margin. The sutures are distinct, deeply impressed 

and swept back towards the periphery. The aperture is terminal, radiate, marginal and 

produced on a small neck. 

Remarks: The number of chambers in contact with the initial coil varies from 2-5. The last 

chamber may be very wide and extend all the way across the penultimate chamber. 

Material: 17 specimens 

Stratigraphic Range A: Vertebrale Zone-Baylei Zone 

Stratigraphic Range B: Henrici Zone-Cautisnigrae Zone 

Genus Vaginulina A^Orhigny, 1826 

Type Species: Nautilus legumen Linne, 1758 

Vaginulina anomala Blake 

1876 Vaginulina anomala Blake, p. 464, pi. 17, fig. 23. 

1966 Vaginulina anomala Blake; Gordon, p. 328, pi. 1, figs 1-5. 

154 



Chapter 4 

Diagnosis: An elongate species of Vaginulina with a rectilinear or curvilinear test, initially 

compressed but becoming inflated towards the non-apertural margins with the later chambers 

inflated. A small spherical-ellipsoidal proloculus is followed by 6-7 irregular chambers which 

increase in length slowly and then rapidly. The final chamber is inflated and sub-vertical. The 

sutures are flush, sloping gently at first and then steeply towards the proloculus. They are 

sigmoidal and irregular. The aperture is large, marginal, terminal and produced on a short neck 

with up to 15 large radiating slits. 

Remarks: This species is extremely variable, with some specimens similar in appearance to 

Vaginulina jurassica. Vaginulina anomala is distinguishable by its generally larger size and 

irregular chamber arrangement. 

Material: 4 specimens 

Stratigraphic Range A: Vertebrale Zone-Caustinigrae Zone 

Stratigraphic Range B: Henrici Zone-Mariae Zone 

Vaginulina barnardi Gordon 

PI. 8, Figs I, J 

1965 Vaginulina barnardi Gordon, p. 852, text-fig. 7 (9, 24, 25 ) 

1989 Vaginulina barnardi Gordon; Shipp, p. 260, pi. 6.4.3, fig. 7. 

Diagnosis: A species of Vaginulina with an uniserial, straight or curved test that is slightly 

compressed. The number of chambers usually ranges from 9-12, although up to 16 have been 

foimd. The sutures are oblique and flush. The aperture is terminal, marginal and radiate. 
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Ornament consists of fine longitudinal striations. 

Remarks: This species is extremely variable with the chamber arrangement ranging from a 

loose coil to a rectilinear series of chambers. The very fine striations on the surface of the test 

distinguish this species from other species of Vaginulina. 

Material: 15 specimens 

Stratigraphic Range A: Mariae Zone-Baylei Zone 

Stratigraphic Range B: Vertebrale Zone-Cautisnigrae Zone 

Vaginulina contracta (Terquem) 

1868 Marginulina contracta (Terquem), p. 125, pi. 8, figs 13-24 

1959 Vaginulina contracta (Terquem); Cifelli, p. 321, pi. 5, fig. 17. 

Diagnosis: A small species of Vaginulina with 5 chambers increasing in size slowly as added, 

with the final chamber inflated. The sutures are impressed and sloping towards the non-

apertural margin. The apertural margin is straight with the non-apertural margin curved. 

Material: 26 specimens 

Stratigraphic Range A: Mariae Zone-Baylei Zone 

Stratigraphic Range B: Mariae Zone-Cautisnigrae Zone 

Vaginulina jurassica (Giimbel), 1862 

1862 Marginulina jurassica Giimbel, p. 222, pi. 3, fig. 21a, b. 
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1960 Vaginulinajurassica (Giimbel); Bielecka. p. 138, pi. 6, fig. 49. 

Diagnosis: A compressed species of Vaginulina that is elongate to sub-triangular with 5-6 

chambers following a small spherical proloculus. The chambers increase in length as added 

but are constant in height, with a final inflated chamber. The sutures are impressed and sharply 

sloping. The aperture is radiate, marginal and terminal. 

Remarks: The species shows variability in both width and shape. It is similar to Vaginulina 

anomala but from the limited number of specimens it would appear that Vaginulinajurassica 

is smaller and has a more regular chamber arrangement. 

Material: 3 specimens 

Stratigraphic Range A: Not found in Dorset 

Stratigraphic Range B: Vertebrale Zone 

Vaginulina sp. 1 

Diagnosis: An elongate species of Vaginulina that is ovate in section with 6-8 parallel sided 

chambers following a small proloculus. 

Description: An elongate, uniserial, rectilinear to arcuate test as in Dentalina but laterally 

compressed; ovate to lenticular in section. The chambers increase gradually in size, sloping 

gently towards the non-apertural margin with some forms showing an initial rapid increase in 

size. The dorsal margin is commonly straight but the ventral margin may be slightly inflated. 

The sutures are flush and the aperture is raised on a short neck surrounded by radiating slits 

between the distal ends of the 8 ribs. The apertural face is smooth, as distal ends of the ribs on 
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the non-apertural margin become obsolete. Ornamentation consists of 14 blade like ribs, 

continuous over the whole test and originating from a small spine below the proloculus. 

Material: 2 specimens 

Stratigraphic Range A: Not found in Dorset 

Stratigraphic Range B: Vertebrale Zone 

Family LAGENIDAE Reuss, 1862 

Genus Lagena Walker and Jacob, 1798 

Type Species: Serpula (Lagena) sulcata Walker and Jacob, in Kanmacher, 1798 

Lagena agglutinans Terquem 1870 

PI. 8, Fig. L., PI. 9, Fig. A. 

1870 Lagena agglutinans Terquem, p.352, pi. 25, figs. 29-30. 

Diagnosis: An elongate species of Lagena. The aperture is slightly produced, with the surface 

covered in small spines. 

Remarks: Specimens are only found in the lowermost samples of the Kimmeridge Clay 

Formation. 

Material: 6 specimens 

Stratigraphic Range A: Baylei Zone 

Stratigraphic Range B: Not found in Normandy 
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Lagena globosa (Montagu) 

PI. 8, Fig. K. 

1803 Vermiculum globosum Montagu, p. 523. 

1967 Lagena globosa (Montagu); Gordon, p. 456, pi. 3, fig. 19. 

Diagnosis: An un-omamented species of Lagena with a simple radiate aperture that is 

terminal on a short neck. 

Material: 148 specimens 

Stratigraphic Range A: Mariae Zone-Baylei Zone 

Stratigraphic Range B: Henrici Zone-Cautisnigrae Zone 

Lagena sp. 1 

PL 9, Figs B, D, E. 

Diagnosis: A small, globular species of Lagena with a short elongate apertural neck and a 

number of prominent ribs. 

Description: A unilocular, globular to ovate test. The wall is calcareous and hyaline with 

ornamentation of longitudinal striae (approximately 12) that originate from a small spine 

below the lower margin of the test and continue vertically across the surface to the aperture. 

The aperture is terminal, rounded and extended on a small thin neck. 

Remarks: There is some variation in the size and shape of the test. The neck may also be 

reduced or absent. 
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Material: 13 specimens 

Stratigraphic Range A: Mariae Zone -Vertebrale Zone 

Stratigraphic Range B: Henrici Zone -Caustinigrae Zone 

Lagena sp. 2 

PI. 9, Fig. C. 

Diagnosis: A species of Lagena with an ornamentation of 6 continuous ribs that are evenly 

spaced and that begins at the base and continues to the aperture. The test is globular vsdth the 

radiate aperture extended on a small neck. 

Material: 4 specimens 

Stratigraphic Range A: Not found in Dorset 

Stratigraphic Range B: Lamberti Zone-Mariae Zone 

Family POLYMORPHINIDAE d'Orbigny, 1839 

Subfamily POLYMORPHININAE d'Orbigny, 1839 

Genus Eoguttulina Cushman and Ozawa, 1930 

Type Species Eoguttulina anglica Cushman and Ozawa, 1930 

Eoguttulina anglica Cushman and Ozawa, 1930 

PI. 9, Fig. 1 

1930 Eoguttulina anglica Cushman and Ozawa, p. 16, pi. 1, fig. 3a-c. 
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Diagnosis:An elongate species of Eoguttulina with a lobate periphery. A small proloculus is 

followed by 4-5 chambers, with sutures impressed and distinct. The radiate aperture is flush 

with the periphery. The apertural end is sub-angular with the initial end rounded. 

Material: 11 specimens 

Stratigraphic Range A: Not found in Dorset 

Stratigraphic Range B: Henrici Zone-Mariae Zone 

Eoguttulina inovroclaviensis (Bielecka and Pozaryski) 

1954 Sigmomorphina inovroclaviensis Bielecka and Pozaryski, p. 192, pi. 9, fig. 47 a-c 

1962 Eoguttulina inovroclaviensis (Bielecka and Pozaryski); Lloyd, pi. 1, fig. 7a-c; text 

fig. 4A,B. 

Diagnosis: An elongate species of Eoguttulina with 4-5 chambers following a small sub-

spherical proloculus. The later chambers are narrow and elongate, with initial chambers 

exposed. The sutures are depressed. The aperture is radiate and produced on a short neck. 

Material: 12 specimens 

Stratigraphic Range A: Antecedens Zone 

Stratigraphic Range B: Mariae Zone-Parandieri Zone 

Eoguttulina liassica (Strickland), 1846 

PI. 9, Figs H, K. 
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1846 Polymorphina Uassica Strickland, p. 31, text-fig. b. 

1968 Eoguttulina liassica (Strickland), Guyader, p. 170, pi. 28, fig. 18a-d. 

Diagnosis: A tear drop shaped species of Eoguttulina with a lobate periphery. There are 

approximately 5-6 chambers that are initially sub-globular and triserially-quadriserially 

arranged but become elongate and biserial. The final chamber is large and reaches almost to 

the proloculus. The sutures are depressed and distinct, with the aperture radiate, terminal and 

flush. 

Remarks: This species is similar to Eoguttulina oolithica but has a lobate periphery, 

impressed sutures and a flush aperture. 

Material: 256 specimens 

Stratigraphic Range A: Cordatum Zone-Baylei Zone 

Stratigraphic Range B: Henrici Zone -Cautisnigrae Zone 

Eoguttulina oolithica (Terquem) 1874 

PL 9, Figs F, G, J. 

1874 Polymorphina oolithica Terquem, 1874, p. 299, pi. 32, figs 1-5, 8, 10. 

1917 Polymorphina cf. ovata d'Orbigny, p. 45, pi. 47, fig. 18 

1937 Eoguttulina oolithica (Terquem), Bartenstein and Brand, p. 179, pi. 10, fig. 43a-b, 

pi. 1 lA, fig. 18a-c, pi. 1 IB, fig. 24a-b, pi. 12B, fig. 18, pi. 15A, fig. 37a-b. 

1962 Eoguttulina oolithica (Terquem); Lloyd, p. 373, pi. 1, figs 5a-c, 8a-c, text-fig. 5A, B. 
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Diagnosis: A species of Eoguttulina with approximately 5 chambers that are initially 

triserially arranged, but becoming biserial with the final chambers overlapping and reaching 

the proloculus. The sutures are flush. The aperture is terminal, radiate and produced to a point 

on a short neck. 

Remarks: The sutures are actually very sUghtly incised although they appear to be flush 

(Lloyd 1962). 

Material: 270 specimens 

Stratigraphic Range A: Mariae Zone -Baylei Zone 

Stratigraphic Range B: Henrici Zone -Cautisnigrae Zone 

Eoguttulina oolithica (Terquem) Form A 

1874 Polymorphina oolithica Terquem, 1874, p. 299, pi. 32, figs 1-5, 8, 10. 

1962 Eoguttulina oolithica (Terquem); Lloyd, p. 373, pi. 1, figs 5a-c, 8a-c, text-fig. 5A,B. 

Diagnosis: A small species of Eoguttulina with an ovate test and smooth outline. The test is 

slightly flattened and egg-shaped with no chambers visible. The aperture is positioned at the 

open end of the test, is slightly produced and radiate. 

Remarks: Lloyd (1962) notes that in specimens oiE. oolithica the sutures may be difficult to 

observe, with specimens assigned to Form A having a smooth, ovate test. 

Material: 56 specimens 

Stratigraphic Range A: Vertebrale Zone -Evoluta Zone 
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Stratigraphic Range B: Mariae Zone -Cordatum Zone 

Subfamily RAMULININAE Brady, 1884 

Genus J?a/wM/ma Jones, 1875 

Type Species: Ramulina laevis Jones, in Wright, 1875 

Ramulina spandeli Paalzow 

PI. 9, Fig. L. 

1917 Ramulina spandeli Paalzow, p. 246, pi. 47, fig. 15. 

Diagnosis: A rounded species of Ramulina with a test of elongated chambers that are 

connected by stolon-like tubes or necks. The ornament consists of small spine-like projections. 

There is a simple, circular aperture. 

Material: 24 specimens 

Stratigraphic Range A: Vertebrale Zone-Baylei Zone 

Stratigraphic Range B: Henrici Zone-Vertebrale Zone 

Suborder ROBERTININA Loeblich and Tappan, 1984 

Superfamily CERATOBULIMINACEA Cushman, 1927 

Family CERATOBULIMINIDAE Cushman, 1927 

Subfamily REINHOLDELLINAE Seiglie and Bermudez, 1965 

Genus Reinholdella Brotzen, 1948 

Type Species: Discorbis dreheri Bartenstein, in Bartenstein and Brand, 1937 
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Reinholdella lutzei Barnard et ah, 1981 

PI. 10, Figs A-C. 

1981 Reinholdella lutzei Barnard et al, p. 432, pi. 4, figs 3,7. 

Diagnosis: A plano-convex species of Reinholdella with a lobate periphery and 5-6 chambers 

in the final whorl. The sutures are convex on the dorsal side and merge to form an apical disc. 

The ventral sutures are impressed, straight and narrow. The aperture is loop-shaped. 

Remarks: This species has been recorded in flood abundance in the Sandsfoot Formation, 

from the Hallett's Farm Borehole in North Dorset (Henderson, 1997). Flood abundances of 

this species are not recorded in South Dorset or Normandy. 

Material: 18 specimens. 

Stratigraphic Range A: Antecedens Zone-Baylei Zone 

Stratigraphic Range B: Henrici Zone-Cautisnigrae Zone 

Family EPISTOMINIDAE Wedekind, 1937 

Subfamily EPISTOMININAE Wedekind, 1937 

Genus ^pw/ow/na Terquem, 1883 

Type Species £p«/o/Mma regw/ofm Terquem, 1883 

Epistomina mosquensis Uhlig, 1883 

PI. 10,FigsD,E. 
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1883 Epistomina mosquensis Uhlig, p. 776, pi. 7, figs 1-3 

1986 Epistomina mosquensis Uhlig; Williamson and Stam, p. 142, pi. 1, figs 2, 3. 

Diagnosis: A species oi Epistomina with a biconvex, trochospiral test in which the umbilical 

side is more convex than the dorsal side. There are 6-8 chambers in the outer whorl with the 

intercameral and spiral sutures thickened and raised. Those on the spiral side are curved with 

those on the umbilical side radial about an umbilical ring. A weakly developed peripheral 

double keel is developed between which are the occluded peripheral apertures. The chambers 

on the dorsal side are of equal proportions, rounded and circular to oval, gradually becoming 

larger until wider than high. The sutures on the dorsal side are strong, thin, elevated, distinct, 

arcuate and swept back to the periphery forming a keel. Spiral sutures are also present. These 

are elevated and distinct, with initial chambers occasionally becoming circular depressions, 

losing the spiral arrangement as the spiral sutures thicken and chambers take on the 

appearance of deep pits. The primary aperture is not visible. The secondary aperture is a long, 

cresentic slit with a raised lip. It extends approximately between the periphery keels and is 

often observed in the last few chambers. 

Remarks: The principal variation is in the ventral ornament, with simple radial sutures and a 

weakly developed secondary keel. This surrounds a strong, elevated horse-shoe shaped 

umbilical collar to form with occasional connecting ribs. 

Material: 788 specimens 

Stratigraphic Range A: Mariae Zone-Vertebrale Zone 

Stratigraphic Range B: Lamberti Zone-Cautisnigrae Zone 
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Epistomina mosquensis Uhlig form A 

1883 Epistomina mosquensis Uhlig, p. 776, pi. 7, figs 1-3. 

Diagnosis: A form of Epistomina mosquensis which has a more convex dorsal side with lower 

and less distinctive sutural ribs especially in the final whorl. 

Remarks: The ventral side shows a degree of variation as m Epistomina mosquensis s.s. with 

variations in sutures. The ventral side is often altered and obscured by poor preservation. 

Material: 709 specimens 

Stratigraphic Range A: Cordatum Zone-Caustinigrae Zone 

Stratigraphic Range B: Lamberti Zone-Praecordatum Zone 

Epistomina parastelligera (Hofker) 

PI. 10, FigsF-G. 

1954 Brotzeniaparastelligera Hoflcer, p. 180, text-figs 4-6 

1960 Epistomina parastelligera Hofker; Bielecka, pi. 10, fig. 76. 

Diagnosis: A species of Epistomina with approximately 18 chambers arranged trochospirally, 

with 6-8 chambers in the final whorl. The chambers increase in size as added with the final 

chamber often being inflated. The initial chambers are often not visible as a result of an 

aragonitic covering. Dorsally the sutures are short, radial and curve slightly, whilst ventrally 

they are slightly raised. The aperture is small and placed towards the centre of the final 
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chamber. 

Remarks: As with all Epistomina species, poor preservation makes it difficult to differentiate 

between this species and E. tenuicostata Bartenstein and Brand. E. parastelligera has 

straighter, radial sutures on the dorsal side and an aragonitic covering. 

Material: 303 specimens 

Stratigraphic Range A: Not found in Dorset 

Stratigraphic Range B: Praecordatum Zone 

Epistomina stellicostata (Bielecka and Pozaryski), 1954 

1954 Epistomina stellicostata Bielecka and Pozaryski, p. 71, pi. 12, fig. 60a-c. 

1988 Epistomina stellicostata (Bielecka and Pozaryski); Williamson and Stam, p. 146, pi. 4, 

figs 1,2. 

Diagnosis: A species of Epistomina with a roimd periphery that is entire to slightly lobate. It 

is sinistrally coiled with approximately 17-19 chambers present in 2.5 whorls with 7-8 

chambers in the last whorl. The chambers are slightly raised, and swollen to the height of the 

raised sutures, especially on the ventral side. On the dorsal side the chambers gradually 

increase in size and become more wide than high. The sutures on the dorsal side are marked 

by raised ribs that are distinct, more radial than arcuate and which sweep back towards the 

periphery to form a keel. Ribs thicken towards the centre of the dorsal face and join up, 

leaving the initial chambers with the appearance of a collection of circular pits. 

Material: 202 specimens 
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Stratigraphic Range A: Costicardia Zone 

Stratigraphic Range B: Cautisnigrae Zone 

Epistomina tenuicosta Bartenstein and Brand, 1951 

PI. 10, Fig. I. 

1951 Epistomina tenuicosta Bartenstein and Brand, p. 327, pi. 12A, fig. 325. 

1967 Epistomina tenuicosta Bartenstein and Brand, p. 34, pi. 8, fig. 9. 

Diagnosis: A species of Epistomina with 7-8 chambers in the final whorl with 2 whorls 

generally visible. The final chamber is often inflated and overlaps part of the umbilical area on 

the ventral side. The spiral side is less convex than the umbilical side. Sutures are limbate and 

curved backwards on the spiral side but limbate and radial on the umbilical side. The apertures 

are close to the periphery of the umbilical side. 

Material: 99 specimens 

Stratigraphic Range A: Cordatum Zone-Evoluta Zone 

Stratigraphic Range B: Lamberti Zone-Caustinigrae Zone 

Epistomina spp. indet. 

Remarks: This includes all specimens that are badly damaged and/or pyritised. There are a 

large number of specimens in this category because the tests of Epistomina are aragonitic. 

Aragonite is an unstable mineral and most aragonitic fossils are highly susceptible to 
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dissolution (BouDagher-Fadel et al, 1997); for a fioll discussion see Chapter 6. 

Material: 6420 specimens 

Stratigraphic Range A: Antecedens Zone 

Stratigraphic Range B: Cautisnigrae Zone 

Superfamily DISCORBACEA Ehrenberg, 1838 

Family PLACENTULINIDAE Kasimova, Poroshina and Geodakcham, 1980 

Subfamily ASHBROOKIINAE Loeblich and Tappan, 1984 

Genus Paalzowella Cushman, 1933 

Type Species Discorbis scalariformis Paalzow, 1917 

Paalzowella feifeli (Paalzow) 1932 

1932 Trocholina feifeli Paalzow, p. 140, pi. 11, figs 6,7. 

1981 Paalzowella feifeli (Paalzow); Coleman, p.ll4, pi. 6.2.1, fig. 6. 

Diagnosis: A species of Paalzowella with a conical test that is formed of a single tubular 

chamber that is spirally enrolled. It is almost involute on the umbilical side and evolute on the 

spiral side. An ornamentation of radial striations is present on the umbilical side of some 

specimens. The aperture is at the apex of the spire and is quite variable. The apical angle 

varies from 70-110 degrees, giving an height variation from low conical to high conical. 

Material: 5 specimens 

Stratigraphic Range A: Not found in Dorset 

Stratigraphic Range B: Cordatum Zone 
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5.0 INTRODUCTION 

This chapter uses simple statistical methods, to analyse and display the foraminiferal 

distributions of Dorset and Normandy. 

The first part of the Chapter discusses the foraminiferal distributions of Dorset and 

Normandy as separate entities, with the second part of the chapter comparing the 

foraminiferal distributions of the two localities. 

The final part of the Chapter discusses Oxfordian biostratigraphy and presents the 

difficulties encountered whilst tryiag to produce a biozonation scheme for the Dorset and 

Normandy Sections. 

5.1 KEY FEATURES OF THE FAUNA 

During this study 126 species have been recovered and identified, comprising 36 genera 

from 25 families and 5 suborders (see Chapter 4). The samples analysed from the 

Oxfordian of Dorset and Normandy cover a range of lithologies, with some more difficult 

to prepare for microfossil analysis than others (see Chapter 2 for discussion). The faimas 

recovered from the samples provide valuable information on the foraminiferal response to 

changing water depths and have been analysed using simple statistical methods, namely 

the Alpha index (a Index), and by means of the percentage of genera per sample. 

5.2 T H E A L P H A I N D E X 

The a index is a statistical test used to give an insight into the species richness of a sample. 

The a index assumes that the number of individuals of each species follows a logarithmic 

series and thus takes rarer species into accoimt. The a index was first described by Fisher 

et al. (1943):-
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X 

where x is a constant having a value <1, and n' calculated from N(l-x), N being the size of 

the sample (nimiber of individuals). 

The a index was calculated for all samples from which foraminifera had been 

picked (i.e., thin sectioned material was ignored). The a index values, plotted in a 

graphical form are illustrated in Figures 5.1 and 5.2. All sample numbers refer to the log 

sections previously illustrated in Chapter 2 (Figures 2.7 and 2.8). 

5.3 PERCENTAGE GENERA 

Due to the wide ranging quality of preservation of samples from both the Dorset and 

Normandy coasts, the author decided to group the species of foraminifera into genera for 

the purpose of this analysis. This was done so that the well described genera, such as 

Lenticulina, and Dentalina, that have been split into many species on the basis of slight 

variations in test morphology (see Chapter 4), would not statistically invalidate the groups 

that have not been studied and sub-divided in such detail (i.e., some of the agglutinated 

forms). Ternary diagrams (e.g., Murray 1991) based on the details of wall structures and 

suborders were not attempted due to the distinct lack of miliolid species in the majority of 

samples. 

Henderson (1997) used a whole range of statistical analyses (e.g., Species Richness, 

Margalef s Richness, Fisher a index. Heterogeneity Index, Cluster Analysis, Ordinations, 

Ordination by Non- Metric Multi-Dimensional Scaling, etc.) with only limited success 

when studying the Oxfordian foraminifera of North Dorset, although the general trends he 

foimd in his data could be picked out from his original, more basic analysis. 

In general, the faimas recovered are dominated by the smaller calcareous benthic 
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foraminifera, although occasionally other groups become dominant (e.g., the flood 

abundance of Trochammina species in RED 16 from the Dorset succession). 

5.3.1 THE DORSET COAST. 

Sample localities are previously displayed (Figure 2.1) against log section in Chapter 2. 

The key features of the fauna present are listed below with these data displayed in a 

graphical form in Figures 5.3-5.6. 

5.3.1.1. Mariae zone 

The Mariae Zone includes samples Fz 10-12, mariae A-B, and Fz A-H. Abimdant and 

diverse benthic foraminifera were present in these samples as well as rare planktic 

foraminifera; see Chapter 8 for more details. The zone is dominated by Epistomina species 

(up to 80% of the fauna) as well as having lesser percentages of Lenticulina, Dentalina 

(Figure 5.4), Eoguttulina, Frondiculina, Citharina, Planularia, Lingulina, Textularia and 

Trochammina. 

5.3.1.2. Costicardia subzone 

This subzone includes samples Fz 1-9, Fzy A-B, with the dominant fauna still that of 

Epistomina (up to 90% of the fauna). Again the samples contain a diverse and abundant 

fauna with lesser percentages of Lenticulina, Lingulina, Dentalina, Eoguttulina, 

Frondiculina, Citharina, Planularia, Textularia and Trochammina. 

5.3.1.3. Cordatum Subzone 

This subzone includes samples Fzy C-E, and Red 1-7. The dominant fauna at the base of 

this subzone is that of Epistomina (over 80% of the fauna) although, after the initial peak, 
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levels reach a minimum with less than 2% of the samples populated by this genus. The 

dominant genus in the upper part of this subzone is that of Ammobaculites (Figure 5.3), 

with Lenticulina as the sub-dominant. It should be noted that the lithologies of the 

uppermost samples in this subzone are rich in sand and, therefore, the assemblages 

recovered, could be a preservational artifact; see Chapter 6. 

5.3.1.4. Vertebrale Subzone 

This subzone includes samples 0 1 - OlO and Red 8-16. The lower part of the Vertebrale 

Subzone, which is represented by the Preston Grit Member of the Redcliff Formation was 

not sampled because of its inaccessibility. A flood of Ophthalmidium (Figure 5.5), with 

sub-dominant Lenticulina and Ammobaculites characterises the sampled part of the 

subzone (equivalent to the Nothe Clay Member of the Redcliff Formation). Epistomina 

dominates immediately after the Ophthalmidium flood, with the upper part of the subzone 

characterised by an agglutinated fauna (Trochammina, Ammobaculites, Textularia, Figure 

5.3), with an occasional peak (up to 17%) of Eoguttulina. The top of the Nothe Clay 

Member (Redclifif Formation) records a flood of Epistomina which represents over 90% of 

the assemblage before this genus becomes extremely rare in the Bencliff Grit; probably 

caused by preservational problems in the sandier, porous lithology. 

5.3. L 5. Antecedens Subzone 

This subzone includes samples BH 1-9, RC-RF, RF2 and RG. It is dominated by the 

smaller calcareous benthic foraminifera with all samples containing Lenticulina, although 

Trocholina occurs in flood abundances throughout the zone (Figure 5.5). 
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5.3.1.6. Parandieri Subzone 

This subzone is represented by samples BH 10-13, which are dominated by a flood of 

Trocholina; often represented by over 80% of the total fauna in the majority of the 

samples. The remainder of the faima is composed of the smaller calcareous benthic 

foraminifera. 

5.3.1.7. Caustinigrae Subzone 

This subzone includes samples BH 14-22, RA-RB. Lenticulina and Textularia dominate 

the lower part of the subzone, with an increase in agglutinated taxa towards the top where 

Trochammina becomes the dominant genera. An abundance peak of Epistomina and 

Eoguttulina also occurs towards the top of the imit (Figure 5.6). 

5.3.1.8. Evoluta Subzone 

This subzone is represented by samples Rl-4, with the lower part of the subzone 

dominated by Trochammina (Figure 5.3). Towards the top of the subzone poor 

preservation has affected the precise identification of the taxa that are present. 
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~ Trochammina spp. 

~ AmmobaculUes spp. 

Figure 5.3. Diversity graphs for Trochammina and Ammobaculites in the Oxfordian succession in Dorset. 



Figure 5.4. Diversity graphs for Marginulina, Dentalina, Nodosaria, Epistomina and Lenticulina in the Oxfordian succession in Dorset. 



Figure 5.5. Diversity graphs for Ophthalmidium, Nubeculina, Trocholina, Textularia, Citharina and Planularia the Oxfordian succession in Dorset 



Figure 5.6. Diversity graphs for Vaginulina, Lagena, Eoguttulina, Lingulina and Frondiculina in the Oxfordian succession in Dorset. 
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5.3.1.9. Baylei Subzone 

This subzone includes samples R5-R8, which are dominated by Lenticulina and the smaller 

calcareous benthic foraminifera. 

53.2 THE NORMANDY COAST. 

Sample localities have been previously displayed (Figure 2.2.) against log section in 

Chapter 2. The key features of the fauna present are listed below with these data displayed 

in a graphical form in Figures 5.7-5.10. 

5.3.2.1. LambertiZone 

This zone includes samples 5/1-5/8 and 5/16. It is dominated by the smaller calcareous 

benthic foraminifera, with Lenticulina the predominant genera and Epistomina the sub-

dominant (Figure 5.8). Only a few agglutinated taxa are present in the samples. 

5.3.2.2. Scarburgense Subzone 

This subzone contains samples 5:9-5:30, 3:15 and 3:16. The smaller calcareous benthic 

foraminifera are again dominant with additional floods of Epistomina. Epistomina is 

associated with lesser percentages of Lenticulina, Lingulina, Dentalina, Eoguttulina, 

Frondiculina, Citharina, Planularia and Trochammina. The same assemblage is recorded 

with floods of Epistomina in the Dorset succession. 
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5.3.2.3. Praecordatum Subzone 

Included within this subzone are samples 5:30, 3:1, and 3:11-3:14. Although Epistomina 

and Lenticulina are found in every sample, Textularia and Ophthalmidium occur in 

abundances of just over 20% of the total sample (Figure 5.9). 

5.3.2.4. Costicardia Subzone 

Included within this subzone are samples 3:3 and 3:4, both of which are dominated by 

Lenticulina with Nubecullinella as the sub-dominant genus. 

5.3.2.5. Cordatum Subzone 

Included within this subzone are samples 3:5-3:10. Lenticulina and Epistomina are present 

with a flood of Ophthalmidium reaching up to 20% of the sample (Figure 5.9). Towards 

the top of the subzone Ammobaculites becomes the dominant genus. This is an interesting 

comparison to Dorset where a flood of Ophthalmidium is found in the Vertebrale subzone. 

5.3.2.6. Vertebrale Subzone 

Included within this subzone are samples 2:1-2:10, 2:27 and 4:1-4:4. At the base of this 

subzone a peak of Citharina is observed (nearly 15% of the sample), with Lenticulina, 

Epistomina and Ammobaculites also common. Towards the top of the subzone peaks in 

Trocholina and Eoguttulina are observed, and the percentages of the agglutinated taxa are 

beginning to increase. 
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5.3.2.7. Maltonense Subzone 

This subzone includes samples 2:11, 2:12, 2:15, 2:18, and 4:5-4:7. Trocholina and 

Trochammina are the dominant taxa, with Lenticulina, Epistomina and Textularia 

commonly foxmd (Figure 5.7, 5.9). 

