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Abstract 1 

Biocides are a heterogeneous group of chemical substances intended to control 2 

the growth or kill undesired organisms. Due to their extensive use, they enter marine 3 

ecosystems via non-point sources and may pose a threat to ecologically important 4 

non-target organisms. Consequently, industries and regulatory agencies have 5 

recognized the ecotoxicological hazard potential of biocides. However, the prediction 6 

of biocide chemical toxicity on marine crustaceans has not been previously evaluated. 7 

This study aims to provide in silico models capable of classifying structurally diverse 8 

biocidal chemicals into different toxicity categories and predict acute chemical toxicity 9 

(LC50) in marine crustaceans using a set of calculated 2D molecular descriptors. The 10 

models were built following the guidelines recommended by the OECD (Organization 11 

for Economic Cooperation and Development) and validated through stringent 12 

processes (internal and external validation). Six machine learning (ML) models were 13 

built and compared (linear regression: LR; support vector machine: SVM; random 14 

forest: RF; feed-forward backpropagation-based artificial neural network: ANN; 15 

decision trees: DT and naïve Bayes: NB) for regression and classification analysis to 16 

predict toxicities. All the models displayed encouraging results with high 17 

generalisability: the feed-forward-based backpropagation method showed the best 18 

results with determination coefficient R2 values of 0.82 and 0.94, respectively, for 19 

training set (TS) and validation set (VS). For classification-based modelling, the DT 20 

model performed the best with an accuracy (ACC) of 100% and an area under curve 21 

(AUC) value of 1 for both TS and VS. These models showed the potential to replace 22 

animal testing for the chemical hazard assessment of untested biocides if they fall 23 

within the applicability domain of the proposed models. In general, the models are 24 

highly interpretable and robust, with good predictive performance. The models also 25 
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displayed a trend indicating that toxicity is largely influenced by factors such as 26 

lipophilicity, branching, non-polar bonding and saturation of molecules.     27 

Keywords: Biocides, LC50, Machine Learning, QSAR, Marine Crustaceans, 28 

Ecotoxicology 29 

1. Introduction 30 

Biocides are a heterogeneous group of chemicals which are used “with the 31 

intention of destroying, deterring, rendering harmless, preventing the action of, or 32 

otherwise exerting a controlling effect on, any harmful organism by any means other 33 

than mere physical or mechanical action” (EU, 2012). These biocides comprise of an 34 

“active substance” incorporated with “co-formulants” (such as stabilizers, solvents, 35 

carriers and wetting agents) to ensure the final potency of biocidal mixture (Marzo et 36 

al., 2020). These biocidal products, via point and non-point sources, enter the aquatic 37 

environments and may pose a threat to ecologically and commercially important non-38 

target organisms with long-term impact on the ecosystems, and human health (Coors 39 

et al., 2018; Flemming et al., 2009). For example, in Europe, biocidal products are 40 

regulated by the BPR, Regulation (EU: 528/2012) (EU, 2012). According to the current 41 

biocidal product regulation (EU, 2012), the formulation, including both “active 42 

substance” and “co-formulants”, must undergo an environmental risk assessment 43 

(ERA) to evaluate the toxicity of biocidal products (Backhaus et al., 2013). Moreover, 44 

this regulation improves the efficiency of internal market harmonizing rules and 45 

ensures effective protection of the animals and human health and the environment. 46 

Additionally, the European Chemicals Agency (ECHA) also ensures the overall 47 

applicability and robustness of the legislation by providing technical and scientific 48 

support to the European Commission (EC) (EC, 2018). The biocides can be classified 49 
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into 22 product types (PT) (Marzo et al., 2020) which are further categorized into four 50 

groups (Khan et al., 2019). The active substance specific to the PTs also determines 51 

their approval.  52 

There are official risk assessment reports by the EC addressing various 53 

ecotoxicological risks caused by the use of specific PTs (EC, 2009). The reports 54 

suggest that the biocides can be carried away to non-target sites during their 55 

applications (e.g., during rain via runoff), including the surface water, signifying a threat 56 

to the aquatic ecosystem. Sustainable use of biocides is therefore imperative. It is also 57 

necessary to emphasize the need to understand the short and long-term 58 

consequences of biocides on the aquatic ecosystem and the valuable resources 59 

therein. Consequently, in 2016, the EC initiated the LIFE-COMBASE project 60 

(COMBASE, 2016). The project aims to promote and encourage the sustainable use 61 

of biocides by analyzing the overall risks they pose to the environment and human 62 

health. The LIFE-COMBASE project also promotes chemical hazard assessment 63 

using alternative methods to animal testing by incorporating in silico approaches. The 64 

introduction of an innovative approach for environmental health monitoring using the 65 

application of machine learning (ML) has recently attracted attention in 66 

ecotoxicological studies. The implementation of ML in this context is based on the use 67 

of algorithms allowing the system to learn, interpret, and predict the chemical and 68 

biological processes associated with it (Miller et al., 2018). With the advancement in 69 

these computational approaches, such as read-across (RA) and quantitative structure-70 

activity relationships (QSARs), ML facilitates efficient risk management by eliminating 71 

and outperforming unnecessary testing on animals while less time-consuming 72 

concurrently (Liu et al., 2018; Miller et al., 2018). A plethora of studies is available 73 

reporting that ML approaches in QSAR surpass other computation-based 74 
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conventional approaches, for instance, knowledge-based functions of datasets and 75 

empirical scoring methodologies (Sieg et al., 2019; Barros et al., 2020). Nevertheless, 76 

understanding the underlying science and rationale behind selecting features, 77 

algorithms and interpretation knowledge is crucial (Sieg et al., 2019; Barros et al., 78 

2020). 79 

Reports suggest that the saltwater habitat is the ultimate sink of numerous 80 

biocides and anthropogenic pollutants (Dale & Beyeler, 2001; Liu et al., 2019; 81 

Oberdörster & Cheek, 2001). However, to the extent of our knowledge, no published 82 

studies are available reporting predictive ML models for environmentally sensitive 83 

marine invertebrates such as marine crustaceans for the toxicological evaluation of 84 

biocides. Crustaceans such as mysids have been used as model species for nearly 85 

two decades as an important tool for toxicity regulation. Mysids represent shrimp-like 86 

small crustaceans found in both saltwater and freshwater environments, are an 87 

ecologically important group of organisms. In this context, for example, Americamysis 88 

bahia has served as an ideal species for estuarine and coastal monitoring by the 89 

American Society for Testing of Materials and US-EPA (Langdon et al., 1996; Lussier 90 

et al., 1999; Roast et al., 1999).   91 

In the backdrop of above information, our study aimed to build highly predictive 92 

and robust in silico models. These models were validated through stringent processes 93 

to probe the acute chemical toxicity of various biocides on marine crustaceans. In 94 

order to achieve the objectives, firstly, an acute chemical toxicity or LC50 dataset was 95 

built, which is the mean lethal concentration, determining the concentration of a 96 

substance in the medium causing mortality to 50% of a group of test organisms within 97 

a period of exposure (Rand, 1985). The toxicity data were generated for the three 98 
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families of marine crustaceans, including Mysidae, Palaemonidae and Penaeidae. 99 

Subsequently, regression and classification-based computational models were built to 100 

predict the biocide toxicity in these marine crustaceans. In predictive models, the 101 

chemicals were represented as molecular descriptors. Following this, the key 102 

molecular descriptors influencing acute chemical toxicity were investigated using ML 103 

methods. The molecular descriptors were also employed to check the applicability 104 

domain of the chemicals in the dataset.     105 

2. Materials and methods 106 

2.1. Dataset Sources 107 

In order to build the biocide acute chemical toxicity (i.e., LC50) dataset for marine 108 

crustaceans, firstly, a list of biocides was retrieved from the ECHA (ECHA, 2022) 109 

