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ABSTRACT 

The Sedimentology, Petrology and Stratigraphy of the Upper Greensand 
in S.W. England - Colin L. Williams. 

A new lithostratigraphic scheme is proposed for those deposits 
formerly known as the Upper Greensand. In the south and south-west of 
England the proposed Selbome Group is made up of the proposed Wessex 
Greensand Formation and Gault Qay Formation as well as the existing 
Haldon Sands Formation. Four members are proposed and type sections 
are designated. 

Lithological logs are presented for sections at Branscombe/Beer Head 
(Type Section for the Foxmould Sands Member and the Chert Beds 
Member); Kempstone Rocks, Dunscombe, S.E. Devon (Type Section for the 
Top Sandstones Member); Whitecliff, Seaton, S.E. Devon; and a small 
quarry at Dunscombe, S.E. Devon. The sediments found in these sections 
are divided up into 15 fades. Each facies is described in detail 
including local variations and associations with other facies. An 
environmental interpretation is suggested for each facies and it is 
suggested that the upper part of the Wessex Greensand Formation 
represents a shallowing upwards sequence which was strongly tidal and 
storm influenced. 

A series of events leading to the formation of chert within the Chert 
Beds Member is proposed. The gradual replacement of calcite and 
glauconite combined with void-fill chalcedony and microquartz rim 
cements are shown to result in a ghost fabric. 

A new ammonite occurrence is reported from the Foxmould Sands Member 
at Branscombe. Identified as Prohystoceras (Goodhallites) delabechei 
it suggests a varicosum Subzone age for the lower part of the Foxmould 
Sands Member. 

23 genera and 32 species of Foraminifera are described. The smaller 
Foraminifera suggest diat the upper part of the Foxmould Sands Member 
may be as young as dispar Zone but do not allow any further refinement 
of the age of the Chert Beds Member. 

An in depth examination of the occurrence of the large benthonic 
Foraminiferan Orbitolina in S.W. England allowed the identification of 
members of the Orbitolina seftni - O. concava plexus. These 
foraminifera are used to refine the age and correlation of the 
Selbome Group in S.W. England. 'Orbitolina' occurrences from 
Wilmington are shown to belong to the sponge genus Porosphaera. 

The occurrence of both O. sefini and O.sp. cf. concava in S.W. England 
has allowed the proposal of a colonisation pathway for the Orbitolines 
from the Iberian Peninsular via the S.W. Approaches to S.W. England 
rather than by way of the Paris Basin. 

Using the techniques of sequence stratigraphy a basin history is 
presented for S.W. England during Albian/Cenomanian times. A sea-level 
curve is presented and compared with existing curves. 

xvi 



CHAPTER 1 INTRODUCTION 

1.1 Aims and Scope 
/ 

The mid-Cretaceous Upper Greensand of southwest England has been a 

subject of interest to geologists since the pioneering days of British 

geology at the begining of the 19th Century. Its fossil fauna, age, 

sedimentology, diagenesis and its correlation to other mid-Cretaceous 

sediments in northwest Europe have been the subject of scientific 

discussion over the last 200 years or so. 

However, despite the interest, the Upper Greensand has been relatively 

neglected in comparison to the overlying Chalk and Cenomanian 

Limestone, and the underlying Lower Greensand and Wealden sediments. 

These units have been the subject of lithostratigraphic revision, 

intense microfaunal and macrofaunal study, and perhaps most notably, 

detailed diagenetic and sedimentological analyses using modem 

techniques of facies analysis and modelling. This study attempts to 

redress the balance by providing: 

(i) A revision of lithostratigraphic nomenclature, dividing the Upper 

Greensand into correlatable formations and members which are formally 

defined using stratotypes. 

(ii) A detailed sedimentological study in order to determine the 

environments of deposition. 

(iii) A study of the diagenetic processes operating within the Upper 

Greensand, particularly those leading to the formation of chert 

nodules. 

(iv) A review of the biostratigraphy of the Upper Greensand, focusing 

1 



on the foraminiferal fauna recovered during the course of this study, 

and the implications for biostratigraphic correlation. 

(v) A preliminary attempt at using the conclusions from all the above 

studies in a modem sequence stratigraphy context. The wider 

implications of the stratigraphy of the Upper Greensand are considered 

with reference to eustatic changes in sea-level and Albian -Cenomanian 

basin history in northwest Europe. 

The individual aims of this project listed above are each detailed in 

subsequent chapters, following a more general introduction in this 

first chapter. 

This study can only be considered as a preliminary review of Upper 

Greensand sedimentology and stratigraphy. Not least, there is still 

much work to be done on the Upper Greensand and its equivalents in 

other parts of southern England. 

1.2 General Introduction 

The area of study comprises the outcrops of Upper Greensand in 

southwest England (see Fig. 1.1). This effectively includes the 

southeast part of Devon and the extreme southwest part of Dorset. The 

general geology of this area is documented in a number of 

publications, notably Edmonds et al. (1975) and Durrance and Laming 

(1982). 

It can be seen from Figure 1.1 that in the study area, the Upper 

Greensand rests unconformably on Devonian, Carboniferous, Permian and 
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Triassic sediments. In an easterly direction from the study area, the 

Upper Greensand overlies progressively younger rocks; the result of 

pre mid-Cretaceous uplift, tilting and erosion. This relationship can 

clearly be seen in Figure 1.2 a chronostratigraphic summary chan for 

the Wessex Basin. 

Figiure 1.2 shows that the Upper Greensand both overlies and is the 

lateral equivalent of the Gault Clay. The boundary between these two 

units is diachronous (cf. Rawson et al., 1978). The Gault Clay - Upper 

Greensand couplet has been regarded as a major transgressive -

regressive cycle (sequence) following restricted sedimentation in the 

Early Cretaceous over southern England (eg. Rawson et al., 1978; 

Anderton et al., 1979; Hancock, 1989). The overlying Cenomanian 

Limestone and equivalents is transgressive (Garrison et al., 1987). 

These relationships are more fully discussed in Chapter 6. 

The term "Upper Greensand" has come to be accepted as referring to the 

glauconitic sands, silts, calcarenites, limestones and cherts lying 

immeadiately beneath the Late Cretaceous Chalk. It's age is largely 

Late Albian. In the study area extension into the Early Cenomanian has 

been proposed by some (eg. Hart, 1971, 1973b; Caner and Hart, 1977) 

but refuted by others (eg. Hamblin and Wood, 1976). This is more fully 

discussed in subsequent chapters. Certainly Early Cenomanian Upper 

Greensand in the form of the Eggardon Grit occurs in the east of the 

study area (Kennedy, 1970). 

The term 'Greensand' probably originated with William Smith, between 

the years 1800 and 1812, to describe the sands which were found 

between the Chalk and the Gault Clay. Although Smiths' earliest 'Table 
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LEGEND TO PALAEOGEOGRAPHIC, ISOPACH AND TECTONIC MAPS 

AND TO STRATIGRAPHIC CORRELATION CHARTS 
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of Strata' (1799) referred to these beds as 'Sand', his close friend 

the Rev. J. Townsend, published a book in 1813 in which they were 

called 'Greensand'. 

Unfortunately this clear beginning became confused by a series of 

errors and compromises (see Chapter 2 for details). By the 1820's the 

term 'Greensand' was being freely used to describe the sands both 

above and below the Gault Clay. In an attempt to end this confusion 

Fitton (1824) published a letter proposing the use of the terms 'Upper 

Greensand' and 'Lower Greensand' for the sands above and below the 

Gault Clay respectively. 

Fitton's recommendations were eventually adopted by the Geological 

Survey in 1839. The term "Upper Greensand" has been in common use 

since that time. However, it lacks a modem formal definition, and 

recommendations are made in Chapter 2 to use the precisely typified 

term "Wessex Greensand Formation" in the study area. The Upper 

Greensand is found over much of southern England in surface exposures 

and the subsurface, with its outcrop pattern being controlled by 

Tertiary and Quartemary erosion (Figure 1.3). A large number of local 

and commercial names have been used to describe local lithological 

variations (Figure 1.4). 

The thickness of the Upper Greensand varies across southern England 

(Figure 1.5). Some 54m of Greensand and Malmstone occur in Wiltshire 

(Fitton, 1836; Jukes-Browne and Hill, 19(X)). In Berkshire the 

Malmstone becomes thicker (Hinde, 1885; Jukes-Browne, 1889) but when 

traced through Oxfordshire and Buckinghamshire the Upper Greensand 

gradually thins out and disappears (Jukes-Browne and Hill, 1900). In 
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Hertfordshire only 2m of greenish silt represents the Upper Greensand 

(Jukes-Browne and Hill, 1900). 

In the area of the Weald, although natural exposures are relatively 

rare, a great lithological variety occurs. Three broad rock types can 

be recognised: poorly consolidated siltstones that are transitional 

down into the Gault, the Malmstone and an upper clayey sandstone with 

glauconite. The Upper Greensand is thickest in the west of this area, 

about 67m at Selboume, thinning northwards to 27m at Guildford, 

southwards to 34m at Midhurst (Gallois, 1965) and eastwards to 10m at 

Eastbourne (Barrois, 1876). 

At the base of the Upper Greensand in the Isle of Wight a series of 

sandy clays and marls, the Passage Beds, occur (White, 1921). These 

are succeeded by sandstones with concretions and chert courses. In 

south Dorset the Upper Greensand increases in thickness 

south-westwards and sands with limestone concretions are succeeded by 

Foxmould, Chert Beds and Top Sandstones/Eggardon Grit of the 

Devon/Dorset border region, the main area of study documented herein 

(see Garrison et ai, 1987 for a recent review of lithologies.) 

In the southwest of England the Upper Greensand is found capping many 

of the hills in southeast Devon. Oudiers also occur in the Haldon 

Hills and the Bovey Basin. Two facies were recognised by Tresise 

(1960), separated by a line running from Sidmouth, north-eastwards to 

Yarcombe. To the east of this line the calcareous 'Normal Facies' is 

found while to the west the non-calcareous 'Blackdown Facies' may be 

seen. 
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The oudiers seen in the Haldon Hills consist of a sequence of 

non-calcareous sands and gravels which often contain cherts (Haldon 

Sands Formation - Hamblin and Wood, 1976; Selwood et al., 1984). At 

Wolborough, on the edge of the Bovey Basin, there occurs an exception 
/ 

to the 'Blackdown Facies' in the form of a series of orbitoline-rich 

limestones (Edwards, 1979; Selwood et al., 1984). 

Many workers have considered that during Albian times western Europe 

consisted of a number of highs and massifs surrounded by mainly 

shallow seas (Figure 1.6)(see Ziegler, 1982 for an overview). Across 

central Europe a series of linked massifs, the Brabant, Rhenish and 

Bohemian Massifs acted as a barrier between the northern 'Boreal Sea 

and the southern Tethys Ocean. To the east and west of these massifs 

mixing of the two seas was possible, although in the west the 

Armorican Massif created another barrier only allowing a relatively 

narrow seaway between the northern and southern water bodies. A second 

seaway existed between the Armorican Massif and the Iberian Meseta. 

The Upper Greensand and it's equivalents was deposited in a series of 

basins to the north and northwest of the Armorican Massif. The area of 

deposition was bounded to the west, northwest and north by the 

Comubian Massif and the Welsh and Pennine Highs (Figure 1.6). 

The tectonic events influencing southern England at this time were all 

Alpine in origin, but may have been influenced by older structures 

(Ziegler, 1982). 

After the early Aptian Austrian tectonic phase the Bay of Biscay 

opened (Ziegler, 1978). Rifting and transform faulting in this area 
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was probably combined with marginal uplift and erosion. This erosion 

led to the shedding of elastics eastwards into the Celtic Sea Trough 

and Wessex Basin. 

/ 
Ziegler (1978) considered that at this time, the Celtic Sea, Bristol 

Channel and Western Approaches Troughs were largely inactive. 

Lake and Kamer (1987) divided the Wessex Basin, which includes the 

main area of study, into four sub-basins (see Figure 1.7). These 

sub-basins relate to the reactivation of Hercynian basement 

structures. They attributed the pre-Aptian (pre Lower Greensand) 

uplift and erosion to thermal effects associated with the opening of 

the Bay of Biscay. Subsequent subsidence led to the enlargement of the 

Weald Sub-Basin to cover southwest England. 

Southern England was affected by intra-Cretaceous folding and 

faulting. Most of these earth movements occurred in 

post-Wealden/pre-Aptian times (House, 1961; Phillips, 1964). They are 

typified by the folds and faults seen in the Weymouth area. Hart 

(1971) suggested that the mid-Cenomanian non-sequence he recognised in 

southern England on microfaunal evidence equated with the 

intra-Cretaceous folding recognised by Smith (1957a) and Durrance and 

Hamblin (1969). Drummond (1970) considered the absence of the dispar 

Zone (latest Albian) over central Dorset was related to gentle uplift 

of the Mid-Dorset Swell during this time. Kennedy (1970) also noted a 

condensation of the dispar Zone over the Mid-Dorset Swell. 

Full discussions of previous studies on the Upper Greensand are given 

at the begining of each relevant chapter. 
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1.3 Methodology 

The interpretations made in this study are the resuh of the analysis 

of two sets of data. The first is a review of all the relevant 

published information. The second is a new study of the sedimentology, 

diagenesis and biostratigraphy of the Upper Greensand in the area of 

southeast Devon. 

With respect to the new study, attention has focussed on three 

sections along the southeast Devon coast: Branscombe, Dunscombe and 

Seaton (see Figure 1.1), although all other suitable sections in the 

study area (eg. those in the Haldon Hills) have been considered before 

the interpretations were made. 

Each of the main sections was examined, measured and logged with 

special attention being paid to bed form, sedimentary structures, 

gross mineral content and macrofossil content. A sample was taken from 

each bed with occasionally several samples from one bed (total 198 

samples). These samples were taken as deep as possible from the 

outcrop surface in order to avoid the most heavily weathered rock. 

The samples varied widely in competance from hard, brittie chert to 

soft easily disaggregated, muddy sand. A sub-sample from each was, as 

far as practicable, disaggregated, washed and dried, then sieved into 

fraction sizes and examined for microfauna. It was, of course, not 

possible to do this with the cherts and some of the harder nodules. 

Where a microfauna was present an attempt was made to pick a minimum 

of 300 specimens in order to gain a representative sample (Murray, 
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1973). Relatively few samples, however, contained microfossils and of 

those that did it was seldom possible to obtain 300 specimens even 

after carefully processing and picking a kilogram of original sample. 

The samples that contained a microfauna were picked using a damp brush 

and picking tray under a binocular microscope. All the size fractions 

were examined in detail (500, 250 and 180mm sieve sizes) including the 

finest residue in the bottom tray. 

A sub-sample from each sample was also prepared as a standard thin 

section. In many cases this required the impreganation of the sample 

with resin before cutting. Each of these thin sections was examined in 

order to discover details of its mineral content, microfacies and 

diagenetic history. Additional thin sections (212) were prepared from 

cherts and other lithologies in order to work out the diagenetic 

sequence and also to obtain median sections of the orbitoline 

foraminifera. 
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CHAPTER 2 LITHOSTRATIGRAPHY 

/ 
2.1 Previous Work 

See Figure 2.1 for a summary of lithostratigraphic terminology. 

Over much of its outcrop in the south of England the Upper Greensand 

lies stratigraphically between the Gault Clay and the Chalk. The Chalk 

was used as an easily available source of lime for building by the 

early Saxon invaders and the word was probably derived from the Saxon 

word for lime - cealc (German - Kalk). The word gradually became 

softened to 'Chalk' and as it was a specific appelation to a 

particular rock type it naturally became a geological term. In Germany 

this was not possible as the word did not have a specific meaning and 

another term was used to describe the rock type 'Kreide'. 

The lithological unit usually found below the Upper Greensand has 

been variously spelt as Gault, Gait or Golt. This term is a provincial 

name for a 'stiff blue clay' that occurs in Cambridgeshire, Suffolk 

and Hertfordshire. Although the word's origin is in doubt, it may have 

been derived from the German word 'Kalt' (cold); forming a cold soil. 

The Rev. John Michell used the term 'Golt' in 1788 or 1789 for a 

'stiff blue clay' that occurred beneath the Chalk. William Smith, 

working in the Bath area in 1799, described the rocks beneath the 

Chalk as 'sand' and 'clay'. Thomas Webster's letters (written in 1811 

but not published until 1816) in which he described the geology of the 

Isle of Wight, refer to the Gault Clay as the 'Blue Marie'. This name 
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was adopted by William Smith in his 'Map of England and Wales' 

(1815). 

Smith next used the term 'Brickearth' for the Gault Clay in his 

'Stratigraphical System of Organised Fossils' (1817) but by 1819, in 

the maps published that year, he referred to it as the 'Golt 

Brickearth'. 

The term 'Greensand' probably originated with William Smith between 

1800 and 1812 and both he and Thomas Webster always used it for the 

green sands which lie between the Chalk and the Gault Clay. Smith 

referred to these beds simply as 'sand' in his 'Table of Strata' 

(1799). 

In the Rev. J. Townsend's work 'The Character of Moses Established for 

Veracity as an Historian' (1813) all the Cretaceous strata below the 

Chalk were listed as 'The Sand'. He further divided these sands into 

'green, grey and red sand'. Although he was aware of the presence of 

clay and brickearth between the grey and red sands he seemed to 

consider this to be a local phenomenon. He did, however, specifically 

mention the presence of 'firestone' within the grey sands. 

The terms 'Firestone' or 'Calcareous Malmstone' were used to describe 

a rock type that was quarried for use as hearthstones. This variety of 

Malmstone (Malm or Malmrock) contains up to 25% calcareous material. 

It is usually more compact with a higher specific gravity than pure 

siliceous Malmstones. Malmstone was a provincial name, used in the 

counties of Sussex and Hampshire, for a fine grained siliceous rock. 
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John Middleton published an essay entitled 'Outlines of the Mineral 

Strata of Great Britain' (1812) in which he presented a list of terms 

for the Cretaceous rocks. He used the term 'firestone' rather than 

greensand and regarded it as part of the Chalk. 

In 1818 William Phillips presented a paper to the Geological Society 

(published 1821) in which he described the Chalk cliffs near Dover. He 

described the subdivisions of the Chalk and placed the 'Blue Marl' 

beneath the 'Grey Chalk'. He then proceeded to describe the 'Blue 

Marl' as resting on 'the greensand'. This 'greensand' he equated with 

Smith's 'Greensand', although Smith had always described it as 

occurring above the 'Blue Marl'. 

Also in 1818, Mantell published 'A Sketch of the Geological Structures 

of the South-Eastem part of Sussex'. In this work he equated the 

'Blue Marl' with the 'Chalk Marl' and placed the 'Greensand' below 

this unit. In what was apparently an attempt to match his work with 

Smith's, he then placed a 'Brickearth' below the 'Greensand' and a 

'Blue Clay' or 'Oak Tree Soil' below that, saying that the 

'Brickearth' only occurred locally. To make this sequence fit the 

observed facts at Eastbourne he had to assume that the 'Blue Marl' or 

Gault Clay was absent and that his 'Greensand' thus underlay the 

Chalk. 

Both Phillips and Mantell assumed that there was only one 'Greensand' 

and that this occiured below the 'Blue Marl'. Their ideas were 

followed and extended by other workers. Buckland (1818) arranged the 

lithological units into formations but the 'Greensand' included both 

the Upper and Lower Greensand of the present day. 
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Phillips and Coneybeare (1822) published a series of lithological 

sections. In the section for the Weald their 'Chalk Marl' included the 

Malm Rock, Firestone (the present Upper Greensand) and the Gault Clay. 
/ 

Their 'Greensand' was the equivalent of the present day Lower 

Greensand. In the section for Dorset their 'Greensand' was the 

equivalent of the present Upper Greensand, their Weald Clay was the 

present Gault Clay and their Iron Sand was the equivalent of the 

present day Lower Greensand. 

Mantell (1822) referred to Phillip's observation that 'the Greensand' 

lies under the Blue Chalk Marl at Folkestone, He also reiterated his 

own idea that the Blue Chalk Marl (Gault Clay) was absent at 

Eastbourne and elsewhere to explain the obvious 'Greensand' which 

underlies the Chalk. Mantell also grouped various sands and clays into 

a 'Greensand Formation'. 

Two schools of thought thus existed at that time. The erroneous idea 

that 'the Greensand' always lay below the Gault Clay wherever it 

occurred and the correct observation that the 'Greensand' occurred 

both above and below the Gault Clay, with the present-day Upper 

Greensand lying above the Gault Clay. 

Fitton (1824) published an account of the beds between the Chalk and 

the Purbeck Limestone in south-east England and correlated them with 

strata found on the Isle of Wight. He also observed that there were, 

in fact, three sand units separated by two clay units (the Gault Clay 

and the older Weald Clay) as opposed to the two sand units quoted by 

Phillips and Coneybeare. Although the sands below the Gault Clay had 
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been described originally with other names (Iron Sand, Ferruginous 

Sands and Carstone), Fitton suggested the retention of the name 

'Greensand'. 

/ 
Subsequendy, in a letter published in the Annals of Philosophy, 

Fitton attempted to end the controversy over the use of the name 

'Greensand'. He reported that it had been suggested to him that the 

names Upper Greensand and Lower Greensand should be used in place of 

the terms 'Firestone' and 'Greensand' that he had used previously. He 

went on to say, however, that he considered that the use of the term 

'Greensand' had led to so much misunderstanding that both units should 

be renamed and he proposed the names Merstham Beds ('Firestone' or 

'Upper Greensand') and Shanklin Sands ('Greensand' or 'Lower 

Greensand'). 

Webster read a paper to the Geological Society in November 1824 in 

which he reviewed the confusion which had occurred over the use of the 

term 'Greensand'. In early 1825 Webster published his 'Reply to Dr. 

Fitton'. He confirmed the precedence of the sands below the Chalk to 

the name of 'Greensand' and described it as "a stone composed of 

siliceous grains, mica and dark green particles with a calcareous 

cement". He proposed that the Upper Greensand, Gault Clay and Lower 

Greensand be placed in a ' Greensand Formation'. 

Murchison (1825) examined the geology of the western end of the Weald 

and used the terms Upper and Lower Greensand as proposed by Webster, 

but replaced the term 'Blue Marl' with Gault Clay. 

De la Beche (1826) described the "Greensands below the Chalk" in 
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southeast Devon using the subdivisions Foxmould Sands and Chert Beds; 

the former being a local name and the latter presumably being 

lithologically descriptive. These subdivisions subsequentiy became 

well established. 
/ 

Mantell (1827) attempted to correct some of the errors contained in 

his earlier work by adopting the names proposed by Fitton in his 

letter to the Annals of Philosophy. However, he still bracketed the 

Grey Marl, Firestone, Upper Greensand or Merstham Beds and the Gault 

Clay or Folkestone Marl together as Chalk. He also used Fitton's term 

'Shanklin Sands' instead of 'Green or Chlorite Sand', for the Lower 

Greensand. 

Martin (1828) chose to use the names Malm, Gault and Shanklin Sands 

and placed them together in a 'Glauconite Group'. He funher 

subdivided the Malm into Upper Greensand and Malm-rock and the 

Shanklin Sands into Ferruginous Sand and Lower Greensand. This 

modification meant that three diferent schemes were in use, all of 

which had overlapping elements when the names used were listed. 

Mantell (1833) made a move toward uniformity by quoting Websters 

terminology as synonyms to that he was using. Fitton (1836) adopted 

the terms Upper and Lower Greensand. Finally, the names Gault Clay and 

Upper Greensand were adopted by the Geological Survey in 1839 because 

these lithological names allowed for the separate mapping of sands and 

clays. Thereafter these terms have been in general use, with the Upper 

Greensand divided into the Foxmould Sands and Chert Beds as suggested 

by de la Beche (1826). 
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Subsequent to the decision of the Geological survey in 1839, there 

have been few additions to the lithostratigraphy of the Gault Clay -

Upper Greensand facies. Meyer (1874) described the lithologies to be 

seen in southeast Devon and numbered the units within the succession. 
/ 

In 1900 Jukes-Browne and Hill suggested the introduction of the term 

Selbomian to include both the Gault Clay and the Upper Greensand. 

This found little favour subsequently. Tresise (1960) noted that the 

Upper Greensand across Devon west of Sidmouth is largely 

non-calcareous. He termed this the "Blackdown Facies". Smith (1961a) 

used the name Top Sandstones for the more sandy facies found at the 

top of the Chert Beds. Finally the outlier of Upper Greensand on 

Haldon Hill was formally described as the Haldon Sands Formation by 

Hamblin and Wood (1976) and divided into four members (See below and 

Chapter 3). 

2.2 New Lithostratigraphic Scheme 

2.2.1 Introduction 

Although the term Upper Greensand has been in regular use since 1839 

(see above), it has never been formally described or subdivided as is 

the practice in modem lithostratigraphy (Hedberg, 1976; Holland et 

al., 1978; NASCN, 1983) This is essential for the unit to be mapped, 

correlated to other coeval sediments of different facies, and for 

detailed sedimentological studies to take place. A basic premise of 

this study has therefore been to erect a new lithostratigraphic scheme 

for the Upper Greensand. This is described in the subsequent 

sub-chapters. 

23 



2.2.2 Selbome Group 

Despite the fact that the Upper Greensand in the west of England and 

the Gault Clay in eastern England are, at least in part, coeval 

deposits there is no nomenclature to link these two units. 

Jukes-Browne and Hill (1900) proposed the name Selbomian (from the 

area around the village of Selbome, Hampshire) to include both the 

Gault Clay and the Upper Greensand, but this term has not been 

accepted by other workers, partly because it has chronostratigraphic 

connotations as well lithostratigraphic meaning. 

Hedberg (1976) considered the 'Formation' to be "the primary formal 

unit of lithostratigraphic classification". He stated that the degree 

of change in lithology required to erect a new 'Formation' does not 

have strict rules, but practicality in mapping and delineation on 

cross sections are important considerations. On these grounds alone it 

is obvious that the Gault Clay and Upper Greensand should have 

different 'Formation' names. However, in view of the fact that they 

are, at least to some extent, coeval and also related in terms of 

basin history, they should be placed within a lithostratigrahic 

'Group'. In memory of Jukes-Browne's enormous contribution to the 

study of these rock types it is proposed that the group be named the 

Selborne Group. 

"Selbome Group" clearly has a geographic context, but in this case it 

is quite apt. Around the area of Selbome, Hampshire both the Upper 

Greensand and Gault Clay are well exposed (Chatwin, 1960). It is also 

in a position central to the distribution of both facies which outcrop 

24 



over much of southern England. 

The Selbome Group is divided into two main formations: the Gault Clay 

Formation and the Wessex Greensand Formation (see Figure 2.1 and 

below). Lateral equivalents of the Wessex Greensand Formation such as 

the Haldon Sands Formation are also included in the Selbome Group. 

The Gault Clay Formation is outside the main scope of this smdy and 

is not described in any more detail here. The term Gault Clay is 

preserved in accordance with the comments of Hedberg (1976) on the 

preservation of traditional names. 

The Haldon Sands Formation is described in detail by Hamblin and Wood 

(1976) and Selwood et al. (1984) and this does not need to be repeated 

here. However, Hamblin and Wood recognised only four members in the 

Haldon Sands Formation. These were, in ascending order, the Telegraph 

Hill Sands Member, the Woodlands Sands Member, the Ashcombe Gravels 

Member and the Cullum Sands-with-Cherts Member. In the present work 

these members are retained, but a fifth added. This is the Wolborough 

Limestone Member, which formally describes the orbitoline-rich 

limestones outcroping to the west of Haldon near Newton Abbot. This is 

described in detail in the subsequent subchapter. 

2.2.3. Haldon Sands Formation: Wolborough Limestone Member 

Type Section 

Wolborough, Newton Abbot, Devon, about 400m south of Wolborough church 

(SX 855 700) (Figure 2.2). Not currentiy exposed, but well described 
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after the digging of an I.G.S. trench in 1974 (Selwood et al., 1984; 

Edwards, 1979). Overlain by soil and resting unconformably on Devonian 

Whiteway Slate. 

/ 
Description 

Some 8.5m of gravels, sands and limestones which had slight dips to 

the east but steepened to 32 degrees at one point The basal gravels 

exhibit clasts up to 50mm across and contain some clay. The sands are 

green, brown or red, glauconitic, fine to medium grained, micaceous 

and clay-rich. The limestones are pale green/grey, glauconitic, 

fossiliferous and show some evidence of penecontemporaneous 

brecciation. 

Variation 

The basal gravels vary from 0.3m to 1.6m thick, contain clasts 30-50mm 

across and varying amounts of clay. The sands are medium or fine 

grained, clay-free to clay-rich and contain varying amounts of clay 

and fossil material, and are fine to medium grained and massive or 

rubbly. 

Fossils/Age 

Within the limestones Selwood et al. (1984) reported a bivalve fauna 

(Callistina, Glycemeris, Trigonarca and several trigonid genera), 

gastropods and serpulid masses as well as the locally abundant 

orbitoline fauna. Schroeder et al. (1986) demonstrated that the 

orbitolines could be referred to the species Orbitolina sefini which 
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according to Schroeder (1985a) has a range from intra-Late Albian to 

intra-Early Cenomanian. Discussion in chapter 5 of the present work 

suggests that this fauna is probably Late Albian (Dispar Zone) in age. 

/ 
2.2.4 Wessex Greensand Formation. 

This is the main unit of study within this work. It is divided into 

three members (see Figure 2.1). In ascending order they are the 

Foxmould Sands Member, the Chert Beds Member and the Top Sandstones 

Member. Each is described below and also in greater detail throughout 

this work. 

"Wessex Greensand Formation" is prefered to "Upper Greensand 

Formation" because of the historical confusion over the term Upper 

Greensand. Furthermore, the bulk of this formation occurs within 

Wessex which provides a geographical context. 

In addition to the members mentioned above, it is clear that there are 

other possible members within the Wessex Greensand Formation, if one 

looks beyond the study area of SE Devon. These include the Eggardon 

Grit and the Exogyra Sandstone. Chapter 6 includes a brief discussion 

of how these units relate to the members described in the study area. 

2.2.5 Foxmould Sands Member 

Type Section 

Branscombe to Beer Head, southeast Devon (SY 226 878) (Fig 2.2). Very 

well exposed except for the base of the section which is only 
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occasionally visible, usually after storm conditions. Overlain by the 

Chert Beds Member and resting unconformably on Triassic Mercia 

Mudstones. 

Formerly known as the Foxmould Sands (De la Beche, 1826) and described 

by numerous authors (see chapter 3) notably Meyer, (1874); 

Jukes-Browne and ffiU, (19(X)); Smidi (1973); Williams (1986) and 

Williams et al., (1988). 

Description 

Some 30m of green and grey, calcareous, fine to medium grained, 

clay-rich, glauconitic, well-sorted, silty sands and relatively 

clay-free, calcareous grey sands and impure limestones. The former 

have no visible sedimentary structures, abundant evidence of 

bioturbation and scattered shell debris, while the latter exhibit 

parallel laminae, small cross-beds and symmetrical ripples. The beds 

dip to the east at a maximum of 8 degrees. 

Variation 

The clay-rich green and grey sands vary in thickness from 0.2m to some 

5m. Slight variations also occur in glauconite, clay and shell debris 

content. The latter sometimes occurring as discontinuous horizons. The 

impure limestones and clay-free sands vary in thickness from 5cms to 

about Im. Not all exhibit sedimentary structures and the limestones 

and sands may occur as lateral equivalents. 

To the west of Sidmouth, within the Blackdown Facies of Tresise 
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(1960), the Foxmould Sands Member does not occur. Moving eastwards 

from the type section it becomes increasingly difficult to separate 

this member from the Gault Clay Formation. 

Fossils/Age 

Exogyra sp. and the serpulid Rotularia concava are common in this 

member and there is a sparse foraminiferal fauna (Williams et al., 

1988). The presence of the ammonite Prohystoceras (Goodhallites) 

delabechei suggests a Varicosum Subzone age for the lower part of the 

Foxmould Sands Member type section while the foraminifera suggest that 

the upper part is at least Dispar Zone in age. Further to the east, in 

west Dorset, the basal Foxmould Sands Member is at least as old as 

Cristatum Subzone (Hancock, 1969). 

2.2.6 Chert Beds Member 

Type Locality 

Branscombe to Beer Head, southeast Devon (SY 226 878) (Fig 2.2). Very 

well exposed. Overlain by the Top Sandstones Member (see below) and 

underlain by the Foxmould Sands Member. This member formerly known as 

the Chert Beds (De la Beche, 1826) and described by numerous authors, 

notably Meyer (1874), Jukes-Browne and Hill (19(X)), Smith (1961a,b), 

Tresise (1960,1961), Smith and Drummond (1962), Hancock (1969), 

Drummond (1970), Kennedy (1970), Hart (1973), Williams (1986), 

Garrison et al. (1987) and Williams et al. (1988). 

Description 
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Some 20m of calcareous sands, shelly sands and conglomerates often 

with distinctive black tabular/nodular chert horizons. The beds have a 

slight dip to the east (maximum 8 degrees). They are clean clay-free 

and exhibit variable competance. Bioturbation is relatively rare, 

shell debris is common and sedimentary structures occur in all rock 

types as well as within the cherts (parallel laminae, cross-beds and 

symmetrical ripples). 

Variation 

The conglomeratic horizons vary from about 0.25m to Im in thickness at 

the type locality. They contain abundant, rounded, intraformational 

clasts, variable amounts of shell debris and coarse grained sandy 

matrix. The sands and calcarenites vary in thickness from around 0.4m 

to 3.3m. They have variable intraformational clast content, shell 

debris may vary from relatively rare to dominant and chert may be 

absent or present in varying amounts. Horizons and patches of coarse, 

rounded quartz, glauconite and heavy minerals also vary in abundance. 

To the west of Sidmouth, within the Blackdown Facies of Tresise 

(1960), the Chert Beds Member sensu stricto does not occur and is 

replaced by non-calcareous, fine sands with cherts and siliceous 

sandstones often with abundant silicified fossils. Eastwards of the 

type section the Chert beds Member gradually thins towards the 

Mid-Dorset Swell (Smith and Drummond, 1962; House, 1963; Kennedy, 

1970; Caner and Hart, 1977). 

Age/Fossils 
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Fossils are relatively rare in this member although species of 

bivalve, especially Exogyra sp., are locally common (Jukes-Browne and 

Hill, 1900). Some suggestion of Cenomanian age (Hart, 1971; Carter and 

Hart, 1977), using microfauna, has been refuted by the presence of a 

Dispar Zone ammonite fauna near the top of the Wessex Greensand 

Formation at Shapwick Grange Quarry, southwest Dorset (Hamblin and 

Wood, 1976). This fauna is most likely from the higher part of the 

Dispar Zone (H.G. Owen pers. comm) and therefore it is possible, 

probably likely, that the highest part of the Chert Beds Member and 

the Top Sandstones Member extend into the basal Cenomanian. 

2.2.7 Top Sandstones Member 

Type Section 

Kempstone Rocks (SY 160 881) on the footpath from Weston Mouth to 

Sidmouth, southeast Devon. Overlain by the Cenomanian Limestone and 

resting on the Chert Beds Member. Previously described by Jukes-Browne 

and Hill (1900), and termed the "Top Sandstones" by Smith (1961a) and 

by most subsequent workers. 

Description 

Some 5m of poorly sorted calcarenites and quartz arenites. The 

calcarenites may exhibit 5-15cms thick, normally graded laminae which 

may have small horizontal burrows at their tops. Other beds show 

bimodal cross-sets up to 20cms thick. Very poorly sorted quartz 

arenites also occur, with limited lateral extent, and may have a high 
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clay content. 

Variation 

To the west of Sidmouth this member is not discemable. To the east in 

the Branscombe to Beer section, the Top Sandstones Member occurs as 

2.5m to 4m of calcareous sand with thin, wavy horizons of green sand. 

Still further to the east, in Dorset, the Eggardon Grit has a similar 

stratigraphic position and lithology and probably represents an 

equivalent of this member (Kennedy, 1970; Drummond, 1970; Carter and 

Hart, 1977). 

Age/Fossils 

In southeast Devon fossils are rare in this member, being mostly 

confined to comminuted shell material. As discussed above it is at 

least possible that the Top Sandstones Member extends into the basal 

Cenomanian. Orbitoline foraminifera from this member (and also the 

topmost Chert Beds Member) provide equivocal evidence for its age, 

but correlations to the Haldon Hills and also the east indicate an 

earliest Cenomanian age to be likely (see Chapters 5 and 6). 
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CHAPTER 3 SEDIMENTOLOGY AND FAGIES 

3.1 Introduction 
/ 

In this chapter a review of the available literature concerning 

sedimentology is presented. Also a number of sections in south east 

Devon are divided into fades types which, as far as possible, reflect 

the different environments and energy levels which prevailed at the 

time of deposition. Sedimentary logs are provided together with 

descriptions of the rock types, sedimentary structures and other 

salient features. The various sections are then compared and an 

overall model of deposition is proposed. The lithostratigraphy 

proposed in Chapter 2 will be used throughout this chapter and those 

that follow except when referring to previous workers. 

The confusion over nomenclature and the exact stratigraphic position 

of the Gault and Upper Greensand in southern England, which prevailed 

in the early pan of the 19th century (see chapter 2 for discussion), 

was largely settied when the names Gault and Greensand were adopted by 

the Geological Survey in 1839. Most of the work published before this 

date concentrated on the controversy about nomenclature and relatively 

littie information was presented about the character of the rock types 

other than simple lithologic descriptions. After this date the 

published work on lithology and sedimentology can be roughly divided 

between i) discussions about the coeval nature of the Gault and Upper 

Greensand; ii) lithological descriptions of various localities 

sometimes with correlations to other areas; iii) attempts at basinal 

analysis and depositional models; and iv) more general reviews of the 
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available knowledge for a given area. 

3.2 Previous Work 

/ 

3.2.1 The Coeval Nature of the Gault and Upper Greensand 

The first suggestion that the Gault Clay and Upper Greensand were 

lateral equivalents that had been deposited in different environments 

was made, almost as an aside, by Godwin-Austen (1850) when he stated 

that they should be regarded as "arenaceous and argillaceous portions 

of the same zone". However he presented no evidence to support this 

declaration. Despite this observation it was generally thought by 

geologists in the early mid 19th Century that the Gault Clay was an 

important division of the Cretaceous that was overlain by some 

representative of the Upper Greensand, and furthermore it was supposed 

that the Gault Clay was equivalent in age in all areas, while the 

Upper Greensand was always younger. 

The nature of the relationship between the Gault and Upper Greensand 

gradually became clearer through the 19th century. Meyer (1866) 

pointed out that the Gault Clay thinned out to the west and suggested 

that in the region of Lyme Regis it was probably represented by the 

'yellowish-brown sand or Foxmould'. This increasing sand content of 

the Gault Clay to the west was also remarked upon by Strahan (1898). 

Early workers on faunal zonation of the Gault Clay such as de Ranee 

(1868) and Price (1874) enabled later workers to decide which zones of 
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the Gault Clay were present in their areas and to demonstrate that not 

all occurrences of this clay were synchronous. For example 

Jukes-Browne (1892) showed that the Gault Clay of Devizes was 

equivalent to only the lower part of the Gault Clay at Folkestone. 

Jukes-Browne repeatedly discussed the problem of the Gault Clay and 

Upper Greensand being two different facies belonging to one time 

interval (Jukes-Browne, 1892, 1896 and Jukes-Browne and Hill 1900). In 

1892 he pointed out the desirability of a new single name for the two 

rock types and suggested the Devisian. 

Jukes-Browne and Hill (1900) reiterated the need for a single name, 

pointing out that the rocks not only consisted of Gault Clay and Upper 

Greensand but in some areas appeared as 'Malm Rock' (with very little 

quartz sand and glauconite) and in others as red chalky limestone and 

marl ('Red Chalk'). They rejected the use of the French term Albian, 

on the grounds that many of the lithological units found in France 

that they regarded as being equivalent in age to the Upper Greensand 

and Gault Clay in England had been assigned by Barrois (1874) to the 

Cenomanian. Jukes-Browne and Hill also noted that the name Divesien 

had been proposed, and had come into general use, for a division of 

the Oxford Clay. They consequently withdrew Jukes-Browne's previous 

suggestion of Devisian for the Gault Clay and Upper Greensand as they 

considered that the similarity between the names would cause confusion 

and they proposed the name Selbomian which was derived from the name 

of the village from which Gilbert White wrote his letters, later 

compiled as 'The Natural History of Selbome' (see Chapter 2). White 

had made one of the earliest references to the Upper Greensand when he 

described the 'Freestone' of Hampshire, this being a quarryman's term 
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for the 'Malm Rock'. Jukes-Browne and Hill suggested that terms such 

as Gault Clay, Upper Greensand and Malmstone would remain in use for 

lithological descriptions but should be regarded as secondary names of 

no stratigraphic value. 

After 1900 it was generally understood that the Gault and Upper 

Greensand were diachronous and to some extent equivalent in age but 

Jukes-Browne's proposals about nomenclature were not adopted (see 

Chapter 2). 

3.2.2 Lithology and Correlation 

In the 19th century there were many descriptive/correlative 

papers published on the Gault and Upper Greensand many of which are 

mentioned in Chapter 2. In addition the work of Jukes-Browne (1875) 

and Jukes-Browne and Hill (1886) may be mentioned which suggested that 

the Cambridge 'Greensand' was not part of the Upper Greensand but the 

basal unit of the Chalk Marl with the upper part of the Gault Clay 

having been destroyed by erosion and its fauna reworked into the 

overlying Cambridge Greensand. 

On the Isle of Wight the Upper Greensand was divided into the Chert 

Beds and an underlying 'Malm Rock', with the 'Passage Beds' at its 

base passing down into the Gault Clay (Bristow, 1889). The Chert Beds 

were described as alternations of chert and sand underlain in the 

central part of the island by a band of 'Freestone' while the 'Malm' 

consisted of sands with bands or lenticular masses of chert and cherty 

limestone. Bristow presented a number of measured sections both from 

the coast (eg. Compton Bay and Culver Cliff) and inland pointing out 

38 



that the cherts were relatively poorly developed in the east and west 

of the island compared to the south. 

In the Isle of Purbeck and Weymouth areas Strahan (1898) described the 

Upper Greensand lithology as a glauconitic, quartz sand with some 

clay, with cherts common in the upper part while to the west of 

Lulworth a calcareous grit occurred at the top of the Upper Greensand 

which was apparently derived from the west and north-west. Strahan 

also noted the difficulty of observing unweathered material suggesting 

that the Upper Greensand was far more competant when protected from 

leaching. Strahan also presented measured sections from Punfield, 

Lulworth Cove, Durdle Door, White Nothe and Holworth House together 

with notes on lithologies and faunas. Less complete information was 

given from Ringstead, Osmington Mills, Bincombe, Long Bredy and other 

surrounding areas. 

The Upper Greensand of the Branscombe and Beer Head area was described 

bed by bed by Meyer (1874). He gave each bed a number; placing beds 1 

- 3 in the Gault and beds 4 - 9 in the Upper Greensand. 

The Haldon and Blackdown Greensands in the southwest of England were 

described by Duncan (1879) and Downes (1882). The latter described the 

lithologies and faunas of the Blackdown and Haldon Greensands. 

Although his lithological descriptions were cursory and mosdy 

confined to quarrymans terms he did attempt a comparision between 

sections at Blackdown and Haldon in which he correlated the upper part 

of the former with the lower part of the latter. This correlation was 

based upon the similarities in gross lithology and fauna. 
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The most comprehensive work on the Upper Greensand is certainly the 

memoir produced by Jukes-Browne and Hill (1900). After giving a 

general account of the rock types that occurred in their 'Selbomian', 

they went on to systematically describe each area of England where 

they could be found. The memoir was completed with examinations of 

microscopic structure, economic significance of the rock types and 

sections in northern France. There was also a discussion of the 

depositional environments of the Upper Greensand, together with a 

comprehensive faunal list firom the Gault Clay and Upper Greensand. 