5.3.2.8. Tenuiserratum Zone 

Samples 4:8-4:9 and 2:13-2:14 occur within this subzone. All these samples record high 

diversities, with the assemblages dominated by Epistomina (Figure 5.8). 

5.3.2.9. Glosense Zone 

Samples 4:10-4:12 and 2:16-2:23 were collected from within this subzone, although some 

of the samples had to be thin-sectioned because of preparation problems. The samples 

prepared for normal micropalaeontological analysis show Trocholina to be the dominant 

genus, with Epistomina, Trochammina and Ammobaculites all relatively common. 

5.3.2.10. Koldeweyense Subzone 

Samples occurring within this subzone include 2:24-2:26. Trocholina dominates the 

samples in the upper part of the subzone, with samples from the lower part containing a 

poorly preserved faima with most of the taxa imidentifiable. 

5.3.2.11. Serratum Subzone 

Samples 1:1- 1:5 represent this subzone. They are dominated by the smaller calcareous 

benthic foraminifera, principally Lenticulina, although a flood of Ophthalmidium at the 
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Figure 5.8. Diversity graphs for Epistomina, Lenticulina, Marginulina, Dentalina and Nodosaria 
in the Oxfordian succession in Normandy. 



Figure 5.9. Diversity graphs for Ophthalmidium, Nubeculina, Trocholina, Textulara, Citharina and Planularia 
in the Oxfordian succession in Normandy. 
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base of the subzone is notable (Figure 5.9). The agglutinated taxa are present throughout 

with Textularia, Trochammina and Ammobaculites being recorded. 

5.4 C O M P A R I S O N OF DORSET AND N O R M A N D Y FORAMINIFERAL 

DISTRffiUTION 

Graphs comparing the same foraminifera in each ammonite zone between Dorset and 

Normandy are displayed in Figures 5.11-5.16. 

The distribution of Epistomina and Lenticulina from the Dorset and Normandy 

samples shows an interesting trend (Figure 5.12). There are abundant epistominids in the 

Mariae Zone in both localities. In Dorset this is the zone where planktic foraminifera have 

been discovered (see Chapter 8), and also corresponds to a proposed Maximum Flooding 

Zone/Surface (see Chapter 7). Epistominids have been used in this study to help to indicate 

Maximum Flooding Zones/Surfaces and the Epistomina trend in the Mariae Zone would 

suggest that a Maximum Flooding Zone/Surface can be correlated across the Wessex 

Basin. 

Other Maximum Flooding Zones/Surfaces (identified primarily by the domination 

of the Epistomina fauna) do not correlate between the two study areas. These include the 

Maximum Flooding Zones identified in the Costicardia, Cordatum and Vertebrale Zones in 

Dorset and in the Tenuiserratum Zone in Normandy. The lack of consistency between the 

two areas suggests that the Maximum Flooding Zones identified are localised and are the 

result of the complex interplay between factors such as local tectonics, subsidence and 

sediment deposition. 

Species oi Lenticulina were present in virtually all of the Dorset samples, but 

absent in the Upper Oxfordian samples (Maltonense Subzone - Koldweyense Subzone) 
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from Normandy. The lack of the lenticulinids is probably a preservational factor as no 

calcareous foraminifera are abundant in the Upper Oxfordian samples (Maltonense 

Subzone — Koldweyense Subzone) from Normandy (Figs 5.12). The samples prepared for 

micropalaeontological studies from the Upper Oxfordian (Maltonense Subzone -

Koldweyense Subzone) also contained high quantities of coarse grained sediments, which 

also indicates that the lack of calcareous foraminifera may be a preservational feature (see 

Chapter 6). 

The peak in abundance of Ophthalmidum occurs in the Vertebrale Zone of Dorset 

and in the Cordatum Zone of Normandy. This, coupled with high percentages of 

calcareous foraminifera, may indicate that a shallow water environment was present during 

these times (Barnard e/a/., 1981). 

Marginulina, Dentalina, Citharina and Planularia occur in low abundances in both 

the Dorset and Normandy samples (Figs 5.13, 5.15). Where their absence corresponds with 

the absence of Lenticulina and other calcareous fauna, it may indicate that poor 

preservation is the likely explanation. 

Agglutinated faunas dominate the Upper Oxfordian (Maltonense Subzone -

Koldweyense Subzone) in Normandy due to preservational factors (as previously stated), 

and also the Cordatum and Vertebrale Subzones in Dorset (Figs 5.14, 5.15). Agglutinated 

faimas also occur in floods where calcareous fauna are present in lower abundances, such 

as the Ammobaculites floods in the Cordatum Zone in Normandy, and in the Costicardia 

Subzone in Dorset. These increases in agglutinating genera are indicative of a change in 

the environment, possibly indicating a change in salinity, or a change in water depth 

(Jenkins and Murray, 1981). 
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Figure 5.11. A comparison of diversity graphs for Ophthalmidium, Nubeculina and Trocholina, for the Dorset and Normandy successions. 
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Figure 5.12. A comparison of the diversity graphs for Epistomina and Lenticulina for the Dorset and Normandy successions. 
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Figure 5.13. A comparison of the diversity graphs for Marginulina, Dentalina and Nodosaria 
for the Dorset and Normandy successions. 
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Figure 5.15. A comparison of diversity graphs for Textulara, Citharina and Planularia 
for the Dorset and Normandy successions. 
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5.5 BlOSTRATIGRAPHY 

The best tools for biostratigraphy are planktic organisms as their mode of life allows their 

distribution over a large geographical area in a relatively short period of time. In the 

Jurassic, however, planktic foraminifera are rare and poorly understood (see Chapter 8) 

and hence the models created using primarily planktic foraminifera (Emery and Myers, 

1996, fig. 6.14) can be tested using benthic foraminifera. 

The use of benthic foraminifera as biostratigraphic markers is not generally as 

successful as the use of planktic foraminifera (Henderson, 1997). Benthic foraminifera rely 

on the substrate for survival and are, therefore, facies-specific and more sensitive to both 

ecological and sedimentological changes. Species that are particularly usefiil for 

biostratigraphic purposes are those forms with short, well defined stratigraphic ranges, but 

imfortunately Upper Jurassic foraminifera tend to have particularly long stratigraphic 

ranges. The Stratigraphic Atlas of Fossil Foraminifera (Shipp, 1989) quotes ranges for 

distinctive Upper Jurassic foraminiferal species. Many species show different stratigraphic 

ranges for different locations within England, and this emphasises the facies-related 

distribution patterns of the taxa. 

Range charts were created for this study (Appendix A) and these show great 

differences in the ranges of the fauna found in the Dorset and Normandy samples. The 

range chari;s are a generalised summary and place the foraminifera into the ammonite 

zone/subzone in which the samples for the micropalaeontological studies were collected in 

the field. The author is aware that the foraminiferal ranges are not always going to be 

coincident with these zonal boundaries, but believes that the summary information 

produced is valuable in emphasizing fiuther the facies-related distribution patterns of the 

taxa (see Chapter 6). From the range charts a limited biozonation can be established with 

six potential marker species identified for the Oxfordian of Dorset and Normandy (Table 
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5.1) The six species identified have a first or last occurrence within a comparable 

ammonite zone for the Dorset and Normandy samples. Many of the species are recorded as 

long ranging (i.e., from the Callovian to the Kimmeridgian) and not considered as 

appropiate marker species. 

The six species identified are: 

• Ammobaculites fisheri Crespia, 1953 

• Citharinaflabelloides (Terquem), 1868 

• Citharina tenuicostataLutze, 1960 

• Haplophragmoides kingakensis Tappsn, 1955 

• Planularia listi (Bomemann), 1854 

• Trochammina sp.cf. T. inflata (Montagu), 1808 

These six species are different to those recognised by Henderson (1997) from borehole 

samples in North Dorset. He identified 10 potential marker species: 

Epistomina tenuicostata Bartenstein and Brand, 1951 

Lenticulina quenstedti (Giimbel, 1862) 

Lenticulina tricarinella (Reuss, 1863) 

Ophthalmidium strumosum (Giimbel, 1862) 

Trocholina nodulosa Seibold and Seibold, 1960 

Vaginulina barnardi Gordon, 1965 

Paalzowellafeifeli (Paalzow, 1932) 

Ophthalmidium compressum Barnard et al., 1981 

Gaudryina sherlocki (Bettenstaedt, 1952) 

Pseudonodosaria radiata (Barnard, 1952). 
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It is an interesting observation that the six species identified from the coastal sections of 

Dorset are completely different to those identified by Henderson (1997), although the 

species identified by Henderson (1997) are present in samples from the South Dorset and 

Normandy Coasts (Table 5.2). If anything the ranges identified by Henderson seem more 

comparable to those from Normandy. 

The six species identified in this study and those identified by Henderson (1997) 

are also different to the zonal species identified by Hardenbol et al. (1998) for European 

basins. They identify: 

• Lenticulina oxfordiana mg S. 

• Nodosaria plicatilis 

• Lenticulina ectypa costata mg M. 

• T. agglutinans 

These are, again, different to the biozones recognised by Ainsworth et al. (1998a, 

b). They recognise two biozones within the Oxfordian based upon the highest occurrences 

of Lenticulina quenstedti and Ammobaculites coprolithiformis. 

From this study, and the comparisons made with other recent studies, it is clear that 

it is very difficult to erect a zonation scheme based solely on benthic foraminifera. It would 

also appear that benthic foraminifera from localised basins do not provide the high 

resolution needed for conclusive results. Further work is required, including the inclusion 

of data from the oil industry, to test the potential marker species identified within this study 

and generate a zonation scheme that will allow correlation across a region rather than just 

isolated/localised basins. 
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Chapter 6 

6.0 INTRODUCTION 

The first part of this chapter introduces the concept of preservation and documents the 

problems preservation can have on a foraminiferal assemblage. The second part of the chapter 

introduces palaeoecology and attempts the establishment of morphogroups using Jurassic 

benthic foraminifera. 

6.1 PRESERVATION 

Preservation is an important factor to contemplate when working with foraminiferal data. 

Apparent trends may be misleading unless preservational factors are remembered; e.g., an 

increase in the abundance and/or diversity of the fauna may be interpreted as a MFS whereas, 

in reality, it could just be due to better preservation in the sample or samples being studied. 

When picking foraminifera from a residue, observations can be made between samples 

into the preservational quality of the foraminifera present and this can be seen to differ 

dramatically, even between different faunal groups within the same sample. The calcareous 

and aragonitic forms often show features such as perforated or very thin tests that may be 

indicative of the selective removal of some of the taxa. The assemblage present is, therefore, 

not the true assemblage. As well as being the dead, not the living assemblage, it is also the 

product of both taphonomic processes and those acting on the sediments after deposition. The 

agglutinated taxa appear to be hardier than the calcareous forms, with the aragonitic forms 

tending to suffer the most damage. This is not a great surprise as aragonite is an unstable 

mineral and most aragonitic fossils are highly susceptible to dissolution (BouDagher-Fadel et 

al, 1997). 

An interesting relationship was investigated during the processing stage of this study 
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between the percentage of dried sample retained on the 63nm sieve and the diversity of the 

foraminifera present in that sample. Figures 6.1 and 6.2 demonstrate this relationship for the 

Dorset and Normandy samples. From the graphs it is quite clear that the samples that contain 

a larger quantity of coarser-sized residue (i.e., sand or silt sized grains unable to pass through 

the 63 urn sieve) contain a lower diversity fauna of foraminifera, with the opposite also seen 

to be true, (i.e., the samples that contained a low percentage of coarse sized residue contain a 

higher diversity of foraminifera). 

From the graphs it would appear that the lithologies do have a direct relationship with 

preservation, although the reasoning behind this is not that simple. From some of the damage 

seen in the foraminifera in this study (such as very thin fi^gile tests) it would appear that the 

sand-rich successions are allowing groundwater movement and this may be removing some 

elements of the fauna, such as the aragonitic and calcareous taxa, through dissolution (Plate 

11, Figs A-G). This effect appears to be occurring both immediately after deposition during 

"geological time" and also during more recent weathering and exposure. From the damage 

present on the tests of some foraminifera it is very difficult to identify when this damage has 

occurred. From field evidence, such as selenite crystals forming on the fracture svirfaces of 

some of the outcrops, it is apparent that recent weathering and erosion of the foraminifera is 

still ongoing, and will accentuate any previous damage occixrring during or shortly after 

deposition. In extreme cases this would destroy much of the calcareous and aragonitic 

assemblage leaving an abundant agglutinated fauna and thus producing a bias in the data. 

Boltovskoy and Totah (1992), using modem day foraminifera, have studied the 

preservational potential of some foraminiferal species. Three sets of foraminiferal species 

(consisting of benthic, benthic plus planktic and planktic) were placed for 160 days in buffered 
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distilled water of pH 6.7 to assess their preservation potential. Five 'degrees' of dissolution 

and an index of preservation were produced from their study, which illustrates how 

foraminiferal species can be ranked according to their resistance to dissolution. Their study 

also observed that variations within species wdth respect to preservation potential could also 

occur due to infraspecific differences in test strengths. Murray (1989) has studied the living 

and dead assemblages of modem day faunas and observed marked reductions in the number of 

calcareous components of the dead assemblage in some samples. It was suggested that this 

effect is caused by dissolution or partial dissolution. Although it has long been known that 

post-mortem dissolution of calcareous tests could modify the composition of benthic 

assemblages (Hart, 1983), there is a tendency to believe that either the entire calcareous 

component is destroyed, or that it is all preserved. Further work by Alve and Murray (1994) 

and Murray and Alve (2000) has reported that high diversity agglutinated assemblages can be 

derived from high diversity calcareous assemblages through the dissolution of the calcareous 

component and through transport of dead tests into the death assemblage. It is recognised by 

these workers that some species are especially prone to dissolution and may be totally 

removed from the resulting death assemblage. 

Work on modem day faunas, their relationship vsdth the subsfrate, and studies into their 

preservation are important in helping to understand the death assemblages preserved in the 

geological record and help to account for the assemblages recorded. Castignetti (1997) has 

studied Recent foraminifera from Plymouth Sovmd, a nearshore marginal marine environment 

in Southwest England. Data from his study (Figures 6.3a,b and 6.4a,b) show the standing 

crops (i.e., the living population of foraminifera) for predominantly sandy, mixed and mud 

lithologies. The controls on the fauna are complex, but it is clear that in the nutrient rich clays 
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there is an abundant diverse faima, and within the nutrient poor sands, a low diversity of favma 

(Oxford et al., 2004). The mixed environment falls between the two. 

The Normandy and Dorset samples are part of the geological record and, therefore, other 

factors must be taken into account before interpreting any faunal results. These geological 

samples are a product of; 

• The initial fauna; 

• Post-mortem taphonomy; 

• Changes during burial and "geological time"; 

• Modem weathering and exhumation; and 

• Errors introduced during sampling, processing and analysis (Oxford et al., 2004). 

Notwithstanding the additional factors introduced when using samples from the geological 

record, the results of Castignetti (1997) are mirrored in the Jurassic successions from 

Normandy and Dorset (Figures 6.1 and 6.2). The muddy lithologies contain the most abundant 

and diverse faima, while the sandier lithologies contain lower faunal abimdances and 

diversities. 

Figure 6.5 simunaries the potential changes that can occur to lithologies and their 

foraminiferal component after deposition. Foraminiferal loss due to dissolution may be 

occurring in the samples studied and in some respects may be related to lithology, but other 

factors also need to be taken into consideration when using benthic foraminifera (especially 

fossil forms) as proxies for changes in relative sea level. If a succession is sand-rich then the 

time taken for deposition of this succession is relatively short compared to that of a clay-rich 

succession. In the case of sandwich successions, the fauna may seem to be 'diluted' in respect 

to the sediment present; i.e., the sample will contain fewer foraminifera per gram due to the 

208 



Chapter 6 

abundance of sandier material. Differing energy levels in sand and clay successions may also 

influence the fauna. High-energy environments such as those characterised by the deposition 

of coarse sands, may see the fauna preferentially winnowed (Oxford et al, 2000). Organic 

fluxes, seasonality, oxygen levels and competition between species must also be recognised as 

influences affecting the abundance of foraminifera found. 

The effects of compaction on the lithologies are also an important consideration. 

It is apparent that lithologies that contain high percentages of sand, such as sandstones and 

sandy mudstones, have a very different compaction potential when compared to those that are 

clay rich, containing little or no sand or silt. Lithologies that are a mixture between the two 

(i.e., silty mudstones) again behave differently under compaction. Muddy Ethologies will 

compact up to half their original volume, whilst sand lithologies only compact S10% of their 

original volume. This creates an interesting effect as, when sampling muddy lithologies, the 

samples will actually include several foraminiferal growing seasons, possibly enhancing the 

number of foraminifera found in the samples. With sandy lithologies the opposite effect will 

be true. The low compaction rates will not help to inflate the figure and this coupled with the 

sands allowing the ingress of water, will cause even less foraminifera to be preserved. All 

these factors help to polarize the original differences between the samples. 

Emery and Myers (1996, fig. 6.14) illustrate this same trend wdth high foraminiferal 

diversities and abundances in the clay dominated zone of the Maximum Flooding Surfaces, 

and the reverse in the sands. 
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6.2 FORAMINIFERAL PALAEOECOLOGY 

Investigations primarily using modem day foraminifera have shown that the distribution of 

foraminiferal morphogroups is strongly related to enviroimiental conditions. Morphogroups 

have been devised using test shape, mode of coiling, presence of pores and apertural types, to 

reflect differing life positions, feeding strategies and the faunas' palaeoecological niche. Using 

the modem day studies some attempts have been made to apply morphogroups to fossil 

assemblages in order to aid palaeoenvironmental interpretations. 

6.2.1 FORAMINIFERAL MORPHOGROUPS. 

An intimate relationship is inferred among foraminiferal distribution patterns, trcphic 

stmctures (community feeding strategy, dwelling habits, sub-strate niche patterns) and water 

mass conditions (depth-related in part); for a review see Koutsoukos and Hart (1990). It is 

suggested that the distribution patterns may be a direct response of the functional adaptive 

morphology of the foraminiferal test to individual characteristics of behavioural structure, 

preferential dwelling microhabitat and trophic strategy versus enviroimient (Koutsoukos and 

Hart, 1990). Morphogroup classification has been attempted by Charrmey (1976), Severin 

(1983), Jones and Chamock (1985) and Koutsoukos and Hart (1990), using the external 

characteristics of foraminifera. Feeding strategies and dwelling habitats in relation to test 

morphology of benthic foraminifera have also been proposed based upon the models of 

Haynes (1981), Jones and Chamock (1985), Gooday (1986, 1988), Bemhard (1986), Stam 

(1986), Kaminski et al (1998), Muller (1990) and Nagy (1992). A summary of the work by 

Muller (1990) and Nagy (1992) is found below. 
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6.2.2 MuLLER's (1990) FORAMINIFERAL ASSEMBLAGES. 

Muller (1990, in his unpublished PhD) used statistical analysis of foraminiferal assemblages 

from the Mochras Borehole (Lower Jurassic) of the UK to propose biofacies groups, and 

related these to a depth distribution model. Muller (1990) identified thirteen benthic 

foraminiferal groups in the sfrata of the Lower Jurassic using Q-mode cluster and factor 

analysis. The thirteen groups are designated as biofacies, with Muller (1990) proposing a 

model for Liassic benthic foraminiferal paleobathymetry ranging from very near shore to outer 

shelf or shelf basin. His results are summarised below and in Figure 6.6. 

Biofacies Alpha and Alpha 1 indicate shallow water, lagoonal and shoreline 

environments. Biofacies Alpha, which is dominated by Eoguttulina and Lenticulina, suggests 

a palaeodepth of only a few metres. Biofacies Alpha 1, an arenaceous-rich biofacies, 

apparently lived within the influence of wave action. 

Biofacies Beta, Gamma and Gamma 1 indicate inner shelf environments. All three 

biofacies contain an important Lingulina tenera component. Biofacies Beta is completely 

dominated by this species, while Biofacies Gamma and Gamma 1 have greater diversity and 

equability. The latter biofacies is dominated by Brizalina liassica, whereas Lingulina tenera is 

the second most prevalent species. 

Biofacies Delta is interpreted as indicating transitional inner shelf to middle shelf 

environments. Lingulina tenera and Marginulina prima are, respectively, the dominant and 

subordinate species. In the middle shelf, Biofacies Delta through Iota, the trend of dominance 

of the species Lingulina tenera declines and other species become more prominent. 

In Biofacies Epsilon, Marginulina prima is the dominant species with Lingulina 

tenera the second most abundant. Lenticulina varians and Astacolus pauperatus increase in 
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Biofacies Zeta and Spirillina infima is the most abundant species in Biofacies Eta and Theta. 

Biofacies Iota, which is characterised by the species Lenticulina varians and Lenticulina 

muemteri, is interpreted as indicating trzmsitional middle to outer shelf environments. 

Spirillina infima is less abundant in this biofacies. 

Outer shelf environments are identified by Biofacies Kappa, which is dominated by the 

genus Ophthalmidium, whilst the declining trend of the species Spirillina infima continues in 

this biofacies. Biofacies Lambda, is dominated by the species Reinholdella macfadyeni, and 

Lenticulina muensteri with Lingulina tenera an important accessory species, indicates outer 

shelf, or shelf basin, conditions. This biofacies is prevalent in the Early Toarcian, coincident 

with an interval in which many authors propose a significant transgression (Hallam, 1981; Haq 

et al, 1987; Hesselbo and Jenkyns, 1998). 

Muller's work is summarised from his PhD thesis and thus it is an entirely unpublished 

and untested model. Hylton (2000) compared the model of Muller with his Early Toarcian 

assemblages and found that there were some agreements between the morphogroips that 

Muller had identified and the sea level changes that Hylton had identified, although this was 

not a rigorous test of Muller's model. The work of Hylton (2000) is again in an unpublished 

PhD thesis and has, therefore, never been peer reviewed or tested in industry. If the model of 

Muller (1990) was to be tested, and the results published, the terminology it uses, which 

appears to be based on American university "fi-atemity house" nomenclature, would probably 

need to be changed as it would appear rather alien to many readers. 

6.2.3 NAGY'S (1992) MORPHOLOGICAL ASSEMBLAGES. 

Nagy (1992) identified eleven morphotypes fi-om the Toarcian and Bajocian deposits of the 

northern North Sea and Yorkshire coast. These were composed of seven groups and four 
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morphogroups, the categories distinguished on the basis of main morphological features of the 

taxa, combined with their life positions and microhabitats as inferred from modem analogues. 

His results are summarised below. 

Morphogroup 1 contains Rhizammina? sp. 1 and Jaculella liassica and is the 

dominant unit in the modem deep ocean. This group is adversely affected by strong currents or 

the high turbidity typical of neritic environments. 

Morphogroup 2 comprises surficial species and is split into two subgroups. 

Subgroup 2a includes uniocular species of globular shape; Saccammina inanis, Saccammina 

sp.l and Psammospaera sp.l. These forms are assumed to be surficial passive deposit feeders, 

due to their morphological analogy to certain modem surface dwelling taxa. Subgroup 2b 

includes two multilocular morphotypes: plano-convex to concavo-convexo species with 

trochospiral chamber arrangement and rounded periphery, and streptospiral species having a 

flattened umbilical side, a slightly elevated spiral side and a rounded periphery. The species 

included in Subgroup 2b are Ammoglobigerina canningensis, Trochamminsa semiturgida, 

Trochamminopsis haeusler, Recurvoides pachyspirus and Recurvoides tenuispirus. The 

subgroup 2b suggests a surficial microhabitat and vagrant mode of life. 

Morphogroup 3 is again split into two subgroups. Subgroup 3a is dominated by a 

planispiral chamber arrangement and rounded periphery. It contains the species 

Haplophragmoides kingakensis and Ammobaculites fontinensis. Subgroup 3b contains 

multiocular elongate taxa with subcylindrical cross section and include Ammobaculites aff. 

agglutinans, Ammobaculites vetusta, Ammobaculites sp.l Bulbobaculites sp.l, Bulbobaculites 

oviloculus, Reophax metensis, Reophax multilocularis, Reophax aflf. sterkii, Reophax suevica 

and Verneuilinoides subvitreus. The morphology is interpreted as an adaptation to an infaunal 
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mode of life and detrital or bacterial scavenging. 

Morphogroup 4 includes taxa with flattened tests that are planispiral, trochospiral or 

irregularly coiled and interpreted as having a vagrant, semi-attached or attached mode of life. 

It includes Subgroup 4a with Ammodiscus asper, Ammodiscus siliceus, Ammodiscus 

yonsnabensis, Glomospirealla aff otorica, Glomospira irregularis, Glomospira aff. perplexa, 

Trochammina eoparava, Trochammina aff sablei, Trochammina sp.l, and 

Arenoturrispirillina sp.l. Subgroup 4b includes some of the above with Ammovertellina 

irregularis. 

The prodelta deposits identified by Nagy were formed in a normal salinity and slightly 

stagnant depositional setting with foraminiferal faunas composed mainly of surficial 

(subgroup 2b) and infaunal (subgroup 3b) morphogroups. The lower delta front and 

interdistributary bay sediments identified by Nagy were deposited in shallow hyposaline 

waters strongly dominated by an epifaunal morphogroup (subgroup 4a) with a partly epiphytal 

association. The brackish interdistributary bay facies identified by Nagy contains low diversity 

assemblages, predominantly composed of agglutinated taxa (subgroup 4a) and with a 

significant spirillinid component. 

Whilst both studies are attempting to use modem analogues to help to understand 

the past, with Muller (1990) producing a generic water depth model and Nagy (1992) a more 

location-focused pro-delta front model, it must be remembered that dramatic changes took 

place in benthic shelf assemblages during the Cretaceous and Tertiary (Copestake and 

Johnson, 1989). These problems (listed below) illustrate how risky it is to extrapolate modem 

data back into the past, especially as far back as the Jurassic: 

• The dominant group during the Jurassic was the nodosariids with the rotaliids 
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replacing these during the Cretaceous and Tertiary; 

• Modem day nodosariids are thought to occupy a deeper water setting than those of the 

Jurassic (Johnson, 1976); 

• The depositional environment of the Jurassic sediments of northern and central Europe 

was an extensive shallow epicontinental sea, a depositional environment that no longer 

exists in Europe today (Hallam, 1998); and 

• The Jurassic seas of the North Atlantic and Northwest Europe were shallow in 

comparison vwth today. 

The author was unable to produce a morphogroup model for the Oxfordian fauna from the 

Wessex Basin. The problems highlighted above, coupled with the limited environments 

available in the Wessex Basin during the Oxfordian (the basin only recorded depths of 

approximately 150 metres according to Samson e/̂  ah, 1992), proved too difficult to overcome 

and allow the identification of morphogroups that appeared meaningful. This must be set in 

comparison with Koustsoukos and Hart (1990), Stam (1986), Wignall (1991) and Nagy (1992) 

who had a fiiU range of environments from shallow water to deep basin available to them in 

their investigations. 

6.3 FoRAMiNiFERAL ASSEMBLAGE M O D E L 

Figure 6.7 compares the work of Stam (1986), Wignall (1991), Muller (1990), and Nagy 

(1992), as these studies relate to Jurassic morphogroup analysis. It is interesting to see the 

varying interpretations of palaeodepths from the different studies, and this helps to illustrate 

the problem of interpreting past environments using extinct foraminifera. Data from the study 

of Hylton (2000) on Ophthalmidium macfadyeni, show peak abundances adjacent to 
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Maximum Flooding Surfaces and thus, it would appear that such occurrences are related to 

transgressive events. Work by Gordon (1970) interprets floods of Spirillina and 

Ophthalmidiian as indicative of shallowing, whilst the work of Stam (1986) indicates that 

Ophthalmidium carinatum preferred a shallow water depth (less than 60 metres) with 

Ophthalmidium strumosum preferring relatively deep water (from 200-250 metres, or possibly 

more). This conclusion is interesting, as Ophthalmidiwn strumosum is found in both the 

Normandy and Dorset samples, even though the Wessex and Anglo-Paris Basins were 

generally shallow and probably never reached depths of over 150 metres (Samson et al, 

1992). 

6.4 CONCLUSIONS 

The establishment of morphogroups using Jurassic benthic foraminifera is an area where 

further research is needed. Morphogroup analysis is an interesting concept and can be used to 

great success with modem day faunas, although it is uncertain how successfully it can be 

applied to the Jurassic. The changes through time in foraminiferal niches (Johnson, 1976), the 

lack of palaeodepth information and preservational factors enhance the difficulties of applying 

a modem day model back in time. Benthic foraminifera are still useM, however as a result of 

their close association with the substrate upon, or within which, they ive and thus can be 

utilised to help to identify sequence stratigraphic horizons that cannot always be identified 

using other methods alone. 

221 



Environment Biofacies Dominant Species 
Comment 

(This study) 

w 

Q 
H 
o 
2 
H 

Alpha 
(U 

o 

(U 

:2: 

CO 

a] 

CO 

Alpha! 

Beta 

Gamma 

Gamma 1 

Delta 

Epsilon 

Zeta 

Eta 

Theta 

Iota 

I—H 

§ 
a, 
m 
Q 

Kappa 

Lamda 

Eoguttulina liassica 
Lenticulina varians 
Lingulina tenera 
All other species 

Arenaceous forms 
Lenticulina varians 
Lingulina tenera 

Lingulina tenera 
(Lenticulina muensteri) 

Lingulina tenera 
Lenticulina varians 

Brizalina liassica 
Lingulina tenera 

Lingulina tenera 
Marginulina prima 

Marginulina prma 
Lingulina tenera 

Lenticulina varians 
Lingulina tenera 
Astacolus pauperatus 

(Lenticulina muensteri) 
Lingulina tenera 
Marginulina prima 
Lenticulina varians 

Spirillina infirma 
Lenticulina varians 
Lenticulina muensteri 

Lenticulina varians 
Lenticulina muensteri 
Spirillian infirma 

Ophthalmidium macfixdyeni 
Spirillina infirma 
Lingulina tenera 

These biofacies are 
possibly the 
equivalents 
of those foimd 
in the MPS 

Reinholdella macfiidyeni 
Lingulina tenera 
Lenticulina muensteri 

? Epistomina 
equivalent 

environment 

Figure 6.6. A summary of the foraminiferal assemblages of Muller (1990), 
with additional comments from this study. 



Depth 

1 
s 
(U 
U 

w 

c 

O 

< ' 

a 
'c 
& 

Stam(1986) 

Pacdzowella 
feifeli 

Spirillina spp. 

Ophthalmidium 
carinatum 

Discorbis spp. 

Lenticulina spp. 

Eoguttulina spp 

Nodosaria/ 
Dentalina spp. 

Psetidolamarckina 
rjasanensis 

Agglutinants 

Ophthalmidium 
strumosum 

Episomina 
mosquensis 

MuUer (1990) 

Alpha 

Alpha 1 

Beta 

Gamma 

Gamma 1 

Delta 

Epsilon 

Eta 

Theta 

Iota 

Kappa 

Lamda 

Wignall(1990) 

Citharinaflabelloides 
Epistomina spp. 
Lenticulina major 

Astacolus beierana 
Dentalina cfbicornis 
Ammobaculites sp juv 
Lenticulina muensteri 
Arenaceous foraminifera 

Nagy(1992) 

4a 

4a 

3b 

3b 

2b 

2a 

1 

Figure 6.7. A comparison of the foraminiferal assemblage models. 