(Published on 14 May 2022). Secondly, a chemically heterogenous LC50 value dataset 110 

(n=2165) towards the three families of marine crustaceans (viz. Mysidae, 111 

Palaemonidae and Penaeidae) were downloaded using the US-EPA ECOTOX 112 

database (Olker et al., 2022), and the values with an experimental observation time of 113 

four days (Published 16 May 2022) was selected. Thirdly, the biocidal compounds 114 

from the LC50 dataset were manually selected. The biocide identification (i.e., 115 

Chemical Abstracts Service; CAS and chemical names) was manually compared and 116 

retrieved from PubChem (Kim et al., 2021) to circumvent any error in the dataset. 117 

Subsequently, the SMILES (simplified molecular input line entry system) strings were 118 

converted from chemical structures of biocides for further molecular representation 119 

using python script and ChemSpider website (https://www.chemspider.com).  120 
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2.2. Dataset pre-processing  121 

For modelling purposes and to improve the overall performance of ML models, the 122 

compounds with incorrect CAS numbers or molecular structures not clearly identified 123 

were removed from the dataset. Furthermore, to retain an uniformity of biocides in the 124 

dataset, metal complexes, inorganic compounds, mixtures with unknown 125 

compositions, and salts containing organic counterions were removed. Additionally, 126 

the structure of the remaining salts in the dataset was also neutralized. From the 127 

dataset containing biocides to be used for modelling, all LC50 units were first converted 128 

to parts per million (ppm) and data with units that could not be directly converted, for 129 

example, AI (active ingredient) ppm, AI μg/l, and mol/l were removed. Later, the 130 

duplicates were removed, and the geometric mean of similar compounds with multiple 131 

experimental values was calculated. Finally, the observed values expressed as ppm 132 

(or mg/l) were converted to mmol/l followed by negative logarithmic transformation (-133 

Log 10 mmol/l) or p-transformation, i.e., pLC50, in accordance with ecotoxicological 134 

QSAR studies. The purpose of p-transformation is to reduce the skewness of the data, 135 

which can be beneficial for statistical analysis that assume normally distributed data. 136 

Consequently, higher pLC50 values corresponded to higher toxicity and vice versa.  137 

For classification modelling, the guidelines provided by the US-EPA were followed, 138 

which suggests classifying the different toxicity categories of chemicals for ecological 139 

risk assessment. Accordingly, the chemical aquatic toxicity (ppm) can be classified 140 

into five categories, i.e., very highly toxic (<0.1), highly toxic (0.1-1), moderately toxic 141 

(>1-10), slightly toxic (>10-100), and non-toxic (>100) (US-EPA, 2021).   142 
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2.3. Calculation of molecular descriptor 143 

Molecular descriptors are defined as the numeric representation of various 144 

molecular properties derived using mathematical algorithms (Mauri & Srl, 2021). 145 

These mathematical representations of molecular descriptors are used to 146 

quantitatively represent several chemical and physical characteristics of the 147 

molecules. For instance, the lipophilicity of a molecule is quantitatively represented as 148 

the molecular descriptor LogP (Chandrasekaran et al., 2018). The molecular 149 

descriptors can be categorized into multiple groups based on the dimensionality of the 150 

molecular structure, such as 0- to 3-dimensional descriptors (Mauri & Srl, 2021).  151 

To avoid any conformational complexity and for ease of interpretability, only 2D 152 

molecular descriptors were calculated in this study. These molecular descriptors were 153 

retrieved from the 2D characterization of molecular structures, which quantify the 154 

molecular characteristics such as connectivity of atoms in a molecule and atomic 155 

composition (Mauri & Srl, 2021). Firstly, the SMILE strings for each molecule were 156 

created, which are the linear structural concepts describing the structure of chemical 157 

species. Secondly, in total, 2223 molecular descriptors were calculated, comprising of 158 

2D atom pairs, atom type E-state indices, functional group counts, constitutional 159 

indices, topological indices, ring descriptors, atom-centred fragment molecular 160 

property, and 2D molecular descriptors were calculated using PaDEL2 and Dragon v. 161 

7 from the open access OCHEM database (Sushko et al., 2011). Additionally, the 162 

RDKIT 2D molecular descriptors were also calculated using KNIME Analytics Platform 163 

version 4.3.1 (Berthold et al., 2009). 164 
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2.4. Feature selection and dataset division  165 

In order to improve the overall generalisability and predictive performance, various 166 

feature selection methods were employed, which utilised the most appropriate and 167 

relevant features (molecular descriptors) to train the model by eliminating noise in the 168 

data. From the initial pool of 2223 features calculated for each chemical, first, the 169 

dataset was divided randomly into a training set and test set (80:20 ratio) using R-170 

script, and only the training set was subjected to feature selection to avoid any bias 171 

during model selection. Subsequently, above 80% zero values and inter-correlated 172 

features (>0.90) were eliminated from the dataset using nearZeroVar and 173 

findCorrelation function in RStudio (Kuhn, 2008). Secondly, for regression analysis, 174 

the XGBoost modelling approach was applied and validated using 10-fold cross-175 

validation in python3 to select the twenty features with the highest importance (Chen 176 

& Guestrin, 2016). Finally, out of the twenty selected features, the Best Subset 177 

Selection (BSS) method was employed in python3, which determined the best subset 178 

of ten features that best described the endpoints.  179 

2.5. Diversity in dataset  180 

To develop a robust model with high accuracy and reliable predictions, it is crucial 181 

that the chemicals in the dataset are diverse. The diversity of chemicals in our dataset 182 

was investigated by first calculating Morgan (2D circular) fingerprints of radius 2 and 183 

1024 nBits for each chemical. The rationale behind selecting the specific fingerprint 184 

can be found in previous studies (Kensert et al., 2018; Liu et al., 2019). Secondly, the 185 

Tanimoto similarity index was calculated, which can be explained by the equation: 186 

S A,B  = c/[a + b − c] and S = 1/(1+distance), where S denotes similarities, a and b 187 

represent the number of bits in molecule A and B, respectively; while c represents the 188 
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number of bits that are in both molecules. Lastly, a heatmap was created to compare 189 

the similarities of each chemical. The entire process was performed using KNIME v 190 

4.3.1 (Berthold et al., 2009). In addition, principal component analysis (PCA) was also 191 

implemented to define the chemical space occupied by the compounds and diversity 192 

in the dataset. The PCA analysis takes the high-dimensional sets of correlated 193 

molecular properties or molecular descriptors into consideration and combines them 194 

to create a lower-dimensional space of the corresponding properties making it easier 195 

to illustrate and interpret the molecular diversity (Walters, 2019).  196 

2.6. Model building  197 

For regression models, four supervised ML algorithms were employed, which are 198 

random forest (RF), artificial neural network (ANN), linear regression (LR), and support 199 

vector machine (SVM). In supervised learning, the algorithm is trained using “labelled” 200 

datasets and the prediction/classification is based on the data provided (Yao et al., 201 

2018). 202 

The SVM, LR and RF algorithms were implemented in Orange v 3.26.0 (Demšar 203 

et al., 2013), and the dataset was split into subsets so that 62 compounds (80%) were 204 

used to train the model (training set) and 17 compounds (20%) were used to test the 205 

model (test set).  In the case of ANN, feed-forward backpropagation method was 206 

employed using Neural Net Fitting app in MATLAB R2021a (MATLAB, 2010) and the 207 

model was trained using the Levenberg-Marquardt technique. The dataset was split 208 

into 67 compounds (75%) as a training set, 13 compounds (15%) as validation set and 209 