Jukes-Browne and Hill divided their 'Selbomian' into 'Lower Gault'; 

'Upper Gault and Upper Greensand (in part)'; 'Merstham or Devizes 

Beds' (Zone of Ammonites rostratus); and the Warminster Beds or Zone 

of Pecten asper and Cardiaster fossarius. Their Merstham or Devizes 

Beds consisted of Marly Clays, Malmstone or Gaize and grey, green and 

yellow sands. The term Malmstone was used to include the malm, 

malm-rock and firestone of other authors and it was defined as a fine 

grained siliceous rock normally containing small amounts of 

glauconite, mica and quartz although the calcium carbonate content 

could vary from 2% to 66%. The calcareous Malmstones (firestones) were 

stated to be much heavier and compact than the low specific gravity 

siliceous types. In addition concretionary nodules of chert could be 

present or the Malmstone could pass into a micaceous sandstone with 

glauconite ('Gaize'). In the south-west of England and in the Isle of 

Wight they noted that grey, green and yellow sands were the most 

important constituent of the lower part of the Upper Greensand, which 

often contained calcareous concretions ('doggers' or 'burr-stones'). 

These sands were reported to be micaceous, glauconitic and, in their 

lower parts, silty. 
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Jukes-Browne and Hill divided their Warminster Beds into three 

lithologies; greensand and sandstone; fine grey sand with layers or 

nodules of chert; and light green sand with small calcareous 

concretions. These beds were said to be confined to the south-western 

and south central counties of England. 

Each area in which the Upper Greensand occurred had a chapter devoted 

to it in Jukes-Browne and HiU's memoir. The section on the Isle of 

Wight contained a number of measured sections with lithological 

details from Gore Cliff, Venmor, St. Boniface Down, Niton. Culver 

Point and Compton Bay and from the sections in the south of the island 

a generalised succession was produced to aid correlation with the 

other sections. It was shown that chens were relatively rare in the 

east and west of the island and the Upper Greensand as a whole was 

thinner. The chapter was concluded with a list of fossils from the 

'Passage Beds' and the Upper Greensand. 

The section on 'South Dorset' included measured sections from Punfield 

Cove, Worbarrow Bay, Lulworth Cove, Durdle Door and Holworth House 

with all the measurements and lithological details being taken from 

the work of previous authors. It was noted, however, that the Chert 

Beds did not occur at Punfield Cove but at Lulworth they were again 

represented. 

Under the heading 'West Dorset, Somerset and Devon' Jukes-Browne and 

Hill described the generalised lithology of the area as fine, 

micaceous sand with clay forming the basal unit, which in the west 

contained lenticular masses of calcareous sandstone. This was 
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succeeded by various sands, which included a rubbly glauconitic 

sandstone horizon and was capped by a coarse, hard calcareous grit 

with cherts occurring below the grit in the west of the area. 

Coastal sections from Golden Cap to Axmouth were described in the 

chapter dealing with 'South Dorset and Devon'. The Upper Greensand in 

this area was broadly divided into basal sands with calcareous 

concretions (the Cowstone Beds), the Foxmould and the Chert Beds. The 

Gault Clay and Upper Greensand were reported to overstep the Jurassic 

succession to the west. 

The sections from Seaton to Sidmouth were described in the chapter 

which Jukes-Browne and Hill devoted to 'South Devon' with lithological 

details given from Whitecliff, Beer, Branscombe and Dunscombe and the 

presence of a synclinal flexure between Seaton and Branscombe was also 

discussed. The absence of the Gault Clay was noted and it was 

suggested that a general westwards thinning of this clay had continued 

until its eventual disappearance. The lowermost glauconitic sands and 

silts, the Foxmould, were shown to rest on red Triassic marls in the 

Branscombe-Seaton area while the Chert Beds attained their greatest 

thickness and were often capped by a chert free sand unit below the 

Cenomanian Limestone. The actual amount of chert recorded within the 

Chert Beds varied widely even over this relatively small area. 

Jukes-Browne and Hill's chapter on 'Devonshire (Inland Sections)' 

described the outcrop around Axminster, Honiton and the Blackdown and 

Haldon Hills. They largely agreed with the correlation put forward by 

Downes (1882). 
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After the publication of Jukes-Browne and Hill's memoir (1900) there 

was very little new work reported on the Upper Greensand until the 

1940's and 1950's. Exceptions to this were Jukes-Browne's own paper on 

the Upper Greensand near Chard (1903) and Boswell's examination of the 

petrography of the Cretaceous rocks of the Haldon Hills (1923). The 

former gave a somewhat generalised section showing the topmost unit as 

a hard, nodular, calcareous grit with a waterwom upper surface 

underlain by a grey sand and sandstone with layers and lumps of chert. 

Below this was a hard, calcareous, glauconitic sandstone, a 

glauconitic sand and a basal fine-grained, grey-green sand which 

contained quartz, glauconite and some mica. 

Boswell's work was largely concerned with detrital heavy minerals 

which he found to be coarse in grain size and abundant in quantity 

with no significant variation in type or abundance either laterally or 

vertically. Tourmaline was the most common heavy mineral with large 

numbers of grains of glauconite, muscovite, andalusite, staurolite and 

locally kyanite. Boswell noted that tourmaline, muscovite, andalusite 

and topaz occurred abundandy in the Dartmoor and Cornish granites but 

suggested that the quantity of staurolite indicated a source area in 

the metamorphic rocks of Brittany. The absence of biotite, hornblende 

and pyroxene was regarded as being due to the decomposition of these 

minerals. 

Wright (1947) wrote an account of the Gault and Upper Greensand of the 

country around Weymouth, Swanage, Corfe and Lulworth in which he 

proposed the zonation of the Gault and Upper Greensand using the zones 

and sub-zones of the Albian Stage, as proposed by Spath (1923-1943), 

on ammonite evidence. Sections were described from Punfield Cove, 
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Worbarrow and Mupe Bays, Lulworth Cove, White Nothe and Osmington. 

Further information was given on St Oswald's Bay, Durdle Cove and some 

inland outcrops from Chaldon and Ringstead to Abbotsbury. 

/ 
Smart (1955) discussed the occurrence of the Upper Greensand in the 

Alton Pancras disrict in Dorset. He described it as consisting of 

fine, green sand which became coarser upwards. The top of the Upper 

Greensand in this area was reported to be a green, hard, nodular 

sandstone with sporadic phosphatic nodules at its highest level. This 

phosphatic horizon was penetrated by fissures which were infilled with 

phosphatic nodules in a matrix of greyish white, calcareous sand. 

Smart placed the Upper Greensand in the Albian and considered the 

fissure-fill to be Cenomanian. 

There was a considerable amount of work published from the 1950's to 

the 1980's on the lithology and correlation of the Upper Greensand of 

southeast Devon and Dorset ( Smith 1957a and b, 1961 a and b; Tresise 

1960, 1961; Wilson et al. 1958; Smith and Drummond 1962; Hancock 1969; 

Kennedy 1970; Drummond 1970; Hart 1971, 1973; Ali 1974, 1976; Jarvis 

and Woodroof 1984; Williams 1986; Garrison et al. 1987; Williams et 

al. 1988. 

Smith (1957a) noted the blocky appearance of the uppermost beds of the 

Upper Greensand and that these beds seemed to be rounded in places, 

presenting the appearance of boulder beds infilled with Cenomaninan 

deposits. These beds were not developed beneath the Cenomanian 

Limestone where its lower division was thinnest or thickest which 

suggested to Smith that thay were blocks washed a short distance from 

the crest of the ridge and rounded by current action. As these blocky 
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beds were infilled with Cenomanian sediments he concluded that some 

movement must have occurred before the limestone was deposited. He 

thought that pebble beds within the Upper Greensand were due to 

penecontemporaneous erosion and thus supported the hypothesis of 

uplift occurring while the sands were accumulating. Smith (1957b) also 

reported on a field meeting in south Devon and Dorset that included 

visits to the Upper Greensand at Beer, Branscombe and Little Haldon. 

An account of the Upper Greensand localities, lithologies and faunas 

to be found in the country around Bridport and Yeovil was published in 

1958 (Wilson et al.). They surveyed the area with augers and proved 

the presence of Gault Clay beneath the Upper Greensand although this 

was not usually seen at outcrop. The Upper Greensand itself was 

divided into the basal Foxmould, Chert Beds and topmost Eggardon (or 

calcareous) Grit. The grit was reported to be Albian in age at its 

base and Cenomanian at its top, these ages being based on sparse 

ammonite evidence. 

Tresise (1960) made a detailed examination of the lithology of the 

Upper Greensand in Wessex. He regarded the Upper Greensand as 

consisting of sands which contained four important components; 

glauconite, chert, limestone and phosphatic nodules. The successions 

found on the Devon coast, the Dorset coast and inland Wessex were 

described with attention being paid to lithological and thickness 

variations. The evidence of current activity found in the higher beds 

of the Devon coast was said to be lacking in east Dorset. 

Tresise introduced the term 'Blackdown Facies' to describe the 

non-calcareous sands which he recorded in an area extending from the 
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Blackdown Hills, eastward to Yarcombe and then south-west to Peak 

Hill, Sidmouth. The lack of Chalk cover was thought to have allowed 

accelerated leaching in this area, resulting in the absence of 

calcareous material. 
/ 

The abundance of glauconite in the Upper Greensand was seen to vary 

considerably and it occurred in a variety of forms. The most common 

form was reported to be dark green, opaque glauconite, which was 

thought to form by the flocculation of a gelatinous precipitate in 

sea-water. 'Pigmentary' glauconite, which stained pebble surfaces, was 

thought to form during periods of low current activity. Similarly, 

tranquil conditions were thought to prevail during the formation of 

glassy grains of glauconite. Glauconite was also said to occur as a 

replacement mineral. 

Phosphaiic nodules were reported to occur in the Wessex Upper 

Greensand in a variety of colours and shapes. These were believed to 

form in conditions of sparse sedimentation and low current activity, 

by the action of a very weak solution of phosphoric acid in sea-water 

on calcium carbonate. 

Smith (1961a) presented a study of the Cenomanian deposits west of 

Beer, south-east Devon, and some information on the underlying Upper 

Greensand was included in this work. Near Branscombe the upper surface 

of the Upper Greensand was seen to be uneven and consisted of what 

Smith regarded as shallow, E-W trending channels produced by current 

scour. He considered that erosion had occurred both before the 

deposition of the Cenomanian and subsequently after the deposition of 

his Division A of the Cenomanian. His examination of the lateral 
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variation in the Cenomanian Limestone also led him to postulate a 

ridge of Upper Greensand at Branscombe Mouth. This ridge would have 

been periclinal, with a limited extent to the north, and of tectonic 

origin. He further suggested that a similar ridge could have existed 

in the Donkey Linhay area to the west of Branscombe Mouth. 

Smith (1961b) reported on the detrital mineralogy of the Cretaceous 

rocks of south-east Devon. He examined the mineralogy of the Upper 

Greensand pointing out the contrast in quartz content between the 

Chert Beds (clO%) and the Top Sandstones (c25%). Smith considered that 

calcarenite would be a more accurate term than sandstone for the Chert 

Beds . His analysis of the Foxmould revealed a heavy mineral suite 

distinct from the Chert Beds and Top Sandstones in that it was 

dominated by zircon. This led him to suggest that direct contributions 

from the Armorican or Comubian granites were small and that most of 

the heavy minerals were derived from pre-Cretaceous sediments, 

probably the New Red Sandstone. The Chert Beds and Top Sandstones had 

heavy mineral suites that were largely dominated by tourmaline. This, 

together with other heavy minerals present, led Smith to suggest that 

granitic rocks supplied the bulk of the mineral content of the Top 

Sandstones and that this may have reflected an uplift of the Comubian 

Massif. 

The 1961 Easter field meeting of the Geologists Association examined 

the Upper Albian and Cenomanian deposits of Wessex and a report was 

written by Smith and Dmmmond (1962). Exposures of the Upper Greensand 

were seen at Dead Maid Quarry near Mere, sections and blocks to the 

east and west of Seaton, Warren Hill near Crewkeme, Storridge Hill 

near Chardstock, Snowdon Hill near Chard, Horn Hill near Beaminster 
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and Evershot. At Dead Maid Quarry calcareous silts with irregular 

masses of chert and impure limestone made up the Chert Beds. Drummond 

suggested that the laminae that were seen to curve over the chert 

masses were the result of differential compaction and not evidence of 

a mass of chert growing within the sediment. 

The field party examined large fallen blocks containing the upper part 

of the Chert Beds at Culverhole Point below Bindon Landslip to the 

east of Seaton. The calcarenite contained 'beekitised' oyster shells 

and irregular masses and slabs often separated by horizons of 

waterwom pebbles of calcarenite. These 'cobble' horizons indicated 

penecontemporaneous erosion but no undisputed chert fragments were 

found to lend credence to a theory of early chert formation. The lower 

part of the Chert Beds in this area was seen to consist of a 

fine-grained calcarenite with no pebble beds or conspicuous 

accumulations of shell fragments. The cherts were of the 'cored' 

variety, that is they had a hard, black centre and a cream, porous 

crust. Smith described the basal Chert Beds as buff calcarenites 

containing siliceous nodules similar to the crust of 'cored' cherts. 

This basal unit was sandwiched within thin layers of glauconite-rich 

sand. It was underlain by a nodular, glauconitic, shelly sandstone. 

Hancock (1969) examined the heavy mineral content of the Cenomanian 

Limestone and also made some mention of the Top Sandstones of the 

Upper Greensand. He concluded that these sands were derived from Devon 

and Cornwall but that the Dartmoor Granite was not the major source. 

This conclusion was at variance with most earlier workers. It was 

based upon the low proportion of euhedral zircons (which suggested no 

primary source nearby), the scarcity of biotite, monazite and zoned 

zircons, the flood of tourmaline compared with zircon and that 90% of 
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the assemblage belonged to the stable minerals tourmaline, zircon and 

rutile. Hancock went on to suggest that the Cornish granites were 

being eroded and contributing material to the Top Sandstones. This was 

based on the widespread occurrence of topaz and pleochroic andalucite 

and the fact that up to 75% of the zircons were unzoned. 

Kennedy (1970) described a large number of sections of the uppermost 

Albian and Cenomanian from locations in the southwest of England. 

Ali (1974,1976) discussed the calcareous sands (his 'blocky 

calcarenite bed' or 'cobble conglomerate bed') at the top of the Upper 

Greensand of the Beer district in south Devon. He suggested that the 

unit had affinities with littoral deposits and that the fissure-fill, 

from the Cenomanian limestone above, could be divided into six 

lithologies that represented the remains of a complete Cenomanian 

succession after repeated erosional events. 

Jarvis and Woodroof (1984) described the top of the Upper Greensand in 

the Beer area as the Small Cove Hardground. This consisted of 

cross-bedded calcarenites penetrated by Thalassinoides burrows. They 

considered that this burrowing, aided by synsedimentary fracturing, 

current reworking and bioturbation, had been responsible for the 

reorientation of some blocks. They agreed with previous workers about 

the penetration of younger sediments but thought that there was no 

evidence of subaerial exposure or the formation of beach deposits. 

They considered that broad shallow troughs and channels in the Upper 

Greensand had resulted in differences in the thickness of the 

overlying deposit. Erosion was then thought to have planed off this 

deposit causing it to pinch-out against 'palaeo-topographic highs'. 

These 'highs' being the result of the activity of a series of N-S 
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faults which passed through Branscombe Mouth, Beer Beach and Axmouth. 

Garrison et al. (1987) described the hardgrounds and coarse horizons 

of intraformational clasts found in the Upper Greensand of southwest 

England. These horizons were demonstrated to have been subjected to 

early diagenetic lithification and, in some instances, to have been 

subsequently exhumed and reworked. Relatively simple hardgrounds were 

said to be succeeded upwards by more complex horizons and this 

progression was thought to reflect increasing water depth. 

During the same period the western oudiers of the Upper Greensand in 

the Haldon Hills were examined by Hamblin (1968), Durrance and Hamblin 

(1969 a and b), Hamblin and Wood (1976) and Selwood et al. (1984); and 

in the Bovey Basin by Edwards (1969 and 1979). 

Hamblin (1968) and Durrance and Hamblin (1969 a,b) examined the 

Cretaceous structure of Great Haldon, Devon. Hamblin gave an abstract 

on mapping in the area in which he stated that the Upper Greensand 

showed a variation in thickness (70-100ft) which was probably due to 

variation in deposition and post-depositional erosion. Durrance (and 

Hamblin) conducted a seismic survey over Great Haldon which revealed 

variations in thickness of between 84m and 16m in the Upper Greensand. 

They concluded that the transgression of the Upper Greensand deposits 

took place over a level surface underlain by Permian breccias. During 

the period of submergence and deposition a series of folds were 

thought to have resulted in highs and basins which accounted for the 

differences in thickness. 

Data on the Upper Greensand of the Bovey Basin was reported by Edwards 
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(1969). In the east of the basin occurred coarse, pebbly, glauconitic 

sands with fossiliferous cherts belonging to the Upper Greensand. 

These were found beneath the Aller Gravels which also contained 

abraded Upper Greensand cherts. 

Hamblin and Wood (1976) discussed the stratigraphy of the Haldon Hills 

and proposed a formal lithostratigraphical classification. 

A number of locations were described and, based upon the geographic 

isolation of this outlier, they proposed the erection of a Haldon 

Sands Formation. This comprised, in ascending order, the Telegraph 

Hill Sands Member, the Woodlands Sands Member, the Ashcombe Gravels 

Member and the Cullum Sands with Cherts Member. The stratotype for 

each member was unfortunately a temporary section at Woodlands. 

The Telegraph Hill Sands Member was described as consisting of poorly 

consolidated, green and red, well-soned, glauconitic sands with a 

locally developed basal conglomerate. The Woodlands Sands Member was 

comprised of a variable succession of clayey sands, shell rich 

horizons and siliceous concretions which when compared with the 

underlying member was found to be less well sorted, clay rich and 

coarser. The Ashcombe Gravels Member had 'alternating sandy, quanz 

gravels and coarse, gravelly, quanz sands. The three gravel horizons 

were reponed to be traceable over long distances and Hamblin and Wood 

suggested that they represented a significant change in sedimentary 

environment, the finer grade material having been winnowed out by 

cunent action. On the western side of Haldon the gravels were seen to 

be thicker and less well soned which they considered to indicate that 

less winnowing had occuned due to the rapid accumulation of sediments 

nearer to their source on the Dartmoor Massif. The Cullum Sands with 
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Cherts Member consisted of green and brown sands with cherts of 

varying vitrification and occassional clay and pebble bands. A 

comparison was drawn between the tourmaline-rich, coarse sands at the 

top of this member and the Lower Cenomanian Wilmington Sands. 

Finally Hamblin and Wood used their observations to attempt 

correlations between the Haldon area Upper Greensand and that of the 

east Devon coast(see Chapter 6 for further discussion). 

Edwards (1979) reported on the limestone horizons found in the Upper 

Greensand at Wolborough, south Devon. Two of these limestone types 

were exposed in a trench in 1974 and the third was collected as loose 

erratic material. The trench section was divided into units 1 to 8. 

Bed No. 6 was a 'pale greenish-yellow, glauconite speckled, rubbly 

limestone' which was highly fossiliferous. It consisted of detrital 

quartz, tourmaline, muscovite, glauconite and bioclasts cemented by 

sparite and patches of micrite. Bed No. 8 was a yellowish-grey, sandy 

limestone being relatively unfossiliferous. It contained detrital 

quartz, tourmaline and bioclasts and was cemented by sparite. The 

third limestone type was a sandy, intraclastic biosparrudite (with 

some non-intraclastic samples). Edwards thought that the intraclasts 

were intraformationai and represented a period of higher energy 

deposition. 

The memoir for the country around Newton Abbot (Selwood and others, 

1984) expanded on the information presented on the Upper Greensand of 

the area as given by Hamblin and Wood (1976). Details of lithology 

were given from Bullers Hill Quarry, CuUum Goyle, Woodlands Goyle, 

Telegraph Hill and various other temporary roadwork cuttings, 
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Summercombe Wood, Smallercombe Goyle, Babcombe Copse, Kingsteignton 

Bypass and Wolborough. 

Dingwall (1971), Smith and Curry (1975) and others examined the 

geology of the English Channel. Albo-Aptian deposits were said to 

occur in the central and eastern portions of the English Channel 

although Dingwall pointed out that seismics could not separate Lower 

and Upper Greensand and that no Gault Clay was detected. Furthermore 

there appeared to be no reflecting differences between the Chalk and 

Upper Geensand. 

3.2.3 General Reviews 

In the 20th century there have been a number of general geological 

reviews which included the Upper Greensand among which may be 

mentioned Woodward and Ussher (1911): Sidmouth and Lyme Regis; Ussher 

(1913): Newton Abbot; White (1921): Isle of Wight; Chatwin (1960): 

Hampshire Basin; Edmonds et al. (1975): South West England; and Hart 

(1982): Devon. 

3.2.4 Basinal Analysis and Depositional Environments 

Many of the publications mentioned in the previous section made some 

reference to depositional environments and general basin analysis but 

those described below are considered to be the most important. 

One of the earliest references to a specific depositional environment 

for the Upper Greensand was made by Duncan (1879) in his study of the 

Haldon Hills. He suggested that deposition in this area had occurred 
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in a high energy, shallow marine environment. This suggestion was 

incorporated into the overall model put forward by Jukes-Browne and 

Hill (1900) for the physical and geographical conditions under which 

the Gault Clay and Upper Greensand were deposited. 

They considered that south-east England had suffered greater 

subsidence than the south-west, which accounted for the shallower 

water facies in the south west. Using the present heights above 

sea-level of the base of the Upper Greensand in south-west England it 

was suggested that Exmoor, with the Brendon and Quantock Hills formed 

an island or islands during Upper Greensand times. They suggested that 

the 'Selbomian Sea' was bordered by Dartmoor and that the shoreline 

stretched from Devon to the north of the peninsular of Cotentin. The 

muds of the Gault Clay were thought to have originated in rivers 

draining the 'Belgo-Germanic' land. The muds would have been 

transported by currents from the south-east "so as to deposit its load 

in the eastern and central parts of the 'Anglo-Gallic Basin'". Younger 

'Malmstone' and 'Gaize' deposits were thought to have formed when the 

supply of mud diminished. 

Tresise (1960) reported a thinning of the Chert Beds at Little Beach, 

near Branscombe and ascribed this to intra-formational erosion. This 

erosional phase was also invoked to explain the 'brecciated beds' seen 

in the area. On the Dorset coast Tresise described the eastward 

thinning of the Upper Greensand which, he felt, was partly due to the 

corresponding thickening of the underlying Gault Clay and partly to 

the condensation of the upper beds of the Upper Greensand. He pointed 

out the absence of the Chert Beds in the Isle of Purbeck and their 

reappearance and gradual increase in thickness to the west indicating 
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the presence of a 'Mid-Dorset Swell'. 

Tresise constructed a series of lithofacies maps for the Upper 

Greensand based on distance below the Chalk. He used these maps to 
/ 

give a history of deposition but in places seemed to confuse 

diagenetic events with sedimentary events, even though he had 

previously pointed out the difference. Furthermore, as subsequently 

pointed out by Drummond (1961) he used the diachronous base of the 

Chalk as his datum and thus largely invalidated them as lithofacies 

maps. 

Smith and Drummond (1962) pointed out the easterly thining of the 

Chert Beds at Snowdon Hill and Warren Hill which continued, with the 

result that they did not occur at Evershot. At this locality the top 

calcareous sandstone rested on the 'Exogyra Rock'. This thining of the 

Upper Greensand was believed to be the result of late Albian and early 

Cenomanian uplift and submarine erosion across a 'Mid-Dorset Swell'. 

The axis of this swell extended NW-SE from Stoke Wake to the Isle of 

Purbeck. 

The transgressive nature of the Cretaceous Sea in south-west England 

was discussed by Hancock (1969). The progressive overstep of sediments 

was pointed out which during the Cretaceous extended from the Wessex 

Basin in the east onto the Comubian Massif in the west. He suggested 

that the Haldon Hills and Bovey Basin outcrops marked the western 

shore during the Albian but mentioned its probable extent northwards, 

almost to the Mendips. 

Kennedy (1970) agreed with Hancock (in House, 1963) and Drummond (in 

55 



Smith and Drummond, 1962) about the presence of a Mid-Dorset Swell 

which ran southwestward from the Evershot-Ansty region to the east of 

the Isle of Purbeck. He considered that this swell controlled the 

distribution of Lower Cenomanian and Upper Greensand deposits with the 
/ 

latter thinning out across the structure. Furthermore he demonstrated 

that the base of the Chalk progressively became younger to the west of 

the area. 

Drummond (1970) thought that the marked thining of the Albian and 

Cenomanian deposits in Wessex proved the existence of the mid-Dorset 

swell and he considered that movements along the swell resulted in the 

cessation of Mortoniceras inflatum Zone sedimentation and caused 

condensation and erosion in the succeeding Stoliczkaia dispar Zone. 

These movements were also thought to be largely responsible for the 

erosional break between the Upper Greensand and the Lower Chalk. 

Some of the publications reviewed in this section will be subsequently 

discussed in more detail where they are particularly relevant. 

3.3 Facies Descriptions 

3.3.1 Facies Definition 

The term facies has been used in many different senses (see Moore, 

1949; Weller, 1958; Teichert, 1958; Krumbein and Sloss, 1963 and 

Middleton, 1973 and 1978; Walker, 1984 for discussion). Middleton 

(1978) quoted de Raaf et al. (1965) as an example of the correct use 

of facies. These authors defined each facies objectively using "the 

total field aspect" of the rocks and then made environmental 
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interpretations of each facies. Middleton considered this methodology 

to be in accordance with the intentions of Gressly (1838) when he 

propounded the concept of facies. Teichert (1958), however, after 

careful referral back to Gressly's work and that of many other 
/ 

European geologists in the 19th century considered that the original 

intention regarded facies as the sum total of all the primary 

characteristics of a sedimentary rock from which the environment of 

deposition may be induced. This latter definition of facies was 

adopted for use during this work, and in line with Harms et al. 

(1982), it was considered that facies divisions should be kept broad 

in such a way that small differences were not used to produce a 

plethora of facies types. 

The recognition of those attributes used for facies determination 

depended on observation and to a certain extent were subjective in the 

sense that the observer decided which attributes were important. In 

order to remove this potential subjectivity as far as possible the 

definition of facies types was arrived at by means of a checklist. The 

attributes used for this checklist were taken from the descriptions of 

each unit which were made from field observations, hand specimens and 

thin sections. 

The justifications for the selection or non-selection of the 

attributes are presented below. 

Colour - This attribute was not used as it is susceptible to variation 

with local diagenetic and weathering events. 

Composition - Obviously a large number of categories could have been 

57 



used for this attribute, involving all occurring niinerals and their 

various percentages. As all units were not examined in thin section 

the occurrence of minerals of less than 20% was generally not 

included. The compositional elements used were: clay minerals (>63 

fraction), quartz, detrital calcite and glauconite. These elements 

were split into arbitary percentage classes (20-40%; 41-60%; 61-80%; 

81-100%) in order to reflect their importance in a given unit. 

Composition was included not because it is a direct indicator of 

depositional events but because it is linked to grain size and mineral 

availability. However some authigenic minerals such as glauconite do 

indicate environment. 

Cement - The subjective categories of poorly, moderately and well 

cemented were not used as these were both not measurable objectively 

and liable to be affected by local weathering conditions. The mineral 

responsible for cementation was not used as an attribute as it would 

not reflect a depositional event. 

Maximum Grain Size - This parameter was used as it is a reflection of 

the energy level involved in the depositional event. Where thin bands 

occurred within units these were recorded seperately. 

Sorting - Used in the slightiy subjective categories of very poorly 

sorted, poorly sorted, moderately sorted and well sorted. This feature 

also reflected the energy level involved in the depositional event. 

Grain Shape - Grain shape does not directiy reflect the depositional 

environment of a given unit but is a measure of the sedimentary 

history of a given mineral grain taking into account it's hardness and 
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other characteristics. This parameter was, therefore, not used as an 

attribute. 

Bed Contacts - The type of bed contacts between units are a direct 

reflection of the depositional environment prevailing when these units 

are laid down. These parameters were therefore used as attributes. 

Sedimentary Structures - Obviously important as by definition they 

reflect depositional events or events immediately following 

sedimentation. 

Bioturbation - Not in itself an indicator of depositional mechanism 

but an important indicator of rate of sedimentation and overall 

depositional environment (Seilacher, 1967, 1973) and as such was used 

as an attribute. 

Comments - Where observations were made that did not fit into the 

above categories but were felt to reflect depositional mechanisms 

these were used as attributes. 

3.3.2 Location Details 

Sections in the Wessex Greensand Formation were examined from the 

following localities: 

Branscombe Mouth to Beer Head and Pounds Pool; located at SY210882 to 

SY229885 (Fig. 3.1). This section is designated as the type section 

for both the Foxmould Sands Member and the Chert Beds Member. It is 

located on the coast to the east of Branscombe Mouth and with a low 

tide can be examined as far as The Hall at the eastern end of Pounds 

Pool. The Wessex Greensand Formation in this area rests on the red and 

59 



i; HJ JtlfOJiMff an MOIIMOM 

n o . 3.1: LOCATION MAP: BRANSCOMBE MOUTH TO BEER HEAD AND POUND'S 
POOL AND WHITECLIFF, SEATON. 
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green clays of the Triassic Mercia Mudstone Formation but the actual 

contact is often obscured by slumped and sUpped material which has a 

heavy vegetation cover. As far east as the weathered Chalk peaks, 

known as 'The Pinnacles', direct access to the Wessex Greensand is 
/ 

difficult and is confined to small cliffs on the foreshore. From 'The 

Pinnacles' to the eastern end of this area access is generally good 

with only one gap in the succession that is the result of slumping. 

There is a dip of about eight degrees to the east which brings 

progressively higher beds of the Wessex Greensand to beach level until 

at the eastern end of Pounds Pool the junction with the overlying 

Cenomanian Limestones is accessible. 

Kempstone Rocks, Dunscombe; located at SY881161 (Fig. 3.2); situated 

to the west of Branscombe Mouth approximately half way along the 

coastal footpath to Sidmouth. Only the topmost beds of the Wessex 

Greensand were examined. 

Whitecliff, Seaton; located at SY894234 (Fig. 3.1); coastal section 

which allows the examination of the Chert Beds Member and the Top 

Sandstones Member at very low tide but most of the Foxmould Sands 

Member is inaccessible due to slumping. 

Small Quarry, Dunscombe; located at SY882157 (Fig. 3.2); situated to 

the west of Branscombe Mouth on the foot path to Dunscombe which 

leaves the coastal path and although it is partially overgrown a 2m 

section is accessible. 

Graphic logs were drawn for each of these localities (Figs 3.3, 3.4, 

3.5 and 3.6) and the rocks were then categorised into facies types 
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HG. 3.2 LOCATION MAP: KEMPSTONE ROCKS AND SMALL QUARRY, DUNSCOMBE. 
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which are described below. 

3.3.3 Facies 1 (Fig 3.7) 

/ 

Description: Green and grey, calcareous, glauconitic sands with a high 

(>20%) clay content. Generally the quartz content is 41-60%, the 

maximum quartz grain size is 250,u., it is well sorted and moderately 

to well rounded. 

Bed bases are planar or not seen, no sedimentary structures are 

evident, there is a high degree, of largely horizontal, bioturbation 

and common scattered shell debris (Fig. 3.8). The serpulid Rotularia 

concava (J. Sowerby) occurs commonly often with Exogyra sp.. 

In thin section (Fig.3.9) the dominant detrital mineral is quartz with 

glauconite and calcite as the other major constituents (after mud has 

been removed). Calcite cement occurs in most of the samples and the 

absence of cement in some samples could be due to recent weathering. 

In some samples evidence of corrosion of quartz grains can be seen and 

some quartz detritals show rutile and acicular tourmaline inclusions. 

Rock fragments of both megacrystalline and microcrystalline quartz 

occur and some of these grains show undulose extinction indicating 

that the quartz has been strained and came from a metamorphic source. 

Calcite generally occurs as organic fragments and glauconite as 

rounded grains which may show signs of corrosion. Muscovite, zircon 

and plagioclase feldspar occur as accessory minerals and there are 

rare tourmaline, biotite, rutile, sphene and microcline feldspar 

grains. 
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n c . 3.7: FAaES 1: FOXMOULD SANDS MEMBER. BRANSCOMBE. 
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FIG. 3.8: FACIES 1: FOXMOULD SANDS MEMBER. BRANSCOMBE. 

BIOTURBATION AND THE SERPULID Rotuloria concava. 

FIG. 3.9: FACIES 1: FOXMOULD SANDS MEMBER, BRANSCOMBE. 
THIN SECTION SHOWING DETRITAL QUARTZ AND CALCITE 
AND A LARGE GLAUCONITE GRAIN. ( F . O . V . 6 m m ) . 
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Variation: There is a certain amount of variation in the percentage 

composition of the major minerals; quartz content may be 20-40%, 

glauconite may be 20-40%, clay content may be 41-60% and shell debris 

is rare in some beds or occurs in discontinuous horizons. Quartz 

maximum grain size may be as small as 180,u or as large as 350,u. Some 

beds belonging to this facies contain fish scales and teeth and/or 

unidentified plant fragments (up to 0.5m long) in the form of black 

carbonaceous woody material more or less replaced by pyrite and 

marcasite. Marcasite nodules may also be seen in some beds. Bed 

thickness varies from 0.2m to some 4m. 

Association: Strongly associated with Facies 2 (Fig.3.10) 

Interpretation: The presence of planar bases and high clay content 

together with marine macrofossils and glauconite indicated a 

relatively low energy, marine environment. 

This heterolithic facies, either mixed sand and mud or mud dominated, 

suggests that the suspension deposition of muds was the normal 

fairweather process of sedimentation (Aigner and Reineck, 1982). This 

low deposition rate together with low sediment transport rates and 

fairly low energy bottom conditions would have provided optimum 

conditions for glauconite formation (Hein et al.,1974). This probably 

proceeded by the chemical alteration of faecal pellets and/or clay 

minerals while trapped in a moderately reducing microenvironment. This 

is further suggested by the presence of marcasite and pyritised plant 

debris (Deer et al., 1966). The water depth was probably 30-2000m and 

it's temperature less than 13 degrees celcius (Porrenga, 1967). 

Further constraints on the water depth are provided by the 
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FIG. 3.10: FACTES ASSOaATIONS: DIFFERENCES BETWEEN OBSERVED 

NUMBER OF TRANSITIONS AND PREDICTED NUMBER OF 

TRANSITIONS ASSUMING RANDOM DISTRIBUTION: FOR SECTIONS 

AT BRANSCOMBE, DUNSCOMBE AND SEATON. 
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Foraminifera which suggest a water column of 50-2(X)m (Chapter 5). 

In this type of environment periodic storm events often result in the 

deposition of thin (l-5cms) sandstone interbeds from suspension, sand 

lenses formed by current or wave processes and l-3cm thick linsen 

bedding (Reading, 1978; Aigner, 1985). If this was the case here no 

evidence now remains in this facies as the intense bioturbation would 

have completely destroyed the thin sandstone structures and thoroughly 

mixed the sediment. This mechanism might, however, account for the 

clastic content of the sediment. 

The largely horizontal burrowing indicates a preponderance of sediment 

feeders over suspension feeders (Frey, 1975) which in turn suggests 

deep water or low energy conditions (Seilacher, 1967). The abundance 

of bioturbation indicates a high organic content in the sediment which 

of itself is independent of water depth (Frey, 1971). The plant debris 

consisted of woody material, now largely pyritised, that had probably 

floated for some time, became waterlogged and sank to be incorporated 

into the sediment. 

Whether or not the thin sand bodies postulated above occurred in this 

depositional environment the presence of both sand grade and clay 

grade material can be used as a guide to bottom current/wave mean flow 

velocity. Diagrams which depict the relationships between sediment 

size, mean flow velocity, bed phase boundaries and water depth are 

usually constructed largely using data collected from flume 

experiments. Necessarily this means that measurements are made at 

relatively shallow depths, due to the physical constraints on flume 

size, and it should be realised that extrapolating bed phase 
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boundaries for much greater depths is dangerous (Harms et al., 1982). 

It is known that bed phase boundaries trend upward and to the right in 

depth/velocity diagrams (Fig.3.11) and that, therefore, the mean flow 

velocity needed to produce any given bed phase will be higher at 

greater flow depths. Bearing these limitations in mind some idea may 

be gained of the mean flow velocities extant in the depositional 

environment represented by Facies Type 1. 

Other evidence suggests that the water depth was measurable in tens of 

metres and thus using Fig. 3.12 it can be seen that a mean flow 

velocity in excess of 20cm/sec would be needed to produce any movement 

of the sand grade material in this facies. Using Fig. 3.11 and 

remembering constraints of extrapolation to greater depths it can be 

seen that flow velocities in excess of 20cm/sec acting on sediment of 

0.25mm diameter might be expected to produce small ripples, of the 

type postulated, with the limited amount of sand available. 

Occcurrence: Occurs in the Foxmould Sands Member of the Branscombe and 

Seaton sections; see Figs 3.3 and 3.4. 

3.3.3 Facies 2 (Fig.3.13) 

Description: Grey, clay-free, sands and impure limestones. Generally 

the maximum quartz grain size is 180,u or 250,u. Calcitic debris is 

common and the sediment is well or moderately sorted. There is 

relatively little glauconite. Sedimentary structures are locally 

common and include parallel laminae (Fig. 3.14) and/or small 

cross-beds and/or small symmetrical ripples (Fig. 3.15). Bed bases are 
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FIG. 3.12: SEE-VELOCITY DIAGRAM FOR FLOW DEPTHS OF 18-22CMS. ALL DATA 

ADJUSTED TO A WATER TEMPERATURE OF 10 DEGREES C. (AFTER 

HARMS, 1982). 
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n c . 3.13: FAQES 2: FOXMOULD SANDS MEMBF-R, BRANSCOMBE. 
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FIG. 3.14: FAQES 2: FOXMOULD SANDS MEMBER. BRANSCOMBE. 

PARALLEL LAMINAE AND WAVE RIPPLES. 
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FIG. 3.15: FACIES 2: FOXMOULD SANDS MEMBER, BRANSCOMBE. 
SMALL WAVE RIPPLES . 

FIG. 3.16: FACIES 2: FOXMOULD SANDS MEMBER. BRANSCOMBE. 
IMPURE LIMESTONE WITH Rotuloria concova. 
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planar or erosive. Large numbers of serpulid worm tubes are often seen 

aranged in horizontal layers (Fig.3.16). 

The impure limestones are bound by a secondary calcite cement but may 

contain close to 50% quartz detritals (Fig.3.17), whereas the sands 

vary from calcite cement to silica cement to almost no cement at all. 

Micas are present in accessory amounts but there is relatively little 

glauconite compared with Facies Type 1. The detrital quartz present in 

the samples is medium to fine-grained, fairly well-sorted and 

subangular to subrounded, although some samples showed a predominance 

of subangular grains. 

Variation: Not all beds show sedimentary structures. Some of the sandy 

units contain vertical burrows (Fig. 3.18). Some of the impure 

limestones seen in this facies may be traced laterally as they grade 

into well cemented calcareous sandstone and then into an uncemented 

calcareous sand. Bed thickness varies from some cms to about Im. 

Association: Strongly associated with Facies 1 (Fig. 3.10). 

Interpretation: The low clay content, erosive bases and sedimentary 

structures seen in this facies indicate a relatively moderate to high 

energy depositional environment. 

This heterolithic facies is sand dominated although in some instances 

the bed could be dominated by calcite clasts rather than quartz. This 

type of deposit is regarded as being deposited from suspension and/or 

as bedload and is commonly inferred to be the product of intense storm 

conditions. In addition there may be variable reworking by current and 
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HG. 3.17. FAQES 2: FOXMOULD SANDS MEMBER. BRANSCOMBE. 

THIN SECTION SHOWING QUARTZ DETRITALS, GLAUCONTTE 

AND CALCTTE CEMENT. (F.O.V. 1.2 mm). 
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nc. 3.18: FAQES 2: FOXMOUU) SANDS MEMBER. BRANSCOMBE. 

VERTICAL BURROWS. 
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wave ripples. 

The beds observed in Facies type 2 often display parallel laminae 

which usually reflects upper flow regime conditions with possibly some 

deposition from suspension as the sand is lifted into the water column 

either by unidirectional currents or wave action (Reading, 1978; 

Allen, 1982, 1984). 

The ripples show a variation in crest height (l-7mm) but are fairly 

evenly spaced (crest spacing 25-28mm). Individual ripples are 

symmetrical in cross-section but vary from a well rounded form to a 

flattened rounded form. This variation occurs both from ripple to 

ripple and along the crest of individual ripples. The ripple crest 

lines are parallel to subparallel and indicate water motion along a 

NW/SE vector. 

The features exhibited by the ripples suggest both wave and current 

genesis (Amos and Collins, 1978; Clifton, 1976; Allen, 1982 Allen, 

1981) that is they have a well rounded symmetrical form but show 

changes in crest height along their length. If an open coast and deep 

water wave are assumed the symmetric form indicates a water depth of 

>5m. In fact the depth was probably much greater, as indicated by the 

apparent high glauconite production seen in Facies Type 1 which occurs 

both above and below the rippled beds. The relative scarcity of 

burrows could be explained by the lack of mud and therefore of organic 

material available as food. The beds of Facies Type 2 were presumably 

too thick to be reworked by the resident infauna in the time available 

before further burial and it seems probable that after resumption of 

Facies Type 1 conditions the infauna recolonised the muds from further 
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seawards. 

The probable overall environment of formation for this facies was a 

high energy storm event generating offshore bottom currents and large 

onshore waves which reached below the normal wave base to the 

sediment/water interface (Reading, 1986; Aigner and Reineck, 1982; 

Aigner 1985). The currents probably carried a flood of detrital quartz 

and carbonate grains which were laid down in upper flow regime 

parallel laminae onto the eroded sea-floor (Allen, 1984). As the 

strength of the offshore currents diminished the bed tops were 

subjected to some current and wave reworking before the wave base 

returned to its normal position in the water column where it was 

unable to directly influence the bottom sediments. 

Where increased clay content is observed towards the top of these 

units it probably reflected the return to normal bottom conditions as 

clay material lifted into the water column settled back out of 

suspension (Aigner, 1985). The cemented vertical burrows occasionally 

observed may represent attempts by suspension feeding organisms to 

colonise the substrate but presumably this became an unsuitable 

environment for them when mud deposition resumed. 

Referring to Fig. 3.12 it may be seen that in order to produce upper 

plane bed parallel laminae in the range of sediment sizes found in 

this facies a mean flow velocity of over 60cm/sec would be necessary 

and in the larger grain sizes over 80cm/sec. These velocities are 

greater than those for normal condition currents (Fig. 3.19) and 

suggest storm surge conditions involving both bottom currents and wave 

action. 
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Occurrence: Occurs in the Foxmould Sands Member of the Branscombe 

section; see Fig.3.3. 

3.3.3 Facies 3 (Fig. 3.20) 

Description: Grey, calcareous, medium grained, moderately sorted 

sandstones which may be packed with shell fragments and/or exhibit 

linear concentrations of glauconite grains. Beds have erosive bases 

and contain hard, irregular, hollow concretions suggestive of decapod 

burrows. Iron stained veins are common. 

Variation: Beds vary in thickness from 0.4m to 0.6m.. Shell debris may 

be abundant or rare. 

Association: No marked association due to low occurrence. 

Interpretation: The presence of erosive bases and the lenses and 

'stringers' of coarse sediment suggests a relatively moderate to high 

energy environment. 

This facies appears to be similar to Facies Types 9 and 5 and the 

processes involved in the formadon of the coarse lenses and 

'stringers' were probably those described for Facies Type 8 with 

Facies Type 3 probably representing a more distal expression of Type 

8. 