Chapter 7 

CHAPTER 7: SEQUENCE STRATIGRAPHIC INTERPRETATIONS 

CHAPTER 7: SEQUENCE STRATIGRAPHIC INTERPRETATIONS 224 

7.0 INTRODUCTION 228 

7.1 FORAMINIFERA AS SEA-LEVEL INDICATORS 228 

7.1.1 S E Q U E N C E DEFINITION 229 

7.2 BlOFACIES AND BIOSTRATIGRAPHY IN SEQUENCE STRATIGRAPHY.. 231 

7.3 S Y S T E M S TRACT INDICATORS 231 

7 3 . 1 LOWSTAND SYSTEMS TRACT (LST) 231 

73.2 TRANSGRESSIVE SURFACE ( T S ) 232 

7 3 3 TRANSGRESSIVE SYSTEMS TRACT ( T S T ) 233 

73.4 MAXIMUM FLOODING SURFACES ( M F S ) 234 

73.5 HIGHSTAND SYSTEMS TRACT ( H S T ) 235 

73.6 PROBLEMS WITH HIGH RESOLUTION SEQUENCE STRATIGRAPHY 236 

7.4 DORSET 236 

7.4.1 SUMMARY OF PREVIOUS WORK 236 

7.5 DORSET SEQUENCE STRATIGRAPHIC INTERPRETATIONS 238 

7.5.1 SEQUENCE 1 238 

SEQUENCE 1: SEQUENCE BOUNDARY 239 

SEQUENCE 1: SYSTEMS TRACT IDENTIFICATION 239 

THE 'ZONE OF MAXIMUM FLOODING' 239 

THE HIGHSTAND SYSTEMS TRACT 239 

224 



Chapter 7 

7,5.2 SEQUENCE 2 242 

SEQUENCE 2: SEQUENCE BOUNDARY 242 

SEQUENCE 2: SYSTEMS TRACT IDENTIFICATION . . ..243 

LOWSTAND SYSTEMS TRACT . 243 

TRANSGRESSIVE SURFACE 243 

TRANSGRESSIVE SYSTEMS TRACT . 243 

'ZONE OF MAXIMUM FLOODING' 244 

HiGHSTAND SYSTEMS TRACT 244 

7 .53SEQUENCE3 2 4 5 

SEQUENCE 3: SEQUENCE BOUNDARY 245 

SEQUENCE 3: SYSTEMS TRACT IDENTIFICATION . 245 

LOWSTAND SYSTEMS TRACT 245 

TRANSGRESSIVE SURFACE 246 

TRANSGRESSFVE SYSTEMS TRACT 246 

'ZONE OF MAXIMUM FLOODING' 247 

HiGHSTAND SYSTEMS TRACT 247 

7.5.4 SEQUENCE 4 , 248 

SEQUENCE 4: SEQUENCE BOUNDARY 248 

SEQUENCE 4: SYSTEMS TRACT IDENTIFICATION 248 

TRANSGRESSIVE SYSTEMS TRACT 248 

'Z;oNE OF MAXIMUM FLOODING' 249 

HiGHSTAND SYSTEMS TRACT 250 

7.5.5 SEQUENCE 5 250 

225 



Chapter 7 

SEQUENCE 5: SEQUENCE BOUNDARY . 250 

SEQUENCE 5: SYSTEMS TRACT IDENTIFICATION 251 

TRANSGRESSIVE SYSTEMS TRACT 251 

7.6 NORMANDY 251 

7.7 NORMANDY SEQUENCE STRATIGRAPIHC INTERPRETATIONS 254 

7.7.1 SEQUENCE 1 254 

SEQUENCE 1: SYSTEMS TRACT IDENTIFICATION. 254 

'ZONE OF MAXIMUM FLOODING' 254 

HiGHSTAND SYSTEMS TRACT 258 

7.7.2 SEQUENCE 2 , 258 

SEQUENCE 2: SEQUENCE BOUNDARY . 258 

SEQUÊ fCE 2: SYSTEMS TRAPT ^ENTIFICATION 259 

LOWSTAND SYSTEMS TRACT 259 

TRANSGRESsrvE SURFACE 259 

TRANSGRESSIVE SYSTEMS TRACT . 259 

'ZONE OF MAXIMUM FLOODING' 260 

HIGHSTAND SYSTEMS TRACT 260 

7.7.3 SEQUENCE 3 261 

SEQUENCE 3: SEQUENCE BOUNDARY 261 

SEQUENCE 3: SYSTEMS TRACT IDENTIFICATION 261 

LOWSTAND SYSTEMS TRACT 261 

TRANSGRESSIVE SYSTEMS TRACT 262 

'ZONE OF MAXIMUM FLOODING 262 

226 



Chapter 7 

HIGHSTAND SYSTEMS TRACT 262 

7.7.4 SEQUENCE 4 263 

7.7.5 SEQUENCE 5 263 

SEQUENCE 5: SEQUENCE BOUNDARY 263 

SEQUENCE 5: SYSTEMS TRACT IDENTIFICATION . 263 

LowsTAND SYSTEMS TRACT 263 

TRANSGRESSIVE SYSTEMS TRACT, MAXIMUM FLOODING SURFACE AND 

HIGHSTAND SYSTEMS TRACT 264 

7.7.6 SEQUENCE 6 264 

SEQUENCE 6: SEQUENCE BOUNDARY 265 

SEQUENCE 6: SYSTEMS TRACT IDENTIFICATION 265 

LOWSTAND SYSTEMS TRACT AND TRANSGRESSIVE SYSTEMS TRACT 265 

MAXIMUM FLOODING SURFACE 266 

HIGHSTAND SYSTEMS TRACT 266 

7.8 CONCLUSIONS 266 

227 



Chapter 7 

7.0 INTRODUCTION 

This chapter will present sequence stratigraphic interpretations that are based upon the 

integration of micropalaeontological and sedimentological evidence, and aims to refine 

previous sequence stratigraphical models for the successions studied. The chapter is spUt into 

three sections. The first section explains how foraminifera can be used to aid sequence 

stratigraphic field explanations. The second section concentrates on the Dorset successions 

with the third section concentrating on the Normandy successions. The chapter ends with a 

brief conclusion. Key sequence stratigraphic definitions are found in Chapter 1. 

7.1 FORAMBNflFERA AS SEA-LEVEL INDICATORS 

The application of micropalaeontology to the field of sequence stratigraphy is not a new 

phenomenon. Biostratigraphical studies have been imdertaken which combine the 

biostratigraphical data with sequence stratigraphic information fi-om well and seismic data. 

The majority of this work has been on the Cenozoic strata in the Gulf of Mexico (Armentrout, 

1987, 1996; Armentrout and Clement, 1990; Armentrout e? a/., 1990, 1999; Pacht etal., 1990; 

Vail and Womardt, 1990; Van der Zwan and Brugman, 1999). Work on other geological ages 

and areas includes the work of Olsson (1988), Cubaynes et al. (1990), Schlager (1991), 

Simmons et al. (1991), Powell (1992), Partmgton et al. (1993), Hart (1997), Henderson 

(1998), Payne et al. (1999) and Oxford et al. (2000). A recent review by Sharland et al. 

(2001) integrates biostratigraphic data with sedunentological and lithological data to identify 

over 63 Maximum Flooding Surfaces (MFS) fi"om the Precambrian to Neogene successions of 

the Arabian Plate. Each MFS has been assigned a geological age, and then attributed a 

geochronological date. The authors believe that 33 of their 63 MFSs are preserved over most 
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of the Arabian Plate and provide the most reliable correlation of the successions. Of the 

remainder, 25 are interpreted as being preserved 'sub-regionally' over large areas of the 

Arabian Plate, with 5 preserved only 'locally'. 

Patterns of benthic and planktic foraminiferal abundances and diversities reflect 

changes in depositional environments and can be extremely usefiil in local and regional 

correlation (Armentrout et al., 1990). Benthic taxa live either on the sea floor (epifaunal or 

epiphytal) or within the upper few centimetres (infaunal) of sediments where physico-

chemical conditions (e.g., substrate, pH, Eh, etc.) can be highly variable (Armentrout ê  al., 

1999). As many foraminiferal species have specific physical and chemical requirements and, 

as these vary with water depth, it makes water depth inferences fi"om benthic assemblages the 

most usefiil environmental indicator (Armentrout et al., 1990). Planktic foraminifera mainly 

inhabit the upper layers of the oceanic water column and, generally, have broader 

distributions. Planktics can, however, provide specific depth indicators. In the mid-late 

Cretaceous and Cenozoic interval the various planktic morphogroups provide valuable water 

depth information (e.g.. Hart and Bailey, 1979; Caron and Homewood, 1983; Leckie, 1987; 

Hart, 1999) but in the Jurassic the limited maphogroups present are not diagnostic. One can 

only use presence/absence data in any analysis. Emery and Myers (1996, fig. 6.14) use the 

distribution of planktic microfossils to identify the MPS along with a peak in faimal diversity. 

This current study is primarily based upon the use of benthic foraminifera, as planktic 

foraminifera of Jurassic (Oxfordian) age are rare and almost unknown fi-om the U.K. 

7.1.1 SEQUENCE DEFINITION 

Sequence stratigraphy was developed in the 1970's and was initially based on the 
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interpretation of seismic sections. It was further refined by Vail et al. (1977) to interpret 

outcrop and borehole data and to relate the resulting stratigraphy to relative sea-level changes. 

Short-term fluctuations lead to the formation of sequences, "genetically related packages of 

rock bound by unconformities or their correlative conformities" (Van Wagoner et al., 1988). A 

sequence is divided into systems tracts with three main tracts recognisable wdthin a given 

system; the Lowstand Systems Tract (LST), Transgressive Systems Tract (TST) and 

Highstand Systems Tract (HST). The boundaries between individual systems tracts are 

indicated by key stratal surfaces, which represent significant changes in relative sea-level (e.g., 

MFSs). However, in most sedimentary environments, as observed by Loutite/ al. (1988), MPS 

often represent stratigraphic horizons that are more easily recognised than sequence 

boundaries (and their correlative conformities) and may also be more easily dated (Sharlandef 

al, 2001). 

Galloway (1989) used a definition of sequences separated by MPS surfaces to 

develop the concept of Genetic Stratigraphic Sequences (GSS). He considered the MPS to 

represent a time of major sediment re-organisation in a basin and, therefore, a suitable horizon 

for stratigraphic subdivision. (Sharlande/ al., 2001). 

This approach has been criticised for one major reason. As the definition stands, a 

hiatus producing an unconformity will lie within a GSS (i.e., that Genetic Stratigraphic 

Sequences, as defined by Galloway, do not represent continuous deposition) (Sharland et al., 

2001). 

Even though the Galloway system is problematic it is widely used in industry, 

particularly where sequence boundaries are difficult to identify. In these cases MFS's are more 

easily identifiable fi-om interpreted palaeobathymetric trends in lithological, sedimentological 
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and palaeontological data, as well as from stratigraphic architecture evidence in seismic and 

wireline log data. 

The ability to resolve sequence boundaries, particularly those of small magnitude, 

using biostratigraphy is limited by the resolution of the marker fossils available (Emery and 

Myers, 1996). Armentrout and Clement (1991) have proposed that minimum faunal 

abundances have the potential to be used to recognise periods of maximum regression and are, 

therefore, candidates for sequence boundaries. Gaskell (1991) has shown a possible 

correspondence between increased extinction rates in benthic foraminiferal faunas and rapid 

sea-level falls associated with type 1 sequence boimdaries, which were not apparent for slower 

rates of sea-level fall (Emery and Myers, 1996). 

7.2 BIOFACIES AND BIOSTRATIGRAPHY IN SEQUENCE STRATIGRAPHY 

Because of the intimate link between organisms and the sedimentary environment in which 

they live, the identification of biofacies (an association of organisms representing a particular 

depositional environment) can reveal an enormous amount of information on the controls of a 

sedimentary succession and the interpretation of depositional environments. 

7.3. SYSTEMS TRACT INDICATORS 

7.3.1 LOWSTAND SYSTEMS TRACT (LST). 

The LST is deposited during intervals characterised by relative sea-level fall followed by 

subsequent slow relative sea-level rise (Posamentier and Vail, 1988). It is called a LST if it is 

deposited above a type 1 sequence boundary and a shelf margin systems tract (SMT), or more 

commonly a shelf margin wedge (SMW), if above a type 2 sequence bovmdary. 
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The fall in relative sea-level associated with the production of a type 1 sequence 

boundary causes an abrupt basinward shift in facies. This superimposes shallow water or non-

marine sedients on deeper marine sediments with the sudden shallowing-up of biofacies or the 

superposition of non-marine assemblages on marine assemblages (Emery and Myers, 1996). 

In deep basins this is indicated by an increased rate of siliciclastic sediment supply with 

sediments containing reworked fossils and a low abundance of indigenous fossils (Armentrout 

et al., 1991). Unfortunately, in deep basins, the bathyal benthos is unlikely to be sufficiently 

sensitive enough to show a response to the bathymetric change involved in the lowstand 

(Armentrout e/a/., 1991). 

The LST consists of two components; the lowstand fan and the lowstand wedge. As 

gravity flow processes produce lowstand fans, it is not surprising that they contain derived 

terrestrial organisms and reworked fossil assemblages from the eroded shelf and slope (Van 

Gorsel, 1988). Rapidly deposited fans are problematic, as they are generally devoid of in-situ 

deep-marine fossils (Emery and Myers, 1996). The lowstand wedge is initiated as sea-level 

begins to rise following a rapid fall. It comprises progradational to aggradational 

parasequences and contains indigenous fossils with proximal to distal biofacies gradients 

(Emery and Myers, 1996). During the LST the shelfal width, and the wave energy impinging 

on the shelf, is at a maximum. The shelf-margin systems tract associated with a type 2 

sequence boundary is characterised by a progradational to aggradational parasequence 

stacking pattern and these systems tracts are, therefore, poorly defined by their fossil 

assemblages and easily confused with HST's. 

7.3.2 TRANSGRESSIVE SURFACE (TS). 

The TS (marine flooding surface) or ravinement surface (parasequence boundary) is a surface 
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that separates older strata from younger strata, across which there is evidence of an abrupt 

increase in water depth (Van Wagoner et al, 1988). The surface is characterised by in-situ 

reworking and winnowing of the substrate, which may not be conducive for the preservation 

of fossil assemblages. Hardgroimds and glauconite-rich deposits are also associated with the 

transgressive surface and the diagenetic processes under which these are produced may also 

limit the preservation of fossils (Emery and Myers, 1996). The presence of a Transgressive 

Surface may be inferred by the abrupt superposition of marine fossil assemblages on non-

marine ones, although this may be confiising with minor marine flooding surfaces such as 

those associated with parasequence boimdaries. Transgressive surfaces usually herald more 

prolonged and deeper water marine conditions. Trace fossils and ichnofabrics often prove to 

be more useful here than at sequence boundaries as flooding surfaces are usually characterised 

by the influx of a particular marine ichnofabric (Taylor and Gawthorpe, 1993). For example, 

Diplocraterion parallelum is a trustworthy indicator of a marine flooding surface (Dam, 

1990). 

7.3.3 TRANSGRESSIVE SYSTEMS TRACT (TST). 

The TST is the middle systems tract deposited in that part of the sea-level fall-rise cycle when 

accommodation is increasing faster than sediment accumulation/sedimentation supply rate 

(Emery and Myers, 1996). The base is the TS, which represents the first significant flooding 

event within the sequence (Posamentier and Vail, 1988). The TST commonly shows 

retrogradational or backstepping of facies and an overall deepening upwards signature in the 

fossil assemblages (Armentrout et al., 1991). Marine flooding during transgression creates 

new niches as facies belts step landward and are colonised by opportunistic species. The rapid 

rise in relative sea-level coupled with low sediment input produces expanses of wetland, 
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which may be evident in the terrestrial floral fossil record (Emery and Myers, 1996). As the 

rate of sediment supply to the shelf and basin is reduced during transgression, water turbidity 

decreases and clear-water marine microfaunas, including larger foraminifera and sea-grass 

species become more frequent (Van Gorsel, 1988). Condensed sections containing abundant 

fossil assemblages are formed with reduced sediment supply and include the presence of 

datable open marine planktic markers. These sections diachronously onlap progressively 

younger marine deposits and reach their maximum development at the MPS (Emery and 

Myers, 1996). 

7.3.4 MAXIMUM FLOODING SURFACES (MFS). 

As previously indicated, the MFS is considered a suitable horizon for stratigraphic subdivision 

using the Galloway method of sequence stratigraphical interpretation. The MFS represents the 

maximum landward migration of the shoreline depositional break during the fall^ise cycle in 

a sequence and is commonly represented by a condensed section. These are usually found 

within stratigraphically condensed shales (or calcareous shale) horizons sometimes with 

authigenic minerals such as glauconite present, indicating a sedimentary 'hiatus' during 

maximum accommodation space development (Sharland et al., 2001). It must be remembered, 

however, that MFS's are found in lithdogies that are largely controlled by palaeo-bathymetry, 

which itself is controlled by the interaction between sea-level, sediment supply and 

subsidence. 

The MFS may be characterised by rich and diverse fossil assemblages, with marine 

flooding events possibly associated with both fossil inception and extinction events; i.e., 

global flooding events may in part control evolution (Sharland et al., 2001). The change of 
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marine conditions from the lowstand to the TST can lead to rapid evolution of new species 

at the cost of the extinction of those that had survived earlier conditions. 

At the basin margin the MFS of a condensed section is recognised by the sudden 

influx of low diversity, open marine plankton sandwiched between shallower marine benthic 

or terrestrial fossil assemblages (Emery and Myers, 1996). On the shelf it is recognised by the 

presence of more diverse open marine plankton and possibly deeper water benthic fauna 

whereas in a deeper basin sediment starvation may result in the development of highly 

fossiliferous deposits (Emery and Myers, 1996) as a result of "concentration". 

7.3.5 HiGHSTAND SYSTEMS T R A C T (HST). 

The HST is deposited during the eustatic highstand of the sea-level fall-rise cycle 

(Posamentier and Vail, 1988). It is characterised by a decreasing rate of relative sea-level rise 

resulting in initial aggradation followed by later progradation of the depositional system. 

During early highstand, shelf deltas or the coastal margin must first advance across the 

drowned shelf of the underlying TST to the margin created by the previous lowstand wedge 

and as a result, initial HST deposits may be similar to TST deposits (Emery and Myers, 1996). 

This early aggradational part of the HST is characterised by stacked fossil assemblages that 

show no overall shallowing upwards tendencies. During the later progradation of the HST 

depositional system, stacked shelfal fossil assemblages are characterised by a shallowing 

upwards and basinward migration of facies (Emery and Myers, 1996). 

The three main systems tracts are highlighted above. Further detailed information 

on sequence stratigraphy is available in Vail et al. (1977), Emery and Myers (1996) 

Posamentier et al. (1988), Sharland et al. (2001) and other references supplied in all these 
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volumes. 

7.3.6 PROBLEMS WITH HIGH RESOLUTION SEQUENCE STRATIGRAPHY 

As the original concept of sequence stratigraphy was devised as a tool for the analysis of 

seismic data, the major problem when applying the concept to an outcrop is the identification 

of the key stratal surfaces. In outcrop, the cyclic nature of sediments is clearly seen and it is 

often quite difficult to identify an individual surface as the one that represents a key stratal 

surface. 

7.4 DORSET 

7.4.1 SUMMARY OF PREVIOUS WORK 

Arkell (1933, 1936) first recognised cyclicity within the Corallian Group of Dorset in 

the 1930's and identified three shallowing-up cycles. Wilson (1968a,b) re-interpreted Arkell's 

cycles and suggested that the overall driving force for the production of the cyclical 

sedimentation was linked to events in the sediment source area and not to sea-level changes. 

In the 1970's Talbot (1973) re-interpreted the Corallian in terms of four sequences, 

with each of his cycles characterised by a limestone, clay and sand succession. In the 1980's 

Wright (1986) and Sun (1989) both provided interpretations of the cyclical nature of 

sedimentation in this part of the Dorset Coast succession. Wright (1986) subdivides the 

Corallian into the six lithostratigraphical formations which are utilized throughout this thesis 

(ie., the Nothe Grit Formation, Redcliff Formation, Osmington Oolite Formation, Trigonia 

Clavellata Formation, Sandsfoot Formation and Ringstead Formation). Wright appears to 
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believe that tectonic, rather than eustatic changes, controlled the cyclicity seen vsdthin the 

succession. 

Sun (1989), in direct contrast, interpreted the Corallian Group as representing four 

transgressive-regressive cycles. He compared his interpretations to those of the global eustatic 

sea-level curves of Hallam (1978) and Haq et al. (1987), suggesting that the sedimentary 

cycles seen in the field are probably the result of eustatic sea-level changes. 

During the 1990's, the cycles have been re-interpreted using sequence stratigraphic 

nomenclature. Wilson (1991), in an up-date of his 1968 paper, divided the Corallian into three 

sequences all of which are bounded by type-1 sequence boundaries. Each of his sequences is 

composed of a Lowstand Systems Tract, Transgressive Systems Tract and Highstand Systems 

Tract. 

Rioult et al. (1991) subdivide the Corallian into four sequences, each separated by 

sequence boundaries. Coe (1992, 1995) subdivides the Corallian into six packages of sediment 

separated by major unconformities (01-06) and controlled by cycles of sea level change. She 

identified lateral changes in facies, and although she does not state whether her sequence 

boundaries are type-1 or type-2, the systems tracts are based on the scheme proposed by 

Posamentier et al. (1988) and it is, therefore, assumed that her sequence boundaries are type-1. 

Oliver (1997) divides the Corallian into six sequences, and is the only previous author 

to attempt to divide these sequences into parasequences where this is possible. Oliver used 

sedimentological and ichnofabric evidence to identify the type-1 or type-2 boundaries, 

parasequences, systems tracts, transgressive surfaces and "zones of maximum flooding". A 

"zone of maximum flooding" was identified when the exact location of a Maximum flooding 

Surface could not be recognised in the field. 
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De Wet (1998) used unconformities (recognised in the field) to divide the Corallian 

Wessex Basin into five periods of erosion and/or non-deposition in the. She uses the negative 

changes in d"C to locate regional unconformities, and the shift towards more negative 6"C to 

reflect periods of subaerial exposure. 

Newell (2000) recognised four sequences and the associated systems tracts within the 

Corallian. He combined existing outcrop data with subsurface data to subdivide his four 

sequences into their component systems tracts. 

Comparisons of some of the more recent sequence stratigraphic interpretations for the 

Corallian are given in Figure 7.1. The author is aware that other interpretations for the 

Corallian are available but they are not reviewed here as they are not related to sea-level 

changes or sequence stratigraphy. From these interpretations it is clear that, although there are 

some areas of agreement, such as the Highstand Systems Tract for the Sandsfoot Clay 

Member and a sequence boundary between the Nodular Rubble and Sandy Block Member, 

there are many points of contention, such as the interpretation of the Nothe Grit Formation. 

The sedimentological descriptions and interpretations presented in Chapter 3, 

coupled with the micropalaeontological interpretations presented in Chapters 5 and 6 are used 

throughout this chapter. 

7.5 DORSET SEQUENCE SxRAXiGRAPfflc INTERPRETATIONS 

7.5.1 SEQUENCE 1. 

Sequence 1 consists of the Upper Oxford Clay Formation and the Nothe Grit Formation. 
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SEQUENCE 1: SEQUENCE BOUNDARY 

The lower sequence boundary of Sequence 1 is thought to occur within sediments of the 

Corallian Group and thus will not be discussed fiirther. 

SEQUENCE 1: SYSTEMS TRACT IDENTIFICATION 

The 'Zone of Maximum Flooding' 

Sedimentological Evidence: The 'Zone of Maximum Flooding' occurs in the Mariae Zone of 

the Furzedown Clays, and represents the deepest water facies of Sequence 1. A 'clean' 

Maximum Flooding Surface could not be identified in the field hence the term 'Zone of 

Maximum Flooding' is used for the zone identified The sandy clays of the Nothe Grit 

Formation, which lie above the Furzedown Clays, indicate shallowing, with the sand content 

increasing gradually. This can only be due to a regression. 

Micropalaeontological Evidence: The high diversity and abundance of benthic foraminifera 

(such as epistominids) in the Furzedown Clays coupled with the occurrence of planktic 

foraminifera (Oxford et al, 2001) indicate that a 'Zone of Maximum Flooding' occurs in the 

Furzedown Clays. 

The Highstand Systems Tract 

Sedimentological Evidence: A gradual coarsening of the clays to silty clays of the Oxford 

Clay Formation indicates progradation generated shallowing-up. 

Micropalaeontological Evidence: A decrease in the number of open marine taxa (such as 

epistominids) and a general decrease in foraminiferal diversity and abundance would indicate 
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a decrease in relative water depth (Figure 7.2). 

7.5.2 SEQUENCE! 

Sequence 2 includes the Nothe Grit Formation, Preston Grit Member the Nothe Clay Member 

and the Bencliff Grit Member. 

SEQUENCE!: SEQUENCE BOUNDARY 

Sedimentological Evidence: No sedimentological evidence to support the location of the 

interpreted sequence boundary has been found during the field investigations (Figure 7.3). The 

transition from the Oxford Clay Formation to the Nothe Grit Formation appears conformable, 

with little evidence of erosion or downcutting. This would suggest that an overall coarsening 

up, shallowing up succession occurs from the underlying 'Zone of Maximum Flooding' within 

the Mariae Zone of the Oxford Clay Formation into the Nothe Grit Formation. 

Micropalaeontological Evidence: Foraminiferal diversities and abundances decrease with the 

fransition from the Oxford Clay Formation in to the overlying Nothe Grit Formation, 

becoming barren at the Bowleaze Clay/Nothe Grit boimdary. Although the lithology becomes 

sandier with the transition from the Oxford Clay to the Nothe Grit, a factor, which can affect 

the preservation of foraminifera (see Section 6.2 et seq for discussion), the barren and low 

foraminiferal abundances in samples FZYB and FZYC would indicate that a biostratigraphic 

gap is present. This can be interpreted as a sequence boundary between the two formations. 

This would agree with the previous work of Rioulte/ al. (1991) and Coe (1992, 1995). Further 

field and analytical work is required to unequivocally support the sequence stratigraphic 

interpretation of this unit. 
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SEQUENCE!: SYSTEMS TRACT IDENTIFICATION 

Lowstand Systems Tract 

Sedimentological Evidence: The Nothe Grit Formation abruptly overlies the muds of the 

Oxford Clay Formation. A sedimentological change from muds to fine grained sands (with 

Gryphaea macrofossils) indicates that the Nothe Grit was deposited in a shallow-shelf 

environment with the base of the Formation possibly interpreted as a surface of forced 

regression. 

Micropalaeontological Evidence: The sandy nature of the Nothe Grit Formation has effected 

the preservation of the microfauna with only agglutinated taxa preserved in any abundance. 

Transgressive Surface 

Sedimentological Evidence: The upper bounding surface of the Lowstand Systems Tract is 

defined by a surface of transgression (Ainsworth and Pattison, 1994). The lithostratigraphic 

surface separating the Preston Grit Member from the underlying Nothe Grit Member is a 

Transgressive Surface. It displays evidence of submarine erosion and reworking. 

Micropalaeontological Evidence: There is no micropalaeontological evidence to support the 

location of the Transgressive Surface. 

Transgressive Systems Tract 

Sedimentological Evidence: The Preston Grit and the lowermost 3 mefres of the Nothe Clay 

are interpreted as deposited in a Transgressive Systems Tract (Figure 7.4). The condensed and 

macrofaunaly rich Preston Grit can be interpreted as having been deposited during a shallow 

marine transgression (Coe, 1992), with the lower Nothe Clay indicating a sub-wave base 
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environment during the transgression. 

Micropalaeontological Evidence: The lithology of the Preston Grit Member was too hard to 

process for micropalaeontological studies, with the fauna too rare in thin section to make a 

comparable study. As a result, no micropalaeontological evidence supports the identification 

of the Transgressive Systems Tract. 

'Zone of Maximum Flooding' 

Sedimentological Evidence: Limited sedimentological evidence supports the location of the 

'Zone of Maximum Flooding', with the sediments coarsening above the proposed 'Zone of 

Maximum Flooding'. 

Micropalaeontological Evidence: A 'Zone of Maximum Flooding' is suggested between 

samples 0SM2 and OSM4 in the Nothe Clay Member (see Oxford et al, 2000). Abundant 

and diverse microfaunas are present, in a similar assemblage to that seen in the Oxford Clay 

Formation (although no planktic foraminifera are present). 

Highstand Systems Tract 

Sedimentological Evidence: The upper part of the Nothe Clay Member and lower part of the 

Bencliff Grit Member represent the Highstand Systems Tract of Sequence 2. The Highstand 

Systems Tract consists of a coarsening-up sequence from the offshore muds of the Nothe Clay 

Member to the sands deposited under the higher energy conditions of the Bencliff Grit 

Member (see Chapter 3 for previous discussion on the Bencliff Grit Member). 

Micropalaeontological Evidence: A decrease in foraminiferal abundance and diversity from 

the peak at the zone of maximum flooding, and loss of the deeper water faunas supports the 
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sedimentological evidence for a Highstand Systems Tract. 

7.53 SEQUENCES 

Sequence 3 is composed of the Bencliff Grit Member and Upton Member 

SEQUENCE 3: SEQUENCE BOUNDARY 

Sedimentological Evidence: A sequence boundary is inferred to be approximately 2 metres 

from the base of the Benclifif Grit Member. The Nothe Clay Member to Bencliff Grit Member 

Boundary is not sharp and appears to be conformable. 

Micropalaeontological Evidence: A sequence boimdary is inferred within the Bencliff Grit 

Member of the Redcliff Formation. At OSM8, foraminiferal diversities and abundances 

decrease dramatically with only poorly preserved foraminifera being recorded. The dramatic 

decrease in foraminiferal abundances and diversities, coupled with poor preservation, supports 

the limited sedimentological evidence of the presence of a sequence boundary. A sequence 

boundary is not thought to occur between the base of the Nothe Clay Formation and the 

Bencliff Grit Member as there is no change in the microfaunal composition (see Oxford et al, 

2000). 

SEQUENCE 3: SYSTEMS TRACT IDENTIFICATION 

Lowstand Systems Tract 

Sedimentological Evidence: The upper part of the Bencliff Grit Member is interpreted as the 

Lowstand Systems Tract of Sequence 3. The upper Bencliff Grit Member consists of fining-up 

sandstones with the appearance of abimdant Rhizocorallium irregulare at the top of the 
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Bencliff Grit Member indicating the onset of a more tranquil depositional environment 

(Oliver, 1997). 

Micropalaeontological Evidence: The lithologies present are imhelpful for the preservation 

of microfossils and, as a result, foraminiferal information is limited. 

