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Abstract 

The area of autonomous underwater vehicles (AUVs) is an increasingly important area of 

research, with AUVs being capable of handling a far wider range of missions than either 

an inhabited underwater vehicle or a remotely operated vehicle (ROV). One of the major 

drawbacks of such vehicles is the inability of their control systems to handle faults 

occurring within the vehicle during a mission. This study aims to develop enhancements 

to an existing control system in order to increase its fault tolerance to both sensor and 

actuator faults. 

Faults occurring within the sensors for both the yaw and roll channels of the AUV are 

considered. Novel fuzzy inference systems (FISs) are developed and tuned using both the 

adaptive neuro-fuzzy inference system (ANFIS) and simulated annealing tuning methods. 

These FISs allow the AUV to continue operating after a fault has occurred within the 

sensors. 

Faults occurring within the actuators which control the canards of the AUV and hence the 

yaw channel are also examined. Actuator recovery FISs capable of handling faults 

occurring within the actuators are developed using both the simulated annealing and tabu 

search methods of tuning FISs. The fault tolerance of the AUV is then further enhanced 

by the development of an error estimation FIS that is used to replace an error sensor. 

It concludes that the novel FISs designed and developed within the thesis provide an 

improved performance to both sensor and actuator faults in comparison to benchmark 

control systems. Therefore having these FISs embedded within the overall control 

scheme ensure the AUV is fault tolerant to a range of selected failures. 
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CHAPTER 1 

INTRODUCTION 

1.1. INTRODUCTION 

Autonomous underwater vehicles (AUVs) are widely used for conducting research, 

commercial and navel operations, often in harsh and dangerous environments. By 

definition a truly autonomous vehicle needs to have a certain level of fault tolerance 

in-built to allow the successful completion of its mission. Any method used to 

increase this level of fault tolerance will enhance the vehicle's range of operational 

capabilities. 

The overall aim of this research project is to produce fault tolerant control systems for 

a given AUV model. Ideally these are capable of handling faults in both the sensors 

and actuators being considered in this study. The methods and techniques employed 

should be applicable to other underwater vehicles. 

Firstly an investigation into the application of artificial intelligence techniques to the 

design of fault tolerant control systems for AUVs is undertaken. The study 

concentrates primarily on the design of fault tolerant control subsystems for both the 

yaw and roll channels of an AUV with particular attention being paid to the use of 

neurofuzzy techniques in their development. This constitutes a natural progression of 

the work of Craven (1999), which developed intelligent control strategies for an 

AUV. 

1.2. OBJECTIVES OF THE THESIS 

To achieve the aim of this research programme the following objectives are defined: 

(a) Critically review the current fault tolerant control literature. 
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(b) Investigate and then develop identification models of the AUV dynamics 

using linear modelling, neurofuzzy and artificial neural network (ANN) 

approaches. 

(c) Devise sensor/actuator failure scenarios within the AUV model to assess 

the model responses. 

(d) Investigate and then develop Kalman filter based fault tolerant control 

systems to be used as benchmarks. Test the robustness of the control 

system to various levels of faults. 

(e) Develop intelligent fault control systems (IFCSs) for the yaw channel 

sensors based on neurofuzzy approaches such as the adaptive neuro

fuzzy inference system (ANFIS). 

(t) Develop IFCSs for the roll channel sensors based on fuzzy approaches 

similar to those for yaw channel. 

(g) Develop IFCSs for the yaw channel actuator faults using suitable fuzzy 

approaches. 

(h) Remove and replace error sensor used in IFCS for actuator faults. 

1.3. CONTRIBUTIONS OF THE THESIS 

The main contributions of this thesis are considered to be: 

• Investigation into the use of ANFIS [Jang (1991)], simulated annealing 

[Kirkpatrick et a/ (1983)) and tabu search [Denna et a/ (1999)] to tune fault 

tolerant fuzzy inference systems (FISs) for underwater vehicles. 

• Provide an alternative to Kalman filters for sensor faults. This is achieved by 

creating several sensor fault recovery FISs which are shown to improve on the 
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performance of the Kalman filter enhanced control system which is used as a 

benchmark. 

• Consider the effects of actuator faults in the actuators controlling the canards of 

AUVs and ways of applying fuzzy logic methods to compensate for the actuator 

faults. To achieve this FISs were produced capable of handling the considered 

faults occurring within the AUV. This then enables the given AUV to complete 

missions that would have otherwise been impeded after the occurrence of the 

given actuator faults. 

1.4. PUBLICATIONS 

To date the following papers have been published as a result of this research 

programme: 

(a) Pearson A. R., Sutton. R., Bums. R. S., Robinson. P. and Tiano A. (2000). 

Fault tolerant control strategies for uninhabited underwater vehicles. 

Underwater Technology, Vol. 24, No 2: 61-72. 

(b) Pearson A. R., Sutton. R., Burns. R. S. and Robinson. P. (2000). A Kalman 

filter approach to fault tolerant control in autonomous underwater vehicles. 

Proceedings of Fourteenth International Conference on Systems Engineering, 

Coventry, U.K. September 12-14. Vol. 2: 456-461. 

(c) Pearson A. R., Sutton. R., Bums. R. S. and Robinson. P. (2001). A fuzzy fault 

tolerant control scheme for an autonomous underwater vehicle. Proceedings of 

IFAC Control Applications in Marine Systems 2001 Conference, Glasgow, 

U.K. July 17-20. 

(d) Sutton. R., Pearson. A. R. and Tiano. A. (2001). A fuzzy fault tolerant control 

scheme for an autonomous underwater vehicle. IEEE Proceedings of Methods 

and Models in Automation and Robotics 200 I Conference, Mi~dzyzdroje, 

Poland, August 28-31. Vol. 2: 595-600. 
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See Appendix A for further details. 

1.5. OUTLINE OF THE THESIS 

Chapter 2 of this thesis provides the reader with a critical review of fault tolerant 

control systems for plants in general as well as specifically for AUVs. This review is 

split into two sub-sections the first being fault tolerant controllers for non underwater 

vehicles and then the second considering fault tolerant control systems which do 

operate in underwater vehicles. The need for a fault tolerant control system is then 

discussed, clarifying the motivation behind the work submitted within this thesis and 

highlighting the current lack of AUV fault tolerant control systems. 

The dynamic characteristics of the underwater vehicle are detailed in Chapter 3, along 

with dynamic models of the vehicle, faults to be considered, and the methods used to 

tune the FISs. Various dynamic models are presented which model the yaw and roll 

channels of the AUV. The types and levels of faults being considered are also defined 

and explained within this Chapter. 

Benchmark fault tolerant controllers are developed in Chapter 4. A Kalman filter 

approach to fault tolerant control is considered along with the original controllers 

specifically developed for the given AUV. A Kalman filter enhanced controller is 

defined and then compared to the ideal system and the original controllers for both 

sensor and actuator faults being considered. The Chapter concludes by suggesting 

which of the controllers should be used for a comparative basis with the results of the 

following Chapters. 

Several sensor recovery FISs are designed in Chapter S. Using the Kalman filter as a 

benchmark FISs are developed using the Q statistic and linear models of the AUV, 

derived in Chapter 3, along with the faulty sensor information as inputs to estimate the 

actual sensor information required. The ANFIS [Jang (1991)] and simulated annealing 

[Kirkpatrick et a/ ( 1983)] tuning methods are used to produce sensor recovery FISs. 

The results for two FISs for each of the sensors being considered are presented. One 

of each type of tuning method considered. 

Chapter 6 presents the actuator fault tolerant FIS. Only the yaw channel is considered 

for the actuator faults. The simulated annealing [Kirkpatrick et a! ( 1983)) and the tabu 

search [Denna et a/ ( 1999)) methods are used to tune two types of FISs. The first 

being the identity FIS and the second a heuristic FIS. The actuator fault tolerant FIS 
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uses three inputs, the demand placed on the ANFIS controller, the control signal 

produced by the ANFIS controller and error in the actuator to produce a value by 

which the ANFIS control signal is enhanced to correct for the fault. The results are 

presented and compared to those of the benchmark results from Chapter 4. 

Consequently, Chapter 7 discusses a natural progression of the actuator fault tolerant 

FIS developed in Chapter 6. The need for a sensor to feed back the position of the 

effected actuator is removed. Instead of the sensor a FIS estimator is introduced to 

further enhance the fault tolerance of the control system. 

Concluding remarks, ideas for future work and a summary of the effectiveness of 

certain fault tolerant FISs are presented in Chapter 8. 
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CHAPTER2 

A REVIEW OF UNINHABITED UNDERWATER VEHICLE 

FAULT TOLERANT CONTROL SYSTEMS 

2.1. INTRODUCTION 

In recent years, considerable interest has been shown into the commercial, scientific 

and naval use of uninhabited underwater vehicles (UlNs). UlN being a generic 

expression to describe both an autonomous underwater vehicle (AUV) and a remotely 

operated vehicle (ROV). An AUV being a marine craft which fulfils a mission or task 

without being constantly monitored and supervised by a human operator, whilst a 

ROV is a marine vessel that requires instruction from an operator via a tethered cable. 

Commercial, naval and scientific operational specifications for UlNs continue to 

become more challenging in line with the advances being made in control 

engineering. In order to survive actuator and/or sensor failure during a mission, such 

vehicles need to possess a reconfigurable or fault tolerant control system. This 

Chapter explains the basic principles of fault tolerant control systems. It then reviews 

their application in the design of UlN s and other systems where it is considered a 

technology transfer is possible. 

By steering an aircraft via differential engme thrust, the captain of a crippled 

American Airlines DClO landed safely at Windsor, Ontario, under circumstances 

similar to those which claimed the lives of three hundred and forty-six passengers and 

crew of a Turkish Airlines aeroplane in the forest of Ermenouville, France on 3 March 

1974 [Eddy et a/ (1976)]. The successful survival of the DCIO at Windsor can be 

attributed to the fast adaptation ability of the pilot to control what had become, m 

effect, a different vehicle. 

It is interesting to note that the DC I 0 pilot is claimed to have the maxim "he who 

hesitates will probably survive" insofar as hasty action may make a situation 

irrecoverable, but calm experimentation in a high stress environment may well lead to 

success. The event itself was "recoverable" because it was not totally unexpected, a 
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similar problem having luckily been identified and solved on a training simulator 

some months earlier by the particular pilot concerned. Once he recognised the 

symptoms of the flight failure, the pilot was relatively well equipped to land the 

aircraft. 

As will be seen from the material to be presented herein, the incident recounted above 

provides an excellent example of a human reconfigurable control scheme. Given the 

ongoing advances being made in control engineering and artificial intelligence 

techniques, serious consideration is now being devoted to the development of 

automated reconfigurable control systems (RCSs) that will operate autonomously 

whether or not there is a human in the loop. 

Demands are growing for the requirement of AUVs to be able to operate at extreme 

depths and/or in confined areas such as under packed ice. Unfortunately, owing to the 

nature of these vehicles, data transmissions to and from the craft to the mother station 

through the sea water medium are poor. Thus, by definition an AUV has to be totally 

self-sufficient for the duration of a mission. Hence, in order for an AUV to survive 

sensor and/or actuator failure in this environment, it is paramount to have on board a 

RCS. Such RCS's could also be beneficially installed in ROVs. Their employment 

within ROVs would lighten the work load of the human operators, whilst at the same 

time allowing them to maintain overall supervisory control. 

Thus, the following two questions may be posed: 

(i) What are the essential elements in a non-human RCS?, and 

(ii) How does such a system function? 

This Chapter attempts to answer these questions and also to review applications of 

this technology in the underwater vehicle field and other areas. For the interested 

reader some other excellent reviews on this subject area can be found in Antsaklis et 

a/ (1991), Rauch (1994), Bodson and Groszkiewicz (1997) and Fossen and Fjellstad 

(1995). 

Throughout this text it is assumed the reader has a basic understanding of control 

engineering principles. If this not the case reference should be made to Kuo (1982) for 

an introduction to the subject. Control strategies, which have been applied to UUVs, 

are reviewed by Craven et a/ ( 1998). Some of the control schemes described were 

developed using artificial intelligence techniques. Background reading on artificial 

intelligence approaches can be found in Kosko (1994) and Hassoun (1995). 
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2.2. FAULT TOLERANT CONTROL 

If a vehicle is damaged, or has a sensor or actuator failure during operation it may not 

be possible to repair the damage or fault immediately. There may, however, be a 

requirement for it to continue operating until it is possible to carry out the necessary 

repairs. Under such circumstances, the overall system is called an impaired system. 

When such a scenario as this occurs it is very unlikely that a standard control scheme 

will be of much use and therefore a different kind of control system, which can handle 

the anomalies would be more appropriate. A controller with such capabilities is 

considered to have a fault tolerant, a reconfigurable or a restructurable structure. 

Collectively, such systems are generically called 'fault tolerant' systems and the 

controllers called 'fault tolerant' controllers. However each approach operates in a 

different manner. As well as being the generic term for this type of system it is also 

possible to have a fault tolerant controller that is neither reconfigurable or 

restructurable. 

All controllers have authority over active parts, such as surfaces or motors of some 

kind, which they use in a certain configuration to perform given tasks. These 

controllers can be simple, or very complex, depending on the performance 

requirements of the system and will be designed accordingly. 

Having dealt with the basic ideas concerned with a fault tolerant controller, it would 

now be helpful to describe the objectives of this approach. The first priority of such a 

controller is to stabilise the system. Having stabilised the system, the next step is to 

try to return the system as close as possible to normal operating conditions which will 

necessitate the use of different control laws. 

2.2.1. Fault Tolerance 

A fault tolerant controller is capable of maintaining a system at a given level after it 

has been damaged. The controller does not necessarily return the system to a perfect 

condition after the damage, but, obviously, this would be an advantage. Such a device 

has three subsystems or components that constitute the control system. 

The first subsystem deals with detecting if a problem has arisen in the system, the 

second subsystem copes with identifYing the location of the fault and its seriousness 
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and the third is the actual reconfiguration subsystem itself. A simple block diagram of 

these subsystems and how they fit into a system is shown in Figure 2.1. 

The fault tolerant controller is only called into use when there is a fault in the system. 

Hence, the first part of the controller, which deals with detecting if a fault has 

occurred is continually monitoring the plant. This subsystem is not concerned with 

what the problem is or how to fix it but only whether the system is performing as 

required. This can be achieved by having an analytical method for checking out the 

system, this method compares what should be happening to what is actually 

happening in the system. When a fault has occurred this subsystem informs the next 

subsystem that there is some problem and continues to do so until the fault had ~een 

corrected. 

Demand 
+ 

Fault Identification 

Sensors 
Plant Dynamics 1--1-----

Figure 2.1 A Reconfigurable Control System 

The function of the second subsystem is to identify what fault has occurred in the 

system and the seriousness of the fault. There are many different kinds of analytical 

methods that have been developed for this purpose, such as the multiple model 

method [Rauch (1995)] or the generalised likelihood ratio method and will be 

discussed in more detail later in this section. It is important to know the seriousness of 

the problem as this will help the controller decide how to deal with the problem. 

Basseville ( 1988) has investigated many methods to identify faults and Wang ( 1995) 

has investigated fault diagnosis in some detail. 

A considerable amount of research has been undertaken using model-based methods 

to detect and identify faults in systems. Patton et a/ (1995) describe several methods 

based on more traditional approaches and gives some general guidelines for the 
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implementation of these types of subsystems. In addition Artificial Neural Networks 

(ANNs) have also been used by Naidu et a/ {1990) for sensor failure detection. 

Alessandri et a/ {1999) considered actuator failures in a ROV using approximate non

linear models of its dynamics. The output of the model is compared to the actual 

output to detect and diagnose the fault. This is performed by a bank of estimators, 

which are extended Kalman filters. Extended Kalman filters were used because of the 

non-linearities of the model and the inability of ordinary Kalman filters to work with 

non-linear models. Results are reported to show the effectiveness of this approach 

compared to the unfiltered model output. 

It is the final component in which the type of controller is defined. A fault tolerant 

controller may use many different methods to handle faults in the system. One way is 

for the fault tolerant controller to make use of a second backup component. This 

allows the system to continue operating until the first component can be repaired or 

replaced. 

2.2.2. Reconfigurable Control 

A reconfigurable controller [Gao and Antsaklis (1992)] deals with a fault by 

reconfiguring the control laws of the system. The reconfigurable controller has a basic 

set-up very similar to that of the fault tolerant controller described in Section 2.2.1 

and again consists of three subsystems. 

The fault detection and identification subsystems are as explained in section 2.2.1. 

Once it has been established that there is a problem and identification of it has taken 

place, the only remaining operation is the reconfiguration of the controller. In this 

subsystem one of a set of predefined reconfigurations, with different control laws, is 

used to accommodate the fault. This is achieved by using components of the system 

for purposes other than their designed task. The predefined reconfigurations being 

those predicted by the designer. Thus the system will be only able to handle those 

problems envisaged by the designer. 

2.2.3. Restructurable Control 

The modus operandi of a restructurable controller [Looze et a/ ( 1985)] is again similar 

to that in Section 2.2.1 where the first two subsystems are used for detection and 
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identification. Once again the difference lies in the third subsystem. This time the 

controller tries to restructure the control laws to accommodate the fault. This is 

achieved by using every available component of the vehicle, for purposes other than 

their designed task, in the same fashion as the reconfigurable controller. However this 

method does not need any predefined sets of control laws, unlike the reconfigurable 

controller, and therefore may be very flexible at handling unanticipated faults. Such 

an approach lends itself to solution by artificial intelligent techniques. 

2.3. FAULT TOLERANT CONTROL SYSTEMS FOR NON-UUVs 

The vast majority of research in the area of fault tolerant control systems has been 

concerned with plants other than UUVs and therefore this section has been included. 

It contains explanations of fault tolerant, reconfigurable and restructurable controllers 

used by other related systems. The actual ideas discussed in Section 2.3.1, however, 

can be modified and applied to underwater vehicles. 

2.3.1. Fault Tolerant Control 

The fault tolerant controller, used in the regulation of the feedwater system in a four

loop pressurised water reactor power plant, presented by Eryurek and Upadhyaya 

{1995) is capable of handling both sensor faults and controller failure. However this 

controller cannot handle equipment malfunctions (actuator faults) or multiple 

simultaneous faults. The controller is made up of the following five major 

components: 

I. Parallel control module 

2. Signal validation module 

3. Command validation module 

4. Decision making module 

5. System executive module 

These five modules and the method by which they are connected can be seen in 

Figure 2.2. The control system has three different controllers working in parallel with 

each other. The system uses a method called horizontal redundancy to decide which 

of the controllers to use at any given time. Horizontal redundancy feeds different 

subsets of measurements to each of the controllers and then compares the outputs. 
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When all the outputs are the same the horizontal redundancy procedure has no effect. 

When a fault has occurred one of the outputs changes and the horizontal redundancy 

procedure overrules the controller with a different output. This allows any fault to be 

overruled by the other controllers that have fault free information. The three 

controllers used in the example are a reconstructive inverse dynamics controller, a 

fuzzy logic controller and a conventional proportional integral derivative controller. 

These three different controllers provide different methods to reach the same result 

when controlling the plant. As they use different inputs a single fault will only affect 

one controller. This will then be out-voted by the other two unaffected controllers. 

The same result would be achieved if one of the controllers was to develop a failure 

during normal operations. 

Signal 
Valldator 

Parallel 
Control 

Command 
1---------.j Valldalor 

Actuators 

Figure 2.2 Integrated-System Components for Advanced Plant Control 

[After Eryurek and Upadhyaya (1995)] 

This is the main fault tolerant feature of the system. A second is the signal validation 

module which uses two different routines, namely process empirical modelling and an 

ANN technique, to check against the actual output of the plant before going to the 

controllers. In a similar method the command validation module checks the outputs of 

each controller before the decision making module chooses the best response. 
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Tests were performed where faults were introduced into one of the controllers. The 

results show that the decision module is capable of handling these faults without the 

system becoming unstable. It was also shown that the decision module changed from 

one controller to another without a fault occurring. This took place because the 

controller's approach to the situation was judged to be an improvement on the 

original. 

Despite this fault tolerant controller being designed for use in large scale systems, the 

idea of a parallel controller, as presented here, could be easily applied in the area of 

marine underwater technology. In addition, the ability to change from one controller 

to another to improve the performance could provide an UUV with a much more 

flexible control structure. 

Lopez-Toribio et al (2000) presents a fault tolerant control scheme based on a Takagi

Sugeno fuzzy model that is used to control a rail vehicle traction system. 

The system is split into two major sections. The first is the fault detection and 

isolation scheme based on five fuzzy observers. This scheme uses residual 

information gained from fuzzy observers to detect sensor faults within the system. 

The system then decides which observer is sending out the correct information before 

sending it to the fuzzy controller. 

This fault tolerant control scheme is then tested with sensor faults being simulated 

within the torque and flux sensors. The results show firstly how the system copes 

without the scheme, i.e. large oscillating errors are shown in the torque error, and then 

how much better the torque error is controlled with the scheme in place. 

A similar approach could be used to compensate for sensor faults occurring within an 

AUV. 

Other papers in this area are Stengel (1991) which gives a general review of fault 

tolerant controllers, some of which use ANNs, and McLean et al (1997) which deals 

with sensor faults in a helicopter, also using ANNs. 

2.3.2. Reconfigurable Control 

Rauch ( 1995) considers autonomous control reconfiguration in relation to fault 

accommodation and learning systems. One of the approaches considered is multiple 

models, another is a single model with adaptive techniques for updating system 

characteristics. This may be considered a restructural technique and discussed herein. 
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When considering the multiple model approach the general form for a non-linear 

system is shown in Equation (2.1) and the appropriate assumptions are stated. 

(2.1) 

Where q is the parameter values vector, xR is the state vector, uR is the control 

vector, uRn = gR(xkr *,q * ], gR is a function ofx* (estimated state) and q* (estimated 

vector parameters), and also jR is the state transition function. The subscript kt is the 

value at the ktth time. 

An example is then given for terminal guidance of an interceptor missile. The target 

that the missile is attempting to hit can make unknown manoeuvres. The multiple 

models represent the sets of possible manoeuvres the missile can perform. 

The multiple models were run off-line by the author and a single extended Kalman 

filter is used on-line to measure the target state and compare with stored estimates 

from the off-line multiple models. The multiple models are generated using a general 

regression neural network. 

When first considering this system it may not appear to be a RCS, but it does fit the 

definition given above. This example however is not concerned with handling a fault 

within the system, but is concerned with a changing variable outside of its control. It 

does have many models each with its own control configuration and the system does 

change between them depending on the situation. 

A simulation was performed by Rauch (199S) using an unmodified Kalman filter, the 

multiple model approach discussed above and a perfect guidance approach where the 

target trajectory is known exactly. The results showed that the multiple model had a 

hit probability of SO% which, as one would expect, is better than the original 

unmodified Kalman filter (IS%), but worse than the perfect guidance (84%). The 

results presented show that an increase in performance is possible with minimal 

increase in on-line computation. It is suggested in the paper that fuzzy logic and 

artificial neural network techniques could be used in this approach to improve the 

given method and produce even better results. 

Gao and Antsaklis (1992) develop a different approach to RCS design called perfect 

model following. This is a development of standard linear model following methods 

that are designed to make the output of the plant match the output of a model system 
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with the desired behaviour. There is an explanation of standard linear model following 

methods, which states that they need both a feedforward and feedback controller in 

order to fulfil the task. The difference between a standard linear model following 

method and the perfect model following method is that for the latter the state variables 

of the model match the state variables of the plant. 

For perfect model following to be achieved Equation (2.2) must hold and the solution 

is of the form Equation (2.3). 

(Am -AP) xGP +Bmum -BPuP =0 

uP =B;(Am -AP) xGP +B;Bmum 

(2.2) 

(2.3) 

reference model coefficients. Ap and Bp are the plant coefficients and u; represents 

the pseudo-inverse of the matrix BP . u., and Up are the inputs to the reference model 

and plant respectively and xG P is the plant state. 

These equations lead to Erzberger's conditions (Equation (2.4) and (2.5)). 

(1-BPB;) (Am -AP)=O 

(1-BPB;) Bm =0 

Where I is the identity matrix. 

(2.4) 

(2.5) 

In order to satisfy Erzberger's conditions the system must obviously have the same 

number of inputs as states. This is very rare and so it is difficult to find an appropriate 

reference model that represents the desired dynamics and satisfies the conditions. 

However, even if the conditions are not satisfied then Equation (2.3) can still be used 

to find uP. 

There are two drawbacks with this method. If the conditions are not met then the 

system can become unstable and there is no control over the location of the poles of 

the system. The poles are the key to determining if a controller is stable in that they 

are the roots of the characteristic equation associated with the system transfer 
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function. If any of these poles are located on the right hand side of the s-plane the 

system will become unstable [Kuo ( 1982)]. One advantage is that this type of control 

system is not very complex and the method does not use xG P . 

Kim et al ( 1997) uses fuzzy logic and an ANN for the detection and isolation section 

of the reconfigurable control system before the remaining section reconfigures the 

control laws of the system to handle failures. The block diagram of this system can be 

seen in Figure 2.3, with the neural network using the control signals and the 

measurable system outputs as its inputs. The ANN is originally trained off-line to 

detect faults but is then further trained on-line to update the network. 

Demand + 

Configurable 
Controller 

System 

Neural Net 

Fuzzy Logic 
Module Decision 

Output 

Figure 2.3 SWA TB Control System Set-up (After Kim et al (1997)] 

These ideas were then used in conjunction with a small waterplane area twin hull 

(SWATH) vessel. A back propagation ANN is used which has sixteen inputs, two 

hidden layers with sixteen processing elements in each layer, and one output. A fuzzy 

logic block takes the output from the ANN and decides if a failure has occurred. 

ANNs are made up of a collection of neurons that are arranged in layers. All ANNs 

have an input and output layer, however they also have a varying number of hidden 

layers depending on their function. For fault detection and isolation a single hidden 

layer is sufficient. An example of one type of network is the feed forward multi layer 
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perceptron, which can be seen in Figure 2.4. Back propagation uses information that 

is fed back from the output layer to the input layer as a further input. This method is 

described by Waldock {1996) and an example of error backpropagation can be seen in 

Figure 2.5. 

Input 
(x) 

~i 
wki 

Input Layer Output Layer 

Hidden Layer 

Figure 2.4 The Feedforward Multilayer Perceptron 

Figure 2.5 Error Backpropagation [After Waldock (1996)] 

Output 
(y) 

Two examples of failure detection using a SWATH vessel are then performed and 

explained. The first example shows how the failure has been detected but no 

reconfiguration occurs. For this example, the ANN detection system was trained on 
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four sets of data with one control surface failing. Then a further ten tests with varying 

levels of failure were performed. It took the system between 8 and 44 seconds to 

detect the failure. No false alarms were recorded during any of these tests. 

In the second example, reconfiguration does take place after the failure has been 

detected but there was no explanation of how the system is reconfigured to handle the 

failure. The same ANN is used for this example and one of the previous tests is 

repeated. The ANN and fuzzy logic subsystems take 19 seconds to detect the failure. 

After this, the reconfiguration subsystem makes the necessary modifications and the 

system returns to a stable state. 

This system could be improved by training the ANN with further examples. This 

should speed up the process of identifying failures, but may increase the risk of a false 

alarm if the ANN was over trained. Over-training an ANN occurs when the network 

has been trained on the training data to such a degree that it will match it very well, 

but will lose its generalisation and thus, when checking other data it would incur large 

errors. The fuzzy logic decision module could also be optimised after further testing. 

The paper does not explain the actual reconfiguration but does provide a good 

example of the other two subsystems used, i.e. failure detection and identification. 

Other work in this area presents several different failure scenarios with respect to 

aircraft control reconfiguration during flight [Bodson and Groskiewicz (1997)]. The 

aim was to control an aircraft after it had suffered surface damage and/or actuator 

failures by using some form of adaptive controller. Three algorithms were presented 

and compared. The result being that the direct input error algorithm was deemed the 

most applicable to the problem. 

2.3.3. Restructurable Control 

Rauch ( 1995) also considers a method that fits the definition of restructurable control. 

This is illustrated for a non-linear system using an adaptive controller in a SWATH 

ship. Three proportional-integral-derivative controllers control heading, pitch, and 

roll. It then has an adaptive controller consisting of two blocks, computation element 

and decision element, which chooses the appropriate control laws for the conditions 

and adapts the control parameters continuously as the mission progresses. This can be 

seen in block diagram form in Figure 2.6. 
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Control 
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Actuator 
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SWATH 
Ship 

Figure 2.6 Block Diagram of Adaptive Controller [After Rauch (1995)] 

The algorithm to generate the non-linear function used in the adaptive non-linear 

model is given but there are no examples of it in use. The model could be of any 

system that requires a restructurable controller. The basic idea of this algorithm is to 

take a set of training data and find a function that fits the data. This forms the basic 

starting model and then new information is input, as it becomes available. The model 

is then updated with the new information being the most important, but the old 

information is also taken into account. This could be used in some kind of fault 

tolerant system, as the new information would be from the damaged system. It is 

suggested that fuzzy logic and artificial neural network techniques could be used to 

improve this approach. 

Other papers in this field of research are Looze et a/ ( 1985) which uses linear 

quadratic design techniques to produce a control system for an aircraft suffering one 

or more control element failures. Ochi and Kanai ( 1991) which presents a 

restructurable flight control system based on a linearization method, and Diao and 

Passino (200 1) which presents an adaptive Takagi-Sugeno fuzzy controller for a 

turbine engine. 
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2.4. UNINHABITED UNDERWATER VEHICLES 

This section considers the ideas from the previous sections and new ideas with respect 

to UUVs. Many of the concepts use a basic controller and then append a fault 

handling portion or redesign a standard controller. Eleven control architectures for 

underwater vehicles are given in Valavanis et a/ (1997), whilst Leonard (1995) shows 

that the notion of an UUV being able to operate after a fault has occurred is a 

reasonable one. This is achieved by considering the six degrees of freedom that most 

UUVs have as a mathematical set of dynamic equations and showing that losing 

motion in one direction does not effect the domain of the set and hence is a 

recoverable fault. This is then demonstrated using a model that performed a yaw 

movement by using only roll and pitch movements. It was shown that by a positive 

roll and then pitch motion followed by a negative roll and then reverse pitch motion 

the net motion of the underwater vehicle will be in the yaw direction. 

2.4.1. Fault Tolerant Control 

In the area of underwater vehicles, fault tolerant controllers can be considered the 

most general type of controller and use some of the simplest methods. Yang et a/ 

(1999) describe two fault tolerant systems for the Omni-directional intelligent 

navigator (OD IN) vehicle. ODIN is an AUV with six degrees of freedom. These two 

fault tolerant systems focus on thruster and sensor failures in the vehicle. Results are 

then presented to show the effectiveness of the systems. 

The first fault tolerant system is for ODIN's thrusters. This system uses the thruster 

control matrix (TCM), Equation (2.6). This matrix represents the thruster output force 

to input force relationship. 
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HorThl 

Fox ss -ss -ss ss 0 0 0 0 HorTh2 

Foy ss ss -ss -ss 0 0 0 0 HorTh3 

Foz 0 0 0 0 -1 -1 -1 -1 HorTh4 
= 

M ox 0 0 0 0 Ryxss Ryxss -Ryxss -Ryxss VerTh1 

Moy 0 0 0 0 Ryxss -Ryxss -Ryxss Ryxss VerTh2 

Moz Rz -Rz Rz -Rz 0 0 0 0 VerTh3 

VerTh4 

(2.6) 

Where Fox, Foy, Foz are forces in the x, y, z directions; Mox,Moy,Moz are moments 

in the x, y, z directions; ~s is 0.707; Ry is the distance from ODIN's centre to the 

centre of the vertical thruster; Rz is the distance from ODIN 's centre to the centre of 

the horizontal thruster; HorTh(x) is the force of the horizontal thruster (where x = 

1,2,3,4); and VerTh(x) is the force of the vertical thruster (where x = 1,2,3,4). 

This matrix is used to calculate the required thruster force for each thruster as shown 

in Equation (2.7). 

[Thruster Force]= [TCM r [Force Input] (2.7) 

This can then be used to find the correct input voltage to produce the required output 

thruster force and hence the correct movement by ODIN. 

There were two constraints placed on the fault detection and isolation subsystems. 

The first limited the number of thrusters that could fail during a mission, one vertical 

and one horizontal thruster. The second constraint was that once a thruster fault is 

detected then it is out of operation throughout the mission. 

The fault detection and isolation processes were implemented as one process due to 

each thruster being fitted with its own Hall effect sensor [Hatton and Fennell (I 999)]. 

The desired voltage is then compared, to the voltage measured by the sensor, using 

the conditional algorithm shown on the next page: 
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IF (Input Signal-Output Signai)/Input Signal > TOLERANCE 

THEN count number of times TOLERANCE is continuously exceeded 

IF number of times> TOLERANCE TIME 

THEN send signal that Thruster is Faulty 

ELSE reset counter and repeat monitoring routine 

The thruster fault accommodation subsystem, having determined where the fault is 

located, then eliminates the corresponding column in the TCM and recalculates the 

required input voltage for the remaining thrusters. This effectively reconfigures the 

TCM to permit ODIN to continue with its mission. 

Two tests where two of the thrusters failed during a simple mission, were performed 

and showed that the system could handle this fault by doubling the voltage to the 

remaining thrusters. This allowed the vessel to finish the mission and remain at the 

desired depth. These two tests do show that the system can handle some simple faults, 

but it is not shown if it could handle a fault where it is not possible to double the 

voltage to the remaining thrusters. This would be the case if the thrusters were already 

operating at their maximum when the fault occurred. 

The second fault tolerant system presented is concerned with sensor faults. The sensor 

fault considered is in the heave direction, for which ODIN has two different sensors 

and one virtual sensor obtained by an analytical model of itself. For this system three 

assumptions are made about the fault that may occur. The fault is permanent, only one 

fault may occur and if a sensor is faulty, it is completely inactive and outputs zero. 

Once again the fault detection and isolation processes were implemented as one 

process. This process is a series of IF-THEN logic rules that compare the outputs of 

the two sensors and one virtual sensor to determine which one has the fault. 

The fault accommodation subsystem for this system could not be simpler. The 

algorithm simply switches over to the good sensor and ignores the faulty sensor 

output. This shows why only one fault is allowed to occur, as a second fault would 

leave no good sensors left for the controller to use. 

This subsystem was then tested for a fault occurring in each sensor. Both tests showed 

that the subsystem worked well with the only noticeable effect being the change in 

oscillation of ODIN. This was caused by the different characteristics of the sensors 

and not the fault tolerant system. The oscillation was greater when the sonar sensor 
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was used. This was due to its relatively low resolution when compared to the pressure 

sensor. 

The fault tolerant systems presented were reasonably effective at detecting, isolating 

and accommodating faults for the ODIN vehicle. These systems are unique to the 

ODIN vehicle, but the approach and concept can be extended for use in other 

underwater vehicles in order to deal with similar types of faults. 

Podder and Sarker (200 I) present and demonstrate a fault tolerant control system for 

general use in AUVs. The novel approach given to the allocation of thruster forces 

depends on an excessive number of thrusters being available, and operational, on the 

given AUV. 

A mathematical formulation of thruster forces is then given to prove that the vehicle 

can be controlled in this way is then presented. This work leads to the derivation of a 

relationship between the task space acceleration and the thruster forces. Then reasons 

for the occurrence of thruster faults are given. These faults are detected by monitoring 

the change in current drawn by motors used by the thrusters. It is then shown 

mathematically how these faults can be accommodated by redistributing the missing 

thruster force amongst remaining functioning thrusters, provided there is at least six in 

fully operational state. 

Then results are presented where the ODIN [as seen in Yang et a/ (1999)] vehicle is 

used in simulations to test the fault tolerant control system. Two cases are given, case 

one where no fault occurs and case two where two thruster faults occur after 12 

seconds (one vertical and one horizontal). In both cases the ODIN vehicle tries to 

track a circular path of diameter two meters in the horizontal plane in 30 seconds. In 

both cases this is achieved and when the faults do occur the system compensates with 

such speed that ODIN appears unaffected. 

This proves the effectiveness of the presented method for making an AUV controlled 

only by thrusters fault tolerant to a limited number of failures within the said thrusters. 

A similar approach could be used for an AUV controlled by actuators only if there is 

sufficient over actuation. 

Perrault and Nahon (1999) demonstrates the ability of a standard AUV to be fault 

tolerant to actuator failures. They explain the method used to control the AUV. Two 

different approaches are used, a standard method when the actuators are available and 

a method based on work by Leonard (1994) when the actuators are unavailable. For 
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both methods the actuators are not permitted to reach saturation levels. This will 

decrease the level of non-linearity ofthe AUV and make control simpler. 

The theory used for the second control system was that motion in one channel of an 

AUV could be accomplished by using motion from other channels. Two examples are 

then displayed showing a five degree yaw angle being achieved by two different 

methods. The first method used the standard yaw controlling actuators and reached 

and maintained the demanded angle after approximately 40 seconds. The second 

method used the actuators controlling the roll and pitch motions to create a yaw 

motion, this method did manage to achieve its aim of a five degree yaw angle, but 

took over 1 00 seconds. 

Finally, their control system was presented with total failure of the yaw controlling 

actuators and showed how a yaw demand of ten degrees was achieved by using 

motions in the roll and pitch channels using the unaffected control actuators. 

2.4.2. Reconfigurable Control 

This section examines methods used in reconfigurable controllers and shows how they 

can be used with respect to UlNs in order to handle faults and, in some cases, also 

improve the general performance. 

In the paper by Katebi and Grimble (1999), a whole control scheme is proposed for an 

AUV, which is composed of three fully integrated layers. These can be seen in Figure 

2.7. The top layer is the navigation layer and this is where all of the reconfiguration 

will take place. The middle layer is the guidance subsystem and the bottom layer is 

the AUV autopilot. 
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Figure 2.7 AUV Control Scheme [After Katebi and Grimble (1999)] 

The AUV model used for this work is described by a set of non-linear differential 

equations (Equation (2.8)). 

MK(t)dxk(t) = Jk[xk(t),zk(t),ck(t)]+ gk[xk(t1zk(t)] uk(t) 
dt 

dzk(t) = hk[zk(t),xk(t),uJ 
dt 

(2.8) 

Where MK(t) is the mass matrix, the functionsjk and gk are mappings of the vehicle 

motions into forces, the function ck(t) represents the hydrostatic and hydrodynamic 

forces and moments acting on the vehicle. The function hk includes the kinematic 

relations, Uc is the ocean current constant, xk is the vector of surge, sway, heave, roll, 

pitch and yaw velocities, uk is the control input vector and zk is the vector of x, y and 

z positions and roll, pitch and yaw angles. 

A linear state-space model of the system (as shown in Equation (2.9)) 1s then 

presented for use in the local controller and diagnostic subsystems. 
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ikl{t) = Aklxkl{t) + Bt1ukl{t )+ c;{t) 

ykl{t) = cklxkl(t) 

zkl{t) = Ht1xkl{t)+ ~(t) 

(2.9} 

Where the vector xkl(t) represents positions and attitude and the translational and 

rotational with respect to the body axis co-ordinates, ykl(t) denotes the variables to 

be controlled, zkl{t) represents the measured variables, the vector ukl{t) is the 

actuator inputs, the signals c; and ~ are zero-mean white noise sequences, Akt, Ckl and 

~ are state space matrices and Bkt is the control matrix. 

The local controller used is a H-infinity controller [Thompson (1993}] and is a trade

off between the plant controller and the diagnostic controller. Also shown in the H

infinity controller in Figure 2.7 are the interactions between these two controllers, 

C12 and C21. This controller is designed particularly for the model used, but the same 

H-infinity approach could be used to design controllers for other UUV models. 

The guidance system of this AUV is a predictive controller (PC) which does not 

suffer from the problems associated with a line of sight [Healey and Lienard (1993)] 

algorithm. This is because the PC predicts where the AUV will need to be and so has 

less overshoot when waypoints (target points for the AUV) are close together. The 

robustness of the H-infinity and PC are discussed with the outcome being that 

optimisation can be obtained by appropriate choice of weighting functions for the H

infinity controller and then suitable tuning of the PC. 

The main area of interest, reconfigurable control, is then considered. Two approaches 

to reconfigurable control are examined, which are multiple models and single models 

with adaptive techniques. For the multiple model approach a number of system 

models, each with their own corresponding control law, are first obtained and then a 

decision element chooses which is the most appropriate model and associated control 

law. For fault diagnosis a model must be included for each particular fault condition 

and a normal no-fault condition model. 

The single non-linear model that is continuously adapting is then presented as the 

second approach to reconfigurable control. In general the initial model is based on 

prior information and then continuously adjusted as new information is received. An 

example is given which uses a gain scheduling system. 
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Simulations are carried out to demonstrate the improved performance of the new 

controller compared to a simple H2 controller [Thompson (1993)]. The H2 controller 

works in a similar manner to a H-infinity controller but is less complicated in its 

structure. A further simulation was then performed where the steering system 

develops a fault and simultaneously the gyro fails (sensor and actuator faults). The 

reconfiguration controller is activated when a set level has been passed in the heading. 

A new controller stabilises the system after 30 seconds of activity. 

Tacconi and Tiano (1989) explore reconfigurable control techniques applied to an 

AUV where they consider both sensor and actuator faults. 

A mathematical model (Equation (2.10)) of an AUV using a mobile reference system 

is presented for use. This model of the vehicle uses six non-linear coupled equations. 

mzi = XT- mgsin () + mvr- mwq 

mv = YT + mgsin f/JcosO + mwp- mur 

nnv = ZT + mg cos rp cos()+ muq- mvp 

IxP =KT 

IA=MT 

1/=NT 

(2.10) 

Where u, v, w are velocity components along the three axes, p, q, r are the three 

components of pitch, roll and yaw angular velocities, O,rp,rp the corresponding Euler 

angles, XT, YT, ZT are the external forces and KT, MT, NT are the external 

moments. 

This leads to a linear state space model of the type shown in Equation (2.11 ). 

it = Axt + But + Gro t (2.11) 

Where xt = [u V w p q r rp () rp Xo Yo zof is an augmented state 

vector, which contains Xo, Y0, Z0 the fixed reference system of the vehicles position; 

ut= ~11 &, &2 & 3 &4 f is the control vector, which contains nt the propulsion 

revolutions per minute, & 1 and o/2 the upper and lower rudder angles, ot3 and & 4 

the port and starboard elevators. rot is a vector that takes external disturbances into 
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account. The three matrices A, B, and G are determined by both the hydrodynamic 

derivatives and the vehicle's speed. 