Referring to Fig. 3.11 for an approximation of the mean flow 

velocities involved in the deposition of this facies suggests that the 

bulk of the beds were laid down in velocities greater than 30cm/sec 
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nC. 3.20: FACIES 3: FOXMOULD SA>fDS MEMBER, BRANSCOMBE. 
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while the coarser horizons were deposited by higher velocities of the 

order of Im/sec. These figures are extremely tentative as no internal 

sedimentary structures were observed that could be used as a guide to 

the type of deposition. 
/ 

Occurrence: Occurs in the Foxmould Sands member of the Branscombe 

section; see Fig. 3.3. 

3.3.3 Facies 4 (Fig. 3.21) 

Description: Coarse grained, well rounded, glauconitic sands with 

abundant organic debris and sub-rounded clasts of a medium grained 

sandstone with a much lower glauconite content. Small encrusting 

bryozoa can be seen near the irregular bed top and the bed base is 

erosive. 

Variation: Only one bed visible for a limited lateral extent. 

Association: No marked association due to low occurrence. 

Interpretation: The erosive base, large grain size, poor sorting and 

the presence of abundant intraformational clasts all suggest 

relatively high energy conditions. 

This facies is sand dominated but displays no internal structure being 

essentially made up of a jumble of partially rounded intraformational 

clasts infilled with coarse sand. The presence of encrusting bryozoa 

on the irregular bed top suggests that sedimentation ceased for some 

time allowing the suspension feeders time to colonise. 
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FIG. 3.21: FACIES 4: FOXMOULD SANDS MEMBER, BRANSCOMBE. 
SHOWING ABUNDANT SHELL DEBRIS AND INT R AFORMATIONAL CLASTS. 
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FIG. 3.22: FACIES 5: CHERT BEDS MEMBER. BRANSCOMBE, 
CALCAREOUS SANDS WITH 'DECAPOD' BURROWS. 
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Local erosion must have occurred to produce the intraformational 

clasts and the energy required to create these clasts and transport 

them must have been considerable. They probably represent sediment 

that was not fully cemented and thus relatively easily rounded. Using 

Fig. 3.11 as a guide it is probable that bottom mean flow velocities 

in excess of Im/sec were involved and these were probably generated by 

extreme storm siu"ge wave and current conditions. 

Occurrence: Occurs in the Foxmould Sands Member of the Branscombe 

section; see Fig. 3.3. 

3.3.3 Facies 5 (Fig. 3.22) 

Description: Massive, buff calcareous sands which are moderately 

sorted and medium grained. They have erosive or irregular bases and 

display patches and horizons (l-3mm thick) of coarse quartz grains, 

glauconite and heavy minerals which may persist laterally or form 

anastomosing patterns. The 'decapod burrow' concretions seen in facies 

9 and 3 are locally common. The quartz detritals seen in this 

calcarenite tended to be angular and etched (Fig. 3.23). Glauconite 

was relatively rare and 'cherty' microquanz grains occurred 

especially in horizons that had an incipient quartz cement. Abundant 

comminuted calcitic debris was present together with some larger shell 

debris. 

Variation: This facies may contain nodular /tabular dark brown to 

black cherts (Figs 3.24, 3.25). These cherts tend to be laterally 

impersistant and often display a hard white envelope of siliceous 

material. Shell fragments, bimodal cross-sets, parallel laminae and 
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FIG. 3.23: FACIES 5: CHERT BEDS .MEMBER. BRANSCOMBE. 
THIN SECTION SHOWING ETCHED. ANGULAR QUARTZ AND CALCITE 
DEBRIS (F.O. V. 1 . 2 mm ) . 

FIG. 3.24: FACIES 5: CHERT BEDS MILMQER. BRANSCOMBE. 
IRREGULAR CHERT BED. 
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nC. 3.25: FAQES 5: CHERT BEDS MEMBER. BRANSCOME. 

DISCONTINUOUS CHERTS. 
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coarse, well rounded quartz grains are all seen preserved within 

cherts (see Chapter 4). Shell debris is seen in varying amounts 

together with echinoid spines and bryozoan fragments. Some beds appear 

more nodular than massive and some are coarser grained and well 

sorted. 

Association: No marked association (Fig. 3.10). 

Interpretation: The erosive bases, sedimentary structures and coarse 

'stringers' all suggest a moderate to high energy environment. 

This clastic facies has elements of both the cross-bedded and 

flat-bedded subfacies. The small trough cross-sets preserved within 

cherts probably represent megaripples and they can be seen in some 

instances to be bimodal, suggesting a tidal origin. The parallel 

lamination may have been wave and/or current formed under high energy 

conditions. A discussion of the origin of the lenses and 'stringers' 

of coarse material is to be found in the analysis of Facies Type 8. 

Using Fig. 3.11 a mean flow velocity of around 80cm/sec would have 

been needed to produce these structures with velocities in excess of 

Im/sec needed to produce the coarse horizons probably with an element 

of winnowing. 

The overall picture for this facies is of a moderate to high energy 

bottom environment with both tidal and stronger storm surge currents 

transporting the calcarenite as megaripples and by suspension to 

produce the parallel laminae. The coarse horizons represent relatively 

short lived higher energy events while the presence of 'decapod' 
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burrows suggests that bottom conditions could be relatively stable at 

least long enough for the burrow-making organisms to colonise the 

area. 

/ 

Occurrence: Occurs in the Chert Beds Member of the sections at 

Branscombe and Seaton; see Figs 3.3 and 3.4. 

3.3.3 Facies 6 (Fig. 3.26) 

Description: Coarse grained, very poorly sorted sands/calcarenites 

(approximate composition 20-40% quartz; 61-80% detrital calcite) with 

abundant, large shell fragments and debris (Fig 3.27). Beds in this 

facies tend to fine upwards and have highly erosive bases (Fig. 3.28). 

Variation: Cross-bedding may be seen in beds belonging to this facies. 

Around 0.3m thick (Branscombe). 

Association: No marked association (Fig. 3.10). 

Interpretation: The coarseness of the sand, the poor sorting, the 

abundance of coarse shell debris and the erosive bases to the beds 

together suggests a high energy depositional environment. 

The fining upwards indicates a gradual decline in energy level which 

is supported by the parallel laminae near the base of the bed giving 

way upwards to barely discemable, small, trough cross-sets (10cm 

maximum set thickness) (Allen, 1983). 

Using Fig 3.11 it seems probable that maximum velocity flows of the 
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nc. 3.26 FAQES 6: CHERT BEDS MEMBER. BRANSCOMBE. 

STORM UNTTS. 

HG. 3.27: FACIES 6: CHERT BEDS MLMBER. BRANSCOMBE. STORM UNTT. 
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FIG. 3.28. FACIES 6: CHERT BEDS MEMBER, BRANSCOMBE. 

EROSIVE BASE OF STORM UNIT. 
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order of Im/sec were involved at the outset of this energy event which 

then declined in intensity. A high energy storm event was probably 

responsible for these deposits either by storm waves 'touching bottom' 

and creating a lag coquina deposit (Brenner and Davis, 1973, Aigner, 

1985) and/or by means of an offshore storm surge density current, 

probably in conjunction with wave activity, being erosive, winnowing 

and transporting sediment and organic debris from nearer shore 

(Walker, 1979). 

Occurrence: Occurs in the Chert Beds Member of the sections at 

Branscombe and Seaton; see Figs 3.3 and 3.4. 

3.3.3 Facies 7 (Fig. 3.29) 

Description: Irregular, nodular/cobble beds with erosive bases. The 

matrix between the cobbles consists of coarse, poorly sorted sands 

with angular/sub-angular quanz grains, glauconite and heavy minerals. 

The nodules largely consist of calcareous detrital material, the bulk 

of which is fine to medium grained, fairly well sorted and subangular 

to subrounded (Fig. 3.30). Individual grains of quartz are often 

etched and corroded. There is also a small amount of glauconite, rare 

feldspar (usually being replaced by calcite), rutile, sphene, mica and 

polycrystalline quartz rock fragments which often show undulose 

extinction and have numerous inclusions and vacuoles which suggests a 

metamorphic source. In addition calcite grains are found which have 

been partially replaced by microquartz crystals. 

The matrix between the nodules is made up of two distinct sands; a 

light grey calcarenite which exhibits varying degrees of calcite 
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FIG. 3.29: FAQES 7: CHERT BEDS MEMBER, BRANSCOMBE. 

NODULAR, CALCAREOUS SANDS. 
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FIG. 3.30. FACIES 7; CHERT BEDS MEMBER, BRANSCOMBE. 

THIN SECTION SHOWING CALCITE AND QUARTZ DETRITALS 

(F.O.V. 1.2mm). 
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cementation and a second sand type which contains relatively little 

calcite, is poorly sorted, poorly cemented and contains large numbers 

of coarse, rounded to subrounded quartz grains (Fig. 3.33). This sand 

also often contains abundant coarse shell debris (Fig. 3.31). 

Variation: The beds in this facies vary in thickness from 0.5m to 1.2m 

(Branscombe). The amount of shell debris varies and it may occur in 

extremely shell-rich horizons. The cobbles vary in size from <lcm. to 

30 cms. Fish teeth may be seen in the matrix sands and some beds have 

symmetrically rippled tops. Shattered and flexed tabular sands may be 

seen (Fig. 3.32). 

Association: Shows a marked association with Facies 8 (Fig. 3.10). 

Interpretation: The erosive bases, abundant intraformational clasts 

and coarse poorly sorted matrix all indicate a very high energy level. 

All the constituents of this facies also occur in the much more 

vertically extensive Facies Type 8 from which they were probably 

largely derived. The original calcarenite was probably in the initial 

stages of lithification when it was eroded by the high energy event 

(Garrison et al., 1987). These lithified units were torn loose from 

the sea-bed and reworked but were probably not transponed very far, 

if at all, before the energy level dropped.This resulted in the 

jumbled mass of rounded and/or tabular calcarenites mixed-up with 

their uncemented equivalents with the coarser grained matrix and the 

larger organic fragments being transported in from nearer the 

shoreline or winnowed out of the coarse horizons seen in Facies Type 

8. 
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no. 3.31: FAQES 7: CHERT BEDS MEMBER, BRANSCOMBE. 

COARSE, NODULAR, SHELLY BED WITH WAVE RIPPLED TOP. 
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nC. 3.32: FACIES 7: CHERT BEDS MEMBER, BRANSCOMBE. 

SHATTERED AND FLEXED TABULAR SANDS. 
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HG. 3.33. FACIES 7: CHHRT BEDS MEMBER, BRANSCOMBE. 

COARSE MATRK SAND AROUND NODULAR, 

CALCAREOUS SAND. 
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The energy event was certainly stronger than the generally prevailing 

conditions and was probably caused by a storm of unusual magnitude 

which produced wind-driven onshore waves and/or powerful offshore 

bottom density currents (Walker, 1979). The top surfaces of the beds 

are often uregular as might be expected, but are sometimes capped by 

thin wave-rippled beds which indicates lower energy conditions when 

waves reworked the sediment/water interface prior to the return to 

more normal conditions. 

The forces involved in the production of this facies type must have 

been well in excess of normal and probably fell into the category of 

hurricane (see later discussion) with the bottom current and/or wave 

orbital energy touching bottom probably measurable as several metres 

per second. 

Occurrence: Occurs in the Chert Beds Member of the sections at 

Branscombe and Seaton; see Figs 3.3 and 3.4. 

3.3.3 Facies 8 (Fig. 3.34) 

Description: Buff/grey, fine to medium grained calcarenites with 

scattered shell fragments. Medium to coarse grained sand horizons with 

an irregular and anatomosing pattern. The bases of the beds are 

generally draped over the unit below. This facies type contains the 

same lithological elements as Facies Type 7, medium grained 

calcarenites with varying degrees of cementation and coarse grained 

poorly sorted sands. The calcarenites which make-up the bulk of this 

facies are indistinguishable from the calcarenite nodules seen in 

Facies Type 7. 

104 



n C . 3.34: FAOES 7 & 8: CHERT BEDS MEMBER, BRANSCOMBE. 
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Variation: Beds of this facies may contain irregular cherts and the 

amount of coarse sand and the number of intraformational clasts varies 

considerably. Locally shell debris is seen in discontinuous horizons. 

Association: Shows a marked association with Facies 7 (Figs 3.10 and 

3.34). 

Interpretation: The presence of coarse horizons and parallel laminae 

suggests a moderate to high energy environment. 

The bases of the beds are not considered to be true indicators of 

energy level as they essentially cover beds of much coarser material 

of Facies Type 7 which usually had irregular tops and which the 

prevailing conditions which produced Type 8 could not have moved. 

Type 8 is a clastic facies, largely massive in appearance, with many 

coarse anatomosing 'stringers' and occasional traces of parallel 

laminae. The calcarenites which make up the bulk of this facies are 

indistinguisable from the calcarenite nodules and matrix seen in 

Facies Type 7 which strongly suggests that they acted as a source for 

Type 7 during very high energy events. 

The overall appearance of the beds belonging to Facies Type 8 is 

similar to that seen in Type 5 but the thin coarse horizons are much 

more extensive. The grain size is similar, suggesting similar energy 

levels but the higher levels of energy needed to produce the coarse 

horizons must have been far more frequent. It is suggested, therefore, 

that these two facies represent a continuum with Facies Type 5 being 

more distal. 

106 



The presence of parallel laminae in Facies Type 8 indicates that high 

energy bottom currents or wave action were responsible for deposition 

with possibly some material from suspension. The coarse anastomosing 

bands are thought to be the product of similar processes but during 

much higher mean velocity flows with the material being derived from 

an onshore direction with some component of winnowing. 

The cessation of a mean velocity flow sufficient for the deposition of 

the coarse bands would mean a return to the more prevalent energy 

conditions and the finer sediment would then cover the coarser. It 

seems probable that as the energy level rose some planing-off of the 

calcarenite in places penetrated to the previous coarse-grained 

horizon while winnowing and depositing more coarse sand. This 

many-times-repeated process resulted in the irregular and anastomosing 

geometry of the coarse-grained 'stringers' (Fig 3.35) and also 

accounts for the local coarsening upwards. 

Facies Types 9, 5, and 8 are therefore regarded as being largely 

examples of the normal fair weather depositional regime which seems to 

have had a tidal component suggesting the movement of megaripples both 

on and offshore at different times. In addition, however, the presence 

of parallel laminae suggested somewhat higher energy condidons 

possibly connected with wave action. 

Occurrence: Occurs in the Chert Beds Member of the sections at 

Branscombe and Seaton; see Figs 3.3 and 3.4. 
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3.3.3 Fades 9 

Description: Massive, grey/buff calcarenite, moderately sorted, medium 

grained, sub-angular quartz and common comminuted shell fragments and 

echinoid debris. Rounded intraformational clasts may be seen at the 

bases of beds which are planar or irregular. 

There is abundant evidence of horizontal burrowing and the concretions 

seen in Facies 3 are locally common (Fig. 3.36) often occurring in 

linear horizons which are laterally persistant. 

Variation: Only one bed in this facies at each of the localities. The 

description above broadly covers both beds but at Seaton scattered 

chert nodules may also be seen. 

Association: Shows a moderate association with Facies 5 (Fig. 3.10). 

Interpretation; The planar/irregular base and the presence of 

horizontal bioturbation suggests that this facies was laid down under 

low to moderate energy conditions. 

The absence of internal sedimentary structures made it difficult to 

arrive at an estimation of the mean velocity flows but this facies is 

regarded as a more distal expression of the facies represented by 

Types 5 and 8. 

Occurrence: Occurs in the Chert Beds Member of the sections at 

Branscombe and Seaton; see Figs 3.3 and 3.4. 
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FIG. 3.36. FAUES 9: CHERT BEDS MEMBER, BRANSCOMBE. 

? DECAPOD BURROW. 
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3.3.3 Fades 10 

Description: Medium to coarse grained, poorly sorted, cross bedded 

(lOcms thick sets) sands which truncate against thin horizons of 

medium grained calcarenites. The quartz grains within the sands are 

moderately to well rounded and contain about 10% of comminuted shell 

material. Scattered, rounded, intraformational pebbles (1 - 3cms 

across) are seen which are made up of fine to medium grained 

sand/calcarenite. 

Variation: The grain size may vary locally from fine to coarse and 

there may be a tendancy for the sediment within a bed to coarsen 

upwards. At the Dunscombe localities bimodal cross beds may be seen 

with each mode occurring in <10cms - 20cms sets indicating movement 

along a NW/SE vector. 

Association: Shows a moderate association with Facies 13 (Fig. 3.10). 

Interpretation: The bimodal palaeocurrent directions suggest a tidally 

dominated environment in which the ebb and flood tides were of similar 

strength. The energy levels involved in the deposition of this facies 

were relatively high. 

Occurrence: Occurs in the Top Sandstones Member of the sections at 

Kempstone Rocks and the small quarry at Dunscombe and in the Chert 

Beds Member at Seaton; see Figs 3.5, 3.6 and 3.4. 
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3.3.3 Facies 11 

Description: Nodular, calcareous sands in which the nodules are fine 

to medium grained and the matrix is coarse grained and very poorly 

sorted. There is abundant shell debris. 

Variation: Groups of verical or near vertical worm tubes may be seen 

in horizons. Glauconite is sparse except in some of the nodules. The 

beds at Kempstone Rocks which are placed in this facies display 5 -

15cms thick, normally graded laminae. 

Association: Shows no marked association. 

Interpretation: The normally graded laminae together with the coarse 

grain size at their bases indicates a variation in flow strength of a 

cyclic nature. 

Occurrence: Occurs in the Top Sandstones Member of the sections at 

Kempstone Rocks and the small quarry at Dunscombe and at Seaton; see 

Figs 3.5, 3.6 and 3.4. 

3.3.3 Facies 12 

Description: Coarse to very coarse grained, very poorly sorted 

calcarenites and sands with horizons of green, poorly sorted medium 

grained sand. The bed tops are fissured and contain material from the 

bed above. 

Variation: There may be small nodules of finer grained sand scattered 
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throughout a bed. Grain size may be medium; shell debris may be 

abundant; vertical worm tubes occur locally; encrusting bryozoa, small 

unbroken echinoids and bivalves, serpulid worm tubes and fish teeth 

may all be present locally. Bimodal cross sets occur locally and bands 

of coarse sand appear to infill small channels in the finer material. 

The hardground surfaces at the tops of beds may display encrusting 

bryozoa, serpulid worm tubes, pits and depressions (1 - 2cms deep and 

a few cms across) whose shape suggests that they were echinoid resting 

places. Some of the bivalves found at the hardground were small, 

articulated and fairly well preserved while others are larger and 

usually broken. 

Association: No marked association. 

Interpretation: This facies is thought to represent periods of hiati 

in sedimentation, lithification and erosion. A specialised fauna 

colonised the sea-bed during the time that the hiatus lasted. 

Occurrence: Occurs in the Top Sandstones Member of the sections at 

Kempstone Rocks, Seaton and Branscombe, and in the Chert Beds Member 

of the section at Seaton; see Figs 3.3, 3.4, and 3.5. 

3.3.3 Facies 13 

Description: Competant, medium grained sands with no internal 

structure. 

Variation: Beds vary in thickness from about 0.1m to 0.4m. Their bases 

may be irregular or erosional; there may be scattered shell debris and 
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they usually vary in thickness laterally. 

Association: Shows a moderate association with Facies 10 (Fig. 3.10). 

Interpretation: The relatively featureless nature of this facies makes 

it difficult to assign it to any depositional environment. 

Occurrence: Occurs in the Top Sandstones Member of the sections at 

Kempstone Rocks and the small quarry at Dunscombe; see Figs 3.5 and 

3.6. 

3.3.3 Facies 14 

Description: Medium to coarse grained, shelly sands. 

Variation: Beds may have erosive bases; be extremely rich in shell 

material and have asymmetrically rippled tops (average ripple height 

14cms and average wave length 45cms). 

Association: Shows no marked association. 

Interpretation: High energy environment with the sediment being 

deposited and transported by a unidirectional current. 

Occurrence: Occurs in the Top Sandstones Member of the section in the 

small quarry, Dunscombe; see Fig. 3.6. 
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3.3.3 Facies 15 

Description: Dark green, muddy, fine to medium grained, well sorted, 

glauconitic matrix sands with abundant, rounded, intraformational 

clasts. Beds contain shell debris, have erosional bases and there is 

evidence of bioturbation. The sands making up the intraclasts are 

indistinguishable from those making up the matrix. 

Variation: The size of the intraclasts varies both from bed to bed and 

within a bed (maximum 20cms across) although most beds have clasts up 

to only 4cms across . The amount of shell material and the degree of 

bioturbation also varies considerably. 

Association: Shows no marked association. 

Interpretation: The rounded clasts suggest an initial high energy 

environment for this facies when already lithified sea-floor was 

ripped up and transponed, probably only a shon distance, and then 

re-deposited. Relatively low energy conditions then prevailed so that 

sediment infilled the interstices between the intraformational clasts. 

Occurrence: Occurs in the Foxmould Sands Member of the section at 

Seaton; see Fig. 3.4. 

3.4 Correlation and Modelling 

Analysis of the facies present in the section at Branscombe suggests a 

number of generalised conclusions about the environmental changes 
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which occurred during the time period represented by the Wessex 

Greensand Formation. 

1) Over the time period concerned there was a general increase in the 

energy levels ambient at the time of sediment deposition from probably 

less than 20cm/sec. in Facies Type 1 to a current and/or orbital 

velocity well in excess of Im/sec. in Facies Type 7. 

2) This increase in energy levels reflected a decreasing water depth 

as the shoreline prograded towards the area. 

3) The normal, fairweather depositional regime is represented by 

Facies Types 1 and probably the bulk of Facies Types 9, 5 and 8. Storm 

events of varying intensity and duration are represented by Facies 

Types 2, 6 and 7. 

These conclusions are summarised in the model proposed for the 

sedimentary environments over time at the various localities examined 

in this work (Fig. 3.37). 

The fairweather depositional environment offshore was dominated by mud 

deposition from suspension and the water depth was probably in excess 

of 30m with a deposition rate slow enough to allow the formation of 

glauconite. Bottom energy conditions were low, with waves unable to 

touch bottom and bottom currents of negligible strength. The muds had 

a high organic content and supported a large, soft-bodied infauna. 

Further inshore the ambient energy levels were too great to allow mud 

deposition and the calcarenite was probably deposited under tidal 

influence although there is also evidence for the deposition of sand 

grade material from suspension by wave processes. There appear to have 
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Fig. 3.37 Diagrammatic representation of the sedimentary model 
for the Selborne Group, S.W. England 
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been periodic high energy events perhaps with a mean velocity flow of 

~lm/sec. which caused some planing off of bottom structures and the 

deposition of thin, coarse grained horizons. As the water depth 

decreased these coarse horizons became more common. 

Facies Types 7, 6 and 2 are thought to represent increasingly distal 

expressions of storm deposition. Allen (1984) presented a speculative 

physical model for storm sedimentation (Fig. 3.38) in which he 

proposed five stages of storm development over a shelf that was being 

supplied with mud and sand grade material from the shore. 

Pre-storm stage - gentle winds and small surface waves. 

Storm growth - rapid growth in wind strength and thus wave size 

and period. 

Full storm - wind and wave conditions relatively constant for a 

significant interval. 

Storm decay - windspeed and wave conditions decline towards 

pre-storm levels. 

Post-storm - resembles pre-storm. 

Theoretical, semi-quantitative models for laminar currents in a water 

body acted on by the wind show that the summation of a wind drift 

current and the opposing gradient current caused by 'set-up' produce 

an observable current which flows in the wind direction in 

approximately the upper third of a water body and at 180 degrees below 

this layer. In tm^bulent flows much more complex models are proposed 

(see Allen, 1984) but one of the important points brought out by these 

various mathematical models is that the water velocity is generally 

only a few per cent of wind speed. 
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FIG. 3.38: A SPECULATIVE PHYSICAL MODEL FOR STORM SEDIMENTATION (AFTER 

ALLEN, 1984). 

A) DEFINITION DUGRAM FOR A SHELF WITH SANDY SHORE AFFECTED BY A • STORM 

TRAVELLING ACROSS THE SHELF FROM DEEPER WATER. 

B),C).D) VARUTION OF WAVE-RELATED CURRENTS WITH TIME AND WITH 

DISTANCE ACROSS THE SHELF. 

E) THE MOVEMENT OF THE MARGINS OF THE STORM AND OF THE LEADING EDGE OF 

THE ZONE OF STORM-MOBIUSED SAND. 
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Measurements of wind induced, near-bed, offshore currents have been 

quoted at 0.81m/sec (Gienapp, 1973) which was about double the fair 

weather flow; 0.8m/sec. pulsing to 1.6m/sec (Murray, 1970b) and 

1.5m/sec (Forristal et al., 1977) under hurricane conditions measured 

between 6m and 60m depth. These figures suggest that the proposed 

mechanisms for deposition in the Branscombe section are feasible. 

Allen's model assumes that during fair weather mud was deposited 

except at depths which had current/wave action sufficiently strong to 

prevent mud leaving suspension and to keep sand in motion. This is 

comparable with the model proposed for Branscombe. 

During a storm U , (maximum horizontal orbital velocity) of a 

near-bed water panicle, would first increase rapidly with time and 

then steady for a time before gradually declining. 

u " "• 
^^ Tsin(kh) 

Where H = wave 

h = 

T = 

k = 

water depth 

wave period 

2 n/L where L 

height 

= wavelength 

U is thus linearly dependent on wave height and has an inverse 

relationship to wave period and water depth. The expected wave heights 

in the open sea as a function of wind speed are shown in Fig. 3.39. 

The inverse relationship with water depth means that the most powerful 

wave-related ciurents will be generated in the shallowest water. Allen 

points out, however, that as a storm travels shorewards the changes in 
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Expected wave height in the open sea as a function of Beaufort wind force or wind speed at 
height of 10 m above the sea surface. After Frost (1966) 
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n o . 3.39: EXPECTED WAVE HEIGHT IN THE OPEN SEA AS A FUNCTION OF WIND 

SPEED AT HEIGHT OF lOM ABOVE THE SEA SURFACE (FROM ^LLEN. 

1984) 
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U_ will be out of phase with this relationship; that is the storm max '̂  '^ 

will reach the outer shelf first and U may well be greater in 

deeper water than inshore. The inverse relationship would be restored 

when the storm reached shallower waters. 
/ 

Sand grade material would be maintained as a dispersed load 

through the action of U_ . ° max 

0.25 

511 = 50,000 
(a - p) gD 

pu' v°-^ 
max 

(o - p) gD U T ° ' 

Where v = fluid kinematic viscosity 

D = particle diameter 

m = sediment load 

a = angular velocity of particles 

p = fluid density 

This dispersed load then travels away from shore at a rate comparable 

to U (velocity of offshore wind-induced bottom current). Thus the 

distance that the sand travels is determined by the behaviour of U 

during the storm or because depth becomes so great that U falls 

below the critical value (U_ ) needed to entrain the sand. The value 
max s 

of U is generally lower than the speed travelled by the storm centre 

and thus storm duration may be the main control on seaward spreading 

of sand. Using his model Allen discussed the sedimentary regimes 

likely to occur during a storm and these will now be compared with 

those observed in the section at Branscombe. 
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Pre-storm - Aliens model proposed mud deposition where water depth was 

too great for sand deposition and the energy level was low enough to 

permit settling out of mud. This mud depositional environment finds 

it's equivalent in Facies Type 1 while the inshore equivalents are 

largely represented by facies Types 9, 5 and 8. 

During Storm - Allen suggested that mud might be eroded or at least 

remain in suspension in deeper water. The control being the magnitude 

of U ie water depth and storm intensity. Mud could be deposited as 

laminae in the deepest water but as sedimentation rates were likely to 

be low, bioturbation rates were high. 

In the model Allen suggested that the mid-shelf was likely to have 

thin allochthonous sands interbedded with thicker autochthonous muds 

(Facies Type 2 interbedded with Type 1). Allen considered that the 

storm sands should show sharp and often erosional bases which 

reflected moderate values of U_ . The beds should be relatively thin 
max •' 

because of the relatively short period of sand deposition; they should 

ordinarily be normally graded since deposition occurs mainly during 

the storm decay phase; wave-current ripples may be present on the tops 

of the sand beds and there may be internal climbing ripple lamination. 

Facies Type 2 beds usually have sharp and/or erosional bases and are 

relatively thin although they tend to become thicker and more frequent 

upwards, thus supporting a shallowing model. Some of the beds do show 

wave/current ripples at their tops but no evidence of climbing ripple 

cross lamination was seen. The subsequent diagenesis made it difficult 

to see any evidence of internal grading but some evidence of an 

increase in mud content upwards through a bed is seen. 
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Allen's model suggested that inner shelf storm deposits should be 

relatively thick, allochthonous sands, possibly alternating with 

thinner autochthonous muds. Most of the sand beds should have sharp or 

erosional bases; they may show off-shore directed channel-type 

deposits; the coarse beds may be relatively thick because sand 

deposition occurs for relatively long periods; the high values of U 

should result in parallel laminae followed upward by wave related 

cross laminae and possibly a wave-current rippled top. The beds 

proposed to be the result of storm sedimentation at Branscombe are 

comparable to some extent but there was no evidence of interbedded 

muds and the fair weather environment is considered to have been far 

too energetic to allow mud deposition. Facies Types 6 and 7 showed 

sharp and often erosional extremely bases. The nature of the deposits 

made observation of internal structure difficult but evidence of 

parallel laminae could be seen in Type 6 and wave rippled tops were 

seen in Type 7. No evidence of channel-like structures was seen. 

Type 7, as discussed above, is thought to have been the result of very 

high velocity wave/current action that resulted in the break-up of 

panially lithified sediments. Otherwise the various facies observed 

at Branscombe fitted moderately well with Allen's model. 

The amount of sand deposited at any given point is proportional to the 

product of the duration of the regime of sand deposition and the 

deposition rate. Allen (1984) presented a theoretical example of 

calculations made for four different wind speeds which gave 

indications of wave period and height and U (Fig.3.40). 
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FIG. 3.40: PRINCIPAL CONDITIONS RESULTS FOR STORM SAND-LAYERS 

DEPOSITED ON A UNIFORMLY SLOPING SHELF (AFTER ALLEN. 

1984). 
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These calculations, for a sand of 125,u diameter, suggested that large 

quantities of sand could be moved many kilometres offshore during a 

storm into depths measured in decimetres. Which suppons the 

feasability of the storm depositional model for many of the facies in 

the Branscombe section. 

The Foxmould Sands Member in the Seaton section (Fig. 3.4) was 

deposited in a relatively low energy, marine environment (Facies 1) 

that was subjected to periods of high energy that ripped up the 

already lithified sea-floor (Facies 15). The Chert Beds Member 

displays a similar succession to that seen at Branscombe; representing 

a tidally dominated shallowing sea (Facies 9, 5 and 8) which was 

subject to violent storms (Facies 6 and 7). There is also more 

indication at Seaton of long periods without active sedimentation 

(Facies 12). 

The two small sections at Dunscombe (Fig. 3.6) show sediments that 

were probably deposited in high energy, tidally dominated shallow 

water close to shore. 
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CHAPTER 4 DIAGENESIS 

4.1 Introduction 

This chapter presents an historical review of work on the diagenesis 

of the Wessex Greensand Formation and reports the results of thin 

section analyses undertaken to study the diagenetic processes which 

have taken place in the Wessex Greensand Formation. The occurrence of 

secondary calcite and silica is described, particularly with respect 

to chen formation, a series of events are suggested to explain chen 

formation and an attempt is made to explain these events in 

geochemical terms. 

Most of the workers on the Wessex Greensand Formation in the 19th 

century were concerned with basic lithological descriptions, 

stratigraphy and the examination of fossils. However, some mention was 

made of the weathered condition of many of the Wessex Greensand 

Formation outcrops and comments were made on the origin of some of the 

mineral components, such as glauconite, phosphates and cherts. The 

sections below deal with the occurrence in the Wessex Greensand of (i) 

secondary silica and chert formation, and (ii) secondary calcite. 

4.2 Secondary Silica and Chert 

4.2.1 Previous Work 

Hinde (1885) specifically addressed the problem of chert formation and 
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considered that what he called 'Sponge Beds' in the Upper Greensand 

occurred in two separate forms. The first form was the Malmstone which 

was described as a porous, siliceous rock which usually contained some 

calcium carbonate. The porosity of this rock was reported to be 

largely due to cavities left after the dissolution of sponge spicules. 

Hinde suggested that these dissolved spicules could have provided some 

of the silica for the matrix which consisted of amorphous silica, 

minute globules and chalcedonic silica. Sponge spicules which had been 

altered to glauconite or amorphous silica were also seen in the 

Malmstone. 

The second type of 'Sponge Bed' was that described from the Isle of 

Wight as a siliceo-calcareous rock with cherts. Hinde described two 

types of chen. The first consisted of spicules in a chalcedonic 

matrix, while the second was made up of spicules and chalcedony in an 

amorphous matrix. Some spicules were described as being replaced by 

glauconite within chert cavities and others as being replaced by 

calcite in the calcite matrix. Hinde claimed that similar 'Sponge 

Beds' occurred in the Blackdown and Haldon Hills. He suggested that 

the porous envelopes around the cherts were a result of the silica of 

the spicules being dissolved and deposited in the chert and he 

rejected the view that the silica originated directly from sea-water 

"attracted from the exterior medium by animal matter". 

Strahan (1898) quoted the work of Hinde (1885) on chert formation in 

his own work in the Isle of Purbeck and furthermore suggested that 

much of the outcrop was decalcified, as evidenced by sand moulds of 

shells and shells converted to chalcedony. He also thought that the 

presence of glauconite grains within cherts showed that the glauconite 
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was formed before the silicification of the "Sponge Beds ". Watts (in 

Strahan) reported on a brownish grey chert from the Upper Greensand of 

Abbotsbury which consisted of cryptocrystalline silica with traces of 

organisms such as sponge spicules and foraminifera but no other 

minerals. Watts suggested that the chen could be a silicified 

limestone as a way of explaining how the organic remains could have 

become embedded. He proposed a sequence of diagenetic events starting 

with the replacement of the organisms by silica and followed by the 

deposition of fibrous silica around them with the final deposition of 

coarser fibrous silica in the remaining voids. 

Hill (in Jukes-Browne and Hill, 1900) described the progressive 

alteration of colloidal silica into chalcedony within cherts and 

concluded from his investigations that although a certain amount of 

water bearing silica percolated from bed to bed, the bulk of the 

chalcedonic silica in the cherts was the result of the alteration of 

the colloidal form in situ. His ideas on chen formation largely 

followed those of Hinde (1885); large numbers of sponge spicules were 

thought to have contributed to globular colloidal silica in horizons 

now occuppied by chert. Hill further decided that there was no 

evidence for the cherts having been formed by the direct replacement 

of limestone. 

The irregularly shaped, silicified nodules found in the Chert Beds 

near Bridport and Yeovil were thought by Welch (in Wilson et al. 1958) 

to be secondary in origin. It was suggested that silica derived from 

the chert had replaced the calcium carbonate in the fossils in and 

just below the Chert Beds and that the carbonate had migrated 

downwards to form the limestone concretions or 'cowstones'. 
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Tresise (1960) reported that chen and glauconite rich sediments were 

almost mututally exclusive in S.E. Devon and it was thought that this 

might be due to the fact that both required silica in solution and 

that a tranquil environment favoured chen formation while current 

activity favoured glauconite formation. Tresise described the cherts 

of the Upper Greensand as "botryoidal masses of chalcedonic silica in 

a metacolloidal state" with acicular chalcedony in the interstices and 

he drew a distinction between them and siliceous sandstone, with 

clastic grains cemented by secondary silica (Tresise, 1961). He 

considered true chert to be primary in origin, formed in tranquil 

waters and attributed the absence of chert from the Top Sandstones 

Member to increasing current activity. 

The usual morphology of chert nodules was described as a compact, 

glassy core surrounded by a porous, siliceous envelope. Tresise 

claimed that this envelope was not a transitional form between the 

chert core and the surrounding sediment. He reported that both the 

envelope and the core were dominantly composed of chalcedonic silica. 

He noted three cavity types in the marginal envelope; original 

cavities, sponge spicule solution cavities and irregular cavities 

produced by the dissolution of calcareous material. 

Tresise pointed out that detrital grains were rare within the chert 

and suggested that this ruled out the mechanism of silica cementation 

of the surrounding sediment as a method of chert formation. Where 

angular quartz grains did occur they often showed secondary growth in 

optical continuity, whereas glauconite grains resembled those seen in 

the surrounding sediment. Relatively rare calcareous organic remains 
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were also reported within the cherts (foraminifera, fragments of 

echinoid test and bivalve shells). This material was observed to be 

still calcareous or partially/wholly siliceous. This observation did 

not support his theory of chert formation. 

Tresise considered that the cherts were made up of masses of 

'metacolloidal silica', which could produce internal cavities due to 

contraction. These cavities could be seen completely infilled with 

acicular chalcedony or remaining as a void often with a granular 

quartz lining. 

Tresise examined three theories for the formation of chert in the 

greensands of southern England, those of Hinde (1885), Richardson 

1947) and Humphries (1956). 

Richardson (1948) had demonstrated the silicification by percolating 

solutions, of limestone masses found within the Aptian Bargate Beds. 

He suggested that silica had been electrolytically precipitated in a 

shallow sea and this gradually replaced the limestone masses which 

were an early diagenetic product. Tresise rejected this theory of 

formation on the grounds that although limestone did occur in the 

Upper Greensand he had not observed any evidence of its transformation 

into chen. 

The observations made by Hinde had led him to suggest that chert was 

an organic deposit originating from the solution and reprecipitation 

of masses of sponge spicules. Tresise considered that this theory had 

been largely based on circumstantial evidence. His own work had found 

that sponge spicules only occurred in relatively limited numbers and 
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he thought that even Hinde's descriptions suggested that the siliceous 

matrix formed before the spicules had been dissolved. 

The study of the cherts of the Hythe beds conducted by Humphries had 

led him to the conclusion that they were contemporaneous in origin, 

being formed from a gel precipitated on the sea-floor. He suggested 

that precipitation might have been caused by electrolytes in sea-water 

or by the action of algae or bacteria. Tresise thought that this was 

the most likely mechanism to account for the formation of the chens 

within the Upper Greensand. The precipitation of a mass of silica gel 

accounted for the colloform structures he had observed in the cherts, 

the metacoUoidal nature of the silica, the general lack of detrital 

grains, the relative rarity of sponge spicules and the perfect 

preservation of spicule casts in the marginal envelopes of the cherts. 

Despite the fact that the silica gel theory accounted for this 

observation, Tresise pointed out that Humphries had assumed that 

silica existed in sea-water in a colloidal state whereas it was in 

fact carried in solution, probably as monosilicic acid. Increase in 

local concentrations of silica would therefore result in the 

precipitation of calcium and magnesium silicates before electrolytic 

precipitation of silica gel could occur. 

While retaining the silica gel theory as the most likely to account 

for chert formation Tresise realised that some other means of 

precipitation must have been responsible. He suggested that a warm 

climate together with low lying land areas with a heavy vegetation 

cover would have favoured chemical rather than mechanical weathering. 

This, in turn, would have resulted in river run-off waters with a high 

silica content and he suggested a number of possible consequences. 
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Siliceous organisms, such as diatoms, radiolaria and sponges might 

have been expected to flourish in offshore waters (even though he 

pointed out that modem organisms did not appear to be controlled by 

such a simple correlation). Where river and sea-water mixed a decrease 

in silica content would have occurred, as seen in similar modem 

environments, due to both dilution and the adsorption of silica onto 

colloidal matter and suspended solids in the river waters. Tresise 

suggested that some of these small flocculated masses could have 

settled to the sea-floor and been converted to glauconite by the 

adsorption of potassium and other ions. Some of this silica could have 

precipitated as a gel, possibly aided by the presence of ammonium 

salts produced by organic decay. Sponge beds would have provided a 

suitable environment for this gel formation and would have accounted 

for the presence of sponge spicules in the chert and its sporadic 

occurrence. The postulated build-up of silica and/or ammonium 

concentrations would have required low energy conditions. 

Tresise thought that the cherts were formed not by the simple 

dehydration and contracnon of the gel masses but depended on the 

diagenetic relocation of the opaline silica found in the sponge 

spicules which were distributed in the sediment. This mobilised silica 

was thought to have been precipitated as chalcedony within the voids 

produced by the contraction of the gel. 

The alternating bands of chert and calcarenite that commonly occur in 

S.E, Devon were thought to be the result of a diffusion gradient. 

Silica deposited in the chert horizon would have resulted in an influx 

of silica bearing solutions to replace the impoverished fluids. At the 

chert horizon silica would have tended to replace calcium carbonate 
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and in the limestone horizon calcium carbonate would have tended to 

replace silica as this was taken into solution. Drawing upon previous 

workers investigations of silica solubility Tresise suggested that 

these gradients could have been caused by either local variations in 

pH or temperature. 

4.2.2 Secondary Silica - Foxmould Sands Member 

In the Foxmould Sands Member secondary silica is almost entirely 

restricted to the relatively mud-free, storm-sorted calcareous sand 

horizons of Facies 2. Occasional thin (up to 3cm thick), clean quartz 

sands in these deposits are cemented by small secondary quartz 

crystals. This is in contrast to the rest of this Member where cement 

is usually of secondary calcite if present at all. 

In the storm-sorted calcareous sands bivalve shells and fragments are 

common, as are the coiled calcareous tubes of the serpulid Rotularia 

concava. The latter are abundant in some horizons and are often welded 

together to form discontinuous limestone bands. Voids tend to occur 

within these serpulids and these spaces are frequently infilled with 

secondary silica (Fig. 4.1). 

Chalcedony, a cryptocrystalline fibrous type of silica is the form 

taken by the secondary void-fill and very little evidence is seen of 

microquartz replacement of calcite. This passive filling of voids 

appears to be the limit of secondary silica development and no true 

cherts are found in the Foxmould Sands Member. 
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FIG. 4.1: SECONDARY SIUCA WITHIN SERPUUD WORM 

TUBES, FOXMOULD SANDS MEMBER, BRANSCOMBE. 

(F.O.V. 1.2mm). 

135 



4.2.3 Secondary Silica - Chert Beds Member 

The most obvious secondary silica deposits are the cherts themselves 

which occur in various morphologies, from irregular nodules to 

laterally impersistent horizons which vary in thickness (up to 30cms). 

Sedimentary structures are often preserved within the chert nodules. 

The percentage of quartz detritals varies widely in the calcareous 

sands of the Chert Beds Member. Some cherts contain large numbers of 

quartz detritals, often remaining unaltered in appearance and with 

sedimentary structures remaining intact, thus reflecting the nature of 

their deposinon. These well preserved structures suggest a secondary 

and replacive origin for the chert. 

A block of chen which is sectioned and polished appears translucent, 

allowing a three dimensional view of sedimentary structures when their 

form is picked out by quartz detritals. An example of the usefulness 

of this preservation is shown in Fig. 4.2 which illustrates a polished 

block of chert, taken from Seaton Hole, S.E. Devon. The cross-bedding 

is picked out by the quartz detritals and silicified shell fragments. 

In this instance the cross-sets are bimodal and suggest an environment 

influenced by tidal currents. A detailed examination (Fig. 4.3) 

reveals the presence of burrows which disturb the laminae. In this 

sample U-shaped burrows predominate in the upper set, suggesting that 

the organism was able to cope with the sediment deposition rate by 

altering the depth of its burrow and keeping the top of the 'U' open 

to the water/sediment interface. 