Transgressive Surface 

Sedimentological Evidence: The Bencliff Grit Member is separated from the overlying 

Upton Member by a sharp erosion surface. Extending down from the surface are many 

burrows including Diplocraterion infilled with muddy oolite from the basal bed of the Upton 

Member. This erosion surface is considered to represent a Transgressive Surface. 

Micropalaeontological Evidence: The lithologies present are unhelpful for the preservation 

of microfossils and as a result, foraminiferal information is limited. 

Transgressive Systems Tract 

Sedimentological Evidence: The Transgressive Systems Tract is composed of the Upton 

Member. A transgressive lag deposit comprising of reworked lithoclasts, ooids and bioclastic 

material comprises the lower part of the Transgressive Systems Tract. The upper part of the 

Transgressive Systems Tract is composed of nodular micritic limestone with Thalassinoides 

burrows. The nodular micritic limestone represents a deeper water environment than the 

underlying component of the systems tract and indicates a continued relative sea-level rise. 

Micropalaeontological Evidence: The lithologies present are unhelpful for the preservation 

of microfossils and as a result, foraminiferal information is limited. 
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'Zone of Maximum Flooding' 

Sedimentological Evidence: The location of the 'Zone of Maximum Flooding' using 

sedimentological evidence is not possible due to a lack of suitable water depth criteria. 

Micropalaeontological Evidence: The 'Zone of Maximum Flooding' has been positioned 5 

metres from the base of the Upton Member and spans a 3 metre interval (RF and RF2). 

Micropalaeontological evidence for a 'Zone of Maximum Flooding' includes a huge increase 

in abundance and diversity of benthic foraminifera coupled with the presence of deeper water 

taxa (such as epistominids). 

Highstand Systems Tract 

Sedimentological Evidence: The Highstand Systems Tract comprises the Shortlake Member 

and the Nodular Rubble Member. The Shortlake Member contains sequences of clays with 

scattered oolids/ooliths. The clays become thicker toward the top of the member suggesting a 

deepening in environment. The Nodular Rubble Member continues this deepening trend 

inference. 

Micropalaeontological Evidence: Foraminiferal evidence through the Shortlake Member and 

Nodular Rubble Member suggests that a Highstand Systems Tract is present. Foraminifera are 

relatively abundant and diverse, with both calcareous and agglutinated forms present. Some 

deformities in the foraminifera are present in BH4 and BH7, which could indicate that the 

environment might have been stressful to the foraminifera (see Manley, 1997; Stubbles, 1999; 

for discussion). A deep well oxygenated environment is envisaged for the Nodular Rubble 

Member as deeper water indicators (e.g., mixed calcareous and agglutinated fauna as well as 

epistominids) are present. There is no foraminiferal evidence to suggest that any 
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biostratigraphic gaps (relating to sequence boundaries, etc.) are present. This interpretation 

differs from that of Oliver (1997), Coe (1992, 1995) and Rioulte/ a/. (1991) but is consistent 

with that of Newell (2000). 

7.5.4 SEQUENCE 4 

Sequence 4 is composed of the Trigonia Clavellata Formation and the overlying Sandsfoot 

Clay Member of the Sandsfoot Formation. 

SEQUENCE 4: SEQUENCE BOUNDARY 

Sedimentological Evidence: A sequence boundary that equates to the lithosfratigraphic 

boimdary is present between the Trigonia Clavellata Formation and the underlying Nodular 

Rubble Member. Data from Coe (1992) indicate a biostratigraphic gap associated with this 

surface extends across the Wessex Basin. Facies shallow above this sequence boundary 

indicating that a fall in relative sea-level must have occurred. 

Micropalaeontological Evidence: The sequence boundary itself was not sampled. Samples 

from above the proposed boimdary see an increase in the diversity cf foraminifera present, 

with those from below the boundary showing deformities, possibly due to a stressed 

environment. 

SEQUENCE 4: SYSTEMS TRACT IDENTIFICATION 

Transgressive Systems Tract 

Sedimentological Evidence: No evidence for a Lowstand Systems Tract was present in the 

field. Coe (1992) suggests that the Lowstand Systems Tract is completely missing and 
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supports this interpretation with the presence of a biostratigraphic gap at the Trigonia 

Clavellata Formation lithostratigraphic boundary. Glauconite was present in samples taken 

from the Chief Shell Beds Member and the Clay Band Member. This mmeral forms in low 

energy conditions, with little terrigenous input. This supports the identification of a 

Transgressive Systems Tract as during transgression the rate of sediment supply to the shelf 

and basin is reduced. 

Micropalaeontological Evidence: Although poorly preserved, diverse and abvmdant 

calcareous and agglutinated benthic foraminifera are present in samples above the proposed 

sequence boimdaiy. The diverse benthic fossil assemblage present suggests that relative water 

depth increases during the deposition of this unit, consistent with deposition within a 

Transgressive Systems Tract. 

'Zone of Maximum Flooding' 

Sedimentological Evidence: There is no field evidence to indicate the location of the 'Zone of 

Maximum Flooding' 

Micropalaeontological Evidence: The increasing abundance of benthic foraminifera coupled 

with the presence of open marine fauna (agglutinated taxa and epistominids) would indicate 

that a 'Zone of Maximum Flooding' is present within the Red Bed Member of the Trigonia 

Clavellata Formation. This does not agree with Coe (1995) who positions the Maximum 

Flooding Surface at the boundary between the Red Beds Member and the overlying Sandsfoct 

Clay Member. Sedimentological evidence does not support Coe's (1995) interpretation. 
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Highstand Systems Tract 

Sedimentological Evidence: The Sandsfoot Clay Member is interpreted as the Highstand 

Systems Tract. There is little sedimentological evidence to justify this. 

Micropalaeontological Evidence: Limited micropalaeontological evidence is present for this 

interval due to poor preservation. 

Other Evidence: As there is very little sedimentological or micropalaeontological evidence to 

support the interpretation of a Highstand Systems Tract the positioning of the Highstand 

Systems Tract in relationship to the underlying systems tract must be studied. By definition, 

the facies above a Maximum Flooding Surface marks the commencement of progradation and, 

therefore, the Highstand Systems Tract (Oliver 1997). Further analytical work is needed to 

confirm the presence of a Highstand Systems Tract. 

7.5.5 SEQUENCES 

Sequence 5 is composed of the Sandsfoot Grit Member and Ringstead Waxy Clay Member 

SEQUENCE 5: SEQUENCE BOUNDARY 

Sedimentological Evidence: A Sequence Boundary is present at the lithostratigraphic 

boundary between the Sandsfoot Clay Member and the overlying Sandsfoot Grit Member. 

There is a sharp planar contact between the two members, with field and biostratigraphic 

evidence indicating that a relative fall in sea-level and subsequent basinward shift in facies 

belts present (Oliver, 1997). 

Micropalaeontological Evidence: The lithologies present are unhelpful for the preservation 

of microfossils and as a result, foraminiferal information is limited. 
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SEQUENCE 5: SYSTEMS TRACT IDENTIFICATION 

Transgressive Systems Tract 

Sedimentological Evidence: The Sandsfoot Grit Member and Ringstead Waxy Clay Member 

are interpreted as a Transgressive Systems Tract. The gradual deepening of fades from the 

shallow marine Sandsfoot Grit Member to the deeper marine Ringstead Waxy Clay Member 

supports the Transgressive Systems Tract identification. 

Micropalaeontological Evidence: The bioturbated sandy lithology of the Sandsfoot Grit 

Member was unsuitable for micropalaeontological studies. Macropalaeontological evidence 

from Coe (1995) suggests that a large biostratigraphic gap and erosion occurs at the Sandsfoot 

Grit Member, Sandsfoot Clay Member lithostratigraphic boundary. The Ringstead Waxy Clay 

Member contains diverse and abundant foraminifera, with open marine indicators (diverse 

agglutinated taxa and epistominids) prolific towards the top of the Ringstead Waxy Clay 

Member, possibly indicating a 'Zone of Maximum Flooding'. Further analysis and sampling is 

required to support this further due to the limited outcrop that was available for sampling at 

the time of the study. 

7.6 NORMANDY 

The major facies cycles of the Oxfordian of the Paris Basin have been studied by 

Jacquin et al. (1998). The Callovian and Oxfordian facies of Normandy have been studied in 

detail by Dugue (1989, 1990) who made a comparison with the stratigraphic equivalents in 

Dorset. The sequence stratigraphical analysis of the Middle and Upper Jurassic outcrops of the 

Normandy succession was presented by Rioult et al. (1991) who documented sequence 
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Figure 73. Photograph showing the approximate location of the proposed Sequence Boundary 2. 
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stratigraphic interpretations by field analysis alone. A section of the Normandy succession 

(Calcaire Oolithique de Trouville Formation-Mames de Villerville Formation) was interpreted 

using sequence stratigraphy and cyclostratigraphy by Pittet et al. (1998), although the 

sequence stratigraphic interpretations of Rioult et al. (1991) were used in the study. As the 

Rioult et al. (1991) sequence stratigraphical interpretations are the standard reference used by 

the various workers on the Normandy Coast, they are the only example of previous sequence 

stratigraphic interpretations presented (Figure 7.5). 

The sequence stratigraphical interpretations of Rioult et al. (1991) and those from this 

study are shown in Figure 7.5. Figure 7.6 is also helpfiil in understanding the relationships 

between the foraminiferal diversities and the residue present. 

7.7 NORMANDY SEQUENCE STRATIGRAPHIC INTERPRETATIONS 

7.7.1 SEQUENCE 1 

Sequence 1 is composed of the Mames de Villers Formation. A younger Mames de Dives 

Formation was sampled from a temporary section on the Houlgate foreshore but not integrated 

into this study due to the difficulties in placing it into the correct stratigraphical context. Only 

a 'Zone of Maximum Flooding' and a Highstand Systems Tract are interpreted in Sequence 1. 

SEQUENCE 1: SYSTEMS TRACT IDENTIFICATION 

'Zone of Maximum Flooding' 

Sedimentological Evidence: Thick grey/black clays with abundant macrofauna are present 

within the 'Zone of Maximum Flooding', which occurs just above strata with biomicritic 

nodules. 

Micropalaeontological Evidence: The high abundances and diversities of foraminifera and 
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Figure 7.5. Sequence stratigraphical interpretation of Normandy. Modified from Rioult et al., 1991. 
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Figure 7.7. Thalassonoides burrowing in the Calcaire de Trouville Formation 
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the presence of planktic foraminifera in the Mariae Zone are indicative of deeper marine 

conditions and thus a 'Zone of Maximum Flooding' is postulated between samples HI9 and 

H21. 

Highstand Systems Tract 

Sedimentological Evidence: Towards the top of the Mames de Villers Formation a gradual 

coarsening of the sediment occurs along with the presence of ferruginous ooids. The 

coarsening sediments would indicate progradation with the ooids forming during the latest part 

of the sea-level rise/beginning of the sea-level fall. 

Micropalaeontological Evidence: A decline in the number of deeper water taxa, and a 

general decrease in the abundance and diversity of foraminifera is evidence for a decrease in 

relative water depth. 

7.7.2 SEQUENCE 2 

Sequence 2 is composed of the Oolithe Ferrugineuse de Villers and the Argiles a Lopha 

gregarea Formation. 

SEQUENCE 2: SEQUENCE BOUNDARY 

Sedimentological Evidence: The sequence boundary is characterised by the sudden 

sedimentological change from the fine grey muds of the Mames de Villers Formation to the 

condensed limestones and oolitic muds of the Oolithe Ferrugineuse de Villers Formation 

Micropalaeontological Evidence: The sequence boundary itself was not sampled for 

micropalaeontological studies due to its condensed and bioturbated nature. 
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SEQUENCE!: SYSTEMS TRACT IDENTIFICATION 

Lowstand Systems Trad 

Sedimentological and Micropalaeontological Evidence: No conclusive evidence to support 

a Lowstand Systems Tract was identified from sedimentological or micropalaeontological 

evidence. 

Other Evidence: As there is very little sedimentological or micropalaeontological evidence to 

support the interpretation of a Lowstand Systems Trad the positioning of the Lowstand 

Systems Tract in relationship to the underlying systems tract is questionable. Further sampling 

and analytical work is needed to confirm the presence of a Lowstand Systems Tract. 

Transgressive Surface 

Sedimentological Evidence: A transgressive surface was identified at the base of the first 

prominent bioturbated limestone band of the Oolithe Ferrugineuse de Villers Formation. The 

surface rests conformably on the underlying oolitic mud and is different from the overlying 

ooidal biomicritic limestones, in having fewer ooids. Rioultef al. (1991) identifies this surface 

as a Transgressive Surface and believes that its formation is due to "a rapid relative sea-level 

rise resulting in an abrupt transgression of the Armorican shoreline and, consequently, a 

period of extremely low sedimentation rate" (pp.cit., p. 137). 

Micropalaeontological Evidence: This surface was not sampled for micropalaeontological 

study because of its condensed and bioturbated nature. 

Transgressive Systems Tract 

Sedimentological Evidence: The thin (cm) laminae of oolite rich mud interbedded with 
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ooidal biomicritic limestones increase in frequency above the Transgressive Surface. This 

appears to indicate a relative deepening in water depth. 

Micropalaeontological Evidence: Microfauna from W3.4 and VV3.5 were very badly 

preserved and this hindered any environmental interpretation. 

'Zone of Maximum Flooding' 

Sedimentological Evidence: A 'Zone of Maximum Flooding' is postulated over a 1.5 metre 

interval of mainly oolitic mud with occasional glauconitic rich horizons and small (cm) nodule 

horizons. The author is not convinced by Rioult et al.'s (1991) interpretation of a Maximum 

Flooding Surface at the top of a bioturbated reworked surface, as this surface did not appear to 

be laterally continuous in the field. Instead, the author believes that by using the 

micropalaeontological evidence as well as the sedimentological evidence it is possible to 

locate a 'Zone of Maximum Flooding' more accurately. 

Micropalaeontological Evidence: An increase in the deeper water faima (such as the 

epistominids) at VV3.6 coupled with little input of sandy sediment would indicate that a 'Zone 

of Maximum Flooding' occurs between VV3.6 and VV3.8. Microfaunal abundance increases 

and Gryphaea dilitata and ammonites also occur within this interval. This does not agree with 

the interpretation of Rioult et al (1991) who place a Maximum Flooding Surface at the top of 

the bioturbated, reworked surface described above. 

Highstand Systems Tract 

Sedimentological Evidence: A steady increase in the percentage of sandy sediment and a 
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general decrease in ooids characterises the Highstand Systems Tract. 

Micropalaeontological Evidence: The steady decrease in microfaunal diversity, and poorer 

preservation of the fauna due to dilution by terrigenous sediment, is the evidence for a 

Highstand Systems Tract at this stratigraphic level. 

7.7.3 SEQUENCES 

Sequence 3 is composed of the Argiles a Lopha gregarea Formation and Calcaire 

d'Auberville Formation. Unfortunately, due to the poor preservation of the microfaima, there 

is little micropalaeontological evidence in support of any of the interpretations given for 

Sequence 3. 

SEQUENCE 3: SEQUENCE BOUNDARY 

Sedimentological Evidence: Towards the top of the unstable cliffs at 'Vaches Noires' the 

Argiles a Lopha gregarea Formation is present. The change in macrofauna from 

predominantly Gryphaea dilitata to Lopha gregarea is distinctive, although the exact surface 

defining the Sequence Boundary is not. In this study it is placed at the first prominent 

biomicritic limestone unit. 

Micropalaeontological Evidence: No micropalaeontological samples were collected due to 

problems wdth the sampling location. The cliffs were too unstable to measure and collect 

samples accurately. 

SEQUENCE 3: SYSTEMS TRACT IDENTIFICATION 

Lowstand Systems Tract 
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Sedimentological Evidence: Limited accessible exposure hinders any interpretation. A Shelf 

Margin Wedge is the interpretation of Rioult et a/. (1991) for the upper 3 metres of the Argiles 

a Lopha gregarea Formation and the lower 6 metres of the Calcaire d'Auberville Formation. 

The author does not disagree with this interpretation. 

Micropalaeontological Evidence: No micropalaeontological sampling was undertaken as the 

limited exposure could not be placed within a stratigraphic context. 

Transgressive Systems Tract 

Sedimentological Evidence: The limestones of the Calcaire d'Auberville Formation contain 

rolled encrusted pebbles, bioclasts and burrows. 

Palaeontological Evidence: The presence of coral fragments and bivalve bioclasts, and also 

Thalassinoides burrows, would suggest an increase in energy and relative water depth. 

'Zone of Maximum Flooding' 

Sedimentological Evidence: The lithological change from hard limestone to softer marls 

suggests that relative water depth increased. 

Micropalaeontological Evidence: Although poorly preserved, deeper water microfaunas 

(epistominids and Ophthalmidium) are present in TV 4.1-VV2.10. This may indicate that the 

water depth has increased from that of the Transgressive Systems Tract. 

Highstand Systems Tract 

Sedimentological Evidence: Recent slumping hindered the interpretation of a Highstand 

Systems Tract. Rioult et al. (1991) commented that, "the lack of permanent exposures in the 

262 



Chapter 7 

Middle Member (of the Calcaire d'Auberville Formation) does not allow a more precise 

description of the thin Highstand Systems Tract" (pp.cit, p. 144). 

Micropalaeontological Evidence: No micropalaeontological samples were collected due to a 

lack of exposure. 

7.7.4 SEQUENCE 4 

Sequence 4 is composed of the Calcaire d'Auberville Formation and the Calcaire Oolithique 

de Trouville Formation. Unfortunately the contact between the Calcaire d'Auberville 

Formation and the Calcaire Oolithique de Trouville Formation, and the lower section of the 

Calcaire Oolithique de Trouville Formation were not exposed along the Normandy coast. Only 

the upper part of the Calcaire Oolithique de Trouville Formation was exposed in the cliff 

section between Trouville and Hennequeville. No interpretation can be given for Sequence 4 

as further analytical work is required when the outcrop is visible and can be sampled. 

7.7.5 SEQUENCES 

Sequence 5 is composed of the Calcaire Oolithique de Trouville Formation, Coral Rag and the 

Calcaire de Blangy Formation. 

SEQUENCE 5: SEQUENCE BOUNDARY 

Unfortunately, no sequence boundary was observed in the field due to a lack of exposure. 

SEQUENCE 5: SYSTEMS TRACT IDENTIFICATION 

Lowstand Systems Tract 
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Sedimentological Evidence: The Calcaire Oolithique de Trouville Formation at 

Hennequeville is extensively burrowed and is made up of a set of shallowing upwards 

parasequences, capped by Thalassinoides burrows (Figure 7.7) at each parasequence 

boundary. The exposure of a grey marly oolitic unit overlain by a white oolitic unit shows a 

decrease in terrigenous clay supply. The extensively bioturbated and oomicritic lithology 

would suggest that a Lowstand Systems Tract is present here. 

Micropalaeontological Evidence: The oomicritic lithology proved difficult to process for 

micropalaeontological investigations. Thin section studies revealed a few calcareous 

foraminifera but these do not help in providing evidence for a Lowstand Systems Tract. 

Transgressive Systems Tract, Maximum Flooding Surface and Highstand Systems Tract 

Sedimentological Evidence: The author has decided to group the above systems tracts 

together due to the complexity of the formations present. Towards the top of the Calcaire 

Oolithique de Trouville Formation there is a lithological change fi-om oolite to a ferruginous 

oolite suggesting a rise in sea level, but unfortunately only a few centimetres of this lithology 

are present. The Maximum Flooding Surface and Highstand Systems Tract were not identified 

due to a lack of exposure. 

Rioult et al. (1991) recognises that "the thin transgressive tract is badly exposed on the 

Normandy coastal outcrops" as well as "the Maximum Flooding Surface not yet defined due 

to lack of permanent outcrop" (pp.cit, p. 144). 

7.7.6 SEQUENCE 6 

Sequence 6 is composed of the Calcaire de Hennequeville Formation and the Mames de 
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Villerville Formation. 

SEQUENCE 6: SEQUENCE BOUNDARY 

Sedimentological Evidence: A sequence boundary is placed at the prominent 'Surface de 

Blangy'. This boundary separates the underlying carbonate rich lithologies from the silt/sand 

lithologies in the overlying successions. It is a prominent feature in the cliff sections from 

Trouville to Villerville and is laterally extensive (Fig. 7.8). 

Micropalaeontological Evidence: The fauna from the 'Surface de Blangy' was poorly 

preserved and provided no evidence to substantiate the presence of a sequence boundary. 

Rioult et al. (1991) propose that the 'Surface de Blangy' is associated with an important 

biostratigraphic gap. 

SEQUENCE 6: SYSTEMS TRACT IDENTIFICATION 

Lowstand Systems Tract and Transgressive Systems Tract 

Sedimentological and Micropalaeontological Evidence: It is difdcult to differentiate 

between the Lowstand Systems Tract and Transgressive Systems Tract in the field. The 

Calcaire greseux de Hennequeville Formation is composed of shallowing-up parasequences 

with the occasional 'chaimel-like' structure (Fig. 7.9a). These structures contain small scale 

cross-bedding (Fig. 7.9b), and are interpreted to have formed in a shallow water environment, 

possibly in part of a Lowstand Systems Tract. Other structures are also found in the Calcaire 

greseux de Hennequeville Formation, which show geochemical diagenesis (Fig. 7.10). These 

structures are reported to be the result of an earthquake (Dugue, 1995). The author is still 

open-minded as to their origin. 

Micropalaeontological evidence provided little help in resolving the complexities of 
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the Calcaire greseux de Hennequeville Formation. The fauna was poorly preserved and there 

was little micropalaeontological change across the Sequence Boundary. 

Maximum Flooding Surface 

Sedimentological Evidence: There is an abrupt lithological change between the Calcaire 

greseux de Hennequeville Formation and the Mames de Villerville Formation (Fig. 7.11). The 

sharp bioturbated hardground that separates the two formations is thought (Rioulte/ al, 1991) 

to be the Maximum Flooding Surface and the author agrees with this interpretation. 

Micropalaeontological Evidence: An epistominid-dominated fauna is present in W l . l and 

reaches flood proportions in W 1.2-1.5. The author agrees with Rioult et al. (1991) that the 

hardground between the two formations is the Maximum Flooding Surface. 

Highstand Systems Tract 

Sedimentological Evidence: The Mames de Villerville Formation is represented by a fine 

silty mudstone. The author believes that only the lower part of the Highstand Systems Tract is 

present as no evidence of shallowing is evident. 

Micropalaeontological Evidence: The presence of abundant calcareous, aragonitic and 

agglutinated foraminifera suggests that only the lower part of the Highstand Systems Tract is 

present. 

7.8 CONCLUSIONS 

The integration of sedimentological and micropalaeontological data has provided some 

interesting sequence stratigraphic interpretations for the Oxfordian outcrops on ttie Dorset and 
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Normandy coasts and has also highlighted some problems. 

In summary the 'Zone of Maximum Flooding' in the Oxfordian sequences is identified 

by the presence of planktic foraminifera (where applicable), high microfaimal diversities and 

an abundance of epistominids (Oxford et al, 2002; 2004). 

The Lowstand Systems Tract was difficult to identify using foraminifera and mainly 

reUed on sedimentological evidence. In a deeper water environment such as the Gulf of 

Mexico, (Armentrout et ah, 1991) a lowstand signature would be easier to identify using 

micropalaeontology, due to the differences between a shallow water, or a non-marine, fauna 

and a deep water fauna. 

The Transgressive Systems Tract was more successfully identified using both 

micropalaeontological and sedimentological evidence. Transgressive Systems Tract faunas 

showed an increase in diversity with the appearance of deeper water taxa. 

The Highstand Systems Tract was also successfully identified using both 

micropalaeontological and sedimentological evidence. Here, a general decrease in faimal 

diversity was apparent, coupled with increased terrigenous inputs. 

In Normandy the condensed lithologies proved to be problematic. Condensed 

bioturbated horizons were difficult to interpret using micropalaeontology. Carbonates could 

only be studied by using thin sections and, where studied, identifiable fauna proved rare. 

Sandy lithologies also yielded poorly preserved foraminifera. 

In conclusion the integration of sedimentology and micropalaeontology is a valuable 

tool in determining sequence stratigraphic interpretations, although flirther integration with 
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other geological disciplines such as geochemistry would aid interpretations further. 
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Figure 7.9a. Channel structure in the 
Calcaire greseux de Hennequeville Formation. 
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Figure 7.9b. Small scale cross bedding in the 
Calcaire greseux de Hennequeville Formation. 
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(Hammer shown for scale). 



POLE 

< Mames de Villerville 
Formation 

Calcaire greseux de Heimequeville 

SEQUENCE BOUNDARY 

Surface de Blagny 

Calcaire Oolithique de Trouville 
Formation 

Figure 7.11a. Section 0.5km southeast of VUlerville showing 
• '£ the Surface de Blangy.(Pole 2 metres). 

Hammer 

HST 

Mames de Villerville Formation 

MPS 

TST 
Calcaire greseux de Hennequeville 

Formation 

Figure 7.11b. Section 0.3km southwest of Villerville. 
(Hammer 50 cm long). 



Chapter 8 

CHAPTER 8: PLANKTIC FORAMINIFERIDA 

CHAPTER 8: PLANKTIC FORAMINIFERIDA 273 

8.0 INTRODUCTION . . 274 

8.1 BACKGROUND TO THE DISCOVERY OF THE PLANKTIC PORAMINIFERAL IN DORSET. 274 

8.2 RECORDS OF JURASSIC PLANKTIC FORAMINIFERA 275 

83 THE EVOLUTION OF MESOZOIC PLANKTIC FORAMINIFERA „ 276 

8.4 SAMPLING LOCAUTiES 282 

8.5 SAMPLE PREPARATION . 283 

8.6 TAXONOMY 284 

8.6.1 SYSTEMATIC DESCRIPTIONS 284 

8.7 PRESERVATIONAL POTENTLVL OF PLANKTIC FORAMINIFERA 289 

8.8 PLANKTIC FORAMINIFERAL DISTRIBUTIONS. . 290 

8.8.1. BENTHIC FORAMINIFERAL ASSEMBLAGES 290 

8.9 SUMMARY 291 

8.10 PALAEOGEOGRAPHICAL SIGNIFICANCE 292 

8.11 CONCLUSIONS 293 

273 



Chapter 8 

8.0 INTRODUCTION 

The fu-st part of this chapter gives a brief introduction into the exciting discovery of planktic 

foraminifera in the UK and discusses the early evolution of the planktic foraminifera 

Taxonomic descriptions follow, with the final part of the chapter discussing the preservational 

potential of the planktic foraminifera and their palaeogeographical significance. 

8.1 BACKGROUND TO THE DISCOVERY OF THE PLANKTIC FORAMEVIFERAL IN 

DORSET. 

At the beginning of this research the primary concern was with the benthic foraminifera, as 

planktic foraminifera have never been documented in the Jurassic strata of the Dorset study 

area. The terms benthic and planktic have been used throughout this thesis, as these are the 

derivations fi-om the corresponding Greek terms (Emiliani, 1991). Planktic foraminifera have 

previously been described from the field area of Normandy and Seine Maritime, but they have 

never been recorded from the Oxfordian of the UK, apart from a brief mention in an 

unpublished PhD thesis by Gregory (1995) on the Scottish Jurassic. 

Samson et al. (1992) described planktic foraminifera from the Mames de Villers 

Formation of the "Vaches Noires" cliffs of Normandy. As part of the fieldwork for this 

research the Normandy succession at "Vaches Noires" was sampled and planktic foraminifera 

successfiilly recovered. The foraminifera were found in the uppermost part of the Mames de 

Villers Formation, which corresponds to the uppermost scarburgense Subzone, Q. mariae 

Zone. The Q. mariae Zone of the Dorset Coast was sampled as part of this research with nine 
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samples collected from the north shore of the Fleet west of Weymouth, where the Furzedown 

Clay is exposed (Figure 8.1.). 

Three species of planktic foraminifera were recovered from two of the samples 

collected from the Fleet shore section (Oxford et al, 2002). These planktic foraminifera are 

the first occurrences of Oxfordian planktic foraminifera discovered from England. As this find 

was so important fiirther samples from the equivalent level (Q.mariae Zone) were collected 

and studied from around the UK (see Chapter 2, Additional Sampling localities; Figs 8.2. and 

8.3.). 

Planktic foraminifera of Oxfordian age are known from Eastern and Southern 

Europe, Russia and Eastern Canada but, until now, have never been reported from England. 

This Chapter is, therefore, concerned with the planktic foraminifera as a separate topic 

because of their very low global abundances and limited distribution in the Jurassic. 

8.2 RECORDS OF JURASSIC PLANKTIC FORAMINIFERA 

Jurassic planktic foraminifera have been described in many papers, with the majority of the 

species first described from Eastern Eiirope and the Former Soviet Union, notably by Grigelis 

(1958) Hofinan (1958) Morozova and Moskalento (1961) Pazdrowa (1969) Grigelis et al. 

(1977) Kuznetsova and Gorbachik (1980, 1985) Kasimova and Aliyeva (1984) Gorbachik 

(1986) and other references cited by Simmons et al. (1997). 

Fuchs (1967, 1971, 1973, 1975, 1977) described planktic foraminifera from the 

Triassic of Austria and the Jurassic of Poland and in these papers he notes that over 20 were 

new species. He referred to the Triassic forms as ^Globigerina-like'. Unfortunately, in a recent 
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review by Simmons et al. (1997), all of these taxa are rejected as planktic foraminifera and 

deemed to be badly preserved and recrystallised benthic specimens. 

From North West Europe Globuligerina oxfordiana (Grigelis) is the most widely 

recognised Jurassic species. The first records of Globuligerina oxfordiana Grigelis were 

recorded by Bignot and Guyader (1966, 1971) together with the records of Samson ef al. 

(1992). Colom and Ranghead (1966) record planktic foraminifera fi-om Ibiza and Gorog 

(1994) recorded early Jurassic planktic foraminifera fi-om Hungary. Like Fuchs (1967, 1971, 

1973, 1975, 1977), Gorog's (1994) earliest planktic foraminifera are discounted and the first 

real identified planktic fauna is in the Toarcian (Figure 8.4). It is, therefore, surprising that 

until now, no records of Oxfordian planktic foraminifera from the Dorset study area have been 

reported despite the sections being well studied. 

8.3 THE EVOLUTION OF MESOZOIC PLANKTIC FORAMINIFERA 

Figure 8.4 shows the stratigraphical distribution of early planktic foraminifera. From 

this figure it is clear that both the specific and generic diversity of planktic foraminifera 

remained low throughout the Jurassic (Hart et ah, 2002). 

According to Gorbachik and Kuznetsova (1986) the species Globuligerina oxfordiana 

(Grigelis) is the only species of planktic foraminifera that is present in the Oxfordian, although 

Gorbachik and Kuznetsova (1986) do mention that the species G. helvetojurassica (Haeusler) 

had been reported fi-om the Oxfordian of Europe. They state that G.oxfordiana (the most 

widely recorded Jurassic planktic species) is found in Lithuania, East European Platform in 

Moscow, Kostroma and Penza, the Crimea, the Canadian shelf, Bahama Plateau, Turkey and 
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Figure 8.1. Location map of samples(A-H) taken from the Mariae Zone and Cordatum Zone of Dorset. Modified from House (1986). 