9 compounds (10%) as test set. The ANN model consisted of one input layer with ten 210 

neurons (number of features), one hidden layer consisting of seven neurons 211 

(iteratively tuned and configured for best performance) and one output layer consisting 212 
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of one neuron. The Tan-Sigmoid transfer function (tansig) was employed in the hidden 213 

layer, while for the output layer, the Linear Transfer function (purelin) was employed. 214 

The architecture used to build the ANN model is illustrated in Fig 1. Similarly, for 215 

classification modelling, two supervised ML algorithms were employed, which are 216 

decision tree (DT) and naïve Bayes (NB). These algorithms were implemented in 217 

MATLAB R2021a (MATLAB, 2010). The details of these ML algorithms and 218 

configurations are mentioned in Table 1. More theoretical and mathematical details 219 

can be found in previous studies (Liu et al., 2019; Miller et al., 2019; Russom et al., 220 

1997; Schüürmann et al., 2011; Singh et al., 2013).   221 

2.6.1. Validation and performance evaluation 222 

The k-fold cross-validation method was employed to evaluate the robustness and 223 

prediction accuracy of each model used while training for both regression and 224 

classification analysis. In addition, a test set for external validation was also provided. 225 

The number of k in k-fold cross-validation was determined by comparing the predictive 226 

performance and multiple iterations. For instance, in the 10-fold cross-validation 227 

process, the training set was randomly divided into ten subsets, out of which nine 228 

subsets were randomly used as the training set. The remaining subset was used as 229 

the test set to evaluate the predictive accuracy (Arlot & Celisse, 2010). The cross-230 

validation method was repeated 100 times to maximize reliability and minimize the 231 

possibilities of error. For ML model analysis, the predictive performance was evaluated 232 

by the following statistical estimators: mean absolute error (MAE), coefficient of 233 

determination (R2), root-mean-square deviation (RMSD) or root-mean-square 234 

error (RMSE), mean squared error (MSE), an area under curve (AUC), specificity 235 

(SP), sensitivity (SE), and model accuracy (ACC). The details of these statistical 236 

algorithms are mentioned in Table 2.  237 
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2.6.2. Applicability domain (AD) study 238 

The AD of our ML models was further analyzed to investigate the reliability of the 239 

models in accordance with the OECD principle 3 (OECD, 2004). In this study, the 240 

standardization approach was employed using the software Applicability Domain v1.0 241 

proposed by Roy et al. (Roy et al., 2015) to define our dataset's chemical space and 242 

probe outliers present in the training set and test set. The approach firstly follows 243 

standardising descriptors in the developed model (all compounds) using the formulae:   244 

𝑆𝑘𝑖 =
|𝑋𝑘𝑖 − 𝑋̅𝑖|

𝜎𝑋𝑖
 245 

Where 𝑘= total no. of compounds, 𝑖= total no. of descriptors, 𝑆𝑘𝑖= standardised 246 

descriptors, 𝑋𝑘𝑖= original descriptors, 𝑋̅𝑖= mean of 𝑋𝑘𝑖, 𝜎𝑋𝑖= standard deviation of 𝑋𝑘𝑖 247 

for training set. 248 

Secondly, if [𝑆𝑖]max(𝑘) ≤ 3, then the compound is not an X-outlier or within AD. Else, 249 

calculate [𝑆𝑖]min(𝑘)> 3, which indicates the compound is an X-outlier or outside AD. In 250 

the case of [𝑆𝑖]max(𝑘)> 3 and [𝑆𝑖]min(𝑘)< 3, 𝑆𝑛𝑒𝑤(𝑘) has to be calculated using the 251 

equation: 252 

𝑆𝑛𝑒𝑤(𝑘) = 𝑆𝑘̅ + 1.28 × 𝜎𝑆𝑘  253 

Where, 𝑆𝑛𝑒𝑤(𝑘) = 𝑆𝑛𝑒𝑤 value for compound 𝑘, 𝑆𝑘̅= mean of 𝑆𝑖(𝑘),  𝜎𝑆𝑘 = standard 254 

deviation of 𝑆𝑖(𝑘). 255 

Hence, if 𝑆𝑛𝑒𝑤(𝑘) ≤ 3, the compound is not an X-outlier or within AD, and vice versa. 256 
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3. Results and discussion 257 

3.1. Dataset analysis 258 

The aim of this study was to build QSAR models suitable to predict acute biocide 259 

toxicity for marine crustaceans. This was essential since the existing QSAR models 260 

provide poor predictive results on marine crustaceans and biocides in particular, as 261 

they are trained with diverse chemical datasets. All the biocide LC50 datasets for 262 

marine crustaceans were collected from the US-EPA ECOTOX database, and the data 263 

with an experimental observation time of 96h or four days were selected. After pruning 264 

the dataset with redundant values and standardizing the compounds, the final dataset 265 

comprised quite a small set of biocidal compounds (n = 89) (Supplementary file 1). 266 

The small number of compounds in the training set and test set limits the overall 267 

predictive performance of the models.  268 

The frequency of distribution pattern in our dataset for experimental acute toxicity 269 

values (-Log10 mmol/l), i.e., pLC50 of the biocide compounds used for regression and 270 

classification modelling was assessed by illustrating a histogram (Fig. 2c). This is to 271 

be noted that all the experimental chemical values as ppm or mg/l were converted into 272 

mmol/l followed by negative logarithmic transformation (-Log 10 mmol/l), i.e., pLC50 in 273 

accord with ecotoxicological QSAR studies. The vertical bars in the histogram 274 

represent the occurrence or frequency values of pLC50 in the dataset, which were 275 

converted into sub-ranges (bins). According to the guidelines by the US-EPA, the 276 

dataset was also classified into five categories, i.e., very highly toxic, highly toxic, 277 

moderately toxic, slightly toxic, and non-toxic (Table 3). Finally, the dataset was 278 

randomly divided in the ratio of 80:20 into a training set and a test set using R script. 279 

The training and test sets consisted of 71 and 18 compounds, respectively. 280 
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3.2. Diversity analysis in dataset  281 

The diversity of chemical compounds in the dataset was assessed by implementing 282 

principal component analysis (PCA) and Tanimoto similarity index. The PCA analysis 283 

utilised the molecular descriptors to define a chemical space (Fig. 2b) which is a 284 

graphical representation of all the chemicals distributed in a space corresponding to 285 

their molecular similarities. Consequently, in this space, the chemicals with similar 286 

molecular properties will be close to each other, and chemicals that are distant with 287 

their molecular properties will be far apart. Similarly, various dimensions of the PCA 288 

analysis (Fig. 2b) showed that the substances in our dataset were clustered, yet good 289 

segregation was observed based on the pLC50 toxicity values. This is because the 290 

dataset comprised the same class of chemicals (biocides) and substances with high 291 

pLC50 being more prevalent than the rest. 292 

Additionally, the Morgan (2D circular) fingerprints of radius 2 and 1024 nBits were 293 

used to construct a Tanimoto similarity heatmap which defined the similarity matrix for 294 

each compound (Fig. 2d), where the similarity increased from zero (blue) to one (red). 295 

Morgan fingerprints are a type of circular fingerprint that encode molecular structure 296 

information as a bit string. They are particularly useful for measuring diversity in a 297 

dataset since they capture important structural features of molecules relevant to their 298 

biological activity (Rogers & Hahn, 2010). The heatmap revealed that the substance 299 

in our dataset was diverse. Overall, the figures (Fig. 2 a-d) illustrate a good diversity 300 

of chemicals throughout the dataset. 301 
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3.3. Molecular descriptor feature selection and relevance to toxicity 302 

prediction 303 

In conjunction with the quality of dataset used, selecting the most relevant 304 

molecular descriptors for toxicity prediction is crucial for optimizing the models and 305 

unravelling the molecular factors contributing to toxicity. To improve the overall 306 

generalisability and to avoid overfitting in our QSAR models, feature selection of the 307 

initially calculated molecular descriptors was performed. The features from the initial 308 

pool of 2223 molecular descriptors retrieved from Dragon v. 7, PaDEL 2 and RDKiT 309 

were reduced using feature selection techniques such as nearZeroVar, 310 

findCorrelation, XGBoost and Best Subset Selection (BSS). From the initial pool of 311 