A Linear Quadratic Gaussian (LQG) method is discussed which produces a robust 

method and can handle small faults. This removes the need to consider such faults 

later and allows the focus to be on larger faults due to system failures. 

A LQG control system design requires the control vector be chosen during each 

transition from one way point of the AUV mission task to the subsequent one in such 

a way that the expected value of a quadratic cost function J of state and control vector 

ut(t) is given by: 

J = E f: (xe (t) QTxt(t) +ut r (t )RTut(t )) dt (2.12) 

Different types of missions can be easily managed by a proper choice of the weighting 

matrices QT and RT. 

If it is assumed that tr>>to then a computationally simpler problem can be solved, 

which supplies a linear feedback of the type shown in Equation (2.13). 

ut{t)= -Kit{t) (2.13) 

Where the matrix K is obtained by solving a time-invariant Riccati equation, while 

it(t) is an optimal estimate of the state vector xtk(t) supplied by a Kalman filter. 

The linear quadratic method for controlling plants is a robust form of controller and 

therefore very good at compensating for noise in the system. For further details of 

linear-quadratic control theory see Dorato et a/ (I 995). 

Brief consideration is then given to integrated navigation systems, on-line monitoring 

and fault detection. The model uses Kalman filters in the navigation system and a 

statistical decision test for the fault detection and identification module. 

When faults occur in the AUV structural changes may occur in the mathematical 

model, which will cause the vehicles performance to decrease to an irreparable level. 

The robust LQG design can be used to provide a reconfigurable controller. This is 

achieved by using a previously computed mathematical model to handle the new 
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system. It computes the new model as required however it would be computationally 

advantageous to have the solutions stored into a look-up table. 

These methods were originally proposed for use in the aerospace field and have easily 

been adapted for implementation in an AUV control system. Unfortunately, despite 

discussing the method in detail, no results are presented within the paper. 

Derradji and Mort ( 1996) describe and test two methods of reconfigurable control for 

a submersible vehicle using an ANN approach. The traditional algorithm for an ANN 

controller used for such vehicles has problems if any form of control failure occurs. In 

order to deal with this, two new methods are presented both of which are capable of 

handling faults. 

The first of these methods is the linear model following approach, which uses a state 

space model of the normal plant as the ideal model and the plant as a state space 

model of the impaired model. Whilst in operation this approach modifies the signal 

from the neural network controller to make the impaired system act the same as the 

ideal system. 

The second method is the Error Vector Suppression (EVS) method. This approach 

simply disregards the error vector element in the adjustment algorithm and thus forces 

the impaired closed loop system output to be the same as the ideal systems output. 

These two methods were tested using the state variable model in Equation (2.14) 

which is a linear multivariable representation of a large submarine vehicle. 

xJi + 1) = Admxm(i)+ BdmuJi) 

Y m (i) = EdmXm (i) 
(2.14) 

Where Adm E 9{"'", Bdm E 9{"", Edm E 9lm'• are matrixes related to the vehicle 

dynamics, xJi) E 9{"'
1 the state of the vehicle model, uJi) E 9{"1 are the inputs to 

the model and y m (i) E 9l m•1 are the model outputs, all at time i. 

For the tests, a three layer neural network with an input layer containing 8 linear 

neurons, an output layer containing 4 linear neurons and 30 non-linear neurons in the 

hidden layer, was used as the controller. The tests involved simulating several levels 

of control surface failures, first in the rudder and then the starboard stem plane. Both 

methods provided satisfactory performance over a variety of conditions. The EVS and 

linear model following both managed to reconfigure the remaining control surfaces to 
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accommodate the failures. There was very little difference between the methods in 

performance, but the EVS used less computer memory and so makes it a much better 

option for real-time applications. 

Ishii et a/ {1995) control an AUV using an adaptive ANN which is continuously 

updated as the AUV operates. For the method described, an ANN is first trained off

line to be the controller for the given AUV and then a second ANN is used to model 

the output of the system, known as the identification network. These two ANNs act 

together almost as a single ANN to control the AUV. In the improved method the 

identification network is regularly updated as the mission develops. This simply 

improves the performance of the controller, but could, with a little work, be adapted to 

become some form of reconfigurable controller or even a restructurable controller 

where the ANN adapts to the new input of the now impaired system to restructure the 

controller and regain total control of the AUV. 

Caccia and Veruggio (2000) use a proportional plus integral-type guidance algorithm 

to control a prototype ROV's depth and motion. This controller has a three level 

hierarchical architecture. The motion, during operation, is estimated by a set of 

sensors all with different capabilities. This information is compared with the mission 

tasks in order to keep a theoretical track of what the ROV has accomplished and is 

still required to undertake. Once the controller is informed of the intentions of the 

ROV, the information is used to compute the force and torque, which must be applied 

to complete the given tasks. The next step performed by the controller is to take the 

required force and torque information and translate it into actuator outputs. This is 

where reconfiguration takes place. In theory, when an actuator fails the translation 

will simply ignore that actuator as a possible output. As the same force and torque are 

still required, the workload will need to be redistributed between the actuators that 

remain functioning, hence reconfiguring the controller to cope with the loss of an 

actuator. Their reconfigurable controller is capable of handling total failure in one or 

more thrusters as was shown in the presented test results. 
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2.5. CONCLUDING REMARKS 

This Chapter has provided background knowledge of intelligent control and other 

strategies for AUVs. It started by explaining why aRCS is required in an AUV. Then 

an explanation of the three types of fault tolerant controller was given. The next 

section gave examples of fault tolerant controllers being used in non-AUV systems. 

Finally, there are examples given of the work undertaken thus far on fault tolerant 

controllers when used in AUVs. 

Throughout the last two sections of this Chapter many of the examples of fault 

tolerant control systems used artificial intelligence techniques such as fuzzy logic or 

ANNs to achieve their objectives of creating a level of tolerance to given failures 

within the systems presented. 

There has been much work carried out on non-AUV fault tolerant control, for both 

sensor and actuator failures. However, limited attention has been given to applying 

these ideas in the important area of underwater vehicles. In work where failures have 

been considered within an AUV, the main focus has been on sensor and thruster 

failures. Clearly from the aforementioned dearth of research into neuro-fuzzy 

approaches to sensor and canard controlling actuator faults, it is clear that these areas 

have not been considered in any depth. Therefore it is felt that research in these areas 

could offer significant advances in the development of fault tolerant control schemes 

for AUVs and thus would provide an excellent area of research. 

The research to be undertaken in this thesis will look at fuzzy logic approaches to both 

sensor and actuator faults, with the actuators being considered being those which 

control the AUVs canards. The research presented will lead to an increase in 

knowledge in the areas being considered. 

The next Chapter will give details of the dynamics of the UUV used in this study, the 

proportion-derivative controller and adaptive neuro-fuzzy inference system (ANFIS) 

controller developed by Craven (I 999) for the given AUV model are also presented. 

In addition the identification models of the AUV that will be used later in the thesis 

will also be introduced. The faults to be considered for this work are also displayed 

along with the methods used to tune the fuzzy inference systems used within the fault 

tolerant controller. 
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CHAPTERJ 

UNINHABITED UNDERWATER VEHICLE DYNAMICS, 

IDENTIFICATION MODELS, VEHICLE FAILURES AND 

TUNING METHODS 

3.1. INTRODUCTION 

The aim of this Chapter is to explain the dynamics of the supplied uninhabited 

underwater vehicle (UUV) model and to give relevant information required- for the 

remainder of the thesis. 

The information given within this Chapter concerns the identification models and the 

methods used in their creation, the types faults to be considered, and the methods used 

to train the fuzzy inference systems (FISs). First, background information on the UUV 

model dynamics and the benchmark standard proportional derivative (PD) and the 

adaptive neuro-fuzzy inference system (ANFIS) controllers to be used is introduced. 

Then the development of the identification models is described and it is shown which 

type of model is most appropriate for use in the fault tolerant controller. Attention is 

also given to the sensor and actuator failures to be considered in this work. Finally the 

three methods which are to be used to tune the FISs in later Chapters of the thesis will 

be presented. 

3.2. UUV MA TLAB MODEL DYNAMICS 

The model employed throughout this thesis was purposely designed to provide a 

common design framework within the United Kingdom UlN research community in 

the navigation, guidance and control field and supplied by the Defence Evaluation and 

Research Agency (DERA), Sea Systems Sector, Winfrith. If required, the cable 

dynamics pertaining to a remotely operated vehicle (ROV) can be included during a 

simulation. The vehicle is considered herein as an autonomous underwater vehicle 

(AUV). An in-depth description of the dynamics can be found in Craven (1999). 
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Obviously, the UUV model alleviates the requirement for an in-depth study of the 

UUV background modelling work. The previous work by Craven (1999) also removes 

the requirement for an in-depth study of control strategies for UUV s. 

3.2.1. Equations of Motion 

To implement the vehicle equations of motion use is made of a MATLAB/Simulink 

simulation model termed Release Version 1.0/UUVmod-GEN. This model has been 

validated against standard DERA hydrodynamic code using tank test data and an 

experimentally derived set of hydrodynamic coefficients from the Southampton 

Oceanography Centre's AUTOSUB vehicle. 

The inertial terms within the AUV equations of motion are given by Equation (3.1): 

I x P - (I Y - I, }Jr + I "Y ( pr - q ) - I>' (q 2 
- r 2 

) - In ( pq + ; ) · 

+ m [ y 0 ( l~ - uq + vp ) - z 0 ( ~ + ur - wp ) ] = K 

I y q + (I r - I, )pr - I "Y ( qr + p) + I 1, ( pq - ; ) + In (p 2 
- r 2

) 

- m [ x 0 ( ~ - uq + vp ) - z 0 ( 1~ - vr + wq ) ] = M 

I, ,"+(I Y - I Jpq -.I xy (p 2 
- q 2 

)- I>' ( pr + q) + I., ( qr - p) 

+ m [ x 0 ( ~ + ur - wp ) - y 0 ( ~ - vr + wq ) ] = N 

(3.1) 
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The hydrodynamic force model provided by the DERA is as shown in Equation (3.2). 

X=~ pl 2 [X~.u 2 + X> 2 + X:.Ww 2
] 

+ ~ p/
3

[ X~~+ X>r + X~wq] 

1 2 2[ ' ' ' ' ] 
+Zpl u x •. Ob,.ob"' +X •• Ob,,obrl +X •• a."'o''" +X •• a.rlosr, 

+ ~ pr[x~qq 2 + X> 2 + X~,pr ]+X....,..., +Gx 

l 2[ ' 2 ' ' ' ' ] y = 2 pi r •• u + Y.)IV + y vwvw + r. vTP + Y. vT, 

l 2 2[ ' ' ' . ' ] + 2 pi ll yuuObnJ 0 bru + yuuObrl obr/ + YUU<!.nJ 0 SnJ + yuu&rl 0 sr/ 

I 1[ . · · . · . · ] + 2 pi Y~ v+ Y.Pup + Y.,ur + Yvq vq + Y..,P wp + Y..,, wr 

+ ~ pdY~IrJObruulrlobru + Y~lrJObrtulrlobrt + Y~JrJ<~.ruulrlo"" + Y~JrJ&rlulrlosr,] 

+ ~ p/
4

[ r; ~+ r; ;+ r;
1
p

1
PIPI + r;qpq + Y~,qr] + Y"""" + Gr 

t 2 [ • I I . . . ] +2pl z.1..,1uw +Z •• uv+Z..,wTb +Z..,wTs 

+ ~ p/
3

[ z~ ~+ z:quq + z:pvp + z>r] 

+ ~ p/
3 
[+ z:JqJ&pulqlo,P + z:JqJa..ulqlo ss + Z~JqtwJwlq I wiTh + Z~JqtwJwlq !wiTs] 

+ ~ p/
4

[ z; ~+ Z~pp 2 
+ Z> 2 + Z~,pr] + Zwave + Gz 

(3.2) 

and the hydrodynamic moment model is as shown in Equation (3.3): 
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I 1 2[ · · · · ] + 2 ri u K •• &,.0bru + K •• &rlobrl + K •• li,.o,,. + K •• lirlosr, 

+ ~ {i
4

[ K~ ~+ K~Pup+ K~,ur+ K~vq+ K~Pwp + K~wr] 

+.!.{i
5
[K: ~+K: ;+K~,qr+K~9pq+K" 1 1pjpJ]+Kwave +GK 2 p r PP 

1 4[ ' . ' . . ' J +2{i M;.lv+M.9uq+Mvrvr+M.Pvp 

+ ~ {i
4 (M~qTb + M~q1: + M:lqllipo,Pujqj + M:l'li&o ... ujqJ] 

1 3[ . 2 ' . ] N=-{i N •• u +N •• uv+NvwVlY+ 
2 

I 1 2[ · · · · ] + 2 {i 11 N.ua,,.ob,. + N.ua,r~Obrl + N •• a.,.o,,. + N •• a.,,o.r~ 

+ ~ {i
4 

[ N~ ~+ N~Pup + N~,ur + N~P wp + N~T wr + N~9 vq] 

+ ~ {i
4 
[N>Tb + N~rT,) 

+ ~ rJ4 [N:Irf&,.ob,uJrJ + N:1,1&rlob,uJ~ + N:Ha.,o.,.uJrJ + N~lrf!irlo,rluJrJ] 
(3.3) 

where the hydrostatic terms (Gx .... N) acting upon the vehicle are commonly referred to 

as restoring forces and moments. 

Naturally, gravitational forces act down through the vehicle's centre of gravity, 

whereas the force provided by the buoyancy of the vehicle acts through the vehicle's 

centre of buoyancy. With respect to the underwater vehicle used within this study, the 
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Euler angle representations of these restoring forces and moments are thus given by 

Equation (3.4): 

G x = -(w- B)sin (e) 

G, = (w- B)cos (B)sin (~) 

Gz = (w- B)cos (B)cos (~) 

G K = (y 0 W - y BB )cos (B )cos(~)- (z 0 W - z BB )cos (B)sin (~) 

GM = -(x0 W- xBB)cos (B)cos (~)- (z 0 W- zBB)sin (B) 

G N = (x0 W- xBB)cos (B)sin (~)+ (y0 W- yBB)sin (B) 

(3.4) 

With respect to Equation (3.1), Equation (3.2), Equation (3.3) and Equation (3.4) the 

following parameters describe the AUV model used herein: 

W=35316N B=35316N I= 1.0 m m= 3600 kg 

p= 1025.2 kgm"3 lx = 320 kgm2 ly = 8304 kgm2 lz = 8304 kgm2 

lx:y = 0 kgm2 lxz = 0 kgm2 lyz = 0 kgm2 
XG = 0.34 m 

ya=Om za= 0.02 m xa = 0.34 m ys=Om 

zs=O m 

It should be noted that whilst the full six degree of freedom equations of motion are 

reproduced here, the hydrodynamic coefficients of the model remain the property of 

the OERA. 

3.2.2. PD Controller 

The classical method to control a vehicle such as this AUV is to use a proportional, 

integral and derivative (PID) controller or one of its variants. The PID controller uses 

information from the feedback sensors and then multiplies them by set values to 

produce a control signal. These set values would be derived from the plant with which 

the controller is to operate. This method does however have limitations as all of the 

values are invariant. 

For this thesis a linear proportional and derivative (PO) controller, designed by 

Craven (1999) for this exact AUV model, will be used to demonstrate how a classical 

approach handles faults being considered. This PO controller was produced from the 
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open loop to canard rudder transfer function. Thus, the standard PO controller used in 

this thesis is the same as was used in previous work [Craven ( 1999)] and is shown in 

Equation (3.5). 

G (s) = 1 + 1.204s 
c,rp, 1+0.708s 

(3.5) 

Where c is the control signal and V'• is the yaw angle error. 

The AUV is controlled by many rudders attached to the hull in the configuration 

shown in Figure 3. I. This project is concerned only with motions in the yaw and roll 

channels. For this project the yaw channel is primarily controlled by the upper and 

lower canards, with the roll channel being controlled by the two stem planes. It is 

possible to control both the yaw and roll channels by using other control surfaces. 

Pitch Control 

Sway Control Thrusters 

Figure 3.1 Diagram of AUV Control Surfaces 
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3.2.3. ANFIS Controller 

There are several ways of improving on the basic PD controller design, one of which 

is to use a fuzzy logic controller. For this thesis a fuzzy logic controller, developed by 

Craven ( 1999) using the ANFIS approach, will be used as the starting point for the 

fault tolerant control system. This ANFIS tuned fuzzy logic controller is more robust 

to perturbations in the hydrodynamic coefficients as shown by Craven ( 1999). For the 

definitive guide to this controller it would be best to consult the thesis referenced 

above, however there now follows a short review. 

Functionally, there are almost no constraints on the membership functions of an 

adaptive network except piecewise differentiability. The only structural limitation on 

network configuration is that it should be of the feed-forward type. Due to these 

minimal restrictions, the adaptive network's applications are immediate and immense 

m vanous areas. 

If it is assumed that the fuzzy inference system (FIS) under consideration has multiple 

inputs and one functional output (f) (as is the case for this work) then the fuzzy rule

based algorithm may be represented in the first order Sugeno form as shown in 

Equation (3.6): 

Rule I : Ifx is A1 and y is B1 then f1 = P1 x + q1 y + r1 

Rule 2 : Ifx is A2 and y is B2 then f2 P2 x + q2 y + r2 

Rulen: IfxisAnandyisBnthenfn = PnX + qny + rn 

The corresponding ANFIS architecture being shown in Figure 3.2. 

(3.6) 

The node functions in the same layer are of the same function family as described by the 

following: 
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layer 1 layer 2 layer 3 layer 4 layer 6 
(premise paramelera) (consequent parameters) 

xy 

Figure 3.2 The ANFIS Architecture 

Layer 1: Every ith node in this layer is an adaptive node with a node output defined by 

(3.7) 

where x is the input to the general node and A; is the fuzzy set associated with this 

node. One possibility is that A; is characterised by the generalised bell function: 

f.J A; (x) (3.8) 

where {a;, b;, c;} is the parameter set. Parameters in this layer are referred to as premise 

parameters. 
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Layer 2: Every node in this layer is a fixed node labelled n, which multiplies the 

incoming signals and outputs the product or T-norm operator result, for example: 

= 1, 2 (3.9) 

Each node output represents the firing strength of a rule. 

Layer 3: Every node in this layer is a fixed node labelled N. The ith node calculates 

the ratio of the ilh rules' firing strength to the sum of all rules' firing strengths: 

W; 
OJ; = wt = ------'--

. wt +w2 
I, 2 

For convenience, outputs of this layer are called normalised firing strengths. 

Layer 4: Every ith node in this layer is an adaptive node with a node function: 

(3.10) 

(3 .11) 

where w; is the output of Layer 3 and {pi, qi, ri} is the parameter set. Parameters in this 

layer are referred to as consequent parameters. 

Layer 5: The single node in this layer is labelled L , which computes the overall 

output as the summation of incoming signals: 

(3.12) 

This has explained the basic structure used by the ANFIS. Now follows some 

information on the learning method used. 
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The training method used by the ANFIS is now described. 

Rewriting the premise membership function Equation (3.8) as: 

(3.13) 

then Equation (3.13) now represents the jth membership function on the ith input 

universe of discourse. Therefore the learning rule for a general parameter may be 

described as follows: 

p a!: ilJif 
- -n ~ -"- __.2!!... - .,. ;;;t iD f. · m:~ 

Hence, the learning rules for each individual parameter are: 

(3.14) 

A .. =- ~a!:. iDi. ifau x-cif if x-cif (315) p .. r 2b (2by-1)( )a 2bu ( )2bu j 
u~ ~~ ... ... 2 . 

n=l iDi. iD?. {a2by(x-c .. )2by +(x-c .. )2bua.2by} 
I) I) 1j I) 

2"v ( }2"" 2
1>. ( }2~>-" [ a,1 l 2aif x-c,1 a,i u x-cif In --

x- cif 
(3.16) 

(3.17) 
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The fuzzy consequent parameters being updated using a recursive least squares method. 

The main advantage of the ANFIS approach is its adaptive capability, which is 

advantageous when developing a fault tolerant control system. This approach has been 

used to tune FISs in later Chapters due to its successful use by Craven (1999) m 

developing the intelligent control system which is used within this work. 

A fuzzy logic controller permits the set values to be altered depending on the size of 

the inputs. A non-linear plant, such as the AUV, may behave differently in extreme 

conditions. A fuzzy logic controller can effectively have a different set of control 

variables for each extreme case. The fuzzy logic control system used within this work 

is of this kind and it is called an ANFIS controller because this is the method used to 

tune the controller. ANFIS uses a set of input output data along with a neural network 

approach to tune the fuzzy rule base in-order create the best possible controller. 

Two controllers were developed in this way for this AUV, one for controlling just the 

yaw channel, and a second for just the roll. As this thesis deals with work in both the 

yaw and roll channels the ANFIS controllers for both are given in Equations (3.18) 

and (3.19): 

The yaw channel ANFIS controller, 

If 'lf6 is negative and 'it is negative then 0 = -0.4863 '1/6 -0.8791 'it -0.02926 

If 'lf6 is negative and 'it is zero then 0= -0.4890 'lf6 -0.9021 'it +0.001381 

If 'lf6 is negative and 'it is positive then 0 = -0.4858 'lf6 -0.8962ift+0.003143 

If 'lf6 is zero and 'it is negative then 0 = -0.2994 '1/& -0.7034 'it -0.1227 

If 'lf6 is zero and 'it is zero then 0= -0.4879 11fr0.891 Oift +0.003723 (3.18) 

If 'lf6 is zero and 'it is positive then O= -0.3053 '1/& -0.3055 'it -0.03744 

If 'lf6 is positive and 'it is negative then 0 = -0.5902 '1/& -0.8387 'it -0.1172 

If 'lf6 is positive and 'it is zero then 0 = -0.4811 '1/r 1.081 'it -0.06111 

If '1/& is positive and 'it is positive then 0 = -0.6596 '1/& -1.311 'it+ 0. 7814 

Where 'lf6 is the yaw angle error given by yaw angle demand minus actual yaw angle, 

'it is the yaw rate and Ois the desired canard angle. 
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The roll channel ANFIS controller, 

If f/Jc is negative and~ is negative 

If f/Jc is negative and~ is zero 

If f/J6 is negative and~ is positive 

If f/J. is zero and~ is negative 

If r/Jc is zero and~ is zero 

If f/Jc is zero and~ is positive 

If ,P. is positive and~ is negative 

If f/Jc is positive and~ is zero 

If ,P. is positive and~ is positive 

then 4 = -0.4861 f/J.-0.8793 ~-0.0289 

then 4 = -0.4887f/J.-0.9022~+0.0014 

then 4 = -0.4864f/J.-0.8960~+0.0030 

then 4 = -0.2992r/J.-0.7034~ -0.1231 

then 4 = -0.4876f/J.-0.8912~+0.0044 

then 4 = -0.304Sf/J.-0.3063 ~-0.0370 

then 4 = -0.590 I f/J.-0.8388 ~ -0.1174 

then 4 = -0.4805r/J6-l.0810~-0.0611 

then 4 = -0.6590f/J.-l.3110~ +0.7808 

(3.19) 

Where f/J. is the roll angle error given by yaw angle demand minus actual roll angle, 

~ is the roll rate and 4 is the desired plane angle. 

3.3. IDENTIFICATION OF AUV DYNAMICS 

The aim of this thesis is to produce fault tolerant controllers capable of handling 

sensor and actuator faults in the given AUV. One of the tasks that must be completed 

before work can begin to design and develop the fault tolerant controller is to produce 

identification modules. These modules will be used to detect if a fault has occurred in 

any of the AUV's systems. For this work two channels are being considered, the yaw 

channel and the roll channel. Two identification modules are required, the first need 

only detect failures within the yaw channel, and the second only within the roll 

channel. Firstly to consider a failure in the yaw channel, either a sensor or actuator 

fault, and the simplest way of identifying a fault is to have a model of the vehicle and 

compare outputs with the given AUV. 

The process used to develop both models was identical, in the interests of brevity the 

development of only the yaw identification model will be shown. The objective of the 
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yaw identification module is to take the information from the controller and produce 

an estimate of the yaw and yaw rate of the AUV. 

Three possible approaches were considered for producing a model of the AUV. The 

first was to use an Elman network, this is a recurrent artificial neural network (ANN) 

and so can be trained to recognise patterns in time as well as space. The second was 

the ANFIS method, this was chosen because the controller to be used in the AUV is of 

an ANFIS design, as previously discussed in section 3.2.3. A linear model was also 

considered as this is the more traditional approach to modelling a dynamic system. 

Three approaches were considered because of the non-linear nature of the AUV and it 

was not clear, in advance, which one would produce the best results. 

AJI of this work has been carried out within the Matlab environment. Early tests of 

both the Elman network and ANFIS technique showed that they were far better at 

modelling yaw rate as opposed to yaw and therefore in this thesis the results are only 

shown for yaw rate as the output. With the yaw angles being obtained from the yaw 

rates simply by integration. 

AJI of the work described in this thesis was carried out using the same conditions. For 

all of these simulations the AUV was given an initial speed of 7.5 knots and the 

thrusters were given a constant input of this velocity throughout. The AUV is 

controlled by a set of rudders positioned on its hull which are controlled by actuators. 

The yaw angle is controlled using two of these actuators (the upper and lower 

canards). These two canards can move to +/- 25.2 degrees at a maximum rate of 9.9 

degrees per second. There is also a set of thrusters, which can be used for controlling 

yaw angle, but they are only used when the AUV is moving at a low velocity and 

therefore are not considered during this work. 

3.3.1. Training and Testing Data 

To create and develop all of the required models, training data was essential. This was 

obtained by using a specific input pattern in the open loop AUV set-up as shown in 

Figure 3.3. In the diagram input refers to the signal being given to the AUV and 

output refers to the yaw rate the AUV produces in response to this signal. The input 

used for training purposes is shown in Figure 3.4. The corresponding yaw rate for this 

can be seen in Figure 3.5. Also included is the yaw angles the AUV produced during 

this process seen in Figure 3.6. For the training path, a random input lasting for 1000 
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seconds was used. The random values did not exceed a modulus value of 25.2 

degrees, this is because the canards used to control the yaw angle of the AUV cannot 

exceed these values. It is worth noting that the signal is permitted to remain at the 

maximum value long enough for the canards to reach the saturation levels. 
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To test the models further sets of data were required. A set of step input paths 

[Derradji and Mort (1996)) was selected to test the models. 

Three different levels of step inputs were considered. A small value (5 degrees), a 

medium value (15 degrees), and a large value (25.2 degrees). These three simulations 
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were all run for 60 seconds with the step input occurring after 5 seconds. The input 

signals can be seen in Figure 3.7 with the corresponding yaw rates shown in Figure 

3.8. 

The large value was selected to be 25.2 degrees as this is the largest angle any of the 

canards can achieve and hence any larger value would be meaningless. Due to the 

symmetrical shape of the AUV it is unnecessary to consider negative input values 

when testing as these will produce the same responses, but in negative values. 
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In the training of these models three possible inputs and one output were considered. 

All three inputs to be used were from the input data and the output used was the yaw 

rate of the AUV. This information was obtained by running the AUV along the 

training path in the Matlab/Simulink environment and recording the four sets of data. 

These four sets were the input data, the input data delayed by one second, the input 

data delayed by two seconds and, the yaw rate. All the data was recorded at one tenth 

of a second intervals to create 10001 pairs of input-output data. 

3.3.2. Elman Networks 

Elman networks [Warwick et a/ (1992)) are a form of ANN. This type network is 

made-up of two layers, a recurrent layer and an output layer. The training method 

used for this ANN is the backpropagation method with a momentum value of 0.95 

and an adaptive learning rate with initial value ofO.Ol. 
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If the ANN repeatedly improves then the learning rate is increased to 105% of the 

previous value, however if the ANN is not improving the value is reduced to 70% of 

the previous value. This helps the ANN to find the best solution to the problem and 

remain at that setting. The momentum value is used to stop the ANN from getting 

stuck in any local minima it may encounter. 

These two values are used along with the input-output data pairs to train the ANN 

using the backpropagation method. The backpropagation method will not be 

explained within this thesis, however many explanations of this procedure have been 

written, such as Haykin (1994). 

As the AUV model is highly non-linear a recursive network is the best choice of ANN 

as they can handle patterns in time. The results for the model that produced the best 

results can be found in Appendix B. 

3.3.3. Adaptive Neuro-Fuzzy Inference System (ANFIS) 

Another approach considered was to use fuzzy logic to create a model of the AUV. It 

is a simple process to generate a FIS based on the AUV dynamics but these lack 

accuracy. Tuning can solve this problem, to tune the FIS an ANFIS [Jang (1991)] 

program was used within the Matlab environment. The ANFIS method tunes the FIS 

using a backpropagation algorithm [Haykin (1994)], which uses a set of input-output 

data. This is the same approach as was previously used for designing the control 

system as explained in section 3.2.3. The set of results for the model that produced the 

best results of this kind can again be seen in Appendix B. 

3.3.4. Linear Models 

The third method used was a state space linear model [Fairman (1998)]. The main 

reason for adopting this approach was that it is the classical approach to the modelling 

of a dynamic system such as the AUV. A second reason for adopting this approach is 

that a Kalman filter will be used in further work and a state space linear model is 

required for this. The mathematical form of the state space model used is shown in 

Equation (3.20). 
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i =Ax +Bu 

y=Cx+Du 
(3.20) 

Where A and C are the state vector coefficients matrices, B and D are the control 

vector coefficients matrices, u is the control input vector, x is the current state vector, 

i is the new state vector and y is the output vector. 

Again, there were already programs within the Matlab environment to generate and 

train state space models using given input-output data. The results for the model that 

produced the best results of this type can also be seen in Appendix B. 

Several linear models ofthe AUV were obtained from DERA. These models were for 

the AUV moving with several different velocities. The control systems developed by 

Craven (1999), which are being used for this work, were designed for use with the 

AUV having a velocity of7.5 knots. It was therefore logical to continue to work with 

the AUV having this velocity and therefore a 7.5 knots linear model was used as a 

benchmark for the models which have been developed. The results for this benchmark 

model using the training and testing data, are shown in Appendix B, and have been 

included purely for evaluation purposes. 

3.3.5. Results and Comparisons 

Having defined the types of models to be used and the methods used to implement 

them, the next stage was to decided on a testing method for the models. As the AUV 

operated in an open loop set-up when the training data was recorded, the models were 

all tested in exactly the same way to enable a fair comparison. This set-up is shown in 

Figure 3.9. 

Input 

Model 
Output 

Figure 3.9 Open Loop Set-up for Testing of Models 
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Figure 3.9 shows the set-up used to obtain training and testing results for the models. 

An input signal is sent to the model which then produces its estimate for the current 

yaw rate, which is then integrated to give the yaw angle. 

The statistical method used to evaluate the performance of the models was the root 

mean squared error (RMSE). This will give the average difference between the model 

and the AUV over the considered path. The equation used to calculate this is shown in 

Equation (3.21). 

i=nnnse 

L(Auv; -MOD;}
2 

RMSE= i=O (3.21) 
nrmse 

Where RMSE is the error value, nrmse is the number of points measured, AUV; is the 

information received from the vehicle at point i, and MOD; is the information 

received from the model also at point i. 

The first set of training was performed with the Elman network. The procedure for 

this was first to initialise a random Elman network and then to train it for 500 epochs. 

The training was then repeated until 2500 epochs was reached, with the sum-squared 

error (SSE) being recorded for later reference. The SSE was used as the Matlab 

program used this to evaluate the network. The units for SSE in this work are degrees 

per second squared. This process was repeated three times for each number of neurons 

in the recursive layer and input sets. The training was repeated with different starting 

values in order eliminate the possibility of a false result. The best model of each group 

of twelve was then tested over all of the training and testing paths in the open loop 

set-up as shown in Figure 3.9. The RMSE for both the yaw and yaw rate were 

recorded for each path and used to determine which of the models most closely 

approximated the AUV. 

Examination of these results showed that the best Elman model was the one which 

had 32 neurons within its hidden layer, used all three input signals and had been 

trained for 1000 epochs. The model had the lowest errors when all four parameters 

were taken into account. The outputs of the Elman model, when attempting the 

medium step input (15 degrees), are shown in Figures 3.10 and 3.11. 
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The error in the outputs were then calculated by taking the model outputs from the 

AUV outputs. These are shown in Figures 3.12 and 3.13. The second set of training 

was performed using the ANFIS approach_ For this the procedure was to first initialise 

a FIS model using the 1000 l pairs of training data and then train the model using the 

Matlab commands. After each training of 100 epochs the models were tested and the 

RMSE recorded. Due to the initial FIS being based on the training data, and not just a 

random starting point as used by the El man network. It is acceptable to train each size 
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of model only once. The best model for this approach was fuzzy model which had a 

27 fuzzy rule base using all three inputs and had been trained for I 00 epochs, the 

outputs for the 15 degree input test can be seen in Figures 3.14 and 3. 15. 
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The error in the outputs were then calculated by taking the model outputs from the 

AUV outputs. These are shown in Figures 3.15 and 3 .16. 
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For the state space linear model a different approach was used. The only input to the 

model used was the controller output. This time however, both outputs from the 

model were considered. Three types of model were trained one to produce a yaw 

output, another to produce a yaw rate output and a third which models both the yaw 

and yaw rate. The results from the most accurate state space linear model can be 

found in Appendix B. For the models which produced only one output (yaw or yaw 

rate) the other output was obtained by integration or differentiation. From the results 

the best model was one trained for 300 epochs, which produced both yaw and yaw 

rate as its outputs. The outputs of the linear state space model when presented with the 

medium step input test (15 degrees) can be seen in Figures 3.18 and 3.19. 
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The error in the outputs were then calculated by taking the model outputs from the 

AUV outputs. These are shown in Figures 3.20 and 3.21. 
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The DERA model was also used in the set-up shown, the results are shown along side 

the other model results in Appendix B. The DERA model was run over all of the 

training and testing paths and then the RMSE were calculated for both the yaw and 

yaw rates. These four values now provide a minimum standard that all the other 

models must improve upon in order to be considered for any subsequent work. The 

outputs of the closed loop DERA model being subjected to the medium step input 

testing path can be seen in Figures 3.22 and 3.23. 
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The error in the outputs for these results were then calculated by taking the model 

outputs from the AUV outputs, which are shown in Figures 3.24 and 3.25. 

AJI of the tests carried out within this work have the same error measurement (RMSE) 

in order to make comparison easier. 

3.3.6. Summary of Models 

Having tested the identification models, the best of each type will now be displayed. 

Due to the size of the Elman network (the matrix for the weights to the recursive layer 

is 32x35) weight matrices and bias vectors they are not displayed within this Chapter, 

but are shown in Appendix C. 

The information for the ANFIS trained fuzzy logic model is given in Equation (3.22): 

If a1 is negative and a 2 is negative and a 3 is negative then 

If a1 is negative and a2 is negative and a 3 is zero then 

If a 1 is negative and a 2 is negative and a 3 is positive then 
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If a 1 is negative and az is zero and a 3 is negative then 

If a 1 is negative and a2 is zero and a 3 is zero then 

If a 1 is negative and az is zero and a 3 is positive then 

If a 1 is negative and a2 is positive and a 3 is negative then 

If a 1 is negative and az is positive and a 3 is zero then 

If a 1 is negative and a2 is positive and a 3 is positive then 

If a 1 is zero and az is negative and a 3 is negative then 

If a, is zero and a2 is negative and a 3 is zero then 

If a 1 is zero and a2 is negative and a 3 is positive then 

If a 1 is zero and Uz is zero and a 3 is negative then 

If a 1 is zero and a2 is zero and a 3 is zero then (3.22) 

If a 1 is zero and az is zero and a 3 is positive then 

If a 1 is zero and Uz is positive and a 3 is negative then 

sr= -86.09 a.-229.2 Ur75.17 a3+3235 
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If a 1 is zero and a2 is positive and a3 is zero then 

If a 1 is zero and a2 is positive and a 3 is positive then 

If a 1 is positive and a2 is negative and a 3 is negative then 

If Ut is positive and a 2 is negative and a 3 is zero then 

If a 1 is positive and a2 is negative and a 3 is positive then 

If a. is positive and a2 is zero and aJ is negative then 

If a 1 is positive and a2 is zero and a3 is zero then 

If a 1 is positive and a2 is zero and a3 is positive then 

If a 1 is positive and a2 is positive and a 3 is negative then 

If Ut is positive and a2 is positive and a 3 is zero then 

If a 1 is positive and a2 is positive and a3 is positive then 

Where a. is the output from the ANFIS controller, a 2 is the output from the ANFIS 

controller delayed by one second, aJ is the output from the ANFIS controller delayed 

by two seconds, and sr is the fuzzy logic models estimate for the AUV's yaw rate. 
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The linear model used is of the from in Equation (3.20) with values: 

A=[: -2.~326] 
B =[ -0.:398] 

c = [~ ~] 

D=[:] 

With a state vector x = ['I' rjt f, a control vector u = Obr the actuator input controlling 

the yaw motion and an output vector y = ['I' rjt r . 

For completeness the DERA linear model is also included and just as for the linear 

model is of the form shown in Equation (3.20): 
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0 0 0 0 0 0 I 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 1 0 

0 0 0 -U78 0 0 0 0 0 

A= 0 0 0 0 -1.178 0 0 0 0 

0 0 0 0 0 -Ll78 0 0 0 

-2.12 0 0 -0.135 -0.125 1.99 -0.745 1.50 -0.434 

-0.000286 0 0 -0.700 0.685 0.000268 -0.00320 -1.48 -0.184 

-0.0298 0 0 -0.623 -0.580 0.0216 -0.0293 -0.805 -0.413 

0 0 0 

0 0 0 

0 0 0 

0 1.1779 0 

B= 1.1779 0 0 

0 0 Ll779 

0 0 0 

0 0 0 

0 0 0 

C=[: 

0 57.296 0 0 0 0 0 

:] 0 0 0 0 0 0 57.296 

D=[: 

0 

:] 0 

With a state vector x = [~ y 'I' li..,. oc, ob, p r v]I where Ocr is the 

actuator input controlling the sway motion, and o., is the actuator input controlling the 

roll motion, a control vector u = [o..,. (fer 0 br r and an output vector y = ['I' viY. 
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3.3. 7. Model Selected 

On the whole all of the models presented thus far have outperformed the DERA 

model in the open-loop simulations detailed in section 3.3.5 and therefore using any 

of these for further work would be acceptable. 

For the test results displayed in section 3.3.5 the DERA model had a final error value 

of approximately I 00 degrees for the yaw angle and a yaw rate error of just above 2 

degrees per second, after only 60 seconds. The Elman ANN model used failed to 

show much improvement over this step size. It did however manage to improve on the 

DERA model when the small step size was being used, but performed very poorly on 

the largest step size. The fuzzy logic model used to produce the results within this 

report performed closest to the actual AUV model and only once produced a result 

inferior to the DERA model. The linear model used herein also produced an 

impressive set of results again only once failing to improve on the DERA model being 

used as a benchmark. 

From examining the results presented within Appendix B it is clear that the model 

which should be used for further work is the fuzzy logic model. The only concern is 

that this model produces a small yaw rate (approximately 0.1 degrees per second) 

when a zero signal is applied. This can clearly be seen by examining the first five 

seconds of Figure 3.15. This will produce a considerable error whenever the model is 

used for an extended period of time. 

The only model where this did not occur was the linear model. This combined with 

the fact that the results for the linear model were of a similar standard to the fuzzy 

logic model, have led to the conclusion that the best model for the further work being 

considered for this thesis, will be the linear model. 

3.3.8. Closed Loop Responses 

Having tested all of the identification models as open loop systems and deduced 

which of them responded closest to the AUV, the models were placed in a closed loop 

system with the ANFIS controller to test their response. The responses of the best of 

each type of model are shown in Figure 3.26 along with the DERA model and the 

response of the AUV. 
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From this graph it is clear to see that the linear model performed better than either the 

fuzzy logic model or the Elman ANN. The poor performance of the DERA model is 

highlighted in this figure, with its overshoot of 35 degrees and its highly oscillatory 

response. 

3.3.9. Roll Model 

The process used to develop the yaw models was then repeated to produce models for 

the roll channel. Again three types were considered, the ANFIS fuzzy logic model, the 

Elman ANN model and the state space linear model. After testing in both open and 

closed loop cases the best linear model again proved to be the closest approximation 

to the given AUV model. Once again the open and closed loop test also showed that 

the best of each model outperformed the given DERA model. The closed loop test 

results for an initial roll angle of 5 degrees are show in Figure 3.27. Therefore the 

linear model will be used for further work. This model is of the form in Equation 

(3.20) with values: 
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A= [ 0.2210 

-2.0047 

B = [- 0.2252] 
1.7977 

c =[~ ~] 

1.1462 ] 

-0.9984 

With a state vector x = [9l ~ l, a control vector u = 6sr and an output vector 
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Figure 3.27 Roll Responses for a Closed Loop Initial Roll Angle of 5 Degrees 

Figure 3.27 demonstrates the typical responses of the models when the ANFIS roll 

controller is placed within the control loop. The linear model is able to both improve 
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on the DERA linear model and achieve the required final angle, where as the ANFIS 

model becomes unstable and Elman ANN model produces a steady state oscillating 

error. 

3.4. FAULT SET-UP 

Having designed several identification models, the next step was to decide on the 

types of fault that will occur and how they will be implemented. Two types of faults 

are being considered in this thesis, the first fault occurring in the sensor feedback and 

the second occurring in the actuators which position the canards. 

3.4.1. Sensor Faulls 

From a survey of work on the subject of sensor failure, the following types of faults 

were selected: 

(I) Percentage signal failure [Napolitano et a/ (1998) and Yang et a/ (1999)] 

(2) Intermittent signal failure [Mclean et a/ (1997)] 

(3) Noise on the sensor [Fossen and Fjellstad (1995)]. 

For the yaw channel all three types of sensor failure were considered for each sensor 

(yaw and yaw rate) individually over three step input demands (10, SO, and 90 

degrees). While for the roll channel all three types of sensor failure were considered 

for each sensor (roll and roll rate) individually, but instead of a demanded step input, 

three initial roll angles were used (S, I 5, and 25 degrees) with the demanded roll angle 

being zero degrees .. 