Figure 8.2a. Warboys cliff section as pictured by Wright and Cox (2001, fig 3.7). 
Enlarged section show below. 

Figure 8.2b. Sampling of the Oxford Clay, Mariae Zone by Dr. M. D. Simmons. 



Figure 8.2c. A working pit at Warboys Quarry. 

Figure 8.2d. Quarrying of the Oxford Clay at Warboys Quarry revealing the Mariae Zone. 



/ 

Figure S3. Sampling of the Upper Oxford Clay (Mariae Zone) at 
Cornelian Bay, Yorkshire. 
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Syria but is not found further to the south of the eastern part of the present Mediterranean Sea 

and in North Africa. Recent work by Apthorpe (2003) in an unpublished PhD thesis describes 

Globulgerina from offshore sediments in Northwest Ausfralia. This would fiirther extend the 

known distribution of Jurassic Globuligerina. Whether all the specimens assigned to 

G.oxfordiana are in fact correct, or whether or not people equate any Oxfordian planktic 

foraminifera to G.oxfordiana is yet to be established. 

Simmons et al. (1997) describe the evolution of the genera Conoglobigerina, 

Globuligerina, Haeuslerina and Compactogerina, and have assigned all these genera to the 

Superfamily Favusellacea (Hart, 1999). Many problems have previously been caused by the 

assignment of planktic foraminifera found in the Jiirassic to Protoglobigerina, a ' group'of taxa 

that is not a properly designated genus. From Figures 8.4 and 8.5 it is clear that the 

evolutionary linkages shown on the diagram are unknown and quite disjointed, and it is clear 

that further research remains to be done (Hart et al., 2002). 

8.4 SAMPLEVG LOCALITIES. 

Sampling was undertaken in Normandy and Dorset as previously mentioned (Sections 

2.2.3.1.1 (The Fleet) and 2.2.3.2.2 (Villers sur Mer)). In both localities the sampling was 

undertaken as part of the initial project to sample the entire Oxfordian succession. 

Due to the importance of the discovery of the planktic foraminifera from Dorset, 

three other localities from around the U.K were additionally sampled, where the Q. mariae 

Zone crops out. Sampling was undertaken at Warboys Clay Pit (Figure 8.2), Cornelian Bay 

(Figure 8.3) and Cayton Bay (Section 2.2.4). Additionally, 18 samples that had been collected 

and prepared by Dr K. N. Page, Dr J. Larwood and Prof A. Lord from Warboys Clay Pit 
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Cambridgeshire in July 1996 were also studied. 

Planktic foraminifera were not found in all of the samples collected and studied. Both 

the Normandy and Dorset samples yielded planktic foraminifera. The Yorkshire samples 

collected by the author and Dr M. D. Simmons have, to date, not yielded planktic 

foraminifera, although work is still in progress. The Warboys samples have yielded planktic 

foraminifera in seven of the 18 samples previously collected by Dr K. N. Page, Dr J. Larwood 

and Prof. A. Lord (see Section 8.6.1 for further discussion). 

8.5 SAMPLE PREPARATION 

The samples collected by the author from Normandy and Dorset were prepared using 

standard processing techniques, which are not ideal for the preservation of planktic 

foraminifera. The soaking of the samples in white spirit, followed by the exothermic reaction 

when distilled water is added to the samples does nothing to preserve the delicate aragonitic 

tests of the planktic foraminifera. Processing using distilled water alone was attempted but this 

did not generate sufficient disaggregation of the clays and thus the solvent method of Brasier 

(1980) was invariably used. Dr M. D. Simmons used this same standard processing technique 

on the Warboys and Yorkshire samples. It is not known how the previously collected samples 

from Warboys were prepared, but the fauna is clean and does not appear etched in any way. 

In total four species of planktic foraminifera were identified from the various samples; 

• Globuligerina oxfordiana (Grigelis 1958) 

• Haenslerina helvetojurassica (Haeusler, 1881) 

• Compactogerina stellapolaris (Grigelis, 1977) 

• Praehedbergella tuschepsensis (Antonowdi, 1964) sensu stricto emend. 
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8.6 TAXONOMY 

A full monographic treatment of the planktic fauna has not been undertaken as this research is 

not a taxonomic study. The classification used for the most part is that of Simmons et al. 

(1997). The taxonomic position of Globuligerina oxfordiana (Grigelis) follows Gorbachik and 

Kuznetsova (1997). Reference lists will be limited to the original designation and subseqaent 

major taxonomic changes. A brief diagnosis is given except where there is a need for a fuller 

description, with additional information covered in the remarks section. 

SEM digital photomicrographs captured using a JEOL SemAfore digital slow-

scan image recording system on a JEOL JSM-5200 SEM illustrates all taxa. The taxa are 

presented in Plate 12. 

8.6.1 SYSTEMATIC DESCRIPTIONS 

Suborder: GLOBIGERININA Delage and Herouard, 1896 

Superfamily: FAVUSELLACEA Longoria 1974 (nom. corr.) emend. Banner and Desai, 1988 

Family: CONOGLOBIGERINIDAE 

Genus Globuligerina Bignot and Guyader, 1971. emend. 

Type Species Globigerina oxfordiana Grigelis, 1958. 
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Globuligerina oxfordiana (Grigelis 1958) 

PI. 12, Figs a, b. 

1958 Globuligerina oxfordiana Grigelis, pp. 109, 110, fig. la-c. 

1955 Globuligerina oxfordiana (Grigelis), BouDagher-Fadel et al, p. 182, pi. 1. figs 2, 3. 

Diagnosis A species of Globuligerina composed of 3 spiral whorls with the last whorl having 

4 globular chambers. The species is round-conical in shape, wdth a rounded periphery. The 

septal sutures are clearly deepened with the aperture umbilical or umbilical-intermarginal in 

position, arched with a lip. The foramen is loop-shaped, the umbilicus narrow and deep, and 

sometimes closed by a bulla. The sculpture is mainly in the form of pustules or ridges. 

Remarks: Because of the poor preservation this species was often seen as internal pyritised 

moulds, and, as a result, external features such as the bulla and surface ornamentation were not 

seen. Tests vary in size from diameter 0.11-0.24mm, with height varying from 0.06-0.20mm. 

Range: Originally described from the Lower Oxfordian of Lithuania, now extended to the 

Lower Oxfordian of Normandy and Dorset. 

Material: 8 specimens, 13 fragments. 

Genus: Haeuslerina 

Type Species: Globigerina helvetojurassica Haeusler, 1881. 
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Haeuslerina helvetojurassica (Haeusler, 1881) 

PI. 12, Fig. c. 

1881 Globigerina helvetojurassica Haeusler, p. 36, pi. 2, figs 44, 44a. 

1986 Globuligerina oxfordiana (Gregelis), Stam (pars), pi. 7, figs 6-12, pi. 8, figs 1-3. 

Diagnosis: A species of Haeuslerina which consists of 10-14 globular chambers arranged in 

2-3 whorls. The first 5-6 chambers are small with the later ones becoming larger and inflated. 

The sutures are deep-cut and straight. The aperture is umbilical to weakly extraumbilical in 

position and semi-circular. 

Remarks: This species differs fi-om G. oxfordiana with respect to the height of the aperture, 

the height of the spire and degree of inflation of the last chamber. It belongs to the genus 

Haeuslerina as it has a characteristic intra-extraumbilical aperture, inflated chambers and 

depressed intercameral sutures. Stam (1986) failed to notice the difference in the extent of the 

aperture in comparison to G. oxfordiana and mistakenly considered the topotype of G. 

helvetojurassica to be synonymous with G. oxfordiana (Simmons et al., 1997). 

Range: This taxon has previously been reported only fi-om the Oxfordian of northern 

Switzerland. 

Material: 2 specimens, 7 fi-agments. 

Genus: Compactogerina 

Type Species: Globuligerina stellapolaris Grigelis, 1977. 

286 



Chapter 8 

Compactogerina stellapolaris (Grigelis, 1977) 

PI. 12, Fig. d. 

1977 Globuligerina stellapolaris Gregelis (in Grigelis etal.), p. 927, text-fig. la-c. 

Diagnosis A species of Compactogerina with a very compact test in which the sutures are 

only very slightly depressed and the equatorial periphery is not lobulate. The aperture 

possesses a narrow lip, which partly covers the umbilicus. 

Remarks: This species was found to be pyritised. The thickened test and apertural covering 

may be an adaption to the relatively cool boreal waters of the region, in a manner similar to 

modem day Neogloboquadrina pachyderma (Ehrenberg) (Simmons et al, 1997). It belongs to 

the genus Compactogerina as it has the characteristic intra-extraumbilical aperture, non-

inflated chambers and "normal" intercameral sutures. 

Range: Described from the Lower Volgian of Russia. This record in the Oxfordian (see Fig. 

8.4) extends the stratigraphic record of this species substantially. 

Material: 1 specimen and I potential fragment (very poorly preserved) from Dorset. 

Superfamily Globigerinacea Carpenter, Parker and Jones 1982 

Family Praehedbergellidae Banner and Desai, 1988 

Genus Praehedbergella Gorbachik and Moullade, 1973 (emend. Banner, Copestake and White 

1993) 
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Type Species: Globigerina tuschepensis Antonova, 1964. 

Praehedbergella tuschepsensis (Antonova, 1964) sensu stricto emend. 

PI. 12, Figs e-h. 

1964 Globigerina tuschepsensis Antonova, pp. 59, 60, pi. 12, fig. 3a-c. 

non 1993 Praehedbergella tuschepsensis (Antonova), Banner, Copestake and White, pp. 

8,9, pi. 2, fig. 4a-c. 

1997 Praehedbergella tuschepsensis s.s. (Antonova) emend; BouDagher-Fadel, Baimer and 

Whittaker, pp. 105-106, pi. 7.1, figs 1-7, fig. 7.1. 

Diagnosis: A species of Praehedbergella with 4'/4 chambers visible in the last whorl (dorsal 

view). The chambers of the last two whorls are inflated and enlarge rapidly. 

Remarks: The species differs fiomP. tuschepsensis perforare Banner et al. (1993) as it lacks 

perforation cones. The species was identified in the Warboys samples collected and prepared 

by Dr K. N. Page, Dr J. Larwood and Prof. A. Lord. The specimens are unusually well 

preserved and do not occur in the samples collected by the author and Dr M. D Simmons. The 

prepared material was processed at University College, London, where Banner and 

BouDagher-Fadel have worked upon P. tuschepsensis perforare. It is, therefore, potentially a 

contaminant in the Warboys samples. The benthic foraminiferal assemblage associated with 

these planktic specimens, however, does not appear to be contaminated with other Barremian 

taxa; whether the specimens are contaminants or whether they are Oxfordian specimens 

remains im-answered. 

Range: The range is not yet fiiUy known, with the holotype fi-om the Lower Barremian 
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Spiroplectammina magna Beds, Tuscheps River, northwest Caucasus. 

Material: 4 specimens and possible fragments from the prepared samples from Warboys Clay 

Pit Cambridgeshire, Mariae Zone. 

8.7 PRESERVATIONAL POTENTIAL OF PLANKTIC FORAMBVIFERA 

The question of preservation is a serious one when researching Jurassic planktic foraminifera. 

The early Jurassic planktic foraminifera belonging to the Superfamily Favusellacea and are 

believed to have had an aragonitic test from evidence documented by BouDagher-Fadel et al. 

(1997) and Gorbachik and Kuznetsova (1986). As indicated in Chapter 6, aragonitic 

foraminifera (such as Epistomind) are found to be well preserved in dense clay lithologies and 

are rarely preserved in sandy or silty lithologies as aragonite is highly susceptible to 

dissolution. The specimens recorded from the Normandy and Dorset samples were generally 

seen to be pyritised, with only a few better preserved specimens showing the original or 

diagenetically altered calcite/aragonite test. This poor state of preservation appears to be quite 

common in Jurassic planktic foraminifera. 

Riegraf (1987) has described planktic foraminifera from the Lower Oxfordian of 

Southwest Germany (Cordatum to Transversarium Zones) in which the only globuligerinid 

renmants are glauconitic internal moulds. The preservation of species from 'a few Callovian 

beds' are also discussed (Riegraf, 1987), in which the specimens are found as pyritized tests or 

barite or glauconite internal moulds. Planktic foraminifera, previously described from France 

by Bignot and Guyader (1971), appear to be in an excellent state of preservation but this was 

not replicated in the samples collected by the author. The planktics from the samples 
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previously collected from Warboys Clay Pit are well preserved. The differing states of 

preservation presented by previous authors do not help to solve the question of whether the 

P.tuschepsensis specimens are in situ or contaminants. 

8.8 PLANKTIC FORAMINIFERAL DISTRIBUTIONS. 

In Normandy specimens of Globuligerina oxfordiana (Grigelis, 1958) and Haeuslerina 

helvetojurassica (Haeusler, 1881) were identified with most specimens preserved as pyritic 

moulds. In the samples from Dorset, Globuligerina oxfordiana (Grigelis, 1958/ Haeuslerina 

helvetojurassica (Haeusler, 1881) and Compactogerina stellapolaris (Grigelis, 1977) were 

identified, and again most specimens were preserved as pyritic moulds. In the previously 

collected samples from Cambridgeshire Praehedbergella ? tuschepsensis was the predominant 

species identified with less well preserved fragments oflH. helvetojurassica.. 

8.8.1 BENTHIC FORAMINIFERAL ASSEMBLAGES. 

One of the main aims of the research was to find trends within foraminiferal assemblages. The 

occurrence of planktic foraminifera and the benthic foraminiferid Epistomina shows an 

interesting relationship (Oxford et al., 2004). If the Epistomina specimens are poorly 

preserved (i.e., pyritised, broken or showing dissolution effects) then it was imusual to observe 

planktic foraminifera in these samples. In samples where Epistomina are well preserved, and 

showed little or no signs of dissolution, then planktic foraminifera were present. This 

relationship must question whether the poor record of planktic foraminifera in the Jurassic is a 

fimction of preservation or whether Jurassic planktic foraminifera are genuinely rare. 
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Other benthic foraminifera usually associated with the planktic foraminifera are 

Lenticulina, Lingulina, Dentalina, Eoguttulina, Frondiculina, Citharim, Planularia, 

Textularia and Trochammina. 

8.9 SUMMARY 

The occurrence of G. oxfordiana, H. helvetojurassica and C. stellapolaris within the 

Furzedown Clays of the Dorset Coast are an important discovery. Figure 8.6. illustrates the 

occurrences of planktic foraminifera in the Q.mariae Zone from localities in France (Samson 

et al, 1992; Bignot and Guyader, 1996) and from the Scottish Jurassic (Gregory, 1995). 

The discovery of P.tuschepsensis from the Q. mariae Zone of Cambridgeshire is also 

an important discovery (if it can be confirmed that the specimens are not a product of 

contamination) as no previous record of this species occurring in the Oxfordian exists, and it 

would significantly extend the known range of this species. Figure 8.5 shows the generic 

evolution of Jurassic and Cretaceous planktic foraminifera (modified from Harte/ al, 2002). 

From this figure it can be seen that there are several problems occurring within the Jurassic: 

• there is little evidence for the Praegubkinella - Conoglobigerina link; 

• the disjointed distribution of Conoglobigerina; 

• the origin of Globuligerina and other taxa in the mid-late Jurassic; and 

• the origin of Praehedbergella 
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8.10 PALAEOGEOGRAPHICAL SIGNIFICANCE 

Although this research has brought to attention the fact that planktic foraminifera are present 

within the Jurassic of the UK, it is very clear that further work on evolution of the early 

planktic foraminifera is required. 

It is evident that planktic foraminifera were able to survive in 'relatively' shallow 

waters in the Wessex Basin, with Samson e/ al. (1992) believing that Globigerina oxfordiana 

may have had sufficient depth of water at Villers-sur-Mer to carry out their vital life cycle, 

possibly in water less than 150 metres deep. Bignot and Guyader (1966) also conclude that 

their globigerinid fauna existed in fairly shallow-water conditions in a warm epicontinental 

sea. 

From the palaeogeographic map of the Oxfordian (Fig 8.7) the distribution of 

planktic foraminifera can be seen. The map shows the limited distribution of planktic 

foraminifera during the Oxfordian, with the fauna "trapped" on the northern shelf of the 

Tethys. During events in relative sea-level rise, such as highstands, the fauna were able to 

migrate and thus it would appear that the occurrence of planktic foraminifera in the Q. mariae 

Zone of the UK may be one of these such occasions, representing a brief Tethyan episode in 

an environment otherwise dominated by the Boreal reahn. During this time it is also apparent 

that there was a southwards migration of ammonites (Dr Kevin Page, pers comm). These 

occurrences are coincident with the global transgression that had begun in the early Jurassic, 

although this is thought to have reached a maximum in the Callovian (Thierry, 1988). It also 

corresponds with OXl Maximum Flooding Surface of Hardenbole/ al. (1998). 
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8.11 CONCLUSIONS 

There is still a lot of research to be done into the evolution of the planktic foraminifera. 

Simmons et al. (1997) in a recent review reports that the origins of the (Globigerinina) group 

are '.... still shrouded in uncertainty'. Work by Harte/^ al. (2003) presents evidence from the 

Toarcian (early Jurassic) of NW Europe that the origin of the planktic foraminifera may have 

been one of the results of early Toarcian oceanic anoxic event. 

The mystery continues into how, why and when the planktic foraminifera first 

evolved. Work on all of the locations (especially in Europe) where "protoglobigerinids" have 

been described but not yet identified as known taxa is reqviired, along with, 

micropalaeontologists continuing to study the smaller sized sieve fraction of samples and 

believe in their results. 
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Figure 8.7. Distribution of planktic foraminifera in the Oxfordian, modified from Hart et ah, 2002. 
The X marks the occurrence of planktic foraminifera on the N.W. Shelf of Australia described by Apthorpe (2002). 

This record significantly alters our view of the distribution of Oxfordian taxa.. 
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Chapter 9 

9.0 INTRODUCTION 

This chapter aims to summarise the main points concluded in the preceding chapters of the 

thesis. At the beginning of the research six main aims were introduced and each of these will 

be discussed with respect to the results of this research. The aims are listed below: 

1. To sample the complete succession of the Oxfordian on the Normandy and Dorset Coasts. 

2. To examine the distribution of the Oxfordian Foraminifera in successions on the Dorset 

Coast and the Normandy Coast. 

3. To examine the distribution of the Oxfordian Foraminifera within the identified sequences 

and parasequences. 

4. To identify the marker species identifying the various segments of the sequences and the 

maximum flooding events. 

5. To correlate the Oxfordian successions in Normandy and South Dorset using Foraminifera. 

6. To correlate sequence boundaries and foraminiferal events across the Wessex Basin. 

9.1 SAMPLING 

This was undertaken in Dorset and Normandy to collect a near complete succession of the 

Oxfordian strata at both localities. Samples were taken at regular intervals throughout the 

successions where this was possible, although some bias was introduced in the lithologies 

sampled. Where possible muddy lithologies were preferentially sampled over carbonate 

lithologies as muddy lithologies are more easily processible for foraminiferal investigation. 

Carbonate lithologies have to be studied using thin section microscopy and this makes 
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comparison to disaggregated samples difficult. The outbreak of "Foot and Mouth Disease" 

during the spring/summer of 2001 severely curtailed the planned field season in Normandy 

and visits to the Dorset field area. The field season was completed later in a very wet October 

2001. This delay did not allow time for a planned third field season to go ahead. 

9.2 FORAMINIFERA 

9.2.1 TAXONOMY 

Foraminifera were processed and picked as described in Chapter 2. A fauna comprising a total 

of 25 families, consisting of 36 genera and 126 species were recorded and identified with the 

taxonomy of each species investigated (Chapter 4). 

The number of species identified during this research is larger than previously recorded 

for the Corallian of South Dorset by Gordon, (1965) and Lord and Bown (1987) although is 

not as large as the number of species recorded by Henderson (1997) from borehole samples in 

North Dorset. It would appear, therefore, that the fresh material from the boreholes that had 

not been subjected to the destructive process of weathering yield more foramimfera than 

samples analysed from coastal or outcrop samples. 

There are a few species identified within the research that are recorded in abundance 

from the Dorset and Normandy successions. These are, in particular, Ammobaculites 

coprolithiformis, Lenticulina miinsteri, Epistomina mosquensis and unidentifiable Epistomina 

spp. Unfortunately the epistominids are particularly susceptible to dissolution due to their 

aragonitic tests (Chapter 6) and, therefore, the recording of the data at genus level (in the case 

of unidentifiable Epistomina spp.) is not really detailed enough to achieve an accurate idea of 

the importance of the palaeoecological niche of this fauna. 
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The examination of the smaller fi^actions during picking is important. If the 

<l50\sm fi*action had not have been studied then the first occurrences of planktic foraminifera 

fix)m the U.K, would not have been discovered, and many of the benthic taxa would not have 

been encountered. The majority of previous work has concentrated upon the larger size 

flections of well known calcareous forms as these are often well preserved and little work has 

been undertaken on the agglutinated and smaller calcareous forms. This is an area in which 

further detailed work is needed. The compaction of clay lithologies often deforms some of the 

agglutinated foraminifera and compressed varieties are common (Plate 11). This makes the 

identification of these forms difficult. 

9.2.2 BENTHIC FORAMINIFERA 

Simple statistical analyses of the benthic foraminifera were calculated for each of the 

successions. The a index and percentage data for the fauna were used and comparisons made 

between the Dorset and Normandy successions (Chapter 5). This method is useful for faunas 

that are not well preserved and cannot be identified in every case to species level, as trends 

such as increases in diversity and abundance can be seen clearly. 

Within the successions studied, the a index was particularly usefiil in recognising 

changes in the environment and recognising flooding surfaces (although distinguishing 

between a Transgressive Surface and a Maximum Flooding Surface has not been achieved). 

9.2 J PLANKTIC FORAMINIFERA 

The discovery of the first occurrences of planktic foraminifera within English Oxfordian 
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succession is important. It highlights the need to study the smaller size fractions and also to 

have a belief in your results. As planktic foraminifera had not been reported from the 

Oxfordian of England before this study it would have been easy to dismiss them as 

contaminants on the simple basis that 'they were not meant to be there' instead of researching 

into the possibility that they had been overlooked in the past. 

The association of planktic foraminifera with the epistominids is an important 

relationship, both from a palaeoecological point of view and from the preservational aspect. 

The occurrence of planktic foraminifera in the UK successions indicates that the fauna was 

able to migrate from the Tethyan into the Boreal realm during changes in relative sea level, 

such as at the Mariae Zone highstand. 

9.3 CORRELATION 

The correlation of foraminifera across the Wessex/Anglo-Paris basin has had only limited 

success. It has been possible to correlate the planktic foraminifera in the Mariae Zone, and 

recognise trends that occur on both sides of the basin, such as the floods of Ophthalmidium 

and Trochammina (Chapter 5). It would appear that these trends are localised with the fauna 

reacting to local changes in the environment. This is not entirely surprising, given the 

structural complexity of the basin. 

The correlation of sequence boundaries across the Wessex Basin also had limited 

success. The identification of sequence boundaries from the sedimentological and 

micropalaeontological data was problematic (Chapter 7) with condensed and sandy lithologies 

yielding poorly preserved faunas (Chapter 6). 
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Figure 9.1 compares the alpha index and the foraminiferal diversity information from 

Chapter 5 and allows a comparison of the interpretations for the Dorset and Normandy 

successions. Comparing the two graphs for each succession is useful in highlighting the 

benefits of the two methods of displaying the foraminiferal data. The alpha index allows 

sequence boundaries to be inferred more easily than the foraminiferal distribution graphs, with 

the foraminiferal graphs allowing a visible indication of the sediment present and allowing for 

preservational factors. 

Comparing the Dorset and Normandy successions is also interesting as it helps to 

highlight whether the interpreted sequence stratigraphical trends are on a large scale (i.e., 

applicable across the Wessex basin) or whether the effects are more local. The Upper Oxford 

Clay and the Mames de Villers Formations have a good correlation. Both include a Zone of 

Maximum Flooding and are interpreted as Highstand Systems Tracts. They also both contain 

planktic foraminifera (Chapter 8). Other parts of the successions do not correlate so well. In 

these cases it would appear that there are local effects such as subsidence associated with local 

faulting having an effect on the stratigraphy (i.e., a comparison of the Redcliff and Calcaire 

d'Auberville Formations). 

9.4 FURTHER WORK 

From this research the following areas are suggested for further work: 

• Research into preservation and the effects of compaction upon foraminiferal assemblages; 

• Borehole sampling should be carried out along the coastal sections in order to obtain fresh 
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• material and to investigate the variations in foraminiferal abundances and diversities; 

• The foraminiferal scheme proposed in this study should be investigated further in 

Oxfordian sections in north Dorset, Normandy and further afield. The scheme should be 

improved as further study is completed; and 

• The evolution of the early planktic foraminifera needs further investigation. Sampling 

needs to be undertaken from around the UK from the Oxfordian and younger levels and 

the small size fractions studied. It will probably be necessary to re-sample some original 

localities and obtain topotype material. 
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Plates 

PLATE ONE 

A, B. Lagenammina difflugiformis (Brady), Scale bar lOOum, Ringstead Waxy Clay, Dorset, 

evoluta Subzone, Sample R6. 

C. Haplophragmoides tryssa (Loeblich and Tappan), Scale bar 100pm, Ringstead Waxy Clay, 

Dorset, baylei Subzone, Sample R6. 

D. Ammobaculites agglutinans (d'Orbigny), Scale bar 100pm, Calcaire Oolithique de 

Trouville Formation, Normandy, Densiplicatum Zone, Sample 2.11. 

E. F. Ammobaculites canui (Cushman), Scale Bar lOOjmi, Argiles a Lopha gregarea 

Formation, Normandy, Cordatum Zone, Sample W3.9. 

G, H, I, J. Ammobaculites coprolithiformis (Schwager), G, I. 50|jm, Mames de Villerville 

Formation, Normandy, Serratum Zone, Sample 1.3; H. 500pm, Coral Rag Formation, 

Normandy, Tenuiserratum Zone, Sample 2.14; J. 100pm, Nothe Grit Formation, Dorset 

Cordatum Zone, Sample RED 5. 

K. Ammobaculites deceptorius (Hausler), Scale bar 100pm, Calcaire Oolithique de Trouville 

Formation, Normandy, Densiplicatum Zone, Sample 2.11. 



Plates 

L. Ammohaculites godmani (Barnard), Scale bar lOOjmi. Mames de Villers Formation, 

Normandy. Mariae Zone; Sample H5.19. 





Plates 

PLATE TWO 

A. Ammobaculites godmani (Barnard), Scale bar lOOum, Nothe Clay Member, Dorset, 

Vertebrale Subzone, Sample RED 12. 

B. Trochammina canningensis (Tappan), Scale bar 50pm, Shortlake Member, Dorset, 

Antecedens Subzone, Sample BH4. 

C. Trochammina globigeriniformis (Parker and Jones), Scale bar 50pm, Ringstead Waxy Clay, 

Dorset, Evoluta Zone, Sample R6. 

D. Trochammina sp. cf. Trochammina inflata (Montagu), Scale bar 50pm, Clay Band 

Member, Dorset, Cautisnigrae Subzone, Sample BH19. 

E. F. Trochammina kosyrevae Levina, Scale bars 100pm, Calcaire greseux de Hennequeville 

Formation, Normandy, Sample 2.19. 

G. Trochammina sp. cf. T rosaceaformis Romanova, Scale bar 100pm, Ringstead Waxy Clay 

Formation, Dorset, Evoluta Subzone, Sample R6. 

H. Trochammina squamata Parker and Jones, Scale bar 50pm, Ringstead Waxy Clay 

Formation, Dorset, Evoluta Subzone, Sample R6. 



Plates 

I. Vemeuilinoides species. Scale bar lOO^m, Coral Rag Formation, Normandy, Tenuiserratum 

Zone, Sample 2.14. 

J. Eggerella ?meentzeri (Klingler), Scale bar lOOjun, Shortlake Member, Dorset, Antecedens 

Zone, Sample BH5. 

K, L. Textularia pugiunculus (Schwager), Scale bars SO ûn, Mames de Villerville Formation, 

Normandy, Serratum Zone, Sample 1.3. 





Plates 

PLATE THREE 

A, B. Textularia jurassica Gumbel, Scale bars lOOjim, Clay Band Member, Dorset, 

Cautisnigrae Subzone, Sample BH20. 

C, D. Trocholina nodulosa Seibold and Seibold, Scale bars 50|jm, Mames de Villerville 

Formation, Normandy, Serratum Zone, Sample 1.1. 

E, F. Comuspira species. Scale bars 50|jm, Nothe Clay Member, Dorset, Vertebrale Zone, 

Sample Red 14. 

G, I, J, K. Nubeculinella bigoti (Cushman), G, K, 100 pm, Nothe Clay Member, Dorset, 

Vertebrale Zone, Sample Red 9, Red8; J, 500^m, Nothe Clay Member, Dorset, Vertebrale 

Zone, Sample Red 8; I, J 100 |mi Mames de Villerville Formation, Normandy, Serratum Zone, 

Sample W 1.2. 

H. Nubeculinella tibia (Jones and Parker), Scale bar 100pm, Mames de Villerville Formation, 

Normandy, Serratum Zone, Sample W1.2 . 





Plates 

PLATE FOUR 

A, B, C. Ophthalmidium strumosum (Giimbel), Scale bars SOfmi, Nothe Clay Member, Dorset, 

Vertebrale Zone, Sample Red 14,12. 

D, E. Spiroloculina variablilis Barnard et al.. Scale bars 50|im, Nothe Grit Formation, Dorset, 

Cordatum Zone, Sample FZYC. 

F, G, H, I. Quinqueloculina horelli Barnard et al.. Scale bars SOjmi F, G, I Shortlake Member, 

Dorset, Antecedens Zone, Sample BH 9; H, Mames de Villerville Formation, Serratum Zone, 

Sample 1.3. 

J. Dentalina sp. aff. D. communis d'Orbigny. Scale bar lOOjmi, Ringstead Waxy Clay 

Formation, Dorset, Evoluta Zone, Sample Rl. 

K. Dentalina giimbeli Schwager, Scale bar 100|jni, Mames de Villers Formation, Normandy, 

Mariae Zone, Sample H 5.18. 

L. Dentalina marsupifera Schwager, Scale bar 100|xm, Mames de Villers Formation, 

Normandy, Mariae Zone, W3.14. 





Plates 

PLATE FIVE 

A. Dentalina torta Terquem, pyritized incomplete specimen. Scale bar lOOum, Mames de 

Villers Formation, Normandy, Mariae Zone, Sample H5.5. 

B. Dentalina vetusta d'Obigny, Scale bar lOOum, Mames de Villers Formation, Normandy, 

Mariae Zone, Sample H5.5. 

C. D. Nodosaria opalini Bartenstein, Scale bars SO ûn, Mames de Villers Formation, 

Normandy, H5.2. 

E. Pseiidonodosaria vulgata (Bomemann), Scale bar 50|jm, Calcaire d'Auberville Formation, 

Normandy, Vertebrale Subzone, Sample TV2.10. 

F, G, H. Lingulina cemua (Berthelin), Scale bars SO ĵn, Mames de Villerville Formation, 

Normandy, Serratum Zone, Sample W1.3 . 