2223 molecular descriptors, 1825 molecular descriptors having more than 80% zero 312 

values and inter-correlated features (>0.90) were eliminated from the dataset using 313 

nearZeroVar and findCorrelation function in RStudio. From the remaining 398 314 

molecular descriptors, the top 20 were reserved using XGBoost regression modelling 315 

in python3, and finally, the top 10 molecular descriptors were selected using the best 316 

subset selection (BSS) and used in regression modelling, which are: VE1_Dt,  317 

VE2_Dt, B07[C-C], H.049, C.002, ALOGP, XLogP, MLFER_S, SRW10 and SMR. 318 

While for classification, eighteen descriptors were selected and used by employing 319 

XGBoost classification approach in python3 to build the final classification models, 320 

which are: Psi_e_1, nRCN, H.049, F01.C.N., F05.N.O., TPSA.NO., ALogP, ATSC1c, 321 

ATSC0p, MATS1v, MATS4p, GATS1i, MIC5, JGI6, Chi3v, Chi4v, slogp_VSA10 and 322 

smr_VSA3. The XGBoost feature selection for classification modelling works by 323 

selecting the most important features and can reduce the noise in the data, making it 324 

easier for the algorithm to find meaningful patterns. This often leads to improved model 325 
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performance, as the algorithm can focus on the most relevant features for the 326 

classification task (Devi et al., 2023). 327 

Additionally, to assess the relevancy of the selected molecular descriptors to 328 

predict toxicity, the Pearson correlation (r) method was employed for the set of 329 

molecular descriptors in regression analysis. This method is commonly used to 330 

measure the linear relationship between two continuous variables, where the r-value 331 

ranges from -1 to 1, with -1 indicating a perfectly negative linear relationship, 0 332 

indicating no linear relationship, and 1 indicating a perfectly positive linear relationship 333 

(Ebenuwa et al., 2019). The r-values of the features used for regression were retrieved 334 

in the order:  ALOGP: +0.703; SRW10: +0.606; SMR: +0.603; VE1_Dt: +0.599; 335 

XLogP: +0.578; MLFER_S: +0.410; VE1_Dt: +0.373; H.049: -0.222; C.022: -0.031.  336 

The Pearson correlation statistics suggest that ALOGP describes the pLC50 of a 337 

chemical best when compared to the rest molecular descriptors. This phenomenon 338 

can be justified as ALOGP or Atomic LogP describes the hydrophilicity of a compound. 339 

A lower value of LogP suggests higher hydrophilicity of the chemical compound and 340 

vice versa. This is because chemicals with high ALOGP value or highly hydrophobic 341 

nature tend to remain in the aquatic environment and are ingested and accumulated 342 

in the tissues of aquatic organisms (Miller et al., 2019). Furthermore, as illustrated in 343 

Fig. 2a, the correlation of ALOGP with toxicity or pLC50 suggests that most biocidal 344 

substances in our dataset tend to be highly lipophilic. 345 

It is important to note that while the Pearson correlation method is widely used to 346 

measure the relevancy of the features, it does have some limitations. Firstly, it only 347 

captures linear relationships between variables, meaning it may miss important non-348 

linear relationships. Secondly, it only measures the relationship between two variables 349 
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at a time, and may not account for the effects of multiple variables on the target 350 

variable. To address these limitations, researchers can use more advanced 351 

techniques, such as regularisation methods like Lasso or Ridge regression, which can 352 

capture non-linear relationships and account for multiple variables simultaneously. 353 

In addition to ALOGP, VE1_Dt and VE2_Dt are molecular descriptors that measure 354 

the topological complexity of a molecule. In general, molecules with higher values of 355 

VE1_Dt and VE2_Dt tend to be more hydrophobic and less soluble in water, while 356 

molecules with lower values tend to be more hydrophilic and more soluble. BO7[C-C] 357 

calculates the number of pairs of carbon atoms separated by a distance of 7 or fewer 358 

bonds. MLFER_S is a useful molecular descriptor for predicting the solubility of drugs 359 

and other bioactive molecules, as solubility is a key factor affecting a drug's 360 

bioavailability and pharmacokinetics (Huang et al., 2016). SRW10 is a type of 361 

topological descriptor that represents the presence and distribution of various 362 

substructures within a molecule. It is useful for QSAR modelling in particular as it 363 

captures information about specific substructures that may be important for binding to 364 

the target (Hansch & Fujita, 1964).  365 

Other molecular descriptors used to build both regression and classification models 366 

have similar properties, while some are different and provide important information 367 

about a compound's properties and potential effects on biological systems; their 368 

summary has been presented in Table 4. An important point to note here is that the 369 

test set was never used during the feature selection process to avoid any kind of bias 370 

during model selection.  371 
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3.4. Regression modelling 372 

The regression models to predict the acute toxicity (pLC50) of biocide chemicals 373 

were built using our four best-performing modelling approaches (RF, SVM, LR, ANN). 374 

The overall generalisability, robustness and predictive performance were determined 375 

through stringent internal and external validation procedures. For internal validation, 376 

10-fold cross-validation was employed, whereas, for external validation, a sub-set of 377 

the dataset, i.e., a test set (20 per cent), was used. The criteria to assess the predictive 378 

performance and reliability were set using MSE, RMSE, MAE and R2.   379 

The three-layer feed-forward backpropagation ANN model provided the most 380 

satisfactory results compared to other regression models. The model yielded MSE, 381 

RMSE and R2 values of 0.89, 0.93 and 0.82 in terms of 10-CV; 0.46, 0.67 and 0.90 for 382 

the validation set; and 0.47, 0.68 and 0.94 during the external validation using test set 383 

(Fig. 3, Table 5). The Levenberg-Marquardt (LM) algorithm used to build this model 384 

iteratively adjusts the model parameters to minimize the residual sum of squares 385 

between the model predictions and the observed data. At each iteration, the algorithm 386 

calculates the gradient and Hessian matrix of the objective function (which is the 387 

residual sum of squares) and then adjusts the model parameters by solving a modified 388 

system of equations that combines the Gauss-Newton method with the steepest 389 

descent method (Bilski et al., 2020). This technique hence results in the overall 390 

improvement of the model's generalisability.   391 

In the case of the LR model, the model was obtained in the form of an equation: 392 
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pLC50 = 3.25598 -1.17895 B07.C.C.=0 + 3.97206e-14 B07.C.C.=1 -0.03476 SMR -393 

0.660787 H.049 + 0.409287 MLFER_S + 17.1359 VE1_Dt -262.482 VE2_Dt -394 

0.0056275 ALOGP + 0.411 825 SRW10 -0.104173 C.002 + 0.596742 XLogP  395 

The LR model yielded satisfactory results for the 10-CV, with MSE, RMSE, 396 

MAE and R2 values of 1.48, 1.22, 0.94 and 0.69, respectively (Fig. 4a) and performed 397 

better during the external validation with MSE, RMSE, MAE and R2 value of 0.70, 0.84, 398 