The first type of failure involved placing a gain on the sensor feedback to permit only 

a given percentage of the signal to return to the controller. The percentages considered 

were I 00, 75, SO, 25 and 0. Where zero is total failure and I 00% is no fault. This was 

achieved within the Matlab environment by setting up the system shown in Figure 

3.28 and replacing the I value with the relevant value in the gain block. For the roll 

channel work the system is identical but roll replaces yaw. 
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YawAngle 
Sum Controller AW Model 

Gain 

Figure 3.28 Gain on Sensor Feedback for Yaw Channel 

The second type of failure involved using a random signal to intermittently create a 

total signal failure on the given sensor. This sensor failure was implemented within 

the Matlab model as shown in Figure 3.29. For the roll channel work the system is 

identical but roll replaces yaw. 

YawAngle 
Sum Controller AUV Model 

Flip Switch Constant 

Figure 3.29 Flip Switch Between Total and Zero Failure on Yaw Sensor 

The third type of sensor failure to be considered is simply adding noise to the signal. 

Adding band-limited white noise to the sensor output before it has reached the 

controller accomplished this. Figure 3.30 shows how this sensor fault was simulated. 

This third type of fault is not a true fault as all sensors suffer from some level of noise 

and this has been included as all types of controller should be able to cope with noise. 

The noise shown in Figure 3.30 and used within this study has a pseudo-random 

normally distributed (Gaussian) value, with a mean of zero and a variance of one 

determined by the seed value of 23341 (default value within Matlab Simulink block). 

A sample time of two seconds and a noise level which is a percentage of maximum 

sensor signal, know as the signal to noise ratio (SNR) [Anderson and Edmonson 

( 1997)]. For the roll channel work the system is identical but roll replaces yaw. 
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Figure 3.30 Noise Added to Yaw Sensor Feedback 

3.4.2. Actuator Faults 

Also to be considered are actuator failures. For this thesis only actuator failures in the 

yaw channel are considered. From a literature survey of the subject, the following 

types of faults were used: 

(1) Total actuator failure at a zero angle [Looze et a/ (1985)] 

{2) Actuator loss of effectiveness (LOE) [Derradji and Mort (1996)] 

Both of these failures were considered for one of the control surfaces used by the 

control system, when being subjected to three step inputs (10, 20, and 30 degrees). 

Within the AUV model the actuators are formed using three blocks, a rate limiter, a 

saturation block and a transfer function, as shown in Figure 3.31. This is where all of 

the actuator failures will be implemented. 

Input from 
Controller 

Rate Limiter 
9.9 degrees 
per second 

Saturation 
+/- 25.2 
degrees 

1 

.2s+1 
Transfer 
Function 

ToAUV 
Dynamics 

Figure 3.31 Actuator Simulator Within Matlab AUV Model 

The first type of failure is total failure of one control surface at zero degrees. This 

failure has been chosen to simulate the rudder becoming locked and thus being unable 
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to move. This failure was accomplished by setting the input from the controller 

(shown in Figure 3.31) to zero. 

The second type of failure used is one whereby one of the two control surfaces suffers 

aLOE [Derradji and Mort (1996)]. The upper canard was the actuator chosen for the 

faults to be simulated within. The percentages considered were 75, SO, and 25 LOE. 

Where 100 would be total LOE and zero would be no fault. There are three types of 

failure which can be implemented using this approach for actuator failures. These 

failures can be achieved by altering the values within the saturation and the rate 

limiter blocks shown in Figure 3.31. For this work the actuator failures were 

simulated firstly by altering only the value in the saturation block, secondly by 

altering only the value in the rate limiter block, and thirdly by altering both values 

simultaneously to the same level of failure. 

3.5. METHODS USED TO TUNE FUZZY INFERENCE SYSTEMS 

Throughout this study three methods are used to tune the FISs used in the construction 

of the fault tolerant control systems. These three tuning methods are ANFIS [Jang 

(1991)], simulated annealing [Kirkpatrick, et a/ (1983)], and the tabu search [Denna et 

a/ ( 1999)]. This section contains a brief explanation of each one of these methods 

highlighting the advantages of each method and giving reasons why each one has 

been chosen. 

3.5.1. ANFIS 

The ANFIS [Jang (1991)] method has already been explained within this Chapter (see 

section 3.2.3.), and therefore the information will not be reiterated here. 

3.5.2. Simulated Annealing 

The simulated annealing method for tuning the FIS is a stochastic search method 

based on an analogy of a certain physical system and was first employed by 

Kirkpatrick et a/ (1983). Annealing is the process whereby a substance is initially 

heated to a high temperature and then allowed to cool gradually. 
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Energies of the algorithm adapted by Kirkpatrick et a/ (1983) described a Boltzman 

probability distribution as shown in Figure 3 .32. Clearly, the probability of any given 

energy E, is an exponentially decreasing function of E. 

P(8) 

' P(8) = exp[- !}0
) J 

--------------------~--------------------~8 

Figure 3.32 The Boltzman Probability Distribution 

Thus, if a new matrix of parameters 0, (which have been perturbed by a randomly 

generated amount), leads to an improved performance of the system then they are 

accepted. The process is then repeated. However, if this new matrix leads to a 

worsened performance of the system the new parameters may occasionally be 

accepted with probability P(9) such that: 

(3.23) 

Where £(8)is the energy associated with the state 9, k is a constant and T is a 

temperature parameter which decays training according to: 

T= To 
I +an. 

(3.24) 
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Where To is the initial temperature, a is a constant which governs the rate of decay 

and ne is the training epoch. By including this probability function (Equation {3.24)) 

the system is allowed to escape the local minima of the error hyper-surface. 

The simulated annealing method has three clear steps. Firstly, a random change is 

induced in the system parameters. The new parameters are then tested. This will lead 

to the new parameters being accepted if they are an improvement or an improvement 

within the Boltzman probability distribution. Finally, this process will be stopped if 

there is sufficient evidence that the global minimum has been reached within the 

limits of a specified accuracy or when some pre-specified iteration number is reached. 

This method will, given enough time, converge to the best solution to a given problem 

due to the random search of the error surface. The simulated annealing algorithm is 

summarised in Table 3.1. 

Table 3.1 The Simulated Annealing Algorithm. 

1. Simulate the dynamic system using initial parameter set. 

2. Perform random changes to the parameter set and then 

re-simulate the dynamic system. 

3. If the performance of the system has improved then retain 

parameter set changes and re-apply. 

4. If the performance of the system has degraded, compute the 

probability of accepting the poorer parameter set. 

5. Generate random number between 0 and 1 and compare to 

probability from 4. If random number is less than 

probability, then accept poorer parameters; otherwise reject. 

6. Re-simulate and return to 3 until convergence 

The advantage of the simulated annealing method is that it does not rely on the 

backpropagation training algorithm, which can become trapped in local minimum of 

the error surface. The acceptance of slightly poorer results also gives the method more 

robustness when searching the error surface for the global minimum. 
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3.5.3. Tabu Search 

A method previously used by Denna et a/ ( 1999) to tune FISs is the tabu search 

algorithm. This algorithm will be used in a later Chapter to tune fault tolerant FISs for 

use in the AUV, therefore there now follows an explanation of this method. 

The tabu search method being that is being considered for tuning the fault tolerant 

FISs is an iterative process. It also takes advantage of the stochastic properties of the 

simulated annealing method. The algorithm can splint into three individual steps. The 

first step is called the move and is where the FIS is altered. The second step is the 

tabu list, this is where the altered FIS is compared to the list of previous FISs. The 

third step is the application and is where the altered FIS is placed in the control loop 

and tested. 

For this work there are two possible moves which can take place. The first to be 

considered is that of a random move, where the current FIS is randomly altered to 

create the trial FIS. Mathematically this is show in Equation (3.25). 

(3.25) 

Where Xrrial is the vector of parameters defining the altered FIS, Xcurrent is the vector 

of parameters defining the current FIS and !! is the vector of random changes made 

to the parameters. It should be noted that all three vectors must be of the same length. 

The second to be considered is that of a calculated move, where the current FIS is 

proportionately altered to create the trial FIS. Mathematically this is shown in 

Equation (3.26). 

X -X +A'=' Trial - c~rrent u ..... (3.26) 

Where X Trial is the vector of parameters defining the altered FIS, X current is the vector 

of parameters defining the current FIS, !! is a value to be determined and S is the 

vector of previous changes made to the parameters in the last iteration. It should be 

noted that all three vectors must be of the same length. 
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The random move is used for the first iteration and any iteration when the trial FIS 

has already been tested and is hence on the tabu list. The proportionate move is used 

for all other iterations. 

The tabu list is a key part of the algorithm and is where the name tabu search is 

derived from. The tabu list is a list of previous FIS that have already been tested for 

fault tolerance. In this work the list is updated at the end of every iteration with the 

newest FIS to be tested and an old FIS may be removed if it has been in the tabu list 

for a given number of iterations. 

After a trial FIS has been created the next step is the application section. In this 

section the FIS is placed into the control loop and then the simulation is run. The 

results of this run are then compared to the best of the previous FIS results. 

The complete tabu search algorithm for this work is defined as follows, it starts with a 

random change being made to the parameter set which is compared against the tabu 

list. This parameter set is then tested and if it leads to an improvement in performance 

it will be accepted. The next step is for the algorithm to calculate the best changes to 

make to parameter set, which are compared to the tabu list to ensure it has not been 

previously simulated. This parameter set is then tested and if it leads to an 

improvement in performance it will be accepted and the next changes will be 

calculated, if it does not lead to an improvement then a random change will be made. 

The tabu search algorithm is summarised in Table 3.2. 

Table 3.2 The Tabu Search Algorithm. 

I. Simulate the dynamic system using initial parameter set. 

2. Perform random changes to the parameter set and then 

re-simulate the dynamic system. 

3. Ifthe performance ofthe system has improved then retain 

parameter set changes and calculate next changes. 

4. If the performance of the system has degraded perform 

random changes to the parameter set. 

5. Re-simulate and return to 3 until convergence 

70 



Chapter 3 Uninhabited underwater vehicle dynamics, identification models, vehicle failures and tuning 
methods. 

The random search part of the algorithm means that the best possible solution will be 

located, given enough time. The length of time required for this process is reduce by 

two processes the first being the proportional move and the second being the checking 

of previous tests. Also the lack of a probability function means that only an 

improvement in performance wilt be accepted. The advantages of the tabu search 

method are that it does not rely on the backpropagation training algorithm and it 

checks to make sure it is not repeating a parameter set which has been previously 

tested. Also the calculation by the algorithm to identify the best changes, means it will 

explore local minimum to the full before randomly moving position on the error 

hyper -surface. 

3.6. CONCLUSIONS 

This Chapter began by presenting background information on the given UlN model 

and its associated dynamic equations. The standard PD controller and ANFIS 

controllers developed by Craven (1999) were also discussed. 

Then the three methods used for developing the identification models were explained 

and several of the best results were presented. Having clarified the methods behind 

the models and compared the open-loop and closed-loop responses the best model for 

further work within the yaw channel case was chosen. This model was the linear 

model. The methods were then repeated to create models for the roll channel case. 

The best model for the roll channel was also a linear state space model. 

There was then an explanation of the types of sensor and actuator faults to be used in 

later Chapters. It was also shown how each of these faults are implemented within the 

Matlab Simulink environment. 

Finally, the three methods to be used within this thesis to tune the FISs, for the fault 

tolerant control systems, were then presented. 

The next Chapter deals with the Kalman filter and its approach to fault tolerant 

control. This provides benchmark control systems for both types of faults, which will 

be used later in this study. 
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CHAPTER4 

THE KALMAN FILTER APPROACH TO FAULT TOLERANT 

CONTROL 

4.1. INTRODUCTION 

The aim of this Chapter is to explain the Kalman filter and show how it has been 

applied to the fault tolerant control problem being considered in this AUV study. 

Results from simulations using both the sensor and actuator failures, discussed in the 

previous Chapter, are presented to show how the Kalman filter approach handles 

them. The sensor failures are considered for both cases, whereas the actuator failures 

are only considered in the yaw channel for reasons discussed in the previous Chapter. 

The identification models developed in Chapter 3 are used to form the basis of the 

Kalman filters to be used here. 

4.2. · KALMAN FILTER THEORY 

In this section there will be a brief description of the basic concept of the Kalman 

filter. For the interested reader there are, however, books that look at Kalman filtering 

in far greater depth [Grewal and Andrews (1993) and Bozic ( 1979)]. 

A Kalman filter is an estimator, which uses a statistical method for removing noise 

from a linear dynamic model. In order for the Kalman filter to remove the noise from 

a system it requires several pieces of information. It requires the dynamics of the 

system, the type and level of noise, the initial Kalman gain matrix and the initial error 

for the sensors. 

There are three major steps to the Kalman filter process. The first is to update the 

error coefficient matrix, by using the Riccati equation. Next the Kalman gain matrix is 

calculated. Finally the Kalman gain matrix is used with both the sensor signal and 

linear model outputs to calculate the best estimate of the sensor signal. Then time 
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moves on one step to the next position and the whole process is repeated to find the 

new best estimate of the sensor signals in a recursive manner. 

As the Kalman filter updates the error coefficient matrix for every run, this will 

increase the accuracy of the matrix and hence produce a better Kalman gain matrix as 

it is used. This means that the longer the Kalman filter is used the better the estimate 

will become. 

The three main equations of the Kat man filter process are shown in Equations ( 4.1 ), 

(4.2) and (4.3). 

P(t) = «D(t -1)P{t -1)«D(t-1Y 

KG= P(t)C'(CP(t)C'+Rr' 

X = S + KG(L-[S]) 

(4.1) 

(4.2) 

(4.3) 

Where P is the error covariance matrix, CIJ is the transition matrix, t is time, KG is the 

Kalman gain matrix, C is the output matrix from the linear model (and for this work is 

the identity matrix), C' is the inverse of C (and for this work also the identity matrix), 

R is the initial error covariance matrix, S is the vector from the sensors, L is the 

vector from the linear model, and X is the best estimate output. 

From the three Equations (4.1), (4.2) and (4.3) it is clear how important the error 

covariance matrix is to the Kalman filter. Therefore to help understand how the 

Kalman filter operates, the method used to calculate the error covariance matrix will 

be shown. 

First recall that the linear model being used is of form shown in Equation (3.20) from 

Chapter 3. It follows that the state and the expected value can be described as in 

Equations (4.4) and (4.5) respectively. 

(4.4) 

E(X(t )) = 4>(t -l)E(X{t -1)) + E(ro(t -l)) 

E(X(t)) = 4>(t -l)E(X(t -1)) (as E(ro(t-l)) = 0) 
(4.5) 

Where m is noise. 

73 



Chapter 4 The Kahnan filter approach to fault tolerant control. 

Therefore the equations for the covariance matrix can be derived as shown in 

Equation (4.6). 

P(t)= E([x(t)- E(X(t))] [x(t)- E(X(t))f) 

= E([ID(t -l) [x{t -l)- E(X{t -l))]+ m(t -t)] [ID{t- I) [x(t -1)- E(X{t -1))]+ m(t -I)f) 

=E 

ID(t -1) [x{t -1)- E(X{t- 1))] [x{t -1)- E(X{t -l))f ID 1 (t -1)+ 

ID(t -1) [x{t -1)- E(X(t-1))] m 1 (t -1)+ 

m(t )[X(t- 1)- E(X(t -1))f ID 1 (t -1) 

+ m(t- I )m 1 (t- 1) 

= ID(t -l)E([X(t -1)- E(X{t -1))] [X(t)- E(X{t -l))f )ID 1 (t -1) 

+ E([X(t -1)- E(X(t-1))] m 1 (t- 1)) 

+ E( m{t - 1 }[X(t - 1)- E(X(t- 1 )) r )ID 1 (t - 1 )+ E( m{t - I }m 1 (t- I)) 

as P(t -1) = E([x(t -1)- E(x{t- 1))] [x{t -1)- E(X{t -1))f) 

and letting Q(t -1)= E(m(t-1}m 1 (t -1)) 

P(t)= ID(t -l)P(t -I) ID 1 (t-1)+Q(t -1) 
(4.6) 

As Q(t-1)=0, this will then give the equation used within the Kalman filter program 

and shown in Equation (4.1). This has shown how the covariance matrix was derived 

from the second moment of the state. 

For this project the Kalman filter will be used in a slightly different way. Instead of 

being used to filter noise from sensor feedback, it will attempt to compensate for 

failures within the AUV system. It will be using the linear model from the previous 

Chapter. The Kalman filter will, when there is no fault present, produce a best 

estimate between the AUV sensor information and the linear model output. 

For the remaining sections of this Chapter the Kalman filter will be used as now 

described. 

The Kalman filter used for work in the yaw channel will have two inputs (yaw and 

yaw rate) from the sensors and two inputs from the linear model (linear yaw and 

linear yaw rate). The Kalman filter then compares these two sets of information by 

74 



Chapter 4 The Kalman filler approach lo fault tolerant control. 

using the Riccati Equation (4.1) to update the previous error covariance matrix. The 

covariance matrix is then used in Equation (4.2) to update the Kalman gain matrix. 

This is then used by Equation (4.3) to produce a best estimate for the yaw and yaw 

rate of the AUV. 

The information is then passed on to the ANFIS controller and in turn this sends a 

control signal to both the AUV and linear model, which respond accordingly. Which 

will change the yaw and yaw rate readings from both the sensors and linear model. 

This information is then sent on to the Kalman filter where the whole process is 

repeated. 

The process can be seen in a flow chart form in Figure 4.1. 

tion is sent Inform a 
to Kalm an filter 

~. 

timate Bastes 
is sent 
contro 

toANFIS 
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Read in information from 
AUV and linear model 

l 
Compute new covariance 
matrix using Equation 4.1 
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Compute new Kalman gain 
matrix using Equation 4.2 

! 
Compute new best estimate 
of yaw and yaw rate using 
Equation 4.3 

~ 
Time moves on by 

one increment 

Figure 4.1 Kalman Filter Flow Chart 

Previous 
covariance 
matrix 

This concept was programmed within the Matlab environment using the information 

presented to produce a Kalman filter. The Kalman filter will be able to cope with 

certain types of failures within the AUV, as the remainder of this Chapter will show. 
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4.3. KALMAN RESPONSES TO SENSOR FAULTS 

Having decided on the best models from the previous Chapter and written a Kalman 

filter program using the theories described in section 4.2, the next step was to simulate 

failures within the system. The Kalman filter program will be placed in the closed 

loop system as shown in Figure 4.2. 

uuv 

De man d 
Controller f--

Linear Model I--

Kalman Filter 

Figure 4.2 The Closed Loop Kalman Filter Control System 

For the system shown in Figure 4.2 the Kalman filter is unaffected by the choice of 

controller used. The reason for this is that the linear model was trained using open 

loop input-output data and the information used for the Kalman filter was also open 

loop. This leaves a free choice as to what type of controller can be placed within the 

system. The ANFIS controllers developed by Craven (1999) have been used for this 

work. 

Before the results could be obtained it was necessary to decide on initial values for 

both the Kalman gain matrix and the error coefficient matrix. The initial Kalman gain 

matrix was chosen to be zero, as this implies the Kalman filter will believe totally the 

output from the sensors. This is acceptable because it is reasonable to assume that at 
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the beginning of the simulation there are no faults with the information from the 

sensors. The Kalman gain matrix will also begin to be updated as soon as the 

simulation begins. The initial error coefficient matrix was determined using the errors 

obtained by running the given AUV and open loop linear model over the random 

input path for lOO seconds. The difference between results for the yaw and yaw rate 

were then used to find the coefficient matrix shown in Equation (4.7). 

0 0 [ 350.07 - 0.027] 
Coefficient matnx = 

- 0.027 13.029 
(4.7) 

The faults to be considered in this section are those stated previously in section 3.4. 

The first simulation was performed with no fault occurring in the system. This was to 

show how the AUV reacted to having the Kalman filter in the system. The results 

show that the final yaw angle was slightly larger than the standard control system, but 

that the yaw rate was near to the standard response (the results for a demand of 50 

degrees can be seen in Figures 4.3 and 4.4). The results for all three sizes of step 

inputs (10, 50 and 90 degrees as defined in Chapter 3) were similar, but only the 50 

degrees input has been shown here. 
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and Kalman Filter Controllers 
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Figure 4.4 Yaw Rate Responses of 

Normal and Kalman Filters Controllers 

For all of the sizes of step inputs considered the demand was implemented after 5 

seconds during a simulation of length 50 seconds. The sensor failures in the yaw 

sensor were implemented after 15 seconds. This was chosen so that the AUV would 
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have almost completed the manoeuvre before the failure occurred. The sensor failures 

in the yaw rate sensor were implemented after 8 seconds. This time was chosen 

because the fault must occur after the demand has been made (5 seconds) and before 

the AUV has reached the demanded yaw (about 20 seconds). For faults on both the 

yaw and yaw rate sensors the intermittent and noise failures were both implemented at 

the beginning of the simulation. 

In an attempt to keep this thesis as concise as possible all of the graphs for yaw 

channel sensor failures are presented within Appendix D. The major points from the 

graphs are discussed within the next few sections, however only some of the relevant 

graphs will be shown at this point. 

4.3.1. Yaw Sensor Failures 

The first sensor failures were carried-out on the yaw sensor. AJI three types of sensor 

failure discussed in Chapter 3 were implemented over all three sizes of step inputs. 

The complete set of results for this work can be found in Appendix D, therefore only 

certain graphs are shown within this section. 

(a) Percentage Signal Failure Tests 

The first type of failure to be implemented was the percentage signal failure. Thirty 

simulations were run with this fault occurring with the correct percentage at the given 

time. From this set of results it can be seen that as the percentage of information 

which is being sent back from the AUV decreases the standard ANFIS controller 

becomes less able to find the demanded yaw angle. This was at its worst when a total 

failure occurred, at which the ANFIS controller sent the AUV into a circular path. 

The Kalman filter was far better at handling this fault. As can be seen from the results 

in Appendix D, the control system using the Kalman Filter to attempt to correct for 

yaw sensor failures, was able to minimise the error occurring. For small errors the 

Kat man filter had only a small effect if any. However as the level of failure increased, 

so did the effect of the Kalman filter. This can be seen in Figure 4.5. 
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50 

Figure 4.5 shows how for this level of failure the ANFIS controller forced the AUV to 

a yaw angle of just over 400 degrees by the end of the 50 second simulation as 

opposed to the 60 degree yaw angle of the Kalman filter enhanced ANFIS controller. 

This was typical of the kind of results being produced by both the Kalman filter 

enhanced control system and ANFIS control system. 

To show how the Kalman filter was adapting during this test the Kalman gains were 

recorded and can be seen in Figure 4.6. 
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At this point it is important to note that a 2x2 Kalman gain matrix for the yaw and 

yaw rate is being used for this work since the system model is second order. The 

Figure 4.6(a) relates to the value being used purely by the yaw channel as can be 

expected this starts to settle to just above zero until the failure occurs then it rapidly 

approaches a value of one. This represents a shift in the Kalman filter from almost 

totally believing the sensor (if the value is zero) to almost totally believing the linear 

model (if the value is one). 

Figures 4.6(b) and 4.6(c) relate to both the yaw and yaw rates and as you should 

expect both change significantly when the failure occurs. Figure 4.6(d) is related to 

only the yaw rate and is hardly affected by the failure occurring and remains close to 

zero throughout the test. This is because no failure has occurred in the yaw rate sensor 

and hence a value of, or about, zero would be expected. Other Kalman filter gain 

values have been recorded from other test and are in Appendix D. 

(b) Intermittent Signal Failure Tests 

For the intermittent signal failure test all of the results were of a poor standard, 

however of the two types of control system used the one using the Kalman filter was 

slightly better. This can be seen in Figure 4.7. 
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This graph shows the how controller handled the failure over a step input of 50 

degrees. The Kalman filter enhanced ANFIS control system had the AUV maintaining 

a yaw angle around 60 degrees, which is a lot closer to the desired angle then the 

normal ANFIS controller which had the AUV maintaining a yaw angle around 130 

degrees. Similar results were achieved for the other two step sizes with the Kalman 

filter enhanced ANFIS controller always maintaining a yaw angle closer to the desired 

one. 

(c) Signal to Noise Ratio Tests 

Finally the control systems were both submitted to three levels of noise (l %, 5% and 

10% SNR) as determined previously in Chapter 3. Both controllers produced almost 

identical responses to this type of failure and it was only for the 50 degrees step input 

that any difference was noticeable. However both controllers did manage to keep the 
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AUV within l 0% of the demanded yaw angle. The 50 degrees step input responses 

for both controllers, for all three levels of SNR, can be seen in Figure 4.8 and Figure 

4.9. 
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This completes a review of all the failures being considered for the yaw sensor. 

4.3.2. Yaw Rate Sensor Failures 

The second sensor failures were carried-out on the yaw rate sensor. All three types of 

sensor failure discussed previously were implemented over all three sizes of step. The 

complete set of results for this work can be found in Appendix D, therefore, again, 

only certain graphs will be shown within this section. 

(a) Percentage Signal Failure Tests 

The first type of failure to be implemented was the percentage signal failure. Thirty 

simulations were run with this fault occurring with the correct percentage at the given 

time. From this set of results it can be seen that as the percentage of information 

which is being sent back from the AUV decreases the ANFIS controller struggled to 
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cope, with an increase in the overshoot being the most noticeable effect of the 

failures. It did however always manage to reach the desired yaw angle, this was due to 

the ANFIS controller design which relied mainly on the yaw sensor the yaw rate 

sensor being used to provide a damping effect. The controller using the Kalman filter 

did manage to overcome this problem, but only for large failures on the two largest 

step inputs. The best example of this is for total yaw rate sensor failure over the 90 

degrees step input and is shown in Figure 4.10. 
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Figure 4.10 Yaw Angle Responses to Total Yaw Rate Signal 

Failure Over a Step Demand of 90 Degrees 

Where an overshoot of9 degrees has been recorded for the total signal loss test for the 

normal ANFIS controller and an overshoot of only 2 degrees when the Kalman filter 

enhanced system was used. The other tests showed similar results with the Kalman 

filter enhanced ANFIS controller always have the smallest overshoot. 
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(b) Intermittent Signal Failure Tests 

For the intermittent signal failure on the yaw rate sensor the results were very similar 

to those for the total sensor failure. This is due to the fact that the signal is switching 

between total failure and prefect feedback signal. This may be occurring too fast for 

the controller to respond, again this is due to the ANFIS controller being concerned 

far more with the yaw sensor. 

The similarity of the these results can clearly be seen by comparing Figure 4.12 to 

those results shown in Figure 4.11. 
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(c) Signal to Noise Ratio Tests 

50 

Finally the control systems were both submitted to noise as determined previously. 

Both controllers produced almost identical responses to this type of failure and the 
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difference was unnoticeable for all levels of failure and for all sizes of step input. 

However both controllers did manage to keep the AUV within lO percent of the 

demanded angle for tests. The noise itself presented less of a problem as the step size 

was increased. The 90 degrees step input responses for all levels of SNR for both 

control systems are shown in Figure 4.13 and Figure 4.14. 

These two graphs show how little the noise is affecting the control systems, with 

neither of them ever going over 93 degrees or below 87 degrees after reaching the 

desired yaw angle. 
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All of the yaw channel sensor faults have now been covered, further examples of all 

types of failures discussed can be found in the Appendices D. 

4.3.3. Roll Sensor Failures 

The next sensor failures were carried-out on the roll sensor. A Kalman filter using the 

linear roll model from the previous Chapter was executed in the same way that the 

yaw channel system had been. The initial error coefficient matrix was determined 

using the errors obtained by running the given AUV and open loop linear model over 

the random input path for 100 seconds. The difference between results for the roll and 

roll rate were then used to find the coefficient matrix shown in Equation (4.8). 

[ 

0.0070 
Coefficient matrix = 

-0.0107 

-0.0107] 

0.0938 
(4.8) 
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All three types of sensor failure discussed previously were implemented over all three 

sizes of initial roll angle. The complete set of results for this work can be found in 

Appendix E, therefore only certain graphs will be shown within this section. 

(a) Percentage Signal Failure Tests 

The first type of failure to be implemented was the percentage signal failure. Thirty 

simulations were run with this fault occurring with the appropriate percentage at the 

given time. The first size of initial roll angle considered was that of 5 degrees. The 

standard ANFIS controller shows a noticeable degradation in performance as the level 

of failure increases. This is shown for this set of results by the AUV having a decrease 

in overshoot until for total failure the vehicle just returns to its natural roll angle of 

zero degrees. However when the Kalman filter is placed within the system it handles 

all levels of fault with the same response. Hence the Kalman filter is unaffected by the 

level of fault. 

Similarly for an initial input of 15 degrees the ANFIS controller shows less of an 

overshoot as the level of failure increases. For all levels of failure the AUV returns to 

the demanded angle of zero degrees. Once again for the Kalman filter the results show 

how it was unaffected by each level offailure. 

For the 25 degrees initial roll angle the ANFIS controller displayed similar results to 

the 15 degrees initial roll angle. As can be seen in Figure 4.14 the AUV has less 

overshoot as the failure increases. 

The Kalman filter enhanced control system produced its best results for this initial 

angle. It estimates the roll angle very closely achieve the desired overshoot of I 0 

degrees. The key feature, which can be seen in Figure 4.15, is that of the slight 

oscillatory motion of the vehicle, which continues after it should have achieved the 

demanded angle. 

89 



Chapter 4 The Kalman filter approach to fault tolerant control. 

-0% 
-25% 
-50% 

- ------ 75% 
(/) 
Q) ----- 100% 
~ 
Cl 
Q) 
"0 - 5 Q) 

Cl c 
<( 

0 
0 

0::: 

-5 

-10 

-15 
0 2 4 6 8 10 

Time (seconds) 

Figure 4.14 Roll Angle Responses to Percentage Signal Loss Tests Roll Signal 

Failure Over an Initial Angle of 25 Degrees For The ANFIS Controller 

-(/) 
Q) 

~ 
Cl 
Q) 
"0 -Q) 

g> 
<( 

0 
0::: 

-0% 
··--·- 25% 
-50% 
···-· 75% 
---- 100% 

-10L---~~---L---~---~--~ 
0 2 4 6 8 10 

Time (seconds) 
Figure 4.15 Roll Angle Responses to Percentage Signal Loss Tests Roll Signal 

Failure Over an Initial Angle of 25 Degrees For The Kalman Filter Controller 

90 



Chapter 4 The Kalman filter approach to fault tolerant control. 

(b) Intermittent Signal Failure Tests 

For the intermittent signal failure tests the Kalman filter enhanced controller was able 

to approximate the unaffected system more closely. The most noticeable effect were 

the reductions of overshoots. This can be most clearly seen on the 25 degrees initial 

roll angle. The AUV should respond with a first overshoot of approximately I 0 

degrees but only manages 5 degrees, as can be seen in Figure 4.16. This is also seen in 

the second overshoot where the ANFIS controller again can only force a decrease size 

of overshoot. The Kalman filter enhanced control system performed well for all initial 

roll angles, as can be seen in Figure 4.16. It was able to produce an accurate 

approximation when the initial angle was 25 degrees with a RMSE of0.407 degrees. 
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(c) Signal to Noise Ratio Tests 

Finally both the control systems were both submitted to three levels of noise as 

previously determined. For the initial angle of 5 degrees the ANFIS controller was 

unable to adapt and produced a relatively slow response. Also the controller failed to 

force the overshoot shown on the fault free system. For each level of noise the ANFIS 

controller produced a similar result. For the initial angle of 15 degrees the ANFIS 

controller did force an overshoot of just under 4 degrees, it should have been 6 

degrees. Once again the results for all three levels of noise for this size of initial angle 

were very alike. For the initial angle of 25 degrees the ANFIS controller did achieve 

the desired overshoot, but also had trouble maintaining the final roll angle of zero 

degrees as can be seen in Figure 4.17. 
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Over all three initial sizes of roll angles the Kalman filter enhanced control system 

displayed no signs of being troubled by the level of noise and produced three identical 

results as is shown in Figure 4.18. The previously noted oscillatory motions 

associated with the Kalman filter have again been present on all three sizes of initial 

angles. Overshoots were also forced in all cases, although only the 25 degrees initial 

angle managed to achieve the required magnitude as shown in Figure 4.18. 
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The graphs shown are representative of the results achieved and once again it is worth 

pointing out for interested reader that the full set of results can be seen in Appendix E. 

4.3.4. Roll Rate Sensor Failures 

The next sensor failures were carried-out on the roll rate sensor. All three types of 

sensor failure discussed previously were implemented over all three sizes of initial 

angles. The same Kalman filter, with the same initial error coefficient matrix, as used 

93 



Chapter 4 Tite Kalman filter approach to fault tolerant control. 

for the roll sensor failures have been used for the roll rate sensor failures. The 

complete set of results for this work can be found in Appendix E, therefore only 

certain graphs will be shown within this section. 

(a) Percentage Signal Loss Tests 

The first type of failure to be implemented was the percentage signal failure. Thirty 

simulations were run with this fault occurring with the appropriate percentage at the 

given time. The standard ANFIS controller shows a noticeable degrade in 

performance as the level of failure increases. As with the yaw rate sensor, the roll rate 

sensor produces a damping effect. This is shown for this set of results by the AUV 

having an increase in overshoot until for total failure the vehicle has not achieved the 

required angle of zero degrees. The results were similar for all initial angle sizes. 

Shown in Figure 4.19 are the responses of the 25 degrees initial roll angle. 
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However when the Kalman filter is placed within the system it handles all levels of 

fault with almost the same the same response. This shows that the Kalman filter is 

slightly affected by the level of fault. Also the oscillatory motion is present again for 

all sizes of initial angle considered. The Kalman filter enhanced system does for these 

failures produce overshoots of almost the desired magnitudes. All of these features 

can be seen in Figure 4.20. 
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(b) Intermittent Signal Failure Tests 

Next the intermittent signal failure test was considered. The normal controller 

produced an increase in the size of overshoot angles for each size of initial roll angle. 

Both controllers displayed an oscillatory motion during each simulation, however 

each graph shows the Kalman filter enhanced control system's oscillations to be of 
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smaller magnitude. The best example of this is for the initial roll angle of 25 degrees 

and is shown in Figure 4.21. 
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Figure 4.21 Roll Angle Responses to Intermittent Roll Rate 

Signal Failure Over an Initial Angle of 25 Degrees 

(c) Signal to Noise Ratio Tests 

Finally both the control systems were submitted to three levels of noise as previously 

determined. For the initial angle of 5 degrees the ANFIS controller was unable to 

adapt and produced an oscillatory motion. Also the controller forced the AUV to 

overshoot by a larger that shown on the fault free system. For each level of noise the 

ANFIS controller produced a similar result. For the initial angle of 15 degrees the 

ANFIS controller did force an overshoot of 9 degrees, it should have been only 6 

degrees. Once again the results for all three levels of noise for this size of initial angle 

were very alike. For the initial angle of 25 degrees the ANFIS controller did achieve 

the desired overshoot and displayed only a small level of oscillatory motion as can be 

seen in Figure 4.22. 
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Over all three initial sizes of roll angles the Kalman filter enhanced control system 

displayed no signs of being troubled by the level of noise and produced three identical 

results as is shown in Figure 4.23. The previously noted oscillatory motions 

associated with the Kalman filter are again present on all three sizes of initial angles. 

The desired initial overshoots were achieved in all cases. Shown in Figure 4.23 are the 

roll responses to all three considered levels of noise for the initial roll angle of 25 

degrees. 
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The graphs shown are representative of the results achieved and once again it is worth 

pointing out for interested reader that the full set results of can be viewed at the back 

of this thesis in Appendix E. 

4.4. KALMAN RESPONSES TO ACTUATOR FAULTS 

Now that the sensor faults have been dealt with in the previous sections, attention now 

switches to faults occurring in the control actuators. The faults considered for this 

work are those based on work by Derradji and Mort (1996), where a loss of 

effectiveness (LOE) occurring within an actuator was used within the arena of 

manned submersibles. The LOE and its application to AUVs has previous been 

explained within this work in Chapter 3. All of the actuator failures considered have 

been described in section 3.4. For this work, failures were implement at the beginning 

of the simulations. Due to all actuators being of an identical nature for this vehicle and 
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hence any actuator recovery system found to be effective for the yaw channel must be 

effective for all other actuators as presented earlier (Chapter 3) only faults occurring 

within the yaw channel are considered herein. The AUV uses two actuators to control 

the yaw angle. These are the two actuators which move the upper and lower bow 

canards as shown in Figure 3.1. The upper canard actuator is the one in which the 

faults occur. Only the results for the yaw angle have been displayed here as very little 

information can be gained from showing the yaw rates, as unlike previously the yaw 

rate will give no further information when evaluating the systems performance. For 

the entire set of simulations step input demands on the yaw angle after 3 seconds were 

used. The first fault considered is that of aLOE occurring to the saturation level of the 

actuator, this reduces the maximum angle the canard can accomplish. The second 

fault is that of a LOE occurring to the rate limiter of the actuator, this reduces the 

speed the actuator can reach its desired position. The third fault considered is that of a 

LOE occurring to both the saturation and rate limiter of the actuator, this reduces both 

the maximum angle the canard can accomplish and the speed at which it can achieve 

that angle. 

This section will show how three different control systems handled the three faults 

over three different step input demands (10, 20, and 30 degrees). The first system is 

the PD controller developed by Craven {1999). The second controller is the ANFIS 

controller also developed by Craven (1999). The final system is that described earlier 

within this Chapter of the Kalman filter enhanced ANFIS controller. All of the results 

for actuator failures using the standard PD controller, the ANFIS controller and the 

Kalman filter with the ANFIS controller can be seen in Appendix F. 

4.4.1. Yaw Step Inputs of 10 Degrees 

(a) The PD Controller 

For this size of step input demand the PD controller under a fault free set up displayed 

a small overshoot of under 0.1 degrees and a rise time of 3.9 seconds. For the 

saturation fault this systems is totally unaffected for both 25% and 50% LOE. 

However 75% LOE produces a small effect and for 1000/o LOE the AUVs rise time 

has increased to 7.6 seconds. For the rate limiter fault the PD controller shows more 

signs of a fault occurring with small faults being noted for each level of LOE being 
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considered. The lOO% LOE is identical to that produced when the saturation fault of 

I 00% LOE is implemented. When a LOE occurs in both sections of the actuator the 

AUV responses show degradation in performance. Again for lOO% LOE the result is 

identical to previous lOO% LOE's. Figure 4.24 shows the response of the AUV when 

it is subjected to both faults occurring when the PD controller is used. These results 

are displayed in Appendix F. 
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(b) The ANFIS Controller 

The ANFIS controller for this size of step input demand under a fault free set up 

displayed almost no overshoot and a rise time of 4.5 seconds. For the saturation fault 

this systems is totally unaffected for both 25% and 50% LOE. The 75% LOE 

produces a small effect, but is a slight improvement on the PD controller. The lOO% 

LOE produces the biggest effect on the AUV, which has its rise time reduced to 7.2 

seconds. For the rate limiter fault the ANFIS controller shows more signs of a fault 
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occurring with small faults being noted for each level of LOE being considered. The 

lOO% LOE is identical to that produced when the saturation fault of 100% LOE is 

implemented. When aLOE occurs in both sections of the actuator the AUV responses 

show degradation in performance. It should also be noted at this point that the results 

for a LOE in both sections are identical to the LOE in the rate limiter for this step 

size. Again for 100% LOE the result is identical to previous lOO% LOE's. These 

results are displayed in Appendix F. Figure 4.25 shows the response of the AUV 

when it is subjected to both faults occurring when the ANFIS controller is used. 
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(c) The Kalman Filter Enhanced ANFIS Controller 

When the Kalman filter is placed within the control system along with the ANFIS 

controller for this size of step input demand under a fault free set up displayed almost 

no overshoot and a rise time of 4.4 seconds. For the saturation fault this system is 

totally unaffected for both 25% and 50% LOE. The 75% LOE produces a small effect. 
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The 100% LOE produces the biggest effect on the AUV, which has its rise time 

reduced to 7.9 seconds and fails to reach the desired yaw angle. For the rate limiter 

fault the Kalman filter enhanced controller shows more signs of a fault occurring with 

small faults being noted for each level of LOE being considered. The 100% LOE is 

identical to that produced when the saturation fault of 100% LOE is implemented. 

When a LOE occurs in both sections of the actuator the AUV responses show 

degradation in performance. Once again for I 00% LOE the result is identical to 

previous lOO% LOE's, this means that for the Kalman filter enhanced controller fails 

to achieve the desired angle for all types of fault when a 100% LOE occurs. These 

results are shown in Appendix F. Figure 4.26 shows the response of the AUV when it 

is subjected to both faults occurring when the Kalman filter enhanced ANFIS 

controller is used. 
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Below is shown all three control systems attempting to handle a I 00% LOE occurring 

in both sections of the actuator (Figure 4.27). 
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Having seen how the three control systems handle the faults it is interesting to see the 

rise times of AUV for each test (Table 4.1). If it was on rise times alone it is clear to 

see the Kalman filter enhanced ANFIS control system performed best of the three 

systems considered on everything but the I 00% LOEs. This means that for the l 0 

degrees step input demand the Kalman filter enhanced ANFIS control system is the 

fastest at getting to within 5% of the desired angle in most cases of faults, but as has 

been shown in the graphs it does not always achieve the desired angle. Unfortunately 

it is the most important thing for the AUV to achieve its desired yaw angle. 
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Table 4.1 The Rise Times For A Yaw Step Input of 10 Degrees. 