I. Juvenile Lingulina, Scale bar 100nm,Upper Oxford Clay Formation, Dorset, Costicardia 

Zone, Sample BH17. 

J. K. Lingulina/Frondiculina indet. Scale bars 100|jm, Chief Shell Bed Member, Dorset. 

Parandieri Zone, Sample BH17. 



Plates 

L. Juvenile Frondiculina, Scale bar SOjmi, Benclifif Grit Member, Dorset, Vertebrale Zone, 

Sample OSM7. 

M. Frondiculina franconica Giimbel, Scale bar 100^m, Bencliff Grit Member, Dorset, 

Vertebrale Zone, Sample OSM7. 





Plates 

PLATE SIX 

A. Deformed Frondiculina franconica Giimbel, Scale bar lOOjmi, BencliflF Grit Member, 

Dorset, Vertebrale Zone, Sample OSM7. 

B, C. Saracenaria oxfordiana Tappan, Scale bars lOOjim, Ringstead Waxy Clay Formation, 

Dorset, Evoluta Zone, Sample R5. 

D, E. Lenticulina ectypa (Loeblich and Tappan), Scale bars 100|im, Ringstead Waxy Clay 

Formation, Dorset, Evoluta Zone, Sample R5. 

F. Lenticulina major (Bomemann), Scale bar lOOjun, Ringstead Waxy Clay Formation, 

Dorset, Evoluta Zone, Sample R5. 

G, H, I. Lenticulina ex. group miinsteri (Roemer), Scale bars 100|4m, G, H, Ringstead Waxy 

Clay Formation, Dorset. Evoluta Zone, Sample R5; I 100 |jm, Mames de Villerville 

Formation, Normandy, Serratum Zone, SampleW 1.5. 

J. Lenticulina polygona (Paalzow), Scale bar lOO^m, Ringstead Waxy Clay Formation, 

Dorset, Evoluta Zone, Sample R5. 

K. Lenticulina protracta (Bomemann), Scale bar lOOjrni, Ringstead Waxy Clay Formation, 



Plates 

Dorset, Evoluta Zone, Sample R5. 

L Lenticulina quenstedti (Giimbel), Scale bar lOOjim, Mames de Villerville Formation, 

Normandy, Serratum Zone, Sample W1.5. 





Plates 

PLATE SEVEN 

A, C, D. Lenticulina subalata (Reuss), Scale bars lOOjim, A, D, Nothe Grit Formation, Dorset, 

Sample RED4; C, Mames de Villers Formation, Normandy, Mariae Zone, Sample H5.27. 

B. Lenticulina polygona (Paalzow), Scale bar lOO^m, Ringstead Waxy Clay Formation, 

Dorset, Evoluta Zone, Sample R7. 

E, H. Marginulina batrakensis (Myatluik), Scale bar E lOOjmi; Scale bar H, 50^m, Mames de 

Villers Formation, Normandy, Mariae Zone, Sample H5.22. 

F, G. Juvenile Lenticulina, Scale bars SOjun, Nothe Clay Member, Dorset, Vertebrale 

Subzone, Sample RED4. 

I. Juvenile Marginulina, Scale bar 50|Jin, Mames de Villers Formation, Normandy, Mariae 

Zone, Sample H5.20. 

J. Citharina serratocostata (Gumbel), (broken specimen). Scale bar lOOum, Calcaire 

d'Auberville Formation, Normandy, Vertebrale Subzone, Sample TV2.6. 

K. Citharina lepida Schwager, Scale bar lOOum, Calcaire d'Auberville Formation, Normandy, 

Vertebrale Subzone, Sample TV2.6. 





Plates 

PLATE EIGHT 

A, B. Citharina lepida Schwager, Scale bars lOOjim, Mames de Villers Formation, Normandy, 

Mariae Zone, Sample H5.25. 

C. Citharina tenuicostata Lutze, Scale bar lOOjim, Calcaire de Blangy Formation, Normandy, 

Tenuiserratum Zone, Sample TV4.9. 

D. Planularia angustissima (Wisniowski), Scale bar 100|im, Mames de Villerville Formation, 

Normandy, Serratum Zone, Sample W l . l . 

E. F. Planularia bieriana (Gumbel), Scale bars lOOum, Mames de Villerville Formation, 

Normandy, Serratum Zone, Sample W1.5 . 

G. Planularia listi (Bomemann), Scale bar 100|xm, Mames de Villerville Formation, 

Normandy, Serratum Zone, Sample W1.2 . 

H. Planularia sulturalis (Terquem), Scale bar lOOpm, Calcaire greseux de Hennequeville 

Formation, Glosense Zone, Sample TV2.17. 

I, J. Vaginulina bamardi Gordon, Scale bars lOOjun, Ringstead Waxy Clay Formation, 

Dorset, Evoluta Zone, Sample R7. 



Plates 

K. Lagena globosa (Montagu), Scale bar 10|4m, Calcaire greseux de Hennequeville 

Formation, Glosense Zone, Sample TV2.17. 

L. Lagena agglutinans Terquem, Scale bar 50^m, Ringstead Waxy Clay Formation, Dorset, 

Evoluta Zone, Sample R7. 





Plates 

PLATE NINE 

A. Lagena agglutinas Terquem, Scale bar 50pm, Mames de Villers Formation, Normandy, 

Mariae Zone, Sample H5.4. 

B. D, E. Lagena sp. 1, Scale bar 50pm, B, Argiles a Lopha gregarea Formation, Normandy, 

Vertebrale Subzone, Sample W3.10; D, E Nothe Clay Member, Dorset, Vertebrale Subzone, 

Sample OSM4. 

C. Lagena sp. 2, Scale bar 50pm, Mames de Villers Formation, Normandy, Mariae Zone, 

Sample H5.15. 

F, G, J. Eoguttulina oolithica (Terquem), Scale bar 50pm, F, G Mames de Villerville 

Formation, Normandy, Serratum Subzone, Sample W1.4; J, Ringstead Waxy Clay 

Formation, Dorset, Evoluta Zone, Sample R5. 

H, K. Eoguttulina liassica (Strickland), Scale bar 50pm, Ringstead Waxy Clay Formation, 

Dorset, Evoluta Zone, Sample R6. 

I. Eoguttulina anglica Cushman and Ozawa, Scale bar 50pm, Mames de Villers Formation, 

Normandy, Mariae Zone, SampleHlO. 



Plates 

L. Ramulina spandeli Paalzow, Scale bar SOum, Argiles a Lopha gregarea Formation, 

Normandy, Cordatum Zone, Sample Vv3.6. 





Plates 

PLATE TEN 

A, B, C. Reinholdella ? lutzei Barnard et al.. Scale bars 50^m, A, Mames de Villerville 

Formation, Normandy, Serratum Zone, Sample W1.5 ; B, C, Shortlake Member, Antecedens 

Subzone, Sample BH9. 

D, E. Epistomina mosquensis Uhlig, Scale bars 100|Jin, D, Nothe Clay Member, Dorset, 

Vertebrate Subzone, Sample RED 10; E, Mames de Villerville Formation, Normandy, 

Serratum Zone, Sample W1.5 . 

F, G, H. Epistomina parastelligera (Hofker), Scale bars lOOjun, Nothe Grit Formation, 

Dorset, Cordatum Zone, REDS. 

I. Epistomina tenuicostata Bartenstein and Brand, Scale bar lOO^m, Upton Member, Dorset, 

Antecedens Subzone, Sample OSM 10. 





Plates 

PLATE ELEVEN 

This plate illustrates the poorly preserved and deformed specimes encountered during this 

research. Figures A-F are typical of the preservational quality of fauna studied throughout this 

research and illustrate the problems the author has had with the identification of specimens. 

Figures G-L show deformed specimens. 

A, B, C. Poorly preserved LenticuUna, Scale bars 50|im, A, B, Nothe Grit Formation, Dorset, 

Cordatum Zone, Sample Red 1; C, Calcaire d'Auberville Formation, Normandy, Vertebrale 

Subzone, Sample TV2.2. 

D. Poorly preserved foraminifera. Scale bar lOjun, BenclifF Grit Member, Dorset, Vertebrale 

Subzone, Sample OSM 8. 

E, F. Poorly preserved Epistomina, Scale bars 100pm, Calcaire d'Auberville Formation, 

Normandy, Vertebrale Subzone, Sample TV2.2. 

G, H, I, J, L. Deformed Lenticulina, Scale bars lOOMin, G, H, I, Osmington Oolite Formation, 

Dorset, Plicatilis Zone, Sample BH4; J, Mames de Villerville Formation, Normandy, Serratum 

Subzone, Sample W1.4; L. Ringstead Waxy Clay Formation, Dorset, Evoluta Subzone, 

Sample R8. 



Plates 

K. Deformed Citharina, Scale bars lOOjmi, Calcaire d'Auberville Formation, Normandy, 

Vertebrale Subzone, Sample TV2.2. 





Plates 

PLATE TWELVE 

a, b. Globuligerina oxfordiana (Grigelis), Scale bar a, SOjmi, Mames de Villers Formation, 

Normandy, Scarburgense Subzone, Sample H5.25; Scale bar b, lOOjim, Oxford Clay 

Formation, Dorset, Scarburgense Subzone, Sample FZE. 

c Haeuslerina helvetojurassica (Haeusler), Scale bar lOjmi, Oxford Clay Formation, Dorset, 

Scarburgense Subzone, Sample FZE. 

d Compactogerina stellapolaris (Grigelis), Scale bar SOjun, Oxford Clay Formation, Dorset, 

Scarburgense Subzone; Sample FZE. 

e, f, g, h. Praehedbergella tuchepsensis (Antonova), Scale bars lO^m, Oxford Clay Formation, 

Cambridgeshire, Scarburgense Subzone, Samples 9969,9970, 9971 provided byDrs Page and 

Larwood. 
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APPENDIX A 

Range charts for all taxa in the study 

I Range in Dorset 

Range in Normandy 
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Ammobttculites agglutioHs 
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CithariHa keteropUura 

Citharuia lepida 

Citharina serratocosta 

CitUarina temiicostata 
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DeittaUna gOmbeb 

Detitabna mamipifera 

Deittabna sp. iR. Deiitahna communis d'Orbtgnv 
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Dentahna torta 
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FrondJailaria froHcomca stnsu lata 

FroHdicularia sp. cf. Frondicularia Ugnaria 

Gaudiyina sherlocki 

Haplophragmoides haeusleri 

Haplophragmoides kingakensa 

Haptopkragmoides sp.l 

Haplophragmoides sp. cf. Haplophragmoides excavatus 

Haplophragmoides byssa 

Haplophragmoides/Trochammina spp. indct 

Inidentiiiable AmmobacuStes 
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LeHtJculina brevispira 
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LendcuUna n group munsteri 





^W^'" 

NubecuHneUa bigoti 

NubecubneUa tibia (Jones & Parker) var. bulbifera 

Ophthalmitbum stmmomm 

PaalzoweUa feifeli 

Planularia angustaama 

Plamilaria baerana 

Platmlaria euneiiii 

Plaimlaria Usti 

Planularia suturalis 

"Placopsibna" sp. cf. Placopsibna cenomana 

Pseudonodosaria vuigata 
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RanhoUeUa cf. bitzia 
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Appendix B 

A P P E N B K B 

Samples that were too difficult to break down for micropalaeontological studies were viewed 

in thin section. Appendix B is the thin section descriptions for these samples. All locatilties 

relate to Figure 2.7. 

B 



Thin section descriptions 

• TV2.6. 
The rock is mud-supported with greater than 10% aUochems which are mostly ooids and 
bioclasts. The bioclastic component is mainly bivalve, gastropod and echinoid fragments, 
although some foraminifera, principally Lenticulina and Nodosaria and Ammobaculites ? 
coprolithiformis are all present. The nucleus of the ooids is composed primarily of 
bioclastic fragments. Composite ooids are also frequent, and iron stained. 

• TV2.7 
The rock is grain-supported with the grains predominantly ooids and bioclastic fragments. 
The bioclasts are mainly bivalve, gastropods and echinoid fragments. The ooids have 
poorly-preserved concentric structures, with the nuclei mostly bioclastic fragments. Some 
foraminifera are present and are rotalids, probably Lenticulina. Some peloids are present. 

• TV2.13 
The rock is a mudstone with the occasional iron rich ooid and bioclasts of bivalves and 
echinoids. No foraminifera are present. 

• TV2.15 
The rock is a matrix-supported limestone with less than 10% allochems. A few peloids and 
ooids make up the aUochem component. No foraminifera are present. 

• TV2.16 
The rock is a matrix-supported limestone with less than 10% allochems. The allochem 
component is dominated by bioclasts and consists predominantly of bivalve and oyster 
fragments, and foraminifera, including Ammobaculites and Nodosaria. 

• TV2.17 
The rock is a grain-supported limestone with some calcite cement but also much carbonate 
mud sediment in the matrix. The grains are predominantly ferruginous ooids and bioclasts. 
The bioclastic component is approximately 20% and includes brachiopods, bivalves, 
oysters, gastropods, echinoid spines algae as well as foraminifera. The foraminiferal 
component is predominantly Lenticulina and Ammobaculites, including Ammobaculites 
coprolithiformis. 

• TV2.21 
The rock is a mud-supported limestone with less than 10% allochems. The allochems are 
bioclastic with echinoid, bivalve and sponge spicules present. Ooids and foraminifera are 
rare. 

• TV2.24 
The rock is a mud-supported limestone less than 10% allochems. The allochems are 
bioclastic and predominantly bivalve fragments. Some peloids are present with 
foraminifera absent. 

• TV2-on top of Blangy 
The rock is a mud-supported limestone with greater than 10% allochems. The allochems 
are predominatly bioclasts although ferruginous ooids and peloids are also present. The 



bioclasts are mainly gastropods, bivalves and foraminifera, with Lenticulina and 
Ammobaculites present. 

• TV-Blangy 
The rock is a mud-supported limestone with less than 10% allochems. The allochems are 
dominated by bivalve fragments although echinoid and foraminifera are also present and 
include Lenticulina. A few ferruginous ooids are present 

• W3.2 
The rock is a mud-supported limestone with less than 10% allochems. The allochems are 
predominantly ooids and bivalve bioclasts, although some foraminifera, principally 
Lenticulina are present. 
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OPAIAEONTOLOGICAL INVESTIGATIONS OF THE OXFORD CLAY -

^LIAN SUCCESSION OF THE DORSET COAST. 

^XFORD, M. B. HART&M. P.WATKINSON 

M.J., Han, M.B., and Watkinson, M.P. 2000. Micropalaeontological investigations of the 
Clay - Corallian succession of the Dorset Coast. Geoscience in south-west England, 10, 009-013 

rset Coast is internationally known for the near-continuous exposure of the Jurassic succession. The Oxford Clay-Corallian-
idge Clay sequence that is exposed between the Isle of Portland and Ringstead records the transition from deeper-water 
clays to shallow-water sands and oolitic shoals and back into deeper-water, near-stagnant, marine clays. 
Uminary data discussed here are part of an on-going study. This aims to assess the role of Foraminiferida in the development 
Lience stratigraphical interpretation of continuous successions in Dorset and Normandy. In this report, faunas are described 
E Nothe Grit and Red Cliflf Formations in the lower part of the Corallian Group. This identifies, with more accuracy than has 
sly been the case, a Maximum Flooding Sur&ce within the Red Clifif Formation. 

MJ. Oxford, M.B.Hart, M.P. Watkinson, 
Department of Geological Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA 

DUCnON 

Middle-Upper Jurassic succession (Oxford Clay Fonna-
>rallian Group and Kimmeric^e Clay Formation) is well 
1 on die Dorset Coast figure 1) and has been intensively 
for over 100 years. The ammonite succession derived 

ese strata provides a reliable time-scale within vdiich the 
variety of fossil groups can be used to generate detailed 
:nvirotunental models. The classic ammonite zonation of 
tssic (Cope et oL, 1980a, 1980b) was established in this 
d it is ri^dy r^^rded as being of international impor-
current proposals for a Worid Heritage Site). The 
itigrapfay of the succession has, only recently, been 
i (Coe, 1992 and references dierein) from the historical 
o one of formatiotis and members. The Corallian Group, 
iect of this researdi, has been divided into six formations 
>92);theNotheGfit, Red Clifî Osmington Oolite, Tr^nia 
ta Beds, Sandsfoot and Ringstead Formations. The Red 
rmation is further subdivided (Wri^t, 1986) into three 
rs; the Preston Grit, Notfae dxf and Bendiff Grit Mem-
le present study alms to determine the detailed distribu-
foraminifera in various parts of the Oxford Oay Forma-
oralllan Group-Kimmeridge Clay Fbrmation and to test 
IS sequence stratigraphic interpretations of this succes-
reliminary data investigate the relationship of the 
issils (primarily foraminifera) to die sequence stratigraphy 
:ed Cliff Formation. 

!NCE STRATIGRAFHY 

[ence stratigraphy was developed in the 1970's and was 
nitially, on the interpretation of seismic sections. Vail et 
1) further developed the original concept to interpret 
> and borehole data and to direcdy relate the resulting 
iphyto relative sea-level changes. Short term fluctuations 
lie formation of sequences, "genetically related packages 
bounded by unconformities or their correlative con-

is' (Van Wagoner cf a/. 1988). A sequence is divided into 
rtrocfs, with three main tracts recognisable withinagiven 
ce; the lowstand systems tract (1ST), transgressive sys-
ict (TST) and hi^tand systems tract (HST). 
:nis tracts assist in the understanding of the distribution 
5 across the shelf and basins during given periods of the 
:1 change as they are characterised by particular sedimen-
ssil, £>icies and seismic relationships. The boundaries 
n individual systems tracts are indicated by key stratal 

sur&ces. These represent significant, abrupt changes in relative 
sea4evel (e.g.. Maximum Flooding Sur&ces (MFS)). The MFS 
separates the TST and the HST and is an important part of 
sequence stratigraphic interpretation. 

Ever since the descriptions of the Jurassic succession of 
die Dorset Coast by Arlcell (1933,1956) geologists have been 
aware of the cyclical nature of die sedimentation. In the Corallian 
this concept was further extended by Wilson (1968a,b), Talbot 
(1973, 1974) and Sun (1989), all of whom describe repeated 
sedimentary cycles caused primarily by changes in sea level. 
Interpretations of the sequence stratigraphy of the Middle-
Upper Jurassic of the Dorset Coast have been attempted by 
various workers (Wilson, 1991; Rioult et al., 1991; Coe, 1992, 
1995; Oliver, 1998; Newell, 2000) with differing-if not conflict
ing - results (Figure 2). Althou^ all these workers are using 
terminology sudi as lowstand systems tract, transgressive sys
tems tract and highstand systems tract, die 'sequences" are on 
a smaller scale than the sequences ofVan Wagoner et al. (1988) 
and others. In reality, vnbax are being described as sequences on 
the Dorset Coast are probably parasequences (for ̂ l ich there 
is no separate nomenclature). It is hoped diat, by integrating 
detailed micropalaeontological information with the 
sedimentology, it will allow the development of a mote accurate 
sequence stratigraphic interpretation. 

Emery & Myers (1996), in a discussion of die distribution of 
(principally) microfossils within sequences provide an interest
ing model (op.cft., 1996, fig. 6.14) which can be tested using the 
successions of the Dorset coast. Tlieir figure, quoted above, u s ^ 
the distribution of planktonic microfossils to identify the maxi
mum flooding surface (MFS) along with an associated peak in 
fuinal diversity. The majority of the previous works on the 
microfossil distribution in sequences has been done in the 
younger levels of the succession (mainly Cenozoic of the Gulf of 
Mexico). In these, mainly sub-surfece, successions the numbers 
of Foraminifera in any assemblage reportedly vary both in 
absolute numbers and diversity (see Shaffer, 1987, 1990; 
Armentrout, 1987, 1991; Armentrout & Clement, 1990; 
Armentrouter«i, 1990,1999; Pachtefoi, 1990; VaU&Womardt, 
1990; Van der Zwan & Brugman, 1999) within each of the 
identified sequences. More recendy Olsson (1988), Cubaynes et 
al (1990), Simmons cf«/. (1991), PoweU (1992), Partington ef 
al (1993), Hart (1997), Henderson (1998) and Henderson & 
Hart (2000) have extended this approach into the Mesozoic 
successions of the Atlantic Coastal Plain of the USA and North
west Europe. In all cases the various authors have been using a 
combination ofdiversity variations, planktonic:benthonic ratios 
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her faunal events to characterise their sequence 
aphic model interpretations. 

IIDDLE-UPPER JURASSIC SUCCESSION 

Nothe Grit Formation represents the base of the succes-
igure 2). This is characterised by afine-grained, fairly well-
sand which is pervasively bioturbated (Wright, 1986). It 
rpreted as having been formed in a shallow shelf sea 
[iment (Coe, 1995). The Red Cliff Formation consists (in 
|ing order) of the Preston Grit, Nothe Clay and Bencliff Grit 
brs. The Preston Grit, despite comprising one massive bed, 
into two distinct parts; a lower, soft, argillaceous fine-

d sand and an upper medium-grained, shelly, calcareous 
Dne. 
Nothe Clay Member consists of a grey mudstone with 

>eds of limestone (Coe, 1995). The macrofauna is abun-
vith bivalves, brachiopods, gastropods and echinoderm 
;nts all being recorded. The Bencliff Grit Member is, 
ling to Allen & Underbill (1989), composed of an 
>lithic sandstone and mudstone facies, with the 
one forming 85-90% of the Member. Various interpreta-
fthe unusual bedforms have been made (Allen & Underbill, 
Coe, 1992; Oliver, 1998), with storm dominated shorefcce 
the generally accepted interpretation of the environment, 
two formations have been selected for a this study of the 
niferal distribution within a sequence stratigtaphical frame-
Thls can be correlated (Henderson & Hart, 2000) with the 
sions in North Dorset that have recendy been described 
ndetson (1998). 

lODOLOGV 

' this investigation dose-sampling of the succession, with 
ample located against an accurate sedimentological log 
I Identified lithostratigraphic units, was undertaken. Sam-
'cre taken from freshly exposed rock surftices from which 
;ns of weadiering have been removed. Sample locations are 
wed to the best of our ability after samples were collected. 
les are split in the laboratory and a reserve sub-sample 
ed for reference. 

In this preliminary investigation the Nothe Grit Forma-
"teston Grit Member, Nothe Clay Member and the Bencliff 
[ember were sampled as indicated in Figure 3. The samples 

were divided into a reserve sample, with the remained being 
processed using the solvent method described in Brasier (1980). 
Once washed on a 63Mm sieve the residue was dried at a low 
temperature and then stored prior to investigation. The samples 
were picked for foraminifera, although holothurian sclerites and 
ostracods have also been separated and identified. A minimum 
of 300 specimens of foraminifera were picked from the > 250/im 
grain size fraction, with the smaller size fractions only being 
inspected for smaller, largely juvenile, specimens. A selection of 
the smaller individuals was picked from each of the samples. 

Sampling is, to some extent, biased by the lithology, with the 
day-rich parts of the formation yielding diverse, well-preserved 
individuals. The full range of lithologies has, however, been 
collected. Diverse fiiunas are commonly associated with levels of 
maximum flooding although other factors, such as preservation, 
must also be taken into account. The diversity of the iauta. is 
plotted in Figure 3, wfaQe Table 1 indudes data on the distribution 
of key genera in the succession. 

DISTRIBUTION OF THE FAUNA 

Van Wagoner et al. (1988) suggest that there is a dose 
relationship between the MFS and the water depth in a basin. 
Many of the faunal changes are, therefore, related to the water 
depdi available to the fauna, with "deeper water" taxa being 
located adjacent to, or at, the MFS. This is patticulariy true in die 
case of planktonic taxa (see Emery & Myers, 1996, fig. 6.14) 
although betvtfaonic taxa are also sensitive to water depth changes, 
pardcularty diose on the shelf. 

Diveraty increases in the r ^ o n of the MFS can be due to at least 
three main controls atdiough others also ex i^ 

1. Inday^ich successions the sedimentationrate is usuallydow 
andatmitvc^mie of sedimentwillteptesentakuiger period of time 
(= more annual rqxoduciion cydes of die s&uiding cK^). In sand-
ridisucoessionsdeposidonis(piobab^£isterandtbelengthoftime 
rqsresented by the £aina is much less. 

2. In sand-ridi successions percolating groundwater can re
move some elements of die buna (eg., the aragraiitic taxa) througb 
dissolutionand, inextiemecases, nmchoftfaecalcareous assemblage 
may be destroyed 

3. In day and sand successions the diffident energy levels 
represented by die environments m^yhifliicnre die fauna, fa h i ^ 
enetgyenvitonrnwits, that ate typicalb^ characterised by the deposi-
tionafcoatsesands,themiciofaunacanbe pre&tentiallywinnowed. 

Distribution of Foraminiferal Genera in the Nothe Grit and Redcliff Formation 

plO: codes 

ibacubtes sp. 
phragmoldesep. 
laiiasp. 
amminasp. 
vtina sp. 
1na sp. 
\lina sp. 
saria sp. 
•laria sp. 
ulina sp. 
sulina blgoU Cushman 
lasp. 
jtninasp. 
ttulina sp. 
lonodosaria sp. 
sJa sp. 
'nulina sp. 
Una sp. 
eularia sp. 
.bnldium sp. 
Idellina sp. 
riina sp. 
lolina sp. 
rso. 
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? 1. Distribution of foraminiferal genera in the Notbe Grtt and Redcliff Formations. The sample locations are indicated 
rare 3. In one case. Nubeculina bigoU Cusbman. a species is used as this is the only species recorded within the genus in 
nvestigation. 
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Micropalaeontological investigations of the Oxford clay 

1. Outline geological map of the Dorset area showing the locations mentioned in the text and the area studied by 
rson (1998) and Henderson & Hart (2000). 

ire 3 shows the relationship between die percentage of 
ample retained ondie63Mmsieve and diediversity.^iliere 
s have a hi^er 'sand' content (e.g., R4, R7, etc) Acre is 
iraminiferal diversity while samples widi a low 'sand' 
tt O-c-. adayor day/sUt litfaolog]^ have hi^er foraminiferal 
:ty (e.g., 09,03, etc). The MFS of any siliddastic sequence 
illy to be found in die day-rich part of die succession and, 
suf&ce work, is usually identified byagamma-ray spike on 
ctric logs. Oliver (1998) identified die Nodie day Member 
ine of maximum flooding figure 2) as he was unable to 
y the precise 'sur&ce', although Rioult et al (1991) and 
992,1995) used the omission sui&ce above, and below, 
ston Grit Member as die MFS. Our data appear to indicate 
mples 0 3 or 04, near the top of the Nothe Clay Member, 
ent the MFS. The asymmetry of the diversity graph is 
;dve of a rapid shallowing into die oveiiyiiig Bendifif Grit 
er. This may indicate the presence of a type-1 sequence 
lary at that level. 
lie 1 shows the distribution of genera (and one spedes) in 
nples identified in Figure3.In the day-rich samples the MFS 
: seen located between 02 and 04. As well as being the 
es with higher diversity a number of key genera 
balmidium, Nubeculina, Vaginulina, Frondicularia, 
ina, Ungulina and Epsitomina) are restricted to this 
il. These are usually recognised as more open marine, 
ig^OpbtbalmidiumandNubeculina (witfaaporcellanous 
xucture) and Epistomina (with an aragonitic wall) prob-
idicateapreservadonal control; these taxa are rarely found 
dy iithologles. Opbtbalmidium is also found in the day-
art of the succession (Henderson, 1997; Henderson & 
2000). Table 1 also indicates that Haplopbragmoides is 
It in the day-rich part of the succession that may represent 
FS while Trocbammina, a dosely related taxon, is absent. 

There is no apparent reasoning fortius, as diispalaeoenviionmental 
relationship has not previously been described. 

IDENTIFICATION OF SEQUENCES 

The identification of sequence boundaries and systems tracts 
in the Dorset succession has been debated intensely in the years 
following the publication oftfae terminology (Van Wagoner e*a/., 
1988). Sequences are boimded by unconformities (or their 
corrdative conformities) and it follows from diis that sequence 
boundaries might be recognised by missing biozones and/or 
marked fades changes. Figure 2 shows the various interpreta
tions of die Upper Oxford day Formation and the Corallian 
Group succession eaqxised on die Dorset Coast between \Pyke 
Regis and Ringstead. The foraminiferal daU presented here 
(Figure 3; Table 1) indicate anMFS in the upper part of theNothe 
Clay Member. This does not support die findings of Rioult era/. 
(1991) orCoe (1992,1995). It falls within the "zone of maximum 
flooding(?)'' postulated by Oliver (1998) and lies just above that 
indicated by NeweU (2000). The data in Table 1 provide the basis 
for further work on the detailed distribution of the &ima. "iTiis 
will be done at the spedes level (unlike the generic data used in 
this account) to enable an accurate correlation with die work of 
Henderson (1998) in North Dorset. 

CONCLUSIONS 

TTiis preliminary study has described the distribution of 
foraminifera in the Nothe Grit and Reddifif Formations. Interpre
tation of this distribution has allowed a more accurate placing of 
a maximum flooding surface than has hitherto been the case. As 
this work progresses it is hoped that further information on the 
distribution and preservation of the fauna within the sequences 
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i on this part of the Dorset Coast and the coeval strata on 
mandy Coast of France. The models developed incorpo-
Draminifera and sequence stratigraphic interpretations 
nded to have applicability to othersilicidastic successions 
(zoic age. 
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; 2. Sequence straUgrapbical interpretattons of the 
Oyford Gay Formation and a part of the Corallian 
succession e^^Msed on tbe Dorset Coast between 
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ABSTRACT 

Unequivocal planktonic foraminifera have been discovered in 
Oxfordian strata from Dorset and Scotland. These assemblages 
are, in part, coeval with previously reported occurrences of 
planktonic taxa in the Oxfordian of Normandy and Seine 
Maritime (France). Three species are now reported from the 
United Kingdom for the first time: Globuligerina oxfordiana 

(Grigelis, 1958), Haeuslerina helvetojurassica (Haeusler, 1881) and 
Compactogeiina sp. cf. C stellapolaris (Grigelis, 1977). There 
appears to be a close relationship between the distribution of 
these planktonic taxa in the UK and a marked sea-level highstand. 

Terra Nova, 14, 205-209, 2002 

Introduction 

Over the last 50 years, our knowledge 
of early planktonic foraminifera has 
changed markedly. In a recent review 
Simmons el al. (1997) describe some 
16 species from the late Bajocian-
early Valanginian interval. Many of 
the taxa appear to have narrow ran
ges, but this is almost certainly a 
consequence of incomplete collection 
and/or reporting. The majority of the 
taxa were first described in Eastern 
Europe and parts of the Former 
Soviet Union (Grigelis, 1958, 1974, 
1975; Hofman, 1958; Morozova and 
Moskalenko, 1961; Pazdrowa, 1969; 
Fuchs, 1975; Grigelis el al., 1977; 
Grigelis and Gorbatchik, 1980; Kuz-
netsova and Gorbachik, 1980, 1985; 
ICasimova and Aliyeva, 1984; Gor
bachik, 1986; other references cited by 
Simmons et al., 1997). The first recor
ded taxon was Haeuslerina helve
tojurassica (Haeusler, 1881) from 
Switzerland, and this taxon is distinc
tive in previously being known only 
from the Oxfordian of the Tethyan 
Realm. 