Sections of cherts typically display a siliceous envelope reaching 
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HG. 4.2: POUSHED BLOCK OF CHERT TAKEN FROM SEATON 

HOLE. S.E. DEVON. SHOWING BIMODAL CROSS-

SETS PICKED OUT BY QUARTZ DETRFTALS AND 

SHELL FRAGMENTS. 
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ma. 4.3; DETAILS OF POUSHED CHERT SHOWING 

U-SHAPED BURROWS. 
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into the surrounding calcarenite (Fig. 4.4). Moving outwards from the 

chert this envelope has a progressively lower silica content. The 

thickness of this zone varies considerably but is generally measured 

in centimetres. If the zone around the cherts represents an area 

adjacent to the maximum development of secondary silica, in which 

silicification becomes progressively reduced, then an examination of 

the incidence of secondary silica inwards from the edge of the 

envelope should reflect the replacive growth of chert within the 

calcarenite. This process did not always proceed to completion and 

abundant nodules of partially silicified calcarenite are found in the 

Chert Beds Member. 

A series of thin sections taken across the transition zone reveals the 

nature of the silica replacement of the calcarenite. 

Despite it's name, the Chert Beds Member consists largely of 

calcareous sands of varying grain size, which reflect the different 

energy levels obtaining during deposition. The same mineral species 

occur throughout the calcareous sands but they differ in size, habit 

and concentration. Quartz detritals may be present in a sample in 

varying percentages, grain sizes and morphologies. Grain sizes vary 

from very fine to very coarse, the latter normally being well-rounded 

and the former sub-angular. The percentage of quartz present varies 

from 70% to as little as 5%, when the rock is technically a loosely 

cemented limestone. 

Calcite is the other major component and varies from 30% to 95% of the 

rock. The calcite is made up of organically derived fragments, some of 

which are recognisable but most of which are comminuted. The organic 
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FIG. 4.4: SIUCEOUS ENVELOPE AROUND CHERT. 

SEATON HOLE. S.E. DEVON. 
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debris consists of molluscs, echinoids, bryozoa and sponges, together 

with rare foraminifera. 

The only accessory mineral of note is glauconite and this normally 

makes up less than 10% of the rock. Locally small (<lcm) chert 

fragments may be common and plagioclase feldspar also occurs although 

this often partially altered to calcite or cherty microquartz. A 

typical thin section taken from the calcareous sands but not direcdy 

associated with chert is shown in Fig. 4.5. 

Voids occur within the rock especially in the proximity of calcitic 

organic fragments. As the chert is approached these tend to be silica 

infilled with the silica in the form of radiating chalcedony fibres 

similar to those infilling voids in the Foxmould Sands Member. This 

passive silica infill of voids is here augmented by the replacement of 

calcite by microquartz around the edges of the void. This replacement 

of whole calcite grains with microquartz grains becomes increasingly 

common near the edge of the chert. Some grains are observed are 

observed to be completely unaltered, while others have been completely 

replaced by microquartz. In addition, the amount of chalcedony 

increases suggesting either a higher incidence of primary voids or the 

complete dissolution of some calcite grains (Fig. 4.6). Eventually, 

glauconite grains are seen to have undergone the same process. 

Sections taken on the edge of the chert exhibit secondary quartz 

crystals larger than the replacive microquartz. These crystals form an 

envelope around quartz detritals and replaced calcite and glauconite 

grains (Fig 4.7). Within the chert, thin sections reveal microquartz 

grains and occasional quartz detritals, often enveloped in secondary 
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FIG. 4.5: THIN SECTION OF CALCAREOUS SANDS AWAY FROM CHERT. 
CHERT BEDS MEMBER. SHOWING QUARTZ DETRITALS AND CALCITIC 
DEBRIS. (F . O . V . 1 .2mm) . 

FIG. 4.6: THIN SECTION OF CALCAREOUS SANDS NEAR A CHERT, SHOWING 
CHALCEDONIC INFILL OF VOIDS AND RE P LACEMENT OF CALCITE 
GRAINS BY MICROQUARTZ. ( F . O . V . 0 , 6 m m ) . 
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FIG. 4.7: THIN SECTION TAKEN AT THE EDGE OF A CHERT. 

SHOWING SECONDARY QUARTZ GROWTH 

ENVELOPING QUARTZ DETRTTALS. 

(F.O.V. 1.2mni). 
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quartz crystals, with the whole being welded together by chalcedonic 

quartz (Fig 4.8). 

Thus the chert is an imperfect ghost of the original fabric of the 

calcarenite. Microquartz grains represent former calcite and 

glauconite grains, while larger secondary quartz grains occur on the 

periphery of these microquartz grains and outline original quartz 

detritals. The voids, both original and those left after the 

dissolution of carbonate material, are filled with chalcedony. 

Cherts vary considerably in their quartz detrital content, some having 

none, some showing partially dissolved grains and others being packed 

with quartz grains. This variation is a reflection of the varied 

quartz detrital content found within the calcareous sands of the Chert 

Beds Member. 

It is suggested that this increasing silicification may reflect the 

sequence of events leading to the formation of chert. The first 

appearance of secondary silica is in the form of chalcedonic infill of 

voids, particularly within calcite shell fragments, which in turn act 

as nuclei for the microquartz replacement of calcite around the edges 

of the voids. The progressive replacement of calcite by microquartz 

continues simultaneously with the replacement of glauconite and the 

deposition of secondary quartz crystals around the quanz detritals 

and replaced calcite. Chalcedonic infill of voids continues throughout 

and the original fabric is picked out by the secondary quartz growth 

around the edges of quartz detritals and microquartz grains. 
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nC. 4.8: THIN SECTION OF CHERT SHOWING •GHOST-

FABRIC OF MICROQUARTZ GRAINS AND 

CHALCEDONY. (F.O.V. \.2 mm). 
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4.2.4 Chert Genesis - A Discussion 

Tresise (1960,1961) examined three major theories of chert formation 

in relation to the Chert Beds of the Upper Greensand, those of Hinde 

(1885), Richardson (1947) and Humphries (1956). Hinde thought that 

cherts originated as sponge spicule masses that were converted to true 

chert by the solution and reprecipitation of silica. Tresise pointed 

out the apparent inconsistency in Hindes theory that the spicules were 

first embedded in siliceous material and then dissolved whereas 

elsewhere he states that the silica to form the chert is derived from 

the dissolved spicules. Tresise considered that the silicification by 

percolating solutions was invalidated in the Chen Beds as he thought 

that the chert to surrounding sediment change was not transitional. 

He also stated that there were few quartz detritals in the cherts 

whereas in a replacement chert many detritals might be expected. 

Tresise favoured the silica gel theory (Humphries, 1956) in which the 

chert is formed by the contraction of a gelatinous mass whose 

precipitation may have been caused electrolytically or by the action 

of bacteria or algae. He stated that electrolytic precipitation was 

not possible in sea-water because of the problem of having a 

sufficient concentration of monosilicic acid H_ Si O in sea-water. He 
4 4 

favoured the precipitation of gel by contact with ammonium salts 

produced by organic decay combined with the diagenetic redistribution 

of opaline silica derived from sponge spicules. 

Tresise postulated a two-way diffusion gradient in which organic 

decomposition caused a local lowering on pH, the deposition of silica 

and the diffusion of silica from nearby which in turn resulted in the 
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dissolution of opaline silica. He further thought that there was a 

corresponding migration of calcareous material in the opposite 

direction. He also noted that the diffusion system may have been 

controlled by pH and/or temperature. 
/ 

The present work differs on a number of major points with that of 

Tresise. He states that cherts are absent from beds showing current 

activity whereas high energy structures have been observed within the 

cherts. He states that detritals are rare in cherts whereas they have 

in fact a variable quartz detrital content that reflects the 

variability seen in the surrounding calcarenites. Tresise also thought 

that the marginal siliceous envelope seen around cherts was not 

transitional from chert to sediment whereas the present work clearly 

demonstrates the transition. Although Tresise states he favours the 

theory of silica gel formation he in fact includes the classic 

diffusion of silica ideas to complete his theory of chert formation in 

the Chen Beds. 

Chalcedony, which is seen to infill voids in the Wessex Greensand 

cherts, appears as a fibrous mineral under the optical microscope but 

Folk and Weaver (1952) stated that no fibres could be seen under the 

electron microscope. They concluded that chalcedony was a form of 

quartz with numerous minute cavities containing water and that this 

explained the observed properties of chert and chalcedony.They thought 

that microcrystaline quartz tended to be the replacement product of 

limestone and was the result of closely associated, multiple initial 

centres of crystallisation. The chalcedony tended to fill cavities and 

was thought to result from relatively widely spaced initial centres of 

crystallisation. 
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Holdaway and Clayton (1982) pointed out that for silicificaton to 

occur calcite must be dissolved and silica precipitated. As a ghost 

calcite grain fabric is preserved in the chert as microquartz it is 

obvious that dissolution of the calcite occurred simultaneously with 

the precipitation of silica. Holdaway and Clayton suggested that 

either some chemical process causes both processes simultaneously or 

that the dissolution of calcite actually causes silica precipitation. 

They did not favour the usual, oft quoted, explanation of a local drop 

in pH which causes undersaturation of calcite in relation to pore 

waters and supersaturation of silica. Their grounds for rejection were 

that such pH changes have not been observed in these environments 

(Berner,1971) and that silica frequently exists in "metastable 

solution in highly supersaturated conditions with respect to 

crystalline silica". Furthermore Siever (1957) quoted that solubility 

of amorphous silica is independant of pH below pH 9. 

It is probable that the initiation of carbonate dissolution was caused 

by the action of bacteria on organic matter in a restricted pore water 

environment. This restriction was probably caused by the fact that the 

calcarenite was already partially cemented. Of the various reactions 

that occur between sedimentary organic matter and bacteria it is 

probable that the reduction of dissolved oxygen is the most likely to 

cause calcite dissolution as a result of CO release into the 
2 

microenvironment (Holdaway and Clayton, 1982). 

(CH O) (NH ) (H PO ) + 138 O -> 106 CO + 16 HNO + H PO + 122 H O 
^ 2 lO 3'^16 2 4 ' 2 2 3 3 4 2 

These workers went on to suggest that the concommitant precipitation 
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of silica may be the result of an increase in the ionic strength of 

the pore waters or possibly the presence of a "specific mineralising 

anion" eg. the bicarbonate released by the carbonate dissolution. Once 

the kinetic barrier to silica precipitation was overcome it is likely 

that it would nucleate on any available organic material (refs quoted 

by Holdaway and Clayton, 1982) probably as the result of hydrogen 

bonds forming between the hydroxyl groups of carbohydrate and silicic 

acid. It is possible that this nucleation on organic material could 

explain the deposition of either microquartz or chalcedony (Folk and 

Weaver, 1952). 

Clayton (1986) considered the formation of flints in the Chalk and 

suggested that aerobic bacteria attack organic matter in the upper 

part of the sediment down to a depth where oxygen depletion makes it 

impossible for them to survive. Organic matter oxidation was thought 

to be continued by sulphate reduction which may be represented as: 

2-

ORGANIC MATTER + S O > SMALLER ORGANIC MOLECULES + C O + S 
4 2 

2 -

Chemical equilibrium must then be reached by the CO and S 

2- - - 2 -

S + CO + H 0 ;::::* HS + HCO ;:-:::̂  H S + CO 
2 2 3 2 3 

In the absence of abundant Fe to react with the H S it will tend to 
2 

migrate towards more oxidising conditions where sulphide oxidising 
2-

bacteria oxidise the sulphide to SO or native sulphur. 

H S + 20, > SO + 2H 
2 2 4 
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Clayton considered that such reactions would take place at a horizon 

within the sediment where sufficient oxygen was present to allow the 

survival of the chemolithotropic Thiobaccili. These reactions can 

substantially lower pH values and thus promote the dissolution of 

carbonate and the concomitant deposition of silica: 

H* + CaCO <=="- Ca^ + HCO 
3 3 

Clayton's model, therefore, suggested that the silica effectively 

replaced the calcite along a zone straddling the oxi - anoxic boundary 

thus producing a tabular body of chert which would explain the 

observed occurrences in the Wessex Greensand. 

In order for the silica to be precipitated it must, of course, be 

available in the pore waters and probably at high levels of 

supersaturation. Pittman (1972) reviewed the possible sources of 

silica in solution: 1) the solution of siliceous shales 2) the 

devitrification of volcanic glass 3) the decomposition of feldspars 4) 

biogenic debris releasing silica into solution 5) the precipitation or 

complexing of silica from river water on contact with sea-water 6) 

organic complexes 7) precipitation direct from sea-weater 8) pressure 

solution of silica in areas of high stress and redeposition in areas 

of low stress. 

Bien, Contois and Thomas (1959) also noted that the soluble silica in 

river water may be up to fifteen times the level of that in sea-water. 

They consider that this reduction in the sea was due to a) dilution b) 

biological removal and c) inorganic precipitation. They further 

suggested that the inorganic precipitation could be due to : 1) the 
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reaction of soluble silica with electrolytes in sea-water to produce 

insoluble salts or 2) the adsorption of soluble silica with suspended 

solids or colloids in river water on contact with sea-water 

electrolytes. 

Siever (1957) added two further possibilities as sources of soluble 

silica; a) deep groundwaters and b) supersaturated hot spring waters. 

In the case of the cherts found in the Wessex Greensand of south-west 

England the source of silica is unlikely to be solutions derived from 

siliceous shales or deep groundwaters as the chert formation is 

probably a fairly early diagenetic event. There is no evidence for the 

presence of volcanic glass or hot spring fluids. Precipitation from 

sea-water is also unlikely. Pressure solution is a possible source of 

silica in solution but there is probably not enough quartz present in 

the calcarenite nor is the sediment likely to have been buried deep 

enough to produce the necessary overburden pressures in time to act as 

a source for the chert. There is no evidence for river input in the 

Chert Beds Member. 

This leaves the possible organic complexing of silica, the dissolution 

of siliceous biogenic debris and the decomposition of feldspars as the 

most likely sources of silica in solutions of sufficient strength in 

the pore waters. There is certainly evidence for the latter two 

possibilities and these are the most probable sources. 

The sequence of events in the formation of cherts in the Chert Beds 

Member of south-west England is therefore thought to be: 
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1) Silica supersaturation of pore fluids by the dissolution of 

siliceous biogenic debris and the decomposition of feldspars. 

2) Localised action of bacteria on organic matter in a restricted pore 

water environment resulting in the liberation of CO . 

3) Consequent initiation of calcite dissolution and resulting silica 

precipitation. 

4) Nucleation of silica on organic debris tending to produce 

microquanz replacement of calcite grains and chalcedonic void fill. 

5) The production of a roughly horizontal silica ghost of the original 

calcareous sediment. 

6) The large numbers of chert horizons may be explained by the nature 

of the sedimentary environment which repetitively produced the same 

conditions in the sediment column. 

4.3 Secondary Calcite - Previous Work 

Tresise (1960) observed that calcareous concretions in the Wessex 

Greensand Formation were often packed with detrital grains and 

cemented with calcite which he considered to be derived from fossil 

fragments taken into solution and then reprecipitated. He thought that 

this process was controlled by slight variations in pH level which 

could be caused by organic decay under anaerobic conditions. Pebbles 

of cemented material were observed suggesting that this was an early 
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diagenetic process. Tresise suggested that the purer limestone nodules 

could be the result of the recrystallisation of a calcareous sediment 

and possibly involved the replacement of rare quartz detritals. 

The sequence of diagenetic events for the Wolborough limestones of 

south Devon was worked out by Edwards (1979). Sparry calcite occurred 

as a cement and in-filled moulds of former aragonitic bioclasts, 

several of these exhibited micrite envelopes while some syntaxial rim 

cement also occurred, usually around monocrystalline echinoid 

fragments. Many of the bioclasts were seen to be silicified and some 

of the intraclasts had chert-like textures where both carbonate grains 

and matrix were affected. Edwards proposed a cementation sequence for 

the Wolborough limestones. Precipitation of small non-ferroan calcite 

crystals on allochem surfaces and in cavities was an early event 

completed before intraclasts were formed. After a period of time 

coarse ferroan calcite filled most of the remaining pores and this 

process was completed by precipitation of coarse non-ferroan calcite. 

Although he noted that the early cement could have been formed in a 

number of environments Edwards considered that the evidence for 

dissolution and recrystallisation of aragonite particles suggested 

exposure to fresh water in a subaerial diagenetic environment. The 

second ferroan cement was also considered to have formed in the 

phreatic zone while the late ferroan and non-ferroan cements were 

considered to have been derived from an external source. 

Garrison et al. (1987) examined hardgrouds and early lithification in 

the Late Albian of S.W. England. In all the samples they looked at 

between two and five generations of cement were observed. They 
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reported the first generation to be either "dog tooth spar" or 

syntaxial overgrowths while later generations included micritic, 

fibrous and equant sparry calcites. They considered that there was 

ample evidence of early lithification under submarine conditions and 

that the original cements were probably magnesian calcite but may have 

included aragonite.. 

4.3.1 Secondary Calcite - This Study 

Secondary calcite has probably been largely removed by leaching after 

the erosion of the Chalk cover from the Wessex Greensand Formation in 

south-west England, but it still may be seen as a cement in both the 

Foxmould Sands Member and the Chen Beds Member. 

At outcrop most samples of the Foxmould Sands Member are easily 

disaggregated, contain relatively little true cement and are largely 

bound together by original void filling clay minerals. Calcite cement 

does occur, however, and may well have been more important before the 

leaching of the present outcrop (Fig. 4.9). The cement may occur as an 

irregular mosaic of small and large calcite crystals with wavy, curved 

and straight intercrystalline boundaries. This suggests the 

'calcitization' of aragonite grains, that is a direct change with no 

void phase (Bathhurst, 1971). Calcite cement also occurs as small 

angular crystals which may be seen as void infilling within sepulid 

worm tubes. Where calcite cement surrounds quartz detritals they often 

appear to be corroded and etched, probably caused by calcium-rich pore 

fluids which circulated prior to crystallisation of the cement 

(Dapples, 1971). 
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no. 4.9: THIN SECTION SHOWING CALCITE CEMENT 

WrraW FOXMOULD SANDS MEMBER. BRANSCOMBE. 

(F.O.V. \.2 mm). 
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The calcareous sands of the Chert Beds are usually bound by calcite 

cement (Fig. 4.10) and plagioclase feldspar grains and glauconite 

grains may be partially replaced by calcite. Quartz detritals are also 

seen with etched surfaces which are infilled with calcite and some of 

the small irregular calcite cement crystals have uneven contacts 

suggestive of pressure solution. 
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no, 4.10: THIN SECTION SHOWING CALCITE CEMENT 

WITHIN CHERT BEDS MEMBER, BRANSCOMBE. 

(F.O.V. 3.1 mm). 
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CHAPTER 5 BIOSTRATIGRAPHY 

5.1 Introduction and Previous Work 

This chapter is divided into a number of sections which discuss (i) 

the general faunal references relevant to the Wessex Greensand (ii) 

general ammonite references, ammonite zonanons and a new ammonite 

occurrence (iii) general references on the Foraminifera, an 

introducdon to the taxonomy and the taxonomy of foraminiferal genera 

and species collected during this study (iv) a preliminary 

investigation into the nannofossils found during this study (v) the 

biostraugraphy and correlation of the Wessex Greensand Formation in 

south west England and (vi) palaeobiogeography of orbitoiinid 

colonisation pathways into S.W. England 

5.2 General Faunal References 

Work on the fauna of the Wessex Greensand Formation may be roughly 

divided into those publications which more or less just listed the 

fossils to be found and those which attempted to erect a 

biostratigraphic scheme and use it to correlate between sections. 

Much of the important faunal data collected in the 19th century was 
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included in the memoir authored by Jukes-Browne and Hill (1900) and 

included information from such workers as Godwin-Austen (1842), Fitton 

(1847), Hinde (1885), Carter (1871), Meyer (1874) and Strahan (1898). 

Jukes-Browne and Hill also included details of their own collections 

from the Upper Greensand at many localities. 

Publications early in the 20th century which listed the fauna to be 

found at a given locality included Jukes-Browne (1903), for the Upper 

Greensand near Chard; Woodward and Ussher (1911), for the area around 

Sidmouth and Lyme Regis; and White (1921) for the Isle of Wight. 

General faunal information may also be found in Arkell (1947) and 

Smart (1955) for the Dorset area; Wilson et al. (1958) for the area 

around Bridport and Yeovil; Kennedy (1970) for S.W. England; Hamblin 

and Wood (1976) and Selwood et al. (1984) for the Haldon Hills; and 

Edwards (1979) for the Wolborough Limestone. 

In addition to publications dealing specifically with the fauna of the 

Wessex Greensand Formation of south-west England there have been a 

large number that examined both macrofauna and microfauna from other 

locations (of a similar age). These publications have varied in their 

approach from descriptive to stratigraphic to taxonomic. They include 

the works of; looking at ammonites Casey (1961), Owen (1971,1975), 

Spath (1922-1943), Breistoffer (1947), Van Hinte (1976), Juignet and 

Kennedy (1971), Destombes (1973), Deroo and Destombesy and Hancock m l p ^ l 
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(1959, 1969); looking at foraminiferal stratigraphy Price (1977a and 

b), Magniez-Jannin (1975); ostracod stratigraphy Neale (1978); 

foraminifera Benhelin (1880), Chapman (1891-1898), Eichenberg (1933), 

Marie (1939,1941,1965), Khan (1950,1952), ten Dam (1950), 

Gawar-Biedowa (1969,1972), Hermes (1969), Cushman Foundation 

(1920-1950), Champney (1978), Ascoli (1976), Price (1975), Loeblich 

and Tappan (1961), Longoria and Camper (1977), Masters (1977), 

Robaszynski and Caron (1979), Douglass (1960a-b), Hofker (1963) and 

Schroeder (1975); ostracods Jones (1849), Jones and Hinde (1890), 

Chapman and Sherbom (1893), Chapman (1898), Comeul (1848), Menens 

(1956), Deroo (1956), Oenli (1958), Kaye (1964-1966), Damotte 

(1961-1977), Grundel (1967), Kemper et al. (1975) and Van der Wiel 

(1978); nannofossils Davey and Verdier (1971,1973). 

The monographs published by the Palaeontographical Society were also a 

source of data for various fossil groups including; Wright (1862-85) 

and Spencer (1905-1908) on the Echinodermata; Swinnenon (1936-1952) 

on belemnites; Hinde (1887-1893) on sponges; Bell (1862) on the 

malacostracous Crustacea; Duncan (1869-1870) and Edwards and Haime 

(1850) on corals; Davidson (1852-1884) on brachiopods; Lycett 

(1872-1879) and Woods (1899-1913) on the lamellibranchs. 

Many of these works were referred to in the identification of the 

microfossils mentioned below and where ideas suggested by a specific 

paper are discussed the paper is cited in the text. 
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5.3 Ammonites 

5.3.1 General Ammonite References 

Two faunal groups have attracted special interest because of their 

potential for stratigraphic correlation and dating: the ammonites and 

the Foraminifera. Detailed work on the ammonites of the Wessex 

Greensand Formation has been reported by Wright (in Arkell, 1947) for 

Dorset; Hancock (1969) and Kennedy (1970) for S.W. England; with other 

contributions from Smart (1955) for the Alton Pancras district in 

Dorset; Wilson et al. (1958) for the area around Bridport and Yeovil; 

Hart (1973b) for S.W. England; and Hamblin and Wood (1976) and Selwood 

et al. (1984) for the Haldon Hills. 

5.3.2 Ammonite Zonations 

One of the earliest attempts at a biozonation of the Upper Greensand 

was published by Bartois (1876) when he recognised two distinct 

faunas: the Blackdown fauna which he placed in his Zone of Ammonites 

inflatus and the Warminster fauna which he placed in his Zone of 

Pecten asper. 

This scheme was utilised by Jukes-Browne (1892) when he described the 
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sands above the Gault Clay at Devizes as belonging to the older Zone 

of Ammonites inflatus and the younger Zone of Pecten asper. In 1900, 

however, Jukes-Browne and Hill divided their Upper Greensand into the 

Zone of Ammonites rostratus and the younger Zone of Pecten asper and 

Cardiaster fossarius . Woodward and Ussher (1911) retained the Zone of 

Pecten asper but placed the Foxmould in the Zone of Schloenbachia 

rostrata while White, (1921) working in the Isle of Wight, divided the 

Upper Greensand into the Zone of Cardiaster fossarius and the 

underlying Zone of Mortoniceras rostratum. 

The next major change in biozonation of the Upper Greensand was 

proposed by Wright (in Arkell, 1947) who placed the largely 

phosphatised ammonite fauna found in Dorset into the zones and 

subzones proposed by Spath (1922-1943) (Fig.5.1). Stoliczkaia dispar 

Zone ammonites were seen in every section although none were found 

belonging to the lower Arraphoceras substuderi Subzone. The 

Perinquieria inflata (later Mortonicera inflatum) Zone was either 

suggested or proved at a number of localities. The Pervinquieria 

inflata var. aequatorialis Subzone was proved at Punfield; the 

Callihoplites auritus Subzone was proved at Osmington and suggested at 

Punfield and Worbarrow; the Hystoceras varicosum Subzone was proved at 

Punfield and Osmington; and the Hystoceras orbigny Subzone was 

suggested at Punfield, Worbarrow and Osmington. Although Wright 

mentioned the phosphatised nature of the dispar Zone ammonites, 

particularly from the 'ammonite bed' found above the Exogyra 
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ZONES AND SUBZONES 

(L.F. SPATH) 

Stoliczkaia 
dispar 

Pervinqueria 
inflata 

Euhoplites 
lautus 

Stoliczkaia 
dispar 

Arrhaphoceras 
substuderi 

Pervinqueria 
inflata 
var. aequatorialis 

Callihoplites 
auritus 

Hystoceras 
varicosum 

Hystoceras 
orbigny 

Diploceras 
cristatum 

Anahoplites 
daviesi 

Euhoplites 
lautus-nitidus 

Diploceras 
delaruei 

OCCURRENCES IN DORSET 

PROVED IN EVERY SECTION. 

NO AMMONTTES. 

PROVED AT PUNFIELD. 

PROVED AT OSMINGTON. SUGGESTED 

AT PUNHELD AND WORBARROW. 

PROVED AT PUNFIELD AND 

OSMINGTON. 

SUGGESTED AT PUNHELX), 

WORBARROW AND 70SMINGT0N. 

AMMONITES OF TOP OF 

LOWER GAULT FOUND LOOSE 

AT OSMINGTON. 

FIG. 5.1: AMMONITE DATING OF THE SELBORNE GROUP IN DORSET. (AFTER 

WRIGHT. 1947). 
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Sandstone, he did not consider them to be reworked faunas. 

This ammonite based zonal scheme (Spath, 1922-1943) was generally 

accepted and used by subsequent workers although there was of course 

disagreement as to which zone a given lithological unit belonged in 

any given area especially when the zonation was based on correlation 

rather than the actual occurrence of the zonal fossil. 

Smart (1955) clarified the faunal evidence from the Upper Greensand of 

the Alton Pancras district in Dorset placing the phosphatic nodule 

horizon and glauconitic sand seen at the top of the succession in the 

dispar - perinflatum Subzone. 

In the Bridport and Yeovil areas Wilson et al. (1958) placed the 

lowermost beds of the Upper Greensand in the inflatum Zone, based on 

the presence of Callihoplites aff. auritus (Spath); the lower pan of 

the Eggardon Grit was placed in the Albian (dispar - perinflatum 

Subzone) on the basis of an ammonite fauna of Stoliczkaia cf. dispar 

(d'Obigny) and Mortoniceras (Durnovarites) cf. subquadratum (Spath); 

while the upper pan was placed in the Early Cenomanian on the basis 

of an ammonite fauna of Anisoceras cf. plicatile (J. Sowerby), 

Mantelliceras?, Schloenbachia aff. nodulosa (Stieler) and S. cf. 

subvarians (Spath). 

Hancock (1969) reported the ammonite faunas that had been collected, 
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by various workers, from the Upper Greensand in south-west England, 

noting that the Haldon Sands had yielded Mortoniceras (Deiradoceras) 

aff. devonense (Spath) indicating inflatum Zone; the Blackdown Sands 

had yielded Hystoceras spp., Prohystoceras goodhalli, Epihoplites 

spp., Euhoplites alphalautus and Mortoniceras devonense indicating 

varicosum and/or orbignyi Subzones. The Foxmould of south-east Devon 

yielded Mortoniceras cunningtoni, M. devonense, M. bipunctatwn, M. 

albense, Hysteroceras varicosum and Callihoplites aff. auritus 

indicating varicosum I auritus Subzones. In addition dispar Zone 

ammonites had been reported from the phosphate band below the 

Glauconitic Marl, Isle of Wight; in a similar position at Punfield, 

some 4m below the Chalk at White Nothe, and in the Chen Beds near 

Charmouth. Mantelliceras mantelli Zone (early Cenomanian) ammonites 

had been reported from the top of the Eggardon Grit near Maiden Newton 

and from the Wilmington Sands. 

Kennedy (1970) used the ammonite faunas to date many of the highest 

horizons of the Upper Greensand in southern England and although many 

of the localities were outside the present area of study they 

contributed valuable age determinations. 

In the area near Warminster and Mere, Chert Beds of possible 

Stoliczkaia dispar and Mortoniceras (Durnovarites) perinflatum Subzone 

age were overlain by Albian to Cenomanian greensands and locally 

reworked Cenomanian phosphate horizons. Further south, in the Stour 
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valley, a reworked glauconitic sandstone yielded a phosphatised and 

unphosphatised 5. dispar and M. (D.) perinflatum Subzone fauna which 

was succeeded by a glauconitic marl containing a Hypoturrilites 

carcitonensis assemblage fauna (early Cenomanian). 

To the south-west, at Evershot, the glauconitic sandstone rested on 

the Exogyra Sandstone, which yielded a fauna suggestive of 

Mortoniceras aequatorialis or Callihoplites auritus Subzone age. Near 

Maiden Newton the Chert Beds were recorded with a probable 

Arrhaphoceras substuderi Subzone age fauna. These were succeeded by a 

thin glauconitic sand (which Kennedy considered was all that remained 

of the S. dispar and M. (D.) perinflatum Subzone sandstone) and the 

Eggardon Grit. To the south-west this grit becomes thicker and yielded 

an early Cenomanian ammonite fauna near it's top. 

Reviews of the ammonite zonation of western Europe have been presented 

by a number of workers (Kennedy and Hancock, 1979; Owen, 1976, 1979); 

and Owen (1984) listed studies that have been carried out on the 

ammonite sequences of eastern and southern Europe. In this latter 

paper, Owen pointed out a number of inconsistencies and errors in the 

existing ammonite zonation, and suggested that there might be a case 

for the revision of the scheme. 

5.3.3 Ammonite - Present Study 
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Previous ammonite evidence from the Foxmould Sands Member in S.E. 

Devon, as cited by Hancock (1969), indicated a varicosum/auriius 

Subzone age. 

The only ammonite to be found in the Selbome Group during the present 

study was recovered from the lower part of the Foxmould Sands Member 

at Branscombe (Fig.5.2). 

It has been identified by Dr H.G. Owen (pers. comm.) as Prohystoceras 

(Goodhallites) delabechei Spath. Preservation was fair to good and 

assuming it had not been reworked this ammonite suggests a 

confirmation of varicosum Subzone age for the lower part of the 

Foxmould Sands Member. 

5.4 Foraminifera 

5.4.1 Previous Work 

Detailed work on the Foraminifera of the Wessex Greensand Formation 

has been reported by Hart (1971), Hart et al. (1979a), Hart et al. 

(1979b), Williams et al. (1988) and Hart and Williams (1990) for S.E. 

Devon; Schroeder et al. (1986) and Simmons and Williams (in press) for 

S.W. England; Carter and Hart (1977) for southern England; with 

contributions from Andrieff et al. (1975), Lott et al. (1980) and 

Wilkinson and Halliwell (1980) for the offshore margins of the region. 
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By 1970 the Haldon Sands were regarded, mostly on ammonite evidence, 

^s being inflatum Zone; the Blackdown Sands as varicosumlauritus 

Subzone; the Foxmould Sands as varicosumlauritus Subzone; and the 

Chert Beds as dispar Zone. In 1971, however. Hart discussed the 

occurrence of the large benthonic foraminiferan Orbitolina concava 

(Lamarck) from localities at Wilmington, Dunscombe, Wolborough, 

Babcombe (Devon), Antrim (N. Ireland) and Ballon (Sarthe) in western 

France. He accepted the work of Hofker (1963) which stated that the 

genus was represented by a single species {O. lenticularis 

(Blumenbach)) (see discussion later) but could belong to a number of 

'Form Groups' based on the morphology of the embryonic apparatus. 

Hofkers 'Form Group IV' (= 0. concava) was accepted as Cenomanian in 

age and it was assumed that all occurrences of O. concava (= IV) were 

in rocks of Cenomanian age. The Eggardon Grit, which had been dated as 

Cenomanian on ammonite evidence (Kennedy, 1970), was correlated by 

Hart with the horizons containing O. concava at Dunscombe and 

Wilmington. 

Hart continued to examine the problem of the age and correlation of 

the Upper Greensand of S.W. England (1973 b) and presented a synthesis 

of the available evidence, from both the macrofauna and microfauna. 

The Exogyra Sandstone found below the Chert Beds (in Dorset) had been 

dated, on ammonite evidence, as Late Albian Callihoplites auritus or 

Mortoniceras aequatorialis Subzone) by Kennedy (1970), who also 

described a non-phosphatised early Cenomanian ammonite fauna from the 
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Eggardon Grit. Hart stated that his previous (1971) and forthcoming 

publications supported the early Cenomanian age for the Eggardon Grit 

on microfaunal evidence, including the occurrence of Orbitolina 

lenticularis (Blumenbach) (= 0. concava in this sense). 

Given that these ages were accurate. Hart pointed out that if 

extrapolated westwards to the Beer district then the Chert Beds in 

that area must represent either all or part of the S. diapar Zone 

(Late Albian) and the H. carcitanensis assemblage Zone (Early 

Cenomanian) of Kennedy (1970). Hart thought it ill advised to accept a 

single occurtence of Mortoniceras gr. stoliczkaia, from an unspecified 

horizon near Charmouth, as sufficient evidence for placing the whole 

of the Chert Beds in the 5. dispar Zone. 

The S. dispar Zone ammonite fauna from the Dorset coast (Wright in 

Arkell, 1947) was phosphatised and probably reworked and Hart's work 

had indicated an early Cenomanian age (//. carcitanensis assemblage 

Zone) for the matrix of the 'ammonite bed' from which, it appeared, 

the 5. dispar Zone fauna had been collected. Hart used this reworked 

fauna from the Dorset coast to suggest that there was little evidence 

of S. dispar Zone age Chert Beds in south-west England. This led him 

to conclude that the Chert Beds were of Early Cenomanian age which he 

claimed was substantiated by the occurrence of Orbitolina, 

Much of this work by Hart was based on an examination of the mid -
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Cretaceous foraminfera of southern England which had been completed 

earlier but did not appear in print unul later (Carter and Han, 

1977). 

The south-west of England was divided, for purposes of study, into the 

mid-Dorset Swell, the margin of the mid-Dorset Swell and the 

south-western shelf. Although not primarily concerned with the Upper 

Greensand, Carter and Hart did date some of the units. On the margin 

of the mid-Dorset Swell they accepted that the Eggardon Grit was of 

Early Cenomanian age (their zone 9) and suggested a Late Albian age 

for the Exogyra Sandstone. In this area they tentatively placed the 

Chert Beds in the Early Cenomanian. 

In south-east Devon the Top Sandstones were equated with the Eggardon 

Grit and were, therefore, thought to be Early Cenomanian in age. They 

did not consider these sediments to be diachronous in nature. The 

chert conglomerate, seen at Lulworth Cove and Durdle Door, was placed 

in the Cenomanian (their zone 10 to Hi equivalent to the Cenomanian 

Limestone further west). Based mainly on the occurrence of Orbitolina 

Carter and Han placed the Chen Beds of south-west England in the 

Cenomanian (their microfaunal zones 7-8). They considered that much of 

the macrofaunal evidence for Late Albian age for these sediments had 

relied on phosphatised, reworked ammonites. The Foxmould which was 

beneath the Chen Beds was placed in the Late Albian (their zone 6) 

although the zonal indicators were not found. 
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The upper part of the outliers found in the Haldon Hills and the 

limestone seen at Wolborough were placed in the Cenomanian, A decision 

largely based on the occurrence of Orbitolina. 

The next major contribution to this debate was made by Hamblin and 

Wood (1976) when they discussed the stratigraphy of the Haldon Hills 

and correlated the Upper Greensand members of that area with those in 

S.E. Devon. The presence of an indigenous late Albian S. dispar Zone) 

ammonite fauna (determined by Dr Hugh Owen) found in the highest part 

of the Chert Beds or basal Top Sandstone at Shapwick Grange, near Lyme 

Regis, led Hamblin and Wood to the conclusion that the Chert Beds in 

south-east Devon were Albian and not Cenomanian. Using their 

lithostratigraphic correlation, this made the Woodlands Sands Member, 

at Haldon, Albian in age despite the 'Cenomanian aspect' of the 

moUuscan fauna. They further believed that most of the orbitoline 

occurrences in Devon, with the exception of Babcombe Copse (and 

therefore the CuUum Sands-with-Cherts Member) and Smallercombe Goyle, 

were Albian in age. 

Hart et al. (1979) examined the Upper Greensand microfauna they found 

at Shapwick Grange Quarry, east Devon. They described the position in 

the succession that had yielded the ammonite fauna (Hamblin and Wood, 

1976) but stated that their own samples were barren except for one 

point some way below the ammonite horizon. The ostracods and 
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foraminifera recovered from this sample indicated an Albian-Cenomanian 

boundary age but the species recorded had either long or imprecisely 

known ranges, especially in marginal facies. Despite this difficulty 

it was thought that the results cast some doubt on the dating of the 

Chert Beds as totally Cenomanian as indicated by Carter and Hart 

(1977). 

Hart and others (1979) reported a bivariate analysis, based on 

external characteristics only, of the Orbitolina fauna from Wolborough 

in south Devon which suggested a Late Albian-Early Cenomanian age for 

the Wolborough limestones. The orbitolines found at Bullers Hill 

Quarry were thought to compare favourably with those from the type 

Cenomanian of the Sarthe. Other foraminifera and ostracods found in 

the Wolborough limestone together with some of the microfauna found in 

the cherts at Bullers Hill were thought to support the Late 

Albian-Early Cenomanian and Cenomanian dates respectively suggested by 

the orbitolines. 

Schroeder et al. (1986) applied the revised taxonomy of the Orbitolina 

concava-sefini group (Schroeder, 1985 a, b) to the orbitoline fauna of 

south Devon (see later discussion). 

Williams et al. (1988) examined the Foraminifera of the Wessex 

Greensand Formation in S.E. Devon (the content of this paper was taken 

from this study and will be discussed below). 
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Hart and Williams (1990) examined samples from a borehole on the site 

of the A303 Honiton-Marsh road and attempted a graphic correlation of 

the S.E. Devon Wessex Greensand Formation with the Glyndeboume 

borehole; the results of which did not alter previously held views. 

Simmons and Williams (in press) examine the orbitoline occurrences in 

S.W. England (again the content of this paper is taken from this study 

and will be discussed below). 

5.4.2 Introduction to Taxonomy 

Samples from a representative section at Branscombe in S.E. Devon have 

been examined for foraminifera with a view to refining the age 

determinations and correlation of the Upper Greensand in S.W. England. 

In addition examples of the larger foraminiferan Orbitolina have been 

collected and examined from various localities in S.W. England, and as 

these are the most useful group, they have been treated in the 

greatest detail. 

Of the 80 samples collected from the Branscombe Mouth to Beer Head 

section only 42 yielded foraminifera and these usually had a poor 

fauna both in terms of numbers of species and individuals. Indeed some 

samples contained only a single specimen. In addition the specimens 

were frequently fragmented, partially dissolved and/or covered with 
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sediment that was difficult to remove. As a result of this combination 

of few individuals and poor preservation it was not always possible to 

identify the foraminifera down to species level. 

Each of the species found in the section at Branscombe is described 

with a brief synonomy which covers the original reference and a few of 

the major or more recent references, especially those where a 

different generic name was applied. Also included are a diagnosis and 

some remarks on state of preservation, variation within the population 

and frequency of occurrence. Finally the stratigraphic range is given 

and a list of the samples in which the species occurred which may be 

referenced against the range chart (Fig. 5.3) and sample position 

(Fig. 5.4). 

Recently Loeblich and Tappan (1988) have produced a major revised 

classification of the Foraminifera and this has been used in the 

taxonomic descriptions. 
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5.4.3 Taxonomy 

Order FORAMINIFERIDA Eichwald, 1830 

Suborder TEXTULARIINA Delage and Herouard, 1896 

Superfamily VERNEUILINACEA Cushman, 1911 

Family VERNEUILINIDAE Cushman, 1911 

Subfamily VERNEUILINOIDINAE Suleymanov, 1973 

Genus Eggerellina Marie, 1941 

Type Species: Bulimina brevis d'Orbigny, 1840 

Eggerellina mariae ten Dam, 1950 (Plate 1, Fig.3) 

1950 Eggerellina mariae ten Dam, p. 15-16, pl.l, fig. 17. 

1977 Eggerellina mariae ten Dam; Carter and Hart, p. 17, pi.2, fig. 7. 

1981 Eggerellina mariae ten Dam; Hart et al., p. 176, pl.7.2, figs 1,2. 

1989 Eggerellina mariae ten Dam; Hart et ai, p. 138, pl.7.2, figs 1,2. 

Description: A variable species; test free; sub-conical to sub-ovoid; 

triserial with inflated and embracing chambers; chambers inflate at 

various rates, specimens vary from high spiral and narrow to low 
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spiral and wide; normally 6 to 9 chambers per specimen; aperture 

narrow, hook-shaped and interiomarginal. Test agglutinated, test 

surface smooth, glossy. 

Remarks: E. mariae is an extremely variable species ranging from forms 

that are short and pyramidal to those that are relatively long and 

narrow. Carter and Han (1977) were unable to determine distinctive 

ranges for each of these morphotypes. The specimens collected during 

this study tended towards the long and narrow form. 

Stratigraphic Range and Occurrence: Known from the C. auritus Subzone 

up into the early Turonian. It was first described from the Gault Clay 

of Holland and widely recorded from southern England by Carter and 

Hart (1977). At Branscombe it is rare, only occurring as a single 

specimen in three samples from the middle Foxmould Sands Member; 

BCl/4, BCl/5 and BC3/2. Preservation was fair to good. 

Palaeoenvironment: Deep neritic to upper bathyal (Koutsoukos, 1989). 

Family TRITAXIIDAE Plotnikova, 1979 

Genus Tritaxia Reuss, 1860 

Type Species: Textularia tricarinata Reuss, 1844 

Tritaxia pyramidata Reuss (Plate 1, Fig.l) 
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1862 Tritaxia pyramidata Reuss, p.32, 88, fig. 9a-c. 

1928 Tritaxia pyramidata Reuss; Franke, p. 138, pl.7, fig. 18a-c 

1948 Tritaxia pyramidata Reuss; Williams-Mitchell, p.98, pl.8, fig. 

5a-c. 

1950 Tritaxia pyramidata Reuss; Ten Dam, p. 12-13. 

1953 Tritaxia pyramidata Reuss; Barnard and Banner, p. 195, pl.7, fig. 

la-b. 

1967 Verneulina variablis Brady; Fuchs, p.269, pl.3, fig. 2. 

1977 Tritaxia pyramidata Reuss; Carter and Hart, p. 13, pl.2, 

fig. 15. 

1981 Tritaxia pyramidata Reuss; Hart et al., p. 178, pl.7.3, fig. 

2.3. 

Description: Test free, triserial in early ponions, triangular in 

cross section, last chamber uniserial, sides slightly concave. In side 

view species sub-triangular; sutures straight, difficult to observe, 

generally flush to test surface; last chamber circular in apertural 

view; greatest width at 0.8 length; wall coarsely agglutinated. 

Remarks: May be confused with Tritaxia singularis Magniez-Jannin in 

the early Cretaceous but the latter generally has more excavated sides 

and a more coarsely agglutinated test(Magniez-Jannin, 1975). T. 

pyramidata shows a wide range of shape and size (Han et al., 1981). 