0.66 and 0.75, respectively (Fig. 4b). The good predictive performance of the LR 399 

model could be due to employing Lasso regression technique, which adds 400 

regularisation terms to the cost function to prevent overfitting and improve the 401 

generalisability of the model (Yazdi et al., 2021). 402 

In the case of the RF model, the model performed poorly yet satisfactorily 403 

compared to LR and ANN models in terms of both 10-CV and external validation. The 404 

model yielded the MSE, RMSE, MAE and R2 values of 1.56, 1.25, 0.97 and 0.67, 405 

respectively, for the 10-CV (Fig. 4c) and 0.81, 0.90, 0.70 and 0.71, respectively, during 406 

external validation (Fig. 4d). The RF model displayed decent generalisability by 407 

constructing ten decision trees and using 8 number of the selected subset of the input 408 

data and features. Then the final prediction was made by averaging the predictions of 409 

all the individual trees. This approach helps to reduce the risk of overfitting and 410 

improves the generalisability of the model (Isabona et al., 2022). 411 

On the other hand, the SVM model displayed slight overfitting on the training 412 

set and underperformed compared to the other linear and non-linear regression 413 

models yet produced moderate results. The model yielded MSE, RMSE and R2 values 414 

of 1.56, 1.25, 0.96 and 0.67, respectively, for the 10-CV (Fig. 4e) and 1.08, 1.04, 0.81 415 

and 0.61 during the external validation (Fig. 4f). The possible explanation is, SVM 416 
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models are particularly susceptible to overfitting when the model has too many 417 

features relative to the size of the training data, leading to a sparse and high-418 

dimensional feature space (Han & Jiang, 2014). Another reason could be that model's 419 

parameters, such as the regularisation parameter and the kernel function, are not 420 

chosen correctly (Han & Jiang, 2014). 421 

Further, the summary and experimented pLC50 versus predicted pLC50 422 

scatterplots are illustrated in Table 6 and Fig. 4 (a-f). An observation made on the 423 

measured and predicted biocide toxicity variation pattern in both training and validation 424 

sets suggests that all models performed reasonably well.   425 

3.5. Classification modelling 426 

Classification modelling was performed to categorize the biocidal chemicals 427 

among the three categories (very toxic: 2; moderately toxic: 1; and slightly/non-toxic: 428 

0) of chemicals (Table 1). Accordingly, several ML-based classification models were 429 

built, and the best-performing classifiers are herein reported, which are decision trees 430 

(fine, medium and coarse) and Naïve Bayes. The model parameters and optimal 431 

architecture were determined by employing internal and external validation 432 

procedures. For internal validation, 5-fold cross-validation was employed, whereas, 433 

for external validation, a sub-set of the dataset, i.e., a test set (20 per cent), was used. 434 

The criteria to assess the predictive performance and reliability were set using 435 

sensitivity (SE), specificity (SP), area under curve (AUC) and model accuracy (ACC). 436 

The CV results (average of 10 repeats) for both classification models are summarised 437 

in Table 7.  438 

The optimal DT model had the maximum number of splits as 100, 20 and 4, 439 

respectively, while the Gini’s diversity index was employed as the split criterion. Each 440 
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model had the ACC, SE and SP value of 100% and AUC value of 1 for the 5-CV and 441 

test set, and as evident, performed the best for the classification of the three classes 442 

with no miscalculations. DT models, being non-parametric, do not make any 443 

assumptions about the distribution of the data. This makes them more flexible than 444 

parametric models like logistic regression, which assumes a linear relationship 445 

between the input features and the output (Abdalati et al., 2022).  446 

In the case of optimal naïve Bayes, the model coupled with the Gaussian kernel 447 

performed reasonably well for the training set and performed better during the external 448 

validation. The model had the average ACC, SE, SP and AUC values of 91.5%, 75.8%, 449 

96.4% and 0.95, respectively; for 5-CV; and 94.4%, 97.8%, 96% and 0.94, 450 

respectively, for the test set. During the 5-fold cross-validation process, the naïve 451 

Bayes model was able to classify highly toxic biocides with 100% accuracy and no 452 

miscalculations, while 95% accuracy during the classification of moderately toxic 453 

compounds with three miscalculations and 91.5% accuracy during the classification of 454 

slightly/non-toxic compounds with three miscalculations. While during the external 455 

validation, the naïve Bayes model showed no miscalculations for the classification of 456 

moderately toxic and slightly/non-toxic biocides and only one miscalculation for the 457 

classification of highly toxic biocides. Naïve Bayes is, in general, a better classifier for 458 

similar tasks as it is robust to noise and irrelevant features because it assumes that 459 

features are independent of each other. This means that even if some features are not 460 

relevant to the classification task or contain noise, the classifier can still perform well 461 

(Salmi & Rustam, 2019).  462 

However, it is essential to note that the overall generalisability and reliability of such 463 

classifiers in the regulatory context rely on the predictive performance with 464 

comparatively large and balanced datasets, which was a limiting factor in this study.  465 
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When evaluating the predictive performance of such models, it is also crucial to use 466 

appropriate metrics that accurately reflect the model's ability to predict the properties 467 

or activities of chemicals. Sensitivity, specificity, accuracy, and AUC can be less 468 

sensitive to class imbalance, but their performance can be affected by a class 469 

imbalance to some extent. 470 

3.6. Applicability domain (AD) assessment  471 

For reliable predictions, the applicability domain of the QSAR models was further 472 

analysed using the software Applicability Domain v1.0 which follows the 473 

standardization approach to probe any outliers present in training and test set. 474 

According to this method, if the standardised value of a compound’s molecular 475 

descriptors is ≤ 3, the compound is not an X-outlier or within AD, and vice versa. Only 476 

one compound in the test set was found to have an 𝑆𝑛𝑒𝑤 value of 4.78, i.e., > 3 477 

(formaldehyde), suggesting an X-outlier or outside AD. While in the training set, four 478 

compounds had an 𝑆𝑛𝑒𝑤value of 3.15, 3.14, 5.33 and 3.28 (actane, dbnpa, neostanox 479 

and flubendiamide), implying X-outlier or outside the AD (appendix) (see 480 

Supplementary file 2). The outliers, nevertheless, were still incorporated during the 481 

model-building process due to fewer chemicals in the dataset, and the predictions 482 

were performed poorly for formaldehyde and neostanox only. This can be justified as 483 

only formaldehyde and neostanox had a considerably high 𝑆𝑛𝑒𝑤 value, 4.78 and 5.33, 484 

respectively. A possible explanation for the detection of formaldehyde as an outlier in 485 

the test set is its relatively simple structure in comparison to the majority with highly 486 

diverse and complex structures. In addition, formaldehyde also had the lowest atomic 487 

LogP value (ALOGP), suggesting higher hydrophilicity and one hydrogen atom (H-488 

049) directly attached to the carbon atom (C1) in formaldehyde, while one hydrogen 489 
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atom (H-049) attached to C3(sp3)/C2(sp2)/C3(sp2)/C3(sp) of another molecule. In the 490 

training set, neostanox had exceedingly high atomic LogP, suggesting a very high 491 

hydrophobic nature; this is due to the presence of non-polar functional groups, also 492 

resulting in high Atom-Type E-state (ATE). The relationship between ATE and logP is 493 

based on the fact that the electronic state of atoms in a molecule can influence the 494 

molecule's solubility and partitioning behaviour. In particular, atoms with higher ATE 495 

values (indicating a more electron-withdrawing or polar group) tend to be more 496 

hydrophilic and less likely to partition into non-polar solvents (Kier et al., 1999). In 497 

addition, neostanox was the only chemical with the presence of an [Sn] atom in the 498 

dataset. The presence of [Sn] molecular descriptor in the case of neostanox can 499 

significantly distinguish the substance from the dataset, eventually affecting the overall 500 

generalisability of the silico models. The other possible reason for the poor predictive 501 

performance of molecularly similar compounds could be factors such as erroneous, 502 

insufficient or poor-quality raw data used for training the model.  Hence, it is 503 

recommended to exclude the detected outliers from the dataset in order to improve 504 