Planktonic foraminifera of Jurassic 
age are therefore known from East
ern and Southern Europe, Lithuania 
and the Baltic Sea (Grigelis and 
Norling, 1999), Russia, and Eastern 
Canada (Ascoli, 1976), but have not 
previously been reported in the UK. 
This has always been surprising, 

*Correspondence: Melissa J. Oxford, 
Department of Geological Sciences, Univer
sity of Plymouth, Drake Circus, Plymouth 
PL4 8AA, UK. E-mail: moxford® 
plymouth.ac.uk 

especially after Globuligerina oxfordi
ana (Grigelis, 1958) was described 
from Oxfordian strata near Le Havre 
(Bignot and Guyader, 1966, 1971) 
and Villers-sur-Mer (Samson el al,, 
1992); the first records from NW 
Europe. 

Records from NW Europe 

Globuligerina oxfordiana is, almost 
certainly, one of the most widely 
recorded of the Jurassic species. Sam
son el al. (1992) describe G. oxfordi
ana from the Marnes de Villers of the 
"Vaches Noires' cliffs of Normandy 
(Figs 1 and 2) and this occurrence, 
coupled with the record of Bignot and 
Guyader (1966, 1971), are the first 
records of this taxon in this part of 
NW Europe. As a part of the present 
authors ' (MJO, M B H , MPW) work in 
Normandy, the succession between 
Villers-sur-Mer and Houlgate has 
been re-sampled and G. oxfordiana 
found in the uppermost part of the 
Marnes de Villers Formation, upper
most scarburgense Subzone, mariae 
Zone (Oxfordian). These specimens 
can be favourably compared with the 
illustrations of Bignot and Guyader 
(1971; figs 1—4) and Samson et al, 
(1992; plate IV). Specimens from Le 
Havre, presently in The Natural His
tory Museum, London, have also been 
examined. These specimens from a 
borehole near Le Havre are also from 
the mariae Zone of the Oxfordian 
(Fig. 2). As a result of this informa
tion it was decided to sample the 
mariae Zone of the Dorset Coast in 
an attempt to recover comparable 
specimens. 

UK records of pianktonic taxa 

The mariae Zone Furzedown Clays of 
the Oxfordian are poorly exposed on 
the Dorset Coast. The locality at Ham 
Cliff (east of Weymouth) is badly 
slipped although, on a recent visit, 
Mr Nigel Chapman identified an 
in-situ section of part of the mariae 
Zone that has now been sampled. T o 
the west of Weymouth, the Furze-
down Clays are poorly exposed on the 
shore of the Fleet, just west of Wyke 
Regis (see House, 1993; fig. 14). 
Samples collected from this locality 
comprise dark clays with joint/frac
ture surfaces covered in small selenite 
crystals (often a sign of slight decalci
fication of the sediment). The macro-
fauna is dominated by Gryphaea 
dilatata (J. Sowerby). In these samples 
a number of specimens of planktonic 
foraminifera were recorded (Fig. 3), 
including G, oxforcliana, H. helveloju-
rassica and Compactogerina sp. cf. 
C stellapolaris. Although identifiable 
(see original determinations of Haeus
ler, 1881; Grigelis, 1958; Grigelis 
et al., 1977), it must be noted that 
much of this material, as well as that 
from the Normandy Coast, is in the 
form of internal moulds (often 
preserved as pyrite). This mode of 
preservation does not retain many of 
the key morphological features (e.g. 
apertures, apertural lips, etc.). The 
assemblage is therefore as abundant 
and diverse as any recorded elsewhere 
in the world at this stratigraphical 
level. This assemblage is particularly 
significant in that it includes the cos
mopolitan G. oxfordiana, the typically 
Tethyan H. helvetojurassica and the 
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Fig. 1 Outcrop map of the Upper Jurassic of the UK and northern France (after 
Shipp, 1989). 1, Villers-sur-Mer; 2, Le Havre; 3, Dorset Coast; 4, Balintore; 5, Brora; 
6, Staffin. 

distinctly ornamented C. sp. cf. 
C. .stellapolaris. The ornamentation 
and thick test of C. sp. cf. C. stellapo-
lam suggests that it may be a homeo-
morph of the modem cool-water 
taxon Neoglohoquadrina pachyclerma 
(Ehrenberg). This species has previ
ously been recorded only from the 
Upper Jurassic of the Pechora Basin 
of Russia (Grigelis, in Grigelis et al., 
1977) and the new record from Dorset 
may prove quite significant in extend
ing both its stratigraphical range and 
palaeogeographical distribution. The 
occurrence of this Boreal taxon at this 
level in the UK succession may be 
coincident with a southwards migra
tion of 'northern' ammonites at this 
level (Dr Kevin Page, pers. comm.) 

Globuligerina oxfordiana has also 
been recorded (Gregory, 1995; pp. 
256-257, pi. 19, fig. 6) from Jurassic 
successions in Scotland (see Figs 1 
and 2) that have been dated precisely 
using ammonites. Gregory (1986, 

1995) has collected samples from the 
entire argillaceous marine Scottish 
Jurassic succession at a variety of 
localities (Staffin, Brora, Balintore, 
Helmsdale, etc.). Although planktonic 
specimens are very rare (only 1 or 2 
specimens per sample on average), 
they have been found from a much 
wider stratigraphical range than those 
from Dorset. All specimens are, in 
general, poorly preserved and appear 
to be associated with floods of com
mon/abundant Epislomina or abun
dant and diverse agglutinated taxa. 
Floods of Epistomina, and other 
benthonic taxa, appear to be associ
ated with maximum flooding surfaces 
in the Jurassic succession (see Greg
ory, 1995, and pers. comm.; Hender
son, 1997; Henderson and Hart, 2000; 
Oxford el al., 2000). In Scotland there 
are also floods of radiolaria in the 
succession, but these appear to be 
mutually exclusive, and the precise 
relationship with the planktonic fora-

miniferal distribution is unclear at 
the present time (Gregory, 1995, and 
pers. comm.). Planktonic foraminifera 
have not been recorded from the 
Scottish Callovian and the greater part 
of the Upper Oxfordian-Lower Kim-
meridgian succession of Staffin Bay, or 
any part of the Callovian-Oxfordian 
Brora succession, perhaps because the 
sediments were deposited in waters 
that were too shallow to support such 
a planktonic fauna. They are not 
found in the Oxfordian sediments of 
Balintore, the Lower Kimmeridgian of 
Eathie Haven, or the Kimmeridgian-
Portlandian of Helmsdale (data from 
Gregory, 1986, 1989, 1995, in prep, a, 
b). There appear to be no definitive 
records of planktonic taxa in the 
offshore Jurassic of the North Sea 
Basin, although there are records of 
rare, supposedly 'caved' taxa which 
may have been ignored as not possibly 
being in situ (F.J. Gregory, pers. obs.). 

Outcrop samples from the Black-
stone Band (within Bed 42; Cox and 
Gallois, 1981), collected by ASH from 
the Kimmeridge Clay Formation 
between Clavell's Hard and Rope 
Lake Head on the Dorset coast, have 
yielded rare, reasonably well-pre
served Glohuligerina spp. It is inter
esting to note that the level at which 
Glohuligerina is recorded coincides 
with a flood occurrence of the micr-
ocrinoid Saccocoma (Cox and Gallois, 
1981) which forms an important 
stratigraphic marker in eastern Eng
land (Gallois and Cox, 1976). This 
stratigraphical level is identified as a 
maximum flooding surface (Parting
ton et al., 1993; Tyson, 1996; Jacquin 
et al., 1998; Fig. 2; Taylor et al., 2000) 
and interpreted as the maximum 
sea-level highstand within the Kim
meridge Clay Formation. Although 
apparently very close to G. oxfordi
ana, these individuals would, if 
confirmed as that species, change the 
known range of that taxon which is 
normally recorded as Early Oxfordian 
(see Simmons et al., 1997; fig. 2.2). 

Summary 

The occurrence of G. oxfordiana, 
H. helvetojurassica and Compactogeri-
na sp. cf. C. slellapolaris in the 
Furzedown Clays of the Dorset Coast, 
together with the other records of 
planktonic foraminifera from Scot
land and Dorset, are documented for 

206 © 2002 Blackwell Science Ltd 



Sfaffin 

c 
2 
'> 

"a 
U 

Cardioceras 
tenuiserratum 

Cardioceras 
densiplicatum 

Cardioceras 
cordalum 

Quenstedtoceras 
mariae 

Quenstedtoceras 
(Lamberticeras) 

lamberti 

Peltoceras 
athleta 

C.blaloi 

C. tenuiserratum 

C. maltonense 

C. vertebrate 

C. cordatum 

C. costlcardia 

C. bukowski 

C. praecordatum 

C. scarburgense 

a.(L.) lamberti 
O.(EboraciCBras) 

henrici 
Kosmocaras 

(K.) spinosum 
K. (Lobokosmol<eras) 

proniae 

K.(L.j phaemum 

F.S. • 

Digg 
Siltstone 

QIashvIn 
Silt * 

Dunans 
Clay 
Mbr. 

Brora 

Known <• , Known <• 

. surface/ 

Ardassie 
Lmst. 

Brora 
Sst. 
Mbr. 

CQM 

FSiM 

FSaM 

BBCM 

Balintore 

ShandwIcV 
Silt 
Mbr. 

2 2 ^ 
PaRS 

PaRI 

Shandwick 
Clay 
Mbr. * 

C-a-R SM 

Dorset Villers-sur-iVler 

Q. 

O 
c « 
S 
o 
O 

c 
.o 
ra 

E 
£ 
o 
"S 

o 

W/A 
0 0 

— BG — 
NO 

PG 

NG 

clav 
RNB 

JCC 

* 
PC 

MOC 

LOG 

Le navre 

c 
CO 

O 
1 

AL 

OFV 

MV 

7 7 

y//, 

c 
ns 

' x 
O 

•a 

1 
Call. 

m 
COT 

CA 

AL 

OPV 

* 
MV 

MD 

BAF 
CQM 
FSIM u 
FSaM : 
BBCM! 
P-a-RS 
P-a-RI 5. 

Brora Arenaceous Fm. 
Clynelish Quarry Mbr. 
Fascally Slllstona Mbr. 
Fascally Sandstone Mbr. 
Brora Brick Clay Mbr. 
Port-an-RIgh Siltstone 
Port-an-Rlgri Ironstone 

SCM 
C-a-R 
FS 
0 0 
BG 
NC 
PG 

abbreviations 

Shandwick Clay Mbr. 
Cedhi-an-RIgh Sliale Mbr. 
Flodlgarry Shale 
Osmington Oolite 
Bencllfl Grit 
Nolhe Clay 
Preston Grit 

NQ 
RNB 
JCC 
FC 
MOC 
LOC 
AL 

Nothe Grit 
Red Nodule Beds 
Jordan Cliff Clays 
Furzedown Clays 
Middle Oxford Clay 
Lower Oxford Clay 
Argilles' L gregarea 

OFV 
MV 
CR 
COT 
CA 
MD 

Oolithe Ferruglneuse do Vlllers 
Marnes de Vlllers 
"Coral Rag" 
Calcaire Oollthlque de Trouvllle 
Calcaire d'Aubervllle 
Marnes de Dives 

Fig. 2 The uppermost Callovian to Middle Oxfordian succession, based on data in Cope et al. (1980), Bignot and Guyader (1966), Rioult et al. (1991) and Samson el al. (1992). 
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Fig. 3 Specimens (b-d) of planktonic foraminifera from the Furzedown Clays of the 
Oxford Clay Formation, north shore of the Fleet, south Dorset. Globuligerina 
oxfordiana (Grigelis, 1958) from (a) Villers-sur-Mer (Normandy) and (b) Dorset; (c) 
Haeuslerina helvetojurassica (Haeusler, 1881); (d) Compactogerina sp. cf. C. slellapo-
laris (Grigelis, in Grigelis et al., 1977). The maximum dimensions of illustrated taxa 
are (a) 250 (im; (b) 230 \xm; (c) 125 \iia; and (d) 170 (mi. It must be noted that, as 
much of the examined material is in the form of internal moulds, features such as the 
aperture, apertural lips, etc. (together with details of the wall structure), are not 
visible. It is for this reason that, until better preserved material is found, the specimens 
have not been illustrated in greater detail. 

the first time. These occurrences, cou
pled with those in Normandy and 
Seine Maritime, provide an interesting 
opportunity for further work on the 
evolution of the Jurassic planktonic 
foraminifera. As the sediments in 
which they are found are exceptionally 
well age-constrained using the 
ammonite faunas, these records will 
add further precision to the ranges of 
the Jurassic species (see Simmons 
et al., 1997, fig. 2.2). The mariae 
Zone, from which a large proportion 
of our material was recovered, is close 
to the maximum sea-level highstand 
recorded within Jurassic sequence 8 of 
Jacquin el al. (1998). Tracing the 
mariae Zone northwards to Cam
bridgeshire, M J O and M D S have 
recovered planktonic foraminifera 
comparable to those in Dorset at 
Warboys Quarry (Wright and Cox, 
2001, pp. 113-116, figs 3.6 and 3.7). 
The occurrence of Globuligerina in the 
Kimmeridge Clay is also at an high-
stand and the relationship of plank
tonic foraminifera to such sea-level 
changes during the Jurassic is cur
rently being investigated. 
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Appendix 

Taxonomic notes on the species described above 

Suborder G L O B I G E R I N I N A Delage & Herouard, 1896 
Superfamily FAVUSELLACEA Longoria 1974 emend. Banner & Desai, 
Genus Globuligerina (Bignot and Guyader, 1971) 

Globuligerina oxfordiana (Grigelis, 1958^ 
1958 Globigerina oxfordiana Grigelis, pp. 109-110, 

1988 

fig. l(aHc)-

i j ^ ^ M < - , ' 

-3; pi. 
fig. 1; 

1971 Globuligerina oxfordiana (Grigelis): Bignot & Guyader , p . 83, pi. 1, figs 1 
1997 Globuligerina oxfordiana (Grigelis): Simmons et al. pp . 26-27, pi. 1.1, 

Genus Haeuslerina Simmons et al. (1997) 
Haeuslerina helvetojurassica (Haeusler, 1881 j 
l&Sl Globigerina helvetojurassica Haeusler, p. 36, pi. 2, fig. 44a 
1997 Haeuslerina helvetojurassica Haeusler: Simmons et al. pp . 28-29, pi. 2.6, figs 1-8. 

Genus Compactogerina Simmons et al. (1997) 
Compactogerina stellapolaris (Grigelis, 1977) 
1977 Globuligerina stellapolaris Grigelis (in Grigelis et al.), p . 927, t.fig. l a - c . 
1997 Compactogerina stellapolaris (Grigelis): Simmons et al. p . 29, pi. 2.7, figs 1-

2, fig. 3. 
pi. 1.2, figs 1- 5; pi. 2.9, figs 1-15 

7;pl . 2.8, fig. 1. 
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planktonic foraminifera 
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Abstract: The planktonic foraminifera almost certainly evolved from benthonic ancestors 
in the early Jurassic. The meroplanktonic genus Conoglobigerina, known from south-
central and eastern Europe, appears in the Bajocian and is probably derived from the even 
more geographically restricted Praegubkinella. This genus was represented by a single 
taxon in the earliest Toarcian but diversified after the Toarcian anoxic event. At the same 
level Oberhauserella quadrilobata Fuchs, 1967 became more inflated and there is some evi
dence to suggest that the 'anoxic event' was the environmental perturbation that began the 
transition to a planktonic mode of life. In the Callovian-Oxfordian interval, the planktonic 
foraminifera are still restricted to a relatively limited area bounded by the North Atlantic 
Ocean, NW Europe and Eastern Europe and this remained the case even in the earliest 
Cretaceous. It was only in the Aptian-Albian that the palaeogeographical distribution 
changed dramatically, probably as a response to the elevated sea levels caused by the 
increased rate of ocean crust production which began in the Early Aptian. The principal 
diversification events in the Jurassic (Toarcian, Bajocian, Callovian-Oxfordian) also appear 
to be related to sea level highstands. 

The planktonic foraminifera are a distinctive 
and abundant part of the modem oceanic fauna. 
Together with the other planktonic groups 
(coccohthophorids, diatoms, radiolarians, dino-
flagellates, etc), they assist in the chemical/ 
nutrient cychng of the ocean system. While the 
oceanic plankton, in general, impact on the 
levels of atmospheric CO2 in the Mesozoic and 
Cenozoic, the contribution of the planktonic 
foraminifera is probably difficult to quantify 
although, as we will demonstrate, the develop
ment of the group was rather limited until the 
mid-Cretaceous. During the Mesozoic it is 
known that the planktonic foraminifera: 

o evolved from benthonic ancestors; 
• diversified; 
• expanded to attain an almost global distri

bution; 
• suffered during several major 'events' 

(including possible bolide impacts and 
methane escapes from gas hydrates); and 

• were reduced to two or three species by the 
terminal Cretaceous 'events' or 'event' 
(bolide impact(s), sea-level change, tem
perature rise/fall, volcanic fall-out, etc.). 

Most micropalaeontologists (e.g. Caron 1983; 

Hart 1999; Premoli Silva & Sliter 1999) have 
treated the planktonic foraminifera as though 
they were a single evolutionary plexus, although 
those working on DNA sequencing of the 
modern fauna have questioned this basic 
assumption (e.g. Darling et at. 1996, \999a,b) 
and suggested that the evolution of the plank
tonic foraminifera may be polyphyletic. It is 
certainly true that one cannot claim that the 
Jurassic record of the group (Fig.l) provides 
anything other than a disjointed set of relation
ships. While preservation and/or collection 
failure is probably a contributing factor, there 
are several problems: 

o the Praeguhkinelia - Conoglobigerina link; 
• the disjointed distribution of Conoglobige

rina; and 
• the origins of Globuligerina and other taxa 

in the mid- to late Jurassic. 

Higher, in the Cretaceous succession, we have 
little evidence for the origin of the Praehed-
bergella lineage or the heterohelicids (Fig. 2) 
and it is clear that the new evidence from the 
work on DNA must be taken into account and a 
polyphyletic history considered alongside other 
suggestions. 

From: CRAME, J. A. & OWEN, A. W. (eds) 2002. Palaeobiogeography and Biodiversity Change: the Ordovlclan 
and Mesozoic-Cenozolc Radiations. Geological Society, London, Special Publications, 194,115-125. 
0305-8719/02/$!5.00 © The Geological Society of London 2002. 
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Bathonian 167Ma 

Rg. 3. Distribution of Conoglobigerina spp. in the Middle Jurassic. 

Origin of the planktonic foraminifera 

In their review of this subject, Simmons et al. 
(1997) dismiss the report of Pliensbachian 
planktonic specimens (Gorog 1994) as probable 
contamination but, more significantly, reject all 
the taxa described as planktonic foraminifera by 
Fuchs (1967, 1971, 1973, 1975, 1977). These 
poorly preserved specimens have been exam
ined by F. Rogl (Natural History Museum, 
Vienna) and A. Gorog (Budapest, Hungary), 
both of whom indicate that they are not plank
tonic taxa. Some of this material is currently on 
loan to The Natural History Museum (London) 
and it is clear to the senior author that they are 
benthonic taxa with flattened umbilical sides 
and a complete lack of the inflated chambers 
normally associated with a planktonic mode of 
life. 

If the Triassic and early Jurassic records of 
planklonic foraminifera are rejected then the 
origins of the group must be pre-Bajocian (Fig. 1) 
as the species of Conoglobigerina recorded from 
the Bajocian are clearly meroplanktonic (Wernli 
& Gorog 1999,2000). In the Toarcian sediments 
of the Creux de Tours section (Teysachaux, 
Fribourg, Switzerland) Wernli (1995) has 
described a fauna of Praegubkinella spp. that is 
associated with Oberhauserella quadrilobata, 
one of the original 'planktonic' taxa of Fuchs 
(1967). Wernli (1995) demonstrates the possible 
evolution from Praegubkinella racemosa Wernli 
into Conoglobigerina (Fig.l), thereby extending 

the range of the ancestral forms into the 
Toarcian. The section of the 'Creux de Tours' has 
been described by several authors (e.g. Mettraux 
et al. 1986, 1989) and the recent commentary 
(Weidmann 1993) on the Swiss Geological Map 
No.1244, Chatel-St-Denis (Weidmann et al. 
1993) provides much new information. The 
famous section (coordinates 565.07/154.30 on 
Swiss Geological Map No.1244) was improved in 
1970 when a new forestry road was constructed. 
Unfortunately many of the new sections are now 
degraded but one face still exists on a bend where 
the road crosses the stream. Previous workers 
have identified the elegantulum and exaratum 
Subzones of the falciferum Zone, placing the 
section within the Toarcian 'anoxic event' 
(Mettraux et al. 1986, 1989, and references 
therein). The senior author has found specimens 
of Harpoceras and Dactylioceras in this part of 
the section, together with examples of Posidonia 
associated with hard, organic-rich mudstones. M. 
Mettraux provided the samples for the investi
gation by Wernli (1995), the foraminifera coming 
from a sample of the dark mudstones from 
stratigraphically above the 'anoxic event'. The 
Praegubkinella/Oberhauserella assemblage of 
Wemli (1995) is, therefore, of early Toarcian age. 

Work on the Toarcian foraminifera of the UK 
and NW Europe (Hylton 2000; Hylton & Hart 
2000) has shown that, associated with the 
Toarcian anoxic event, there is a 'bloom' of small 
forms of O. quadrilobata which possess slightly 
more inflated chambers than the typical forms 
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Fig. 5. Distribution of planktonic foraminifera in the Oxfordian. 

described by Fuchs (1967) and which have been 
seen by the senior author in The Natural History 
Museum. This species appears to be a disaster or 
opportunist taxon, according to the definition of 
Harries et al. (1996). These more inflated forms 
of O. quadrilobata are found in the UK, 
Germany and France (Hylton 2000), while the 
associated fauna of Praegubkinella spp. is only 

known from Switzerland (Wemli 1995) at the 
present time. 

Our more inflated specimens of O. quadrilo
bata are probably still benthonic forms as the 
apertural side remains relatively flat. It is clear, 
however, that chamber inflation has occurred 
and it is impossible to deny the possibility that, 
in mature specimens, some degree of 'floating' 

Fig. 6. Distribution of planktonic foraminiiera in the Valanginian. 
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Favusella washitensis 
99Ma 

Fig. 7. Distribution of planktonic foraminifera in the mid- to late Albian. 

could have taken place. In Wernli's (1995) 
assemblage of Praegubkinella there are some 
forms with relatively flat apertural faces while P. 
racemosa appears much more inflated. Again 
there is the possibility that mature individuals 
may have been 'planktonic'. The time gap 
between the ranges of P. racemosa and the 
earliest true Conoglobigerina is significant and 
this is one stratigraphic interval that requires 
urgent investigation. 

The Conoglobigerina fauna is best described 
from Hungary (Wernli & Gorog 1999, 2000), 
Morocco (Wernli 1987), the former Soviet 
Union (Morozova & Moskalenko 1961; 
Kuznetsova & Gorbatchik 1980; Kasimova & 
Aliyeva 1984) and Greece (Baumgartner 1985). 
In the company of A. Gorog and J. Svabo, the 
senior author has visited the Somhegy (Som 
Hill) section west of Zirc (Hungary). Here 
'ammonitico rosso' carbonates are found in 
fissures within the local succession. Samples 
collected from the Bajocian/Bathonian sedi
ments have confirmed the presence of abundant 
Conoglobigerina, comprising both thick-walled 
and thin-walled forms. Whether this is just a 
specific difference or whether this variation in 
wall thickness indicates genuine dimorphism 
requires further investigation. The external 
morphology of the thick-walled forms (Wernh & 
Gorog 2000) is such that they appear almost 
identical to the thin-walled forms and it seems 
unlikely, therefore, that they are simply ben-
thonic/planktonic dimorphic pairs. Species of 

Conoglobigerina are known from many loca
tions in central-southern and eastern Europe 
and this certainly marks a major expansion of 
the planktonic fauna within the Middle Jurassic 
(Fig. 3). If Wernli (1995) was correct in his 
derivation of Conoglobigerina from Praegub
kinella racemosa, then an origin from the 
Praegubkinella assemblages of the Alpine area 
would appear to be quite plausible in palaeo-
geographical terms. 

Evolution of the Mesozoic planktonic 
foraminifera 

Figure 1 shows the stratigraphical distribution of 
the early planktonic foraminifera and while, in 
many cases, the evolutionary lineages/linkages 
are unknown it is clear that both specific and 
generic diversity remained low throughout the 
Jurassic and early Cretaceous. Some of the 
lineages are quite disjointedvand'it is-apparent 
that a considerable amount of research remains 
to be done on these faunas. One of the principal 
problems, however, is the question of preser
vation. The early planktonic foraminifera are all 
thought to have been aragonitic, very much like 
the Reinholdella, Oberhauserella and Epistom-
ina faunas with which Jurassic taxa are often 
associated in faunal assemblages. Aragonitic 
foraminifera are best preserved in dense clay 
lithologies and are rarely well preserved in 
porous sandstones and siltstones or some 
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carbonate-rich environments. The earliest 
Globigerinina have been placed in the Super-
family Favusellacea (Simmons et al. 1997), a 
group which continues through until the mid-
Cretaceous (Fig. 2). In the Albian and Ceno-
manian the Favusella spp. recorded in the UK 
(Carter & Hart 1977) do not appear to be 
aragonitic, being found well-preserved in the 
chalk facies (in which few other aragonitic fossils 
are recorded in such a good state of preser
vation). At the present time there is little 
evidence as to when the transition from arago
nitic to calcitic tests is to be found. The lack of 
information on the faunas of the Tithonian to 
Valanginian interval may be critical in this 
respect. 

The major evolutionary changes in the 
Toarcian and Bajocian are potentially related to 
sea-level highstands (Haq et al. 1988) and appear 
coincident with intervals of marked ammonite 
diversification (O'Dogherty et al. 2000). If one 
plots the distribution of the fauna through the 
Jurassic and Cretaceous (Fig. 2) it is clear that 
the major change in evolutionary rate occurs in 
the Aptian (Hart 1999; PremoU Silva & Sliter 
1999). Both specific and generic diversity (Fig. 4) 
also increase at this level and this change 
appears to be coincident with a major increase in 
ocean crust production (Larson 1991a,6; Larson 
et al. 1993) 

In the earliest Oxfordian the planktonic 
foraminifera (mainly Globuligerina oxfordiana 
(Grigelis 1958) and G. bathoniana (Pazdrowa 
1969)) expanded their distribution (Fig. 5) and 
are reported from much of Europe, including 
the UK (Oxford et al. in press) and the Grand 
Banks (Ascoli 1976). The work of Oxford et al. 
(in press) in Dorset has demonstrated the 
presence of G. oxfordiana, Haeuslerina helveto-
jurassica (Haeusler, 1881) and Compactogerina 
stellapolaris (Grigelis in Grigelis et al. 1977) in 
the Furzedown Clays {Q. mariae Zone) of the 
Oxfordian. This is a comparable level to the 
occurrence of G. oxfordiana in the Mames de 
Villers of the Vaches Noires cliffs of Normandy 
and subsurface material from near Le Havre 
(Bignot & Guyader 1966, 1971; Samson et al: 
1992). All these occurrences are coincident with 
the Q. mariae Zone highstand of the early 
Oxfordian (Haq et al. 1988; Jacquin et al. 1998) 
and appear to represent a distinctive pulse of 
migration into the area of NW Europe. Infor
mation from the latest Jurassic and earliest 
Cretaceous is rather Umited and the distribution 
and evolution of the planktonic foraminifera 
are poorly known. Sea levels during this time 
interval are, generally, low and many of the 
shelf areas covered during the Oxfordian and 

Kimmeridgian are either non-marine or exposed 
land. Even in the Valanginian the distribution of 
the planktonic foraminifera (Fig. 6) is essentially 
that seen in the earliest Oxfordian. In the 
Barremian stage, however, diversification 
begins (Figs 2 and 4) and continues through the 
Aptian and Albian. By the latest Albian (Fig. 7) 
the near-global distribution of the planktonic 
foraminifera is established and continues 
through until the end-Maastrichtian extinction 
event. 

It is during the latest Albian that the distinc
tive 'keeled' morphotypes appear as, prior to 
that time, only 'hedbergellid' taxa are known. 
Within the early Albian a number of lineages 
appear (Ticinella, Globigerinelloides, etc.) that 
indicate a diversification of the hedbergellid 
stock, but it is difficult to assess if these taxa were 
depth-stratified in the same way as the younger 
faunas (Hart 1999). The single-keeled morpho
types appear in the latest Albian, possibly 
associated with the sea-level changes in the S. 
dispar Zone. The twin-keeled morphotypes 
appear in the latest Cenomanian which, again, 
marks a time of significant sea-level rise. 
Throughout the mid- to late Cretaceous the 
succession is punctuated by a number of 
'events' beginning with the Faroni Event in the 
Barremian. All of these events (Selli, Faquier, 
Amadeus, BonnareUi, etc.) are associated with 
black shales and/or mudstones and have often 
been described as 'anoxic events'. Their effects 
on the planktonic foraminifera have been 
documented by a wide range of authors (e.g. 
Premoh Silva & Sliter 1999) and while the 
changes at some of these levels are significant, 
they cannot be described as controlling the 
evolution of the planktonic foraminifera (Hart 
1999; PremoH Silva & Sliter 1999). Hart (1999) 
showed that there were significant changes to 
the fauna at the level of the BonnareUi event 
(latest Cenomanian) with a number of extinc
tions and first appearances, but other events 
(e.g. the SeUi event in the earliest Aptian) record 
few, if any, changes. 

The palaeolatitudinal distribution of the 
Cretaceous planktOnieforamiiiifera has recently 
been documented by Hart (2000) and Hudson 
(2000). This work continues and a series of maps 
for the Jurassic and Cretaceous is currently in 
production. The changes recorded at any of the 
events during the Cretaceous cannot, however, 
be compared to that at the end of the Cretaceous 
(Hart 1999, fig. 5). At the end of the Maastricht-
ian the fauna was decimated and only two or 
three survivors provided the foundation for the 
Cenozoic fauna. Only the tiny, hedgergellid taxa 
survived and the evolutionary clock is returned 



MESOZOIC PLANKTONIC FORAMINIFERA 123 

almost to Oxfordian levels. The diversification 
of the Cenozoic fauna following the extinction 
event is, however, much more rapid than that 
seen in the Mesozoic. 

Summary 

The origins of the planktonic foraminifera can 
be traced back to the Toarcian, although it is 
only in the Bathonian that meroplanktonic taxa 
appear. The inflated O. quadrilobata and 
Praegubkinella spp. present in Toarcian strata 
are clearly not fully planktonic and may have 
been benthonic throughout much of their life 
cycle. The environmental disruption caused by 
the early Toarcian sea-level rise and associated 
'anoxic event' are potential triggers for this 
change in lifestyle as may have been the massive 
release of methane-derived carbon from sub-sea 
gas hydrates in the falciferum Zone of the early 
Toarcian (Hesselbo et al. 2000). 