Stratigraphic Range and Occurrence: Elsewhere in S.W. England Hart 
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(1970) and Carter and Hart (1977) have recorded this species 

occasionally from various localities in the Upper Greensand. It is 

abundant throughout the Albian and Cenomanian of N.W. Europe 

especially in the chalk facies and is of limited stratigraphic value. 

At Branscombe a single, poorly preserved, specimen occurred in one 

sample at the top of the Chert Beds Member, sample Bll/6. 

Palaeoenvironment: Not known for the Albian - the genus is recorded by 

Koutsoukos and Hart (1990) as being middle neritic to upper bathyal 

during the Coniacian. 

Superfamily ATAXOPHRAGMIACEA Schwager, 1877 

Family ATAXOPHRAGMIIDAE Schwager, 1877 

Subfamily ATAXOPHRAGMIINAE Schwager, 1877 

Genus Arenobulimina Cushman, 1927 

Type Species: Bulimina preslii Reuss, 1846 

Arenobulimina sp. cf. A. advena Cushman, 1936 (Plate 1, Fig.2) 

Description: Test free, chambers arranged trochospirally; apertural 

face obliquely truncated, last chamber embraces 0.66 to 0.76 of the 

test circumference, test circular in cross-section; aperture situated 

in a slight depression in the apertural face; sutures very weakly 
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depressed; in side view test margins convex, strongly converging 

umbilically; umbilical margin bluntly pointed; greatest width at 0.66 

length; wall agglutinated, test surface almost smooth. 

Remarks: In the species A. advena there is some variation in the size 

and outline of adult specimens and the apertural lip is not always 

present. The internal panitions are simple and extend over the last 1 

to 4 chambers. 

The specimens collected during this study had an average height of 

0.45mm and a maximum width of 0.33mm. 

Specimens with complex internal partitions are generally mid-late 

Cenomanian in age, as reported by Carter and Hart (1977). Forms with 

simple internal partitions are generally early Cenomanian in age 

although they are also found in the latest Albian. The possession of 

such structures is probably a response to environmental factors and, 

as indicated by Hart (1970) some specimens of Arenobulimina have been 

found in the Upper Greensand of the Isle of Wight. 

As indicated by Carter and Han (1977) there has been an error in the 

locality and age of the original "Hagenowella advena", initially 

spotted by Brotzen (1945). The holotype is therefore late Cenomanian 

in age, and not late Senonian, as reponed by Cushman (1936). 
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Stratigraphic Range and Occurrence: The species Arenobulimina advena 

occurs in the very latest Albian of southern England and is of zonal 

significance. It's full stratigraphic range is very uppermost Albian 

to Cenomanian and the type species was described from the Cenomanian 

of Germany. The specimens collected during this study could not be 

placed with complete confidence within the species A. advena and hence 

the designation sp. cf.. Because of this designation the age range is 

probably not reliable. At Branscombe this species occurs in four 

samples from the middle part of the Foxmould Sands Member; BC5, BBS, 

BBll, and BB14. It is rare, only one or two specimens per sample but 

the preservation is fair to good. 

Palaeoenvironment: Not known. 

Genus Ataxophragmium Reuss, 1860 

Type Species: BuUmina variablis d'Orbigny 1840 

Ataxophragmium depression (Pemer), 1892 (Plate 1, Fig.4) 

1892 Bulimina depressa Pemer, p.55, pi.3, fig. 3a-b 

1964 Ataxophragmium depressum (Pemer); Loeblich and Tappan, p.C283, 

fig. 191.3,4. 

Description: Test free, trochospiral, tending to become streptospiral 

in coiling; chambers low and broad, with internal partitions; wall 

agglutinated; aperture interiomarginal slit or loop, umbilical in 
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position. 

i 

Stratigraphic Range and Occurrence: At Branscombe this species is very 

rare, occurring as a single, poorly preserved specimen in a sample at 

the top of the Top Sandstones Member (Bll/6). Reported to occur in the 

Cenomanian of S.E. England (Jarvis et al. 1988) 

Palaeoenvironment: Not known. 

Superfamily ORBITOLINACEA Manin, 1890 

Family ORBITOLINIDAE Martin, 1890 

Subfamily ORBITOLININAE Martin, 1890 

Genus Orbitolina d'Orbigny, 1850 

Type Species: The type species of Orbitolina has been the subject of 

some debate (Schroeder and Simmons, 1988, 1989; Simmons, 1990). 

Several workers, including Douglass (1960 a, b), Hofker (1963, 1966 a, 

b) and Douglass, Loeblich and Tappan (1964) in the definitive 

"Treatise on Invertebrate Paleontology", have regarded Madreporites 

lenticularis Blumenbach, 1805 as the type species. According to the 

1964 Treatise Orbulites lenticulata Lamarck, 1816 (= Madreporites 

lenticularis Blumenbach, 1805) is the type species.However, despite 

the arguments of Douglass (1960 a), Hofker (1963) and Douglass, 
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Loeblich and Tappan (1964) no original designation of a type species 

of Orbitolina was made by d'Orbigny (1850), nor was the genus 

monotypic in the original description. Hence Madreporites lenticularis 

(- Orbitolina lenticularis) is not automatically the type species. 

In their new major work on the classification of Foraminifera Loeblich 

and Tappan (1988), the type species of Orbitolina is given as 

Orbulites concava Lamarck, 1816 citing Parker and Jones (1860). 

Schroeder and Simmons (1988, 1989), however, contended that Parker and 

Jones had not made a valid type designation, and recommended that 

Orbitolina concava (= Orbulites concava Lamarck, 1816) should be 

regarded as the valid type species of the genus Orbitolina thus 

obviating the need for a revision of the taxonomy and allowing the 

genus Palorbitolina (type species Madreporites lenticularis 

Blumenbach, 1805) to remain valid. This has been accepted by the 

I.C.Z.N. (1990). (Freely paraphrased from Simmons, 1990 which contains 

more detail). 

Remarks: As discussed by Schroeder (eg 1962, 1963, 1975) and Hofker 

(1963, 1966), the internal structure of orbitolinids is the most 

critical feature for taxonomic separation. Within the Subfamily 

ORBITOLININAE {Orbitolina sensu lata), the most important feature is 

the macrospheric embryonic apparatus (see Fig.5.5). The structure and 

size of this delimits genera and species, and allows for the 

construction of phylogenetic lineages. Hofker (1963, 1966) considered 
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there to be only one phylogenetic lineage within the ORBITOLININAE, 

and that this could be grouped under one species name - Orbitolina 

lenticularis (Blumenbach). However Schroeder (eg 1975) has shown this 

to be incorrect. A number of phylogenetic lineages exist within the 

ORBITOLININAE which allow for separation into distinct genera and 

short ranging and transitional species. This taxonomy is now widely 

accepted as being correct. 

For further details of the morphological terminology used in 

describing the orbitolinids see Schroeder (1975) and Arnaud-Vanneau 

(1980). 

Orbitolina sefini Henson, 1948 (Figs 5.6, 5.7) 

1948 Orbitolina concava (Lamarck) var. sefini Henson, 64-65, 

pi.5, figs 1-2 (non figs 3-4 (= Orbitolina (Conicorbitolina) 

conica)). 

1977 Orbitolina (Orbitolina) concava (Lamarck): Rey, Bilotte and 

Peybemes, 378, pl.2, figs 11-12. 

1978 Orbitolina (Orbitolina) cf. concava qatarica Berthou and 

Schroeder, p.76, pl.4, figs 8-12. 

1985 Orbitolina (Orbitolina) sefini (Henson): Schroeder, 66-67, 

pl.30, figs 1-8. 

1986 Orbitolina (Orbitolina) sefini (Henson): Schroeder et al., 

383-385. fig. 2 a-g. 
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FIG. 5.6. Orbitolina sefini SHOWING EMBRYONIC APPARATUS. 

WOLBOROUGH LIMRSTONE MEMBER. 

(X 10) 
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Description: The test is either flatly conical, lenticular or "Mexican 

hat" shaped. Below the apical embryonic apparatus there are numerous 

chamber layers. The central zone is divided by "wavy" partitions and 

the marginal zone by horizontal and vertical partitions. The embryonic 

apparatus is situated at the apex of the test and consists of a 

protoconch, a deuteroconch with a superembryonic zone of vertical 

partitions and a subembryonic zone which is also subdivided (after 

Amaud-Vanneau, 1980). 

The complex embryonic apparatus has a typical diameter of 0.5 to 0.7mm 

in the megalospheric form (Schroeder, 1985), with an ellipsoidal 

protoconch surtounded by a subdivided deuteroconch and a considerably 

thinner, but relatively large, subembryonic zone. Exclusively 

triangular cross-sections of the radial partitions and chamber 

passages within the radial zone of the chamber layers are 

characteristic. 

Remarks: Orbitolina seflni is the oldest member of the plexus O. 

sefini - O. concava and intermediate forms may occur. O. sefini may be 

distinguished from other orbitolines by the size and complexity of 

it's embryonic apparatus and from O. concava in particular by the 

latters larger embryonic apparatus (0.7 to 0.9mm with a maximum of 

1.1mm quoted by Schroeder, 1985) and the characterisnc 

sub-rectangular cross-sections of chamber passages. 
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Stratigraphic Range and Occurrence: This species is quoted (Schroeder, 

1985) as having a range from intra-Late Albian to intra-Early 

Cenomanian. In the present study specimens have been recorded from the 

Wolborough Limestone and from it's equivalent in the road cutting of 

the Newton Abbot by-pass just north of Newton Abbot (see below for 

arguments which demonstrate a Late Albian age for these deposits). 

Palaeoenvironment: Inner shelf/sub-littoral. 

Orbitolina sp. cf. O. concava (Fig.5.8) 

Description: As for O. sefini with the differences mentioned in the 

remarks above. The specimens collected during this study 

are poorly preserved and are often silicified (Fig.5.8). However, 

they can be seen to posses a complex embryonic apparatus divisible 

into a lenticular protoconch surrounded by a subdivided deuteroconch 

and a thin subembryonic zone. This indicates that these occurrences 

can be referred to the genus Orbitolina. Of note is the diameter of 

the embryonic apparatus. It is greater than that of the O. sefini 

specimens from Wolborough having an average value of 0.95mm (see 

Fig.5.9). This suggests that these specimens are not referable to 0. 

sefini and have a closer affinity to 0. concava. Indeed, the diameter 

of the embryonic apparatus of the Haldon Hills specimens is slightly 

greater than that of the topotype specimens of 0. concava from Ballon, 

France (see Fig 5.10). Unfortunately the poor preservation of the 
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nC. 5.8: Orbitolina sp. cf. O. concava. 
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FIG. 5.10: Orbitolina concava. 

BALLON. 

(X 10) 
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specimens from the Haldon Hills does not allow for recognition of the 

characteristic sub-rectangular cross-section of chamber passages in O. 

concava. Thus these specimens are referred to Orbitolina sp. cf. 0. 

concava. 

Remarks: In addition to variations within the O. sefini - O. concava 

plexus it should be noted that orbitolinids have been reported from 

the Early Aptian - Late Barremian (Wealden - Lower Greensand 

equivalents) of the Fastnet Basin (Ainsworth et al., 1985) and 

possibly the onshore Faringdon Greensand (Natural History Museum, 

London, Curry Collection). These belong to the species Palorbiiolina 

lenticularis (Simmons and Williams, in press). The monotypic genus 

Palorhitolina is distinguished by a relatively simple embryonic 

apparatus (Schroeder, 1963; 1975). This consists of an apically 

situated spherical embryonic chamber (a combined proloculus and 

deuteroconch), and in advanced specimens, peri-embryonic chamberlets. 

The deuteroconch and peri-embryonic chamberlets typically show a 

surface division by septa. The lack of a subembryonic zone 

distinguishes this species from the genus Orbitolina. 

Stratigraphic Range and Occurrence: 0. concava has a well defined 

stratigraphic range in which it is restricted to the Early Cenomanian. 

In the present study orbitolinids from the Cullum Sands-with-Cherts 

Member (Haldon Hills) are referred to Orbitolina sp.cf. 0. concava. 

Other occurrences of orbitolinids, where it was not possible to place 
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them within a species are discussed below . 

Palaeoenvironment: Inner shelf/sub-littoral. 

Orbitolinid Occurrences: There are relatively numerous records of 

orbitolinids from the mid-Cretaceous of onshore and offshore S. W. 

England as well as more questionable records from N. Ireland (Hume, 

1897; Hancock, 1961; Reid, 1971). 

This study has examined material from Wolborough, the Haldon Hills, 

Wilmington, the South-East Devon coast and the mid-Cretaceous 

sediments of the Fastnet Basin. 

The most abundant faunas of orbitolinids from onshore South-West 

England occur in the Selbome Group sediments at Wolborough, near 

Newton Abbot, South Devon (Fig.5.11) which have been demonstrated to 

belong to the species Orbitolina sefini (Schroeder, et al., 1986). The 

complex embryonic apparatus of the specimens examined had a typical 

diameter of between 0.5 and 0.72mm (see Fig.5.9), with an ellipsoidal 

protoconch (diameter 0.18 to 0.24mm) surrouded by a subdivided 

deuteroconch and a considerably thinner, but relatively large, 

subembryonic zone (Fig.5.6). 

According to Schroeder (1985a) O. sefini has a range from intra-Late 

Albian to intra-Early Cenomanian. The Wolborough Limestone Member in 
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which O. sefini occurs has been correlated with the Woodlands Sands 

Member of Haldon Hill (Hamblin and Wood, 1976). The Woodlands Sands 

Member was thought by Hamblin and Wood (1976) to be Late Albian on the 

basis of a debatable correlation to the Chert Beds Member of 

South-East Devon, and the presence of two poorly preserved ammonites 

thought to have their provenance in the Woodlands Sands Member. 

However, the molluscan fauna found within the Woodlands Sands Member 

was said to have a Cenomanian aspect. As shown in Fig. 5.9, the 

embryonic apparatus diameters for O. sefini from Wolborough are close 

to those recorded for Late Albian (Dispar Zone) O. sefini from 

Portugal. This tends to confirm a Late Albian age for the Wolborough 

occurrences. 

0. sefini also occurs in the Wolborough Limestone Member equivalent or 

Woodlands Sands Member equivalent in the road cutting of the Newton 

Abbot by-pass just north of Newton Abbot (Fig. 5.11). 

Orbitolinids are also common at a stratigraphically higher level that 

at Wolborough in the Selbome Group and Cenomanian Limestone 

equivalents of the Haldon Hills (see Fig. 5.11). These occurrences are 

in the Cullum Sands-with-Cherts Member of the Haldon Sands Formation 

(Hamblin and Wood, 1976). Hamblin and Wood (1976) suggests that this 

unit correlates with either the non-sequence between the Wessex 

Greensand Formation and the Cenomanian Limestone, and/or the lower 

part of the Cenomanian Limestone (Bed Al) (= Beer Head Limestone 
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Formation, Pounds Pool and Hooken Members of Jarvis and Woodroof, 

1984). This correlation indicates an Early Cenomanian age for the 

Cullum Sands-with-Cherts Member, an age substantiated by the 

occurrence of Early Cenomanian ammonites in the Haldon section which 

are thought to have been derived from the Cullum Sands-with-Cherts 

Member. 

Orbitolina concava has a well defined stratigraphic range in which it 

is restricted to the Early Cenomanian. The likely recognition of this 

species confirms the results of Hart et al. (1979a) who suggested that 

the Cullum Sands-with-Cherts Member orbitolinids had a close affinity 

with 0. concava from the Early Cenomanian of Ballon, whilst the 

Wolborough orbitolinids had a closer affinity with Late Albian 

Orbitolina from Portugal. This work was based on a comparison of the 

external dimensions of the orbitolinids, a criterion that is not 

usually considered valid for speciation of orbitolines. 

A limited number of orbitolines have been examined from the Wessex 

Greensand of the South-East Devon coast. These are specimens collected 

by Dr Graham Elliot from a level in the uppermost Chert Beds Member or 

lowermost Top Sandstones Member at Dunscombe and referred to by Hofker 

(1963) and Carter and Han (1977). They are housed in the Natural 

History Museum, London (registration numbers P45079 and P43429). 

Despite extensive searches by the current author (and Dr M.D. 

Simmons), the level with Orbitolina could not be located on the 
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South-East Devon coast. A few of the Dunscombe specimens were 

thin-sectioned and although poorly preserved, the embryonic apparatus 

of these specimens clearly places them in the O. sefini - O. concava 

(Fig. 5.12). Their embryonic apparatus dimensions plot midway between 

those of O. sefini and those of 0. concava (see Fig. 5.9). The 

marginal zone of these specimens shows a close similarity to O. sefini 

from Wolborough (Fig. 5.6). However, it must be stressed that the 

precise identity of these orbitolinids remains uncertain. 

Similarly it has not proved possible to provide a precise 

identification of the orbitolinids found in the glauconitic sands of 

the Fastnet Basin (Selborne Group) and first mentioned by Ainswonh et 

al. (1985). Loose specimens provided to Dr M.D. Simmons by Dr 

Ainsworth from the BP well 56/10-1 were thin sectioned, but only 

poorly preserved embryonic apparatuses were observed. However, these 

and the nature of the chamber layers suggests that these specimens 

belong in the 0. sefini - 0. concava plexus. Using a variety of 

microfossil groups, Ainsworth et al. (1987) suggested that the 

sediments containing these orbitolinids were of Early Cenomanian age. 

It has not been possible to examine orbitolinid specimens from the 

Warminster Greensand (Carter and Hart, 1977), or the Hibernian 

Greensand of Northern Ireland. However, the Early Cenomanian age of 

the sediments these orbitolinids are recorded from suggests they are 

likely to be within the 0. sefini - O. concava plexus. 
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'Orbitolina' from the Wessex Greensand at Wilmington: Of interest is 

the record of Orbitolina from the Wessex Greensand exposed beneath the 

Wilmington Sands (Beer Head Limestone Formation equivalent) at 

Wilmington, East Devon (see Figs. 5.11) (eg Carter and Hart, 1977; 

Hart, 1982, 1983). The current author and Dr M.D. Simmons have been 

able to examine specimens from White Hart Pit, Wilmington collected by 

Prof. Hart, Prof. Murray and Dr Curry (the latter held in the Natural 

History Museum, London). Whilst these specimens resemble orbitolinid 

foraminifera externally, thin sections reveal them to have a 

completely different structure which is non-foraminiferal (see Fig. 

5.13). 

Comparison with material from other fossil groups in the Natural 

History Museum, London, shows that these specimens can be referred to 

the sponge genus Porosphaera. Jukes-Browne and Hill (1900) recorded 

Porosphaera urceolata from the uppermost Upper Greensand at 

Warminister. It is likely that the fossil found by Jukes-Browne and 

Hill is the same as that found at Wilmington. However, assignment to 

the species P. urceolata (a junior synonym of P. pileolus according to 

Hinde (1904)) is doubtful because this species is typical of the Chalk 

and is somewhat larger and more spherical than the Wilmington 

specimens. 

This is not the first time that Porosphaera and Orbitolina ahve been 

confused. According to Hinde (1904), Parker and Jones (1860) records 
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FIG. 5.13: ORBITOUNE HOMEOMORPH: THE SPONGE GENUS PoWSphaera. 

WESSEX GREENSAND FORMATION. WILMINGTON, DEVON. (X20). 
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of Orbitolina are in fact of Porosphaera. This is not stricdy true. 

Parker and Jones (1860) mix records of both true Orbitolina (eg from 

the Haldon Hills) with those of Porosphaera (eg from the Chalk). It is 

uncertain if the mention of Orbitolina from the Warminster Sands by 

Parker and Jones (1860) refers to true Orbitolina or to Porosphaera. 

Suborder SPIRILLININA Hohenegger and Filler, 1975 

Family PATELLINIDAE Rhumbler, 1906 

Subfamily PATELLININAE Rhumbler, 1906 

Genus Patellina Williamson, 1958 

Type Species: Patellina corrugata 

Patellina sp. (indet) (Plate 3, Fig.2) 

Description: Test free, conical, spiral side elevated and evolute, 

umbilical side flat and involute, elliptical proloculus followed by 

spirally wound tubular individual second chamber of one to three 

whorls in microspheric form, proloculus continuous with spiral tube in 

megalospheric test, smaller in size than that of microspheric 

generation; wall calcareous, built as a single crystal, finely 

perforate; aperture a low arch under exterior margin of scroll-like 

median septum of final chamber at centre of test, median septa of 
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entire test arranged above each other to form columella. 

Remarks: Preservation fair, with the outer edge being broken. Height 

0.15mm; Diameter 0.35mm. 

Strati graphic Range and Occurrence: At Branscombe this genus occurred 

as one specimen in one sample from the lower middle Foxmould Sands 

Member (BBS). 

Palaeoenvironment: Middle to outer neritic (Koutsoukos and Hart, 1990) 

Suborder LAGENINA Delage and Herouard, 1896 

Superfamily NODOSARIACEA Ehrenberg, 1838 

Family NODOSARIIDAE Ehrenberg, 1838 

Subfamily NODOSARIINAE Ehrenberg, 1838 

Genus Dentalinoides Marie, 1941 

Type Species: Dentalinoides canulina Marie, 1941 

Dentalinoides sp. (indet) (Plate 1, Fig. 10) 

Description: Test elongate, straight, uniserial, circular in section; 

sutures horizontal; wall calcareous, perforate; aperture large. 
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rounded, slightly to one side of centre. 

/ 

Remarks: This genus usually occurred as fragments. Complete specimens 

measured approximately 1mm in length. 

Stratigraphic Range and Occurrence: At Branscombe this species 

occurred in four samples from the lower and middle Foxmould Sands 

Member (BA7, BB8, BC4/6 and BC5/1). Usually only as a few fragments 

per sample. 

Palaeoenvironment: Middle to outer neritic (Koutsoukos and Hart, 

1990). 

Genus Nodosaria Lamarck, 1812 

Type Species: Nautilus radicula Linne, 1812 

Nodosaria sp. (indet) (Plate 1, Fig.5) 

Description: Test free, multilocular, rectilinear. The chambers may be 

rounded or flush, with depressed or indistinct sutures. The chambers 

may increase slightly in size in both width and length on addition. 

The aperture is radiate and well developed. 

Remarks: This Superfamily has been studied in detail by Marie (1938, 

1965) and Magniez-Jannin (1975). It has suffered from arbitary 
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splitting into species and as such is not considered to be of 

stratigraphic value at the present time. The complete specimens / 

collected during this study averaged 1mm in length. Specimens were 

usually broken. 

Stratigraphic Range and Occurrence: The Nodosaria as a genus are known 

from the early Jurassic until the Holocene and are cosmopolitan. The 

genus seen at Branscombe is rare with only one or two specimens 

occurring in four samples from the middle and upper portions of the 

Foxmould Sands Member (BB6, BC4/6, BC6/4 and BC6/7). 

Paiaeoenvironment:Middle to outer neritic (Koutsoukos and Hart, 1990). 

Subfamily FRONDICULARIINAE Reuss, 1860 

Genus Frondicularia Defrance 1826 

Type Species: Renulina complanata Defrance, in de Blainville, 1824 

Frondicularia filocinta Reuss, 1862 (Plate 2, Fig.l) 

1863 Frondicularia filocinta Reuss, p.54, pl.4, fig. 11. 

1880 Frondicularia ungeri Reuss; Berthelin, p.61, pl.4, fig.4 

lS94di Frondicularia parkeri Reuss; Chapman, p. 157, pl.3, fig. 17. 

\%9Adi Frondicularia guestphalica Reuss; Chapman, p. 158, pl.8, 

fig.4. 
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lS94di Frondicularia microdiscus Reuss; Chapman, p. 158, pl.4, 

fig.3. 

lS94a. Frondicularia perovata Reuss; Chapman p. 158, pl.4, 

figs.5a,b. 

lS94a Frondicularia cordai Reuss; Chapman, p. 159, pl.4, fig.6. 

1975 Frondicularia filocinta Reuss; Magniez-Jannin, p.201, pi. 14, 

figs. 17-22; textfig.108 

Description: Test free, compressed, uniserial, palmate; chambers 

rapidly increasing in size in early part, late chambers increase 

slowly in size; chamber surface smooth; apenure slightly produced, 

round, central at greatest height; umbilical boss weak; short 

longitudinal rib situated umbilically. 

Remarks: Divided into six separate species by Chapman (1894a) and into 

two chronoforms by Magniez-Jannin (1975). Specimens obtained from the 

Branscombe samples showed some variation in size (length 2-3mm; width 

up to 1mm) and were generlly poorly preserved. 

Stratigraphic Range and Occurrence: Wideranging in the "Gault" facies 

of France. N. Germany and the U.K. (middle/upper Albian). At 

Branscombe this species occurs in five samples from the lower to 

middle Foxmould Sands Member (BA2, BBl, BB6, BBS and BC4/4). 

Palaeoenvironment: Not known. 
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Genus Tristix Macfadyen, 1941 

Type Species: Rhabdogonium liasinum Berthelin, 1879 

Tristix excavatum Reuss (Plate 3, Fig.l) 

1863 Rhabdogonium excavatum Reuss, p.91, pi. 12, fig.8a-c. 

1970 Tristix excavatum (Reuss); Hart, p. 167-168, pi. 14, fig. 11. 

Description: Test free, uniserial, elongate with a slight tapering; 

faces flush or slightly concave; wall calcareous, hyaline; aperture 

terminal, rounded to radiate. 

Remarks: Preservation good. The specimen collected during the present 

study measured 0.55mm in length. 

Stratigraphic Range and Occurrence: Typical middle to upper Albian 

species of the Gault Clay. At Branscombe it occurred as one specimen 

in one sample from the lower Foxmould Sands Member (BB7). 

Family VAGINULINIDAE Reuss, 1860 

Subfamily Lenticulininae Chapman, Parr and Collins, 1934 

Genus Lenticulina, Lamarck, 1804 
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Type Species: Lenticulites rotulata Lamarck, 1804 

Lenticulina rotulata var. A. (Plate 2, Fig.2) 

Description: Test free, planispiral, lenticular, biumbonate; swept 

back sutures are slightiy thickened and raised forming slightly 

concave chambers together produces a slight squaring of the chambers 

in peripheral view; in general of greater breadth than height; 

aperture radial at peripheral angle. 

Remarks: The raised ribs and squaring of the chambers distinguishes L. 

rotulata var. A. from L. rotulata var. B. The latter is also usually 

thinner when viewing the apertural face. In the Branscombe material 

the preservation is poor to fair. 

Whole specimens of var. A. measured on average 0.6mm in height and 

0.5mm in width. 

Strati graphic Range and Occurrence: The rarest of the three varieties 

recognised within the species. It occurred in eight samples from the 

basal to upper Foxmould Sands Member (BAl, BA4, BA6, BC4/2, BC4/4, 

BC4/6 BC6/1 and BC6/4). 

Palaeoenvironment: Neritic to bathyal (Koutsoukos, 1989). 

Lenticulina rotularia var. B (Plate 2, Fig. 3) 
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Description: The test surface is smooth with a smooth periphery; the 

degree of enrolment of the test varies considerably as does the height 

to width ratio; the angle of the test at the periphery is 

predominantly narrow forming a slight keel. 

Remarks: In the Branscombe material this species shows a fair amount 

of variation in the degree of test enrolment. Preservation is poor to 

good. Average measurements were height 0.7mm and width 0.5mm. 

Stratigraphic Range and Occurrence: At Branscombe this species 

occurred in twenty-eight samples which ranged from the basal Foxmould 

Sands Member up into the Cenomanian Limestone (BAl, BA2, BA4, BA6, 

BA7, BBl, BB5, BB6, BB7, BBIO, BB13, BB14, BC2/1, BC4/2, BC4/3, BC4/4, 

BC4/5, BC4/6, BC5, BC5/1, BC5/6, BC6/1, BC6/4, BC6/5, BC6/7, Bl/1, 

B8/2 and B12/1). It is the most common variety of this species both in 

terms of the number of samples in which it occurs and in that it is 

the dominant faunal element within the samples in which it occurs. 

Palaeoenvironment: Nerinc to bathyal (Koutsoukos, 1989). 

Lenticidina romlaria var. C (Plate 2, Fig.4) 

Description: The test is smooth, with a smooth periphery; test 

slightiy unrolled.This species has all the features of var. B but is 
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so unrolled as to warrant separation from the latter. 

/ 

Remarks: Variation in the degree of test enrolment means that this 

variety is probably an end member in a series from variety A to 

variety C. "Forms" of this species are well known but few people study 

them systematically. In the Branscombe samples preservation is poor to 

good. Average measurements were length 0.6mm and width 0.25mm. 

Stratigraphic Range and Occurrence: At Branscombe this species 

occurred in founeen samples which ranged throughout the Foxmould 

Sands Member and the middle Chen Beds Member (BAl, BA2, BA7, BB5, 

BB6, BB13, BB14, BC4/2, BC5/1, BC5/6, BC6/1, BC6/4, B7/2 and B7/3). 

This variety usually only makes up a relatively small proportion of 

the population within a slide. 

Paiaeoenvironment: Neritic to bathyal (Koutsoukos, 1989). 

Lenticulina sp. A. (Plate 2, Fig.5) 

Description: The test is small with a poorly developed keel; the 

chambers are markedly depressed giving the test a corrugated 

appearance. 

Remarks: Preservation in the Branscombe samples is fair to good. 

Average measurements 0.5mm in diameter 
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Stratigraphic Range and Occurrence: At Branscombe this is a common 

species and occurred in twenty-six samples which ranged from lower to 

upper Foxmould Sands Member (BA7, BBl, BB5, BB7, BBS, BBIO, BBll , 

BB13, BB14. BCl/3, BCl/4, BCl/5, BC3/2, BC4/2, BC4/3, BC4/4. BC5, 

BC5/1, BC5/3, BC5/4, BC6/1, BC6/4, BC6/5 and BC6/7). 

Palaeoenvironment: Neritic to bathyal (Koutsoukos, 1989). 

Lenticulina sp. B. (Plate 2, Fig.6) 

Descripdon: Small test, unrolled but inner edge of chambers meet 

proloculus. Aperture slightly produced. 

Remarks: Preservation good in Branscombe material. Average 

measurements 0.65mm. 

Stratigraphic Range and Occurrence: At Branscombe this is a rare 

species which occurred in one sample from the middle Foxmould Sands 

Member (BC4/2). 

Palaeoenvironment: Neritic to bathyal (Koutsoukos, 1989). 

Subfamily PALMULINAE Saidova, 1981 
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Genus Neoflabellina Batenstein, 1948 

Type Species: Flabellina rugosa d*Orbigny, 1840 

Neoflabellina sp. (indet) (Plate 2, Fig.7) 

Description: Test large, palmate, similar to Palmula but with 

flattened, parallel sides and angular or keeled margins; chambers 

increase moderately in size on addition with less pronounced sutures 

in last portion of test. 

Remarks: Preservation fair. The specimen collected during this study 

measured 1.45mm in height and 1mm in width. 

Stratigraphic Range and Occurrence: At Branscombe this species 

occurred as one specimen in one sample from the lower Foxmould Sands 

Member (BB3). 

Palaeoenvironment: Not known - probably neritic to bathyal 

(Koutsoukos, 1989). 

Neoflabellina sp. (indet) (Plate 2, Fig.8) 

Description: Chambers increase gradually in size and are moderately 

inflated; test is markedly compressed. 
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Remarks: Preservation good. The specimen collected during the present 

study measured 3.8mm in length and 1.2mm in width. 

Stratigraphic Range and Occurrence: At Branscombe this species 

occiured as on specimen in one sample from the lower middle Foxmould 

Sands Member (BB8). 

Palaeoenvironment:Not known probably neritic to bathyal (Koutsoukos, 

1989). 

Subfamily MARGI>njLININAE Wedekind, 1937 

Genus Astacolus de Montfon, 1808 

Type Species: Astacolus crepidulatus de Montfort, 1808 

Astacolus sp. (indet) (Plate 1, Fig.6) 

Description: Test free, elongate, slightly compressed with a 

sub-triangular terminal chamber; sutures are moderately depressed and 

subtended at approxiamately 40 degrees to the test; aperture radiate, 

terminal. 

Remarks: Some of the specimens from Branscombe which have the later 

chambers missing may be lenticulinds. Preservation is poor,with the 

specimens often being brokeii or having adhering sediment. Examples 
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collected during this study averaged 0.7mm in length and 0.5mm in 

width. j 

Stratigraphic Range and Occurrence: This genus is known from the early 

Jurassic until the Holocene and is cosmopolitan. At Branscombe it 

occurs in four samples from the middle and upper Foxmould Sands Member 

and the middle Chert Beds Member (BC6/5, BC6/7, BBIO and B8/2). It is 

relatively rare with one or two specimens per sample. 

Palaeoenvironment: Not known - probably inner/middle neritic 

(Koutsoukos, 1989). 

Astacolus sp. (indet) (Plate 1, Fig.7) 

Description: Test free, elongate, slightly arcuate. Chambers numerous, 

sutures oblique, highest at outer margin, curved. Aperture radiate, 

terminal. 

Remarks: Samples which contain this species may have only a few broken 

fragments or practically whole specimens may be a common component of 

the sparse fauna. Average measurements are length 1.8mm and width 

0.5mm. 

Stratigraphic Range and Occurrence: At Branscombe this species occurs 

in twenty samples all but one of which were taken from the middle to 

upper Foxmould Sands Member with the remaining occurrence being from 
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the upper part of the Chert Beds Member (Bll/6, BBll, BB13, BB14, 

BCl/3, BCl/4, BCl/5, BC2/1, BC3/2, BC4/2, BC4/3, BC4/4, BC4/5, BC4/6, ^ 

BC5, BC6/1, BC6/4, BC6/5 and BC6/7). Preservation is generally good 

but the specimens may be broken or have strongly adhering sediment. 

Palaeoenvironment: Not known - probably inner/middle neritic 

(Koutsoukos, 1989). 

Subfamily VAGINULININAE Reuss, 1860 

Genus Citharina d'Orbigny, 1839 

Type Species: VaginuUna (Citharina) strigillata Reuss, 1846 

Citharina d'orbignyi Marie, 1938 (Plate 1, Fig.8) 

1863 Vaginulina discors Koch; Reuss, p.50, pl.3, figs. 10-12. 

1938 Citharina d'orbignyi Marie, p.95, pl.8, figs 8a,b. 

1938 Citharina cf. discors (Koch); Marie, p.96, pl.8, figs. 10a,b. 

1950 Vaginulina mariei Khan, p.270, pl.l, fig. 16. 

1975 Citharina d'orbignyi Marie; Magniez-Jannin, p.205, pi. 14, 

figs.2-7. 

Description: Test flattened, sub-triangular in outline, chambers 

numerous, extending nearly to base at inner margin; test surface 

striated, aperture radiate, at outer margin. 
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Remarks: This species was reviewed by Magniez-Jannin (1977) who 

divided it into four chronoforms. It is apparently a rare species. 

Stratigraphic Range and Occurrence: Only generally known in southern 

England, the Paris Basin and N. Germany and usually found in the early 

or middle Albian. At Branscombe it occurs in six samples, ranging in 

position from near the base to the middle of the Foxmould Sands Member 

(BA4, BA6, BBl, BBS, BB7, and BC4/4). It occurs only as a single 

specimen in each sample and preservation is fair with the individual 

usually being broken. 

Palaeoenvironment: Not known - probably deep neritic (Koutsoukos, 

1989). 

Genus Citharinella Marie, 1938 

Type Species: Flabellina karreri Berthelin, 1880 

Citharinella sp. (indet) (Plate 1, Fig.9) 

Description: Test free, lanceolate, chambers low, broad, uniserial. 

Early chambers extend to proloculus at one side, later chambers 

chevron-shaped and symmetrical. Aperture terminal and produced. 

Remarks: Strongly adhering sediment obscured details of the specimens 
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from Branscombe. Preservation was generally good. 

Stratigraphic Range and Occurrence: At Branscombe this species occurs 

as a single specimen in two samples from the lower middle Foxmould 

Sands Member (BB13 and BC2/1). Known from the Gault Clay of Germany 

(Reuss,1863), the H. dentanis Zone in Kent (Marie, 1938), the lower 

and middle Albian of the Aube (Magniez-Jannin, 1977) and from the L. 

lyelli to the A. intermedius Subzone in the Weald (Price, 1977). 

Palaeoenvironment: Not known - probably middle/outer neritic 

Genus Vaginulina d'Orbigny, 1826 

Type Species: Nautilus legumen Linnd, 1758 

Vaginulina kochii Roemer, 1841 (Plate 2, Fig. 9) 

1841 Vaginulina kochii Roemer, p.96, pi. 15, fig. 10. 

1863 Vaginulina eurynota Reuss; p.90, pi. 12, figs.9a,b. 

1863 Vaginulina protosphaera Reuss; p.90, pi. 12, figs.lOa,b. 

1863 Vaginulina striolata Reuss; p.46, pl.3, fig.7. 

1863 Vaginulina strombecH Reuss; p.46, pl.3, fig.8. 

1863 Vaginulina truncata Reuss; p.47, pl.3, fig.9. 

1880 Vaginulina comitina Berthelin; p.38, pl.l, figs.21c,d. 

1880 Vaginulina truncata Berthelin; p.39, pl.l, figs.25-27. 

1894a Vaginulina arguta Reuss; Chapman, p.425, pl.8, figs.9a,b. 
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1894a Vaginulina comitra Berthelin; Chapman, p.426, pl.8, fig.ll. 

1940 Vaginulina kochii Roemer, Tappan, p. 109, pi. 17, figs.2-4. 

1975 LenticulinalVaginulina kochii kochii (Roemer); Magniez -

Jannin, p. 166, pi. 14, figs.26-28, text figs. 90k,a-i 

Description: Test free, compressed, elongate; weak ribs are present 

along sutures and around the margins of the test; chambers uniserial, 

gradually increase in size; aperture produced, at greatest height of 

test; umbilical boss small. 

Remarks: Many workers have separated this species into many different 

species and subspecies. The subspecies may be regionally diagnostic 

morphotypes but this has not been proved. Preservation in the 

Branscombe samples is fair to good. 

Stratigraphic Range and Occurrence: This is a common species that is 

well known throughout N.W. Europe in the mid-Cretaceous (N. Germany, 

Baltic, Paris Basin,Holland and the U.K.). At Branscombe this species 

occurred as single individuals in two samples from the middle and 

upper Foxmould Sands Member (BCl/5 and BC6/5). 

Palaeoenvironment: Not known - probably inner/middle neritic 

(Koutsoukos, 1989). 
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/ 

Suborder GLOBIGERININA Delage and Herouard, 1896 

Superfamily HETEROHELICACEA Cushman, 1927 

Family HETEROHELICIDAE Cushman, 1927 

Subfamily HETEROHELICINAE Cushman, 1927 

Genus Heterohelix Ehrenberg, 1843 

Type Species: Spiroplecta americana Ehrenberg, 1844 

Heterohelix moremani (Cushman) (Plate 3, Fig.4) 

1938 Guembelina moremani Cushman, p. 10, pl.2, figs. 1-3. 

1940 Guembelina wahitensis Tappan, p. 115, pi. 19, fig.l. 

1967 Heterohelix moremani Cushman; Pessagno, p.260-261, pl.89, 

figs. 1-2. 

1977 Heterohelix moremani (Cushman); Carter and Hart, p.26, pl.2, 

fig. 17. 

1981 Heterohelix moremani (Cushman); Hart et ai, p204, pl.7.16, 

fig.9. 

Description: Test free, small, biserial; chambers inflated globular; 

sutures depressed; aperture a low interiomarginal arch; chambers 

gradually increasing in size, greatest width at apertural end; test 
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sub-ovate in apertural view, sub-triangular in side view; umbilical 

margin bluntly pointed; test surface smooth. 

Remarks: Often found in shallower water environments when other 

planktonics are absent. Preservation in the Branscombe samples is 

good. 

Stratigraphic Range and Occurrence: This is a common species that 

occurs in the middle Albian to upper Cenomanian in the Aube bur is not 

abundant in southern England until the S. dispar Zone. In the 

Cenomanian it is known from N.W. Europe, N. and S. America and the 

Atlantic. At Branscombe it occurred as one specimen in one sample from 

the lower middle Foxmould Sands Member (BCl/1). 

Palaeoenvironment: Middle neritic (Koutsoukos and Hart, 1990). 

Superfamily PLANOMALINACEA BoUi, Loeblich and Tappan, 1957 

Family GLOBIGERINELLOIDIDAE Longoria, 1974 

Subfamily GLOBIGERINELLOIDINAE Longoria, 1974 

Genus Globigerinelloides Cushman and Ten Dam, 1948 

Type Species: Globigerinelloides algeriana Cushman and ten Dam, 1948 
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Globigerinelloides bentonensis (Morrow) (Plate 3, Fig.5) 

/ 

1934 Anomalina bentonensis Morrow, p.201, pl.30, figs.4a-b. 

1940 Planulina eaglefordensis (Moreman); Cushman, p.32, pl.6, 

figs.4,5. 

1977 Globigerinelloides bentonensis (Morrow); Caner and Han, 

p.27-28, pl.l, figs. 19,20. 

1981 Globigerinelloides bentonensis (Morrow); Han et al., p. 198, 

pl.7.13, figs7-9. 

Description: Test firee, planispiral, bi-umbilicate; chambers inflated, 

gradually increasing in size, approxiamately eight in last whorl; 

surface is smooth with large simple pores which are low in density; 

sutures depressed, curved; aperture a broad low interiomarginal 

equatorial arch with distinct apertural flap, relict flaps are present 

along inner margins of last whorl. 

Remarks: There is a full discussion of the taxonomy of this species in 

Carter and Hart (1977) and Hart et al. (1989). Preservation fair. 

Stratigraphic Range and Occurrence: This species occurred as one 

specimen in one sample from the Cenomanian Limestone (B15/2). A very 

important stratigraphic marker that only occurs abundantly in the M. 

rostratum Subzone. It occurs sporadically in higher beds. 
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Palaeoenvironment: Recorded from inner/middle/outer neritic 

(Koutsoukos and Hart, 1990). 

Superfamily ROTALIPORACEA Sigal, 1958 

Family HEDBERGELLIDAE Loeblich and Tappan, 1961 

Subfamily ROTUNDININAE BelUer and Salaj, 1977 

Genus Praeglobotruncana Bermiidez, 1952 

Type Species: Globorotalia delrioensis Plummer, 1931 

Praeglobotruncana sp. cf P. delrioensis 

Description: Test free, trochospiral, biconvex to spiroconvex, 

umbilicate, periphery rounded to sub-angular with more or less well 

developed peripheral keel; chambers ovate to sub-angular; wall 

calcareous, finely perforate, radial in structure, surface smooth to 

hispid; aperture an interiomarginal, extraumbilical-urabilical arch, 

bordered by apertural lip. 

Remarks: Preservation fair. 

Stratigraphic Range and Occurrence: This species occurs from the very 

top of the Albian to the middle Cenomanian. At Branscombe it occurred 
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as one specimen in one sample from the middle Foxmould Sands Member 

(BCl/3). 

Palaeoenvironment: Not known - probably middle/outer neritic 

(Koutsoukos and Hart, 1990). 

Suborder ROTALUNA Delage and Herouard, 1896 

Superfamily PLUEROSTOMELLACEA Reuss, 1860 

Family PLEUROSTOMELLIDAE Reuss, 1860 

Subfamily PLEUROSTOMELLINAE Reuss, 1860 

Genus Pleurostomella Reuss, 1860 

Type Species: Dentalina subnodosa Reuss, 1851 

Pleurostomella sp. (indet). (Plate 3, Fig.6) 

Description: Test small, elongate, chambers in early stage biserially 

arranged , later uniserial; sutures in early stages oblique, later 

becoming more nearly straight and horizontal, wall calcareous, finely 

perforate, granular in structure; aperture terminal, with projecting 

hood at one side, two small teeth on opposite side, and internal tube. 