Rise Times (seconds) 
Type LOE PD Controller ANFIS Controller Kalman Filter 
SAT 0% 5.4 4.5 4.4 

25% 5.4 4.5 4.4 

50% 5.4 4.5 4.4 

75% 5.6 4.7 4.6 

100% 8.1 7.2 7.9 

RATE 0% 5.4 4.5 4.4 

25% 5.5 4.6 4.5 

50% 5.6 4.7 4.6 

75% 5.8 4.8 4.8 

100% 8.1 7.2 7.9 

BOTH 0% 5.4 4.5 4.4 

25% 5.5 4.6 4.5 

50% 5.6 4.7 4.6 

75% 5.8 4.8 4.8 

100% 8.1 7.2 7.9 

4.4.2. Yaw Step Inputs of20 Degrees 

(a) The PD Controller 

For this size of step input demand the PD controller under a fault tree set up displayed 

a small overshoot and a rise time of 4.4 seconds. For the saturation fault this system is 

totally unaffected for the 25% LOE. The 50% LOE reduces slightly the performance 

of the AUV. The 75% LOE produces a noticeable effect and for 100% LOE the 

AUVs performance decreased and the rise time has increased to 8.2 seconds. For the 

rate limiter fault the PD controller shows more signs of a fault occurring with small 

faults being noted for each level ofLOE being considered. The 75% LOE also shows 

an increase in overshoot. The 100% LOE is identical to that produced when the 

saturation fault of I 00% LOE is implemented. When aLOE occurs in both sections of 

the actuator the AUV responses show degradation in performance and the 75% LOE 

again displays an increase overshoot. Again for 100% LOE the result is identical to 

previous I 00% LOE's. The complete sets of results are displayed in Appendix F. 

104 



Chapter 4 The Kalman filter approach to fault tolerant control. 

Figure 4.28 shows the response of the AUV when it IS subjected to both faults 

occurring when the PO controller is used. 
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(b) The ANFIS Controller 

20 

The ANFIS controller for this size of step input demand under a fault free set up 

displayed no overshoot and a rise time of 4.9 seconds. For the saturation fault this 

system is totally unaffected for the 25% LOE. The 50% LOE produce a slight effect 

which slowed the response of the AUV. The 75% LOE produces a more noticeable 

effect. The 100% LOE produces the biggest effect on the response of the AUV, which 

has its rise time increased to 7.6 seconds. For the rate limiter fault the ANFIS 

controller shows more signs of a fault occurring with small faults being noted for each 

level of LOE being considered. The 75% LOE as well the decrease in performance 

also displays a slight overshoot. The I 00% LOE is identical to that produced when the 
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saturation fault of I 00% LOE is implemented. When a LOE occurs in both sections of 

the actuator the AUV responses show degradation in performance for all levels of 

LOE. Again for the 100% LOE the result is identical to previous lOO% LOE's. The 

complete set of results are displayed in Appendix F. Figure 4.29 shows the response 

of the AUV when it is subjected to both faults occurring when the ANFIS controller is 

used. 
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(c) The Kalman Filter Enhanced ANFIS Controller 
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When the Kalman filter is placed within the control system along with the ANFIS 

controller for this size of step input demand under a fault free set up displayed a slight 

overshoot and a rise time of 4.7 seconds. For the saturation fault this system is totally 

unaffected for the 25% LOE. The SO% LOE produces a small effect. The 75% LOE 

produced more of an effect with the final yaw angle being fractionally the desired 20 
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degrees demand. The I 00% LOE produces the biggest effect on the AUV, which has 

its rise time reduced to 15.6 seconds and fails to reach the desired yaw angle. The 

final angle achieved by this system for this fault is 18.6 degrees. For the rate limiter 

fault the Kalman filter enhanced controller shows more signs of a fault occurring with 

small faults being noted for each level ofLOE being considered. The 75% LOE once 

again produced the most significant overshoot. The 100% LOE is identical to that 

produced when the saturation fault of 100% LOE is implemented. When a LOE 

occurs in both sections of the actuator the AUV responses show significant 

degradation in performance. Once again for I 00% LOE the result is identical to 

previous lOO% LOE's, this means that the Kalman filter enhanced controller fails to 

achieve the desired angle for all types of fault when a 100% LOE occurs. The results 

are for all of these simulations are displayed in Appendix F. Figure 4.30 shows the 

response of the AUV when it is subjected to both faults occurring when the Kalman 

filter enhanced ANFIS controller is used. 
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Shown in Figure 4.31 is all three control systems attempting to handle a lOO% LOE 

occurring in both sections of the actuator. Which shows particularly how the Kalman 

filter enhanced control system fails to reach the desired yaw angle. 
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Figure 4.31 Yaw Angle Responses of All Three Control Systems 

to a 100% LOE Both Fault for a 20° Step Input Demand 
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Having seen how the three control systems handle the faults it is interesting to see the 

rise times of AUV for each test. These are shown in Table 4.2. If it was on rise times 

alone it is clear to see the Kalman filter enhanced ANFIS control system performed 

best of the three systems considered on everything but the I 00% LOEs. This means 

again that for the 20 degrees step input demand the Kalman filter enhanced ANFIS 

control system is the fastest at getting to within 5% of the desired angle in most cases 

of faults, but as has been shown in the graphs it does not always achieve the desired 

angle. Unfortunately it is the most important thing for the AUV to achieve its desired 

yaw angle. 
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Table 4.2 The Rise Times For A Yaw Step Input of20 Degrees. 

Rise Times (seconds) 
Type LOE PD Controller ANFIS Controller Kalman Filter 
SAT 0% 6 6 4.7 

25% 6 6 4.7 

50% 6 6.1 4.8 

75% 6.5 6.6 5.4 

lOO% 8.7 9 15.6 

RATE 0% 6 6 4.7 

25% 5.9 6 4.7 

SO% S.9 6.2 4.8 

7S% 6.2 6.2 4.9 

lOO% 8.7 9 IS.6 

BOTH 0% 6 6 4.7 

2S% 5.9 6 4.7 

SO% S.9 6.2 4.8 

7S% 6.3 6.3 s 
lOO% 8.7 9 IS.6 

4.4.3. Yaw Step Inputs of 30 Degrees 

(a) The PD Controller 

For this size of step input demand the PD controller under a fault free set up displayed 

a small overshoot of approximately one degree and a rise time of 4.8 seconds. For the 

saturation fault this system is affected for all levels of LOE. As would be expected 

from the previous results as the LOE increases the performance of the AUV 

decreases. With the lOO% LOE giving the worst result and the AUVs rise time has 

been increased to 8.7 seconds. For the rate limiter fault the PO controller shows more 

signs of a fault occurring with faults being noted for each level of LOE being 

considered. For this size of step input there are now more overshoots being detected, 

with them being clearly viable for all but the lOO% LOE. The I 00% LOE is identical 

to that produced when the saturation fault of I 00% LOE is implemented. When a 

LOE occurs in both sections of the actuator the AUV responses show degradation in 

performance and overshoots increasing for each level of LOE apart from the I 00% 
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which again is identical to previous 100% LOE's. The results for all of these are 

displayed in Appendix F. Figure 4.32 shows the response of the AUV when it ts 

subjected to both faults occurring when the PD controller is used. 
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(b) The ANFIS Controller 

20 

The ANFIS controller for this size of step input demand under a fault free set up 

displayed no overshoot and a rise time of 4.9 seconds. For the saturation fault this 

system shows decreases in performance for all levels of LOE. As would be expected 

from the previous results as the LOE increases the performance of the AUV 

decreases. The 100% LOE produces the biggest effect on the AUV, which has its rise 

time reduced to 7.6 seconds. Unlike for the PD controller, the AUV does not 

overshoot the demand yaw angle for any level of LOE for this fault. For the rate 

limiter fault the ANFIS controller shows more signs of a fault occurring with 

degrading of performance being noted for each level of LOE being considered. Also 
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overshoots were detected for all levels of LOE apart from the I 00% LOE. The lOO% 

LOE is identical to that produced when the saturation fault of 100% LOE is 

implemented. When aLOE occurs in both sections of the actuator the AUV responses 

show degradation in performance and overshoots. Again for 100% LOE the result is 

identical to previous 100% LOE's. These results are all displayed in Appendix F. 

Figure 4.33 shows the response of the AUV when it is subjected to both faults 

occurring when the ANFIS controller is used. 
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(c) The Kalman Filter Enhanced ANFIS Controller 

20 

Finally for this section, when the Kalman filter is placed within the control system 

along with the ANFIS controller for this size of step input demand under a fault free 

set-up displayed almost no overshoot and a rise time of 4. 7 seconds. For the saturation 

fault this system is slightly effected by the 25% LOE. The 50% LOE produces a more 

noticeable effect. The 75% LOE produced more of an effect with the final yaw angle 
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being fractionally the desired 30 degrees demand. The 100% LOE produces the 

biggest effect on the AUV, which has its rise time reduced to 15.3 seconds and fails to 

reach the desired yaw angle. The final yaw angle achieved by this system for this fault 

is 25.8 degrees. For the rate limiter fault the Kalman filter enhanced controller shows 

more signs of a fault occurring with small faults being noted for each level of LOE 

being considered. Overshoots were recorded for all but the lOO% LOE, with the 75% 

LOE once again producing the most significant overshoot. The 100% LOE is identical 

to that produced when the saturation fault of lOO% LOE is implemented. When a 

LOE occurs in both sections of the actuator the AUV responses show significant 

degradation in performance but with less overshoots than for a LOE occurring in just 

the saturation section. Once again for I 00% LOE the result is identical to previous 

lOO% LOE's, this means that the Kalman filter enhanced controller fails to achieve 

the desired angle for all types of fault when a I 00% LOE occurs. The results for all of 

these simulations are displayed in Appendix F. Figure 4.34 shows the response of the 

AUV when it is subjected to both faults occurring when the ANFIS controller is used. 
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Figure 4.35 shows all three control systems attempting to handle a 100% LOE 

occurring in both sections of the actuator. 
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Having seen how the three control systems handle the faults it is interesting to note 

the rise times of AUV for each test. These are shown in Table 4.3. As was the case for 

the other step inputs, if it was on rise times alone it is clear to see the Kalman filter 

enhanced ANFIS control system performed best of the three systems considered on 

everything but the 100% LOEs. This means again that for the 30 degrees step input 

demand the Kalman filter enhanced ANFIS control system is the quickest at getting to 

within 5% of the desired angle in most cases of faults. As has been shown in the 

graphs the ANFIS control system does not always achieve the desired angle. 

Unfortunately it is the most important thing for the AUV to achieve its desired yaw 

angle. 
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Table 4.3 The Rise Times For A Yaw Step Input of 30 Degrees. 

Rise Times (seconds' 
Type LOE PD Controller ANFIS Controller Kalman Filter 
SAT 0% 6.2 6.2 4.7 

25% 6.2 6.3 4.8 
50% 6.5 6.7 5.3 

75% 7.4 7.5 6.2 

lOO% 9.5 9.8 15.3 

RATE 0% 6.2 6.2 4.7 

25% 5.6 5.9 4.7 

50% 5.8 6 4.9 

75% 6.7 6.9 5.4 

lOO% 9.5 9.8 15.3 

BOTH 0% 6.2 6.2 4.7 

25% 5.6 6 4.7 
50% 6.1 6.3 5 

75% 7.2 7.3 5.9 

lOO% 9.5 9.8 15.3 

Having considered all of the failures defined during Chapter 3, this concludes the 

section dealing with actuator failures. 

The graphs shown are representative of the results achieved and it is worth pointing 

out for interested reader that the full set of results can be seen in Appendix F. 

4.5. CONCLUSIONS 

This Chapter has shown how the ANFIS controller and the Kalman filter enhanced 

ANFIS controller coped with sensor failures in both the yaw and roll channels and 

how these controllers and the standard PD controller coped with failures in the 

actuators controlling the yaw motions of the AUV. 

When considering work in the yaw channel for the fault free system the Kalman filter 

enhanced ANFlS controller made the AUV attain and then maintain a yaw angle close 

to the correct yaw angle for most of the tests. When a small error was detected this 

was due to the linear model being an imperfect representation of the AUV. 
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When the yaw sensor failures were considered the Kalman filter enhanced control 

system was able to recover partially for most levels of the failures. The ANFIS 

controller could not handle this failure and produced some poor results as shown in 

section 4.3.1. 

When yaw rate sensor failures were considered the affect on the AUV was far less 

noticeable. The main reason for this is that the ANFIS controller is based 

predominantly on the yaw sensor feedback and the yaw rate sensor is used as a 

dampener. As the level of fault was increased there was a decrease in performance. 

The Kalman filter controller produced some very good results for the larger step input 

demands {SO and 90 degrees). 

The work in the roll channel for the fault free system the Kal man filter enhanced 

controller showed clear signs of problems in all tests. An oscillatory motion was 

detected in even the fault free tests and was a continued feature of the responses given 

by this system. 

When roll sensor failures were considered the Kalman filter enhanced control system 

was able recover to a certain degree for most levels of the failures. The results also 

showed that this system was unaffected by the size of type of failure occurring. The 

ANFIS controller could not handle this failure and produced a very noticeable 

degrading of performance. 

When roll rate sensor failures were considered the affect on the AUV was far more 

noticeable. The main reason for this was that the ANFIS controller is based 

predominantly on the roll rate sensor feedback, rather than the roll sensor. As the level 

of fault was increased there was a decrease in performance with the ANFIS controller 

forcing the AUV to oscillate to angles which are a high percentage of the initial 

angles. The Kalman filter controller produced results similar to those for the roll 

sensor failures, again being almost unaffected by the type or size of fault occurring. 

For the set of actuator failures in the upper canard, which were discussed in section 

4.4, the outcome is quite different. The PD controller was able to recover for all types 

and sizes of faults for all three angles of yaw demands and succeeded in having the 

AUV at the required yaw angle by the end of every test. The rise times did increase 

for every type of failure at every level. The ANFIS control system also managed to 

recover for all types and sizes of failures, but once again the rise times of the vehicles 

were effected. The Kalman filter enhanced ANFIS controller was also able to produce 

some level of recovery for all types and sizes of faults. The key feature of the Kalman 
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filter results was the inability of the system to achieve the desired yaw angle when a 

large LOE was occurring. This was due to the Kalman filters dependence on the linear 

model. When an actuator fault occurs within the AUV, it changes the dynamics of the 

AUV and hence a new linear model of the system is required by the Kalman filter in 

order for it to continue operating effectively. 

In summary, the Kalman filter control system was far more fault tolerant than the 

standard ANFIS control system for the sensor faults. For the actuator faults the 

Kalman filter enhanced ANFIS controller was less fault tolerant than the standard 

ANFIS controller and the PD controller. For further work it will be best, therefore, to 

use the Kalman filter enhanced ANFIS control system as a benchmark when 

considering sensor failures. As the ANFIS controller is to be considered as part of the 

fault tolerant system for the actuator faults, and the Kalman filter enhanced ANFIS 

control system was out performed by the PD controller on the actuator faults, then for 

the actuator faults it will be best to use the PD controller as the benchmark controller. 
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CHAPTERS 

SENSOR RECOVERY SYSTEM 

5.1. INTRODUCTION 

Chapter 4 established benchmark results for all types and levels of faults being 

considered within this work. The sensor faults considered therein are now revisited 

with the aim of producing a fault tolerant control system capable of improving on the 

benchmark results. 

This will be accomplished by placing a FIS within the control loop in a style similar 

to that used with the Kalman filter within the control loop in Chapter 4. This Chapter 

will see the creation of eight fault tolerant FISs, two for each of the four sensors being 

considered. The four sensors are the yaw sensor, the yaw rate sensor, the roll sensor 

and the roll rate sensor. An ANFIS [Jang (1991)) tuned FIS will be created for each 

sensor, as will a simulated annealing [Kirkpatrick et a/ (1983)) tuned FIS. Therefore 

there will be a total of eight FISs. 

These eight FIS will be presented with the sensor faults as stated in Chapter 3. They 

are a percentage loss of signal, an intermittent total signal failure and the addition of 

random white noise. Such faults are considered to be representative of faults that 

would occur within a typical sensor used in an AUV. The results for each sensor will 

be compared for both tuned FISs and the benchmark results. 

5.2. FAULT TOLERANT SYSTEM 

The nature of the faults being considered in this Chapter are to corrupt the information 

from the AUV's sensors which the ANFIS controller receives. Therefore it is logical 

to place the sensor fault recovery FlS after the vehicle dynamics but before the 

ANFIS controller. The FIS will replace the corrupted information with an estimate of 

the sensor signal allowing the AUV to continue in its mission. The ANFIS controller 

used is again that developed by Craven (1999). The placing of this sensor recovery 
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FIS in the control loop will give the overall control system, and hence the AUV, a 

level of fault tolerance to the failures which are being considered in this thesis. Figure 

5.1 shows how the FIS is placed in the control loop. 
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Controller 
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Linear Model 
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Q Statistic 
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Recovery FIS 
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Figure 5.1 The Sensor Fault Tolerant Control System 

Figure 5.1 shows how the sensor information is replaced by an estimate from the FIS. 

It also shows that the FIS requires three inputs, one from the faulty sensor, a second 

from the linear model and the third from a block labelled 'Q Statistic'. The first input 

is there so that the FIS knows the signal being produced by the actual sensor. The 

second input is from the linear model developed in Chapter 3 and is there to provide 

the FIS with an estimate of the sensor signal based on the output of the controller and 

will be discussed in section 5.3. The third input is the Q statistic used by the Kalman 

filter, and is used here to provide a statistical assessment of the level of fault in the 

actual sensor. Figure 5.2 shows the input output structure for the FIS being 

considered, with the output being the FISs estimate of the sensor signal. 

118 



Chapter 5 Sensor recovery system. 

Inputs 

QStatistic 

Sensor 

Unear 
Model 

\ Fuzzy 
Rule 
Base 

Output 

Sensor 
t----->1 Estimate 

Figure 5.2 The Input Output Structure of The Sensor Recovery FIS 

The faults being considered are percentage sensor failures of 100%, 75%, 50% and 

25%, an intermittent total signal failure and adding noise to the sensor signal. The full 

description of these faults and how they are implemented within the AUV is given in 

Chapter 3. For the yaw channel all three types of sensor failure were considered for 

each sensor (yaw and yaw rate) individually over three sizes of step input demands 

(10, 50, and 90 degrees). While for the roll channel all three types of sensor failure 

were considered for each sensor (roll and roll rate) individually, but instead of a 

demanded step input, three initial roll angles were used (5,15, and 25 degrees) with 

the demanded roll angle being zero degrees. 

The tuned FISs are to be compared using both a statistical method and by considering 

rise times. The statistical method used to evaluate the performance of the FISs was the 

root mean squared error (RMSE). This will give the average difference between the 

fault free ideal system and the sensor recovery FISs performance over the considered 

path. The equation used to calculate the RMSE is shown in Equation (5.1). 

i=n 

L (A UV; - IDEALj y 
E= ~ i=O (5.1) 

11 
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Where E is the error value, n is the number of points measured, A UV; is the 

information received from the vehicle at point i, and IDEAL; is the information 

recorded when the vehicle followed the same path in a fault free situation also at point 

i. 

5.3. Q STATISTIC 

The Q statistic used herein is that of the error covariance matrix used by the Kalman 

filter. 

By taking into account the state and the expected value of the system it is possible to 

derive the error covariance matrix from Equation (5.2). 

P{t)= E([x(t)- E(X(t))) [X(t)- E(X(t))f) 

= E([«<l(t-1) (x(t -1)- E(X{t -1))]+ ro(t-1)] [«<l(t -I) (X(t-1)- E(X{t -1))]+ ro(t-l)f J 

=E 

«<l(t -I) (x{t -1)- E(X(t -1))) (X(t -1)- E(X(t -1))f Ill r (t -1)+ 

«<l(t-1) [X(t -1)- E(X(t -1))) ro r (t -I)+ 

ro(t1x(t -1)- E(X(t-l))f Ill r (t -I) 

+ro(t-1)ror(t-1) 

= fl»(t -I)E([x(t -I)- E(X(t -1))] [x(t )- E(x(r -I))Y )Ill r (1-1) 

+ E([x(t- 1)- E(X(t- 1))] ro r (t -1)) 

+ E( ro(t- tXx(t- 1)- E(X(t- l))f )Ill r (t -l)+ E( ro{t -I)ro r (t- 1)) 

as P(t -1) = E([x{t- 1)- E(X{t -1))) [x{t -1)- E(X(t -l))f J 

and letting Q{t -I)= E(ro(t-1)ro r (t-1)) 

P(t)= fl»(t-I)P(t-1) Ill r(t-1)+ Q(t -1) 
(5.2) 

Where Pis the Q statistic (error covariance matrix), et> is the transition matrix and I is 

time. As Q(t-1)=0, this will then give the equation used within the Kalman filter 

program and is shown in Equation (5.3). This has shown how the Q statistic is derived 

from the second moment of the state. 
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P(t) = «D(t - 1 )P(t - 1 )«D(t - 1 Y (5.3) 

The Q statistic is used as an error measurement of the sensor in the work below. 

5.4. FUZZY TUNING 

The FISs used as sensor recovery systems in this Chapter have been tuned using two 

methods. The first method used is the ANFIS [Jang (1991)] method and the second is 

the simulated annealing [Kirkpatrick et a/ (1983)] method. 

The ANFIS method includes a subroutine to create an initial FIS from the training 

data and hence there is no need for an initial heuristic FIS to be developed for this 

approach. However the simulated annealing tuning method does not include such a 

subroutine and therefore an initial heuristic FIS is required. 

A heuristic FIS has been design using a simple yet logical approach to the problem. 

The Q statistic provides a value between zero and one, which is a statistical measure 

of the fault within the sensor signal. This value is one when the signal is fault free and 

zero when the sensor signal is totally unusable. First by letting the fuzzy output be the 

sensor input when the Q value is small, then by letting the fuzzy output be half of the 

sensor input and half of the linear model input when the Q value is medium and by 

letting the fuzzy output be the linear model input when the Q value is large the three 

rule fuzzy rule base show in Equation (5.4) was produced. 
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IfQ is Sand SEN is Nand LS is N then SE = 0 Q + 1 SEN + 0 LS +0 

IfQ is Sand SEN is Nand LS is Z then SE = 0 Q + 1 SEN + 0 LS +0 

IfQ is Sand SEN is Nand LS is P then SE = 0 Q + I SEN + 0 LS +0 

IfQ is Sand SEN is Z and LS is N then SE = 0 Q + I SEN + 0 LS +0 

IfQ is Sand SEN is Z and LS is Z then SE = 0 Q + I SEN + 0 LS +0 

IfQ is Sand SEN is Z and LS is P then SE = 0 Q + 1 SEN + 0 LS +0 

IfQ is Sand SEN is P and LS is N then SE = 0 Q + 1 SEN + 0 LS +0 

IfQ is Sand SEN is P and LS is Z then SE = 0 Q + I SEN + 0 LS +0 

IfQ is Sand SEN is P and LS is P then SE = 0 Q + 1 SEN + 0 LS +0 

IfQ is M and SEN is Nand LS is N then SE= 0 Q + 0.5 SEN + 0.5 LS +0 

IfQ is M and SEN is Nand LS is Z then SE= 0 Q + 0.5 SEN + 0.5 LS +0 

IfQ is M and SEN is Nand LS is P then SE= 0 Q + 0.5 SEN + 0.5 LS +0 

IfQ is M and SEN is Z and LS is N then SE= 0 Q + 0.5 SEN + 0.5 LS +0 

IfQ is M and SEN is Z and LS is Z then SE= 0 Q + 0.5 SEN + 0.5 LS +0 (5.4) 

lfQ is M and SEN is Z and LS is P then SE= 0 Q + 0.5 SEN + 0.5 LS +0 

IfQ is M and SEN is P and LS is N then SE= 0 Q + 0.5 SEN + 0.5 LS +0 

IfQ is M and SEN is P and LS is Z then SE= 0 Q + 0.5 SEN + 0.5 LS +0 

lfQ is M and SEN is P and LS is P then SE = 0 Q + 0.5 SEN + 0.5 LS +0 

lfQ isLand SEN is Nand LS is N then SE = 0 Q + 0 SEN + 1 LS +0 

IfQ isLand SEN is Nand LS is Z then SE = 0 Q + 0 SEN + 1 LS +0 

IfQ isLand SEN is Nand LS is P then SE = 0 Q + 0 SEN + 1 LS +0 

IfQ isLand SEN is Z and LS is N then SE = 0 Q + 0 SEN + I LS +0 

lfQ isLand SEN is Z and LS is Z then SE = 0 Q + 0 SEN + 1 LS +0 

IfQ isLand SEN is Z and LS is P then SE = 0 Q + 0 SEN + 1 LS +0 

IfQ isLand SEN is P and LS is N then SE = 0 Q + 0 SEN + I LS +0 

IfQ isLand SEN is P and LS is Z then SE = 0 Q + 0 SEN + I LS +0 

IfQ isLand SEN is P and LS is P then SE = 0 Q + 0 SEN + I LS +0 

Where Q is the value from the Q statistic, SEN is the sensor signal, LS is the linear 

model's signal, S is small, M is medium, L is Large, N is negative, Z is zero, P is 

positive and SE is the signal estimate produced by the FIS. 

The Q input is defined as having a maximum value of I and a minimum value of 0. 

There are three membership functions for this input which are all generalised bell 
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curve membership functions and are shown in Figure 5.3. These are the heuristic 

membership functions for this input, but the tuned membership functions are derived 

from these and have similar features. 
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Figure 5.3 Heuristic Membership Functions for Q Input 

The sensor input is defined as having a maxtmum value of 250 degrees and a 

minimum value of -250 degrees for the yaw sensor. The sensor input is defined as 

having a maximum value of IS degrees per second and a minimum value of -IS 

degrees per second for the yaw rate sensor. The sensor input is defined as having a 

maximum value of 35 degrees and a minimum value of -35 degrees for the roll 

sensor. The sensor input is defined as having a maximum value of 35 degrees per 

second and a minimum value of -35 degrees per second for the roll rate sensor. There 

are three membership functions for this input which are all generalised bell curve 

membership functions and the ones for the yaw sensor are shown in Figure 5.4. These 

are the heuristic membership functions for this input, but the tuned membership 

functions are derived from these and have similar features. 
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Figure 5.4 Heuristic Membership Functions for Sensor Input 

The linear model sensor input is defined as having a maximum value of 250 degrees 

and a minimum value of -250 degrees for the yaw sensor. The linear model sensor 

input is defined as having a maximum value of IS degrees per second and having a 

minimum value of -15 degrees per second for the yaw rate sensor. The linear model 

sensor input is defined as having a maximum value of 35 degrees and a minimum 

value of -35 degrees for the roll sensor. The linear model sensor input is defined as 

having a maximum value of 35 degrees per second and a minimum value of -35 

degrees per second for the roll rate sensor. There are three membership functions for 

this input which are all generalised bell curve membership functions and the ones for 

the yaw sensor are shown in Figure 5.5. These are the heuristic membership functions 

for this input, but the tuned membership functions are derived from these and have 

similar features. 
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Figure 5.5 Heuristic Membership Functions for Linear Sensor Input 

The heuristic FIS was then tuned by the simulated annealing method using training 

data. The training data was obtained by running the AUV over the path in Figure 5.6 

for the yaw channel sensor recovery FISs. 
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Figure 5.6 AUV Yaw Response to Training Path 

The AUV was presented with forty-eight step input demands which lead to the 

response shown in Figure 5.6 when there was no fault occurring. This set of data 

represents the ideal output of the FIS when the AUV is given the same set of step 

input demands. For training purposes the failure percentages considered were 0%, 

33.3%, 66.7% and 100%. This produced a training path of 4000 seconds with data 

being recorded every 0.1 seconds. The linear model was presented with the output 

from the ANFIS controller and the linear model's output was recorded. The Q statistic 

was calculated from the sensor and linear model output. This gives the three sets of 

input data and the output data required to tune the FISs. With the output data being 

the fault free response of the AUV. These three input data sets and the output data set 

can be seen in Figures 5.7, 5.8, 5.9 and 5.10 for the yaw sensor. 

Figure 5. 7 shows for each level of fault the Q statistic initially has a value of zero and 

the value increases as the sensor signal and linear model signal drift apart. For the 0% 

failure the Q value settles at around 0.7, for the 33.3% failure the Q value is around 

0.55. For the 66.7% failure the Q value settles at around 0.95 and for the 100% failure 

the value is almost 1, this means that the Q statistic considers the sensor information 

to be almost unusable. 
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For the yaw rate sensor the same step input demands shown in Figure 5.6 were used, 

but the yaw rate information was recorded and used for tuning. The tuning data can be 

seen in Figures 5.11, 5.12, 5.13 and 5.14. 

Figure 5. 11 shows that for each level of fault the Q statistic initially has a value of 

zero and as each simulation progress the value increases as the sensor signal and 

linear model signal drift apart. For the 0% failure the Q value settles at around 0.7, for 

the 33 .3% failure the Q value is around 0.55. For the 66.7% failure the Q value settles 

at around 0.95 and for the 100% failure the value is almost I, this means that the Q 

statistic considers the sensor information to be almost unusable. These results are very 

similar to those obtained when considering faults in the yaw sensor. 
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Figure 5.14 Complete Yaw Rate Sensor Output Data Set 

For the roll channel FISs a different approach was needed, a series of initial input roll 

angles was required. This involved running six shorter simulations of twenty seconds 

each and then placing the results one after another to form a data vector of the 

required length. The roll response of the AUV to these initial roll angles can be seen 

in Figure 5.15. 
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Figure 5.15 AUV Roll Response to Training Path 

The input data sets and the output data set were recorded in the same way as for the 

yaw channel work which lead to the creation of the data sets shown in Figures 5.16, 

5.17, 5.18 and 5.19. Once again the roll rate input and output data sets were created 

using the same process, and hence the data set can be seen in Figures 5.20, 5.21, 5.22 

and 5.23. 

Figures 5.16 and 5.20 again show the Q statistic initially has a value of zero and the 

value increases as the sensor signal and linear model signal drift apart. For every 

simulation run the Q statistic very quickly calculates that the sensor signal and linear 

model signal are different and considers the linear model signal the most reliable. For 

this reason both Figures 5.16 and 5.20 show the Q value to 1 for most of the 

simulation time. 
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Figure 5.23 Complete Roll Rate Sensor Output Data Set 

136 



Chapter 5 Sensor recovery system. 

After each tuning for 100 epochs the FISs were tested on the step input demands and 

types of faults introduced in Chapter 3. These are the same tests the Kalman filter 

enhanced ANFIS control systems were subjected too. This will make comparison of 

the three sets of results both easy and fair. The FISs were all tuned for a total of 500 

epochs by the simulated annealing method. This was repeated three times due to the 

statistical nature of the method to remove the chance of an anomalous result. This 

produced fifteen FISs for each case being considered. 

The ANFIS tuning method did not require the heuristic FIS as a starting point, but did 

use the same data sets to tune the FISs. Again the FISs were tuned for a total of 500 

epochs with the FISs being recorded after each 100 epochs. The was no need to repeat 

the process three times as the ANFIS method does not depend on the same statistical 

approach as the simulated annealing method. 

5.5. RESULTS 

The results of the best tuned FISs for each tuning method (ANFIS and simulated 

annealing) for each of the four considered sensors are now presented. All ofthe levels 

for all the faults for all levels of demanded inputs being considered are shown. 

5.5.1. Yaw Sensor FISs 

First let the yaw sensor case be considered. A total of twenty FISs were created for 

this sensor fault, five using the ANFIS method and fifteen using the simulated 

annealing method. Taking the number of FISs and the number of tests each FIS was 

subjected to into account leads to 480 tests, which is clearly too many results to 

include in this thesis, therefore only the best FIS tuned by each of the two considered 

methods will be presented. 

Before the results are presented in section 5.5.5 both FISs will be displayed. The best 

ANFIS tuned FIS was the one tuned for 200 epochs. The three input membership 

functions for the best ANFIS tuned yaw sensor recovery FIS are shown in Figures 

5.24, 5.25 and 5.26. 

The skews shown in Figure 5.24 are due to the input membership functions being 

based on the data show in Figure 5.7 where most of the data was of high value. The 
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skews shown in Figures 5.25 and 5.26 are not as prominent as the data used for these 

inputs was evenly distributed. 
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These three sets of input membership functions when combined with the output 

function lead to the fuzzy rule base shown in Equation (5.5). Due to the FIS having 

three inputs it is impossible to show the output function as it requires a four 

dimensional surface to display the results. 

IfQ is Sand SEN is Nand LS is N then 

SE = 3650 Q -5.267 SEN +4.654 LS -45 12 

IfQ is Sand SEN is Nand LS is Z then 

SE= -3051 Q -16.19 SEN +25.52 LS +1551 

fQ is Sand SEN is Nand LS is P then 

SE= 2140 Q +298.8 SEN -407.1 LS +2901 

If Q is S and SEN is Z and LS is N then 

SE= 839.3 Q -5.733 SEN +1.203 LS -731.5 

If Q is S and SEN is Z and LS is Z then 

SE=62.71 Q+1.573 SEN-0.827LS-29.17 

IfQ is Sand SEN is Z and LS is P then 

SE= 83.42 Q -18.57 SEN +21.46 LS -563.7 

IfQ is Sand SEN is P and LS is N then 

SE= 4394 Q +589.2 SEN -564.8 LS -3150 

IfQ is Sand SEN is P and LS is Z then 

SE = -296.6 Q -21.66 SEN +21.64 LS +645.1 

If Q is S and SEN is P and LS is P then 

SE= -170.2 Q -1.242 SEN +2.671 LS +70.10 

IfQ is M and SEN is Nand LS is N then 

SE= -7470 Q +5.058 SEN -2.078 LS +6839 

IfQ is M and SEN is Nand LS is Z then 

SE= 1069 Q +19.55 SEN -21.76 LS +195.4 

IfQ is M and SEN is Nand LS is P then 

SE= -6723 Q -302.5 SEN +346.6 LS -1319 

lfQ is M and SEN is Z and LS is N then 

SE= -944.6 Q +7.015 SEN -1.264 LS +863.0 

IfQ is M and SEN is Z and LS is Z then 

SE= 44.16 Q -0.427 SEN + 1.956 LS -47.82 (5.5) 
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IfQ is M and SEN is Z and LS is P then 

SE= 358.1 Q +15.16 SEN -13.79 LS +25.63 

IfQ is M and SEN is P and LS is N then 

SE= 3498 Q -552.6 SEN +601.7 LS -3108 

If Q is M and SEN is P and LS is Z then 

SE= -491.6 Q +20.67 SEN -18.07 LS -234.4 

If Q is M and SEN is P and LS is P then 

SE= 180.8 Q +2.203 SEN -1.209 LS -181.9 

IfQ isLand SEN is Nand LS is N then 

SE= -5156 Q -8.535 SEN +3.543 LS +4154 

If Q is L and SEN is N and LS is Z then 

SE= -944.4 Q -8.383 SEN +6.132 LS +720.4 

IfQ isLand SEN is Nand LS is P then 

SE= -9850 Q + 17.36 SEN -2.832 LS + 1864 

IfQ isLand SEN is Z and LS is N then 

SE= 237.2 Q -0.943 SEN +0.4138 LS -844.8 

If Q is L and SEN is Z and LS is Z then 

SE= 351.7 Q -0.962 SEN +0.501 LS -531.7 

IfQ isLand SEN is Z and LS is P then 

SE= 963.1 Q -8.587 SEN +I .632 LS -602.0 

If Q is L and SEN is P and LS is N then 

SE= 12349 Q -217.0 SEN +49.06 LS -3012 

If Q is L and SEN is P and LS is Z then 

SE= -5137 Q -26.57 SEN +2.862 LS +7829 

If Q is L and SEN is P and LS is P then 

SE= 213.3 Q -3.299 SEN -3.154 LS +1910 

Where Q is the value from the Q statistic, SEN is the sensor signal, LS is the linear 

model's signal, S is small, M is medium, L is Large, N is negative, Z is zero, P is 

positive and SE is the signal estimate produced by the FIS. 

The best simulated annealing tuned FIS was the one tuned for 400 epochs. The three 

input membership functions for the best simulated annealing tuned yaw sensor 

recovery FIS are shown in Figures 5.27, 5.28 and 5.29. 
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The skews shown in Figures 5.27, 5.28 and 5.29 are due to tuning performed by the 

simulated annealing method. 
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These three sets of input membership functions when combined with the output 

function lead to the fuzzy rule base shown in Equation (5.6). Owing to the FIS having 

three inputs it is impossible to show the output function as it requires a four 

dimensional surface to display the results. 

If Q is S and SEN is N and LS is N then 

SE= -0.063 Q +0.932 SEN +0.060 LS -0.058 

IfQ is Sand SEN is Nand LS is Z then 

SE= 0.060 Q +0.626 SEN +0.680 LS -0.032 

IfQ is Sand SEN is Nand LS is P then 

SE= -0.003 Q +0.034 SEN +0.976 LS +0.084 

IfQ is Sand SEN is Z and LS is N then 

SE= -0.131 Q +0.980 SEN +0.027 LS +-0.047 

IfQ is Sand SEN is Z and LS is Z then 

SE= 0.048 Q +0.728 SEN +0.704 LS +0.025 

IfQ is Sand SEN is Z and LS is P then 

SE= -0.005 Q -0.045 SEN +1.035 LS +0.023 

IfQ is Sand SEN is P and LS is N then 

SE= -0.039 Q +0.967 SEN +0.025 LS +0.005 

If Q is S and SEN is P and LS is Z then 

SE= 0.025 Q +0.590 SEN +0.640 LS -0.058 

IfQ is Sand SEN is P and LS is P then 

SE= -0.098 Q -0.043 SEN + 1.020 LS -0.058 

lfQ is M and SEN is Nand LS is N then 

SE= -0.005 Q +1.032 SEN +0.003 LS +0.035 

If Q is M and SEN is N and LS is Z then 

SE= 0.009 Q +0.716 SEN +0.758 LS -0.019 

If Q is M and SEN is N and LS is P then 

SE= -0.032 Q +0.019 SEN +1.082 LS +0.098 

If Q is M and SEN is Z and LS is N then 

SE= -0.033 Q +0.935 SEN -0.014 LS +0.029 

If Q is M and SEN is Z and LS is Z then 

SE= 0.078 Q +0.665 SEN +0.694 LS -0.0132 (5.6) 
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If Q is M and SEN is Z and LS is P then 

SE= 0.034 Q +0.000 SEN +0.982 LS +0.011 

If Q is M and SEN is P and LS is N then 

SE= 0.014 Q +0.897 SEN -0.008 LS +0.049 

lfQ is M and SEN is P and LS is Z then 

SE= 0.066 Q +0.659 SEN +0.574 LS -0.030 

If Q is M and SEN is P and LS is P then 

SE= 0.037 Q +0.023 SEN +0.972 LS +0.007 

If Q is L and SEN is N and LS is N then 

SE= -0.076 Q +1.070 SEN +0.041 LS -0.070 

If Q is L and SEN is N and LS is Z then 

SE= -0.088 Q +0.656 SEN +0.619 LS +0.004 

If Q is L and SEN is N and LS is P then 

SE= -0.043 Q -0.024 SEN +0.933 LS +0.074 

If Q is L and SEN is Z and LS is N then 

SE= -0.010 Q +0.914 SEN +0.026 LS -0.055 

IfQ isLand SEN is Z and LS is Z then 

SE= -0.042 Q +0.696 SEN +0.658 LS -0.031 

If Q is L and SEN is Z and LS is P then 

SE= -0.085 Q +0.010 SEN + 1.059 LS -0.143 

IfQ isLand SEN is P and LS is N then 

SE= -0.035 Q +0.915 SEN +0.036 LS -0.087 

If Q is L and SEN is P and LS is Z then 

SE = -0.095 Q +0. 742 SEN +0.631 LS +0.043 

If Q is L and SEN is P and LS is P then 

SE= 0.041 Q +0.020 SEN + 1.049 LS +0.042 

Where Q is the value from the Q statistic, SEN is the sensor signal, LS is the linear 

model's signal, S is small, M is medium, L is Large, N is negative, Z is zero, P is 

positive and SE is the signal estimate produced by the FIS. 
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5.5.2. Yaw Rate Sensor FISs 

As there are the same number of yaw rate sensor recovery FISs which are tested on 

the same number of faults as the yaw sensor, then once again there are too many 

results too display fully. Therefore the results for the two best tuned FISs for the yaw 

rate sensor will be displayed. The two FISs will now be displayed. 

The best ANFIS tuned FIS was the one tuned for 100 epochs. The three input 

membership functions for the best ANFIS tuned yaw rate sensor recovery FIS are 

shown in Figures 5.30, 5.31 and 5.32. 

The skews shown in Figure 5.30 are due to the input membership functions being 

based on the data show in Figure 5.11 where most of the data was of high value. The 

skews shown in Figures 5.31 and 5.32 are not as prominent as the data used for these 

inputs was evenly distributed. 
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These three sets of input membership functions when combined with the output 

function lead to the fuzzy rule base shown in Equation (5.7). Owing to the FIS having 

three inputs it is impossible to show the output function as it requires a four 

dimensional surface to display the results. 

IfQ is Sand SEN is Nand LS is N then 

SE= -441.7 Q -12.23 SEN +11.29 LS +42.83 

lfQ is Sand SEN is Nand LS is Z then 

SE= -1414 Q -15.21 SEN +27.07 LS -65.84 

IfQ is Sand SEN is Nand LS is P then 

SE= -131.6 Q +246.5 SEN -241.8 LS +1890 

IfQ is Sand SEN is Z and LS is N then 

SE= 167.6 Q -5.249 SEN +8.490 LS -86.60 

IfQ is Sand SEN is Z and LS is Z then 

SE= 63.05 Q +8.262 SEN -5.257 LS +9.533 

If Q is S and SEN is Z and LS is P then 

SE= -6.151 Q -3.801 SEN +5.906 LS -44.85 

IfQ is Sand SEN is P and LS is N then 

SE= 1625 Q -133.5 SEN +-683.9 LS -698.5 

IfQ is Sand SEN is P and LS is Z then 

SE= 143.3 Q +11.14 SEN +19.01 LS -0.847 

If Q is S and SEN is P and LS is P then 

SE= 10.46 Q -1.011 SEN +3.287 LS +1.334 

If Q is M and SEN is N and LS is N then 

SE= -184.2 Q +4.322 SEN -2.045 LS +230.4 

If Q is M and SEN is N and LS is Z then 

SE=-1233 Q+8.852 SEN -7.118 LS +1213 

IfQ is M and SEN is Nand LS is P then 

SE= -261.0 Q-33.99 SEN -3.139 LS +366.5 

lfQ is M and SEN is Z and LS is N then 

SE= 73.61 Q -3.931 SEN +2.859 LS -38.05 

If Q is M and SEN is Z and LS is Z then 

SE= 61.05 Q +1.358 SEN -0.707 LS -57.58 (5.7) 
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If Q is M and SEN is Z and LS is P then 

SE= -4.194 Q -0.176 SEN +1.921 LS -1.002 

IfQ is M and SEN is P and LS is N then 

SE= 1646 Q +332.5 SEN +29.93 LS -2407 

If Q is M and SEN is P and LS is Z then 

SE= 105.4 Q --6.980 SEN +7.555 LS -127.9 

IfQ is M and SEN is P and LS is P then 

SE= 4.825 Q-0.386 SEN +1.951 LS -25.98 

If Q is L and SEN is N and LS is N then 

SE= -66.20 Q +220.3 SEN -97.83 LS -373.8 

If Q is L and SEN is N and LS is Z then 

SE= 372.2 Q -1187 SEN +705.3 LS +95.00 

IfQ isLand SEN is Nand LS is P then 

SE= 53.77 Q +705.8 SEN -24.95 LS -32.70 

If Q is L and SEN is Z and LS is N then 

SE= 493.8 Q --69.66 SEN + 17.50 LS -449.0 

If Q is L and SEN is Z and LS is Z then 

SE= 90.43 Q + 124.0 SEN -72.19 LS -92.65 

If Q is L and SEN is Z and LS is P then 

SE= -71.02 Q -49.91 SEN +7.216 LS +76.72 

IfQ isLand SEN is P and LS is N then 

SE= -108.3 Q +487.1 SEN -151.6 LS -115.6 

If Q is L and SEN is P and LS is Z then 

SE= -379.0 Q -581.6 SEN +469.5 LS -15.77 

If Q is L and SEN is P and LS is P then 

SE= -294.1 Q +242.9 SEN --67.58 LS + 112.2 

Where Q is the value from the Q statistic, SEN is the sensor signal, LS is the linear 

model's signal, S is small, M is medium, L is Large, N is negative, Z is zero, P is 

positive and SE is the signal estimate produced by the FIS. 