These early faunas, including the Conoglo-
bigerina spp. assemblage in the Bathonian, are 
all limited to the northern side of Tethys (Figs 3, 
5 and 6). With such a limited fauna in the 
restricted areas shown in these maps it is 
unlikely that many diversification opportunities 
were available, especially in the latest Jurassic 
and earliest Cretaceous interval which was 
characterized by reduced sea levels. Once ocean 
floor production accelerated during the latest 
Barremian and earliest Aptian and, as a result, 
sea levels rose globally, the planktonic 
foraminifera were able to use the newly formed 
ocean basins (and expanded lengths of conti
nental margin) to attain a near-global distri
bution by the mid-Cretaceous (Fig. 7). The 
continental fragmentation during the Aptian 
and Albian allowed the hedbergeUid faunas to 
expand rapidly and as the various ocean basins 
became connected, the stratification of the water 
column generated the opportunity for the 
evolution of a depth-stratified planktonic fauna 
by the mid- to late Albian (see Hart 2000). 
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P lanktic Foraminifera are an extremely abundant, 
important and successfbl group of marine protists. 
They are particularly useful in reconstructing past 
environments and for biostratigraphic dating. De

spite their importance, the origin of the group is uncertain. 
Previous work has suggested that they evolved from a benthic 
ancestor during the Triassic or, perhaps, the Mifl-Jurassic 
(?Bajociaii), but a reason for their origination has remained 
unclear. Here, we present evidence from the Toarcian (early 

Jurassic) of NW Europe that the origin of the plaaktk 
Foraminifera may have been one of the results of the early 
Toarcian oceanic anoxic event. This event appears to have 
been associated with a massive dissociation of gas hydrates 
and other, perhaps related, water chemistry changes. 

Keywords: Pianktic Fbiaminifera, Toaician, gas hydrates, mass extinc
tions. 

In a recent review of the earliest planktic Foraminifera (Globiger-
iniiia) Sinonons et al. (1997) report that the origins of the group 
are ' . . . still shrouded in imcertainty'. The debate rests with the 
probable evolution of a benthic ancestor into a partially planktic 
(meroplanktonic) form and, eventually, a completely planktic 
(holoplanktonic) taxon. Simmons et al. (1997) indicate that, in 
their opinion, the oldest known planktic species (though not fiilly 
holoplanktonic) are Conoglobigerina avariformis Kasimova, C. 
balakhmatovae (Morozova), C. dagestanica Morozova and (?) C. 
avarica Morozova from the Bajocian of eastern Europe (central 
and northern Tethys). All of these species appear to be aragoni-
tic, microperforate. pseudomuricate, with an umbilical aperture 
and chambers that are sub-globular in shape. They have been 
placed in the Super&mily Favusellacea. 

In the search for the origins of these planktic taxa it is clear 
that we are looking for a benthic species (or group) with sub-
globular aragonitic chambers and a series of morphological 
changes that is almost certainly pre-Bajocian in age. This has 
previously been postulated by Hart (1980, fig. 1), Caron (1983, 
fig. 1) and other workers cited by Simmons et al. (1997). There 
should also be an identifiable environmental perturbation that 
might have stimulated the change from a benthic to a planktic 
mode of life. Our work on the Toarcian foraminiferal assem
blages of NW Europe (Hylton 2000; Hylton & Hart 2000) and, 
in particular, the environmental perturbations associated with the 
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arly Toarcian extinction event (Raup & Sepkoski 1984; 
:pkoski & Raup 1986) suggests that some of the aragonitic taxa 
lund in these sediments may provide both the ancestors of the 
anktic Foraminifera and an association with an appropriate 
vel of environmental disruption. 

he Eariy Toarcian extinction event The Early Toarcian 
:eanic anoxic event (Hallam 1986; Jenkyns 1988; Little & 
enton 1995; Little 1996; Jenkyns & Clayton 1997; Hallam & 
^ignall 1999; Harries & Little 1999; Hesselbo et al. 2000) is 
isociated with a number of chemical and biological signals 
•eluding, in some parts of the world, exceptionally high rates of 
rganic carbon burial. Recently Hesselbo et al. (2000) have 
ggested that a major release of methane-derived carbon from 

ib-sea gas hydrates may have initiated/catised this perturbation. 
heir evidence lies in the presence of a relatively short-lived 
.'80 ka) negative 6 " C excursion immediately before the widely 
icorded positive excursion in \he falciferum ammonite Zone of 
le Early Toarcian. In our investigation (Hylton 2000; Hylton & 
lart 2000) of the Early Toarcian extinction event we have 
ampled successions in the UK (Port Mulgrave and Ravenscar in 
'orkshire; Tilton and Hohvell in Leicestershire; Eype's Mouth in 
)orset), Germany (Dottemhausen), Switzerland (Teysachaux) 
nd France (True de Balduc). The principal extinction event 
ivolving invertebrate taxa (including Foraminifera) in SW 
jermany (Riegraf 1985) occurs towards the top of the semicela-
um Subzone, which is coincident with the most organic-rich part 
if the Posidonienschiefer. This is an equivalent facies to the Jet 
(ock of the Whitby Mudstone Formation jmd the reported 
event' in the Creux de Tours section (Mettraux et al. 1986; 
klettraux et al. 1989; Wemli 1995) in Switzerland. The distribu-
ion of the Foraminifera within these successions, together with 
)alaeoecological and sedimentological indicators has allowed the 
•onstruction of an environmental model (Fig. 1). The palaeo-
iepths inferred from the foraminiferal assemblages appear to 
igree with the eustatic changes (Haq et al. 1988; Hallam & 
^'ignall 1999) postulated for this interval. At the base of the 
ixartum Subzone {falciferum Zone) at Tilton, there is a 'flood' of 
imall (c. 100 |im) trochospiral Foraminifera. These have been 
iescribed previously (Horton & Coleman 1977) from the falcifer-
4m Zone of the Upper Lias at Empingham (East Midlands, UK) 
and appear to be closely related to the Reinholdella fauna 
ecorded from the tenuicostatum Zone of the Yorkshire Coast. 

The small trochospiral Foraminifera recovered from above the 
Event are identified as Oberhatiserella quadrilobata Fuchs 1967 
ind. given the relatively low abundance of this taxon before the 
Toarcian event and their 'bloom' once the environmental condi
tions maikedly decline, this taxon can be described as a disaster 
or opportunist species in the terminology of Harries et al. 
(1996). The species is an important component of the faima after 
the rapid sea-level change in the exartum Subzone, just before 
the onset of the very poorly oxygenated conditions. This is the 
same interval shown by Hesselbo et al. (2000, fig. 3) as the 
location of their negative (5''C excursion; the gas hydrate event. 

In an analysis of Foraminifera from the falciferum Zone in the 
Prealpes Medianes (Fribourg, Switzerland) Wemh (1995) has 
described a faima that includes moderately high-spired Oherhau-
serella quadrilohata Fuchs 1967 (a normally low trochospiial 
form) together with closely related species of Praegubkinella (/? 
turgescens Fuchs 1967; P.fuchsi Wemli 1995; P. racemosa Wemli 
1995). The species of Praeguhkinella range in morphology from 
those with a medium trochospire to those with a very conical, 
high trochospire {P. turgescens). In a detailed discussion Wemli 
(1995) suggests how P racemosa may have evolved (Fig. 2) into 

the typical morphology of the Mid-Jurassic genus Conoglohiger-
ina. This would, thereby, provide the link to the well-known 
Bajocian and Bathonian faimas of Eastern Europe (central and 
northern Tethys) described by Wemli & Gorog (1999). 

We suggest that the origin of the planktic Foraminifera is, 
therefore, one of the probable results of the Early Toaician 
anoxic event and the Early Toarcian oceanic perturbation that 
may have been caused by the sudden dissociation of the sub-sea 
gas hydrates (Hesselbo et al. 2000). At the same stratigraphic 
level there are major changes (Jenkyns et al. 2002) in oceanic 
records of d'^C, 5 '*0 and *^Sr/**Sr ratios. The ancestral stock of 
the planktic Foraminifera is, therefore, identified as Oberhauser-

Fig. 2. Origin and possible evolution of the Jurassic planktic 
Foraminifera; based on Simmons et al. (1997) and other papers in the 
reference list together with the authors' own interpretations (Hart et al. 
2002). 
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lla quadrilobata s.s. ; an aragonitic species that developed from 

1 plexus of related fonns in the Triassic. 

Evidence from molecular evolution. Recent work on the 

nolecular evolution (Darling et al. 1996; Darling et al. 1999a , 

i) of the planktic Foraminifera has cast doubts on the simplicity 

)f the evolutionary process, suggesting that the group may have 

)een polyphyletic. This, it is suggested, might have involved 

;everal originations of planktic taxa from benthic ancestors, 

ilthough this is by no means accepted by all those working on 

3NA sequencing. If Oberhattserella quadrilobata (and related 

axa) were to be accepted as the ancestral stock of the Jurassic 

axa then it is uncertain as to whether other benthic genera gave 

ise to subsequent lineages of Cretaceous and Cenozoic planktic 

axa. In the analysis of Darling et al. (19995) it is reported that 

he modem taxon Neogloboquadrina dutertri plots well away 

from other planktic taxa and appears, on this evidence, to belong 

to a separate lineage. In the Jurassic, Compactogerina, which 

appears to be a Jurassic homeomorph of Neogloboquadrina, is 

unlike any other Jurassic taxon and appears abruptly (Fig. 2) in 

the Oxfordian (Oxford et al. 2002). This, following the current 

views on molecular evolution, may have been a separate 

benthic-planktic transition in Boreal latitudes; Compactogerina 

is currently only known from Northern Russia and the south of 

the UK. The evolutionary relationships of this taxon will only 

become clear when more faunas have been described. 

Summary. In answer to the questions posed above, Oberhauser-

ella quadrilobata (and potential derivatives such as Praegubki-

nella) are benthic or quasi-planktic foraminifers with aragonitic 

tests. The perturbation created by the Early Toarcian gas hydrate 

surge, and the ensuing oceanic anoxic event in NW Eiu"ope (see 

also Hart et al. 2002), is thought to have been the probable cause 

of the transition to a mero-planktonic mode of life. This 

triggered the evolution (Wemli 1995) of the more typically 

planktic genus Conoglobigerina. 
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Abstract The use of foraminifera in the characterisation of se

quences (systems tracts, maximum flooding surfaces, etc.) has developed 

over the last decade. Much of this work has been based in the Ccnozoic 

successions of the Gulf of Mexico, although there is a growing appli

cation of such data in the Middle East and the North Sea Basin. The 

easiest surface to characterise has been the maximum flooding surface 

with its high diversity and high(er) abundance faunas; the characterisa

tion of individual systems tracts has been less successful. 

Using the well-known raid-Upper Jurassic successions of the 

Dorset coastal sections, we have investigated a number of high resolu

tion (para)sequences for their foraminiferal content. Using dau of fo

raminif eral diversity and standing crops from a range of modem sub

strates we have investigated the potential faunas available after depo

sition, taphonomy, compaction, groundwater dissolution and modern 

weathering. By understanding the processes involved we have identified 

the key foraminiferal features of typical mid-Upper Jurassic sequences 

and indicated how this work may help in the correlation of successions 

in N o r t h Dorset and Normandy. 

Riassunto. L'uso dei foraminiferi nella carattcrizzazione delle se-

quenzc (system tracts, superfici di massimo allagamcnto, ecc.) si e svi-

luppato durante I'ultimo dccennio. La maggior parte di questo lavoro 

c stata basata sulle successioni cenozoiche del Golfo del Messico, seb-

bene ci sia una crescente applicazione di tali dati nei bacini del Medio 

Oriente e del Mare del Nord . La superficic piu facile da caratterizza-

re e stata la superficie di massimo allagamento, con alta diversita e alte 

abbondanze faunistiche; la caratterizzazione dei singoli systems tracts 

ha avuto meno succcsso. 

Usando le ben note successioni costiere del Dorset della parte 

centrale del Giurassico superiore si e indagato il contenuto in foramini-

feri di uh certo numero di (para)sequenze ad alta risoluzione. Usando i 

dati suUa diversita e produttivita fissa dei foraminiferi da una gamma di 

substrati modemi, si sono investigate le faune potenziali disponibili do-

po la deposizione, la taf onomia, la compattazione, la dissoluzione delle 

acque circolanti c I'alterazione meteorica moderna. Capendo i processi 

coinvolti, e stato possibile identificare le chiavi caratteristiche dei fora

miniferi delle tipiche sequenze della parte centrale del Giurassico supe

riore, indicando come questo lavoro pud essere d'aiuto ncUa correlazione 

delle successioni nei Dorset settentrionale ed in Normandia. 

Introduction 

Sequence stratigraphy developed in the 1970s and 
was based, initially, on the interpretation of seismic pro
files. Vail et al. (1977) expanded these initial concepts 
to include both borehole and outcrop data and closely 
related the resulting stratigraphy to sea level changes. 
Short-term fluctuations in sea level were shown to gen
erate "sequences" or "genetically related strata bound
ed by unconformities or their correlative conformities" 
(Van Wagoner et al. 1988, p. 39). Sequences soon de
veloped a nomenclature, with the three main sub-di
visions being represented (in ascending order) by the 
Lowstand Systems Tract (LST), Transgressive Systems 
Tract (TST) and Highstand Systems Tract (HST). The 
Maximum Flooding Surface (MFS) is an important part 
of sequence stratigraphic interpretation and separates the 
TST and the HST. In some successions (see below) the 
'surface' cannot be located precisely and we have adopted 
the concept of a Zone of Maximum Flooding following 
the work of Montanez & Osleger (1993), Strasser et al. 
(1994, 1999) and Oliver (1998). This "Exxon Model" 
of a sequence must not be confused with the "Galloway 
Model", which uses the MFS as they key to sequence 
identification (Galloway 1989a,b; Reading 1996, pp.25-
26, fig.2.10), and the "Einsele Model" which is based on 
the recognition of transgressive/regressive cycles (Ein
sele & Bayer 1991). 
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proximal 

previous sequence (conl.) 

Fig. 1 - The "Exxon model ' of a se

quence (based on Emery & My

ers 1996, fig.6.14a) and the hypo

thetical distribution of benthonic 

and planktonic foraminifera. The 

planktonic foraminifera are most 

abundant (and diverse) in the re

gion of the MPS with deeper-wa

ter morphotypes being found in 

more distal regions while only 

surface-water morphotypes are 

to be found in more proximal 

environments. The abimdance 

(and diversity) of benthonic 

foraminifera mirrors that of the 

pianktonic fauna, although ben

thonic taxa are found in a much 

wider range of proximal environ

ments. SB = Sequence Bound

ary; LST = Lowsiand Systems 

Tract; TST = Transgressive 

Systems Tract; MPS = Maxi

mum Flooding Surface; HST = 

Highstand Systems Tract. 

The "Exxon Model" is used by Emery & Myers (1996) 
in their description of how palaeontology and biostratigra-
phy contribute to sequence stratigraphy (Fig. 1). Emery & 
Myers (op. cit., pp. 101,104, fig.6.14) describe how the MFS 
can be identified by the abundance and diversity of ben
thonic foraminifera. It also coincides with the most land
ward distribution of diverse, open marine, plankton. This 
approach has been used effectively in younger rocks, most 
notably in the Cenozoic of the Gulf of Mexico (Shaffer 
1987,1990; Armentrout 1987,1991; Armentrout & Clement 
1990; Armentrout et al. 1990, 1999; Pacht et al. 1990; Vail 
& Wornardt 1990; Van der Zwan & Brugman 1999). More 
recently, a number of authors have extended this approach 
to the interpretation of Mesozoic successions (Olsson 1988; 
Cubaynes et al. 1990; Simmons et al. 1991; Powell 1992; Han 
1997, 2000; Henderson 1997; Henderson & Hart 2000; Ox
ford et ai. 2000; Sharland et al. 2001) with varying degrees 
of success. In their work on the Jurassic to Lower Creta
ceous successions of the North Sea Basin, Partington et al. 
(1993) used the distinctive assemblages associated with the 
maximum flooding events to generate a biostratigraphical 
framework for correlation. One of the problems associated 
with more ancient successions is the loss of diagnostic taxa 
or even complete faunas as a result of taphonomy, burial 
and other diagenetic processes. In this account we report 
on our research into the preservation and identification of 
microfaunas within Jurassic sequences. 

Mid-Upper Jurassic of the Dorset Coast 

The dominantly siliciclastic succession of the Dor
set Coast has been the subject of a number of investiga
tions many of which have directly, or indirectly, related 

the sedimentary succession to changes in sea level (Arkell 
1933,1956; Wilson 1968a,b; Talbot 1973,1974; Brookfield 
1973a,b, 1978; Fiirsich 1975; Sun 1989, 1990a,b; Rioult 
et al. 1991; Coe 1992, 1995; Oliver 1998; Newell 2000; 
Henderson & Hart 2000; Oxford et al. 2000). 

In many of these interpretations (Fig. 2) of the se
quence stratigraphy there are different, if not conflicting, 
conclusions especially between Wilson (1991), Rioult et al. 
(1991), Coe (1992,1995), Ohver (1998) andNewell (2000). 
In attempting to resolve some of these differences, and to 
explore the use of foraminifera in the recognition of Jurassic 
sequences, Oxford et al. (2000) used a part of the succes
sion for a pilot investigation. The Nothe Grit Formation 
and the Redcliff Formation are well exposed on the Dorset 
Coast between Weymouth and Ringstead (Fig. 3). In this 
succession 96 samples were collected and prepared using the 
solvent method of Brasier (1980). All samples were washed 
on a 63/i.m sieve, dried gently and stored ready for investi
gation. A minimum of 300 foraminifera were picked from 
the 500-250/j,m size fraction with counts of the other size 
fractions (250-125/im and 125-63/xm) also being recorded 
for further analysis (not presented here). Fig. 4 records the 
results of this preliminary investigation with the percentage 
of dry sediment retained on the 63/xm sieve plotted along
side the generic diversity recorded in each sample. 

The most clay-rich samples are located in the Nothe 
Clay Member (samples between O l and 0 6 ) and it is these 
same samples that record the highest levels of generic (and 
specific) diversity. This would appear to be the "zone of 
maximum flooding" recorded by Oliver (1998) and would 
clearly show up as a gamma-ray peak on a wirehne log. Un
fortunately planktonic foraminifera are not recorded at this 
level in the UK Jurassic succession and one cannot fully test 
all the features of the Emery & Myers (1996, fig. 6.14) pre-
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Ŝ 

^ 
^^i^^^i 
••sr[ ' 
? ^ ^ 

^•^- i j -cf t 
<»TO-o-^(rj 
^ ^ ^ (hiatus) 
'"^^^ -f 

^ 

^ i 

^^5=c 

isr^i 

B i 

— ;;;:7-

• - : : ; - • - ; •; 

^ 
•^fi-Z^-

toft 

J 

5 

? 

"2:-,") 
."TT-rY hiatus 

. • • 

. - 1 _ L j i 
jj^?^^fe> 

• " • ' • ! 

w « 

^ -
" 

saSl' ' 
gsf^l 5m-1 

> - . ' 0 flj 
ra c s 
o *0 ro 

PGB = Preston Grit Mb. 
1 1 

i 1 oJ 

Wilson 
1991 

h-
co 
I 

TST 

§ 
3 

(— CO 

X 

1— 

5 
.5? 3 

1 -

1 .5? 

Rioult et al. 
1991 

$ 
S 
CO 

149.3 

1— 
CO 
I 

5 
en 

149.8 

CO 
I 

5 
5 
CO 

150.2 

Coe 
1992«5 

04 

f -
co 
X 

1 -
co 
1 -

1 -
co 
_ l 

03 

t -
co 
X 

1 -
CO 
—1 

02 

Oliver 
1998 

- • 3 - -

^ . 
^^ c-^ 

c; 5 o 
N E = 

1-
co 

(-

2 
CO 

2 

HST 

„ 

^ 

tvjE= 

CO 
1 -

LST1 

1 -
co 
X 

•\ 

> 3 

>2 

J •\ 

S . 1 

Newell 
2000 

1 -
co 
X 

MFS 

t— 
CO 1 -

1 -
co 
CO 

^-CO 
X 

1 -
co 
h-

H 
CO 
_J 

Fig. 2 - The Jurassic succession of 

the Weymouth to Ringstead 

Bay section (see Fig. 3) with 

the major lithostratigraphical 

units identified. The various 

sequence stratigraphical inter

pretations are also indicated. 

Additional terms include: llsw 

= lower lowstand •wedge; ul-

sw = upper lowstand wedge; 

SMW = Shelf Margin Wedge; 

FSST = FalKng Stage Systems 

Tract. 0 2 / 0 3 / 0 4 are the un

conformities identified by 

Coe (1995). The radiomet

ric dates (in millions years) 

are the ages assigned to Se

quence Boundaries by Rioult 

e t a l (1991). 

dictions. The genera recorded in this part of the succession 
are indicated in Fig. 5. The pattern is not clear, but samples 
0 3 and 0 4 appear to be close to the zone of 'maximum 
flooding' and a number of important genera {Ophthalmid-
ium, Nubeculina, Vaginulina, Frondicularia, Citharina, Lin-
gulina and Epistomina) are restricted to this interval. The 
miholids (with a porcellanous wall) and the epistominids 
(with an aragonitic wall) point to a preservational control 

of the fauna that characterises this interval. 

Interpretation of the fauna 

The faunas we record from geological samples are 
the product of: 

- The initial fauna; 
- Post-mortem taphonomy; 
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Fig. 3 - Outline structural map of 

Dorset showing the locations 

mentioned in the text. The ar

ea of North Dorset indicated 

in the box marks the loca

tion of the 5 boreholes used 

by Henderson (1997) and 

Henderson & Hart (2000). 

AA 

v^ 
number of genera 

- Diagenesis and compaction; 
- Changes during burial and "geological time"; 
- Modern weathering and exhumation (if not col

lected from the sub-surface); 
- Errors introduced during sampling, processing 

and analysis. 
Work on modern-day faunas and their relation

ship with the substrate are important in helping to un
derstand the death assemblages preserved in the geo
logical record. In a recent survey of the foraminifera of 
Plymouth Sound (Fig. 6), Castignetti (1997) sampled a 
series of siliciclastic locations at monthly intervals over 
a yearly cycle and was able to determine the standing 
crop of all taxa from a wide range of environments. Fig. 
7 shows the total annual production and the total an
nual diversity for these sites, all but one of which were 
located within Plymouth Sound. The most diverse and 
productive fauna is at Location 9 (mud) with the low
est values recorded at Location 11 (sand waves). The 
controls on the fauna are complex (and the subject of 
a further publication by the authors) but it is clear that 
in the nutrient-rich clays there is an abundant, diverse 
fauna with the nutrient-poor sands supporting only a 
poor, in-situ, living fauna. 

Fig. 4 Sample locations within the Nothe Grit Formation, Preston 

Grit Member, Nothe Clay Member and the Bencliff Grit 

Member. Plotted against these samples are the percentages 

of dry sediment (by weight) retained on the 63/zm sieve and 

the generic diversity. 
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sample codes 

Ammobaculites spp. 
Haplophragmoides spp. 
Textuiaria spp. 
Troc^ammina spp. 
Lenticulina spp. 
Citharina spp. 
Dentalina spp. 
Nodosaria spp. 
Planularia spp. 
Vaginulina spp. 
Nubeculina bigoti Cushman 
Lagena spp. 
Epistomina spp. 
Eoguthilina spp. 
Pseudonodosaria spp. 
Triplasia spp. 
Marginulina spp. 
Lingulina spp. 
Frodiculana spp. 
Opthalmidium spp. 
Suboidellina spp. 
Ramulina spp. 
Trocholina spp. 
Trtsfofspp. 
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Fig. 5 - Distribution of foraminifera in the Nothe Grit and Redchff Formations. Nuheculina higoti Cushman is identified as this is the only 

species recorded within that genus in this succession. 

It is evident that the faunas in the clay-rich envi
ronments (Fig. 8) will be further enhanced by the slow 
rate of sedimentation (= several yearly standing crops 
in an average micropalaeontological sample) compared 
to the dilution effect of the higher rates of sedimenta
tion in the more sand-rich environments. Compaction 
will further accentuate this situation with clays often be

ing subjected to —50% reduction. This is often detected 
by the presence of compressed agglutinated foraminif
era where the flexible chitinous inner lining of the test 
has allowed an inward collapse of the chambers (Hend
erson, pers. comm.). This is particularly seen in genera 
such as Trochammina, Haplophragmoides, Ammobaculites 
and Reophax. 
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Fig. 6 - Sediment distribution map 

of Plymouth Sound and the 
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used in the monthly analysis 

(1994-1996) of the benthonic 

foraminifera (after Casiignet-

t i c t al. 2000). 
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Diversitv 

Total production 

Fig. 7 - Plots of annual specific diversity and annual total production 
for the sites indicated in Fig. 6 (after Castignetli 1997). 

In recent years a number of investigations of the 
preservation potential of foraminifera have been under
taken by Murray (1989), Boltovskoy & Totah (1992), 
Alve & Murray (1995) and Murray & Alve (2000). It is 
particularly noted by Alve & Murray (1995) and Murray 
& Alve (2000) that high diversity agglutinated assem
blages can be derived from high diversity assemblages ap
parently dominated by calcareous taxa through the selec
tive dissolution of the calcareous component over time. 
This will particularly effect the aragonitic taxa and, in 
the Jurassic and Cretaceous, the epistominids will often 
only be found in the dense, clay-rich parts of the succes
sion that have acted as aquacludes (Fig. 8). In Jurassic 
sequences, therefore, the aragonitic fauna of epistomin
ids and planktonic foraminifera (Oxford et al. 2002) are 
the most likely indicators of maximum flooding surfaces 
or "zones". 

In samples collected at outcrop, even the best 
preserved faunas can still be removed by modern proc
esses. A sure sign of this will be the presence of selenite 
(gypsum) crystals on bedding and fracture surfaces, or 
processed residues containing an abundance of such 
crystals. 

The dense, impermeable clays will, therefore, con-
tam the most abundant and diverse faunas from deposi-

sandstone 

nutrient poor 
rapid deposition 
tow diversity 
low abundance 

sitty mudstone clay 

nutnenl rich 
stow deposition 
tiigt} diversity 
high abundance 

COMPACTION 

50% original 
volume 

GROUNDWATER 

partial 
dissolution of 

aiagonitic 
foraminifera 

Fig. 8 - Theoretical model for the history of a "sample" from depo
sition to final collection, showing the effects of tapbonomy, 
compaction and dissolution by groundwater flow. 

tion, through compaction, to preservation in an aqua-
elude. These dense clays should also record the highest 
levels of gamma-rays in wireline logs and be readily iden
tified as a zone of maximum flooding by both palaeon
tologists and sedimentologists. 

The Oxfordian succession of the Dorset Coast 

Using the form of analysis shown in Fig. 4, the 
complete Oxfordian succession of the Dorset Coast 
(Weymouth to Ringstead) has been analysed (Fig. 9). 
The 'cycle' shown in Fig. 4 can be seen in the middle of 
this diagram, picked out by a number of diversity peaks 
(around sample OSM3). These pick out the zone of maxi
mum flooding described above. This is within the upper 
part of the Nothe Clay Member of the Redcliff Forma
tion. Lower in the succession, below sample FZ3, there 
are reduced percentages of sediment retained on the 63/i.m 
sieve and moderate levels of foraminiferal diversity. This 
is typical of the upper part of the Oxford Clay Forma-
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Fig. 9 - Analysis of the Oxfordian succession of the Dorset Coast following the methodology used in Figure 4. Locations of potential Maxi

mum Flooding Surfaces (or Zones) are indicated by an asterisk; some of these arc sequences while others may be parasequences. Po

tential sequence boundaries are indicated by the 'wavy' lines and initials SB. The sample codes are as follows: 

FZ / FZY — Furzy Cliff [Upper Oxford Clay - N o t h e Grit Formation] 

RED — Redcliff [Nothe Grit Fonnation - N o t h e Clay Member] 

OSM ~ Osmington [Nothc Clay Member - Osmington Oolite Fonnation] 

BH ~ Black Head [Osmington Oolite and Sandsfoot Formations] 

R ~ Ringstcad Bay [Sandsfoot Formation and base of Kimmeridge Clay Formation] 

lion (Mariae Zone). It is the Mariae Zone, on the shores 
of the Fleet west of Weymouth (Fig. 3), that has yielded 
planktonic foraminifera (Oxford et al. 2002) and these 
assemblages are coeval with the occurrence of plankton
ic foraminifera in the Marnes de Villers Formation on 
the Normandy Coast (Samson et al., 1992; Oxford et 
al. 2002, fig. 2). In North Dorset (Fig. 3) Henderson & 
Hart (2000, fig. 3) have identified several floods of epis
tominids at this level which probably records the same 
maximum flooding event. 

Above the Nothe Clay 'cycle' (Figs. 4, 9) there is a 
marked drop in diversity and an increase in sediment re-
tamed on the 63/im sieve. This appears to indicate a sig
nificant break (= sequence boundary) within the lower 
part of the Bencliff Grit Member and, although the exact 
position of this is disputed by the various workers who 
have studied this succession (Fig. 2), all show this event 
at about this level. In the overlying Upton Member of 
the Osmington Oolite Formation (around sample B H l 
on Fig. 9) we record a major diversity peak. Above this 

level there are four more diversity peaks in descending 
order of magnitude until, at about the level of sample R2 
there appears to be a major sequence boundary before the 
onset of the major cycle at the base of the Kimmeridge 
Clay Formation. If all the diversity peaks between the 
top of the Oxford Clay Formation and the base of the 
Kimmeridge Clay Formation are considered it is possi
ble to detect a large 'cycle' with a peak at about the level 
of the mid-Upton member. Is this a 3"* Order sequence 
in the Van Wagoner et al. (1988) terminology? If this is 
the case, then the regularly spaced minor peaks would be 
4''" Order sequences (or parasequences). In both North 
Dorset and Normandy our work has detected comparable 
diversity fluctuations with floods of diverse assemblages 
(with epistominids) at regular intervals (see Henderson 
& Hart 2000). 

Only an outline assessment of our results have been 
presented here as there is clearly a great deal of detailed 
information to process on all the faunas we have recov
ered in our samples. This work is in hand, including that 
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based on the material available from N o r t h D o r s e t and 

N o r m a n d y . 

Summary 

Using data from the analysis of foraminifera living 

in m o d e r n siliciclasiic env i ronments we have developed 

a m o d e l for the categorizat ion of Jurass ic assemblages 

and the i r in terpre ta t ion in a sequence s t ra t ig raph ic con

tex t . Prel iminary work compar ing the D o r s e t C o a s t w i t h 

: N o r t h D o r s e t and N o r m a n d y indicate tha t t he foraminif

era can provide significant assistance in t h e d e v e l o p m e n t 

I of correlat ions based on sequence strat igraphy. M a x i m u m 

flooding events in t he Jurass ic appear t o be identified by 

high diversity assemblages in which ep is tominids are a 

significant componen t . P l a n k t o n i c foraminifera (which 

at this stratigraphic level m a y also have been aragonit ic) 

have also been shown to occur at m a x i m u m flooding sur

faces wi th in the m i d - U p p e r Jurass ic ( O x f o r d et al. 2002; 

Har t et al. 2002). 
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