the overall generalisability and predictive performance of the model. 505 

3.7. Adaptive modelling for reliable ecotoxicological evaluations in a 506 

regulatory context 507 

The developed ML models presented in this report have shown good predictive 508 

performance, high generalisability, and the potential to replace animal testing for 509 

biocide ecotoxicological screening in marine crustaceans. However, its acceptance 510 

and the impact it merits in regulatory decision-making is still a topic of debate. The key 511 

arguments are (i) model generalisability and adaptability (ii) reliability of model 512 

validation (iii) confidence in predictive accuracy and (iv) transparency and 513 
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interpretability of some ML algorithms. The OECD guidelines principle 2  provides 514 

important guidance on the quality and relevance of data used in chemical safety 515 

assessments. However, there are some limitations to its implementation, such as the 516 

limited availability of high-quality (LC50) datasets for many chemicals. In some cases, 517 

there may be gaps in the data, or the available data may not be sufficient to fully 518 

characterize the risks associated with a chemical.  519 

Principle 2 also emphasises “unambiguous algorithm”, which entails transparency 520 

and reproducibility of the models so that others can understand and reproduce the 521 

results. The intrinsic limitation to this is that some of the proposed models in this study, 522 

such as multi-layer feed-forward backpropagation ANN and other non-linear models, 523 

could be complex and might require technical expertise to understand and reproduce. 524 

Furthermore, ensuring transparency and reproducibility of models and algorithms 525 

used in chemical safety assessments requires significant resources, including time, 526 

expertise, and infrastructure. These resources may not always be available, 527 

particularly in the case of small and medium-sized enterprises or developing countries. 528 

A similar challenge also coincides with OECD guidelines principle 5 pertaining to the 529 

mechanistic interpretation of QSAR models. Biological systems are often complex and 530 

multifaceted, with many different pathways and interactions that can influence 531 

chemical activity. Mechanistic interpretation of such QSAR models may also 532 

oversimplify these systems, leading to inaccurate predictions.  533 

Experimental validation is also an essential step in the development and evaluation 534 

of QSAR models for regulatory purposes. This validation process involves testing the 535 

model's predictions against experimental data to evaluate its accuracy and reliability 536 

(OECD, 2004). While experimental validation is certainly an important part of validating 537 

any scientific model or theory, it is not always feasible or necessary for QSAR models 538 
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(Tropsha, 2010). This is because QSAR models are based on statistical relationships 539 

between chemical structures and biological activities. These relationships can be 540 

tested using various statistical measures, such as sensitivity, specificity, accuracy, 541 

precision, and the area under the receiver operating characteristic (ROC) curve 542 

(Grandini et al., 2020). These metrics provide information on the models' ability to 543 

correctly predict positive and negative cases and to distinguish between hazardous 544 

and non-hazardous chemicals. In addition, experimental validation can be time-545 

consuming, costly, and sometimes unethical if it involves animal testing. QSAR models 546 

offer a faster, cheaper, and more ethical alternative to experimental testing. They can 547 

also be used to prioritise chemicals for further testing or to design new chemicals with 548 

specific properties, which can help to reduce the need for animal testing (Khan et al., 549 

2019).  550 

In our study, we employed k-fold cross-validation, where the entire dataset was 551 

divided into ten subsets, of which nine subset was used to train the model and the 552 

remaining subset was treated as a test set to validate the model. This method 553 

improves the robustness of the model to data variability by averaging the performance 554 

across multiple runs of the cross-validation process. This can help to reduce the 555 

impact of data variability on the model's predictive performance. A similar approach 556 

was adopted by Liu et al. (2019) to predict and validate chemical toxicity in marine 557 

crustaceans, where the classification models yielded fairly well results. Furthermore, 558 

for multi-class classification modelling, where the dataset is relatively small, and one 559 

class is more prevalent. It is important to use a combination of evaluation metrics, 560 

including those less sensitive to class imbalance. For example, Singh et al. (2013) 561 

employed a combination of sensitivity, specificity and accuracy, which measures the 562 

occurrence of true positives (TP), true negatives (TN), false positives (FP), and false 563 
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negatives (FN) in the multi-class classification of diverse chemicals acute toxicity in 564 

fish. A similar approach was also adopted by Liu et al. (2019) to classify acute chemical 565 

toxicity in marine crustaceans. Various other multi-class classification evaluation 566 

metrics such as Matthews Correlation Coefficient (MCC), Cohen's Kappa, macro-567 

averaged precision, recall, and F1-score can also provide a more accurate 568 

assessment of the model's predictive performance in the presence of class imbalance 569 

(Grandini et al., 2020).  570 

3.8. Comparison of developed models with models available in the 571 

literature 572 

The LC50 is a widely used endpoint in QSAR modelling, particularly in the field of 573 

ecotoxicology. Such QSAR models that predict LC50 values can provide valuable 574 

information for regulatory decision-making and environmental risk assessment (ERA). 575 

However, the literature survey showed that the potential of computational models to 576 

predict biocide LC50 in marine crustaceans had not yet been extensively explored. 577 

Therefore, a quantitative comparison with others' work would be irrelevant because 578 

the datasets and target organisms differ between the models. Nonetheless, a simple 579 

comparison of our model methodology and result statistics will give fundamental 580 

insight into the accuracy of various approaches to building such models.  581 

Various classification-based models were developed by Liu et al. (2019) to predict 582 

and classify the LC50 values of a wide array of chemicals in marine crustaceans. The 583 

method employed six ML models, which are SVM, NB, RF, DT, kNN, and ANN, and 584 

trained using a set of 1D/2D molecular descriptors and fingerprints. Similar 10-fold 585 

cross-validation was also employed for model validation, and the AUC values of the 586 

developed models ranged from 0.80 – 0.90 for test sets. The DT model developed in 587 
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our study showed the AUC value of 1 for both the training and test set. However, It is 588 

important to note that the models developed by Liu et al. (2019) used a significantly 589 

large dataset (>1000) which was a limiting factor in our study. For the acceptance of 590 

a model in a regulatory context, it is also recommended that the models are trained 591 

using a large and good-quality dataset. Similarly, two partial least squares (PLS) 592 

regression-based models were developed by Khan et al. (2019) to predict LC50 values 593 

of biocides in Daphnia magna and fish toxicities using 2D descriptors. The method 594 

employed leave-one-out cross-validation to validate the models, and the results 595 

yielded R2 of 0.80 and 0.64, respectively, for fish training and test set, and R2 0.87 and 596 

0.81, respectively, for Daphnia magna training and test set. These models showed 597 

satisfactory results; however, they tend to overfit the training set. Overfitting occurs 598 

when a model learns the patterns in the training data too well and becomes too specific 599 

to that data. As a result, the model may not generalize well to new, unseen data, such 600 

as the test set. The presented models in our study have shown high generalisability 601 

by avoiding overfitting on the training data suggesting appropriateness to replace 602 

unnecessary animal testing to predict biocide toxicity in a wide range of marine 603 

crustacean species. 604 

4. Conclusions  605 

In this study, firstly, an overview was presented on how extensive use of biocidal 606 

products can have a detrimental impact on the aquatic organisms, with particular 607 

reference to crustaceans due to their non-target mechanism of action. Secondly, in 608 

the light of incorporating animal alternatives for environmental risk assessment (ERA) 609 

of hazardous chemicals, in silico models were built to fill this data gap by predicting 610 

the acute chemical toxicity of biocidal chemicals in environmentally sensitive 611 
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invertebrates - marine crustaceans. The work presented herein has shown that in silico 612 

modelling approaches are a powerful method to predict acute chemical toxicity of 613 

biocides, enabling rapid prioritisation of compounds during ERA. The biocide dataset 614 

used in the research shows good diversity, and each predictive model is quite diverse 615 

in its approach, as well. All six models in this study yielded satisfactory results, and 616 

the feed-forward backpropagation-based artificial neural network model showed the 617 

best performance during regression analysis, while decision tree model performed the 618 

best for the classification of different toxicities. Nevertheless, ML approaches have 619 

great potential in ecotoxicological studies, and further improvement and understanding 620 

of the underlying science are important. The major limiting factor in this study to build 621 

an even more robust model was the small biocide sample size of the dataset (n=89); 622 

hence, updating the chemical and ecotoxicological databases is also pivotal. In 623 

addition to predicting the toxicity of a particular chemical, ML can also be used to 624 

interpret the influence of a particular molecular descriptor or property contributing to 625 

its toxicity, allowing to manufacture of a greener and more sustainable chemical 626 

product. The developed models are capable of predicting the toxicities of untested 627 

biocides within the applicability domain of the models.  628 
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Figure legends: 849 