The best simulated annealing tuned FIS was the one tuned for 500 epochs. The three 

input membership functions for the best simulated annealing tuned yaw rate sensor 

recovery FIS are shown in Figures 5.33, 5.34 and 5.35. 
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The skews shown in Figures 5.33, 5.34 and 5.35 are due to tuning performed by the 

simulated annealing method. 
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These three sets of input membership functions when combined with the output 

function lead to the fuzzy rule base shown in Equation (5.8). Owing to the FIS having 

three inputs it is impossible to show the output function as it requires a four 

dimensional surface to display the results. 

If Q is S and SEN is N and LS is N then 

SE= 0.011 Q +0.487 SEN +0.492 LS +0.1 07 

If Q is S and SEN is N and LS is Z then 

SE= -0.022 Q +0.496 SEN +0.532 LS +0.105 

If Q is S and SEN is N and LS is P then 

SE= 0.003 Q +0.499 SEN +0.527 LS +0.1 05 

If Q is S and SEN is Z and LS is N then 

SE= -0.028 Q +0.496 SEN +0.521 LS +0.122 

IfQ is Sand SEN is Z and LS is Z then 

SE= -0.013 Q +0.530 SEN +0.537 LS +0.106 

If Q is S and SEN is Z and LS is P then 

SE= -0.017 Q +0.501 SEN +0.489 LS +0.113 

If Q is S and SEN is P and LS is N then 

SE= -0.044 Q +0.497 SEN +0.543 LS +0.142 

If Q is S and SEN is P and LS is Z then 

SE= 0.020 Q +0.519 SEN +0.447 LS +0.116 

If Q is S and SEN is P and LS is P then 

SE= 0.007 Q +0.502 SEN +0.496 LS +0.126 

If Q is M and SEN is N and LS is N then 

SE= -0.001 Q +0.530 SEN +0.526 LS +0.125 

If Q is M and SEN is N and LS is Z then 

SE= 0.007 Q +0.506 SEN +0.486 LS +0.123 

If Q is M and SEN is N and LS is P then 

SE= 0.019 Q +0.509 SEN +0.521 LS +0.132 

IfQ is M and SEN is Z and LS is N then 

SE= -0.014 Q +0.470 SEN +0.487 LS +0.093 

If Q is M and SEN is Z and LS is Z then 

SE= 0.026 Q +0.508 SEN +0.523 LS +0.131 (5.8) 
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If Q is M and SEN is Z and LS is P then 

SE= 0.001 Q +0.486 SEN +0.522 LS +0.142 

If Q is M and SEN is P and LS ,is N then 

SE= 0.007 Q +0.504 SEN +0.471 LS +0.108 

If Q is M and SEN is P and LS is Z then 

SE =-0.004 Q +0.489 SEN +0.461 LS +0.146 

If Q is M and SEN is P and LS is P then 

SE= 0.041 Q +0.452 SEN +0.475 LS +0.105 

If Q is L and SEN is N and LS is N then 

SE= -0.012 Q +0.526 SEN +0.445 LS +0.137 

IfQ isLand SEN is Nand LS is Z then 

SE= -0.0001 Q +0.498 SEN +0.475 LS +0.147 

If Q is L and SEN is N and LS is P then 

SE= 0.027 Q +0.501 SEN +0.557 LS +0.123 

IfQ isLand SEN is Z and LS is N then 

SE= -0.039 Q +0.476 SEN +0.492 LS +0.119 

IfQ isLand SEN is Z and LS is Z then 

SE= -0.003 Q +0.533 SEN +0.548 LS +0.108 

If Q is L and SEN is Z and LS is P then 

SE= -0.025 Q +0.532 SEN +0.5 18 LS +0.125 

If Q is L and SEN is P and LS is N then 

SE= -0.003 Q +0.477 SEN +0.464 LS +0.109 

If Q is L and SEN is P and LS is Z then 

SE= -0.006 Q +0.477 SEN +0.497 LS +0.093 

If Q is L and SEN is P and LS is P then 

SE= -0.014 Q +0.468 SEN +0.498 LS +0.123 

Where Q is the value from the Q statistic, SEN is the sensor signal, LS is the linear 

model's signal, S is small, M is medium, L is Large, N is negative, Z is zero, P is 

positive and SE is the signal estimate produced by the FIS. 
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5.5.3. Roll Sensor FISs 

As there are the same number of roll sensor recovery FISs which are tested on the 

same number of faults as the yaw sensor, then once again there are too many results 

too display fully. Therefore the results for the two best tuned FISs for the roll sensor 

will be displayed. The two FISs will now be displayed. 

The best ANFIS tuned FIS was the one tuned for 200 epochs. The three input 

membership functions for the best ANFIS tuned roll sensor recovery FIS are shown in 

Figures 5.36, 5.37 and 5.38. 

The skews shown in Figure 5.36 are due to the input membership functions being 

based on the data show in Figure 5.16 where most of the data was of high value. The 

skews shown in Figures 5.37 and 5.38 are not as prominent as the data used for these 

inputs was evenly distributed. 
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These three sets of input membership functions when combined with the output 

function lead to the fuzzy rule base shown in Equation (5.9). Owing to the FIS having 

three inputs it is impossible to show the output function as it requires a four 

dimensional surface to display the results. 

If Q is S and SEN is N and LS is N then 

SE= -0.908 Q +0.009 SEN +1.054 LS +2.813 

If Q is S and SEN is N and LS is Z then 

SE= -67.78 Q --0.662 SEN +1.845 LS -2.077 

IfQ is Sand SEN is Nand LS is P then 

SE= 0.088 Q +1.897 SEN --0.130 LS +1.930 

IfQ is Sand SEN is Z and LS is N then 

SE= -81.73 Q -0.123 SEN +1.049 LS +0.937 

IfQ is Sand SEN is Z and LS is Z then 

SE= -18.73 Q +0.031 SEN +0.908 LS --0.132 

If Q is S and SEN is Z and LS is P then 

SE= 74.21 Q --0.153 SEN +1.056 LS +0.081 

IfQ is Sand SEN is P and LS is N then 

SE= -0.687 Q + 1.499 SEN +0.106 LS -2.755 

If Q is S and SEN is P and LS is Z then 

SE= 69.84 Q -0.774 SEN +1.804 LS +3.169 

IfQ is Sand SEN is P and LS is P then 

SE= 9.920 Q +0.020 SEN +1.030 LS -1.883 

If Q is M and SEN is N and LS is N then 

SE= -31.98 Q +1.278 SEN +1.934 LS -107.6 

IfQ is M and SEN is Nand LS is Z then 

SE= -431.6 Q -10.47 SEN -65.24 LS -816.1 

IfQ is M and SEN is Nand LS is P then 

SE= 72.94 Q +3.916 SEN +78.62 LS +96.27 

IfQ is M and SEN is Z and LS is N then 

SE= 639.1 Q +5.384 SEN +0.162 LS -670.3 

IfQ is M and SEN is Z and LS is Z then 

SE= -9.890 Q -15.39 SEN +11.39 LS +82.45 (5.9) 
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If Q is M and SEN is Z and LS is P then 

SE= -386.3 Q + 12.51 SEN -5.735 LS +405.8 

If Q is M and SEN is P and LS is N then 

SE= 487.8 Q -258.2 SEN +11.80 LS +447.8 

If Q is M and SEN is P and LS is Z then 

SE= -223.1 Q +102.1 SEN -78.06 LS +213.3 

If Q is M and SEN is P and LS is P then 

SE= -0.052 Q -2.630 SEN +8.210 LS -1.79.0 

If Q is L and SEN is N and LS is N then 

SE= 31.77 Q -0.935 SEN +2.585 LS +11.83 

If Q is L and SEN is N and LS is Z then 

SE= -155.8 Q +15.09 SEN -6.085 LS +317.7 

IfQ isLand SEN is Nand LS is P then 

SE= -266.2 Q -17.02 SEN +37.32 LS -205.8 

IfQ isLand SEN is Z and LS is N then 

SE= 143.8 Q +0.148 SEN -0.227 LS -150.5 

If Q is L and SEN is Z and LS is Z then 

SE= 1.247 Q +1.840 SEN +0.358 LS +2.571 

IfQ isLand SEN is Z and LS is P then 

SE= 9.146 Q +1.350 SEN +0.390 LS -3.227 

If Q is L and SEN is P and LS is N then 

SE= 47.92 Q +81.26 SEN +31.28 LS + 14.76 

IfQ isLand SEN is P and LS is Z then 

SE= 0.031 Q +12.15 SEN -1.390 LS -191.9 

If Q is L and SEN is P and LS is P then 

SE= -24.95 Q -0.940 SEN +2.803 LS -23.61 

Where Q is the value from the Q statistic, SEN is the sensor signal, LS is the linear 

model's signal, S is small, M is medium, L is Large, N is negative, Z is zero, P is 

positive and SE is the signal estimate produced by the FIS. 

The best simulated annealing tuned FIS was the one tuned for 500 epochs. The three 

input membership functions for the best simulated annealing tuned roll sensor 

recovery FIS are shown in Figures 5.39, 5.40 and 5.41. 
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The skews shown in Figures 5.39, 5.40 and 5.41 are due to tuning performed by the 

simulated annealing method. 
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These three sets of input membership functions when combined with the output 

function lead to the fuzzy rule base shown in Equation (5.10). Again owing to the FIS 

having three inputs it is impossible to show the output function as it requires a four 

dimensional surface to display the results. 

If Q is S and SEN is N and LS is N then 

SE= -0.031 Q + 1.073 SEN -0.022 LS -0.056 

If Q is S and SEN is N and LS is Z then 

SE= 0.076 Q +0.431 SEN +0.470 LS -0.047 

IfQ is Sand SEN is Nand LS is P then 

SE= 0.040 Q + 0.007 SEN +0.956 LS +0.181 

If Q is S and SEN is Z and LS is N then 

SE= -0.026 Q +1.001 SEN +0.052 LS -0.017 

IfQ is Sand SEN is Z and LS is Z then 

SE= 0.011 Q +0.424 SEN +0.581 LS +0.012 

IfQ is Sand SEN is Z and LS is P then 

SE= 0.111 Q -0.117 SEN +1.108 LS +0.228 

If Q is S and SEN is P and LS is N then 

SE= 0.031 Q +l.l09 SEN -0.056 LS +0.214 

If Q is S and SEN is P and LS is Z then 

SE= -0.078 Q +0.357 SEN +0.531 LS -0.024 

IfQ is Sand SEN is P and LS is P then 

SE= 0.076 Q -0.039 SEN +1.016 LS -0.019 

IfQ is M and SEN is Nand LS is N then 

SE= 0.032 Q +0.904 SEN +0.036 LS +0.001 

If Q is M and SEN is N and LS is Z then 

SE= -0.110 Q +0.541 SEN +0.499 LS +0.165 

If Q is M and SEN is N and LS is P then 

SE= 0.136 Q -0.061 SEN +0.873 LS +0.078 

If Q is M and SEN is Z and LS is N then 

SE= -0.005 Q +1.033 SEN +0.065 LS -0.227 

IfQ is M and SEN is Z and LS is Z then 

SE= 0.036 Q +0.499 SEN +0.455 LS +0.038 (5.10) 
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If Q is M and SEN is Z and LS is P then 

SE= -0.093 Q +0.043 SEN +0.969 LS +0.009 

If Q is M and SEN is P and LS is N then 

SE= -0.129 Q +0.930 SEN +0.177 LS -0.063 

If Q is M and SEN is P and LS is Z then 

SE= -0.077 Q +0.333 SEN +0.546 LS -0.150 

IfQ is M and SEN is P and LS is P then 

SE= 0.101 Q +0.040 SEN + 1.034 LS -0.164 

If Q is L and SEN is N and LS is N then 

SE= -0.163 Q + 1.036 SEN +0.005 LS -0.129 

If Q is L and SEN is N and LS is Z then 

SE= -0.011 Q +0.569 SEN +0.589 LS -0.041 

If Q is L and SEN is N and LS is P then 

SE= -0.028 Q -0.144 SEN +1.085 LS +0.018 

If Q is L and SEN is Z and LS is N then 

SE= -0.057 Q +0.996 SEN -0.033 LS +0.065 

If Q is L and SEN is Z and LS is Z then 

SE= 0.021 Q +0.532 SEN +0.371 LS +0 

If Q is L and SEN is Z and LS is P then 

SE= 0.088 Q +0.020 SEN +1.190 LS -0.043 

IfQ isLand SEN is P and LS is N then 

SE= 0.047 Q +0.860 SEN +0.079 LS -0.021 

If Q is L and SEN is P and LS is Z then 

SE= 0.101 Q +0.479 SEN +0.385 LS -0.041 

IfQ isLand SEN is P and LS is P then 

SE= -0.102 Q +0.007 SEN +0.803 LS -0.041 

Where Q is the value from the Q statistic, SEN is the sensor signal, LS is the linear 

model's signal, S is small, M is medium, L is Large, N is negative, Z is zero, P is 

positive and SE is the signal estimate produced by the FIS. 
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5.5.4. Roll Rate Sensor FISs 

As there are the same number of roll rate sensor recovery FISs which are tested on the 

same number of faults as the roll sensor, then once again there are too many results 

too display fully. Therefore the results for the two best tuned FISs for the roll sensor 

will be displayed. The two FISs will now be displayed. 

The best ANFIS tuned FIS was the one tuned for lOO epochs. The three input 

membership functions for the best ANFIS tuned roll rate sensor recovery FIS are 

shown in Figures 5.42, 5.43 and 5.44. 

The skews shown in Figure 5.42 are due to the input membership functions being 

based on the data show in Figure 5.20 where most ofthe data was of high value. The 

skews shown in Figures 5.43 and 5.44 are not as prominent as the data used for these 

inputs was evenly distributed. 
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These three sets of input membership functions when combined with the output 

function lead to the fuzzy rule base shown in Equation (5.11). Owing to the FIS 

having three inputs it is impossible to show the output function as it requires a four 

dimensional surface to display the results. 

IfQ is Sand SEN is Nand LS is N then 

SE= -15.16 Q +7.795 SEN -6.745 LS +21.37 

If Q is S and SEN is N and LS is Z then 

SE= -152.2 Q -24.61 SEN +37.49 LS +193.1 

IfQ is Sand SEN is Nand LS is P then 

SE= 281.6 Q -1005 SEN +1220 LS +149.8 

IfQ is Sand SEN is Z and LS is N then 

SE= 105.6 Q +14.64 SEN -9.439 LS +78.53 

IfQ is Sand SEN is Z and LS is Z then 

SE= 0.634 Q +10.99 SEN -8.191 LS -1.003 

If Q is S and SEN is Z and LS is P then 

SE= -105.6 Q +19.72 SEN -21.52 LS -23.00 

IfQ is Sand SEN is P and LS is N then 

SE= -529.3 Q -1193 SEN +929.5 LS -514.4 

IfQ is Sand SEN is P and LS is Z then 

SE= 151.9 Q +6.437 SEN +11.26 LS -227.0 

IfQ is Sand SEN is P and LS is P then 

SE= 11.24 Q +8.340 SEN -7.534 LS -14.42 

IfQ is M and SEN is Nand LS is N then 

SE= -6.534 Q -5.038 SEN +5.932 LS +27.82 

If Q is M and SEN is N and LS is Z then 

SE= 28.54 Q +0.873 SEN -10.67 LS -118.0 

IfQ is M and SEN is Nand LS is P then 

SE= 112.1 Q +769.8 SEN -661.1 LS +530.7 

IfQ is M and SEN is Z and LS is N then 

SE= -28.45 Q -15.87 SEN +10.30 LS -32.82 

IfQ is M and SEN is Z and LS is Z then 

SE= -1.244 Q -3.271 SEN +3.114 LS +5.087 (5.11) 
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If Q is M and SEN is Z and LS is P then 

SE= 23.46 Q -14.95 SEN +13.33 LS +3.871 

lfQ is M and SEN is P and LS is N then 

SE= -868.5 Q +963.1 SEN -654.9 LS -700.3 

If Q is M and SEN is P and LS is Z then 

SE= 15.24 Q -14.81 SEN +5.848 LS +71.82 

If Q is M and SEN is P and LS is P then 

SE= -2.209 Q -4.960 SEN +6.265 LS -36.93 

If Q is L and SEN is N and LS is N then 

SE= 743.9 Q +45.67 SEN +l2.25 LS +545.5 

If Q is L and SEN is N and LS is Z then 

SE= 415.0 Q +126.0 SEN -105.4 LS +441.6 

If Q is L and SEN is N and LS is P then 

SE= -117.4 Q +556.4 SEN +l121 LS -9.898 

If Q is L and SEN is Z and LS is N then 

SE= 799.6 Q +32.53 SEN -10.70 LS -896.0 

If Q is L and SEN is Z and LS is Z then 

SE= -77.96 Q -15.89 SEN +17.74 LS -37.25 

IfQ isLand SEN is Z and LS is P then 

SE= -745.9 Q +78.27 SEN -74.13 LS +769.0 

If Q is L and SEN is P and LS is N then 

SE= 244.5 Q -433.2 SEN +201.9 LS +124.2 

If Q is L and SEN is P and LS is Z then 

SE= 545.5 Q +46.04 SEN -163.0 LS +545.3 

If Q is L and SEN is P and LS is P then 

SE= -182.7 Q -76.93 SEN + 105.9 LS -98.03 

Where Q is the value from the Q statistic, SEN is the sensor signal, LS is the linear 

model's signal, S is small, M is medium, L is Large, N is negative, Z is zero, P is 

positive and SE is the signal estimate produced by the FIS. 

The best simulated annealing tuned FIS was the one tuned for 200 epochs. The three 

input membership functions for the best simulated annealing tuned roll rate sensor 

recovery FIS are shown in Figures 5.45, 5.46 and 5.47. 
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The skews shown in Figures 5.45, 5.46 and 5.47 are due to tuning performed by the 

simulated annealing method. 
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These three sets of input membership functions when combined with the output 

function lead to the fuzzy rule base shown in Equation (5.12). Again owing to the FIS 

having three inputs it is impossible to show the output function as it requires a four 

dimensional surface to display the results 

IfQ is Sand SEN is Nand LS is N then 

SE= -0.092 Q + 1.047 SEN +0.063 LS -0.042 

If Q is S and SEN is N and LS is Z then 

SE= 0.123 Q +0.394 SEN +0.454 LS -0.035 

IfQ is Sand SEN is Nand LS is P then 

SE= -0.010 Q -0.005 SEN +0.937 LS +0.166 

IfQ is Sand SEN is Z and LS is N then 

SE= -0.018 Q +0.927 SEN +0.065 LS +0.029 

IfQ is Sand SEN is Z and LS is Z then 

SE= -0.073 Q +0.448 SEN +0.570 LS +0.012 

IfQ is Sand SEN is Z and LS is P then 

SE= 0.123 Q -0.105 SEN +1.1 10 LS +0.255 

IfQ is Sand SEN is P and LS is N then 

SE= -0.040 Q + 1.172 SEN -0.080 LS +0.203 

IfQ is Sand SEN is P and LS is Z then 

SE= -0.064 Q +0.361 SEN +0.591 LS -0.072 

IfQ is Sand SEN is P and LS is P then 

SE= -0.006 Q -0.031 SEN + 1.053 LS -0.038 

IfQ is M and SEN is Nand LS is N then 

SE= 0.0002 Q +0.927 SEN +0.034 LS -0.015 

IfQ is M and SEN is Nand LS is Z then 

SE= -0.124 Q +0.544 SEN +0.487 LS +0.189 

If Q is M and SEN is N and LS is P then 

SE= 0.101 Q -0.05 I SEN +0.891 LS +0.072 

If Q is M and SEN is Z and LS is N then 

SE= -0.038 Q +0.95 I SEN +0.093 LS -0.196 

If Q is M and SEN is Z and LS is Z then 

SE= 0.056 Q +0.453 SEN +0.490 LS +0.008 (5.12) 
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IfQ is M and SEN is Z and LS is P then 

SE= -0.034 Q +0.061 SEN +0.973 LS +0.059 

If Q is M and SEN is P and LS is N then 

SE= -0.147 Q +0.882 SEN +0.131 LS +0.004 

IfQ is M and SEN is P and LS is Z then 

SE= -0.052 Q +0.309 SEN +0.606 LS -0.104 

If Q is M and SEN is P and LS is P then 

SE= 0.061 Q +0.051 SEN +0.977 LS -0.126 

If Q is L and SEN is N and LS is N then 

SE= -0.124 Q + 1.055 SEN +0.002 LS -0.085 

If Q is L and SEN is N and LS is Z then 

SE= -0.081 Q +0.587 SEN +0.577 LS -0.022 

If Q is L and SEN is N and LS is P then 

SE= -0.091 Q -0.109 SEN +1.087 LS -0.028 

IfQ isLand SEN is Z and LS is N then 

SE= -0.111 Q +1.001 SEN -0.004 LS +0.030 

If Q is L and SEN is Z and LS is Z then 

SE= -0.043 Q +0.503 SEN +0.428 LS +0.002 

If Q is L and SEN is Z and LS is P then 

SE= 0.081 Q -0.010 SEN +1.131 LS -0.030 

If Q is L and SEN is P and LS is N then 

SE= 0.025 Q +0.904 SEN +0.092 LS -0.081 

If Q is L and SEN is P and LS is Z then 

SE= 0.066 Q +0.472 SEN +0.435 LS +0.022 

If Q is L and SEN is P and LS is P then 

SE = -0.078 Q +0.031 SEN +0. 734 LS +0.006 

Where Q is the value from the Q statistic, SEN is the sensor signal, LS is the linear 

model's signal, S is small, M is medium, L is Large, N is negative, Z is zero, P is 

positive and SE is the signal estimate produced by the FIS. 

The results of placing these eight FISs in the control loop will now be displayed in the 

next four sections. 
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5.5.5. Yaw Sensor Failures 

This first section will consider faults occurring in the yaw sensor. The section is 

divided into three subsections, each presenting results concerned with one of the three 

step input sizes. Each subsection will present results from both considered FISs and 

the Kalman filter enhance control system developed in Chapter 4. The complete set of 

results are presented in Appendix G. 

(a) Yaw Step Inputs of 10 Degrees 

This first subsection will look at faults occurring in the yaw sensor when a I 0 degrees 

yaw step input demand has been placed on the AUV. The three types of faults defined 

in Chapter 3 will all be considered. The two FISs have been compared to the Kalman 

filter enhanced control system of Chapter 4 using RMSE values. The complete set of 

RMSEs are shown in Table 5.1. 

Table 5.1 The 10 Degrees Step Input RMSEs for Yaw Sensor Faults. 

RMSEs (degrees) 
Control Percentage Signal Loss Intermittent Signal to Noise Ratio 
System 0% 25% 50% 75% 100% Total Failure 1% 5% 1 oo/t 

Kalman 
Filter 0.047 2.633 7.39f 14.292 17.624 9.51C 0.144 0.323 o.4se 

ANFIS 0.139 2.298 5.94( 13.907 18.00S 11.40S 0.204 0.342 0.45~ 

Simulated 
Annealing 0.200 2.599 6.512 10.078 11.310 6.091 0.22S 0.339 0.443 

Table 5.1 shows how both the ANFIS and simulated annealing tuned sensor recovery 

FISs performed for the considered sensor faults when attempting a yaw step input of 

10 degrees. When there was no fault on the system (0% percentage signal loss) both 

FISs produced RMSEs larger than the Kalman filter enhanced control system. For the 

other considered levels of percentage signal loss tests considered the ANFIS tuned 

FIS was able to produce lower RMSE values for all but the 100% fault and the 

simulated annealing tuned FIS was able to produce lower RMSE values for all levels 

considered. When the intermittent total sensor failure is simulated within the system, 

the simulated annealing FIS produced a RMSE less than the Kalman filter enhanced 
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control system, but the ANFIS tuned FIS could not. When the signal to noise ratio 

(SNR) faults were implemented in the AUV both FISs failed to improve on the 

Kalman filter enhanced system for all but the highest level of noise considered. For 

the highest level of noise there was a small improvement in performance. 

To show the level of improvements produced by using the FISs in place of the 

Kalman filter Table 5.2 has been calculated showing the percentage improvements for 

all tests. 

Control 
System 
ANFIS 
Simulated 
Annealing 

Table 5.2 The 10 Degrees Step Input Percentage Increases 

for Yaw Sensor Faults. 

Percentage Signal Loss lntermitt en! Signal to Noise Ratio 
0% 25% 50% 75% 100% Total Fa ilure 1% 5% 10% 

-194% 13% 20% 3% -2% -20% -41% -6% 0% 

-322% 1% 12% 29% 36% 36% -58% -5% 3% 

Table 5.2 shows how much the performance has been changed due to the use of the 

sensor estimation FISs. Figure 5.48 shows the yaw responses of both considered FISs 

along with the Kalman filter enhanced system and the ideal system for a 75% signal 

loss. 
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for a 10 Degrees Step Yaw Demand 

(b) Yaw Step Inputs of 50 Degrees 

50 

This subsection will look at faults occurring in the yaw sensor when a 50 degrees yaw 

step input demand has been placed on the AUV. The three types of faults defined in 

Chapter 3 will all be considered. The two FISs have been compared to the Kalman 

filter enhanced control system of Chapter 4 using RMSE values. The complete set of 

RMSEs are shown in Table 5.3. 
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Table 5.3 The 50 Degrees Step Input RMSEs for Yaw Sensor Faults. 

RMSEs (degrees) 
Control Percenta_g_e Sif nal Loss Intermittent Sianalto Noise Ratio 
System 0% 25% 50% 75% 100% Total Failure 1% 5% 10% 

Kalman 
Filler 0.697 12.707 20.751 20.210 18.820 10.59S 0.58_0 0.841 1.1Q_2 

ANFIS 2.051 12.91~ 20.421 21.680 20.011 11.974 2.083 2.13~ 2.238 

Simulated 
Annealina 1.13S 10.52C 6.922 14.150 17.575 7.666 1.352 1.46~ 1.639 

As was the case for the I 0 degrees step input demand, neither of the FISs are capable 

of handling the fault free situation. Again both FISs produced an increase in RMSE 

values for these tests. The simulated annealing tuned FIS was capable of improving 

on the Kat man filter enhanced control system for the other four levels of signal loss 

and the intermittent total signal loss. For the same set of tests the ANFIS tuned FIS 

was only once able to produce a lower RMSE value, for the SO% signal loss. When 

considering the SNR faults both FISs produced high RMSE values for all levels of 

noise considered. 

To show the level of improvements produced by using the FISs in place of the 

Kalman filter Table 5.4 has been calculated showing the percentage improvements for 

all tests. 

Control 
System 
ANFIS 

Simulated 
Annealing 

Table 5.4 The 50 Degrees Step Input Percentage Increases 

for Yaw Sensor Faults. 

Percentage Signal Loss Intermittent Signal to Noise Ratio 
0% 25% 50% 75% 100% Total Failure 1% 5% 10% 

-194% -2% 2% -7% -6% -13% -259% -154% -103% 

-63% 17% 67% 30% 7% 28% -133% -75% -49% 

Table 5.4 shows how much the performance has been changed due to the use of the 

sensor estimation FISs. Figure 5.49 shows the yaw responses of both considered FISs 

along with the Kalman filter enhanced system and the ideal system for a 75% signal 

loss. 
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for a 50 Degrees Step Yaw Demand 

(c) Yaw Step Inputs of90 Degrees 

50 

This subsection will look at faults occurring in the yaw sensor when a 90 degrees yaw 

step input demand has been placed on the AUV. The three types of faults defined in 

Chapter 3 will all be considered. The two FISs have been compared to the Kalman 

filter enhanced control system of Chapter 4 using RMSE values. The complete set of 

RMSEs are shown in Table 5.5. 
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Table 5.5 The 90 Degrees Step Input RMSEs for Yaw Sensor Faults. 

RMSEs (degrees) 
~ontrol !Percentage Signal Loss lntennittent ~ignal to Noise Ratio 
~ystem 0% 25% 50% 75% 100% lrotal Failure 1% 5% 10% 

~alman 
0.079 10.865 7.475 5.463 4.695 12.483 0.84~ Filter 0.384 1.199 

~NFIS 0.50~ 12.127 12.55!l 4.524 3.609 7.37~ 0.560 1.054 1.353 

~imulated 
9.455 0.908 7.22!l 6.81' 0.439 0.913 ~nnealing 0.451 5.709 1.336 

Table 5.5 once again shows how both the FISs were unable to improve on the Kalman 

filter enhanced control system for the fault free situation and for all levels of noise in 

the SNR tests. For this, the large size ofyaw step input demand considered the ANFIS 

tuned FIS did produce lower RMSE values for the 75% and 100% signal loss's and 

the intermittent total failure. The simulated annealing tuned FIS produced lower 

RMSE values for the 25% and SO% signal loss's and the intermittent total failure. 

Again to show the level of improvements produced by using the FISs in place of the 

Kalman filter Table 5.6 has been calculated showing the percentage improvements for 

all tests. 

Control 
System 
ANFIS 
Simulated 
Annealing 

Table 5.6 The 90 Degrees Step Input Percentage Increases 

for Yaw Sensor Faults. 

Percentage Signal Loss lntennittent Signal to Noise Ratio 
0% 25% 50% 75% 100% Total Failure 1% 5% 10% 

-543% -12% -68% 17% 23% 41% -46% -24% -13% 
-475% 13% 88% -32% -22% 45% -14% -8% -11% 

Table 5.6 shows how much the performance has been changed due to the use of the 

sensor estimation FISs. 

Figure 5.50 shows the yaw responses of both considered FISs along with the Kalman 

filter enhanced system and the ideal system for a 75% signal loss. The Kalman filter 

enhanced control system produced an estimate that enabled the AUV to achieve its 

desired yaw angle for the case shown. This is evidence of how well the Kalman filter 

can perform and highlights how effective the FISs need to be to be considered an 

improvement on the Kalman filter. 
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for a 90 Degrees Step Yaw Demand 

5.5.6. Yaw Rate Sensor Failures 

50 

The second section will look at faults occurring in the yaw rate sensor. The section is 

again divided into three subsections, each presenting results concerned with one of the 

three step input sizes. Each subsection will present results from both considered FISs 

and the Kalman filter enhance control system developed in Chapter 4. The complete 

set of results are presented in Appendix G. 

(a) Yaw Step Inputs of 10 Degrees 

The first subsection in this section will look at faults occurring in the yaw rate sensor 

when a 10 degrees yaw step input demand has been placed on the AUV. The three 

types of faults defined in Chapter 3 will all be considered. The two FISs have been 

compared to the Kalman filter enhanced control system of Chapter 4 using RMSE 

values. The complete set ofRMSEs are shown in Table 5.7. It should be noted about 
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these values is that they are in degrees per second as the yaw rate is now being 

considered. 

Table 5.7 The 10 Degrees Step Input RMSEs for Yaw Rate Sensor Faults. 

RMSEs (degrees per second) 
~ontrol Percentage Signal Loss Intermittent Signal to Noise Ratio 
System 0% 25o/c 50o/c 75% 100% Total Failure 1% 5o/c 10% 
)<alman 

0.00~ 0.025 0.130 0.2Hl 0.10C Filter 0.05~ 0.089 0.045 0.141 

ANFIS 0.04~ 0.050 0.07~ 0.105 0.139 0.186 0.05~ 0.09~ 0.131 
Simulated 
Annealing 0.03~ 0.045 0.056 0.075 0.093 0.135 0.041 0.063 0.082 

As was the case for the yaw sensor tests, the yaw rate sensor recovery FIS for both 

methods of tuning have failed to improve on the Kalman filter enhanced system when 

the system is fault free. The ANFIS tuned FIS also produced larger RMSE values for 

all percentage signal loss tests. The simulated annealing tuned FIS produced lower 

RMSE values for both the 75% and 100% signal loss tests. Both FISs were capable of 

producing RMSE values lower than that of the Kalman filter enhanced control system 

for the intermittent total signal failure. When considering the SNR tests the FISs 

designed for the yaw rate sensor produced a better set of results at this step size than 

the yaw sensor FISs. With only one case of a decrease in performance being noted, 

that of the 1% SNR when the ANFIS tuned FIS was tested. 

Again as was the case for the yaw sensor, to show the level of improvements 

produced by using the FISs in place of the Kalman filter Table 5.8 has been calculated 

showing the percentage improvements for all tests. 

Table 5.8 The 10 Degrees Step Input Percentage Increases 

for Yaw Rate Sensor Faults. 

r-=e.:..:rc:..::e:.:..:n.::la:JF-e..:.S:;;i ;z:n.::a;:-1 =Lo=..:ss~-::-::-:cr----,-.,.......,.-t·l ntermittent 
0°/c 25% 50% 75% 100% otal Failure 

i nalto Noise Ratio 
1% 5% 10% 

-1226% -105% -36% -18% -7% 14o/c -20% 6% 7% 

-893% -83% -9% 16° 28°/c 38o/c 8% 37°/c 42% 
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Table 5.8 shows how·much the performance has been changed due to the use of the 

sensor estimation FISs. Figure 5.51 shows the yaw responses of both considered FISs 

along with the Kalman filter enhanced system and the ideal system for a 75% signal 

loss. 
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Figure 5.51 The Yaw Responses to a 75% Yaw Rate Signal Loss 

for a 10 Degrees Step Yaw Demand 

(b) Yaw Step Inputs of 50 Degrees 

This subsection will look at faults occurring in the yaw rate sensor when a SO degrees 

yaw step input demand has been placed on the AUV. The three types of faults defined 

in Chapter 3 will all be considered. The two FISs have been compared to the Kat man 

filter enhanced control system of Chapter 4 using RMSE values. The complete set of 

RMSEs are shown in Table 5.9. 
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Table 5.9 The 50 Degrees Step Input RMSEs for Yaw Rate Sensor Faults. 

RMSEs (degrees per second) 
~ontrol Percentage Signal Loss lntennittent Signal to Noise Ratio 
System 0% 25o/. 50% 75% 100% !Total Failure 1% 5% 10% 

)<aim an 
0.007 0.20€ 0.43~ 0.24~ 0.182 Filter 0.341 0.435 0.084 0.251 

fA,NFIS 0.122 0.04€ 0.151 0.212 0.79f 0.43G 0.113 0.190 0.272 

~imulated 
0.068 0.15€ 0.246 0.436 0.095 0.127 ~nnealing 0.341 0.441 0.065 

Once again the first column of results show how both FISs produced high RMSE 

values for the fault free system. For the tests where there was a 25%, 50% and 75% 

signal loss both FISs were able to generate RMSE values lower than those recorded 

for the Kalman filter enhanced control system. For both the total and intermittent total 

signal failures both FIS performed worse than the benchmark system. The SNR 

results show a difference in performance between the two considered FISs, with the 

ANFIS tuned FIS producing high RMSE values and the simulated annealing tuned 

FIS producing low RMSE values, relative to the benchmark results, for all levels of 

nmse. 

Again to show the level of improvements produced by using the FISs in place of the 

Kalman filter Table 5.10 has been calculated showing the percentage improvements 

for all tests. 

Control 
System 

~NFIS 

Simulated 
Annealing 

Table 5.10 The 50 Degrees Step Input Percentage Increases 

for Yaw Rate Sensor Faults. 

Percentage Signal Loss lntenniHent Signal to Noise Ratio 
0% 25°/c 50% 75% 100% lfotal Failure 1% 5% 10% 

-1564o/. 78°/c 56% 51% -85% -73°/c -36% -4% -8% 

-824% 24o/. 28% 22% -2% -75o/. 22% 48% 49% 

Table 5.10 shows how much the performance has been changed due to the use of the 

sensor estimation FISs. Figure 5.52 shows the yaw responses of both considered FISs 

along with the Kalman filter enhanced system and the ideal system for a 75% signal 

loss. 

179 



Chapter 5 Sensor recovery system. 

60.-------.------,.-----~-------.-------. 

50 
,.-:;:=~ f.''?::i::.:...,_. __ ..,... __ ....,___________~ 

- 40r 
Ul 
Ql 

~ 
lW 30 
u -Ql 

~ 20 
<( 

== ~ 101-

--.- Ideal 
-·-·- Kalman 
-- ANFIS 
------ Simulated Annealing 

-10L--------~·------~·--------~·L--------L-'------~ 
0 10 20 30 40 

Time (seconds) 

Figure 5.52 The Yaw Responses to a 75% Yaw Rate Signal Loss 

for a 50 Degrees Step Yaw Demand 

(c) Yaw Step Inputs of90 Degrees 

50 

The final subsection is concerned with faults in the yaw channel will look at faults 

occurring in the yaw rate sensor when a 90 degrees yaw step input demand has been 

placed on the AUV. The three types of faults defined in Chapter 3 will all be 

considered. The two FISs have been compared to the Kalman filter enhanced control 

system of Chapter 4 using RMSE values. The complete set of RMSEs are shown in 

Table 5.11. 
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Table 5.11 The 90 Degrees Step Input RMSEs for Yaw Rate Sensor Faults. 

RMSEs (degrees per second) 
~ontrol Percentage Signal Loss Intermittent Signal to Noise Ratio 
System 0% 25% 50% 75o/c 100% Total Failure 1% 5% 10% 

Kalman 
~iller O.OOf 0.18C 0.253 0.248 0.21~ 0.27S 0.078 0.181 0.244 

fi>.NFIS 0.09€ 0.03C 0.06S 0.120 0.202 0.125 0.11f 0.197 0.272 

Simulated 
Annealing 0.05i 0.10i 0.208 0.304 0.42S 0.423 0.06S 0.109 0~148 

For this size of step input demand, as with the two other sizes and all tests in the yaw 

sensor, both FISs again produced RMSE values higher than the Kalman filter 

enhanced control system. The ANFIS tuned FIS generated RMSE values less than the 

benchmark system for all levels of percentage signal loss tests, however the simulated 

annealing tuned FIS could only accomplish this for the 25% and 50% tests. For the 

intermittent total signal failure tests the ANFIS tuned FIS produced a low RMSE 

value, while the simulated annealing tuned FIS produced a high RMSE value, relative 

to the benchmark value. This leaves the SNR tests in the yaw rate sensor as the last to 

be considered for the yaw channel. The results show that the simulated annealing 

tuned FIS produced RMSE values lower than the benchmark values for all levels of 

noise and the ANFIS one produced higher RMSE values for all levels of noise 

considered. 

As has been the case for all work in the yaw channel thus far the level of 

improvements produced by using the FISs in place of the Kalman filter has been 

calculated showing the percentage improvements for all tests and are shown in Table 

5.12. 

control 
System 
ANFIS 

Simulated 
Annealing 

Table 5.12 The 90 Degrees Step Input Percentage Increases 

for Yaw Rate Sensor Faults. 

Percentage Signal Loss Intermittent ~ignal to Noise Ratio 
0% 25o/c 50% 75% 100% tfotal Failure 1% 5% 10% 

-1100% 83o/c 74% 52% 4% 54°/c -47% -9% -12% 

-604% 41 °/c 18% -23% -1 00°/c -54°/c 13% 40% 39% 
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Table 5.12 shows how much the performance has been changed due to the use of the 

sensor estimation FISs. Figure 5.53 shows the yaw responses of both considered FISs 

along with the Kalman filter enhanced system and the ideal system for a 75% signal 

loss. 

100.------.------~------r------.------~ 

90 

80 

lil 70 
Q) 

~ 
Cl 
Q) 
u -Q) 

Cl c 
<( 

~ 

~ 

10 

--Ideal 
-·--·- Kalman 
- ANFIS 
----- Simulated Annealing 

QL-~-L--~------~------~-------L ______ _J 

0 10 20 30 40 
Time (seconds) 

Figure 5.53 The Yaw Responses to a 75% Yaw Rate Signal Loss 

for a 90 Degrees Step Yaw Demand 

50 

This brings to a close the sections concerned with faults occurring within the sensors 

related to the yaw channel of the AUV. 
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5.5. 7. Roll Sensor Failures 

The third section will look at faults occurring in the roll sensor. The section is again 

divided into three subsections. Each presenting results concerned with one of the three 

initial roll angle sizes. Each subsection will present results from both considered FISs 

and the Kalman filter enhance control system developed in Chapter 4. The complete 

set of results are presented in Appendix H. 

(a) Initial Roll Angles of 5 Degrees 

The first subsection concerned with faults in the roll channel will look at faults 

occurring in the roll sensor when an initial roll angle of 5 degrees is considered. The 

three types of faults defined in Chapter 3 will all be considered. The two FISs have 

been compared to the Kalman filter enhanced control system of Chapter 4 using 

RMSE values. The complete set ofRMSEs are shown in Table 5.13. 

Table 5.13 The Initial Angle of 5 Degrees RMSEs for Roll Sensor Faults. 