Remarks: Preservation fair to good. The specimens from Branscombe 
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measured 2mm in length and 0.4mm width. 

/ 

Stratigraphic Range and Occurrence: At Branscombe two specimens 

occurred in one sample from the middle Foxmould Sands Member (BC2/1). 

Palaeoenvironment: Not known. 

Superfamily CHILOSTOMELLACEA Brady, 1881 

Family GAVELINELLIDAE Hofker, 1956 

Subfamily GYROIDINOIDINAE Saidova, 1981 

Genus Gyroidinoides Brotzen, 1942 

Type Species: Rotalina nitida Reuss, 1844 

Gyroidinoides parva (Khan) (Plate 3, Fig.7) 

1898 Rotalina soldanii d'Orbigny var. nitida Reuss; Chapman, p.9-10, 

pl.2, figs.2a-c. 

1970 Gyroidinoides parva (Khan); Han, p.208-209, pl.22, figs.5-7. 

1975 Valvulineria parva (Khan); Magniez-Jannin, p.239-246, pi. 16, 

figs.8-17. 

Description: Test free, trochospiral, spiral side flattened, umbilical 
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side elevated, periphery rounded; chambers rhomboidal in section, 

sutures radial ,to curved, flush to depressed; wall calcareous, 

perforate, bilamellar, granular in structure; aperture a continuous, 

low interiomarginal slit extending from periphery to umbilicus, 

umbilical portion partially obscured by umbilical flap from each 

chamber. 

Remarks: Preservation fair to good. 

Stratigraphic Range and Occurrence: This species is mainly known from 

the Albian of the Anglo-Paris Basin. At Branscombe it occurred as a 

single specimen in three samples from the lower part of the Foxmould 

Sands Member (BA4, BBS and BB14). 

Palaeoenvironment: Not known. 

Subfamily GAVELINELLINAE Hoflcer, 1956 

Genus Gavelinella Brotzen, 1942 

Type Species: Discorbina pertusa Marsson, 1878 

Gavelinella cenomanica (Brotzen) (Plate 3, Fig.9) 

1942 Cibicioloides (Cibicides) cenomanica Brotzen, p.54, pl.2, 

figs.2a-c. 
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1977 Gavelinella cenomanica (Brotzen); Carter and Hart, p.46-47, 

pl.l, figs.27-28. ^ 

1981 Gavelinella cenomanica (Brotzen); Hart et al., p. 192, pl.7.10, 

figs 9-11. 

Description: A low trochospiral species; test free, biconvex, spiral 

side less concave than umbilical side; test partially involute; 

periphery very sharply rounded; in spiral view test sub-circular; 

sutures broad, raised, curved; aperture a low interiomarginal slit 

extending from near the periphery to the umbilicus; apertural face 

weakly domed; chambers gradually increase in size with 10 to 11 

chambers in the last whorl; a strong spiral ridge extends along the 

inner margins of the chambers of the spiral side; test surface smooth. 

Remarks: This species differs from G. intermedia in having a more or 

less marked rim around the umbilicus (Carter and Hart, 1977). 

Preservation at Branscombe is good. 

Stratigraphic Range and Occurrence: This species occurs in the very 

top-most Albian of southern England but is not common until the 

Cenomanian. It is known over N.W. Europe from a variety of 

clay/sand/chalk facies. At Branscombe two specimens occurred in one 

sample from the lower middle Foxmould Sands Member (BB13). 

Palaeoenvironment: Not known - probably inner/middle neritic 
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(Koutsoukos, 1989). 

/ 

Gavelinella intermedia (Berthelin) (Plate 3, Fig. 10) 

1880 Anomalina intermedia Berthelin, p.67, pl.4, figs.l4a,b. 

1898 Anomalina ammonoides Reuss; Chapman, p.3, pl.l, fig.4. 

1977 Gavelinella intermedia Berthelin; Carter and Hart, p.48, pl.l, 

figs.33-35. 

1981 Gavelinella intermedia Berthelin; Hart et al. , p. 194, pl.7.11, 

figs 7-9. 

Description: A low trochospirai species; test free, partially 

involute; spiral side flattened, in spiral view test sub-circular; 

periphery sharply rounded; sutures raised in early chambers, in latter 

chambers sutures depressed; last chambers weakly inflated; apertural 

face weakly rounded or flat; in spiral view umbilical side concave, 

spiral side only weakly convex; aperture a low interiomarginal slit 

extended from near periphery to umbilicus; chambers gradually increase 

in size; test surface smooth. 

Remarks: Preservation poor to fair. 

Stratigraphic Range and Occurrence: This species occurs very 

abundantiy in the Albian and Cenomanian of southern and eastern 

England as well as N.W. Europe, Italy and Spain. At Branscombe it 
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occurred as single specimens in three samples from the lower middle 

Foxmould Sands Member (BB14) and the middle Chert Beds Member (B3/2 

and B7/1). 

Palaeoenvironment: Not known - probably inner/middle neritic 

(Koutsoukos, 1989). 

Genus Lingulogavelinella Malapris, 1965 

Type Species: Lingulogavelinella albienensis Malapris, 1965 

Lingulogavelinella sp. (indet) (Plate 3, Fig. 11) 

Description: Test free, trochospiral, periphery broadly rounded, final 

whorl chambers inflated, sutures distinct, curved. Aperture slit-like, 

interiomarginal. 

Remarks: Preservation good but broken. Specimen collected in this 

study measured 0.3mm in diameter. 

Stratigraphic Range and Occurrence: This species occurred as one 

specimen in one sample from the Cenomanian Limestone (12/1). 

Palaeoenvironment: Not known - probably middle/outer neritic or 

bathyal (Koutsoukos, 1989). 
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Lingulogavelinella jarzevae (Vasilenko,1954) (Plate 3, Fig. 12) 

/ 

1954 abides (Cibicides) jarzevae Vasilenko, p. 121, pi. 17, figs 3a-c 

1977 Lingulogavelinella jarzevae (Vasilenko); Carter and Hart, p.49, 

pl.l, figs 29-30. 

1981 Lingulogavelinella jarzevae (Vasilenko); Hart et al., p.208, 

pl.7.18, figs U-13. 

Description: Test free, trochospiral; spiral side flattened, umbilical 

side inflated, strongly convex; test involute; sutures radial, 

depressed; in umbilical view chambers increase rapidly in size, last 

chamber appears globular, early chambers of last whorl smooth, sutures 

not depressed; periphery rounded in spiral view, periphery normally 

rounded in section; in side views chambers on the umbilical side 

appear concave; aperture an interiomarginal extraumbilical/umbilical 

narrow slit, on the spiral side relict slits are present giving a 

'star-shaped' appearance to the aperture; test surface smooth. 

Remarks: Preservation fair. 

Stratigraphic Range and Occurrence: This rare species occurs 

sporadically in the S. dispar Zone of southern England up to the top 

of the early Cenomanian. Also known from Holland, Germany, Denmark and 

Central Europe. At Branscombe it occurred in one sample from the top 

of the Top Sandstones Member (Bll/6). 
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Palaeoenvironment: May be an indicator of shallow water conditions 

(Carter and Han, 1977). 

5.5 Calcareous Nannofossils 

A preliminary study has been conducted to assess the value of 

nannofossil flora in dating the section at Branscombe. Five samples 

were taken (Fig. 5.14), three from the Foxmould Sands Member and two 

from the Chert Beds Member. 

The Albian-Cenomanian is covered by three nannofossil zones (Fig. 

5.15) (Lxjrd, 1982). These are defined by first and last occurrences 

together with the presence of other important indicator species (Fig. 

5.16). In addition the Cenomanian has been further divided (Lord, 

1982) into subzones on the basis of first and last occiurences (Fig. 

5.17). 

In this reconnaissance study the occurrence of nannofossils was found 

to be patchy, with two samples out of the five yielding significant 

numbers. In view of the fact that the Chert Beds Member was found to 

be largely barren of foraminifera it was unexpected and promising that 

one of these two samples was taken from the middle Chert Beds Member. 
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FIG. 5.15: NANNOFOSSIL ZONAL SCHEME (AFTER LORD, 1982) 
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1. THE Parhabdolithus angustus NF ZONE: INTERVAL FROM THE FIRST 

OCCURRENCE OF Parhabdolithus angustus TO THE BASE OF THE 

Prediscosphaera cretacea NF ZONE AS DEFINED BY THE FIRST 

OCCURRENCE OF Prediscosphaera cretacea. 

IMPORTANT spEcms: Parhabdolithus achylostaurion, Lithastrinus 

floralis, Octocychus reinhardtii. 

2. THE Prediscosphaera cretacea NF ZONE: INTERVAL FROM THE FIRST 

OCCURRENCE OF Prediscosphoera cretacea TO THE BASE OF THE 

Eiffellithus turisseiffeli NF ZONE AS DEFINED BY THE FIRST 

OCCURRENCE OF Eiffellithus turisseiffeli. 

IMPORTANT SPECIES: Broarudosphaera regularis, Chiastozygus 

litterarius, Stephanolithion laffittei, Watznaueria barnesae, 

Podorhabdus albianus, Tranolithus orionatus, Prediscospfiaera 

spinosa. 

3. THE Eiffellithus turisseiffeli NF ZONE: BASE OF THE ZONE IS 

RECOGNISED BY THE FIRST OCCURRENCE OF EiffclHthuS turissciffeli 

TO THE FIRST OCCURRENCE OF QuodrUm gartncri SUBSPECIES 1. 

FIRST OCCURRENCES: LithrapMdites acutum, Cylindralithus biarcus, 

C. coronatus, Microrhabdulus decoratus, Corollithion kennedyi, 

Zygodiscus minimus, Gartnerago obliquum, Pervilithus varius. 

LAST OCCURRENCES: Lithraphiditcs acutum, L. alatus, Podorhabdus 

albianus, Parhabdolithus angustus, P. asper, Microstaurus 

chiastius, Zygodiscus erectus, Ellipsagelosphaera forbesii, 

Parhabdolithus infinitus, C. kennedyi, Gartnerago nanum, 

Cribrosphaera primitiva, LithrapMdites pseudoquadratus, 

Cretarhabdus striatus. 

HG. 5.16: NANNOFOSSIL ZONAL SCHEME: FIRST OCCURRENCES AND 

IMPORTANT SPECIES 
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3a: THE Prediscosphaera spinosa NF SUBZONE: INTERVAL FROM THE 

FIRST OCCURRENCE OF EiffelUthus turriseijfeli TO THE FIRST 

OCCURRENCE OF Lithtaphidites acutum. 

FIRST OCCURRENCES: Corollithioti kennedyi, Gartnerago obliquum, 

Pervilithus varius. 

LAST OCCURRENCES: Zygodiscus erectus, Ellipsagelosphaera, 

forbesii. 

3b : THE Lithraphidiies acutum NF SUBZONE: INTERVAL FROM THE FIRST 

OCCURRENCE OF Luhraphiditcs acutum TO THE FIRST OCCURRENCE OF 

Microrhabdolithus decoratus. 

FIRST OCCURRENCE: Cylindralithus biacrus. 

u\ST occLTiRENCES: ParhobdoHthus asper, Corollithion kennedyi, 

Gartnerago nanum, Liihraphidites pseudoquadraius. 

3c: THE Microrhabdoliihus decoratus NF SUBZONE: INTERVAL FROM THE 

FIRST OCCURRENCE OF MicrorhobdoHthus decoratus TO THE FIRST 

occLTiRENCE OF Quodriun gartneri. 

FIRST OCCURRENCES: Cylindralithus coronatus, Zygodiscus minimus. 

LAST occLTyiENCES: Lithraphidites acutum, Podorhabdolithus 

albianus, Parhabdolithus angustus, Microstaurus chiastus, 

Cretarhabdus striatus. 

HG. 5.17: NANNOFOSSIL SUBZONES OF THE CENOMANL\N 

(AFTER LORD. 1982). 
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The nannofossils found were generally long ranging forms (Plate 4) and 

tentative designations are given in Fig. 5.18. The material recovered 

from these samples is well preserved and despite the fact that it was 

not possible to assign these samples a place in the Albian-Cenomanian 

zonal scheme, it is possible that the examination of further samples 

together with comprehensive taxonomic work will produce a good 

zonation for the division of the Wessex Greensand Formation. 

5.6 Biostratigraphy and Correlation 

The stratigraphically useful foraminifera recovered from the Wessex 

Greensand Formation at Branscombe were all found in the Foxmould Sands 

Member. 

In the lower part of the Foxmould Sands Member Citharina d'orbigny 

with a early to middle Albian stratigraphic range and Frondicularia 

filocinta with a middle to late Albian stratigraphic range together 

suggest a middle Albian age. However, the remaining species found in 

the middle Foxmould Sands Member suggest a minimum of late Albian S. 

dispar Zone age (Arenobulimina cf. advena; Heterohelix moremani; 

Praeglobotruncana sp. cf P. delrioensis; Gavellinella cenomanica). 

Only a single specimen of the stratigraphically useful Ataxophragmium 

depressum indicates a Cenomanian age for the top of the Top Sandstones 
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SAMPLE NANNOFOSSIL SPECIES STRATIGRAPHIC 
RANGE 

/ 

C4 5 Zy go discus erectus S I N E M U R I A N 
C E N OMAN I AN 

C4 5 Parhabdolithus asper R Y A Z A N I A N 
C E N OMAN I AN 

C4 5 ?Praediscosphaera A L B i AN 
s p i nosa C A M P A N I A N 

B 8 / 2 Parhabdolithus u . A P T I A N 

a c hy lostaur i on T u R o N i A N 

B 8 / 2 Zy go discus compact us B A R R E M I A N 
C A M P A N I A N 

n o . 5.18: NANNOFOSSILS RECOVERED FROM THE WESSEX GREENSAND 

FORMATION, BRANSCOMBE. S.E DEVON. 
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Member. It is obviously unwise to take this occurrence too seriously 

in view of the danger of contamination and the fact that Cenomanian 

material penetrates the top of the Wessex Greensand Formation as 

infiU. 

Although great care was taken in sampling the small numbers of 

individuals recovered obviously presents the danger of contamination. 

This is to some extent obviated by the different species that were 

found. There is, of course, also the possibility that the specimens of 

C. d'orbigny were reworked and thus give an older age for the lower 

Foxmould Sands Member. 

The stratigraphically useful species thus suggest that the upper part 

of the Foxmould Sands Member, at least, may be S. dispar Zone in age. 

This casts some doubt on the lithostratigraphic correlation proposed 

by Hamblin and Wood (1976) between the Haldon Hills and S.E. Devon 

with regard to the lateral equivalents of the Foxmould Sands Member 

but does not enable any further correlation of the Chert Beds Member. 

The single new ammonite occurrence recorded in this study suggests a 

confirmation of a varicosum Subzone age for the lower part of the 

Foxmould Sands Member. This evidence, therefore, suggests that the 

lower part of the Foxmould Sands Member correlates to some extent with 

the Telegraph Hill Sands Member of the Haldon Hills Formation. 
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5.6.1 Stratigraphic Significance of Orbitolinid Occurrences 

/ 

Problems exist with the lithological correlation of the Haldon Hills 

succession to that of South-East Devon and there has been some 

disagreement over the chronostratigraphic correlation of the sections. 

Hart (1971) suggested that the majority of the Chert Beds Member and 

the Top Sandstones Member of the coastal sections were of Early 

Cenomanian age, based on the foraminiferal fauna (including 

Orbitolina). By correlation to the Haldon Hills (see Carter and Hart, 

1977, Fig. 46) much of the Haldon Hills section is therefore also 

Early Cenomanian. Hamblin and Wood (1976) whilst agreeing that the 

upper part of the Haldon Hills section was Cenomanian, considered the 

majority of the coastal section to be Late Albian. Their argument was 

based on lithostratigraphic correlation and the occurrence of a Dispar 

Zone (Late Albian) ammonite fauna in the upper Chert Beds Member beds 

of Shapwick Grange Quarry (Fig. 5,11). 

The critical Dispar Zone ammonite fauna from Shapwick Grange Quarry is 

an important line of evidence for suggesting that the majority of the 

Wessex Greensand Formation is of Late Albian age. Although neither 

Hart et al. (1979b) nor Jarvis et al. (1987) could confirm a Late 

Albian age for the ammonite bearing horizon at Shapwick Grange using a 

variety of microfossil groups, Owen (pers. comm. to Simmons, 1990) 

confirms that the ammonite fauna is of latest Albian age (uppermost 

Dispar Zone) and that it is not a remand deposit similar to those 
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known from East Dorset (Carter and Hart, 1977). 

/ 

Whilst the Shapwick Grange Quarry ammonite fauna indicates that the 

Chert Beds Member must be Late Albian (contrary to the view of Hart 

1971, et seq.) it does not rule out the possibility that the Top 

Sandstones Member is Early Cenomanian. This was suggested by Kennedy 

(1970) who provided ammonite evidence that the Eggardon Grit was, at 

least in part. Early Cenomanian. The Top Sandstones Member is the 

lateral equivalent of the Eggardon Grit (see Fig. 5.19), although note 

that this coarse, sandy facies at the top of the Wessex Greensand 

Formation is likely to be diachronous. 

The orbitolinids found in the Selbome Group of South-West England 

give some useful indications about the correlation of this marginal 

facies between localities. The Wolborough orbitolinids can be assigned 

to O. sefini which suggests an intra-Late Albian - intra-Early 

Cenomanian age. In fact, the embryonic apparatus measurements plot 

very close to those for Late Albian O. sefini firom Portugal (see Fig. 

5.9). This tends to support the Late Albian age ascribed to these 

sediments by Hamblin and Wood (1976) and their tentative correlation 

to the Late Albian Woodlands Sands Member of the Haldon Sands 

Formation of Haldon Hill. It is clear that the orbitolinids from the 

CuUum Sands-with Cherts Member of Haldon Hill belong to a separate, 

younger population (O. cf. concava), most likely Early Cenomanian. 

Again, this confirms the age ascribed to this unit by Hamblin and Wood 
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(1976). 

/ 

However, the critical question of thee correlation of the Haldon Hills 

section to that of the South-East Devon coast still remains 

essentially unanswered. The simplistic correlation of the 

orbitolinid-rich CuUum Sands-with-Cherts Member to the orbitolinid 

bearing Top Sandstones Member/uppermost Chert Beds Member at Dunscombe 

on the South-East Devon coast is thought unlikely, and in any case, 

the orbitolinids studied from Dunscombe cannot be identified at 

present. Rather, the definite Early Cenomanian age suggested for the 

CuUum Sands-with-Cherts Member indicates a correlation with the lower 

part of the Beer Head Limestone to be likely. The present author 

suggests that lithologically, the Ashcombe Gravels Member correlates 

with the Top Sandstones Member and upper Chert Beds Member (Fig. 

5.. 19). These correlations are in broad agreement with some of the 

suggestions of Hamblin and Wood (1976). 

It is known that embryonic apparatus size in orbitolinids increases 

with time within a phylogenetic lineage (eg Schroeder, 1975; Gusic, 

1981), thus within the O. seflni - O. concava plexus it may be 

assummed that greater embryonic apparatus size indicates a younger 

age. Therefore Figure 5.9 suggests that three distinct populations of 

Orbitolina occur in the Selbome Group of South-West England: the 

Wolborough Late Albian population, which is older than the Dunscombe 

population, which in turn is older than the Early Cenomanian Babcombe 
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Copse population. These relative age assignments support the 

correlations shown in Figure 5.19. , 

5.7 Palaeobiogeographic Significance of Orbitolinid Occurrences 

Hart et al. (1979a) discussed the possible colonisation pathway of 

Orbitolina and came to the conclusion that the orbitoline occurrences 

in South-West England had probably arrived by way of the Paris Basin. 

They pointed out that orbitolines recorded from the English Channel 

Basin and the South-West Approaches Basin (Andrieff et al., 1975; 

Curry et al., 1970) have been assigned an Early Cenomanian or 

Albian-Cenomanian age and "that it is difficult to see how this 

accepted 'Tethyan' genus could appear in the U.K. earlier than in 

these more southern localities". However, the age of these 

orbitolinids from the English Channel Basin and the South-West 

Approaches is quite generalised, and as shown above, it is likely that 

both Late Albian and Early Cenomanian orbitolinids occur in South-West 

England. 

The occurrence of Late Albian O. sefini in both Portugal (Rey et al., 

1977) and South-West England suggests that there may have been a 

migration pathway from the Iberian Penisular via the South-West 

Approaches to South-West England. Such a pathway can be supponed by 

the palaeogeography proposed by Lott et al. (1980) using borehole 
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evidence from offshore South-West England. 
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CHAPTER 6 SEQUENCE STRATIGRAPHY 

AND SEA-LEVEL CHANGES 

6.1 Introduction 

This chapter contains a description of the techniques used in sequence 

stratigraphy and employs them to integrate all the available 

information into a basin history in relation to sea-level changes. A 

sea-level curve, for S.W. England during the Albian/Cenomanian, is 

presented and compared with other published curves. 

Much of the work in this chapter forms the substance of a paper 

submitted to the Ussher Society and read at their annual conference in 

January 1991 (Simmons, M.D., Williams, C.L. and Hart, M.B. (in 

Press)). 

6.2 What is Sequence Stratigraphy? 

In the 1970's stratigraphers at EXXON developed a new way of looking 

at sedimentary successions. Initially using relationships seen in 

seismic sections, but later also using outcrop and well data, the 

method divides a rock succession up into packages or "sequences". The 

basic premise of this technique is that sea-levels have fluctuated 

throughout geologic time, either due to glaciations or through 

volumetric changes caused by plate movements and variations in 

sea-floor spreading rates. Cycles of sea-level change occur at several 

orders of magnitude. Short-term fluctuations lead to the development 

of sequences, the fundamental unit within the EXXON method. A sequence 
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is a genetically related package of rock bounded by unconformities or 

their correlative conformities (Van Wagoner et al., 1988). A sequence 

can be further subdivided into systems tracts. These show the 

distribution of facies across the shelf and basin during given periods 

of the sea-level (eustatic) cycle. Each systems tract is characterised 

by particular sedimentary and seismic geometries, facies relationships 

and fossil biota. Three main systems tracts can be recognised within a 

given sequence: a lowstand systems tract developed during a eustatic 

fall in sea-level; a transgressive systems tract developed during 

sea-level rise; and a highstand systems tract developed at, and 

directiy after, sea-level has risen to it's maximum in that cycle. 

This represents the time of maximum transgression. It is often 

represented by condensed sedimentation. 

Despite certain reservations about the methodology and global 

applicability of sea-Ievel change, "Sequence Stratigraphy" became 

widely publicised following publication of AAPG Memoir 26 (Payton, 

1977), and the technique was widely accepted and utilised in the oil 

industry. The technique is an exciting one for two main reasons: (i) 

it draws all the different types of data on a sedimentary succession 

(seismic, sedimentology, biostratigraphy, etc.) together, and allows a 

lucid picture of basin history to be drawn and (ii) it is a highly 

predictive technique which allows facies outside the area of study to 

be predicted by reference to the systems tract to which they will 

belong. 

As noted above, one of the fundamental tenets of sequence stratigraphy 

is that sea-levels have fluctuated in a given manner, world-wide, 

through geological time. A number of "sea-level curves" have been 

247 



produced documenting this, with the most recent work being that of Haq 

et al. (1987). This shows a global pattern of synchronous sea-level 

changes and thus a myriad of systems tracts which theoretically should 

be recognisable world-wide, assuming no local tectonic controls and 

suitable marine successions in a passive margin setting. Hancock 

(1989) has produced a sea-level curve specifically for the Cretaceous 

of the British region, and there are several others, some of which are 

referred to below. A problem with the Haq et al. (1987) curve is that 

it is often based on observations made on basinal successions. It is 

better to document sea-level changes from marginal areas where even 

small fluctuations in sea-level are likely to result in major facies 

changes. During the Albian - Cenomanian period, south west England was 

such a marginal area. It therefore provides an ideal opportunity to 

develop a sea-level curve to compare against those already published 

for this time period. However, it should be noted that any local 

sea-level curve is a function of the combination of subsidence, 

sediment supply and eustatic sea-level change. Each of these factors 

will be of varying significance, although in this particular instance 

most significance is placed on the eustatic variation. It is also 

interesting to re-examine the Albian - Cenomanian succession of south 

west England within the context of sequence stratigraphy. This may 

shed some light on the depositional environment and correlation of 

these problematic deposits. 

6.3 Recognition of Sequences and Sea-Level Change in Outcrop 

The recognition of sequence boundaries, systems tracts and sea-level 

changes in outcrop has been the subject of some debate in recent years 
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(eg Wilgus et al., 1988; Hancock, 1989). Sequences, as defined by Van 

Wagoner et a/.(1988) (following Mitcham, 1977), are bounded by 

unconformities (caused by a downward shift in coastal onlap) or their 

correlative conformities. It therefore follows that the occurrence of 

missing biozones and marked facies changes allows sequence boundaries 

to be recognised. 

The recognition of sea-level changes (and hence systems tracts) is 

more complex. Hancock (1989) has suggested the use of hardgrounds to 

recognise periods of maximum transgression (following Juignet, 1980; 

Francis, 1984). The subject of why and how hardgrounds form is a 

complex one (eg see discussions by Fischer and Garrison, 1967; Kennedy 

and Garrison, 1975; Bromley, 1978; Garrison et al., 1987) which will 

not be discussed in this work. However, whilst accepting Hancock's 

premise that hardgrounds form in response to an interruption in 

sedimentation, this may not always relate to regression. They could 

form (as noted by Hancock, 1989) in response to winnowing by local 

bottom currents. These could occur in almost any environmental setting 

and not be a function of eustatic change. Hardgrounds may also develop 

during periods of transgression. Indeed, Hancock (1989, p. 577) notes 

that courses of phosphatic nodules in the Gault may form in response 

to "... a transgression that carries the shoreline further from the 

basin. Deposition of sediment was also moved further from the basinal 

region which was then starved of clay". In a marginal setting, such as 

that represented by the Late Albian - Cenomanian sediments of S.W. 

England, an increase in water depth caused by a transgression may 

cause a marked drop in sedimentation and the formation of a 

hardground. In terms of sequence stratigraphy, condensed deposition is 

associated with the maximum flooding surface, or height of 
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transgression (Van Wagoner et al., 1988; Loutit et al., 1988). 

Thus at the peak of transgression a hardground may develop, 

particularly on the shelf, with biozones being condensed or apparently 

missing. In contrast to Hancock (1989), the present work argues that 

this condensed sequence will not always overlie the regressive 

hardground (although it may sometimes, perhaps in the case of the Beer 

Head Limestone Formation hardgrounds which are multiple (Jarvis and 

Woodroof, 1984)). Rather it will overlie the lowstand and lower 

transgressive systems tracts which onlap onto the shelf. Thus, some 

hardgrounds are associated with regression and unconformity (eg at the 

top of the Top Sandstones Member) but some are a function of 

condensation during maximum transgression (eg that at the top of the 

Foxmould Sands Member). 

In the Late Albian - Cenomanian succession of S.W. England this study 

recognises transgressions and eustatic sea-level rises by periods of 

maximum onlap (see Fig. 6.1). Also considered are the distribution of 

facies variations, the diachroneity of facies and the presence of 

hardgrounds and unconformities. 

6.4 Sequence Stratigraphy of the Selborne Group in S.W. England 

As shown by Fig. 6.1 there is a gradual east to west onlap of the 

Selbome Group during the late Albian. The basal Foxmould Sands Member 

is at least as old as Cristatum Subzone in west Dorset; in south east 

Devon it is of Varicosum Subzone (see chapters 2, 3, and 5 for the 

discussion of, and relevant references for all age 
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determinations given in this section). The base of the Haldon Sands 

Formation is Auritus Subzone, but the period of maximum transgression 

is indicated by the Wolborough Limestones Member which is thought to 

be Rostratum Subzone age. Within the Varicosum - Auritus succession in 

S.W. England there are no major facies changes or depositional breaks 

to . indicate a cessation of the transgression. Thus sea-level was 

rising throughout the Inflatum Zone and the time of maximum eustatic 

rise was in the lower part of the Rostratum Subzone (Dispar Zone). 

Interestingly, this sea-level rise led to the establishment of a 

carbonate shelf with orbitoline-rich limestones in the inner shelf, 

with local coral bioherms basinwards of this (the Haldon Coral Bed, 

Woodlands Sands Member). The limestones in the Foxmould Sands Member 

have an outer shelf fauna (see chapter 5). The hardground at the top 

of the Foxmould Sands Member corresponds to condensation at the time 

of maximum transgression. 

There then followed a gradual regression throughout the remainder of 

the Dispar Zone. This is indicated by the shallowing of facies 

throughout the Chert Beds Member and Top Sandstones Member (Tresise, 

1960; Williams, 1986; chapter 3 of this work). The Ashcombe Gravels 

Member, Top Sandstones Member and Eggardon Grit represent a 

diachronous, regressive, coarse, shallow water facies which becomes 

progressively younger eastwards. The maximum regression occurs in the 

basal Cenomanian in the lower part of the Carcitanensis Subzone, as 

evidenced by the unconformity and hardground at the top of the Top 

Sandstones Member and Eggardon Grit. However, this apparent regression 

may, in part , be due to increased sediment supply, although this 

itself often occurs during a eustatic sea-level fall (high stand 

systems tract). 
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Using the above synthesis it is possible to identify the various 

components of the sequence as follows: 

/ 
(i) The trangressive systems tract is represented by the Foxmould 

Sands Member, the lower part of the Telegraph Hill Sands Member and 

the lower part of the Wolborough Limestones Member. 

(ii) The maximum flooding surface lies within the Wolborough 

Limestones Member and, to the east, within the Woodlands Sands Member. 

Further to the east it is represented by the hardground at the top of 

the Foxmould Sands Member. 

(iii) The highstand systems tract is represented by (probably) the top 

of the Wolborough Limestones Member and Woodlands Sands Member and the 

whole of the Ashcombe Gravels Member at Haldon and the Chen Beds 

Member and Top Sandstones Member in S.E. Devon and by the Eggardon 

Grit further to the east. 

Rapid eustatic rise and transgression occurred in the upper pan of 

the Carcitanensis Subzone as evidenced by the onlap of the lowermost 

Cenomanian Limestone (Pounds Pool Member, Beer Head Limestone 

Formation) and equivalents (lower Wilmington Sands and Cullum 

Sands-with-Cherts Member) across south Devon. Garrison et al. (1987) 

also recognise an increase in water depth at this time. As with the 

Late Albian transgression, this leads to the establishment of a 

carbonate shelf and orbitoline-rich inner shelf limestone (Cullum 

Sands-with-Cherts Member). The hardground at the top of the Pounds 

Pool Member (basal Saxbii Subzone) is probably the result of 
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condensation associated with transgression. A shallowing-up trend in 

the Hooken member overlying the hardground at the top of the Pounds 

Pool Member, and also within the upper Wilmington Sands indicates a 

regression and eustatic sea-level fall taking place throughout the 
/ 

majority of the Saxbii Subzone. This culminates in the unconformity 

seen at the top of the Hooken Member and Wilmington Sands, the latter 

being within the Dixoni Zone. 

The succession of facies within the Little Beach Member indicates a 

relatively rapid transgressive/regressive cycle. A eustatic sea-level 

high occurred during the lower part of the Costatus Subzone, and a 

regression in the upper part of this Subzone. A gradual recovery of 

sea-level is indicated in the Acutus Subzone and continues into the 

Jukesbrownei Zone as indicated by the gradual westerly onlap of the 

Chalk Basement Beds. This transgression may have continued throughout 

the Late Cenomanian, culminating in the deposition of the Pinnacles 

Member of S.E. Devon. This is the lateral equivalent of the Plenus 

Marls of S.E. England (Carter and Hart, 1977; Jarvis et al., 1988), 

which is associated with a eustatic sea-level high (Hancock, 1989). 

It is interesting to note that in a marginal area such as that 

discussed above it may be possible to estimate the depth of water at 

any geographical point during the period of maximum transgression. 

This is only possible if there is a fairly complete sedimentary 

succession from the maximum flooding surface through the highstand 

systems tract; the top of which should show evidence of sub-aerial 

exposure (or at least very shallow water conditions). In essence this 

means that the sediment pile represents the infilling of the basin to 

the same depth that the water column covered it at the maximum 
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flooding surface. This would, of course, only be an approximation as 

such factors as compaction and ongoing basin subsidence are unknowns 

(although these can also be estimated). But at least a minimum water 

depth can be calculated. For example the Selboume Group deposits at 

Branscombe indicate that at maximum transgression the water depth in 

the area was at least 22 metres. 

6.5 Comparison with Other Sea-Level Curves 

The sea-level curve developed during this study for the Late Albian -

Middle Cenomanian of S.W. England is compared in Fig. 6.2 with the 

global curve of Haq et al. (1987) and the more localised c\xr\t 

developed for the British region by Hancock (1989). 

There are some similarities between this study's curve and that of Haq 

et al. (1987). Sea-levels are both shown to be rising throughout the 

Inflatum Zone. As noted by Hancock (1989) this in fact corresponds to 

the global onset of the major "Cenomanian Transgression" of Suess 

(1906). Haq et al. (1987) have a eustatic high at the Auritus -

Rostratum Subzonal boundary whereas this study's curve is slightly 

higher, in the lower part of the Rostratum Subzone, but perhaps within 

the range of error for both methods. A subsequent sharp eustatic fall 

is indicated by Haq et al. (1987). This may have initiated and 

correspond to the onset of a fall in this authors curve but unlike Haq 

et al. this shows sea-level to be falling throughout the Dispar Zone. 

As noted by Momer (1980), such a dramatic sea-level fall as that 

indicated by Haq et al. (1987) within the lower Rostratum Subzone is 

difficult to explain. Haq et al. (1987) have a recovery of sea-level 
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during most of the Rostratum Subzone and a fall during the Perinflatum 

Subzone. This culminates in a regressive trough during the basal part 

of the Carcitanensis Subzone, which is in agreement with this study. 

Haq et al. (1987) show the subsequent eustatic rise culminating at the 

top of the Saxbii Subzone; this study shows it to culminate slightly 

lower. Once again there is agreement with the following regressive 

trough: it lies within the Dixoni Subzone. Haq et al. (1987) then have 

a eustatic rise taking place through to within the Jukesbrownei Zone. 

They do not recognise the cycle within the Costatus Subzone. 

There is only slight agreement between the curve developed during this 

study and that of Hancock (1989) despite the fact that the latter is 

more directly relevant to this study. Both curves show a eustatic rise 

during the early part of the Inflatum Zone; but Hancock shows the 

eustatic peak to be at the base of the Auritus Subzone. This cannot be 

reconciled with the clear evidence for continued onlap during the 

Auritus Subzone at Haldon and Wolborough. Following a regression 

during the Auritus Subzone, Hancock shows sea-level to be rising or in 

a state of still-stand during the Dispar Zone. This contradicts the 

evidence he cites, that there was a Late Albian shallowing of the sea 

in Devon. However, the possibility of increased supply must be taken 

into account, although this is most likely to occur during a eustatic 

sea-level fall (highstand systems tract). Within the Early-Middle 

Cenomanian Hancock shows a rise culminating at the top of the Saxbii 

Subzone, followed by slight regression, still-stand and then 

transgression during the Jukesbrownei Zone. This is quite different to 

the curve developed for this study (although the eustatic peak at the 

top of the Saxbii Subzone almost corresponds and is in agreement with 

the curve of Haq et al. (1987)). Perhaps one problem of comparing the 
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curves is that Hancock (1989) uses zonal boundaries as datums for 

placing his minima and maxima of sea-level change, whilst this study 

tried to place them within zones where appropriate. 

Other sea-level curves may be compared in a general way with the 

results of this smdy. Momer (1980) and Matsumato (1980) both show a 

regression culminating very near the Albian - Cenomanian boundary for 

a number of localities world-wide, and Juignet (1980) has similar 

results from the Paris Basin and the Armorican Massif. These agree 

with this study. Juignet (1980) recorded sea-level highs during the 

Inflatum Zone, the Saxbii Subzone and the Jukesbrownei Zone. Again 

agreeing with this study. Cooper (1977) indicated that the Late Albian 

transgression began during Orbignyi Subzone times. Somewhat later than 

proposed by the present study. Cooper also noted that the strata 

across the Albian - Cenomanian boundary are typically represented by 

regressive deposits world-wide. He mentioned that the Dispar Zone is 

regressive in the Western Interior of North America, in Brazil, Peru 

and around Africa. This supports the present work. Cooper's discussion 

of transgressive peaks in the Cenomanian shows similarities to this 

study and using the results of Hart and Tarling's (1974) study of 

Cenomanian palaeogeography he recognises a sea-level rise during the 

Costatus Subzone. This also is in agreement with the present work. 

Differences between the curve developed during this study and those of 

other workers could be ascribed to local tectonic and isostatic 

controls on sedimentation (Hart, 1990). That there were mid-Cretaceous 

tectonic movements in S.W. England has been suggested by a number of 

workers (eg Smitii, 1957; Drummond, 1970; Hart, 1971). To what degree 

tectonic/isostatic controls overprint eustatic controls in this area 
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(if indeed at all) remains a subject for further investigation. 
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CHAPTER 7 CONCLUSIONS AND FURTHER WORK 

7.1 Introduction 
/ 

In this chapter the conclusions drawn from this study are presented as 

a series of 'bullet points' (1-29). These are followed, where 

appropriate, by a series of points (a-e) which suggest further work 

which may be usefully undertaken. 

7.2 Lithostratigraphy 

1) A review is presented of the literature dealing with the 

lithostratigraphy of the Selbome Group. 

2) A new lithostratigraphic scheme is proposed for those deposits 

formerly known as the Upper Greensand. In the south and south-west of 

England the proposed Selbome Group is made up of the proposed Wessex 

Greensand Formation and Gault Clay Formation as well as the existing 

Haldon Sands Formation. 

3) The Wolborough Limestone Member is proposed as part of the existing 

Haldon Sands Formation. This proposed new member is described in 

detail and a type section is designated. 

4) The Foxmould Sands Member is proposed as the basal member of the 

proposed Wessex Greensand Formation. It is described in detail and a 
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type section is designated in the Branscombe to Beer Head section, 

S.E. Devon. 

5) The Chert Beds Member is proposed as part of the proposed Wessex 

Greensand Formation. It is described in detail and a type section is 

designated in the Branscombe to Beer Head section, S.E, Devon. 

6) The Top Sandstones Member is proposed as the topmost member of the 

Wessex Greensand Formation. It is described in detail and a type 

section is designated at Dunscombe, S.E. Devon. 

Further Work 

a) The integration into the lithostratigraphic scheme of other 

deposits, of a similar age, to the east of the study area. 

7.3 Sedimentology and Facies 

7) A review is presented of the available literature dealing with the 

sedimentology of the Selbome Group of S.W. England. 

8) Lithological logs are presented for sections at Branscombe/Beer 

Head (Type Section for the Foxmould Sands Member and the Chert Beds 

Member); Kempstone Rocks, Dunscombe, S.E. Devon (Type Section for the 

Top Sandstones Member); Whitecliff, Seaton, S.E. Devon; and a small 

quarry at Dunscombe, S.E. Devon. 
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9) The sediments found in these sections are divided up into 15 

facies. 

10) Each facies is described in detail including local variations and 
/ 

associations with other facies. An environmental interpretation is 

suggested for each facies. 

11) The Foxmould Sands Member is interpreted as a relatively deep 

water unit with clay-sized sediments deposited from suspension during 

normal weather conditions. Rare storm events resulted in the laying 

down of sands and impure limestones when storm wave base touched 

bottom and/or storm induced, offshore flowing, bottom currents 

transported sand out into the basin. 

12) The facies in the Chert Beds Member are interpreted as reflecting 

higher energy events/and shallower water upwards. Deposits reflecting 

storm events of varying intensity are described and the normal 

fairweather depositional environment is thought to have been tidally 

dominated. 

13) The Top Sandstones Member is interpreted as being a shallow water 

tidally dominated deposit. 

Further Work 

b) It is intended to carry out further investigation to the east of 

the present study area. Particularly in the region of the mid-Dorset 

Swell including the Eggardon Grit and Exogyra Rock. 
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7.4 Diagenesis 

14) A review is presented of previous work on the diagenesis of the 

Selbome Group including chert formation hypotheses. 

15) Secondary silica in the Foxmould Sands Member is described, it 

occurs as chalcedony passively infilling voids and occasionally as a 

fine quartz cement in the clean quartz sands. 

16) A series of events leading to the formation of chert within the 

Chert Beds Member is proposed. The gradual replacement of calcite and 

glauconite combined with void-fill chalcedony and microquartz rim 

cements are shown to result in a ghost fabric. 

7.5 Biostratigraphy 

17) A review is presented of previous work on the fauna of the 

Selbome Group including publications dealing with ammonites and 

foraminifera and zonations based on these groups. 

18) A new ammonite occurrence is reported firom the Foxmould Sands 

Member at Branscombe. Identified as Prohystoceras (Goodhallites) 

delabechei it suggests a varicosum Subzone age for the lower part of 

the Foxmould Sands Member. 
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19) 23 genera and 32 species of Foraminifera are described, together 

with information on their geographic and stratigraphic ranges and the 

palaeoenvironments in which they are found. 

20) The smaller Foraminifera suggest that the upper part of the 

Foxmould Sands Member may be as young as dispar Zone but do not allow 

any further refinement of the age of the Chert Beds Member. 

21) An in depth examination of the occurrence of the large benthonic 

Foraminiferan Orbitolina in S.W. England allowed the following 

conclusions to be drawn: 

i) Orbitolines from the Wolborough Limestone Member (Haldon Sands Fm.) 

belong to the species Orbitolina sefini and embryonic apparatus 

dimensions suggest a Late Albian age. 

ii) Orbitolines from the Cullum Sands-with-Cherts Member (Haldon Sands 

Fm.) are assigned to Orbitolina sp. cf. concava and suggest an Early 

Cenomanian age. 

iii) Orbitolines from Dunscombe have been identified as belonging to 

the O. sefini - O. concava plexus but precise determinations were not 

possible. 

iv) 'Orbitolina' occurrences from Wilmington in east Devon are, in 

fact, shown to belong to the sponge genus Porosphaera. 

11) Using the evidence gathered during this study of Orbitoline 

occurrences the correlation of various outcrops of Selbome Group 

deposits in S.W. England was found to be in broad agreement with that 

put forward by Hamblin and Wood (1976). Some differences remain to be 

resolved about the details of correlation between the upper part of 
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the Haldon Sands Formation and the Wessex Greensand Formation of S.E. 

Devon. 

23) The occurrence of both O. sefini and <9.sp. cf. concava in S.W. 

England has allowed the proposal of a colonisation pathway for the 

Orbitolines from the Iberian Peninsular via the S.W. Approaches to 

S.W. England rather than by way of the Paris Basin. 

24) A reconnaissance study of nannofossils was carried out which, 

while not allowing any firm conclusions, reported the occurrence of 

this fossil group from both the Foxmould Sands Member and the Chert 

Beds Member. 

Further Work 

c) To search for and examine further occurrences of Orbitolina 

(especially those reported to occur in S.E. Devon) in order to attempt 

both further resolution of the correlation from the Haldon Hills to 

S.E. Devon and correlation to outcrops further east. 

d) To carry out more refined analysis on the nannofossils from various 

sections of the Selborne Group in S.W. England. 

7.6 Sequence Stratigraphy and Sea-level Changes 

25) Using the techniques of sequence stratigraphy a basin history is 

presented for S.W. England during Albian/Cenomanian times. 
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26) The Foxmould Sands Member, the lower part of the Telegraph Hill 

Sands Member and the lower part of the Wolborough Limestone Member are 

suggested to be part of a transgressive systems tract. 

27) The maximum flooding surface of the same cycle is suggested to be 

within the Wolborough Limestone Member, within the Woodlands Sands 

Member and be represented by the hardground at the top of the Foxmould 

Sands Member. 

28) It is suggested that the high stand systems tract is represented 

by the top of the Wolborough Limestone Member and Woodlands Sands 

Member, the whole of the Ashcombe Gravels Member and the Chert Beds 

Member and Top Sandstones Member. 