 850 

Figure 1: ANN architecture used for model building (n = no. of neurons used in each 851 
layer, w = weight vector and b = bias). 852 

Figure 2: Figures illustrating diversity in the dataset: (a) ALOGP molecular descriptor 853 
correlation with experimental toxicity pLC50 mmol/l. (b) Chemical space of biocide 854 
dataset defined using principal component analysis (PCA). The colours and sizes 855 
represent the varying pLC50 mmol/l values of biocides in the dataset. (c) Frequency and 856 
distribution of biocides (blue bar) in the marine crustacean toxicity dataset according 857 
to their toxicity (pLC50 mmol/l). (d) Tanimoto similarity index heatmap of the biocidal 858 
compounds in the dataset using 2D circular Morgan fingerprints. The similarity index 859 
increases from zero to one. 860 

Figure 3: Scatterplot of the experimented and model predicted values of biocide 861 
toxicity (pLC50) in the training set, validation set, test set and complete set of ANN 862 
model. 863 

Figure 4: Regression scatter plots for training and test sets of machine learning 864 
models (a-b) LR, (c-d) RF, (e-f) SVM, respectively, used in this study (Experimental 865 
pLC50 – x-axis vs. Predicted pLC50 – y-axis). 866 

 867 

Table Captions 868 

Table 1: Machine Learning (ML) modelling approaches used in this study. 869 

Table 2: Statistical algorithms to estimate the predictive performance of ML models. 870 

Table 3: Chemical toxicity categories in marine organisms. 871 

Table 4: Molecular descriptors used for model building. 872 

Table 5: Performance parameters for ANN regression model to predict acute toxicity 873 
of biocides. 874 

Table 6: Performance parameters for various regression models to predict acute 875 
toxicity of biocides. 876 

Table 7:  Classification matrix for biocide toxicity prediction of 3-categories by 877 
different models. 878 

 879 

Captions for Supplementary Materials  880 

S1. Biocide acute chemical toxicity in marine crustaceans dataset used in this study. 881 

S2. Applicability Domain Training set. 882 

S3. Molecular descriptors selected for regression analysis.  883 

S4. Molecular descriptors selected for classification analysis. 884 

S5. Best Subset Selection (BSS) for highest correlation features for regression 885 
analysis.  886 

  887 



 38 

Krishnana et al., Figures 888 

 889 

Figure 2: ANN architecture used for model building (n = number of neurons used in 890 
each layer, W = weight vector and b = bias). 891 

 892 

Figure 2: Figures illustrating diversity in the dataset: (a) ALOGP molecular descriptor 893 
correlation with experimental toxicity pLC50 mmol/l. (b) Chemical space of biocide 894 
dataset defined using principal component analysis (PCA). The colours and sizes 895 
represent the varying pLC50 mmol/l values of biocides in the dataset. (c) Frequency and 896 
distribution of biocides (blue bar) in the marine crustacean toxicity dataset according 897 
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to their toxicity (pLC50 mmol/l). (d) Tanimoto similarity index heatmap of the biocidal 898 
compounds in the dataset using 2D circular Morgan fingerprints. The similarity index 899 
increases from zero to one. 900 
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 919 

 920 

Figure 3: Scatterplot of the experimented and model predicted values of biocide 921 
toxicity (pLC50) in the (a) training set (b) validation set (c) test set and (d) complete 922 
set of ANN model. 923 

 924 

 925 
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Figure 4: Regression scatter plots for training and test sets of machine learning 926 
models (a-b) LR, (c-d) RF, (e-f) SVM, respectively, used in this study (Experimental 927 
pLC50 – x-axis vs. Predicted pLC50 – y-axis).  928 
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Krishnan et al. Tables 

 

Table 1: Machine Learning (ML) modelling approaches used in this study. 

 

Analysis Model Equation Hyperparameter Reference 

R
e

g
re

s
s
io

n
 

SVM 𝐾(𝑋1, 𝑋2) = exp −
||𝑋1−𝑋2||2

2𝜎2
   RBF Kernel 

Chang et 
al., 2010 

RF 𝑓 =
1

𝐵
 𝑓𝑏(𝑥|)

𝐵

𝑏=1

 

 No. of trees: 10 

 No. of attributes 
in each split: 8 

 

Ho, 1995 

LR 𝑌𝑖 = 𝑓(𝑋𝑖 , 𝛽) + 𝑒𝑖  
 Lasso 
regression 

 𝛼 = 0.0001 

Cohen et 
al., 2014 

 

ANN 

𝑔(𝑥)
= 𝑓𝐿(𝑊𝐿𝑓𝐿−1(𝑊𝐿−1 …𝑓1(𝑊1𝑥)… )) 

 

 Method: 
Backpropagation 

 Training: 
Levenberg-
Marquardt 

Tahmasebi 
& 
Hezarkhani, 
2011 

C
la

s
s
if
ic

a
ti
o

n
 

DT 𝐺𝑖𝑛𝑖 = 1 − (𝑝𝑖)
2

𝐶

𝑖=1

 

 Split criterion: 
Gini diversity 
index 

 Max no. of splits: 
4-00 

Gini, 1936 

NB 𝑃 𝑥𝑦  𝑦 =
1

 2𝜋𝜎𝑦
2

exp⁡(−
(𝑥𝑖 − 𝜇𝑦)2

2𝜎𝑦2
) 

 Kernel type: 
Gaussian 

Rennie et 
al., 2003 

RBF – radial basis function, 𝜎- variance, X1 and X2 – two points, K – kernel function, B – bagging, 𝑥|- 

test samples, b = 1, 𝑓𝑏 - trees, 𝑌𝑖- dependent variable, 𝑓- function, 𝑋𝑖- independent variable, 𝛽- unknown 

parameters, 𝑒𝑖- error terms, x – input, y – output, 𝑓𝐿- ReLU function, L – no. of layers, 𝑊𝐿- the weights 

between layer l−1, C – branch, 𝜎- independent variable  
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Table 2: Statistical algorithms to estimate the predictive performance of ML models. 932 

 933 

Analysis 
Statistical 
estimator 

Theory Equation Reference 

R
e
g

re
s
s
io

n
 

MSE 

Average squared 
difference between 
predicted value and 
actual value 

𝑀𝑆𝐸 =  
1

𝑛
   𝑌𝑖 − 𝑌̂𝑖 

2

𝑛

𝑖=0

 

 

Bickel et 
al., 2015. 