RMSEs degrees) 
~ontrol Percentage Signal Loss Intermittent ~ignal to Noise Ratio 
[s}'Stem 0% 25% 50% 75% 100o/c Total Failure 1% 5% 10% 

~alman 
0.285 0.28~ 0.28' 0.283 0.28~ 0.283 0.28~ 0.28~ 0.28:l Filter 

~NFIS 0.081 0.18B 0.17~ 0.196 0.20:l 0.193 0.19Q 0.21( 0.221 

[simulated 
0.10€ 0.118 0.182 0.30~ 0.102 ~nnealing 0.111 0.304 0.104 0.101 

The first point ofinterest in Table 5.13 is that both FISs were able to improve on the 

benchmark results for the fault free system. This was not achieved by any of the yaw 

channel systems. The ANFIS tuned FIS produced lower RMSE values for all tests at 

this size of initial roll angle. The simulate annealing tuned FIS did not perform as well 

with two tests (100% signal loss and intermittent total failure) producing RMSE 

values larger than the benchmark results. 

As has been the case for all work in the yaw channel, the level of improvements 

produced by using the FISs in place of the Kalman filter has been calculated showing 
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the percentage improVements for all tests for this size of initial roll arigle arid are 

shown in Table 5.14. 

Control 
System 
ANFIS 
Simulated 
Annealing 

Table 5.14 'Jhe Initial .Angle of 5 Degrees Percentage Increases 

for Roll Sensor Faults, 

Percentage Signal Loss Intermittent Signal to·Noise Ratio 
0% 25% 50% 75% 100% Total Failure 1% 5% 10% 

51% 48% 40% 27% 26% 28% 28% 28% 28% 

62% 60% 58% 37% ,a% -7% 37% 37% 37% 

Table 5.14 shows how much the performance has been changed due to the use of the 

sensor estimation FISs. Figure 5.54 shows the roll responses of both considered FISs 

along with the Kalman filter enhanced system and the ideal system for a 75% signal 

loss. 
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(b) Initial Roll Angles of 15 Degrees 

The next subsection will look at faults occurring in the roll sensor when an initial roll 

angle of 15 degrees is considered. The three types of faults defined in Chapter 3 will 

all be considered. The two FISs have been compared to the Kalman filter enhanced 

control system of Chapter 4 using RMSE values. The complete set of RMSEs are 

shown in Table 5.15. 

Table 5.15 The Initial Angle of 15 Degrees RMSEs for Roll Sensor Faults. 

RMSEs degrees) 
Control Percentage Si{ nal Loss Intermittent ~ignal to Noise Ratio 
~ystem 0% 25% 50% 75"A 100% lfotal Failure 1% 5"A 10% 

Kalman 
Filter 0.475 0.475 0.475 0.475 0.475 0.475 0.47~ 0.475 0.475 

ANFIS 0.087 0.178 0.325 0.363 0.419 0.332 0.36g 0.377 0.385 

Simulated 
Annealing 0.234 0.223 0.227 0.232 0.24_8 0.246 0.23:3 0.230 0.229 

Once again, as was the case for the 5 degrees initial roll angle, the ANFIS tuned FIS 

was able to generate smaller RMSE values than the Kalman filter enhanced system 

for all nine tests. For this size of initial roll angle the simulated annealing tuned FIS 

also produced smaller RMSE values than the Kalman filter enhanced system for all 

nine tests. 

Again the level of improvements produced by using the FISs in place of the Kalman 

filter has been calculated showing the percentage improvements for all tests for this 

size of initial roll angle and are shown in Table 5.16. 

Control 
System 
ANFIS 

Simulated 
Annealing 

Table 5.16 The Initial Angle of 15 Degrees Percentage Increases 

for Roll Sensor Faults. 

Percentage Signal Loss Intermittent Signal to Noise Ratio 
0% 25% 50% 75% 100% Total Failure 1% 5% 10% 

82% 62% 32% 24% 12% 30% 22% 21% 19% 

51% 53% 52% 51% 48% 48% 51% 52% 52% 
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Table 5.16 shows how much the performance has been changed due to the use of the 

sensor estimation FISs. Figure 5.55 shows the roll responses of both considered FISs 

along with the Kalman filter enhanced system and the ideal system for a 75% signal 

loss. 
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Figure 5.55 The Roll Responses to a 75% Roll Signal Loss 
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(c) Initial Roll Angles of 25 Degrees 

10 

This subsection will look at faults occurring in the roll sensor when an initial roll 

angle of 25 degrees is considered. The three types of faults defined in Chapter 3 will 

all be considered. The two FISs have been compared to the Kalman filter enhanced 

control system of Chapter 4 using RMSE values. The complete set of RMSEs are 

shown in Table 5.17. 
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Table 5.17 The Initial Angle of 25 Degrees RMSEs for Roll Sensor Faults. 

RMSEs degrees) 
Control Percentage Si nal Loss Intermittent Signal to Noise Ratio 
S_ystem O"A 25"A 50% 75% 100% Total Failure 1% 5% 10% 

Kalman 
Filter 0.40E 0.407 0.407 0.407 0.40] 0.40] 0.40E 0.406 0.406 

ANFIS o.o9e 0.04f 0.154 0.225 0.27-4 0.67-4 0.191 0.443 0.572 

Simulated 
Annealing 0.226 0.22f 0.255 0.323 0.383 0.22Q 0.225 0.226 0.228 

The size of initial roll angle considered here produces the first negative results for the 

ANFIS tuned FIS. The FIS failed to improve on the benchmark results for the 

intermittent total failure and the 5% and 10% SNR tests. The simulated annealing 

tuned FIS was able to improve on every one of the benchmark results. 

Again the level of improvements produced by using the FISs in place of the Kalman 

filter has been calculated showing the percentage improvements for all tests for this 

size of initial roll angle and are shown in Table 5.18. 

Control 
System 
ANFIS 
Simulated 
Annealing 

Table 5.18 The Initial Angle of 25 Degrees Percentage Increases 

for Roll Sensor Faults. 

Percentage Signal Loss Intermittent Signal to Noise Ratio 
0% 25% 50% 75% 100% Total Failure 1% 5% 10% 

76% 88% 62% 45% 33% -66% 53% -9% -41 o/o 

44% 44% 37% 21% 6% 44% 45% 44% 44% 

Table 5.18 shows how much the performance has been changed due to the use of the 

sensor estimation FISs. Figure 5.56 shows the roll responses of both considered FISs 

along with the Kalman filter enhanced system and the ideal system for a 75% signal 

loss. 
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Figure 5.56 The Roll Responses to a 75% Roll Signal Loss 

for an Initial Roll Angle of 25 Degrees 
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5.5.8. Roll Rate Sensor Failures 

The final section presenting results will look at faults occurring in the roll rate sensor. 

The section is again divided into three subsections. Each presenting results concerned 

with one of the three initial roll angle sizes. Each subsection will present results from 

both considered FISs and the Kalman filter enhance control system developed in 

Chapter 4. The complete set of results are presented in Appendix H. 

(a) Initial Roll Angles of 5 Degrees 

The first subsection of this section will look at faults occurring in the roll rate sensor 

when an initial roll angle of 5 degrees is considered. The three types of faults defined 

in Chapter 3 will all be considered. The two FISs have been compared to the Kalman 

filter enhanced control system of Chapter 4 using RMSE values. The complete set of 

RMSEs are shown in Table 5.19. 
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Table 5.19 The Initial Angle of 5 Degrees RMSEs for Roll Rate Sensor Faults. 

RMSEs (degrees per second) 
~ontrol Percentage Si{ nal Loss I ntennittent lsill_nalto Noise Ratio 
~ystem 0% 25% 50% 75% 100'* Total Failure 1% 5% 10% 

kalman 
Filter 0.302 0.306 0.325 0.332 0.33~ 0.333 0.33:;! 0.332 0.331 

~NFIS 0.170 0.220 0.253 0.293 0.37E 0.183 0.286 0.279 0.27€ 

~imulated 
0.317 0.339 0.362 0.377 0.362 0.312 0.306 ~nnealing 0.391 0.301 

As was the case for the roll sensor recovery FIS, the roll rate recovery ANFIS tuned 

FIS was able to improve on the benchmark results for a fault free system. As can been 

from Table 5.19 only one test lead to a lower RMSE value being recorded, that of the 

I 00% signal loss test. The simulated annealing tuned FIS produced RMSE values 

similar to those of the Kalman filter enhanced control system. It can be seen from 

Table 5.20 that every RMSE was within 20% of the benchmark values. 

As was the case for the roll sensor tests the level of improvements produced by using 

the FISs in place of the Kalman filter has been calculated showing the percentage 

improvements for all tests for this size of initial roll angle and are shown in Table 

5.20. 

~ontrol 
~ystem 
~NFIS 
~imulated 
~nnealing 

Table 5.20 The Initial Angle of 5 Degrees Percentage Increases 

for Roll Rate Sensor Faults. 

Percentage Signal Loss lntennittent Signal to Noise Ratio 
0% 25% 50% 75% 100% !Total Failure 1% 5% 10'* 

44% 28% 22% 12% -13% 45% 14% 16% 17% 

-5% -11% -11~ -13% -17% -9% 6% 8% 9"/c 

Table 5.20 shows how much the performance has been changed due to the use of the 

sensor estimation FISs. Figure 5.57 shows the roll responses of both considered FISs 

along with the Kalman filter enhanced system and the ideal system for a 75% signal 

loss. 
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Figure 5.57 The Roll Responses to a 75% Roll Rate Signal Loss 

for an Initial Roll Angle of 5 Degrees 

(b) Initial Roll Angles of 15 Degrees 

10 

This subsection will look at faults occurring in the roll rate sensor when an initial roll 

angle of 15 degrees is considered. The three types of faults defined in Chapter 3 will 

all be considered. The two FISs have been compared to the Kalman filter enhanced 

control system of Chapter 4 using RMSE values. The complete set of RMSEs are 

shown in Table 5.21. 
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Table 5.21 The Initial Angle of 15 Degrees RMSEs for Roll Rate Sensor Faults. 

RMSEs (degrees per second) 
pontrol Percentage Si nal Loss Intermittent !signal to Noise Ratio 
!system 0% 25% 50% 75'* 100'* tfotal Failure 1% 5% 10% 

Kalman 
Filter 0.516 0.521 0.53E 0.53~ 0.54(] 0.539 0.539 0.539 0.5~ 

ANFIS 0.365 0.384 0.43~ 0.50(] 0.684 0.578 0.478 0.456 0.44(] 

!simulated 
0.52:2 0.53€ 0.549 0.576 0.546 0.52(] 0.515 0.508 ~nnealino 0.561 

The ANFIS tuned FIS again produced lower RMSE for most of the tests including all 

three SNR tests, despite the FIS having never been tuned using SNR data. The two 

tests where the FIS failed to improve on the benchmark results were the 100% signal 

loss and the intermittent total failure tests. The simulated annealing FIS again 

produced results similar to those of the benchmark ones. For this initial roll angle all 

the results were within 7% of the benchmark values. 

Again level of improvements produced by using the FISs in place of the Kalman filter 

has been calculated showing the percentage improvements for all tests for this size of 

initial roll angle and are shown in Table 5.22. 

Table 5.22 The Initial Angle of 15 Degrees Percentage Increases 

for Roll Rate Sensor Faults. 

19'* 7% -27'* -7% 11% 15% 18% 

-2'* -4% -7% -1% 4'* 4% 6'* 

Table 5.22 shows how much the performance has been changed due to the use of the 

sensor estimation FISs. Figure 5.58 shows the roll responses of both considered FISs 

along with the Kalman filter enhanced system and the ideal system for a 75% signal 

loss. 
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Figure 5.58 The Roll Responses to a 75% Roll Rate Signal Loss 

for an Initial Roll Angle of 15 Degrees 

(c) Initial Roll Angles of 25 Degrees 

The final subsection of this section will look at faults occurring in the roll rate sensor 

when an initial roll angle of25 degrees is considered. The three types of faults defined 

in Chapter 3 will all be considered. The two FISs have been compared to the Kalman 

filter enhanced control system of Chapter 4 using RMSE values. The complete set of 

RMSEs are shown in Table 5.23. 
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Table 5.23 The Initial Angle of 25 Degrees RMSEs for Roll Rate Sensor Faults. 

RMSEs (degrees per second) 
!Control Percentage Si! nal Loss lntennittent ~ignal to Noise Ratio 
!system 0% 25% 50% 75% 100°/c ~otai;Failure 1% ·5% 10% 

~alman 
0.566 !Filter 0:574 0.58~ 0.584 0:584 0:584 0.567 0!561l 0.57( 

~NFIS 0.412 0.486 0.72E 0.655 0.620 0.69C 0.241 0;290 0.34~ 

~imulated 
0.563 0:615 0!647 0.663 0.557 ~nnealing 0.631 o.6oe 0.549 0.54~ 

The ANFIS tuned FIS was again able to produce a RMSE value lower than the 

benchmark one for the fault free test, and has now managed that at all three initial roll 

angles for the roll rate sensor tests. It could only manage to produce a lower RMSE 

value for the 25% signal loss of the percentage signal loss tests and also failed to 

produce a lower result for the intermittent total failure, The FIS produced lower 

RMSE values for all three SNR tests for this initial roll angle, as has been the case for 

the previous two initial roll angles considered. 

The simulated annealing tuned FIS again produced RMSE values similar to the 

Kalman filter enhanced system. For this size of initial roll angle the RMSE values 

were all within 11% of the benchmark ones. 

Again level of improvements produced by using the FISs in .place of the Kalman filter 

has been calculated showing the percentage improvements for all tests for this size of 

initial roll angle and are shown in Table 5.24. 

Control 
'System 
ANFIS 
simulated 
Annealing 

Table 5.24 The Initial Angle of 25 Degrees Percentage Increases 

for Roll Rate Sensor Faults. 

Percentage.Signall!.oss ntennittent ~ignal!to Noise Ratio 
0% 25% 50% 75% 100% ~otal Failure 1% 5% 10% 

27% 15% -25% -12"/c -6% -1Bo/o 58% 49% 40% 

0% -7% -8% -11% -14% -4% 2% 3% 5% 

'liable 5.24 shows how much the performance has been changed due to the use of the 

sensor estimation FISs. Figure 5. 59 shows the roll responses of both considered FISs 

along with the Kalman filter enhanced system and the ideal system for a 75% signal 

loss. 
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for an Initial Roll Angle of 25 Degrees 

5.6. DISCUSSION AND CONCLUDING REMARKS 

10 

The aim of this Chapter was to replace the Kalman filter with a sensor recovery FIS. 

Two FISs, tuned using different methods ANFIS [Jang (1991)] and simulated 

annealing [Kirkpatrick et a/ ( 1983 )]), were developed for each of the four considered 

sensors and then compared to the results of the Kalman filter enhanced control system 

developed in Chapter 4. 

5.6.1. Yaw Sensor 

The yaw channel results are discussed first. The first point to be noted is the inability 

of any of the FISs, for either the yaw or yaw rate sensors to achieve desirable RMSE 

values for the fault free system. This problem is probably due to the inaccuracy of the 

linear model used. For a fault free system the linear model would act identically to the 

actual system. The fault free tests can be considered a special case as for all other tests 

194 



Chapter 5 Sensor recovery system. 

there is some form of fault occurring. It would be possible to add a fuzzy rule to 

system for this special case, thereby allowing the sensor signal to be transmitted 

unaltered. This is a conceptually simple idea, but would require the FIS to be almost 

totally restructured to allow for the added rule. It should also be noted that the Kalman 

filter did produce some small RMSE values for the fault free system. 

When considering tests where faults have occurred in the system there is an increase 

in performance of all of the tuned FISs. The first sensor recovery FISs tested in this 

Chapter are those used in the yaw sensor of the AUV. The ANFIS tuned FIS for this 

sensor was able to improve on the benchmark results for eight of the twenty-four tests 

where a fault has occurred. The best performance was for the lOO% signal loss (90 

degrees step input) test where an increase of 23% was calculated, and the worst 

performance was for the 1% SNR (50 degrees step input) test where a decrease of 

259% was calculated. The simulated annealing tuned FIS for this sensor was able to 

improve on the benchmark results for fourteen of the twenty-four tests where a fault 

has occurred. The best performance was for the 50% signal loss (90 degrees step 

input) test where an increase of 88% was calculated, and the worst performance was 

for the I% SNR (50 degrees step input) test where a decrease of 133% was calculated. 

It should be noted here that neither of the FISs were trained using SNR data and so it 

not surprising that both FIS performed poorly on those tests. It was important to test 

them on those faults, as an increase in performance would have been very impressive. 

Of the two tuned FISs presented here the one that made the overall system most fault 

tolerant to the considered faults is the one tuned by the simulated annealing method. It 

is possible that if both FISs had been tuned on SNR data, as well as the data used, 

they would have produced better results. 

5.6.2. Yaw Rate Sensor 

The yaw rate sensor recovery FISs were tested next. The ANFIS tuned FIS for this 

sensor was able to improve on the benchmark results for eleven of the twenty-four 

tests where a fault has occurred. The best performance was for the 25% signal loss (90 

degrees step input) test where an increase of 83% was calculated, and the worst 

performance was for the 25% signal loss (10 degrees step input) test where a decrease 

of 105% was calculated. The simulated annealing tuned FIS for this sensor was able 

to improve on the benchmark results for nineteen of the twenty-four tests where a 
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fault has occurred. The best perfonnance was for the 10% SNR (50 degrees step 

input) test where an increase of 49% was calculated, and the worst perfonnance was 

for the 100% signal loss (90 degrees step input) test where a decrease of 100% was 

calculated. Again of the two tuned FISs presented here the one that made the overall 

system most fault tolerant to the considered faults is the one tuned by the simulated 

annealing method. This FIS despite also not having been tuned using SNR data, was 

able to improve on the benchmark systems test results for all SNR tests at every level 

of noise considered. This shows that it is possible for the FIS to provide sensor 

recovery information on a fault previously unobserved by the FIS. 

5.6.3. Roll Sensor 

After the yaw channel sensor had been considered sections 5.5.4 and 5.5.5 considered 

faults occurring within the roll channel sensors. 

The roll sensor recovery FISs were the first of the roll channel FISs to be tested. The 

ANFIS tuned FIS for this sensor was able to improve on the benchmark results for 

twenty-one of the twenty-four tests where a fault has occurred and all three of the 

fault free tests. The best performance was for the 25% signal loss (initial angle of 25 

degrees) test where an increase of 88% was calculated, and the worst perfonnance 

was for the intermittent total failure (initial angle of25 degrees) test where a decrease 

of 66% was calculated. The results presented showed that the FIS was capable of 

improving the fault tolerance of the system, when compared to the Kalman filter 

enhanced control system. Even when considering faults that the FIS had not been 

tuned to handle (the SNR faults) it was still capable of generating RMSE values less 

than the benchmark results. 

The simulated annealing tuned FIS for this sensor was able to improve on the 

benchmark results for twenty-two of the twenty-four tests where a fault has occurred 

and all three of the fault free tests. The best performance was for the 25% signal loss 

(initial angle of 5 degrees) test where an increase of 60% was calculated, and the 

worst performance was for the 100% signal loss (initial angle of 5 degrees) test where 

a decrease of 8% was calculated. Again the results presented showed that the FIS was 

capable of improving the fault tolerance of the system, when compared to the Kalman 

filter enhanced control system. The FIS also proved it was capable of handling the 

SNR faults for which it had not been tuned. 
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5.6.4. Roll Rate Sensor 

The roll rate sensor recovery FISs were the final two FISs to be tested in this Chapter. 

The ANFIS tuned FIS for this sensor was able to improve on the benchmark results 

for seventeen of the twenty-four tests where a fault has occurred and all three of the 

fault free tests. The best performance was for the I% SNR (initial angle of 25 

degrees) test where an increase of 58% was calculated, and the worst performance 

was for the lOO% signal loss (initial angle of 15 degrees) test where a decrease of 

27% was calculated. The FIS produced RMSE values which showed that it was 

capable of improving the fault tolerance ofthe AUV. 

The simulated annealing tuned FIS for this sensor was able to improve on the 

benchmark results for only nine of the twenty-four tests where a fault has occurred 

and one of the three fault free tests. The best performance was for the I 0% SNR 

(initial angle of 5 degrees) test where an increase of 9% was calculated, and the worst 

performance was for the 100% signal loss (initial angle of 5 degrees) test where a 

decrease of 17% was calculated. The FISs results were similar to the Kalman filter 

enhanced control systems and so there would be no advantage to using this FIS 

instead of the Kalman filter in the AUV. 
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CHAPTER6 

ACTUATOR RECOVERY SYSTEM WITH ERROR SENSOR 

6.1. INTRODUCTION 

A fault tolerant fuzzy sensor recovery system was developed in Chapter S where it 

was clearly shown how this was an improvement on both the standard AUV ANFJS 

control system and the Kalman filter enhanced ANFIS control system. Attention now 

switches from the sensor faults to the task of dealing with actuator faults. The aim of 

this Chapter is to consider the actuator faults occurring within the canards controlling 

the yaw channel motion of the AUV as described in Chapter 3. 

Within this Chapter fuzzy inference systems {FISs) will be developed which will 

allow the AUV to more effectively accommodate actuator faults. The set-up of the 

basic FISs and tuning of these FISs is explained. The FISs are tuned by the various 

methods described in Chapter 3, some of which have been used in Chapter S for 

tuning the sensor recovery FISs. The faults considered are those introduced and 

explained in Chapter 3. They are a loss of effectiveness (LOE) in the saturation and/or 

rate limiter blocks of the actuator that controls the upper canard. These three types of 

faults are considered to be representative of faults that could occur within an actuator 

ofthe AUV. 

6.2. FAULT RECOVERY SYSTEM 

The sensor recovery system developed was placed before the ANFIS controller within 

the control loop. This was due to the nature of the fault being to disrupt the 

information going to the ANFIS controller. The faults now being considered do not 

affect the information the ANFIS controller receives. As the ANFIS controller has 

been proved to be both an effective and robust controller for the considered AUV 

[Craven ( 1999)], there is no need to place any form of actuator fault recovery system 

before the controller. Instead for the faults currently being considered it is proposed to 
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place a component that will alter the strength of the signal being produced by the 

ANFIS controller. 

To attempt to cope with the failures it is proposed to situate a FIS between the ANFIS 

controller and the AUV dynamics. This will multiply the control signal to the 

actuators, as shown in Figure 6.1. Multiplication was chosen above any other method 

of altering the control signal due to its identity function affect on a zero control signal. 

The placing of this multiplication FIS in the control loop will give the overall control 

system, and hence the AUV, a level of fault tolerance to the failures that are being 

considered in this thesis. 

-
&-~ ANFIS 

Multiply f--

Controller 
+ 

H uuv 1 
Fault Recovery 

~ 

FIS 

~ Demand 

Figure 6.1 The Actuator Fault Tolerant System 

As can clearly be seen from Figure 6.1 the FIS being developed here has three inputs 

and only one output. The three inputs being used are the demand being placed on the 

AUV, the control signal the ANFIS controller sends to achieve this demand and the 

error between the demanded and actual position of the damaged actuator. The output 

of the FIS will be a fuzzy simpleton derived from the inputs using a fuzzy rule base. 

Figure 6.2 illustrates the input output structure of the FISs being used. 
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Inputs 

Control 

Output 

Fuzzy 

Demand Rule Actmod 
Base 

Error 

Figure 6.2 Basic Input Output Structure 

The faults being considered are saturation and/or rate limiter LOE of25%, 50%, 75%, 

and 100% of the actuator controlling the upper canard of the AUV. The full 

description of these faults and how they are implemented within the AUV is given in 

Chapter 3 of this thesis. 

The tuned FISs are to be compared using a statistical method and the rise times of the 

AUV. 

The statistical method used to evaluate the performance of the models was the root 

mean squared error (RMSE). This will give the average difference between the fault 

free ideal control system and the actuator recovery FISs performance over the 

considered path. The equation used to calculate this is shown in Equation (6.1). 

i-n 

:L(Auv; -JDEAL;)2 

E= i=O (6.1) 
n 

Where E is the error value, n is the number of points measured, A~ is the 

information received from the vehicle at point i, and IDEAL, is the information 

recorded when the vehicle followed the same path in a fault free situation also at point 

i. 
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The rise time is defined as the time taken for the AUV to move from 5% to 95% of 

the demanded final yaw angle. 

6.3. FUZZY TUNING 

There are two basic starting actuator recovery FISs which have been considered for 

this study, the first of which is the identity FIS, and the second is a heuristic FIS. The 

identity FIS was chosen as before tuning it will not affect the system and hence any 

tuning which leads to an improvement will lead to a more fault tolerant system. 

6.3.1. Identity FIS 

The identity FIS was designed using the input-output structure shown in Figure 6.2. 

The first input shown there is that of the control signal from the ANFIS controller. It 

is defined as having a maximum value of 25.2 degrees and minimum value of -25.2 

degrees. There are three membership functions for this input which are all generalised 

bell curve membership functions and are shown in Figure 6.3. 

a. 0.8 
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Figure 6.3 Membership Functions for Control Input 

....... 
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The second input shown there is that of the demand signal which is the signal being 

sent to the ANFIS controller. It is defined as having a maximum value of 30 degrees 

and minimum value of -30 degrees, although it is possible to demand a bigger angle 

than this it was not necessary to consider such angles here. These larger angles are not 

being considered as the ANFIS controller limits all of its input signals to this level. 

There are three membership functions for this input which are all generalised bell 

curve membership functions and are shown in Figure 6.4. 
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Q) 
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demand 
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Figure 6.4 Membership Functions for Demand Input 

30 

The third input shown there is that of the error signal which is defined as the modular 

difference between the position the actuator should be in and the actual position of the 

actuator. It is defined as having a maximum value of25.2 degrees and minimum value 

of 0 degrees. There are three membership functions for this input which are all 

generalised bell curve membership functions and are shown in Figure 6.5. 
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Figure 6.5 Membership Functions for Error Input 

The output for the identity FIS is that of a fuzzy singleton with a value of one. This 

combined with the input membership functions described leads to the fuzzy rule base 

shown in Equation (6.2). 

If 8is Neg and 'Ifs is Neg and 'le is Small then p =I 

If 8 is Neg and 'l's is Neg and 7fe is Medium then p = I 

If 8is Neg and 'l's is Neg and 'le is Big then p = I 

If 8is Neg and 'l'c is Zero and 'le is Small then p = 1 

If 8is Neg and 'l's is Zero and 11e is Medium then p = I 

If 8is Neg and 'l'c is Zero and 11e is Big then p = I 

If 8is Neg and 'l'c is Pos and 11e is Small then p = I 

If 8is Neg and 'l'c is Pos and Tfe is Medium then p = I 

If 8is Neg and 'Ifs is Pos and 11e is Big then p = I 

If 8 is Zero and 'l'c is Neg and 11e is Small then p = I 

If 8 is Zero and 'l'c is Neg and 'le is Medium then p = I 
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If ois Zero and lf/c is Neg and 'fe is Big then p = I 

If ois Zero and "'"is Zero and 'le is Small then p = l 

If o is Zero and 1f16 is Zero and 'le is Medium then p = I 

If ois Zero and lf/6 is Zero and 'le is Big then p = I 

If ois Zero and lf/6 is Pos and 'le is Small then p = I 

If ois Zero and lf/6 is Pos and 17e is Medium then p = 1 

If ois Zero and lfl, is Pos and 17e is Big then p = I 

If ois Pos and lf/6 is Neg and 17e is Small then p = I 

If ois Pos and lf/s is Neg and 17e is Medium then p = I 

If o is Pos and "'"is Neg and 'le is Big then p = I 

If o is Pos and "'"is Zero and 'le is Small then p = I 

If o is Pos and lfls is Zero and 'le is Medium then p = I. 

If ois Pos and lf/6 is Zero and 'le is Big then p = 1 

If ois Pos and lf/s is Pos and 17e is Small then p = 1 

If ois Pos and "'"is Pos and 11e is Medium then p = I 

If ois Pos and lf/6 is Pos and 'le is Big then p = I 

(6.2) 

Where o is the control signal from the ANFIS controller, "'" is the demanded yaw 

angle 'le is the error in the actuator position, p is the value the control signal is to be 

multiplied by, Neg is negative and Pos is positive. 

By considering Equation (6.2) it is clear that for whatever values any of the three 

input functions take the output of the FIS will be simply a value of one. The output 

value of the FIS will multiply the control signal of the ANFIS controller and hence for 

this FIS the ANFIS controller's signal is unaffected. This is why it is the identity FIS 

for this work. 

6.3.2. Heuristic FJS 

The second was a heuristic FIS and was designed by taking a simple approach to the 

problem, the bigger the error, the larger the value the control signal must be 

multiplied by in order to compensate for the fault. 
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For the heuristic FIS the same input-output structure shown in Figure 6.2 was used. 

Also identical input membership functions to those of the identity FIS were used. The 

main difference between the heuristic FIS and the identity FIS is in the output 

function. Fuzzy singletons are again used as the output of the FlS. A value of I is used 

when the error is considered to be small as for a small error the signal may not need to 

be altered by a huge amount. A value of 1.05 is used when the error value is 

considered to be medium as this is in the middle of the small and large values. A 

value of 1.1 is used for the large error values as this will increase the signal by IO%. 

This combined with the input membership functions describe leads to the fuzzy rule 

base shown in Equation (6.3). 

If o is Neg and lf/c is Neg and 'le is Small then P = I 

If ois Neg and lf/c is Neg and 'le is Medium then p = 1.05 

If ois Neg and lf/c is Neg and 'le is Big then fJ = 1.1 

If §is Neg and lf/c is Zero and 'le is Small then P = I 

If §is Neg and lf/c is Zero and 'le is Medium then P = 1.05 

If 8 is Neg and 1{/c is Zero and 'le is Big then p = 1.1 

If §is Neg and lf/c is Pos and 'le is Small then p = I 

If §is Neg and lf/c is Pos and 'le is Medium then p = 1.05 

If 8 is Neg and lf/c is Pos and 'le is Big then p = 1.1 

If 8 is Zero and lf/c is Neg and 'le is Small then P = I 

If 8 is Zero and lf/c is Neg and 'le is Medium then p = I. OS 

If o is Zero and lf/c is Neg and 'le is Big then p = I.I 

If §is Zero and If/• is Zero and 'le is Small then P = I 

If ois Zero and If/• is Zero and 'le is Medium then fJ = 1.05 

If 8 is Zero and lf/c is Zero and 'le is Big then p = 1.1 

If §is Zero and lf/c is Pos and 'le is Small then fJ = I 

If 8 is Zero and lf/e is Pos and 'le is Medium then p = 1.05 

If ois Zero and lf/e is Pos and 'le is Big then fJ = 1.1 

If §is Pos and lf/e is Neg and 'le is Small then p = I 

If §is Pos and lf/e is Neg and 'le is Medium then fJ = I.OS 

If o is Pos and lf/c is Neg and 'le is Big then p = 1.1 

(6.3) 
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If 8is Pos and 'l'c is Zero and t7e is Small then p = I 

If 8is Pos and 'l'c is Zero and 'le is Medium then p = 1.05. 

If 8 is Pos and 'l's is Zero and 'le is Big then p = 1.1 

If 8is Pos and 'I'& is Pos and t7e is Small then p = I 

If 8is Pos and 'I'& is Pos and t7e is Medium then P = 1.05 

If 8 is Pos and 'l'c is Pos and t7e is Big then p = I. I 

Where 8 is the control signal from the ANFIS controller, 'l'c is the demanded yaw 

angle 'le is the error in the actuator position, p is the value the control signal is to be 

multiplied by, Neg is negative and Pos is positive. 

It is now clear to see from Equation (6.3) that as the size of the error increase so does 

the output of the FIS. The result of an increase in the value of the output of the FIS is 

to multiply the ANFIS controller's output signal. This will lead to an increase in the 

demand being placed on the actuators and will make the AUV recover partially from 

the fault being considered. 

To tune these FISs a suitable tuning path for the AUV was required. The key features 

of the tuning path are that it must excite as many levels as possible of each input 

function being considered and that it is a realistic path for the AUV to follow. 

The chosen path was a series of step input demands, ranging form 5 degrees to 35 

degrees. The AUV was given adequate time between each demand to achieve and 

maintain the next yaw angle. The total simulation lasted for a period of 400 seconds 

and can be seen in Figure 6.6. During the tuning this path was presented to this system 

four times. The first time there was no fault within the system, this was to ensure the 

fault recovery FIS would not inhibit the operation of the AUV during a fault free 

scenario. The second time aLOE of 33.3% was implemented in both the rate limiter 

and saturation blocks. The third time a LOE of 66.6% was implemented in both the 

rate limiter and saturation blocks. For the forth and final time the path of input 

demands were presented to the system when a LOE of 100% was implemented in 

both the rate limiter and saturation blocks. This produced a total tuning simulation 

time of 1600 seconds for every epoch. The tuning path also considered four levels of 

LOE for seven different magnitudes of step input yaw demands. 
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Figure 6.6 AUV Tuning Path for Actuator Faults 

Both FISs to be tuned within this Chapter have now been defined, as has the tuning 

path to be used to tune them. 

6.3.3. ANFIS 

Unfortunately it was not possible to use the ANFIS [Jang (1991)] tuning method for 

this work. This is due to its need of both input and output training data. Unlike the 

sensor faults, where the sensor information required to be produced by the sensor 

recovery FIS was already known, for this section of the work the desired control 

signal for the AUV is an unknown quantity. Each type and level of fault alters the 

dynamics of the control surfaces being used for this work. Therefore each fault would 

require a new optimal control FIS to be designed to maintain performance. This 

requires a huge amount of work to calculate and would require many different control 

systems to be carried in the AUV at all times. 
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6.3.4. Simulated Annealing 

As the ANFIS approach cannot be used, for reasons discussed in section 6.3.3, the 

first approach used to tune the basic FISs is simulated annealing [Kirkpatrick, et a/ 

(1983)]. This is the same method used in Chapter 5 to tune the sensor recovery FISs, 

and has been explained in detail within Chapter 3. 

Both initial FISs were tuned using this method. Two approaches to the tuning have 

been considered, the first being where the simulated annealing program can alter all of 

the values and the second where the output for small error values are fixed at a value 

of 1. This created four separate cases of FIS tuning, two different starting positions 

and two different tuning parameters. For each case the FIS was tuned for five runs of 

100 epochs. This was repeated three times to ensure no anomalous results were 

obtained due to the probabilistic nature of the simulated annealing program. A mean 

of these three FISs was then calculated to produce an average FIS, it was hoped this 

would create a more fault tolerant FIS, unfortunately this was not the case. 

After training the FISs were tested over all three step sizes (10, 20, and 30 degrees), 

for all three types of faults (saturation, rate limiter and both), for all four levels of 

LOE (25%, 50%, 75%, and lOO%). The FIS which was the most fault tolerant on all 

of these tests will be presented in the results section. 

6.3.3. Tabu Search 

The second and alternative approach considered for tuning the two basic FISs is that 

of the tabu search [Denna et a/ (1999)] method. This method has been explained in 

detail within Chapter 3. 

Both initial FISs were tuned using this method. Two approaches to the tuning have 

again been considered the first being where the tabu search can alter all of the values 

and the second where the output for small error values are fixed at a value of I. This 

again created four separate cases of FIS tuning, two different starting positions and 

two different tuning parameters. For each case the FIS was tuned for five runs of lOO 

epochs. As this method does not use the statistical approach employed by simulated 

annealing there was no reason to repeat the process. 

After training the FISs were tested over all three step sizes (10, 20, and 30 degrees), 

for all three types of faults (saturation, rate limiter and both), for all four levels of 
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LOE (25%, 50%, 75%, and 100%). The FIS which performed most fault tolerant on 

all of these tests will be presented in the results section. 

6.4. RESULTS 

The results of the most fault tolerant tuned FIS for both the simulated annealing and 

tabu search algorithms are now presented. The results (RMSEs and rise times) for all 

the levels of all the faults for all levels of demanded yaw angle inputs being 

considered are shown. Figures are presented showing the AUVs response to each type 

of fault. Also shown are the canard responses to selected types of fault, the complete 

set of canard responses can be found in Appendix I. 

6.4.1. Simulated Annealing Tuned FIS 

First let the simulated annealing case be considered, the method described leads to the 

creation of sixty-four FISs. With each FIS being tested on three step input sizes (10, 

20 and 30 degrees) for three kinds of faults (saturation and/or rate limiter blocks) for 

four levels ofLOE (25%, 50%, 75% and 100%), this would lead to a total of thirty-six 

tests for each FIS and hence a total of two thousand three hundred and four individual 

tests. Clearly this would be too many to tests to be included in this thesis, hence only 

the test results for the most fault tolerant FIS tuned using simulated annealing will be 

displayed herein. 

After all of the tests had been performed and the results had been compared and 

correlated the most fault tolerant FIS tuned using the simulated annealing method was 

the FIS tuned for 500 epochs from the heuristic FIS when the output for the 

occurrence of the small error input was fixed at a value of one. SA FIS as it shall be 

referred to from this point. 

The input membership functions for the SA FIS were similar to those of the heuristic 

FIS, despite the algorithm having the ability to change them. The minimum and 

maximum values of each function were not permitted to be tuned. The lack of change 

is due to the structure of the tuning path used. It considered many different step sizes 

and LOEs in an unbiased manner, which covered the complete input space of the 

control, demand and error inputs. The tuning path was chosen so that the tuned FIS 
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would be able to handle all levels of LOE for all step inputs. The three input 

membership functions for the SA FIS are shown in Figures 6.7, 6.8 and 6.9. 
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Figure 6. 7 Membership Functions for Control Input of SA FIS 
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It is in the output fuzzy singletons that the simulated annealing tuning had its greatest 

effect. For the SA FIS eighteen of the twenty-seven singletons could be tuned. The 

fuzzy singletons, when combined with the input membership functions, lead to the 

tuned fuzzy rule base shown in Equation (6.4). 

If ois Neg and '1-'c is Neg and 11e is Small then p = I 

If ois Neg and '1-'c is Neg and 11e is Medium then p = 0.87 

If ois Neg and '1-'c is Neg and 11e is Big then p = 2.19 

If ois Neg and '1-'c is Zero and 11e is Small then p = I 

If o is Neg and 'f'6 is Zero and 11e is Medium then p = 1.15 

If ois Neg and '1-'c is Zero and 11e is Big then p = 1.86 

If o is Neg and '1-'s is Pos and 11e is Small then· p = I 

If ois Neg and '1-'e is Pos and 11e is Medium then p = 0.83 

If ois Neg and '1-'e is Pos and 11e is Big then p = 1.08 

If o is Zero and '1-'e is Neg and 11e is Small then p = 1 

If ois Zero and '1-'e is Neg and 11e is Medium then p = 1.29 

If ois Zero and '1-'s is Neg and 11e is Big then p = 1.85 

If o is Zero and '1-'e is Zero and 11e is Small then p = I 

If ois Zero and '1-'c is Zero and 11e is Medium then p = 1.67 

If ois Zero and '1-'e is Zero and 11e is Big then p = 1.57 

If o is Zero and '1-'e is Pos and 11e is Small then p = I 

If ois Zero and '1-'e is Pos and 11e is Medium then p = 0.98 

If ois Zero and '1-'s is Pos and 11e is Big then p = 1.01 

If ois Pos and '1-'e is Neg and 11e is Small then p = I 

If ois Pos and '1-'c is Neg and 11e is Medium then p = 0.97 

If ois Pos and '1-'s is Neg and 11e is Big then p = 0.88 

If ois Pos and '1-'c is Zero and 'le is Small then p = I 

If ois Pos and '1-'e is Zero and 'le is Medium then p = 0.77 

If ois Pos and '1-'e is Zero and 11e is Big then p = 1.59 

If ois Pos and '1-'c is Pos and 11e is Small then p = I 

If ois Pos and '1-'c is Pos and 11e is Medium then p = 0.99 

If o is Pos and '1-'e is Pos and 'W is Big then p = I. 96 

(6.4) 
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Where 8 is the control signal from the ANFIS controller, fl/s is the demanded yaw 

angle 17e is the error in the actuator position and p is the value the control signal is to 

be multiplied by. 

The P values in Equation (6.4) have been tuned by the simulated annealing algorithm 

from those in Equation (6.3). The values before and after tuning can be seen in Figure 

6.10. 

It can be seen from Figure 6.10 that no tuning took place to the nine fuzzy rules where 

the error is considered to be small. The other eighteen values have all been changed 

by the tuning algorithm. The tuning process did increase eleven of these values, which 

means that the FIS will increase the ANFIS controller's signal for these cases. The 

tuning process reduced the values for the other seven rules which means that the FIS 

will decrease the ANFIS controller' s signal for these cases 
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6.4.2. Tabu Search Tuned FIS 

Now let the tabu search case be considered, the method described leads to the creation 

of fifty-six FISs. With again each FIS being tested on three step input sizes for three 

kinds of faults for four levels of LOE, this leads to a total of thirty-six tests for each 

FIS and hence a total of two thousand and sixteen individual tests. As was the case 

before this would be too many to tests to be included in this thesis, hence only the test 

results for the most fault tolerant FIS tuned using tabu search will be displayed herein. 

After all of the tests had been performed and the results had been compared and 

correlated the most fault tolerant FIS tuned using the tabu search method was the FIS 

tuned for 500 epochs from the heuristic FIS. TABU FIS as it shall be referred to from 

this point. 

The input membership functions for the TABU FIS were similar to those of the 

heuristic FIS, despite the algorithm having the ability to change them. The reasons for 

this are the same as those stated when using the simulated annealing approach. The 

three input membership functions for the TABU FIS are shown in Figures 6.11, 6.12 

and 6.13. 
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It is in the output fuzzy singletons that the tabu search tuning had its greatest effect. 

For the TABU FIS all of the twenty-seven singletons could be tuned. The fuzzy 

singletons, when combined with the input membership functions, lead to the tuned 

fuzzy rule base shown in Equation (6.5). 