29) A sea-level curve for Albian/Cenomanian times in S.W. England is 

presented and compared with the published curves of Haq et al. (1987) 

and Hancock (1989). 

Further Work 

e) To extend the sequence stratigraphy model into S.E. England. 
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PLATE 1 

1. Tritaxia pyramidata Reuss, 1844. (x 70). Lateral View. Sample 

Bll/6, Branscombe. Albian and Cenomanian. 

2. Arenobulimina sp. cf. A. advena Cushman, 1936. (X 100). Lateral 

View. Sample BBS, Branscombe. Very latest Albian. 

3. Eggerellina mariae ten Dam, 1950. (X 80). Lateral View. Sample 

BC14, Branscombe. Auritus Subzone - Early Turonian. 

4. Ataxophragmiwn depressum Pemer, 1892. (X 100). Lateral View. 

Sample Bl l /6 , Branscombe. Cenomanian. 

5. Nodosaria sp. (indet.) (X 48). Lateral View. Sample BB6, 

Branscombe. 

6. Astacolus sp. (indet.) (X 75). Lateral View. Sample BBIO, 

Branscombe. 

7. Astacolus sp. (indet.) (X 36). Lateral View. Sample BB14, 

Branscombe. 

8. Citharina d'orbignyi Marie, 1938. (X 36). Lateral View. Sample BB7, 

Branscombe. Early or mid Albian. 

9. Citharinella sp. (indet.) (X 36). Lateral View. Sample BB13, 

Branscombe. 

10. Dentalinoides sp. (indet.) (X 48). Lateral View. Sample BBS, 

Branscombe. 





PLATE 2 

1. Frondicularia filocema Reuss, 1862. (X 24). Lateral View. Sample 

BBS, Branscombe. Mid and Late Albian. 

2. Lenticulina rotulata var. A. (X 70). Lateral View. Sample BAl, 

Branscombe. 

3. Lenticulina rotulata var. B. (X 48). Lateral View. Sample BAl, 

Branscombe. 

4. Lenticulina rotulata var. C. (X 70). Lateral View. Sample BAl, 

Branscombe. 

5. Lenticulina sp. A. (X 80). Lateral View. Sample BA7, 

Branscombe. 

6. Lenticulina sp. B. (X 75). Lateral View. Sample BC4/2, 

Branscombe. 

7. Neoflabellina sp. (indet.) (X 36). Lateral View. Sample BB3, 

Branscombe. 

8. Neoflabellina sp. (indet.) (X 17). Lateral View. Sample BBS, 

Branscombe. 

9. Vaginulina kochii Roemer, 1841. (X 70). Lateral View. Sample BA7, 

Branscombe. 

10. Tobolia sp. (indet.) (X 70). Lateral View. Sample BA7, Branscombe. 





PLATE 3 

1. Tristix cxcavatum Reuss, 1862. (X 100). Lateral View. Sample BB7, 

Branscombe. Mid to Late Albian. 

2. Patellina sp. (indet.) (X 100). Lateral View. Sample BBS, 

Branscombe. 

3. Patellina sp. (indet.) (X 100). Spiral View. Sample BB3, 

Branscombe. 

4. Heterohelix moremani Cushman, 1938. (X 230). Lateral View. Sample 

BCl/1, Branscombe. Dispar Zone - Late Cenomanian. 

5. Globigerinelloides bentonensis Morrow, 1934. (X 175). Lateral View. 

Sample B15/2, Cenomanian Limestone, Branscombe. Rostraius Subzone. 

6. Pleurostomella sp. (indet.) (X 24). Lateral View. Sample BC2/1, 

Branscombe. 

7. Gyroidinoides parva (Khan). (X 175). Umbilical View. Sample BA4, 

Branscombe. Albian. 

8. Gyroidinoides parva (Khan). (X 175). Lateral View. Sample BA4, 

Branscombe. Albian. 

9. Gavelinella cenomanica Brotzen, 1942. (X 100). Spiral View. Sample 

BB14, Branscombe. Very topmost Albian - Cenomanian. 

10. Gavelinella intermedia (Benhelin). (X 100). Umbilical View. 

Sample BB14, Branscombe. Albian and Cenomanian. 

11. Lingulogavelinella sp. (indet.) (X 100). Spiral View. Sample 

B15/2, Cenomanian Limestone, Branscombe. 

12. Lingulogavelinella jarzevae Vasilenko, 1954. (X 100). Umbilical 

View. Sample B12/1, Cenomanian Limestone, Branscombe. Dispar Zone 

and Early Cenomanian. 





PLATE 4 

1. Parhabdolithus asper (X 4800). Sample C4/5, Branscombe. Ryazanian -

Cenomanian. 

2. Zygodiscus erectus (X 9600). Sample C4/5, Branscombe. Sinemurian -

Cenomanian. 

3. Zygodiscus sp. (indet.) (X 9600). Sample C4/5, Branscombe. 

4. Ellipsagelosphaera sp. (indet.) (X 4800). Sample C4/5, Branscombe. 

5. Zygodiscus compactus (X 4800). Sample B8/2, Branscombe. Barremian -

Campanian. 

6. Parliabdolithus achylostaurion. (X 5000). Sample B8/2, Branscombe. 

Late Aptian - Turonian. 
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Short Communication 

.A. Note on the Occurrence of Orbitolina (Orbitolina) sefini 
Henson, 194S (Foraminiferida) in the Upper Greensand of S. W. 
England 

1. Introduction 

The discovery of fossiliferous Upper Greensand at Wolborough (Figure 1) 
during the I .G.S. E.xeter Cnnersity re-mapping (1966-69) of the 1:50 000 
Xewton .-\bbot (3391 Geological .Map was fully documented by Carter and 
Hart (1977). In 1974 a trench [GR.855700] was dug 400 XTL S of Wolborough 
Church and e.xposed a succession comprising S.5m of gravels, giauconiiic 
ciavey sands and giauconitic quartriferous limestones resting on Devonian 
shaies (Maniev and Weaver. 1979; Sciwood el ai.. 19S4, p.122 and rig. 21). 
The succession, reproduced in Figure 1. contains a rossiiiierous limestone 
bed from which abundant orbitoiines have been recovered. Similar tossiiifer-
ous greensands inciudinE a bed ot calcareous sandstone with sparse orbito-
lines \vere unco\ered during the construction ot the .A.380 Newton Abbot B\" 
Pass [ G R . S 7 7 7 J 9 ] , preserved in a solution hollow in Devonian limestones 
(Selwood el al., ibid., p. 121). Rare orbitoiines were also found in patchily 
cemented shelly lenses ('Riiiitn^onia Bed') at a presumed equivalent level 
near the base of the Greensand succession at Babcombe Copse [GR.S69766] 
(Seiwood el at., ibid., rig. 21). Hambiin and Wood (1976) assigned all these 
orbitoline-bearing greensands to the Woodlands Sands .Member ol the 
Haidon Hills L'pper Greensand succession (Haldon .Sands Form.ation). and 
placed them in the L'pper .Albian [Stoiiczkaia disvar Zone; on the basis ot 
two ammonites which probabh' had their pro\'enance in this member. The 
Late .Albian age of the Woodlands Sands is substantiated by the discovery ot 
an indicenous dispar Zone ammonite assemblage in the east De\on equiva
lent of the overlying .Ashcombe Gravels .Member. In addition to these 
proven Upper .Albian occurrences, orbitoiines are common at Babcombe 
Copse and Smallacombe Goyie [GR.922768] in cherts of the Cullum Sands 
with Cherts .Member, a unit which is partially or wholly of Cenomanian age. 

A recent revision of the orbitoiines belonging to the concava-sejini group 
(Schroeder, 1985 a, b) has allo%ved a further, more detailed, consideration of 
the orbitoiines from the greensands of South Devon. 
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2. Systematic palaeontology 

Family: Orbitolinidae Martin, 1889 
Genus: Orbitolina d'Orbigny, 1S50 

Subgenus: Orbitolina d'Orbigny, 1S50 
Orbitolina I Orbitolina i sefini Henson. 1948 

1948 Orbitoiina concava (Lamarck) var. senni Henson, 64—65, pi.5, figs 1-2 
{nan figs 3—}- ( = Orbitolina(Conicorbitolina) conica)). 

1977 Orbitolina (Orbitoiina) concava (Lamarck): Rey, Bilotte and Pey-
bernes, 378, pi.2. figs 11-12. 

1978 Orbitolina (Orbttolina) cf. concava qatarica Berthou and Schroeder, 
p.76. pl.4. figs 8-12. 

19S5b Orbitolina {Orbitolina) sefini Henson: Schroeder, 66-67, pi.30, figs 
1-8. 

This species has recently been revised by Schroeder (1985 6), using the 
type material of Henson. which is stored in the British Museum (Natural 
History), London. 

The Orbitolina fauna from the glauconitic, calcarous, sandstones of the 
Woodlands Sands .Member is composed nearly exclusively of megalospheric 
specimens. Only one section can be attributed to the microspheric 
generation. 

The megalospheric forms (Figure 2(a)-(d) and (f)-(g)) have a diameter of 
4-5 rum and a height of 1-1.3 mm. The dorsal surface of the slightly conical 
specimens is generally more or less convex or sometimes nearly planar: the 
ventral surface of young forms is also con\ex (Figure 2(b'i), but aduit 
specimens show a clear central depression on this side (Figure 2fa), (ci). 

The megalospheric embryonic apparatus (diameter 0.6-0.72 mm), situated 
at the apex of the test (Figure 2(a)-(c)), consists of an ellipsoidal protoconch 
(diameter 0.2-0.24 mm), a well-developed and subdivided deuteroconch and 
a considerably thinner but relatively large subembryonic zone. 

The following post-embryonic chamber layers, averaging 14—15 per last 
millimetre of the test surface, are first of all disc-shaped: later they become 
annular (Figure 2(a),(c)). 

Within the marginal zone of the chamber layers, the outer part of each 
marginal chamberlet is subdivided by 3—\ vertical and 2-3 horizontal sub
epidermal plates forming a relatively regular network immediately below the 
test surface (Figure 2(d), (g)). 

The well-developed outer part of the central zone ( = radial zone) is clearly 
visible in axial sections (Figure 2(a)). The shape of the radial partitions and 
chamber passages, alternating in position from one chamber layer to the 
next, is triangular in tangential sections (Figure 2(d), (0). The inner part of 
the central zone contains so much foreign material (detrital quartz, calca
reous grains, microscopic fossil debris) that its structures cannot be 
determined. 

The only specimen of the microspheric generation seen in thin section 
(Figure 2(e)) is represented by a subaxial section. The test is disc-shaped 
(height 0.6 mm), showing a slightly convex dorsal surface and a nearly plane 
base. Externally, this specimen is distinguished from the megalospheric 
forms by its large diameter of more than 8 mm. The increased-size of this • 
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generation is the result of the rapid increase in thickness of the chamber 
layers, averaging 6 in the last millimetre of the test. The presence of 5-7 
horizontal sub-epidermal plates per marginal chamber of the tardontogene-
tic stage (Figure 2(e)) indicates a well-developed alveolar layer. 

3. Remarks 

Schroeder (19S5a, p. 65) has indicated that the majority of the orbitolines 
described from the late Albian and early Cenomanian of Western Europe, 
described (or cited) as Orbiwlina concava (Lamarck), belong in O. (O.) sejim 
Henson. A re-assessment of the type material of "Orbitolina concava 
(Lamark) var. sejini" has shown that the "ideotypes" of this taxon (Henson. 
1948, pi.5, figs 3—4-) from Israel belong in Orbitolina i Comcorbiioiina) cornea 
(d'Archiac, 1837); see Schroeder (1962). The syntypes (Henson, 1948, pi.5, 
figs 1-2) however, from Sehn Dagh (Iraq) are microspheric forms which are 
found in the same thin sections (B.M.N.H. slides P35902 and P35903) 
together with numerous megalospheric specimens belonging to the subgenus 
Orbitolina <Orbitolina). These other individuals were never described or 
figured. 

The original material ("syntypes") of O. (O.) setini\s. therefore, represen
ted by two generations, from which the megalospheric specimens are 
characterised by exclusivei\' tnancular cross-sections oi the radial partitions 
and the chamber passages within the radial zone of the chamber layers. The 
specimens from Devon, riaured here, show absoiuteix' identical structures. 
In the .A-forms of O. ,'0.) concava (Lamarck) the chamber passages show 
sub-rectangular cross-sections and are separated by small, radial partitions 
(Schroeder^ 1962. p.187; 1975. p.119, text-he. 2C; 1985a, p.65, pi.29. has 
7-8). 

4. Stratigraphic implications 

Henson (1948, p.65) first described this species from "Cenomanian lime
stone with small oysters suggesting Exogyra flabellata (Goldfuss)". In 
Northern Spain O. (O.) senm ranges from late .Albian to early Cenomanian 
(Schroeder, 1985 b, p.67). It occurs with Planomalina buxiorn (Gundolfi) in 
the "Vraconian" of the Sierra de .Aulet (Hofker. 1963, p. 194: Schroeder. 
1973, p. 147; Peybernes, 1976, p.362). It is also recorded with Stnliczkaia -.-ixi. 
dispar and 5 . aff. rhamnoia in the "Vraconian" of .Astobiza (Rat. 195S, 
p.322). It occurs together with O. (Mesorbitolina) aperta (Erman) and 
Graysonites sp. in the earliest Cenomanian of Nava de Ordunte (Schroeder, 

Figure 2. Orbitolina ' Orbilnlma strim Henson. 1948. .All apecimcns from the elauconiiic calcartrtius 
sandstones ot Wolboroueh. Sout;^ Devon: (al axial section ot'a meeaiosphenc form 171) 5 ( x JO); ibi 
axial section of a young mcBaiosphenc form 170 1 ( x 47.5V. (c) a.xial section of a meaalosphent form 
170 7 ( X 30), id) oblique vertical section of a mcaalospheric form 170 6 ( x 30); (e) vertical .section 
throuah the last charnbers of a microspheric form 170'5 ( x 30); (f) oblique vertical section of j 
meaaiospheric form 170.2 ( x 30); (g) oblique horizontal section of a meuaiosphenc form 170 7 
( X 30). 
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1962, p. 172) and in the early Cenomanian of Baranda with Mantelliceras ex. 
gr. cantianum Spath (Schroeder. 1962. p. 172). 

In South Devon Hamblin and Wood (1976) equated the Woodlands Sands 
Member with the Chert Beds of the Devon Coast, with the inevitable 
conclusion that they were referable to the 5 . dispar Zone. In the same paper 
Hamblin and W"ood placed the Cullum Sands in the Genomanian and cherts 
from this stratigraphic unit also contain orbitolines. Unfortunately the 
preservation of these individuals is so poor that accurate determination is 
impossible. 

Carter and Hart (1977) came to a different conclusion on the basis of a 
rather primitive analysis of the Orbitolina fauna and the other associated 
microfauna. Hart. \ Ianiey and Weaver (1979) e.xtended this analysis of the 
Orbiioiina fauna and by comparison with other faunas in N.W. Europe 
suggested that the orbitolines from the Woodlands Sands Member could be 
either latest .\lbian or earliest Cenomanian in age. However if the Woodlands 
Sands (with O. (O.l senni) are latest .Albian and the Cullum Cherts could be 
confirmed as earliest Ccnomanian this would confirm the range ot O. (O.) 
sejini in S.W. England as the same as that cued for Spain. 
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The cherts of the Upper Greensand 
(Cretaceous) of south-east Devon 

C.L. W I L L I A M S 

An aenai view of south-east Devon reveals a pattern of 
wooded hills standing out from roiling pastureiand with 
incising nver valleys. The coast disniays high sea cliffs of 
chalk in the east gradually flattening westwards :o cliffs of 
Upper Greensand with characteristic, highly vegetated. 
siumns and slios. Further west arc seen the coastai cliffs of 
red Permo-Triassic mucs ana sanos ana tne large estuary of 
the river £.-.:. 

Introauction 

Dunne the mid-Cretaceous a snailow sea covered the 
soutn-cast Devon area at :east as far west as :ne .Haldon 
Hiils(F!;:.o.!l. Thib iime-ric.".. .-nanne. environrr.ent at hrst 
dct:osiicu :nc Upper Greensana ana later the C;:aik. Sub
sequent erosion in ine west rerrovea .-nost or tncse acaosits. 
dccaiciivini; ine Chalk ana leaving locai det:osits of loose 
flint on too of t.'ic siiicihc-j •SLo.cown Facies ot tnc Usccr 

Gretnsand. Funhcr east thicker deposits have not yet 
eroded suff.cientiy to completely remove ;.~.e C-.aik from 
the Upper Greensand which remains in its r.orraal cal
careous fanes, consisting of caic-arenitcs wii,-. c.-.erts. lime
stones and Slits. 

Tne material examined was taken from r.vo localities 
within t.*ie Normal Facics' at Branscomce ar.c Whiteciiff. 
just ;o the west of Seaion fFig.ci.Zy The C.-::a:eous seci-
ments rest unconformably on rec mudstor.es of Triassic 
age. although this lower boundary is rareiv '.een. and are 

• suoersecec unconformabiy by Cenomania.-. ::mestones. 
Traoitionailv the Unper Greensano in this area is divided 
into tne !basal) Fo.xmouid Sanas. :he Cher: Bess ana the 
Too Sanastones (Jukes-Browne i Hili. 19001 and :his 
nomenclature has been reiainea here, althoucn it is mis-
leaainc. ana unccr revision. The Upper Greensana is 
generallv regaroea as ceing oi .Albian age a::r.ougn it mav. 
in t3an. be Ci;nomanian. 

N 

A 

Fig.o.l. GcoioEical map oi souin-easi Devon. 
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64 C. L. Williams 

The Foxmould Sands consist of some 25 m of glauconite 
sands, calc-arenites and silts with hard limestone bands. 
The bulk of the Foxmould is made up of highly bioturbated 
mud and silt-rich sands and calc-arenites, which locally 
contain abundant Exogyra obliquata (Pulteney) and the 
serpulid Rotuiaria convava (J. Sowerby). These muddy 
sediments also contain Ostracoda and benthonic Foramini-
fera. together with terrestrial plant debris. Mud-free bands 
of limestone and calc-arenite occur frequently and often 
e.vhibit sedimentary structures such as parallel laminae and 
wave rippled tops that indicate that the deposits were laid 
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Fig.6.2. Lithological succession of the Upper Grcensand in 
south-east Devon. 

down at water depths between normal wave base and storm 
wave base. A hiatus occurs at the top of the Foxmould with 
a shell rich horizon. 
• The Chert Beds consist of about 20 m of mud-free calc-
arenites. Sedimentary structures are rare in this unit and 
bioturbation is difficult to see, with the exception of large 
burrows, probably formed by decapod crustaceans. Tnis 
unit is made up of calc-arenite with shell fragments and 
relatively little quartz. Occasional storm deposits show 
erosive bases and some cross-bedding, and these usually 
have a higher quartz content. Nodular horizons of panially 
chertified calc-arenites are distinct and irregular courses of 
glauconite "stringers' are locally common in the upper pan 
of the Chert Beds and in the Top Sandstone. Tne cherts 
occur in various morphologies, from irregular nodules to 
laterally impersistent horizons which vary in thickness (up 
to about 30 cm). Tne Top Sandstone consists of about 2 m of 
calc-arenite, often with very little quartz, and should be 
regarded as a looselv cemented limestone. 

Sedimentary structures within the chert 

The medium grained caic-arenites. which ma.ke up the bulk 
of the Chert Beds, e.-chibit few sedimentary srructures. 
Occasional coarse grained storm deposits, about 1 m thick, 
display cross-bedding, wave reworked tops and erosive 
bases. These deposits make up only a small percentage of 
the sediments of the Chen Beds and elucidation of the 
depositional environment for the majority of the unit is 
difficult. In some instances, however, this problem is 
panially solved by the preservation of sedimentary struc
tures within chen nodules and bands. 

The percentage of quartz detritals varies widely in the 
calc-arenites of the Chen Beds. Some chens contain large 
numbers of quartz detritals, often unaltered in appearance 
and with sedimentary structures remaining intact, thus 
reflecting the nature of their deposition. Tnese well-
preserved structures suggest a secondary and replacive 
origin for the chen. 

A block of chen which is sectioned and poiished appears 
translucent, allowing a three dimensional view of sedimen
tary structures when their form is picked out by quartz 
detritals. An example of the usefulness of this preservation 
is shown in Fig.6.3, which illustrates a polished block of 
chen, taken from Seaton Hole. The cross-bedding is picked 
out by the quartz detritals and silicified shell fragments. In 
this instance the cross-sets are bimodal and suggest an 
environment influenced by tidal currents. A detailed 
examination (Fig.6.4) reveals the presence of bunows 
which disturb the laminae. In this sample U-shaped bur
rows predominate in the upper set, suggesting that the 
organism was able to cope with the sediment deposition 
rate by altering the depth of its bunow. 

The preservation of these sedimentary siruciiires, in 
contrast with the surrounding calc-arenites. suggests either 
a very rapid deposition rate or a very early chen forming 
diagenetic event. A deposition rate sufficient to preclude 
the destruction of sedimentary structures, bv niacins them 
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Fig.i.j. A polished section of chert showing the preservation of 
bimoaai cross-sets. 

CL\J L 
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Fig.5.4. Detail of cross-sets showing U-shaoed burrows. 

A - 358 



66 C. L. Williams 

too deep, too quickly for infaunal organisms to reach would 
seem to be contra-indicated by the presence of U-shaped 
burrows. The organism forming these structures would 
have maintained its burrow so that the top of the 'U' was 
ooen to the water/sediment interface. 

S«condar>' silica in the Foxmould Sands 

in the Fo.xmould Sands secondary silica is almost entirely 
confined to the relatively mud-free, storm sorted calc-
aremte horizons. These storm deposits consist of medium 
grained quartz detritals and organically derived carbonate 
grains. They display a larger grain size than the silt and mud 
deposits that make up the bulk of the Foxmould and lack 
the e.xtensive bioturbation which characterises the finer 
deposits.' 

Bivalve shells and fragments are common as are the 
coiied calcareous tubes of the serpulid Rotularia concava. 
The latter are abundant in some horizons and are often 
welded together to form discontinuous limestone bands. 
Voids tend to occur within these serpulids and it is these 
spaces which are frequently infilled with secondary silica 
(•Fig.6.5). 

Chalcedony, a cryptocrystalline, fibrous tN-pe of silica, is 
the form which the secondary void-nil silica takes and very 
littie e%idence is seen of microquanz replacement of calcite. 
Tms passive filling of voids appears to be the limit of 
secondarv siiica develooment and no true chens are found 

in the Foxmould Sands. That the secondary silica occurs 
within the mud-free storm deposits is probably a reflection 
of the increased permeability, allowing easier movement of 
silica rich interstitial fluids. 

Secondary' silica in the Chert Beds 

Sections of cherts typically display a siliceous envelope 
reaching into the surrounding calc-areriite (Fig.6.6). .Mov
ing outwards from the chert this envelope has a progress
ively lower silica content. The thickness of this zone varies 
considerably but is generally measured in centimetres. If 
the zone around the cherts represents an area adjacent to 
the maximum development of secondary siiica. in which 
siliciiication becomes progressively reduced, then an 
examination of the incidence of secondary siiica inwards 
from the edge of the envelope should reflect the repiacive 
growth of chert within the calc-arenite. Tnis process did not 
always proceed to completion and abundant noduies of 
partially siiicified calc-arenite are found in the Chen Beds. 

A series of thin sections taken across the transition zone 
reveals the nature of the silica replacement of the calc-
arenite and will now be described. Despite their name, the 
Chert Beds consist largely of calc-arenites of varying erain 
size, which reflect the different energy levels obtaining 
during deposition. Tne same mineral species occur 
throughout the calc-arenites but they differ in size, habit 
and concentration. Quartz detritals mav be present in a 

Fig.6.5. Chaicedonic infill of voids within serpulid worm tubes, 
Foxmould Sands (fov = 1.2 mm). 
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Fie.6.6. Section of chcn shownna siliceous enveiooe. 

sample in varying percentages, grain sizes and morpholo
gies. Grain sizes vary from fine to very coarse, the latter 
normally being well rounded and the former sub-angular. 
The percentage of'quartz present varies from 709b to as 
littis-as5%, when the rock is technically a loosely cemented 
limestone. 

Calrite is the other major component and varies from 
SO^c.to 959c.of the rock. Tne calcite is made up of organi
cally derived fragments, some of which are recognisable but 
most of which are comminuted. The organic debns consists 

-of fragmentsof molluscs, echinoids. Bp.'Ozoa and sponges, 
; togsrher with rare Foraminifera. 

- The only accessory mineral of note is glauconite and this 
normally makesiip less than 109o of the rock. A tTOical thin 
secnon taken from the caic-arenite within the Chert Beds 
but not directly associated with chen is shown in Fig. 6.7. 
Voids occur within the rock especially in the proximity of 

icaldte organiciragments. As the chen is approached these 
.arc silica .infilled. The-silica is in the form of radiating 
-xhalcEdony~fibres.similar to those infilling voids in the 

FoxmrmidrSands.-Triis-passive silica infill of voids is here 
augriientea -by the replacement of caicite by microauartz 
around the edges of the void. This replacement of whole 
caicite grains with microquanz grains becomes increasingly 
common near the edge of the chert. Some grains are 

-Observed to..ije.-conipieieiy unaltered, while others are 
completely replaced by microquanz. In addition, the 
amoum. of chalcedony increases suggesting either a higher 
incidence of primary voids or the comcilete dissolution of 

some caicite grains (Fig.6.8). Eventually, glauconite grains 
are seen to have undergone the same process. 

Sections taken on the edge of the chen exhibit secondar.-
quartz crystals larger than the repiacive microquartz. Tnese 
crystals form an envelope around quartz deiritals and 
replaced caicite and glauconite grains (Fig.6.9). Within the 
chert, thin sections reveal microquanz grains and occa
sional quartz detritals. often enveloped in larger secondary 
auarrz crystals. Tne whole is welded together by 
chalcedonic quartz (Fig.6.10). 

Thus the chen is an imperfect ghost of the original fabric 
of the calc-arenite. Microquartz grains represent fonner 
caidte and glauconite grains, while larger secondary quartz 
crystals occur on the periphery of these microquartz grains 
and outline original quartz detritals. The voids, both orig
inal and those left after the dissolution of carbonate 
material, are filled with chalcedony. 

Cherts vary considerably in their quartz detrital content, 
some having none, some showing panially dissolved grains 
and others being packed with quartz grains. This variation 
is probably a reflection of the varied quartz detrital content 
found within the calc-arenites of the Chen Beds. ' 

Conclusions 

It has been observ'ed that calc-arenites within the Chen 
Beds become progressively more siliceous as they approach 
a chen band. It is suggested that this increasing siiicification 
may reflect the sequence of events leading to the formation 
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Fig.o.T. Caic-arcncte of the Chert Beds showing large rounded 
quarrz grains, calrite and voidi (I'ov = 3.1 mm). 

Fig.6.8. Thin section from the edge of the siliceous envelope 
showing calcite (light), quartz dctritais (clear), microquartz 
grains (speckled) and fibrous chalcedony (fov = 1.2 mm). 
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Fig.6.9. Detail from Fig.o.S showinc an envelope of secondary 
quaru around quaru detnials (fov = 0.6 mm). 

Fie.6.10. Thin section taken from within the chert showing the 
ghost fabric of the calc-aremte: microquanz grains are picked 
out by the secondary quartz rims and chalcedony fills all the 
voids (fov = 0.6 mm). 
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ct chert. The first appearance of secondary silica is in the 
iorm of chalcedonic infill of voids, particularly within cal-
a te shell fragments, which in turn act as nuclei for the 
microquartz replacement of calcite around the edges of the 
voids. The progressive replacement of calcite by 
ir.iCToquartz continues simultaneously with the replace
ment of elauconite and the deposition of secondary quaru 
cr\-s:ais around quart! detritais and replaced caicite. 
Chaicedonic infill of voids continues throughout and the 
c.-.en shows an imperfect ghost of the former calc-arenite 
rarric. The original fabric is picked out by the secondary 
cuirtz arowih around the edges of quartz detritais and 
mirroquartz grains. 
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Foraminifera and correlation of the Upper Greensand, 
Branscombe, south-east Devon 
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l l i c problems of dati i i t; aiul corrclalion of llic Upper Greensand 
in south-west l i i ic l i ind have been discussed by Mambl in and 
Wood (1976), Sclwood er al. (1984). H a n (1971. 1973). Carter 
and Hart (1977). Hart et al. (1979) and Schroedcr r; oA (19S6). 

Hanibl in and Wood (1976) erected a lormal l i thostrai icrapl iy lor 
the Upper Green.sand o f the Haldon Hills and subsequently 
attempted a series of lithostratigraphic correlations with the cast 
Devon coast (Selwood ei al. 1984). (Fig. I ) . I h e y concluded that 
the ba.sal Telegraph Hi l l Sands Member al Haldon was the 
equivalent of the Fo.xmould Sands of south-east Devon and was 
thought to be Albian (varicnsum or auriius subzone) in age. The 
Woodlands Sands Member was correlated with Ihc greater pan 
of the Chert Beds in cast Devon and the Wolborough Greensand. 
Tliese units were also considered to be Albiai i in age. I he 
.Ashcombe Ciravels Member and the Top Sandstones of the 
Upper Greensand in SFZ Devon were thought to be laie .Albian 
((lispar Zone) in age on Ihc basis of a litholopic correlation with 
Shapwick Grange Quarry near Lyme Regis. Final ly the topmost 
l i thostmtigraphic division of the l la ldon Hil ls, the Cul lum 
Sands-with-Cherts Member, was coirelated with cither the non-
sequence between Ihc Top Sandstones and Bed A l or wi th some 
other part of the Cenomaniaii l imestone. These units were 
considered to be earlv C'enomaiuaii in age. 

Hart (1971, l')7.1) suggested that the species Orhiiolina cnncava 
(Lamarck) was of early Ccnomanian age and thai this interred 
thai much o f the Upper Greensand Chert Beds of.SW Hngland in 
which this species occurred was also o f this age. Carter and Hart 
(1977) concluded that the populations of O. lenliculnris (o\\m.\ in 
SW l ingland belonged to the same " faunal communi ty " as those 
found in the type Lower Cenomanian and that this indicated an 
earh' Ccnomanian (Manieliiceras mamclli Zone) age for the 
Upper Grcensand in which they occurred. H a n , Manlcy and 
Weaver (1979) reported a biomeiric analysis of the orbitol ine 
laiina at Wolborough together with material from llie type Lower 
Cenomanian at Ballon. Albian material from Portugal and cherts 
found at Bullers H i l l Quarry. They concluded that the 
Wolboroi igh fauna indicated a Late Albian - I-jirly Cenomanian 
age and that the lauita (rom Bullers H i l l Quarry suggested an 
early Ccnomanian age. 

Schrocder ci al. (1986) presented Ihc revised nomenclature for the 
orhitol incs found in SW England. Most of these orbitol incs had 
been attr ibuted in the past to the sub-species Orhimlina 
(Oihiiolinnj ccncavii qainnca but were now considered to belong 
lo the species Orltimlinti (Orbiinlinn) selini Henson 1948. wi th a 
Slratigraphic range f rom latest Alb ian to earlicsl Cenomanian. 
Scluociler el al. were able to identity Ihc orbi lol incs Iron) 
Wil l borough as belonging to the species (>. l().).\cfinih\]\ becuasc 
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of poor prcscr\ali()n il was nol possible 10 conllrm identi
fications at other Idealities in S\V linnland. 

In an attempt to clarity the problems of dating and correlation o f 
the Upper Grccnsand in S\V I:ni;lanil the present work examined 
the microlauna to be found in the section at Hranscombc, 
concentrating on the lo ran i in i fe ra . 1 he only new ammonite to be 
found was identified by Owen (pers comm.) as I'rolivsinicras 
(Gnndlialliic.s) dclahcchci Spatli which suggests a confirmation o f 
varicosiini subz.ojie age lor the lower part of the Fo.xmould Sands. 

A sedimentary log of the section was drawn-up d i g . 2l and 
samples taken to be processed for microfauna. Most of the 
samples were barren and those that did have a foraminiferal 
content had a poor fauna in terms of both numbers and species 
diversity. Preservation was generally poor and it wa.s nol alwavs 
possible to identify below generic level. 1 hose samples which did 
yield inraminifcra were almost entirely confined to the 
Fo.xmould Sands (I-'ig. }•). The stratigrapliically useful species 
observed were: ArvniilnilimiiKi cf ailvnia - very latest Albian 
{ciispar to Ccnomanian). C'iiluiriiui il'iiilui;n\i - Lower to Middle 
Alb ian. Ilctcrnhclix morcmoni - tlispar in southern England. 
Pracglohoinincana ilclriocnsis - tlispar to Mid-Cenotnanian and 
Gavellinella ccnoiiumica - tli.spar to Cenomanian. 1 hese suggest 
that the upper part o f the Foxmould. at least, may bedisp3r7one 
in age. This casts some doubt on the li l l iostratigraphic 
correlation proposed by Mamblin and Wood (I97f)) between the 
Haldon Hil ls and .SIZ Devon with regard to the lateral equivalents 
of the Foxmould Sands but docs not. at present, enable any 
further correlation o f the Chert Beds. 
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Cretaceous Orbi to l in idae (Foraminifera) from Onshore 

and Offshore South-West Eiigland 

M.D. SIKMCNS & C.L. WILLIAMS 

Explora t ion Technology Branch, BP Research Centre, Chertsey Road, 

Sunbury-on-Thames, Middlesex, TW16 7LN, UK. 

^Tethyan Consul tants , Branshaw House, Dov-ngate, Call ington, Cornwall, 

PL17 8JQ, UK. 

ABSTRACT - The occurrence of o r b i t o l i n i d s in onshore and offshore South

west Eiigland i s fu l ly documented for the f i r s t t ime. Pa lo rb i to l i na 

l e n t i c u l a r i s i s known from the Early Aptian - Late Barremian sediments of 

the of fshore Fastnet Basin, and may a l so occur in the Aptian Farringdon 

Greensand. Late Albian Orbi tol ina s e f in i occurs in the Wol! orough Limestone 

of Devon, v ^ i l s t a t Haldon, Devon, the o r b i t o l i n e faunas are of Early 

Cenomanian age and referable to Orb i to l ina cf. concava. The o r b i t o l i n i d s 

from the Upper Greensand of the South-East Devon coast and the Fas tne t 

Basin cannot be p rec i se ly i d e n t i f i e d , but belong to the Late Albian - Early 

Cenomcinicin 0 . sef in i - 0. concava p lexus . Previous records of Orb i to l i na 

from the Upper Greensand a t Wilmington are shown to be mistaken. These 

records a r e in fact referable to the sponge Porosphaera. The p r e c i s e 

i d e n t i f i c a t i o n of some of the o r b i t o l i n i d s from South-West England supports 

the ages of the Wolborough Limestone and Haldon Sands suggested by Hamblin 

and Wood (1976). I t i s thought t ha t o r b i t o l i n i d s migrated from I b e r i a to 

South-West England via the South-West Approaches during the Late Albian. 

UTTRCOXnCN 

The Orb i to l in idae are a family of complex agglut inat ing l a r g e r 

Foraminifera, typ ica l of the Tethyan Realm. Although known from J u r a s s i c 

and Palaeogene sediments, they are most t y p i c a l of, and most d i v e r s e , 

during Early and mid-Cretaceous t imes . The occurrence of o r b i t o l i n i d s in 
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the Early and mid-Cretaceous sediments of onshore and offshore South-West 

England represents some of the the most northerly records of this 

foraminiferal group. 

Orbitolinids are known from Early Cretaceous sediments of the Fastnet 

Basin in the offshore area (and more rarely the Lower Greensand of the 

onshore area) and from the mid-Cretaceous Upper Greensand and equivalents 

in both the onshore and offshore areas. In all cases the occurrence of 

orbitolinids provides valuable chronostratigraphic information, since 

orbitolinid species have relatively restricted stratigraphic ranges. This 

is important, since the formations in which the orbitolinids occur are 

usually poorly dated by macrofossils and other microfossil groups. 

In this paper, previous and new records of Orbitolinidae from South-Vvest 

England are redescribed in terms of the current taxonomic nomenclature. 

The local and regional stratigraphic significarce of the faunas is 

discussed, as are the palaeobiogeographic implications. 

PREVIOUS WORK 

The position of the locations mentioned in the text below are shown on 

Figure 1. 

The first records of orbitolinids from anywhere in the United Kingdom can 

be traced back to Godwin-Austen (1842) who stated "The Orbitolites [in this 

sense, a junior synonym of Orbitolina] v-tiich occur sparingly on Haldon, are 

exceedingly numerous in beds below Lindridge Hill...". Both these 

localities are in South-East Devon. Parker and Jones (1850) were aware of 

the occurrence of Orbitolina in the mid-Cretaceous sediments of Devon. 

They referred these occurrences to the species Orbitolina concava Lamarck. 

However, some of their records of Orbitolina (eg. from the chalk and chalk 
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marl) are in fact misidentifications of the sponge Porosphaera as first 

pointed out by Hinde (1904). Sporadic records then occur in studies made 

during the later part of the nineteenth century and the first half of this 

century on the Upper Greensand of South-West England (e.g. Meyer, 1874; 

Jukes-Browne and Hill, 1900). More recently Hamblin and Wood (1976), 

Edwards (1979) and Selwood et al. (1984) have documented the occurrence of 

orbitolinids in the Upper Greensand equivalents of the Haldon Hills and 

Kolborough areas of Devon. 

It '̂ras not until the work of Hart, pablished in a series of papers (Kart, 

1971, 1973, 1982; Hart and Tarling, 1974; Carter and Hart; 1977; Hart et 

al., 1979a; Hart and Williams, 1990) that the orbitolinids of South-West 

England were considered in any detail, and their applications for 

stratigraphic correlation realised. Hart and his colleagues recorded 

Qrbitolina from Wolborough, the Kaldon Hills, the South-East Devon coast 

and Warminster. Their occurrence was used to suggest that the upper part 

of the Upper Greensand was Elarly Cenomanian in age. On the basis of a 

preliminary analysis of external dimensions of the orbitolinids from the 

Upper Greensand and its equivalents, Kart et al. (1979a) suggested that the 

Wolborough faunas were older than those of the Haldon Hills. The 

Wolborough faunas compared well with those from Late Albian sediments in 

Portugal, whilst the Haldon Hill faunas conpared well with those from the 

Early Cenomanian of Ballon, France. 

Schroeder et al. (1986) revised the taxonomy of the Wolborough 

orbitolinids. They were placed in the species Orbitolina sefini Henson on 

the basis of internal structures, notably size and shape of embryonic 

apparatus and chamberlets. 
/ 
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Williams et al. (1988) discussed the occurrence of other benthonic 

foraminifera from the Upper Greensand of South-West England. This work 

indicated that the lower part of the Upper Greensand (that below the 

Orbitolina occurrences) was Late Albian. 

Hume (1897) recorded Orbitolina from the Hibernian Greensand of Northern 

Ireland, and this interesting northerly record has been repeated by Heincock 

(1961) and Reid (1971). However, Carter and Hart (1977) and Reid (pers. 

coram., 1984) note that actual specimens to confirm this record are lacking. 

McGugan (1953) in his review of Upper Cretaceous foraminifera from Northern 

Irelajid does not mention Orbitolina. 

Ainsworth et al. (1985, 1987) and Ainsworth and Horton (1986) documented 

the occurrence of orbitolinids from Wealden/Lower Greensand eind Upper 

Greensand equivalents of the Fastnet Basin. Curry et al. (1970) and 

Andreieff et al. (1975) have recorded orbitolinids from mid-Cretaceous 

sediments of the Western Approaches to the English Chaanel. 

ORBITOLINID TAXDNCM3f - - .--

As discussed by Schroeder (e.g. 1962, 1963, 1975) and Hofker (1963, 

1966), the internal structure of orbitolinids is the most critical feature 

for taxonomic separation. Within the subfamily Orbitolininae (Orbitolina 

sensu lato), the most important feature is the macrospheric embryonic 

apparatus (see Figure 2). The structure and size of this delimits genera 

and species, and allows for the construction of phylogenetic lineages. 

Hofker (1963, 1966) considered there to be only one phylogenetic lineage 

within the Orbitolininae, and that this could be grouped under one species 

name - Orbitolina lenticularis (Blumenbach). However Schroeder (e.g. 1975) 

has shown this to be incorrect. A number of phylogenetic lineages exist 
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within the Orbitolininae which allow for separation into distinct genera 

and short ranging and transitional species. This taxonomy is now widely 

accepted as being correct. 

For further details of the morphological terminology used in describing 

the orbitolinids see Schroeder (1975) and Arnaud-Vanneau (1980). 

PALORBITOLIMA OCCURRENCES 

Orbitolinids have been reported from the Early Aptian - Late Barremian 

(Wealden - Lower Greensand equivalents) of the Fastnet Basin by Ainsworth 

et al. (1985). These occurred in the Cities Service exploration well 

63/10-1. Examination of specimens kindly supplied by Dr. Ainsworth, 

revealed them to belong to the species Palorbitolina lenticulairis 

(Blumenbach) (Plate la-b). 

The monotypic genus Palorbitolina is disting-aished by a relatively simple 

eiTibryonic apparatus (Schroeder, 1963; 1975). This consists of an apically 

situated spherical embryonic chamber (a coiribined proloculus and 

deuteroconch), and in advanced specimens, peri-embryonic chamberlets (Plate 

lb). The deuteroconch and peri-embryonic chamberlets typically show a 

surface division by septa. The lack of a subembryonic zone distinguishes 

this species from the more complex Albian - Cenomanian genus Orbitolina 

which is also found in the Fastnet Basin. 

Gusic (1981) and Simmons and Hart (1987) suggested that progressive 

increases in the size and complexity of the embryonic apparatus could be 

used to distinguish different stages with the evolution of P. lenticularis. 

These in turn, could enable a subdivision of the Late Barremian - Early 

Aptian tine-span. However, large populations are needed to undertake this 
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with confidence and the limited material available to us in this study is 

thus unsuitable. 

Orbitolinids are kno\sTi to occur in the Farringdon Greensand (Lower 

Greensand equivalent) (Natural History Museum, London, Curry Collection). 

Same of these specimens have been examined in thin-section, but 

unfortunately a diagnostic eirbryonic apparatus was not found. However, the 

.-̂ tian age of the sediments suggests that these orbitolinids are likely to 

be P. lenticularis. The specimens are associated with Choffatella decipiens 

Schlumberger (Hart, pers. comm., 1990) a foraminifera Vi-ith which P. 

lenticularis often occurs. 

P.lenticularis has a known stratigraphic range of Late Barremian - Early 

Aptian (Schroeder, 1975;.Simmons, 1990). This compares favourably with the 

associated microfauna and microflora recorded by Ainsv-orth et al. (1985, 

1=37). 

The validity of the genus Palorbitolina has been established by Schroeder 

and Simmons, 1988, 1989; ICZN, 1990). 

CR3IT0LINA. OCCURRQICES 

As noted eibove, there are relatively numerous records of orbitolinids 

from the mid-Cretaceous Upper Greensand and equivalents of onshore and 

offshore South-West England. There are also more questionable records from 

Northern Ireland. 

We have examined material from Wolborough, the Haldon Hills, Wilmington, 

and the South-East Devon coast. We have also studied material from the 

mid-Cretaceous sediments of the Fastnet Basin. 

The most abundant faunas of orbitolinids from onshore South-west England 

occur in Upper Greensand equivalent sediments at Wolborough, near Newton 
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Abbot, South Devon (Figure 1). Schroeder et al. (1986) demonstrated that 

these occurrences could be referred to the species Orbitolina sefini. 