RMSE/ 
RMSD 

Standard deviation of 
prediction errors 𝑅𝑀𝑆𝐸 = √

∑ (𝑥𝑖 − 𝑥̂𝑖)2
𝑁
𝑖=1

𝑁
 

Barnston, 
1992 

MAE 
Deviation of predicted 
value from the 
observed value 

𝑀𝐴𝐸 =  
∑ |𝑦𝑖 − 𝑥𝑖|
𝑛
𝑖=1

𝑛
 

Willmott & 
Matsuura, 
2005 

R2 Variation in prediction 
proposed by the model 

𝑅2 = 1 −
𝑅𝑆𝑆

𝑇𝑆𝑆
 

Damodar, 
2009 

C
la

s
s
if
ic

a
ti
o
n
 

SE 
Percentage of positive 
class predicted as 
positive 

𝑆𝐸 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

Altman & 
Bland, 
1994 

SP 
Percentage of 
negative class 
predicted as negative 

𝑆𝑃 =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

Altman & 
Bland, 
1994 

ACC 
Fraction of correct 
prediction to overall 
predication 

𝐴𝐶𝐶

=  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

Chicco & 
Jurman, 
2020 

AUC 

Overall performance of 
classification model 
under all classification 
thresholds  

𝐴𝑈𝐶 =  ∫𝑇𝑃𝑅 𝑑(𝐹𝑃𝑅) 
Hanley & 
McNeil, 
1982 

n - number of data points, Yi  - observed value, 𝑌̂ - predicted value, xi - observed value, 𝑥𝑖̂ - predicted 934 
value, N - sample size, yi - predicted value, xi - true value, n - total number of data points, RSS – sum 935 
of squares of residuals, TSS – total sum of squares, TP – true positive, TN – true negative, FP – false 936 
positive, FN – false negative, TPR – true positive rate, FPR – false positive rate  937 

Table 3: Chemical toxicity categories in marine organisms. 938 

Marine crustacean 
acute 
concentration 
(PPM) 

Category used 
for classification 
modelling 

Binary 
Classification 

Quantity in 
dataset (n=89) 

<0.1 2 
 

Very highly 
toxic 64 

0.1-1 Highly toxic 

>1-10 1 
Moderately 
toxic 

13 

>10-100 0 
 

slightly toxic 
12 

>100 nontoxic 
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 939 

 940 

Table 4: Molecular descriptors used for model building. 941 

Model Descriptors Software Description Descriptor type 

R
e
g
re

s
s
io

n
 

VE1_Dt 

D
ra

g
o
n
 v

. 
7

 

Coefficient sum of the last eigenvector from 
detour matrix 2D matrix-based 

descriptors 
VE2_Dt 

Average coefficient of the last eigenvector 
from detour matrix 

B07[C-C] 
Presence/absence of C - C at topological 
distance 7 

2D Atom Pairs 

H.049 
H attached to 
C3(sp3)/C2(sp2)/C3(sp2)/C3(sp) Atom-centred 

fragments 
C.002 CH2R2 

ALOGP 
Ghose-Crippen octanol-water partition coeff. 
(logP) 

Molecular 
Properties 

XLogP 

P
a
D

E
L
 2

 

octanol/water partition coefficients of organic 
compounds 

XLogP 

MLFER_S Combined dipolarity/polarizability 
Molecular linear 
free energy 
relation 

SRW10 Self-returning walk count of order 10 (ln(1+x) Walk counts 

SMR RDKiT Molecular refractivity 2D 

C
la

s
s
if
ic

a
ti
o
n

 

Psi_e_1 

D
ra

g
o
n
 v

. 
7

 

electrotopological state pseudoconnectivity 
index - type 1 

Topological 
indices 

nRCN number of nitriles (aliphatic) 
Functional group 
counts 

H.049 
H attached to 
C3(sp3)/C2(sp2)/C3(sp2)/C3(sp) 

Atom-centred 
fragments 

F01.C.N. Frequency of C - N at topological distance 1 
2D Atom Pairs 

F05.N.O. Frequency of N - O at topological distance 5 

TPSA.NO. 
topological polar surface area using N,O 
polar contributions 

Molecular 
Properties 

ALogP 

P
a
D

E
L
 2

 

Ghose-Crippen LogKow ALogP 

ATSC1c 
Centered Broto-Moreau autocorrelation - lag 
1 / weighted by charges 

Autocorrelation 

ATSC0p 
Centered Broto-Moreau autocorrelation - lag 
0 / weighted by polarizabilities 

MATS1v 
Moran autocorrelation - lag 1 / weighted by 
van der Waals volumes 

MATS4p 
Moran autocorrelation - lag 1 / weighted by 
van der Waals volumes 

GATS1i 
Geary autocorrelation - lag 1 / weighted by 
first ionization potential 

MIC5 
Modified information content index 
(neighbourhood symmetry of 5-order) 

Information 
content 
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JGI6 Mean topological charge index of order 6 
Topological 
charge 

Chi3v 

R
D

K
iT

 

Similar to Hall Kier Chi3v, but uses nVal 
instead of valence topochemical 

descriptors 
Chi4v 

Similar to Hall Kier Chi4v, but uses nVal 
instead of valence 

slogp_VSA10 
MOE logP VSA Descriptor 10 (0.40 <= x < 
0.50) 

molecular 
surface area 
descriptors smr_VSA3 

MOE MR VSA Descriptor 3 (1.82 <= x < 
2.24) 

 942 

 943 

Table 5: Performance parameters for ANN regression model to predict acute toxicity 944 
of biocides. 945 

 946 

Table 6: Performance parameters for various regression models to predict acute 947 
toxicity of biocides. 948 

Model Dataset MSE RMSE MAE R2 

SVM 
Training Set 1.56 1.25 0.96 0.69 

Test Set 1.08 1.04 0.81 0.64 

Random Forest 
Training Set 1.56 1.25 0.97 0.64 

Test Set 0.81 0.90 0.70 0.72 

Linear Regression 
Training Set 1.48 1.22 0.94 0.69 

Test Set 0.70 0.84 0.66 0.76 

 949 

 950 

Table 7:  Classification matrix for biocide toxicity prediction of 3-categories by 951 
different models. 952 

D
e
c
is

io
n

 T
re

e
 

Training set (5-fold Cross-Validation) 

Actual class 
total 
instances 

predicted 
correct 

mis-
classified 

Model 
Accuracy 
(ACC) 

SE 
(Sensitivity) 

SP 
(Specificity) 

AUC 

0 18 18 0 100% 100% 100% 1 

1 12 12 0 100% 100% 100% 1 

2 41 41 0 100% 100% 100% 1 

Total 71       

Model Dataset No. of compound MSE RMSE R2 

Feed-Forward 
Back 
Propagation 

Training set 67 0.89 0.93 0.82 

Validation Set 13 0.46 0.67 0.90 

Test Set 09 0.47 0.68 0.94 
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Test set (external validation) 

Actual class 
total 
instances 

predicted 
correct 

mis-
classified 

Model 
Accuracy 

SE 
(Sensitivity) 

SP 
(Specificity) 

AUC 

0 1 1 0 100% 100% 100% 1 

1 1 1 0 100% 100% 100% 1 

2 16 16 0 100% 100% 100% 1 

Total 18       

N
a
ïv

e
 B

a
y

e
s

 

Training set (5-fold Cross-Validation) 

Actual class 
total 
instances 

predicted 
correct 

mis-
classifie
d 

Model 
Accuracy 
(ACC) 

SE 
(Sensitivity) 

SP 
(Specificity) 

AUC 

0 18 15 3 91.5% 83.3% 94.3% 0.96 

1 12 9 3 91.5% 75.0% 95.0% 0.89 

2 41 41 0 91.5% 69.4% 100.0% 1 

Total 71       

        

Test set (external validation) 

Actual class 
total 
instances 

predicted 
correct 

mis-
classifie
d 

Model 
Accuracy 
(ACC) 

SE 
(Sensitivity) 

SP 
(Specificity) 

AUC 

0 1 1 0 94.4% 100.0% 94% 0.94 

1 1 1 0 94.4% 100.0% 94% 0.94 

2 16 15 1 94.4% 93.5% 100% 0.94 

Total 18       

 953 

 954 