If ois Neg and lf/c is Neg and 11e is Small then p = 1.00 

If o is Neg and lf/c is Neg and 11e is Medium then p = 1.14 

If ois Neg and lf/c is Neg and 11e is Big then p = 1.11 

If ois Neg and lf/c is Zero and 11e is Small then p = 1.05 

If o is Neg and lf/s is Zero and 11e is Medium then p = 1.02 

If ois Neg and lf/s is Zero and 11e is Big then p = 1.24 

If ois Neg and lf/s is Pos and 11e is Small then p = 1.07 

If ois Neg and If/& is Pos and 11e is Medium then p = 0.96 

If o is Neg and lf/s is Pos and 11e is Big then p = 1.30 

If o is Zero and lf/c is Neg and 11e is Small then p = 0.68 

If o is Zero and If/& is Neg and 11e is Medium then p = 0. 78 
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If 8 is Zero and '1/c is Neg and 'le is Big then p = 1.19 

If 8 is Zero and '1/c is Zero and 'le is Small then P = 1.10 

If 8 is Zero and '1/c is Zero and '{e is Medium then p = I. 43 

If 8is Zero and '1/c is Zero and 'le is Big then p = 1.27 

If 8is Zero and '1/c is Pos and 'le is Small then p = 0.98 

If 8is Zero and '1/c is Pos and 'le is Medium then p = I. I 

If 8 is Zero and '1/c is Pos and 'le is Big then p = l.l7 

If 8is Pos and '1/c is Neg and 'le is Small then p = 2.35 

If 8 is Pos and '1/c is Neg and 'le is Medium then p = 2.61 

If 8is Pos and '1/s is Neg and 'le is Big then p = 2.49 

If 8is Pos and '1/s is Zero and 'le is Small then p = 1.03 

If 8is Pos and '1/c is Zero and 'le is Medium then P = 1.11 

If 8 is Pos and '1/c is Zero and 'le is Big then p = 1. 07 

If 8is Pos and '1/c is Pos and 'le is Small then p = 0.98 

If 8is Pos and '1/c is Pos and 'le is Medium then P = 1.02 

If 8is Pos and '1/c is Pos and 'le is Big then p = 1.28 

(6.5) 

Where 8 is the control signal from the ANFIS controller, '1/c is the demanded yaw 

angle 'le is the error in the actuator position and p is the value the control signal is to 

be multiplied by. 

The p values in Equation (6.5) have been tuned by the tabu search algorithm from 

those in Equation (6.3). The values before and after tuning can be seen in Figure 6.14. 

It can be seen from Figure 6.14 that all values have been tuned by the algorithm. The 

tuning process did increase seventeen of the values, which means that the FIS will 

increase the ANFIS controller's signal for these cases. The tuning process reduced the 

values for eight rules which means that the FIS will decrease the ANFIS controller's 

signal for these cases. The tuning process also left two of the values unchanged, these 

values were changed during the tuning. 
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The results of placing both of these FISs in the control loop will now be displayed in 

three sections. 

6.4.3. Yaw Step Inputs of 10 Degrees 

The first section will look at LOEs for the 10 degrees yaw step input demands set of 

tests. The three types of faults defined in Chapter 3 will all be considered. The FISs 

have been compared using the RMSEs and rise times as defined previously. 

The complete set of results (RMSEs and rise times) for both of the FISs described, 

along with the benchmark PD controller, are shown in Tables 6.1 and 6.2. At this 

point it is important to note that the unaffected ANFIS controlled system has a rise 

time of 4.5 seconds and a RMSE of zero degrees (as to be expected). 
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Table 6.1 The 10 Degrees Step Input RMSEs. 

RMSEs (degrees) 
Controller Saturation Rate Limiter Both 

25% 50% 75% 100% 25% 50% 75% 100% 25% 50% 75% 100% 
PD 0.227 0.227 0.131 1.183 0.172 0.171 0.358 1.183 0.172 0.171 0.358 1.183 
Simulated 0.028 0.028 0.072 0.782 0.053 0.142 0.294 0.782 0.053 0.142 0.294 0.782 
Annealing 

Tabu 0.072 0.072 0.053 0.820 0.049 0.129 0.290 0.820 0.049 0.129 0.290 0.820 
Search 

Table 6.2 The 10 Degrees Step Input Rise Times. 

Rise Times (seconds) 
Controller Saturation Rate Limiter Both 

25% 50% 75% 100% 25% 50% 75% 100% 25% 50% 75% 100% 
PD 5.4 5.4 5.6 8.1 5.5 5.6 5.8 8.1 5.5 5.6 5.8 8.1 
Simulated 4.5 4.5 4.6 6.4 4.5 4.6 4.6 6.4 4.5 4.6 4.6 6.4 
Annealing 

Tabu 4.3 4.3 4.5 6.4 4.4 4.5 4.5 6.4 4.4 4.5 4.5 6.4 
Search 

It is clear from these results that both fault tolerant FISs are an improvement on the 

PD controller. With respect to both the RMSE and rise times methods of evaluation, 

the FISs have smaller RMSE values and rise times for every test performed. 

(a) Saturation Block Faults 
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On the previous page are shown the results for both the FISs for the saturation block 

LOEs in Figures 6.15 and 6.16. 

The SA FIS for the 2S% and 50% LOEs produced identical responses and were able 

to achieve the rise times of the ideal system and only produced a small RMSE (0.028 

degrees). From Figure 6.1S it is possible to see the change in performance, with the 

AUV altering course at a slightly faster rate. For the 7S% LOE the rise time was 

increased by only 0.1 seconds and the RMSE of 0.072 degrees is seen in Figure 6.1 S 

as the AUVs response being slowed down. For the 100% LOE both the rise time and 

RMSE have increased considerably to 6.4 seconds and 0. 782 degrees. This is 

illustrated in Figure 6.1S, where the AUVs yaw angle can be seen to be below that of 

the ideal situation. 

The TABU FIS for the 2S% and SO% LOEs produced identical responses and were 

able to achieve a rise time 0.2 seconds shorter that the ideal system and only produced 

a small RMSE of0.072 degrees. From Figure 6.16 it is clear to see that the TABU FIS 

has forced the AUV to alter yaw angle at a faster rate, which explains the decrease in 

rise times. For the 75% LOE the rise time is that of the ideal system and the RMSE of 

0.053 degrees, which is closer to the ideal situation that either the 2S% or SO% LOEs, 

is seen in Figure 6.16 as the AUVs response being slowed down. For the 100% LOE 

both the rise time and RMSE have increased considerably to 6.4 seconds and 0.820 

degrees. This is illustrated in Figure 6.16, where the AUVs yaw angle can be seen to 

be below that of the ideal situation. 

(b) Rate Limiter Block Faults 

The next type of fault to be considered in this section is that of the rate limiter block 

LOE. The results for both of the fault tolerant FISs can be seen in Figures 6.17 and 

6.18. 

For this fault the SA FIS showed far more signs of a fault occurring. For the 25% 

LOE produced a response which showed a rise time identical to that of the ideal 

system and only produced a small RMSE (0.053 degrees). From Figure 6.17 it is 

possible to see the change in performance, with the AUV altering course at a slightly 

slower rate. The SO% LOE produced a further drop in performance with the rise time 

increasing to 4.6 seconds and a RMSE of 0.142 degrees. For the 7S% LOE the rise 

time was again 4.6 seconds, the same as for the SO%, but an increase in the RMSE to 
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0.294 degrees and can be seen in Figure 6.17 as the AUVs response being slowed 

down. For the 100% LOE the results are identical to those of saturation block 100% 

LOE, this is due to I 000/o LOE in any of the considered faults being the same as the 

canard becoming locked in the zero position. 
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Figure 6.17 Simulated Annealing Results for The Rate Limiter Block LOEs 
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For this type of fault the TABU FIS also showed far more signs of a fault occurring. 

The 25% LOE produced a response which showed a rise time of 4.4 seconds, 0.1 

seconds less than that of the ideal system and only produced a small RMSE (0.049 

degrees). From Figure 6.18 it is possible to see the change in performance, with the 

AUV altering course at a slightly slower rate. The 50% LOE produced a further drop 

in performance with the rise time increasing to 4.5 seconds (that of the ideal system) 

and a RMSE of0.129 degrees. For the 75% LOE the rise time was again 4.5 seconds, 

the same as for the 50%, but has an increase in the RMSE to 0.290 degrees and can be 

seen in Figure 6.18 as the AUVs response being slowed down. For the 100% LOE the 

results are identical to those of saturation block I 00% LOE, for the same reasons as 

given in section 6.4.3 (a). 
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(c) Saturation and Rate Limiter Block Faults 

Finally for this size of step input the fault where both the saturation and rate limiter 

blocks suffer a simultaneous LOE is considered. The results for both of the fault 

tolerant FISs can be seen in Figures 6.19 and 6.20. 
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When both faults occurred simultaneously the results shown in Tables 6.1 and 6.2 and 

in Figures 6.19 and 6.20 indicate that the results are identical to those of the rate 

limiter LOEs. The explanation for this is that when both faults occur simultaneously, 

for this small size of step input, one of the effects of the rate limiter fault is to prevent 

the actuator obtaining an angle for which the saturation fault will affect the results. 

Hence for this size of step input when both faults occur it is effectively just a rate 

limiter block fault occurring and both FISs treated it as such. 

The canard responses for the SA FIS are shown in Figures 6.21 and 6.22. 

Figure 6.21 shows how the upper canard is affected by the fault with the canard's 

response being slowed as the level ofLOE increases up to the maximum 100% LOE. 

The canard does not function for this level of fault as is shown by the canard 

remaining at angle of zero degrees. 

Figure 6.22 shows how the lower canard compensates for the faults. This is shown as 

the canard achieving a larger angle for a larger LOE. From the figures it is also clear 

that neither actuator reaches saturation apart from the upper canard when considering 

the I 00% LOE, where this is inevitable. 
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Having considered all types of faults for this size of yaw angle demand a further 

calculation was performed to show the percentage improvement of the FISs compared 

to the PD controlled AUV. These can be seen in Table 6.3. 

Table 6.3 The 10 Degrees Step Input Percentage Improvements. 

Controller Saturation Rate Limiter Both 
25% 50% 75% 100% 25% 50% 75% 100% 25% 50% 75% 100% 

Simulated 88% 88% 45% 34% 69% 17% 18% 34% 69% 17% 18% 34% 
Annealing 
Tabu 68% 68% 59% 31% 72% 25% 19% 31% 72% 25% 19% 31% 
Search 

6.4.4. Yaw Step Inputs of20 Degrees 

Having presented the results produced by both fault tolerant FISs in the case of a 10 

degrees step input yaw demand, the next step is to increase that yaw angle to 20 

degrees and observe how both FISs respond. 

The complete set of results (RMSEs and rise times) for both of the FISs described, 

along with the benchmark PD controller, are shown in Tables 6.4 and 6.5. At this 

point it is important to note that the unaffected ANFIS controlled AUV has a rise time 

of 4.9 seconds and a RMSE of zero degrees. 

Table 6.4 The 20 Degrees Step Input RMSEs. 

RMSEs (degrees) 
Controller Saturation Rate Limiter Both 

25% 50% 75% 100% 25% 50% 75% 100% 25% 50% 75% 100% 
PD 0.261 0.193 0.732 2.646 0.251 0.537 1.151 2.646 0.251 0.537 1.194 2.646 
Simulated 0.023 0.111 0.694 1.678 0.203 0.531 1.029 1.678 0.203 0.531 1.072 1.678 
Annealing 
Tabu 0.095 0.071 0.621 2.024 0.184 0.466 0.985 2.024 0.184 0.467 1.026 2.024 
Search 
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Table 6.5 The 20 Degrees Step Input Rise Times. 

Rise Times (seconds) 
Controller Saturation Rate limiter Both 

25% 50% 75% 100% 25% 50% 75% 100% 25% 50% 75% 100% 
PO 6 6 6.5 8.7 5.9 5.9 6.2 8.7 5.9 5.9 6.3 8.7 
Simulated 4.8 4.9 5.4 6.3 4.8 4.9 4.8 6.3 4.8 4.9 4.9 6.3 
Annealing 

Tabu 4.7 4.8 5.3 6.9 4.6 4.5 4.7 6.9 4.6 4.5 4.8 6.9 
Search 

It is again obvious from these results that both fault tolerant FISs are an improvement 

on the PD controller. With respect to both the RMSE and rise times methods of 

evaluation, the FISs have smaller RMSE values and rise times for every test 

performed. 

(a) Saturation Block Faults 

In Figures 6.23 and 6.24 the results are shown for both the FISs for the saturation 

block LOEs in. 
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The SA FIS for the 25% LOE produced a very good response with a RMSE of only 

0!023 degrees and a rise time 4.8 seconds, 0.1 seconds less than that of the ideal 

system. From Figure 6.23 it is possible to see the change in performance. For the 50% 

LOE the rise time is identical to that of the idea system and a RMSE of0.111 degrees 

indicates the drop in the level of performance. For the 75% LOE the rise time has 

increased considerably to 5.4 seconds and the RMSE to 0.694 degrees. As shown in 

Figure 6.23, this indicates that for the increased demand yaw angle the actuator is 

more susceptible to a fault in the saturation block. For the lOO% LOE both the rise 

time and RMSE have·increased considerably to 6,3 seconds and 1.678 degrees. This is 

illustrated in Figure 6.23, where the AUVs yaw angle·can be seen to be below that of 

the ideal situation. 

The TABU FIS for the 25% LOE was able to achieve a rise time 0.2 seconds shorter 

that the ideal system and only produced a small RMSE of0.095 degrees. From Figure 

6.24 it is clear to see that the TABlJ FIS has forced the AUV to alter yaw angle at a 

faster rate, which explains the decrease in rise times. This has also been the case for 

the 50% LOE where a rise time of 4.8 seconds has been observed and a RMSE of 

0.071 degrees is less than that of the 25% LOE. For the 75% LOE the rise time has 

increased considerably to 5.3 seconds and a RMSE of 0.621 degrees. For the 100% 

LOE both the rise time and RMSE have increased considerabiy to 6.9 seconds and 

2.024 degrees. This is illustrated in Figure 6,24, where the AUVs yaw angle can be 

seen to be further below that of the ideal situation as the level of LOE increases and 

hence has more of an effect on theAUV. 

(b) Rate Limiter Block Fault 

The next type of fault to be considered in this section is that of the rate limiter block 

LOE. The results for both of the fault tolerant FISs can be seen in Figures 6.25 and 

6,26. 

Firstly for this type of fault the SA FIS shall be examined. For the 25% LOE a 

response which showed a rise time of 4,8 seconds and a RMSE of 0.203 degrees was 

recorded. From Figure 6.25 it is possible to see the change in performance, with the 

AUV altering course at a slightly slower rate. 11he 50% LOE produced a further drop 

in performance with the rise time increasing to 4,9 seconds and a RMSE of 0.53;1 

degrees. For the 75% LOE the rise time decreased to 4.8 seconds, but an increase in 
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the RMSE to 1.029 degrees was recorded and can be seen in Figure 6.25 where an 

overshoot is now being induced by the FIS to compensate for the failure. For the 

I 00% LOE the results are identical to those of saturation block I 00% LOE for reasons 

previously given. 
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Figure 6.25 Simulated Annealing Results for The Rate Limiter Block LOEs 

for a 20 Degrees Demanded Yaw Angle 
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Figure 6.26 Tabu Search Results for The Rate Limiter Block LOEs 

for a 20 Degrees Demanded Yaw Angle 

For this fault the TABU FIS also showed more signs of a fault occurring. For the 25% 

LOE that produced a response which showed a rise time of 4.6 seconds, 0.2 seconds 

less than that of the ideal system and only produced a RMSE of 0.184 degrees. From 

Figure 6.26 it is possible to see the change in performance, with the AUV altering 

course at a slightly slower rate. The SO% LOE produced a further drop rise time to 4.5 

seconds and a RMSE of 0.466 degrees. For the 75% LOE the rise time was 4.7 

seconds, again less than the ideal response, and an increase in the RMSE to 0.985 

degrees was detected. Figure 6.26 shows how for all three LOEs the AUVs response 

has been slowed down, but an induced overshoot can be seen in. For the 100% LOE 

the results are identical to those of saturation block 100% LOE, for the same reasons 

as given in section 6.4.4 (a). 
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(c) Saturation and Rate Limiter Block Faults 

Finally for this size of step input the fault where both the saturation and rate limiter 

blocks endure a simultaneous LOE is considered. The results for both of the fault 

tolerant FISs can be seen in Figures 6.27 and 6.28. 
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Figure 6.27 Simulated Annealing Results for Both Block LOEs 

for a 20 Degrees Demanded Yaw Angle 
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As was the case for the 10 degrees yaw step input, when the SA FIS is presented with 

simultaneous LOEs it produces identical rise times and RMSEs to those of the rate 

limiter block LOEs for the 25% and 50% LOE cases. The reason given for this 

occurrence is equally valid for these cases. The 75% LOE is the first test where it is 

apparent that both faults are effecting the performance of the AUV. The rise time of 

4.9 seconds is greater than that of the rate limiter block 75% LOE and the RMSE is 

1.072 degrees which is also an increase. The only possible explanation for this is that 

the saturation block LOE is having an effect and the SA FIS is attempting to alter the 

response ofthe AUV accordingly. Once again the lOO% LOE is identical to previous 

results, for the reasons given in section 6.4.4 (a). 

As for the SA FIS, when the TABU FIS is presented with simultaneous LOEs it 

produces identical rise times and RMSEs to those of the rate limiter block LOEs, but 

only for the 25% LOE case. The reason given for this occurrence is equally valid for 

these cases. The 50% LOE also has a rise time identical to that for the rate limiter 
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block LOE, of 4.5 seconds, but has an increase of 0.001 degrees in its RMSE. The 

75% LOE is the first test where it is apparent that both faults are effecting the 

performance of the AUV. The rise time of 4.8 seconds is greater than that of the rate 

limiter block 75% LOE and the RMSE is 1.026 degrees which is also an increase. The 

only possible explanation for this is that the saturation block LOE is having an effect 

and the TABU FIS is attempting to alter the response of the AUV accordingly. Once 

again the 100% LOE is identical to previous results, for the reasons given in section 

6.4.4 (a). 

The canard responses for the SA FIS are shown in Figures 6.29 and 6.30. 

Figure 6.29 shows how the upper canard is affected by the fault with the canard's 

response being slowed as the level of LOE increases up to the maximum I 00% LOE. 

The canard does not function for this level of fault as is shown by the canard 

remaining at angle of zero degrees. For the first time it is also clear the effect the 

saturation fault has on the system. This is shown by the 75% LOE where the canard 

becomes saturated at 6.3 degrees. 

Figure 6.30 shows how the lower canard compensates for the faults. This is shown as 

the canard achieving a larger angle for a larger LOE. The lower canard achieves a 

maximum angle of just over 24 degrees, which is just below the saturation level for 

this canard. This shows that the lower canard never reaches saturation for any level of 

fault, when a 20 degrees yaw angle is being demanded. 
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Having considered all types of faults for this size of yaw angle demand a further 

calculation was performed to show the percentage improvement of the FISs compared 

to the PD controlled AUV. These can be seen in Table 6.6. 

Table 6.6 The 20 Degrees Step Input Percentage Improvements. 

Controller Saturation Rate Limiter Both 
25% 50% 75% 100% 25% 50% 75% 100% 25% 50% 75% 100% 

Simulated 91% 42% 5% 37% 19% 1% 11% 37% 19% 1% 10% 37% 
Annealing 
Tabu 64% 63% 15% 24% 27% 13% 14% 24% 27% 13% 14% 24% 
Search 

6.4.5. Yaw Step Inputs of30 Degrees 

The final size of step input yaw angle being considered for actuator faults, within this 

thesis, is that of 30 degrees. This is the largest step size considered for reasons given 

in Chapter 3. Once again all types and sizes of LOEs previously discussed have been 

implemented for this step size. 

The complete set of results (RMSEs and rise times) for both the SA FIS and TABU 

FIS, along with the benchmark PD controller, are shown in Tables 6.7 and 6.8. At this 

point it is important to note that the unaffected ANFIS controlled system has a rise 

time of 4.9 seconds and a RMSE of zero degrees (as to be expected). The ideal system 

having a rise time of 4.9 seconds, the same as for the 20 degrees step input yaw angle 

demand, is explained by the very good performance of the original ANFIS controller 

as discussed by Craven (1999). 

It is again obvious from these results that both fault tolerant FISs are an improvement 

on the benchmark PD controller. With respect to both the RMSE and rise times 

methods of evaluation, the FISs have smaller RMSE values and shorter rise times for 

every test performed. 
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Table 6. 7 The 30 Degrees Step Input RMSEs. 

RMSEs (degrees) 
Controller Saturation Rate Limiter Both 

25% 50% 75% 100% 25% 50% 75% 100% 25% 50% 75% 100% 
PO 0.175 0.686 1.994 4.494 0.489 1.176 2.340 4.494 0.494 1.256 2.538 4.494 
Simulated 0.082 0.673 1.514 3.535 0.435 1.094 2.055 3.535 0.437 1.140 2.129 3.535 
Annealing 

Tabu 0.059 0.562 1.720 3.817 0.563 1.131 2.061 3.817 0.542 1.138 2.237 3.817 
Search 

Table 6.8 The 30 Degrees Step Input Rise Times. 

Rise Times (seconds) 
Controller Saturation Rate Limiter Both 

25% 50% 75% 100% 25% 50% 75% 100% 25% 50% 75% 100% 
PO 6.2 6.5 7.4 9.5 5.6 5.8 6.7 9.5 5.6 6.1 7.2 9.5 
Simulated 5 5.4 5.6 6.8 4.6 4.5 4.8 6.8 4.6 4.7 5.2 6.8 
Annealing 

Tabu 4.9 5.2 5.9 7.4 4.3 4.4 5.1 7.4 4.3 4.7 5.6 7.4 
Search 

(a) Saturation Block Faults 

Shown in Figures 6.31 and 6.32 are the results for both the FISs for the saturation 

block LOEs. 
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Figure 6.31 Simulated Annealing Results for The Saturation Block LOEs 
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The results for the SA FIS when considering the saturation block LOEs are as to be 

expected. The rise times and RMSEs increase as the percentage LOE increases. There 

are no overshoots detectable for any level ofLOE. The SA FIS has some effect for all 

levels of saturation block LOEs, but is limited at this angle as the canard very quickly 

achieves the maximum obtainable angle and once saturation has been reach, there is 

no effect the control system can have. This is a problem when dealing with such a 

large yaw angle. 

The results for the TABU FIS on this type of fault are of a similar nature, due once 

again too the limiting situation created by the large yaw angle demand. 

(b) Rate Limiter Faults 

The next type of fault to be considered in this section is that of the rate limiter block 

LOE. The results for both of the fault tolerant FISs can be seen in Figures 6.33 and 

6.34. 
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Figure 6.34 Tabu Search Results for The Rate Limiter Block LOEs 

for a 30 Degrees Demanded Yaw Angle 

For this type of fault over this step input size the SA FIS has its most noticeable effect 

yet. For the 25% LOE the rise time has been reduced by 0.6 seconds and despite a 

RMSE of 0.435 degrees, a look at Figure 6.33 shows how the FIS forces a slight 

overshoot and yet obtains the desired yaw angle before the ideal system. If the criteria 

of the tests were not to reproduce the unaffected system this result would be an 

improvement on that ideal situation. For both the 50% and 75% LOEs both rise times 

were still below that of the ideal system (4.5 and 4.8 seconds respectively), which 

were once again due to the FIS inducing an overshoot. Unfortunately unlike for the 

25% LOE case, for these cases the overshoots were of such magnitude that the system 

required a longer time to return to the desired yaw angle. This is shown as RMSEs of 

1.094 degrees for the 50% LOE and 2.055 degrees for the 75% LOE, and can be seen 

in Figure 6.33. The lOO% LOE results where again identical to those of the saturation 

block 100% LOE, for reasons given prior to this point. 

The TABU FIS also showed similar results to those of SA FIS. For the 25% LOE the 

TABU FIS forced an overshoot in the AUV which, unlike the SA FIS on this test, the 
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control system could not recover from quickly enough from to achieve the desired 

yaw angle in a short time than the ideal system. It had a rise time of 4.3 seconds, 0.6 

seconds less than the ideal system and a RMSE of0.563 degrees which is bigger than 

that of the benchmark PD controller. This is the first test where either fault tolerant 

FIS has failed to improve on the benchmark results. The 50% LOE test does not cause 

the same problem for this FIS and a rise time of 4.4 seconds and a RMSE of 1.131 

degrees are produced. The Figure 6.34 shows how the TABU FIS once again induces 

an overshoot in an attempt to compensate for the fault. The 75% LOE shows an 

increase in rise time to 5.1 seconds and an increase in RMSE to 2.061 degrees, and 

again an overshoot is seen in Figure 6.34. The lOO% LOE results where again 

identical to those of the saturation block lOO% LOE, for reasons given prior to this 

point. 

(c) Saturation and Rate Limiter Faults 
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for a 30 Degrees Demanded Yaw Angle 

Unlike for the previous step sizes, for a 30 degrees step input demand, when the SA 

FIS is presented with simultaneous LOEs it does not produce any identical rise times 

and RMSEs to those ofthe rate limiter block LOEs. As the step is now of such a large 

magnitude that both faults have an effect on the actuator for all considered levels of 

LOE. The 25% LOE shows little evidence of this with the same rise time of 4.6 

seconds and an increase of only 0.002 degrees in its RMSE value. The 50% LOEs rise 

time has decreased by 0.2 seconds compared to the rate limiter block 50% LOE, and 

its RMSE has increased to 1.140 degrees. This can be seen in Figure 6.35 as a 

decrease in the size of the overshoot. The 75% LOE has a rise time of 4.9 seconds, 

which is that of the ideal system for this step size and a RMSE of2.129 degrees. Once 

again the 100% LOE is identical to previous results as a I 00% LOE is the same as 

locking the actuator at zero degrees. 

The TABU FlS when presented with simultaneous LOEs does not produce any 

identical rise times or RMSEs to those of the rate limiter block LOEs. The 25% LOE 

once again shows a RMSE larger than that for the benchmark controller, but does 
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have the decreased rise time of 4.3 seconds. This can be seen in Figure 6.36 as an 

overshoot. The 50% LOE also has a rise time of 4.7 seconds, which is an increase to 

that for the rate limiter block 50% LOE, of 4.5 seconds and has an increase of 0.007 

degrees in its RMSE. The 75% LOE show significant signs that both faults are 

effecting the performance of the AUV. The rise time of 5.6 seconds is half a second 

greater than that of the rate limiter block 75% LOE and the RMSE is 2.237 degrees 

which is also an increase. Once again the 100% LOE is identical to previous results. 

The canard responses for the SA FIS are shown in Figures 6.37 and 6.38. 

Figure 6.37 shows how the upper canard is affected by the fault with the canard's 

response being slowed as the level of LOE increases up to the maximum 100% LOE. 

The canard does not function for this level of fault as is shown by the canard 

remaining at angle of zero degrees. Again it is clear the effect the saturation fault has 

on the system with the canard now becoming saturated for both the 50% and 75% 

LOE tests. 

Figure 6.38 shows how the lower canard compensates for the faults. This is shown as 

the canard achieving a larger angle for a larger LOE. The lower canard does for this 

level of step input achieve the saturation level for this canard, but only for the I 00% 

LOE test. The complete set of upper and lower canard responses are presented in 

Appendix I. 
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Having considered all types of faults for this size of yaw angle demand a further 

calculation was performed to show the percentage improvement of the FISs compared 

to the PD controlled AUV. These can be seen in Table 6.9. 

Table 6.9 The 30 Degrees Step Input Percentage Improvements. 

Controller Saturation Rate Limiter Both 

25% 50% 75% 100% 25% 50% 75% 100% 25% 50% 75% 100% 
Simulated 53% 2% 24% 21% 11% 7% 12% 21% 12% 9% 16% 21% 
Annealing 

Tabu 66% 18% 14% 15% -15% 4% 12% 15% -10% 9% 12% 15% 
Search 

This brings to a conclusion all of the sizes of step input yaw demand angles being 

considered in this study. All types and levels of LOE previously stated in Chapter 3 

have been tested and the results presented in the last three sections for the most fault 

tolerant simulated annealing and tabu search tuned FISs. 

6.5. CONCLUSIONS 

The aim of this Chapter was to produce a FIS capable of handling the actuator faults 

discussed in Chapter 3. This was accomplished by starting with a basic FIS and tuning 

it, using two methods, to create a FlS capable of improving the fault tolerance of the 

control AUV. The two tuning methods were simulated annealing [Kirkpatrick, et a/ 

(1983)] and tabu search [Denna et a/ ( 1999)], both described in Chapter 3. The results 

(rise times and RMSEs) for both of these fault tolerant FISs have been presented. For 

comparison the results for the benchmark PO controller are also given. 

The SA FIS was able to improve on all of the RMSEs of the PO controller, with 

percentage increases in performance ranging from 1% to 88%. The rise times of all 

the SA FIS' s test results were below those of the benchmark controller and for eight 

of tests were below the ideal system rise times. This was achieved by the SA FIS 

forcing the AUV to turn steeply for a slightly longer period, of time, inducing a slight 

overshoot in some cases. 

The TABU FIS also had shorter rise times for all tests compared to the PO benchmark 

controller, and again was able to produce a rise time less than the ideal system for 

sixteen of the thirty six tests. This was achieved by the TABU FIS, using the same 
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method employed by the SA FIS. By forcing the AUV to turn steeply for a slightly 

longer period of time, and so induce a slight overshoot in some cases, a shorter rise 

time was recorded, as seen in the results. For all but two of the RMSEs recorded the 

results were similar to those of the SA FIS. The two tests where a difference is clearly 

apparent are the rate limiter block 25% LOE and the simultaneous blocks 25% LOE, 

where a decrease in performance compared to the PD benchmark controller was 

observed. These results were not uncommon for the tabu search tuned FISs, when 

presented with these types and levels ofLOE. 

Both the actuator fault tolerant FISs presented m this Chapter are a significant 

improvement on the benchmark PD controllers responses. Either FIS could be placed 

within the control loop of the AUV and greatly improve its performance when 

considering actuator faults, as shown in the results, sections 6.4.3 to 6.4.5. 

In order to choose which of the FISs produced a better performance the two FISs have 

to be directly compared. First compare the rise times of the AUV for both FISs. The 

SA FIS had a shorter rise time for nine of the thirty-six tests, the TABU FIS had a 

shorter rise time for twenty-three of the thirty-six tests, with four of the thirty-six test 

rise times being equal. Therefore for rise time performance the TABU FIS is clearly a 

better choice. Secondly compare the RMSE performance. The SA FIS had a smaller 

RMSE for eighteen of the thirty-six tests, the TABU FIS had a smaller RMSE 

eighteen of the thirty-six tests, with none of the thirty-six test RMSEs being equal. 

This shows that overall there is not a great difference in the FISs when considering 

RMSEs. 

Despite the TABU FIS clearly having a large number of shorter rise times and an 

equal number of smaller RMSEs, the conclusion of this Chapter must be that the SA 

FIS would be the better of the two to use for further work. The main reasons are that 

the TABU FIS produced a higher RMSE, relative to the benchmark controller, for two 

tests and that the SA FIS produced better results for the most severe faults being 

considered, i.e. the 100% LOE for all types of faults at all step sizes. 

A potential drawback of the fault tolerant system developed here is the need of the 

FIS to have the level of failure given to it via a sensor on the actuator. Chapter 7 

considers a method to remove this need and still maintain an acceptable level of fault 

tolerance. 
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CHAPTER 7 

ACTUATOR RECOVERY SYSTEM WITHOUT ERROR SENSOR 

7.1. INTRODUCTION 

Chapter 6 dealt with the design and development of a fault tolerant FIS capable of 

handling specified actuator faults. The FIS developed uses three inputs, namely: the 

control signal from the ANFIS controller, the demand being placed on the AUV, and 

the error between the actual and desired position of the damaged actuator. The use of 

the error sensor in the fault tolerant FIS could conceivably lead to a sensor fault of the 

types defined in Chapter 3 and considered in Chapter 5 of this thesis. A fault 

occurring within this sensor would lead to a loss of performance by the actuator fault 

tolerant FlS of Chapter 6. 

To eliminate this potential problem this Chapter considers a way of removing the need 

for the error sensor. The error sensor used in the fault tolerant FIS is replaced by an 

error estimation FIS. When placed within the control loop, in addition to the fault 

tolerant FlS, the error estimation FIS removes the need for a sensor to be placed on 

the actuator. This further increases the fault tolerant performance of the overall 

control system. In this case the overall control system is defined as the ANFIS 

controller [Craven (1999)] working in conjunction with both the actuator fault tolerant 

FIS, developed in Chapter 6, and the novel error estimation FIS developed herein. 

7.2. REPLACING THE ERROR SENSOR 

The effects of sensor faults have been explored within this thesis (Chapter 4 and 

Chapter 5). Removing the need for a sensor to give the error in the position of the 

actuator will make the overall control system more fault tolerant. To this end a novel 

estimation device will is designed to replace the actuator error sensor. The estimation 

FIS will be placed within the overall control structure as shown in Figure. 7.1. 
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Figure 7.1 The Actuator Fault Tolerant System 

The fault tolerant control system shown in Figure 7.1 is a natural progression of the 

control structure shown in Figure 6.1. For this Chapter the fault tolerant FIS 

developed in Chapter 6 will be used in the block labelled 'Fault Recovery FIS'. The 

conclusion of Chapter 6 is that the most effective fault tolerant FIS was shown to be 

the simulated annealing tuned FIS which was tuned for 500 epochs and hence will be 

used in this Chapter. 

As can be seen in Figure 7.1 the error estimation FIS has only one input and one 

output. As only one input is required for the FIS, then it is possible to increase the 

number of fuzzy rules used. An increase in the number of fuzzy rules should lead to 

an increase in performance of the estimator FIS. The one input to be used by the 

estimation FIS is that of the modular difference between the linear model's yaw rate 

and the actual yaw rate of the AUV. The yaw rate was selected because there can only 

be an error in the actuator position when the AUV is altering yaw angle and hence 

when a yaw rate is evident. The minimum value used is zero degrees per second due 

to the fault recovery FIS needing only a modular input. The maximum value of the 

input is 8.72 degrees per second. This value was the maximum difference detected 
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from the open loop training data. The input membership functions for the heuristic 

case where only three fuzzy rules were used can be seen in Figure 7.2. 
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Figure 7.2 Heuristic Error Estimation FIS Input Membership Functions 

The output functions associated with the same system is that shown in Figure 7.3. It 

has a minimum value of zero degrees and a maximum value of30.99 degrees. As only 

a modular value is required by the fault recovery FIS a minimum value of zero 

degrees is the optimal value. However the fault recovery FIS requires a maximum 

value of only 25.2 degrees for reasons given in Chapter 6, this is achieved by placing 

a saturation block in-between the estimation FIS and the fault recovery FIS. The high 

value of 30.99 degrees is used by the estimation FIS because of a high error detected 

in the open loop training data when aLOE of60% were considered. 
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Figure 7.3 Heuristic Error Estimation FIS Output Line 

The input and output membership functions given lead to the simple heuristic fuzzy 

rule base shown in Equation 7.1. 

IfDifis Small 

If Dif is Medium 

IfDifis Big 

then Error= 3.5539 Dif + 0 

then Error= 3.5539 Dif + 0 

then Error= 3.5539 Dif + 0 

(7.1) 

Where Dif is the modular difference between the linear model yaw rate and the AUV 

yaw rate, and Error is the modular difference in the desired and actual position of the 

damaged actuator controlling the upper canard. 

The three rules fuzzy system described has the general principals of all of the FISs 

being used in this Chapter. The maximum and minimum values do not alter for any of 

the FISs being considered. The only differences being in the number of rules used and 

the number of epochs a FIS has been trained. 
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7.3. FUZZY TUNING 

The FIS presented is a general representation of the FISs being used to estimate the 

error sensor information. The FISs used were derived and tuned using input-output 

data from the given AUV model. As the estimating of the information is akin to 

modelling the dynamics of the actuator then the information used must be obtained in 

the open loop system set-up. To obtain the data an identical random demand was 

placed simultaneously on both the AUV and the linear yaw model. The linear yaw 

model used herein is that derived in Chapter 3. The random demand data was created 

using a random number generator in the Matlab/Simulink environment. Preliminary 

tests showed that when the upper canard was damaged, in the ways being considered, 

the AUV became unstable after a short period of time in an open loop system. The 

problem was removed by running twenty short programs of 50 seconds instead of one 

long program with a different random number seed value used in every 50 seconds 

run. The random input data used was created using the white noise generator in 

MATLAB/Simulink, a noise power of 1. 7 and a sample time of twenty seconds, along 

with a different seed value for each of the twenty short programs. The values of the 

seed used were that of the numbers 1 to 20. This created a random input data path 

lasting 1000 seconds. This input data path can be seen in Figure 7.4 and the open loop 

yaw rate response of the fault free AUV can be seen in Figure 7.5. 
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Presenting this data to the AUV and linear models in an open loop system stimulated 

the complete range of responses from the systems. As the estimator FISs would need 

to handle all levels of faults six different levels of LOE (0%, 20%, 40%, 60%, 80% 

and 100%) in the rate limiter and saturation blocks were induced and the system was 

given the same random demand data. The information was recorded every one tenth 

of a second to create a vector of length 60120. The input data was that of the 

difference between the linear models yaw rate and the actual AUV yaw rate and can 

be seen in Figure 7.6. The output data was the recorded error in the actuator 

controlling the upper canard and can be seen in Figure 7.7. 
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The input-output data shown was then used to create and tune the error estimator 

FISs. 

7 .3.1. ANFIS 

As the required input-output data pairs are available for this tuning process the ANFIS 

[Jang (1991 )] tuning method will be used. As the FIS has only one input, which 

greatly reduces the computational time necessary for each tuning epoch, it is possible 

to consider larger numbers of fuzzy rules. Therefore in this Chapter FISs with rule 

bases using 3, 5, 7, and 9 rules have been tuned for a maximum of 800 epochs, with 

the FIS being recorded after each I 00 epochs. The input membership functions, 

output membership functions and the fuzzy rule bases associated with the most 

effective of each size ofFIS will now be presented. 

The results for these four FISs will now be presented and then compared in the next 

section. 
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7.4. RESULTS 

The results of the tuned FISs for each size of rule base are now presented. The results 

for all the levels of all the faults for all levels of demanded yaw inputs being 

considered are shown. All faults are those given in Section 3.4.2 of this thesis. 

7.4.1. The Three Rules FIS 

First let the three rules case be considered. After all of the tests had been performed 

and the results had been compared and correlated the most accurate three rules FIS 

tuned is the FIS tuned for 800 epochs. 

The input membership functions for this FIS is shown in Figure 7.8. The functions 

have been tuned by the ANFIS method using the data in Figure7.6. Most of the data 

of low value hence when there are only three membership function, it is necessary to 

move them to the left of the graph as shown. 

1 

c. 0.8 
:E 
~ 
Q) 

~ 0.6 
Q) 

E 
0 
Q) 0.4 
~ 
Cl 
Q) 

0 
0.2 

Small 

0 1 2 

Medium 

~~ 
I \ 
I I I . 

I I 
I I 
; I 
i \ . I 
1 i I . 
I I 

I I 
I I I . 
I I 
! I 

I \ 
I \ 
I \ 
I \ 
I \ 
I 

3 4 5 6 7 8 
Dif 

Figure 7.8 The Three Rules FIS Input Membership Functions 

256 



Chapter 7 Actuator recovery system without error sensor. 

35 

30 

25 

20 
L. 
0 
t: 
w 

15 

10 

5 

0 
0 2 4 6 8 10 

Dif 

Figure 7.9 The Three Rules FIS Output Line 

The output line for the tuned FIS is shown in Figure 7.9 and along with the input 

membership functions lead to the fuzzy rule base shown in Equation 7.2. 

If Dif is Small then Error = 0.213 Dif + 0 

IfDif is Medium then Error= 3.492 Dif + 2.696 (7.2) 

If Dif is Big then Error= 3.425 Dif + 0.483 

Where Dif is the modular difference between the linear model yaw rate and the AUV 

yaw rate, and Error is the modular difference in the desired and actual position of the 

faulty actuator. 
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7.4.2. The Five Rules FIS 

Next let the five rules case be considered. After all of the tests had been performed 

and the results had been compared and correlated the most accurate five rules FIS 

tuned was the FIS tuned for 800 epochs. 

The input membership functions for this FIS is shown in Figure 7.10. The functions 

have been tuned by the ANFIS method using the data in Figure7.6. As was the case 

for the three rules FIS, it is again necessary to move the membership functions to the 

left hand side of the graph, so as to cover the data in a more effective way. 
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The output line for the tuned FIS is shown in Figure 7.11 along with the input 

membership functions lead to the fuzzy rule base shown in Equation 7.3. 

IfDif is Small then 

IfDif is MS then 

Error= 0.466 Dif + 0 

Error= 5.513 Dif+ 0.190 

lfDif is Medium then Error= 5.367 Dif- 3.388 

IfDif is MB then Error= 3.454 Dif- 4.597 

IfDif is Big then Error= 5.273 Dif- 14.637 

(7.3) 

Where Dif is the modular difference between the linear model yaw rate and the AUV 

yaw rate, MS is medium small, MB is medium big and Error is the modular difference 

in the desired and actual position of the faulty actuator. 
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7.4.3. The Seven Rules FIS 

Next let the seven rules case be considered. After all of the tests had been performed 

and the results had been compared and correlated the most accurate seven rules FIS 

tuned was the FIS tuned for 800 epochs. 

The input membership functions for this FIS is shown in Figure 7.12. The functions 

have been tuned by the ANFIS method using the data in Figure7.6. Now that the 

number of membership functions has increased to seven each one is not required to 

cover the input function space as much, which leads to Figure 7.12. 
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The output line for the tuned FIS is shown in Figure 7.13 along with the input 

membership functions lead to the fuzzy rule base shown in Equation 7.4. 

IfDif is Small then Error= 0.025 Dif + 0 

IfDif is SB then Error= 16.464 Dif -15.228 

IfDifis MS then Error= 2.613 Dif+ 5.656 

IfDifis Medium then Error= 2.723 Dif+ 10.714 

IfDifis MB then 

IfDifis BS then 

IfDif is Big then 

Error= 23.892 Dif- 107.185 

Error= 19.655Dif-101.314 

Error= 20.282 Dif- 156.605 

(7.4) 

Where Dif is the modular difference between the linear model yaw rate and the AUV 

yaw rate, MS is medium small, MB is medium big, SB is small big, BS is big small 

and Error is the modular difference in the desired and actual position of the faulty 

actuator. 
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7.4.4. The Nine Rules FIS 

Finally let the nine rules case be considered. After all of the tests had been performed 

and the results had been compared and correlated the most accurate nine rules FIS 

tuned was the FIS tuned for 700 epochs. 