0. sefini has a complex embryonic apparatus, which in our specimens has a 

typical diameter of between 0.5 cind 0.72mm (see Figure 3), with an 

ellipsoidal protoconch (diameter 0.18 - 0.24mm) surrounded by a subdivided 

deuteroconch and a considerably thinner, but relatively large, subembryonic 

zone (Plate Ic). The species is distinguished by exclusively triangular 

cross-sections of the radial partitions and the chairiber passages within the 

radial zone of the chamber layers (Schroeder, 1985a, pi. 30, fig. 1; 

Schroeder et al., 1986",' Fig. 2d, f and Plate id). In Orbitolina concava 

the chamber passages show sub-rectangular cross-sections and are separated 

by small, radial partitions (e.g. Schroeder 1985b, pi. 29, figs. 7-8). 0. 

sefini can also be distinguished from 0. concava by its smaller embryonic 

apparatus diameter (in 0. concava typically 0.7 - 0.9ii!;u) (Schroeder, 1985b, 

see also Figure 3). • ' • " ' ' ' . 

According to Schroeder (1985a) 0. sefini has a range from intra-Late 

Albian to intra-Early Cenomanian. The Wolborough limestones in which 0. 

sefini occurs have been correlated with the Woodlands Sands Member of 

Haldon Hill (Hamblin and Wood, 1976). The Woodland Sands Member was 

thought by Hamblin and Wood (1976) to be Late Albian on the basis of a 

debatable correlation to the Chert Beds of South-East Devon, and the 

presence of two poorly preser\'ed amirionites thought to have their provenance 

in the Vvoodland Sands Member. However, the molluscan fauna found within 

the Woodlands Sands Member was said to have a Cenomanian aspect. As shown 

in Figure 3, the embryonic apparatus diameters for 0. sefini from 

Wolborough are close to those recorded for Late Albian (Dispar Zone) 0. 
/ 
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sefini from Portugal. This tends to confirm a Late Albian age for the 

Wolborough occurrences. 

We have also noted the occurrence of 0. sefini in sanples from the 

Wolborough Limestone equivalent or Woodlands Sands Member equivalent in the 

road cutting of the Newton Abbot by-pass just north of Newton Abbot (Plate 

Id-e). 

Orbitolinids are also common at a stratigraphically higher level than at 

Kolborough in the Upper Greensand and Cenomanian Limestone equivalents of 

the Haldon Hills (see Figure 1). These occurrences are in the Cullum Sands 

with Chert Member of the Haldon Sands Formation (Hamblin and Wood, 1976). 

Hamblin and Wood (1976) suggests that this unit correlates with either the 

non-sequence between the Upper Greensand and Cenomanian, and/or the lower 

part of the Cenoiranian Limestone (Bed Al) (= Beer Head Limestone Formation, 

Pounds Pool and Kooken Members of Jarvis and Woodroof, 1984). This 

correlation indicates an Early Cenonianian age for the Cullum Sands with 

Chert Member, an age substantiated by the occurrence of Early Cenomanian 

ammonites in the Haldon-section which are thought to have been derived from 

the Cullum Sands. 

The orbitolinids are poorly preserved and are often silicified (Plate If 

and Plate 2a). However, they can be seen to posses a complex embryonic 

apparatus divisible into a lenticular protoconch surrounded by a subdivided 

deuteroconch and a thin subembryonic zone. This indicates these 

occurrences can be referred to the genus Orbitolina. Of note is the 

diameter of the enibryonic apparatus. It is greater than that of the 0. 

sefini specimens from Wolborough having an average value of 0.95inm (see 

Figure 3). This suggests that these specimens are not referable to 0. 

sefini and have a closer affinity to 0. concava. Indeed, the diameter of 
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the embryonic apparatus of the Haldon Hills specimens is slightly greater 

than that of topotypic specimens of 0. concava from Ballon, France (see 

Figure 3 and Plate 2b). Unfortunately the poor preservation of the 

specimens from the Haldon Hills does not allow for recognition of the 

characteristic sub-rectangular cross-sections of chamber passages 0. 

concava. Thus these specimens are referred to Orbitolina sp. cf. 0. 

concava. 

Orbitolina concava has a well defined stratigraphic range in which it is 

restricted to the Early Cenomainian. The likely recognition of this species 

confirms the results of Hart et ̂ . (1979a) who suggested the Cullum Sands 

orbitolinids had a close affinity with 0. concava from the Early Cenoranian 

of Ballon, whilst the Wolborough orbitolinids had a closer affinity with 

Late Albian Orbitolina from Portugal. This work was based a comparison on 

external dimensions of the orbitolinids, a criteria that is not usually 

considered valid for speciation of orbitolines. 

A limited number of orbitolines have been examined from the Upper 

Greensand of the South-East Devon coast. These are specimens collected by 

Dr. Graham Elliott from a level in the uppermost Chert Beds or lowermost 

Top Sandstones at Dunscombe and referred to by Hofker (1963) and Carter and 

Hart (1977). They are housed in the Natural History Museum, London 

(registration numbers P45079 and P43429). Despite extensive searches by the 

Djrrent authors, the level with Orbitolina could not be located on the 

South-East Devon Coast. A few of the Dunscombe specimens were thin-

sectioned. Although poorly preserved, the embryonrc apparatus of these 

specimens clearly places them in the 0. sefini - 0. concava plexus (Plate 

2c). Their embryonic apparatus dimensions plot midway between those of 0. 

sefini and those of O. concava (see Figure 3). The marginal zone of these 
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specimens shovN-s a close similarity to 0. sefini from Wolborough (Plate 2d). 

However, it must be stressed that the precise identity of these 

orbitolinids remains uncertain. 

Similarly it has not proved possible to provide a precise identification 

of the orbitolinids found in the glauconitic sands of the Fastnet Basin 

(Upper Greensand equivalent) and first mentioned by Ainsworth et al". 

(1985). Loose specimens provided by Dr. Ainsworth from the B? well 56/10-1 

were thin-sectioned, but only poorly preserved embryonic apparatuses vs'ere 

observed. However, these and the nature of the chamber layers suggests that 

these specimens belong in ths 0. sefini - 0. concava plexus. Using a 

variety of microfossil groups, Ainsworth et ̂ . (1987) suggested that the 

sediments containing these orbitolinids were of Early Cenomanian age. 

It has not been possible to examine orbitolinid specimens from the 

Warminster Greensand (Carter and Hart, 1977), or the Hibernian Greensand of 

Northern Ireland. However, the Early Cenomanian age of the sediments these 

orbitolinids are recorded from suggests they are likely to be within the 0. 

sefini - 0. concava plexus. 

"ORBITOLINA" FROK T3E UPPER GREEKSAND AT WILMINGTCN 

Of interest is the record of Orbitolina from the Upper Greensand exposed 

beneath the Wilmington Sands (Beer Head Limestone Fonration equivalent) at 

Wilmington, East Devon (see Figures 1 and 4) (eg. Carter and Hart, 1977; 

Hart, 1982, 1983). We have been able to examine specimens from White Hart 

Pit, Wilmington collected by Prof. Hart, Prof. Murray and Dr. Curry (the 

later held in the Natural History Museum, London). Whilst these specimens . 

resemble orbitolinid foraminifera externally, thin-sections of the 

spsecimens reveal them to have .a conpletely different structure which-is 
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non-foraminiferal (Plate 2e). Comparison with material from other fossil 

groups in the Natural History Museum, London, shows that these specimens 

can be referred to the sponge genus Porosphaera. Jukes-Brown and Hill 

(1900) recorded Porosphaera urceolata from the uppermost Upper Greensand at 

Warminster. It is likely that the fossil found by Jukes-Brov.Ti and Hill is 

the same as that found at Wilmington. However, assignment to the species P. 

urceolata (a junior synonym of P. pileolus according to Hinde (1904)) is 

doubtful because this species is typical of the chalk and is somev.'hat 

larger and some spherical than the Wilmington specimens. 

This is not the first time that Porosphaera and Orbitolina have been 

confused. According to Hinde (1904), Parker and Jones (1860) records of 

Orbitolina are in fact of Porosphaera. This is not strictly true. Parker 

and Jones (1850) mix records of both true Orbitolina (eg. from the Haldon 

Hills) with those of Porosphaera (eg. from the Chalk). It is uncertain if 

the mention of Orbitolina from the Warminster Sands by Parker and Jones 

(1860) refers to true Orbitolina or to Porosphaera. 

STRATIGRAPHIC SIGNIFICANCE 

The Upper Greensand of South-E^st Devon is currently subdivided into 

three informal units; the Foxmould Sands, the Chert Beds, and the Top 

Sandstones (see Figure 4). A paper introducing a formal lithostratigraphy 

is in preparation. Ftirther west, in the Haldon Hills area, a formal 

stratigraphy has been proposed by Hainblin and Wood (1976) (see Figure 4). 

It is further described h^ Selwood et al. (1984). 

Hawever, problems exist with the lithological correlation of the Haldon 

Hills succession to that of the South-East Devon coast. Furthermore there 

has been disagreement over the chronostratigraphic correlation of the 
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sections. Hart (1971) suggested that the majority of the Chert Beds and 

the Top Sandstones of the coastal sections were of Early Cenomanian age, 

based on the foraminiferal fauna (including Orbitolina). By correlation to 

the Haldon Hills (see Carter and Hart, 1977, Fig. 46) much of the Haldon 

Hills section is therefore also Early Cenomanian. Hamblin and Wood (1976) 

whilst agreeing that the upper part of the Haldon Hills section was 

Cenomanian, considered the majority of the coastal section to be Late 

Albian. Their argument was based on lithostratigraphic correlation and the 

occurrence of a Dispar Zone (Late Albian) ammonite fauna in the upper Chert 

Beds of Shapwic)c Grange Quarry (Figure 1). 

The critical Dispar Zone ammonite fai:inafrom Shapwick Grange quarry' is an 

important line of evidence for suggesting that the majority of the L'pper 

Greensand is of Late Albian age. Although neither Hart et al. (1979b) or 

Jarvis et £l. (19S7) could confirm a Late Albian age for the ammonite 

bearing horizon at Shap/̂ iclt Grange using a variety of microfossil groups, 

Owen (pers. comm. 1990) confirms that the ammonite fauna is of latest 

Albian age (uppermost dispar zone) and that it is not a remane deposit 

similar to those known from East Dorset (Carter and Hart, 1977). 

Whilst the Shapwick Grange Ouarry ammonite fauna indicates that the Chert 

Beds must be Late Albian (contrary to the view of Hart 1971, et seq.) it 

does not rule out the possibility that the Top Sandstones are Early 

Cenomanian. This was suggested by Kennedy (1970) who provided ammonite 

evidence that the Eggerdon Grit was, at least in part. Early Cenomanian. 

The Top Sandstones is the lateral equivalent of the Eggerdon Grit (see 

Figure 4), although note that this coarse sandy facies at the top of the 

Upper Gre^ensand is likely to be diachronous. 
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the orbitolinids found in the Upper Greensand of South-West England give 

some useful indications about correlation of this marginal facies between 

localities. The Wolborough orbitolinids can be assigned to 0. sefini which 

suggests an intra Late Albian - intra Early Cenomanian age. In fact, the 

embryonic apparatus measurements plot very close to those for Late Albian 

0. sefini from Portugal (see Figure 3). This tends to support the Late 

\lbian age ascribed to these sediments by Hamblin and Wood (1976) and their 

tentative correlation to the Late Albian Woodlands Sands Member of the 

Kaldon Sands Formation of Haldon Hill. It is clear that the orbitolinids 

from the Cullum Sands with Chert Member of Haldon Hill belong to a 

separate, younger population (0. cf. concava), most likely Early 

Cenomanian. Again, this confirms the age ascribed to this unit by Hamblin 

and Wood (1976). 

However, the critical question of correlation of the Haldon Hills section 

to that of the South-East Devon coast still remains essentially unanswered. 

The simplistic correlation of the orbitolinid rich Cullum Sands with Chert 

to the orbitolinid bearing Top SandstonesA'ppennost Chert Beds at Dunscombe 

on the South-East Devon coast is thought unlikely, and in any case, the 

orbitolinids studied from Dunscombe cannot be precisely identified at 

present. Rather, the definite Early Cenomanian age suggested for the Cullum 

Sands with Cherts indicates a correlation with the lower part of the Beer 

Head Limestone to be likely. We suggest that lithologically, the Ashcombe 

Gravels Member correlates with the Top Sandstones and upper Chert Beds 

(Figure 4). These correlations are in broad agreement with some of the 

suggestions of Harablin and Wood (1976). 

It is known that embryonic apparatus size in orbitolinids increases with 

time within a phylogenetic lineage (eg. Schroeder, 1975; Gusic, 1981), thus 
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within the 0. sefini - 0. concava plexus we can assume that greater 

embryonic apparatus size indicates a younger age. Therefore Figure 3 

suggests that three distinct populations of Orbitolina occur in the Upper 

Greensand: the Wolborough Late Albian population, which is older than the 

Dunscombe population, vvhich in turn is older than the Early Cenomanian 

Babcombe Copse population. These relative age assignments support the 

correlations shown in Figure 4. 

PAIAECeiOGEOS^APHIC SIGNIFICAh?CE 

Hart et al. (1979a) discussed the possible colonisation pathway of 

Orbitolina and came to the conclusion that theorbitoline occurrences in-

South-West EIngland had probably arrived by way of the Paris Basin. They 

pointed out that orbitolines recorded from the English Channel Basin and 

the South-West Approaches Basin .Andreieff et al., 1975; Curry et al., 

1970) have been assigned an Early Cencmanian or Albian - Cenomanian age and 

"that is difficult to see how this accepted 'Tethyan' genus could appear in 

the U.K. earlier than in these more southern localities". However the age 

of these orbitolinids from the English Channel Basin and the South-West 

Approaches is quite generalized, and as shown above, it is likely that both 

Late Albian and Early Cenomanian orbitolinids occur in South-West England. 

The occurrence of Late Albian 0. sefini in both Portugal (Rey et al., 

1977) and South-West England suggests that there may have been a migration 

pathv.'ay from the Iberian Peninsula via the South-West Approaches to South-

West England. Such a pathway can be supported by the palaeogeography 

proposed by Lott et al. (1980) using borehole evidence from offshore South-

West England. 
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FIGURE GAPnCNS 

Figure 1: Location map showing orbitolinid occurrences in the onshore 

and offshore British Isles area, and locations mentioned in the text (in 

part after Harablin and Wood, 1976). 

Figure 2: Orbitolinid internal structure (after Schroeder, 1975). 

Figure 3: Graphical plot of embryonic apparatus measurements for 

Orbitolina from Dunscombe, Wolborough, Babcombe Copse (Haldon Hills), 

Portugal and Ballon, France. 

Figure 4: Chronostratigraphic Summary Chart for the Late Albian - Middle 

Cenomanian of South-West England. Ammonite zonation follows Owen (1984), 

Wright et al. (1984) and Hancock (1989). A.J = A. jukesbrownei, T.A •= T. 

acutus, T.C •= T. costatus, A.R = A. rhotomagense, M.S *• M. saxbii, N.C -

N. carcitanensis, M.P = M. perinflatum, M,R = M. rostratum, C.A = C. 

auritus, H.V = H. varicosum, H.O = H. orbignyi, D.C = D. cristatum. 

Lithostratigraphy abbreviations are as follows: WL = Wolborough 

Limestone, THS = Telegraph Hills Sands Member, WS = Woodlands Sands 

Member, AG = Ashcombe Gravels Member, CSC = Cullum Sands with Cherts 

Member, Fx = Foxraould.Sands, CB = Chert Beds, TS - Top Srandstones, PP = 

Pounds Pool Member, H « Hooken Member, LB = Little Beach Member, BS = 

Blackdown Sands, EG •= Eggerdon Grit, Wis = Wilmington Sands, CBB = Chalk 

Basement Beds. Sea-level curve shows relative change of coastal onlap. 

For further discussion of this figure see Simmons et al. (in press). 

Explanation of Plate 1: 

Figures a-b: Palorbitolina lenticularis (xlOO), Barrenian - Aptian, 

Fastnet Basin, Cities Services well 63/10-1. Detail of embryonic 

apparatus. Figure b shows a form with peri-embryonic chamberlets. 

Figure c: Orbitolina sefini (x40). Late Albi-an, Wolborough Limestone, 

Wolborough, Devon. 
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Figure d: 0. sefini (x40), Late Albian, Wolborough Limestone, Newton 

Abbot Bi'-pass, Devon. Note triangular shape of radial partitions and 

chamber passages. 

Figure e: 0. sefini (xlOO), Late Albicin, Wolborough Limestone, Newton 

Abbot By-pass, Devon. Detail of embryonic apparatus. 

Figure f: Orbitolina cf. concava (xlOO), Early Cenomanian, Cullum Sands 

with Cherts Member, Babcombe Copse, Haldon, Devon. Detail of enribryonic 

apparatus. 

Explanation of Plate 2; 

Figure a: Orbitolina cf. concava {x40), Early Cenomanian, Cullum Sands 

with Cherts Member, Babcombe Copse, Haldon, Devon. 

Figure b: Orbitolina concava (x40), topotype material, Early Cenomanian, 

Ballon, Sarthe, France. __-

Figure c: 0. sefini - 0. concava (xlOO), close to Albian/Cenomanian 

boundary, upper Chert Beds/Top Sandstones, Dunscombe Quarry, South-East 

Devon. Detail of embryonic apparatus. Natural History Kuseum specimen P. 

45079. 

Figure d: 0. sefini - 0. concava (x40), close to Albian/Cenomanian 

boundary, upper Chert Beds/Top Sandstones, Dunscombe Quarry, South-E^ast 

Devon. Detail of marginal zone. Conpare this to that for 0. sefini 

figured by Schroeder et al. (1986), Figure 2e. Natural History Museum 

Specimen P.43429. 

Figure e: Porosphaera sp. (x20), Early Cenomanian?, Upper Greensand, 

White Hart Pit, Wilmington, Devon. 
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Read at the Annual Conference of ttie Usstier Society. January 1991 

Sea-level changes across the Albian-Cenomanian boundary in south-west England 

M.D. SIMMONS 

C.L. WILLIAMS 

M.B. HART 

Simmons, M.D., Williams, C.L. and Hart, M.B. 1991. Sea-level changes across the Albian-

Cenomanian boundary in south-west England. Proceedings of the Ussher Society, 7, 000-000. 

The marginal Albian - Cenomanian sediments of south-west England provide an ideal succession 

in which to study sea-level changes. The recognition of maximum onlap, facies variations and 

hardground surfaces, has enabled us to establish a sea-level curve for the Late Albian - Middle 

Cenomanian of this area. The curve shows an gradual sea-level rise during the Intlatum Zone, 

reaching a peak in the basal Rostratum Subzone (Dispar Zone). A sea-level fall throughout the 

majority of the Dispar Zone reaches a trough in the basal Cenomanian (Carcitanensis Subzone). 

A subsequent rise in sea-level reaches a peak in the lower part of the Saxbii Subzone. Sea-level 

falls to a low in the Dixoni Zone, and there is a short transgressive - regressive cycle in the 

Costatus Subzone, after which a general sea-level rise is indicated. This sea-level curve is 

compared with the global cun/e of Haq et al. (1987) and the more localized curve for Britain by 

Hancock (1989). Whilst there are some similarities with the Haq et al. curve, there is less 

similarity with that of Hancock. The curve for south-west England compares favourably with the 
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transgressions and regressions documented in the Paris Basin and Armorican fvlassif regions by 

Juignet (1980). 

M.D. Simmons, Exploration Technology Branch, BP Research Centre, Sunbury-on-Thames, 

Middlesex, TW16 7LN. 

C.L. Williams, Tethyan Consultants, Branshaw House, Downgate, Callington, Cornwall, PL 17 
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Introduction 

In the 1970's stratigraphers in EXXON developed a new way at looking at sedimentary 

successions. Initially using relationships seen in seismic sections, but later also using outcrop 

and well data, the method breaks a rock succession up into packages or "sequences". The basic 

premise of this technique is that sea-levels have fluctuated throughout geologic time, either due 

to glaciations or through volumetric changes caused by plate nrovements and variations in sea-

floor spreading rates. Cycles of sea-level change occur at several orders of magnitude. Short-

term fluctuations lead to the development of sequences, the fundamental unit within the EXXON 

method. A sequence is a genetically related package of rock bounded by unconformities or their 

correlative conformities (Van Wagoner et al., 1988). A sequence can be further subdivided into 

systems tracts. These show the distribution of fades across the shelf and basin during given 

periods of the sea-level change (eustatic) cycle. Each systems tract is characterised by particular 

sedimentary and seismic geometries, facies relationships and fossil biota. Three main systems 

tracts can be recognised within a given sequence: a lowstand systems tract developed during a 
/ 

eustatic fall in sea-level; a transgressive systems tract developed during sea-level rise; and a 

highstand systems tract developed at and directly after sea-level has risen to its maximum in that 
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cycle. Also of importance is the maximum flooding surface. This represents the time of maximum 

transgression. It is often represented by condensed sedimentation. 

Not withstanding certain reservations about the methodology and global applicability of sea-level 

change. "Sequence Stratigraphy" became widely publicized following publication of AAPG 

Memoir 26 (Payton, 1977), and the technique was widely accepted and utilized in the oil industry. 

It is fair to say that it has been slower to be employed by academic geobgists, perhaps because 

they do not have access to as complete a seismic dataset as industry geologists. The technique 

is an exciting one for two main reasons. Firstly, it draws all the different types of data on a 

sedimentary succession (seismic, sedi.mentology, biostratigraphy, etc.) together, and allows for a 

lucid picture of basin history to be drawn. Secondly it is a highly predictive technique. Facies out 

of the area of study can be predicted by reference to the systems tracts they will fall in. 

As noted above, one of the fundamental tenets of sequence stratigraphy is that sea-levels have 

fluctuated in a given manner world-wide through geological time. A number of so called "sea-

level curves" have been produced documenting this, with the most important recent work being 

that of Haq et al. (1987). This shows a global pattern of synchronous sea-level changes and thus 

a myriad of systems tracts which theoretically should be recognisable world-wide, assuming no 

local tectonic controls and suitable marine successions in a passive margin setting. Hancock 

(1989) has produced a sea-level curve specifically for the Cretaceous of British region, and there 

are several others some of which are referred to below. A problem with the Haq et al. (1987) 

curve is that it is often based on obsen/ations made on basinal successions. It is better to 

document sea-jlevel changes from marginal areas where even small fluctuations in sea-level are 

likely to result in majorfacies changes. During the Albian - Cenomanian period, south-west 

England was such a marginal area. It therefore provides an ideal opportunity to develop a sea-
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level curve and compare this against those already published for this time period. However, it 

should be noted that any local sea-level curve is a function of the combination of subsidence, 

sediment supply and eustatic sea-level change. Each of these factors will be of varying 

significance, although in this particular instance most significance is placed on the eustatic 

variation. It is also interesting to re-examine the Albian - Cenomanian succession of south-west 

England within the context of sequence stratigraphy. This may shed light on the depositional 

environment and correlation of these'problematic deposits. 

The south-west England succession 

Early studies on the Albian - Cenomanian succession of south-west England (eg. Jukes-Brown 

and Hill, 1900; 1903) recognised that it was more marginal in nature in comparison with the 

basinal succession seen in south-east England. This has been confirmed and expanded upon in 

later, nrrore detailed studies of sedimentology and fossil faunas (eg. Smith. 1957,1961,1965; 

Tresise, 1960; Hancock, 1969; Kennedy. 1970; Hart, 1973, 1982, 1983; Ali, 1975.1976; Hamblin 

and Wood, 1976; Carter and Hart, 1977; Jarvis and Woodroof, 1984; Williams, 1985; Garrison et 

al., 1987; Williams el al.. 1988; Hart and Williams, 1990). 

In south-west England the Late Albian - f^iddle Cenomanian is represented by the Upper 

Greensand and the Cenomanian Limestone and their equivalents (see Fig. 1). 

The Upper Greensand of the south-east Devon coast is divided into the Foxmould Sands, Chert 

Beds and Top Sandstones (Jukes Brown and Hill, 1900; Tresise, 1960) and has recently been 

described by Williams (1986) Garrison et al. (1987) and Williams e/a/.-(1988). A new formal • 

Itthostratigraphy is in preparation. The Foxmould Sands are burrowed, glauconitic fine sands -
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silts with occasional limestone beds. They are separated from the overlying Chert Beds by a 

hardground. The Chert Beds are mud-free carbonate cemented sandstones with large chert 

nodules and large bun-ow systems. Phosphatic pebble beds also occur. The Top Sandstones are 

a thin, coarse carbonate cemented sandstone or loosely cemented limestone. The age of the 

Upper Greensand is not well established. Ammonites are scarce, but Late Albian Auritus and 

Varicosum Subzone faunas are known from the Foxmould Sands (Hancock, 1969; Williams et 

al., 1988). Micropalaeontological evidence suggests that the Foxmould sands may be as young 

as Rhotomagense Subzone (Williams et. al., 1988) (see Fig. 1). Suggestions by Hart (1971, 

1973) and Carter and Hart (1977) that the Chert Beds are Cenomanian using microfauna have 

been refuted by the record of a Dispar Zone ammonite fauna near the top of the Chert Beds at 

Shapwick Grange Quarry, south-west Dorset (Hamblin and Wood, 1976). This fauna is most 

likely from the higher part of the Dispar Zone (H.G. Owen, personal communication). It is 

possible, probably likely, that the highest part of the Chert Beds and the Top Sandstones extend 

into the basal Cenomanian Carcitanensis Subzone. Orbitoline foraminifera from this level provide 

only equivocal evidence (Simmons and Williams, in press). 

The Cenomanian Limestone (Smith, 1957) has been renamed the Beer Head Limestone 

Formation by Jarvis and Woodroof (1984) and the classic A l , A2, B and C divisions first 

described.by Jukes-Browne and Hill (1903) (but following Meyer, 1874), formally redescribed and 

renamed the Pounds Pool, Hooken, Little Beach and Pinnacles Members respectively. Each 

member is bounded by a hardground, and each member also shows marked thickness 

variations, perhaps related to local tectonic controls (Smith 1957, 1961,1965; Drummond, 1970; 

Hart, 1971,1982; Jarvis and Woodroof, 1984). The Beer Head Limestone Formation has been 

thoroughly described by Jarvis and Woodroof (1984). It consists of bioclastic detritus-rich 

limestones and locally intraformational conglomerates and phosphatic pebble beds. The age of 
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the constituent members of the Beer Head Limestone is well established by ammonite faunas 

(Kennedy, 1970; Juignet and Kennedy, 1976; Wright and Kennedy, 1981; Jarvis and Woodroof, 

1984). The Pounds Pool Member can be referred to the higher part of the Carcitanensis 

Subzone, the Hooken Member to the Saxbii Subzone, and the Little Beach Member to the upper 

Dixoni Zone and lower Costatus Subzone. The Pinnacles Member contains a fauna indicating a 

position between the Geslinianum Zone and Judii Zone (uppermost Cenomanian - Gracile Zone 

of authors). As noted by Carter and Hart (1977) and Hancock (1989) the ammonite faunas of the 

Beer Head Limestone are often in a phosphatised condition and may be reworked. Carter and 

Hart (1977) went as far as to question some of the ages suggested by the ammonite faunas, 

noting that foraminifera are more likely to be indigenous. However, for the purposes of this study 

we accept the ammonite evidence (largely documented by Kennedy. 1970) which is also 

supported by other macrofossil data (Kennedy and Hancock, 1976). 

To the east and north of the south-east Devon coast the Beer Head Limestone is locally replaced 

by the Wilmington Sands. Kennedy (1970) has demonstrated that these sands are broadly 

equivalent to the Pounds Pool and Hooken Members of the Beer Head Limestone. The 

Wilmington Sands overly an coarse, shelly Upper Greensand similar to the Eggerdon Grit of 

further east (and thus probably basal Cenomanian). The lower Wilmington Sands probably 

equate to the Pounds Pool Member and can be referred.to the upper Carcitanensis Subzone, 

whilst the overlying "grizzle" equates to the Hooken Member and contains ammonites suggesting 

a Saxbii Subzone - lower Dixoni Zone age (Kennedy, 1970). Overlying the Wilmington Sands is a 

thin limestone equivalent to the Little Beach Member, followed by the latest Cenomanian basal 

chalk/Pinnacles Member equivalent. / 
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In west Dorset the Upper Greensand can be divided in the Eggerdon Grit (a lateral equivalent of 

the Top Sandstones), the Chert Beds and Foxmould Sands, the latter passing downward into a 

Gautt facies. In this area the onset of Gault/Upper Greensand is at least as old as Cristatum 

Subzone. perhaps Lautus Zone (Rawson et al, 1978; Hancock, 1989). The Eggerdon Grit is of 

upper Dispar Zone - basal Carcitanensis Subzone age (Kennedy, 1970). Often the Eggerdon Grit 

is overlain directly by the Chalk Basement Beds which are usually of Middle Cenomanian Aculus 

Subzone or Jukesbrownei Zone age and becomes younger to the west (Kennedy, 1970; Carter 

and Hart, 1977 - see also Fig. 1). Occasionally, a thin remane deposit or conglomerate is present 

which may contain ammonites indicating a Saxbii Subzone age (Kennedy, 1970). Unusually, 

considering the age of the Little Beach Member, Dixoni Zone or Costatus Subzone faunas are 

absent in this area, perhaps indicating the presence of a local high, although the Hooke Valley 

Conglomerate may be of this age. 

Westerly Upper Greensand outliers occur at the Haldon Hills and at Woiborough near Newton 

Abbot (Setwood et al, 1984). The Haldon Hills succession has been described by Hamblin and 

Wood (1976) who introduced the term Haldon Sands Formation with four members: (in 

ascending order) Telegraph Hill Sands; Woodlands Sands; Ashcombe Gravels; and Culium 

Sands with Cherts. The Telegraph Hill Sands Member contained an Auritus Subzone ammonite 

fauna, whilst the overlying Woodlands Sands Member (including limestones and the Haldon 

Coral Bed) was dated as Dispar Zone (presumably lower Rostratum Subzone). The Ashcombe 

Gravels Member contains no age diagnostic fauna but is interpreted as being of Dispar Zone 

age. The overlying Cullum Sands with Cherts Member contains Early Cenomanian ammonites 

(Hamblin and Wood. 1976). An Early Cenomanian age is also suggested by the presence of 

orbitolinids referable \o Orbitolina ci. concava (Simmons and Williams, in press)..HambHn and 

Wood (1976) suggested that the Cullum Sands with Cherts Member might correlate with the 
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lower part of the Cenomanian Limestone (=Beer Head Limestone Formation). This seems likely 

given the age of the two units. The Ashcombe Gravels Member has a lithoiogical affinity with the 

Top Sandstones, although this coarse lithofacies is likely to be diachronous (see Fig. 1). A break 

in sedimentation is suggested between the Ashcombe Gravels and the Cullum Sands with Cherts 

Members. This is supported by the marked lithoiogical change between the two units observed in 

the field and the coarse, kaolinised base of the Cullum Sands with Cherts Member. 

The Wolborough Limestones {Edwards, 1979) represents the most westerly onshore outcrop of 

Upper Greensand equivalents. They have been correlated by Hamblin and Wood (1976) to the 

the Woodlands Sands Member of Haldon Hill, indicating that they are of Rostratum Subzone age. 

This Late Albian age is supported by the rich orbitoline fauna they contain (Schroeder et al., 

1985) which is most likely of Dispar Zone age (Simmons and Williams, in press). 

The recognition of sequences and sea-level change In outcrop 

The recognition of sequence boundaries, systems tracts and sea-level changes in outcrop has 

been the subject of some debate in recent years (eg. Wilgus et al., 1988; Hancock, 1989). 

Sequences, as defined by Van Wagoner et al., (1988) (following Mitchum, 1977) are bounded by 

unconformities (caused by a downward shift in coastal onlap) or their correlative conformities. It 

therefore follows that sequence boundaries will be recognised by missing biozones and marked 

facies changes. 

The recognition of sea-level changes (and hence systems tracts) is more complex. Hancock j 

(1989) has suggested the use of hardgrounds to recognise periods of maximum regression 

(following Juignet, 1980; Francis, 1984). The subject of why and how hardgrounds form is a 
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complex one (for example, see discussions of Fischer and Garrison. 1967; Kennedy and 

Garrison. 1975; Bromley. 1978; Garrison et al., 1987) and beyond the scope of this article. 

However, whilst accepting Hancock's premise that hardgrounds form in response to an 

interruption in sedimentation, this may not always relate to regression. In chalk facies 

hardgrounds will form in response to a reduction in nannofossil accumulation. This could simply 

relate to a shallowing caused by a regressive eustatic event. Alternatively (and as noted by 

Hancock. 1989). it may relate to winnowing by local bottom currents. These could occur in almost 

any environmental setting and not be a function of eustatic change. Hancock (1989, p. 569) 

notes the need to distinguish between hardgrounds which are the result of a general lowering of 

sea-level and those which are "local accidents of winnowing currents over, say, a diapiric uplift". 

But hardgrounds may also develop during periods of transgression. Indeed, Hancock (1989, p. 

577) notes that courses of phosphatic nodules in the Gault, the equivalent of chalk hardgrounds, 

may form in response to "...a transgression that carried the shoreline further from the basin. 

Deposition of sediment was also moved further from the basinal region which was then starved of 

clay". In a marginal setting, such as that represented by the Late Albian - Cenomanian sediments 

of south-west England, an increase in water depth caused by a transgression may cause a 

mari<ed drop in sedimentation and the formation of a hardground. In terms of sequence 

stratigraphy, condensed deposition is associated with the maximum flooding surface, or height of 

transgression (Van Wagoner ef a/., 1988; Loutit et al.. 1988). Thus at the peak of transgression, 

a hardground may develop, particularly on the shelf, with biozones being condensed or 

apparently missing. In contrast to Hancock (1989), we would argue that this condensed 

sequence will not always overiy the regressive hardground (although it may sometimes, perhaps 

as in the case of some of the Beer Head Limestone Formation hardgrounds which are multiple 

(Jarvis and Woodroof, 1984). Rather it will overly the lowstand and lower transgressive systems 

tracts which will onlap onto the shelf. Thus in conclusion, some hardgrounds are associated with 
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regression and unconformity (eg. that at the top of the Top Sandstones), but some are the 

function of condensation during maximum transgression (eg. that at the top of the Foxmould 

Sands). 

In the Late Albian - Cenomanian succession in south-west England we recognise transgressions 

and eustatic sea-level rises by periods of maximum onlap (as documented in Fig. 1). We also 

consider the distribution of facies variations, the diachroneity of facies and the presence of 

hardgrounds and unconformities. 

Sea-level changes in south-west England 

As shown by Fig. 1. there is a gradual east to west onlap of the Upper Greensand and 

equivalents during the Late Albian. The basal Foxmould Sands are at least as old as Cristatum 

Subzone in west Dorset, in south-east Devon they are of Varicosum Subzone. The base of the 

Haldon Sands Formation is Auritus Subzone. but the period of maximum transgression is 

indicated by the Wolborough Limestones which are thought to be Rostratum Subzone age. 

Within the Varicosum - Auritus succession in south-west England there are no major facies 

changes or depositionai breaks to indicate a cessation of the transgression. Thus sea-levei v/as 

rising throughout the Inflatum Zone and the time of maximum eustatic rise was in the lower part 

of the Rostratum Subzone (Dispar Zone). Interestingly, this sea-level rise led to the 

establishment of a cartxjnate shelf with orbitoline-rich limestones in the inner shelf, with local 

coral bioherms basinward of this (the Haldon Coral Bed, Woodlands Sands Member). The 

limestones in the Foxmould Sands have an outer shelf fauna. The hardground at the top of the 

Foxmould Sands corresponds to condensation at the time of maximum transgression. ..... 
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There then followed a gradual regression throughout the remainder of the Dispar Zone. This is 

indicated by the shallowing of facies throughout the Chert Beds and Top Sandstones (Tresise, 

1960; Williams, 1986). The Ashcombe Gravels, Top Sandstones and Eggerdon Grit represent a 

diachronous regressive, coarse, shallow water facies which becomes progressively younger 

eastwards. The maximum regression occurs in the basal Cenomanian in the lower part of the 

Carcitanensis Subzone, as evidenced by the unconformity and hardground at the top of the Top 

Sandstones and Eggerdon Grit. However, one should also be aware that this apparent 

regression may in part be due increased sediment supply, although this itself often occurs during 

a eustatic sea-level fall (highstand systems tract). 

Rapid eustatic rise and transgression occurred in the upper part of the Carcitanensis Subzone as 

evidenced by the onlap of the lowermost Cenomanian Limestone (Pounds Pool Member, Beer 

Head Limestone Formation) and equivalents (lower Wilmington Sands and Cullum Sands with 

Cherts Member) across south Devon. Gamson etal. (1987) also recognise an increase in water 

depth at this time. As with the Late Albian transgression, this leads to the establishment of a 

carbonate shelf and orbitoline rich inner shelf limestone (Cullum Sands with Cherts Member). 

The hardground at the top of the Pounds Pool Member (basal Saxbii Subzone) is probably the 

result of condensation associated with transgression. A shallowing-up trend in the Hooken 

Member overlying the hardground at the top of the Pounds Pool Member, and also within the 

upper Wilmington Sands indicates a regression and eustatic sea-level fall taking place 

throughout the majority of the Saxbii Subzone. This culminates in the unconformity seen at the 

top of the Hooken Member and Wilmington Sands, the latter being within the Dixoni Zone. 

/ 

The succession of facies within the Little Beach Member indicates.a further.relatively rapid „ 

transgressive - regressive cycle. A eustatic sea-level high occurred during the lower part of the 

/ 
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Costatus Subzone. and a regression in the upper part of this Subzone. A gradual recovery of 

sea-level is indicated in the Acutus Subzone and continues into the Jukesbrownei Zone as 

indicated by the gradual westerly onlap of the Chalk Basement Beds. This transgression may 

have continued throughout the Late Cenomanian, culminating in the deposition of the Pinnacles 

Member of south-east Devon. This is the lateral equivalent of the Plenus Marls of south-east 

England (Carter and Hart, 1977; Jarvis et al., 1988), which is associated with a eustatic sea-level 

high (Hancock, 1989). 

Comparison with other sea-level curves 

Fig. 2 compares the sea-level curve we have developed for the Late Albian - Middle Cenomanian 

of south-west England with the global curve of Haq ef al. (1987) and more localized curve 

developed for the British region by Hancock (1989). 

There are some similarities between our curve and that of Haq et al. (1987). Sea-levels are both 

shown to be rising throughout most of the Inf latum Zone. As noted by Hancock (1989) this in fact 

corresponds to the global onset of the major "Cenomanian Transgression" of Suess (1906). Haq 

et al. (1987) have a eustatic high at the Auritus - Rostratum Subzone boundary. Ours is slightly 

higher, in the lower part of the Rostratum Subzone, but perhaps within the range of error in both 

methods. A subsequent sharp eustatic tall is indicated by Haq et al. (1987). This may have 

initiated and correspond to the onset of a fall on our curve, but unlike Haq et al., we observe sea-

level to be falling throughout the Dispar Zone. As noted by Morner (1980), such a dramatic sea-

level fall as that indicated by Haq et al. (1987) within the lower Rostratum Subzone is difficult to 

explain. Haq et al. (1987) have a recovery of sea-level during most of the Rostratum Subzone 

and a fail during the Perinflatum Subzone. This culminates in a regressive trough during the 
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basal part of the Carcitanensis Subzone. which is in agreement with our work. Haq et al. (1987) 

show the subsequent eustatic rise culminating at the top of the Saxbii Subzone; we show it to 

culminate slightly lower. Once again there is agreement with the following regressive trough: it 

lies within the Dixoni Subzone. Haq et al. (1987) then have a eustatic hse taking place through to 

within the Jukesbrownei Zone. They do not recognise the cycle which we see within the Costatus 

Subzone. 

Surprisingly, given that it Is more directly relevant than the curve of Haq et al. (1987), there is 

only slight agreement between our curve and that of Hancock (1989). They both show a eustatic 

rise during the early part of the Inflatum Zone. However, Hancock (1989) shows the eustatic peak 

to be at the base of the Auritus Subzone. This cannot be reconciled with the clear evidence for 

continued onlap during the Auritus Subzone at Haldon and at Wolborough. Following a 

regression during the Auritus Subzone, Hancock (1989) shows sea-level to be rising or in a state 

of still-stand during Dispar Zone times. This contradicts the evidence he himself cites, that there 

was a Late Albian shallowing of the sea in Devon. However, the possibility of increased sediment 

supply must be taken into account, although this is most likely to occur during a eustatic sea-level 

fall (highstand systems tract). Within the Eariy - Middle Cenomanian Hancock (1989) shows a 

rise culminating at the top of the Saxbii Subzone, followed by slight regression, still-stand and 

then transgression during Jukesbrownei Zone times. This is quite different to our curve (although 

the eustatic peak at the top of the Saxbii Subzone is close to our result, and in agreement with 

Haq et al. (1987)). Perhaps one problem in comparing our curve to that of Hancock (1989) is that 

he uses zonal twundaries as datums for placing his minima and maxima of sea-level change, 

/ 
whilst we have tried to place ours within zones where appropriate. 
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Other workers' data on sea-level change is often too generalized to be compared directly to ours. 

However, a regression culminating at, or very near, the Albian - Cenomanian boundary is 

indicated by N ôrner (1980) and fvlatsumoto (1980) for a number of localities world-wide, and by 

Juignet (1980) for the Paris Basin and the Armorican Massif. This is in agreement with our work. 

Juignet (1980) recorded sea-level highs during the Inflatum Zone, the Saxbii Subzone and 

Jukesbrownei Zone. Again, this agrees with our results. Cooper (1977) indicated that the Late 

Albian transgression began during Orbignyi Subzone times. This is slightly later than our work. 

Cooper also noted that the strata across the Albian - Cenomanian boundary are typically 

represented by regressive deposits worldwide. He mentioned that the Dispar Zone is regressive 

in the Western interior of North America, in Brazil, Peru and around Africa. This matches our 

results. His discussion of transgressive peaks in the Cenomanian shows similarities with our 

work. Using the results of Hart and Tarling's (1974) study of Cenomanian palaeogeography, he is 

unusual in that like us, he recognizes a sea-level rise during the Costatus Subzone. 

Differences between our curve and those of other workers could be ascribed to local tectonic and 

isostatic controls on sedimentation (Hart, 1990). That there were mid-Cretaceous tectonic 

movements in south-west England has been suggested by a number of workers (eg. Smith, 

- 1957; Drummond, 1970; Hart, 1971). To what degree tectonic/isostatic controls overprint eustatic 

controls in this area (rf indeed at all) remains a subject for further investigation. 
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FIGURE CAPTIONS 

Figure 1 :Chronostratigraphic summary chart for the Late Albian - Middle Cenomanian of south

west England. Ammonite zonation follows Owen (1984), Wright et al. (1984) and Hancock 

(1989). A.J = A. jukesbrownei, T.A = T. acutus, T.C = T. costatus, A.R = A. rhotomagense, 

M.S = M. saxbii, N.C = N. carcitanensis, M.P - M. perinflatum, M.R = M. rostratum, C.A = C. 

auritus, H.V = H. varicosum, H.O = H. orbignyi, D.C = D. cristatum. Lithostratigraphy 

abbreviations are as follows: WL = Wolborough Limestone, THS = Telegraph Hills Sands 

Member, WS = Woodlands Sands Member, AG = Ashcombe Gravels Member, CSC = Cullum 

Sands with Cherts Member, FX = Foxmould Sands, CB = Chert Beds, TS = Top Sandstones, 

PP = Pounds Pool Member, H = Hooken Member. LB = Little Beach Member, BS = Blackdown 

Sands, EG = Eggerdon Grit, WiS = Wilmington Sands, CBB = Chalk Basement Beds. Sea-

ievei change curve is generalized and shows relative magnitude of onlap. 

Figure 2:Comparison of sea-level curves for the Late Albian - Middle Cenomanian. Ammonite 

zonation as for Figure 1. Sea-level changes shown are relative not absolute. 
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