The input membership functions for this FIS is shown in Figure 7.14. The functions 

have been tuned by the ANFIS method using the data in Figure7.6. Due to the number 

of membership functions now being used by the FIS there is little need for the ANFIS 

method to alter the functions greatly. The input space is covered effectively for this 

FIS as shown in Figure 7.14 . 
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The output line for the tuned FIS is shown in Figure 7.15 along with the input 

membership functions lead to the fuzzy rule base shown in Equation 7.5. 

If Dif is Small then 

IfDif is SM then 

IfDif is SB then 

IfDif is MS then 

Error= 0.392 Dif + 0 

Error= 17.255 Dif- I 5.679 

Error= 4.157 Dif+ 1.630 

Error= 3.979 Dif + 0.572 

IfDif is Medium then Error= 4.236 Dif + 0.852 

IfDif is MB then Error= 14.058 Dif- 58.295 

IfDif is BS then 

IfDif is BM then 

IfDifis Big then 

Error= 3.404 Dif- 2.359 

Error= 2.473 Dif + 7.726 

Error= 3.826 Dif- 2.733 

(7.5) 

Where Dif is the modular difference between the linear model yaw rate and the AUV 

yaw rate, MS is medium small, MB is medium big, SM is small medium, SB is small 

big, BS is big small, BM is big medium and Error is the modular difference in the 

desired and actual position of the faulty actuator. 
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The four FISs given are now tested on the same testing paths as used to determine the 

most fault tolerant actuator recovery FIS in Chapter 6. Again both the rise times of the 

AUV and the RMSEs will be used to compare the performance of the FIS. As the 

actuator fault recovery SA FIS is being used as a basis for this work, its results will be 

the benchmark for the testing. Therefore if the error estimator FIS perfectly recreates 

the error in the actuator the overall system will give identical results to those obtained 

for the simulated annealing tuned actuator recovery FIS in Chapter 6. To measure this 

the percentage decrease in performance has also been calculated for each test. As the 

testing of the four FISs over 36 different simulations gave 144 results, not all will be 

shown within this work, however for the interested reader the complete results are 

presented in Appendix J. Also both the upper and lower canard responses have been 

recorded and are presented in Appendix K. 

7.4.5. Yaw Step Inputs of 10 Degrees 

This first section will look at LOEs for the 10 degrees yaw step input demands sets of 

tests. The three types of faults defined in Chapter 3 will all be considered. The FISs 

have been compared using RMSEs and rise times as defined previously in Chapter 6. 

The complete set of results (RMSEs and rise times) for all four estimator FISs 

described, along with the results for the system when the error sensor is used, are 

shown in Tables 7.1 and 7.2. 

When examining the results for the RMSEs of the four error estimator FISs it is clear 

to see how similar the results are, with only a 0.008 degrees change being the largest 

difference recorded. For the saturation fault identical results are recorded for both the 

2S% and SO% LOE levels, with the three and five rules FISs having the lowest values. 

The lowest values for the 7S% LOE level was 0.079 degrees and was produced by the 

seven rules FIS. While the three rules FIS produced the lowest recorded RMSE for the 

100% LOE test. When the fault was implemented in the rate limiter block the seven 

rules FIS produced the lowest RMSEs for both the 2S% and 7S% LOE tests. The three 

rules FIS produced the lowest RMSEs for the SO% and I 00% LOE tests. These results 

were repeated when the faults occurred in both blocks, with the three rules FIS 

producing the lowest RMSEs for the SO% and I 00% LOE tests and the seven rules 

FIS producing the lowest RMSEs for both the 2S% and 7S% LOE tests. 
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Table 7.1 The 10 Degrees Step Input RMSEs. 

RMSEs (degrees) 
Controller Saturation Rate Limiter Both 

25% 50% 75% 100% 25% 50% 75% 100% 25% 50% 75% 100% 
Wrth Error 0.028 0.028 0.072 0.782 0.053 0.142 0.294 0.782 0.053 0.142 0.294 0.782 
Sensor 
3 Rules 0.023 0.023 0.081 0.901 0.056 0.143 0.312 0.901 0.056 0.143 0.312 0.901 
FIS 

5 Rules 0.023 0.023 0.080 0.902 0.055 0.144 0.311 0.902 0.055 0.144 0.311 0.902 
FIS 

7 Rules 0.024 0.024 0.079 0.902 0.054 0.150 0.310 0.902 0.054 0.150 0.310 0.902 
FIS 
9 Rules 0.024 0.024 0.080 0.902 0.055 0.151 0.311 0.902 0.055 0.151 0.311 0.902 
FIS 

When considering the rise times recorded from these tests it is clear, from Table 7.2, 

of the performance of each of the FISs. All four of the FISs were able to estimate the 

actuator error to a level where the overall system was capable of reproducing the rise 

times identically for all faults apart from the I 00% LOE tests. When the error 

estimation FISs were used an increase in the rise times for the I 00% LOE tests of 0.4 

seconds to 6.8 seconds were recorded for every FIS and every type of fault. When 

considering the rise times for this size of step input there is no difference recorded 

between any of the four FISs. 

Table 7.2 The 10 Degrees Step Input Rise Times. 

Rise Times (seconds)_ 
Controller Saturation Rate Limiter Both 

25% 50% 75% 100% 25% 50% 75% 100% 25% 50% 75% 100% 
With Error 4.5 4.5 4.6 6.4 4.5 4.6 4.6 6.4 4.5 4.6 4.6 6.4 
Sensor 
3 Rules 4.5 4.5 4.6 6.8 4.5 4.6 4.6 6.8 4.5 4.6 4.6 6.8 
FIS 

5 Rules 4.5 4.5 4.6 6.8 4.5 4.6 4.6 6.8 4.5 4.6 4.6 6.8 
FIS 

7 Rules 4.5 4.5 4.6 6.8 4.5 4.6 4.6 6.8 4.5 4.6 4.6 6.8 
FIS 

9 Rules 4.5 4.5 4.6 6.8 4.5 4.6 4.6 6.8 4.5 4.6 4.6 6.8 
FIS 

Tables 7.1 and 7.2 have shown how similar the performances of the four FISs are 

when presented with the faults being considered. This is further shown in Figure 7.16 

where the responses of the AUV can be seen for all four error estimation FISs and for 
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the control system when the error sensor is used for the 50% LOE level of fault in 

both blocks. 

It is clear from Figure 7.16 how the overall system has been affected by replacing the 

error sensor with the estimation FIS. 

The results for all four FISs in Figure 7.16 are very similar, therefore the error traces 

between each estimation FISs response and the response of the control system with 

the error sensor are displayed in Figure 7.17. 

Figure 7.17 shows that all four error estimation FISs effects on the system are near 

identical. These results are typical, for this size of step input showing very little 

change of performance between each of the four error estimation FISs, of those shown 

in Appendix J. 
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Figures 7.18 and 7.19 show the upper and lower canard responses for the three rules 

FIS when a fault is occurring simultaneously in both the saturation and rate limiter 

blocks. 

Figure 7.18 shows the upper canard responses to the control system for increasing 

levels of LOE. It is clear the effect the saturation fault has on the canard, with the 

decrease in gradient as the fault increases. There is no indication of the effect the rate 

limiter fault has at this size of step input. 

Figure 7. 19 shows the lower canard responses to the same faults. This canard has not 

been damaged and the system attempts to compensate for the faulty canard by 

increasing the angle it achieves. 

The results when the other three FISs are used in the control system are presented in 

Appendix K 
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To show the change in performance of the AUV for each of the error estimation FISs 

the percentage decrease in performance for each test, relative to the control system 

using the error sensor, has been calculated in Table 7.3. 

The replacement of the error sensor with an error estimation FIS was expected to lead 

to a decrease in performance of the AUV. This is the case for ten of the twelve tests at 

this step size. However for the 25% and 50% LOE levels in the saturation block fault 

the performance has been increased by the use of an error estimation FIS. 

Table 7.3 The 10 Degrees Step Input Percentage Decrease. 

Controller Saturation Rate Limiter Both 
25% 50% 75% 100% 25% 50% 75% 100% 25% 50% 75% 100% 

3 Rules 
FIS -17.1% -17.1% 12.4% 15.3% 5.1% 0.4% 6.0% 15.3% 5.1% 0.4% 6.0% 15.3% 
5 Rules 
FIS -19.3% -19.3% 11.7% 15.4% 4.5% 1.1% 5.8% 15.4% 4.5% 1.1% 5.8% 15.4% 
7 Rules 
FIS -13.6% -13.6% 10.1% 15.3% 1.5% 5.3% 5.4% 15.3% 1.5% 5.3% 5.4% 15.3% 
9 Rules 
FIS -15.0% -15.0% 10.7% 15.3% 2.8% 6.2% 5.6% 15.3% 2.8% 6.2% 5.6% 15.3% 

7.4.6. Yaw Step Inputs of20 Degrees 

Next increase the yaw input demand to 20 degrees and retest all four FISs. 

The complete set of results (RMSEs and rise times) for all four estimator FISs 

described, along with the results for the control system when the error sensor is used, 

are shown in Tables 7.4 and 7.5. 

When considering the RMSE results for this level of yaw input demand, it is again 

clear from the Table 7.4 that the four estimator FISs performed to a similar standard. 

There is a larger variance in results for this set of tests, with the biggest difference 

recorded in any one type of test being 0.029 degrees. 

For the saturation block faults the three rules FIS produced the lowest RMSE value 

for both the 25% and 50% LOE levels. The five and seven rules FIS both produced 

the lowest RMSE value for the 75% LOE level and the seven rules FIS also had the 

lowest RMSE value for the 100% LOE level test. For the rate limiter block faults all 

four FIS produced an identical result for the 25% LOE level test. When examining the 

50% LOE level results it is seen that three of the FISs (five, seven and nine rules) 
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have identically the lowest RMSEs. The results for the 75% and 100% LOE level tests 

shown a single FIS produce the lowest RMSE for each, being the three rules FIS and 

seven rules FIS respectively. When the faults were implemented in both blocks 

identical RMSEs were recorded for all four FISs for the 25%, 50% and 100% LOE 

levels tests. For the 75% LOE level tests the three rules FIS produce a RMSE 0.001 

degrees less than the other three FISs. 

Table 7.4 The 20 Degrees Step Input RMSEs. 

RMSEs degrees) 
Controller Saturation Rate Limiter Both 

25% 50% 75% 100% 25% 50% 75% 100% 25% 50% 75% 100% 
Wrth Error 0.023 0.111 0.694 1.678 0.203 0.531 1.029 1.678 0.203 0.531 1.072 1.678 
Sensor 
3 Rules 
FIS 0.125 0.116 0.697 2.153 0.213 0.506 1.037 2.153 0.213 0.506 1.086 2.153 
5 Rules 
FIS 0.127 0.117 0.695 2.133 0.213 0.504 1.039 2.133 0.213 0.504 1.087 2.133 
7 Rules 
FIS 0.130 0.117 0.695 2.124 0.213 0.504 1.038 2.124 0.213 0.504 1.087 2.124 
9 Rules 
FIS 0.128 0.117 0.696 2.129 0.213 0.504 1.038 2.129 0.213 0.504 1.087 2.129 

When considering the rise times recorded from these tests, it is clear from Table 7.5 of 

the performance of each of the FISs. All four of the FISs were able to estimate the 

actuator error to a level where the overall system was capable of reproducing the rise 

times identically for the 75% LOE tests for both the rate limiter and both faults. When 

the error estimation FISs were used an increase in the rise times for the 100% LOE 

was recorded. An increase of 1 second was recorded for the three and five rules FISs 

and an increase of0.9 seconds for the seven and nine rules FISs for every type of fault 

at the 100% level LOE. For the remaining twenty-eight tests decreases in rise times 

were recorded. For the 25% LOE tests all FISs performed identically producing rise 

times of 4.6 seconds, 0.2 seconds less than when the error sensor was used. For the 

saturation 50% LOE fault all four FISs produced rise times 0.2 seconds less than the 

when the error sensor was used and for the 75% LOE all four FISs produced rise 

times 0.1 seconds less than the standard result. For the rate limiter 50% LOE fault the 

three FIS produced a rise time of 4. 7 seconds, 0.2 seconds less than expected. The 

other three FIS improved on this result by a further decrease of 0.1 seconds. These 

results were then reproduced for when 50% LOE occurred in both blocks. When 
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considering the rise times for this size of step input there is never more than a 

difference ofO.l seconds recorded between any of the four considered FISs. 

The seven and nine rules FISs produced identical rise times, for tests considered, 

which were the lowest of the rise times recorded by the error estimation FISs. 

Table 7.5 The 20 Degrees Step Input Rise Times. 

Rise Times (seconds) 
Controller Saturation Rate Limiter Both 

25% 50% 75% 100% 25% 50% 75% 100% 25% 50% 75% 100% 
With Error 4.8 4.9 5.4 6.3 4.8 4.9 4.8 6.3 4.8 4.9 4.9 6.3 
Sensor 
3 Rules 
FIS 4.6 4.7 5.3 7.3 4.6 4.7 4.8 7.3 4.6 4.7 4.9 7.3 
5 Rules 
FIS 4.6 4.7 5.3 7.3 4.6 4.6 4.8 7.3 4.6 4.6 4.9 7.3 
7 Rules 
FIS 4.6 4.7 5.3 7.2 4.6 4.6 4.8 7.2 4.6 4.6 4.9 7.2 
9 Rules 
FIS 4.6 4.7 5.3 7.2 4.6 4.6 4.8 7.2 4.6 4.6 4.9 7.2 

Tables 7.4 and 7.5 have shown how close the performances of the four FISs are when 

presented with the faults being considered at this increased yaw input step demand 

size. This is further shown in Figure 7.20 where the responses of the AUV can be seen 

for all four error estimation FISs and for the control system when the error sensor is 

used for the 50% LOE level offault in both blocks. 

It is clear from the figure how the overall system has been affected by replacing the 

error sensor with the estimation FIS. 

The results for all four FISs in Figure 7.20 are very similar, therefore the error traces 

between each estimation FISs response and the response of the control system with 

the error sensor are displayed in Figure 7.21. 

Figure 7.21 shows that all four error estimation FISs effects on the system are near 

identical. These results are typical, for this size of step input showing very little 

change of performance between each ofthe four error estimation FISs, of those shown 

in Appendix J. 
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Figures 7.22 and 7.23 show the upper and lower canard responses for the three rules 

FIS when a fault is occurring simultaneously in both the saturation and rate limiter 

blocks. 

Figure 7.22 shows the faulty actuators canard response to an increasing level of LOE 

when the three rules FIS is used. For this level of LOE it is again clear that the 

saturation block fault is having an effect on the larger LOE tests. 

Figure 7.23 shoes how the undamaged actuator is used to increase the work load of its 

canard to compensate to the fault. 
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Figure 7.22 Upper Canard Responses When Using Three Rules FIS 

for Both Blocks LOEs for a Yaw Step Input of20 degrees 
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Figure 7.23 Lower Canard Responses When Using Three Rules FIS 

for Both Blocks LOEs for a Yaw Step Input of 20 degrees 

To show the change in performance of the AUV for each of the error estimation FISs 

the percentage decrease in performance for each test, relative to the control system 

using the error sensor, has been calculated in Table 7.6. 

Table 7.6 shows how all of the FISs could not handle the 25% LOE level in the 

saturation block, this was the same for all estimation FIS produced. Again it was 

expected that the use of an error estimation FIS would lead to a decrease in 

performance. This is the case for ten of the twelve tests at this step size. However for 

the SO% LOE levels in both the rate limiter block and both block faults the 

performance has been increased by the use of an error estimation FIS. 
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Table 7.6 The 20 Degrees Step Input Percentage Decrease. 

Controller Saturation Rate Limiter Both 

25% 50% 75% 100% 25% 50% 75% 100% 25% 50% 75% 100% 
3 Rules 
FIS 442% 4.9% 0.4% 28.3% 4.7% -4.7% 0.8% 28.3% 4.7% -4.6% 1.3% 28.3% 
5 Rules 
FIS 451% 5.1% 0.2% 27.1% 4.8% -5.1 "lo 0.9% 27.1% 4.8% -5.1 "lo 1.4% 27.1% 
7 Rules 
FIS 467% 5.5% 0.2% 26.6% 5.0% -5.1 "lo 0.9% 26.6% 5.0% -5.1% 1.4% 26.6% 
9 Rules 
FIS 456% 5.2% 0.3% 26.9% 5.0% -5.1 o/o 0.9% 26.9% 5.0% -5.1 "lo 1.4% 26.9% 

7.4.7. Yaw Step Inputs of30 Degrees 

Finally the yaw input demand is increased to 30 degrees. All of the FISs are tested on 

this, the largest step size considered for actuator faults in this thesis. 

The complete set of results (RMSEs and rise times) for all four estimator FISs 

described, along with the results for the system when the error sensor is used, are 

presented in Tables 7.7 and 7.8. 

When considering the RMSE results for this level of yaw input demand, it is again 

clear from Table 7.7 that the four estimator FISs performed to a similar standard. 

There is a variance in results of similar size to that of the 20 degrees yaw input 

demand for this set of tests, with the biggest difference recorded in any one type of 

test being 0.027 degrees. 

For the saturation block fault of 25% LOE all the estimation FISs produced identical 

results of a RMSE of0.093 degrees. The seven and nine rules FISs both produced the 

lowest RMSE values for the 50% and 100% LOE level tests. While the three rules FIS 

individually produced the lowest RMSE value for the 75% LOE test. When the fault 

was implemented in the rate limiter block the 25% LOE was handled most effectively 

by the three, five and nine rules FISs which all produced RMSE values 0.001 degrees 

less than that of the seven rules FIS. For the 50% LOE level it was the five and nine 

rules FISs producing the lowest RMSE values, while the five, seven and nine rules 

FIS produced the lowest RMSE values for the 75% LOE level. As to be expected, due 

to the fault being identical to that of the 100% LOE in the saturation block as 

explained in Chapter 6 the lowest RMSE values were again produced by the seven 

and nine rules FISs. Finally let the results from the set of tests where the fault was 
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implemented in both the saturation and rate limiter blocks simultaneously be 

considered. When a fault of only 25% LOE was simulated all four FISs produced 

identical RMSE values. For the 50% LOE level tests the three rules FIS produced 

clearly the lowest RMSE value and the seven rules FIS produced the lowest value for 

the 75% LOE level tests. The seven and nine rules FISs once again produced the 

lowest RMSE values for the I 00% LOE level tests. 

Table 7.7 The 30 Degrees Step Input RMSEs. 

RMSEs (degrees) 
Controller Saturation Rate Limiter Both 

25% 50% 75% 100% 25% 50% 75% 100% 25% 50% 75% 100% 
Wrth Error 0.082 0.673 1.514 3.535 0.435 1.094 2.055 3.535 0.437 1.140 2.129 3.535 
Sensor 
3 Rules 
FIS 0.093 0.641 1.766 3.859 0.431 1.074 2.043 3.859 0.435 1.130 2.241 3.859 
5 Rules 
FIS 0.093 0.641 1.774 3.843 0.431 1.073 2.041 3.843 0.435 1.138 2.232 3.843 
7 Rules 
FIS 0.093 0.638 1.793 3.842 0.432 1.074 2.041 3.842 0.435 1.131 2.226 3.842 
9 Rules 
FIS 0.093 0.638 1.792 3.842 0.431 1.073 2.041 3.842 0.435 1.135 2.233 3.842 

When considering the rise times recorded from these tests, it is clear from Table 7.8 of 

the performance of each of the FISs. All four of the FISs were able to estimate the 

actuator error to a level where the overall system was capable of reproducing the rise 

times identically for the rate limiter and both faults for both the 25% and 50% LOE 

levels. For the saturation fault at these LOE levels a decrease in rise times of 0.2 

seconds were recorded for all eight tests. When the LOE level was 75% the results 

show an increase in rise times ofO.J seconds for every fault and every FIS for all but 

one, the three rules FIS required an extra 0.1 seconds. When the error estimation FISs 

were used an increase in the rise times for the 100% LOE tests of0.9 seconds to 7.7 

seconds were recorded for every FIS and every type of fault. 

In the 48 tests show in Table 7.8 for the four error estimation FISs there is only one 

results where any change between the FlSs can be detected. The difference is in the 

75% LOE fault where both the saturation and rate limiter blocks are affected. The 

three rules FIS produces a rise time 0.1 seconds slower than the other FISs. When 

considering rise times for the 30 degrees step input demand, this is the only difference 

between the contemplated FISs. 
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Table 7.8 The 30 Degrees Step Input Rise Times. 

Rise Times (seconds) 
Controller Saturation Rate Limiter Both 

25% 50% 75% 100% 25% 50% 75% 100% 25% 50% 75% 100% 
Wrth Error 5 5.4 5.6 6.8 4.6 4.5 4.8 6.8 4.6 4.7 5.2 6.8 
Sensor 
3 Rules 
FIS 4.8 5.2 5.9 7.7 4.6 4.5 5.1 7.7 4.6 4.7 5.6 7.7 
5 Rules 
FIS 4.8 5.2 5.9 7.7 4.6 4.5 5.1 7.7 4.6 4.7 5.5 7.7 
7 Rules 
FIS 4.8 5.2 5.9 7.7 4.6 4.5 5.1 7.7 4.6 4.7 5.5 7.7 
9 Rules 
FIS 4.8 5.2 5.9 7.7 4.6 4.5 5.1 7.7 4.6 4.7 5.5 7.7 

Tables 7.7 and 7.8 have shown how close the performances of the four FISs are when 

presented with the faults being considered at this increased yaw input step demand 

size. This is further shown in Figure 7.24 where the responses of the AUV can be seen 

for all four error estimation FISs and for the control system when the error sensor is 

used for the 50% LOE level of fault in both blocks. 

It is clear from the figure how the overall system has been affected by replacing the 

error sensor with the estimation FIS. 

The results for all four FISs in Figure 7.24 are again very similar, therefore the error 

traces have again been calculated and are displayed in Figure 7.25. 

Figure 7.25 shows the effect of all four error estimation FISs on the. These results are 

typical, for this size of step input showing very little change of performance between 

each of the four error estimation FISs, of those presented in Appendix J. 
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Figures 7.26 and 7.27 show the upper and lower canard responses for the three rules 

FIS when a fault is occurring simultaneously in both the saturation and rate limiter 

blocks. 

In Figure 7.26 the canard response for the damaged actuator is again show for an 

increasing level of LOE for this increased size of yaw angle. Due to the increased 

demanded yaw the effects of the faults are more clearly shown. 

Figure 7.27 shows how the lower canard is used to compensate for the fault occurring 

within the upper canard. The complete set of results for all types and sizes of LOE for 

all four considered error estimator FISs are presented in Appendix K. 
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for Both Blocks LOEs for a Yaw Step Input of 30 degrees 

To show the change in performance of the AUV for each of the error estimation FISs 

below the percentage decrease in performance for each test, relative to the control 

system using the error sensor, has been calculated in Table 7.9. 

Again it was expected that the use of an error estimation FIS would lead to a decrease 

in performance. This is the case for six of the twelve tests at this step size. However 

for the half of the considered faults, for all the sizes of FISs, the inclusion of an error 

estimator improved the performance of the overall control system. 
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Table 7.9 The 30 Degrees Step Input Percentage Decrease. 

Controller Saturation Rate Limiter Both 
25% 50% 75% 100% 25% 50% 75% 100% 25% 50% 75% 100% 

3 Rules 
FIS 13.4% -4.8% 16.7% 9.2% -0.9% -1.8% -0.6% 9.2% -0.6% -0.9% 5.3% 9.2% 
5 Rules 
FIS 13.5% -4.8% 17.2% 8.7% -0.9% -1.9% -0.7% 8.7% -0.6% -0.2% 4.9% 8.7% 
7 Rules 
FIS 13.9% -5.3% 18.4% 8.7% -0.8% -1.8% -0.7% 8.7% -0.5% -0.8% 4.5% 8.7% 
9 Rules 
FIS 13.9% -5.2% 18.4% 8.7% -0.8% -1.9% -0.7% 8. 7% -0.5% -0.5% 4.9% 8.7% 

7.5. CONCLUSIONS 

The aim of this Chapter was to replace the error sensor used by the actuator fault 

tolerant FIS with an error estimation FIS. Four ANFIS [Jang (1991)] tuned FISs of 

differing numbers of rule bases were developed and compared. It was discovered that 

all four FISs were capable of estimating the error in the actuator such that the system 

could continue to operate with minimal performance degradation. 

After close examination of the results shown in section 7.4, in the form of both tables 

and graphs, along with the graphs presented in Appendix J, it is difficult to draw a 

conclusion as to which of the four estimation FISs performed most accurately. 

When considering the RMSE tables and the percentage decrease tables one result is 

highly noticeable, that of the 25% LOE for the saturation block fault over a 20 

degrees yaw step input demand. A large increase of between 442% and 467% was 

recorded. This result was repeated throughout all the error estimation FISs created. 

This may have occurred due to the large number of and types of faults being 

considered over several sizes of step inputs. Of the other tests various FISs performed 

well on different types of fault, levels of LOE and sizes of step inputs. The lack of a 

clearly most accurate error estimation FIS makes it hard to conclude which should be 

used in the AUV control system. 

When considering the rise times the error estimation FISs all performed to a very 

similar standard, with only a small difference apparent (0.2 seconds or less) for 96 of 

the 144 tests. The largest increases were always in the I 00% LOE tests and for several 

types of faults and levels the control system was able to decrease the rise times of the 

AUV when using the error sensor. This was an unexpected result, as an identical 
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estimation of the error in the actuator would lead to an identical result. It may be that 

the FISs inability to model perfectly the error has lead to an overall increase in 

performance for some cases. Again it is vary hard to conclude, from the rise time 

results, which error estimation FIS should be used in the AUV control system. 

From the remarks in this section it is not possible to recommend which of the four 

FISs would be most capable of estimating the actuator error. It is clear that any of the 

four FIS could be used in the overall control system to remove the actuator fault 

recovery FISs need for a sensor on the actuator. The implication of this is an increase 

in fault tolerance due to the removal of sensors within the vehicle. 
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CHAPTERS 

CONCLUDING REMARKS 

8.1. CONCLUSIONS 

The aim of this work was to produce novel FISs capable of handling AUV sensor faults 

and canard controlling actuator faults. This aim has been achieved by the successful 

design of fault tolerant FISs as show within this thesis. The work presented in Chapters 5, 

6 and 7 clearly demonstrates the superiority of the these FIS enhanced controllers over 

the benchmark methods using Kalman filters and standard control systems presented in 

Chapter 4. 

Chapter 5 produced novel FISs capable of handling sensor faults within the yaw and roll 

channels of the AUV. These sensor recovery FISs, tuned using the both the ANFIS [Jang 

(1991)] and the simulated annealing [Kirkpatrick et al (1983)] method, show a notable 

increase in fault tolerance when compared to the benchmark Kalman filter enhanced 

control system of Chapter 4. The best results were obtained by the simulated annealing 

tuned FIS designed for the roll sensor. The results presented show that the FIS was able 

to produce RMSE values which were less than the benchmark Kalman filter enhanced 

control system for twenty-five of the twenty-seven considered tests by between 6% and 

62%. 

The results of Chapter 5 show that it is possible to develop fault tolerant FISs that are 

more effective at handling both types of sensor faults the FISs were tuned on i.e. the 

percentage signal loss and the intermittent signal loss. The FISs were also capable of 

handling some sensor faults they had not been tuned on i.e. signal to noise ratio (SNR). 

This demonstrates the flexibility of the FISs to handle unexpected types of sensor faults. 

The results presented clearly show that it is possible to create FISs which improve on the 

fault tolerance performance of the AUV. However there was no clear indication as to 

which tuning method provides the most fault tolerant FIS. The ANFIS tuned FIS 



achieving smaller RMSE values for some tests and the simulated annealing tuned FIS 

achieving smaller RMSE values for other tests. 

The main conclusion of Chapter 5 was that the FISs were capable of improving on the 

Kalman filter enhanced ANFIS control system. 

The actuator recovery FISs developed in Chapter 6 and enhanced in Chapter 7 

significantly increased the AUVs fault tolerance with regards to the canards becoming 

damaged. In Chapter 6, FISs were designed which considered the control signal being 

sent to the canard, the demand being placed on the ANFIS controller, and the error within 

the damaged canard actuator, in order to produce a control signal modifying fuzzy 

singleton. The results presented showed how both the simulated annealing and the tabu 

search method tuned FISs were capable of handling the faults far better than the 

benchmark control system. The conclusion of the discussion that took place at the end of 

Chapter 6 was that the simulated annealing tuned FIS made the system more fault tolerant 

than the tabu search method tuned FIS. It was also shown that either FIS could be used to 

enhance significantly the fault tolerant performance of the AUV. The most fault tolerant 

FIS as identified from results of Chapter 6, was then used for the work of Chapter 7. 

Further enhancement of the fault tolerance of the system was achieved in Chapter 7. The 

sensor used by the FISs in Chapter 6 to measure the error within the damaged canard 

actuator was replaced by a FIS. The error estimation FIS, developed in this Chapter, 

removed the actuator recovery FlS's dependence on the error sensor making it more fault 

tolerant. Results clearly show that replacing the sensor with the fuzzy estimator actually 

improved the overall performance of the AUV for some of the considered faults. 

Chapter 7 also considered FIS with different sizes of rule bases (3, 5, 7 and 9 rules). The 

results presented showed that there was very little change in performance as the number 

of rules was increased. Leading to the conclusion that all four FISs were capable of 

estimating the error with a similar success and therefore to use the three rule FIS to 

replace the error sensor in the overall control system. 

A further contribution of this thesis is to advance knowledge and understanding of 

methods to tune FISs by considering the tuning ofFISs by various methods. Specifically 

the tabu search [Denna et a/ (1996)] method of tuning has been developed and used to 

tune the actuator fault recovery FISs of Chapter 6. 
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The novel FISs presented in Chapters 5, 6 and 7 of this thesis clearly demonstrated 

increased levels of fault tolerance of the AUV to both sensor and actuator failure 

occurring during normal operation of the vehicle. 

8.2. RESEARCH OBJECTIVES 

The objectives required to achieve the aim of this programme of research were outlined 

in Chapter I and are reproduced here for ease of reference: 

(a) Critically review the current fault tolerant control literature. 

This objective has been achieved by the work presented in Chapter 2. 

(b) Investigate and then develop identification models of the AUV dynamics using 

linear modeling, neuro-fuzzy and ANN approaches. 

Several types of model of the AUV were investigated, developed and compared m 

Chapter 3 accomplishing the requirements ofthis objective. 

(c) Devise sensor/actuator failure scenarios within the AUV model to assess the 

model responses. 

This objective has been successfully achieved in Chapter 3 where all sensor/actuator 

faults have been defined. 

(d) Investigate and then develop Kalman filter based fault tolerant control systems 

to be used as benchmarks. Test the robustness of the systems to various levels of 

faults. 

The successful completion of this objective was achieved in Chapter 4 where benchmark 

systems were investigated before two were defined for later use. 
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(e) Develop intelligent fault control systems (IFCSs) for the yaw channel sensors 

based on neuro-fuzzy approaches such as the adaptive neuro-fuzzy inference 

system (ANFIS). 

The FISs developed in Chapter S successfully accomplished this objective. 

(f) Develop IFCSs for the roll channel sensors based on neuro-fuzzy approaches 

similar to those for yaw channel. 

The roll channel work presented in Chapter S successfully accomplished this objective. 

(g) Develop IFCSs for the yaw channel actuator faults usmg suitable fuzzy 

approaches. 

The FISs designed in Chapter 6 effectively satisfy this objective. 

(h) Remove and replace error sensor used in IFCS for actuator faults. 

The work successfully satisfying this objective is documented in Chapter 7. 

The work presented in these six chapters covers all eight objectives of the original 

proposal. All are successfully achieved by the work presented in Chapters 2, 3, 4, S, 6 

and 7 ofthis thesis. 

8.3. RECOMMENDA TJONS FOR FUTURE RESEARCH 

Several different directions for future research have been highlighted through the 

completion of this work. The following points provide a summary of these areas: 
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• The combing of the sensor recovery FISs presented in Chapter 5 with the actuator 

fault tolerant FIS of Chapter 6 and the error estimation FIS of Chapter 7 to create a 

multi-fault tolerant control system. 

• The implementation of this work within an AUV and evaluation of the fault tolerant 

control systems when acting in the real world. 

• Investigation into the effects of varymg the speed of the vehicle during 

sensor/actuator failures. With the possibility of developing IFCSs to work at any 

given speed including the possible use of the AUVs thrusters at low speeds. 

• The Q statistic used by the sensor recovery FISs of Chapter 5 depend on both sensor 

information and a linear model of the vehicle. A different error measurement could be 

developed which does not depend on the linear model. This would further enhance 

the fault tolerance of the AUV. 

• The FISs produced in this thesis contained some fuzzy rules that may be unnecessary 

during the operations of the AUV. The removal of these rules via a pruning algorithm 

would lead to a reduction in the dimension of the parameter space and hence a 

reduction in computation effort. 
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Abstract 

Commercial, naval and scientific operational 
specifications for uninhabited underwater 
vehicles (UUVs) continue to become more chal
lenging in line with the advances being made 
in control engineering. In order. to survive 
actuator and/or sensor failure during a mis
sion, such vehicles need to possess a 
reconfigurable or fault tolerant control system. 
This paper explains the basic.principles of fault 
tolerant control systems. lt then reviews their 
application in the design of UUVs and other 
systems where it is considered a technology 
transfer is possible. 

1. Introduction 

By steering an aircraft ·.via differential engine 
thrust, the captian of 'a crippled· American 
Airlines DCIO landed safely at Windsor, 
Ontario, under circumstances similar to those 
which claimed the lives of 346 passengers and 

·crew of a Turkish Airlines aeroplane in the 
forest of Ermenouville, France on 3 March 1974 
[1). The successful survival of the DCIO at 
Windsor can be attributed to the fast adaptation 
ability of the pilot to control what had become, in 
effect, a different vehicle. 

!t is interesting to note that the DC 10 pilot is 
claimed to have the maxim 'he who hesitates will 
probably survive' insofar as hasty action may 
make a situation irrecoverable, but calm experi
mentation in a high stress environment may well 
lead to success. The event itself was 'recoverable' 
because it was not totally unexpected, a similar 
problem having luckily been identified and solved 
on a training simulator some months earlier by 
the particular pilot concerned. Once he recog
nised the symptoms of the ftight failure, the · 
pilot was relatively well equipped to land the air
craft. 

As will be seen from material which is to be 
presented here, the incident recounted above pro
vides an excellent example of a human reconfigur
able control scheme. Given the.qngoing advances 
being made in control engineering and artificial 
intelligence techniques. serious consideration is 

now being given to the development of automated 
reconfigurable control systems (RCSs) that will 
operate autonomously whether or not there is a 
human in the loop. 

In recent years, ·considerable interesi has been 
shown in the commercial, scientific and naval use 
of uninhabited underwater vehicles (UUVs). 
UUV being a generic expression. to describe 
both an autonomous underwater_vehicle (AUV) 
and a remotely operated vehicle (ROV). An AUV 
is a marine craft that fulfils a mission or task 
without being constantly monitored and super
vised by a human operator, whilst an ROV is a 
marine vessel that requires instruction from an 
operator via a tethered cable. Demands are 
growing for the requirement for AUVs to be able 
to operate at extreme depths and/or in confined 
areas such as under packed ice. Unfortunately, · 
owing to the nature of these vehicles, data trans
missions to and from the craft to the mother 
station 'through the sea water medium are poor. 
Thus, an AUV has to be totally self-sufficient 
during the duration of a mission. Hence, in 
order for an AUV to survive sensor and/or 
actuator failure in this environment, it is para
mount to have on·board an RCS. Such systems 
could also be beneficially installed in ROVs. Their 
employment within ROVs would lighten the work 
load of the human operators, whilst at the same 
time allowing them to maintain overall super
visory control. 

Thus, the following two questions may be 
posed: 

(i) What are the essential elements in a non
human RCSI and 

(ii) How does such a system function? 

This paper attempts to answer these questions 
and also to review applications of this technology 
in the underwater vehicle field and other areas. 
For the interested reader some othe.r excellent 
reviews already written on this subject area can 
be found in [2), [3), (4]and [5). 

Throughout this text it is assumed the reader 
has a basic understanding of control engineering 
principles; if this is not the case, reference should 
be made to [6] for an introduction to the subject. 
Control strategies which have been applied to 
UUVs are reviewed by Craven et al. [7). Some 
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of the control schemes described were developed 
using artificial intelligence tcchniqucs. Back
ground reading on artificial intelligence 
approaches can be found in [8] and (9]. 

2. Fault Tolerant Control 

If a vehicle is damaged or has a sensor or actuator 
failure during operation, it may not be possible to 
repair the damage or fault immediately. There 
may, however, be a requirement for it to continue 
operating until it is possible to carry out the 
necessary repairs. Under such circumstances, the 
overall system is called an impaired system. When 
such a scenario as this occurs it is very unlikely 
that a standard control scheme will be able to 
cope and therefore a different kind of control 
system, which can handle the anomalies, would 
be more appropriate. A controller with such cap
abilities is considered to have a fault tolerant, a 
reconfigurable or a restructurable structure. 
Collectively, such controllers are generically 
called fault tolerant systems; however each 
approach operates in a different manner. As 
well as being the· generic term for this type of 
system it is also possible to have a fault tolerant 
controller that is neither reconfigurable nor 
restructurable. 

All controllers have authority over active parts, 
such as surfaces or motors of some kind, which 
they use in a certain configuration to perform 
given tasks. These controllers can be simple or 
very complex, depending on the performance 
requirements of the system, and will be optimally 
designed acCordingly. 

Having dealt with the basic ideas concerned 
witha fault tolerant controller, it would now be 
helpful to describe the objectives of this approach. 
The first priority of such a controller is to stabilise 
the system. Having stabilised the system, the 
next step is to try to return the system as close 
as is possible to its normal operating conditions 
and this will necessitate the use of different 
control laws. 

2.1 Fauli tolerance 

A fault tolerant controller is capable of maUa
taining a system at a given level after it has beet~ 
damaged. The controller does not necessarily 
return the system to a perfect condition after-the 
damage but, obviously, this would be aR 
advantage. Such a device has three subsystems 
or components that constitute the control 
system. 

The first subsystem deals with detecting if a 
. problem has arisen in the system. The second sub
system copes with identifying the location of the 
fault and its seriousness. Finally, the third is the 
actual reconfiguration subsystem itself. A simple 
block diagram of these subsystems and their inte
gration into a system is shown in Figure I. 

The fault tolerant controller is only activated 
when there is a fault in the system. Hence, the first 
part of the controller, which deals with detecting 
if a fault has occurred, is continually monitoring 
the plant. This subsystem is not concerned with 
what the problem is or how to ·fix it but only 
whether the system is performing as required. 
This can be achieved by having an analytical 
method for checking out the system; this 
method compares what should be happening to 
what is actually happening in the system. When a 
fault occurs this subsystem informs the next sub
system that there is a problem and continues to do 
so until the fault has been corrected. 

The function of the second subsystem is to 
identify what fault has occurred in the system 
and the seriousness of the fault. There are many 
different kinds of analytical methods that have 
been developed for this purpose, such as the mul
tiple model method or the generalised likelihood 
ratio method; these will be discussed in more 
detail later in the paper. It is important to know 
the senousness of the problem, as this will help 
the controller ·aecide how to ·deal with the 
problem. Basseville [10] and Wang [11] have 
investigated both of these types of subsystem in 
some detail. 

Fault Identification 

Reconfiguration Fault Detection 

Demand 

Sensors 
Control Algorithm Plant Dynamic_s 

Fi~ure 1 A reconligurable controller. 
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!:A considerable amount of re~.:arch has been 
ndertaken in the area of using model-based 

~ethods to detect and identify faults in systems. 
Patton et al. (12] describe several methods based 
on more traditional approaches and give some 
geneml guidelines for the implementation of 

. these types of subsystems. In addition, artificial 
neural networks (ANNs) have also been used by 
Naidu et al. [13] for sensor failure detection. 

Alessandri et al. [14] considered actuator fail
ures in an ROV, using approximate models of its 
dynamics. The output of the model is compared 
to the actual output to detect and diagnose the 
fault. This is performed by a bank of estimators, 
which are extended Kalman filters. Extended 
Kalman filters are used because of the non
linearities of the model. Results are reported to 
show the effectiveness of this approach compared 
to the unfiltered model output. 

It is the final component in which the type of 
controller is defined. A fault tolerant controller 
may use many different methods to handle 
faults in the system. One way is for the fault tol
erant controller to make use of a second backup 
component. This allows the system to continue 
operating until the first component can be 
repaired or replaced. 

2.2 Reconfigurable control 

A reconfigurable controller deals with a fault by 
reconfiguring the control laws of the system. The 
reconfigurable controller has a basic set-up very 
similar to the one described above and again con-
sists of three subsystems. :· : 

The fault detection arid identification sub
systems are as explained above in Section 2.1. 
Once it has been· established that there is a 
problem and identification of it has taken place, 
the only remaining operation ·is the recon
figuration of the controller. In this subsystem 
one of a set of predefined reconfigurations, with 
different control laws, is used to accommodate the 
fault. This is achieved by using components of the 
system for purposes other than their designed 
task. The predefined reconfigurations being 
those predicted by the designer. Thus the system 
will only be able to handle as many problems as 
envisaged by the designer. 

2.3 Restructurable control 

The modus operandi of a restructurable controll!!r 
is similar to that described in Section 2.1, and 
again the first two subsystems ai:e used for detec
tion and identification. Once again the difference 
lies in the third subsystem. This type of controller 
tries to restructure -the control laws to accommo
date the fault. This is achieved by using every 
available component of the vehicle for purposes 
other than their designed"task in the same fashion 
as the reconfigurable controller .. However, this 
method does not need any predefinep set~ of con· 

trol laws, unlike the ·rec.onflgurabie· -~ontroller, 
and therefore. may be very flexible at handling· 
unanticipated faults. Such an approach lends 
itself to solution by artificial intelligence tech
niques. 

3. Fault Tolerant Control Systems for 
Non-UUVs 

The vast majority of research in this area has been 
concerned with plants other than UUVs and 
therefore this section has been included. It con· 
tains explanations of fault tolerant, reconfigur
able and restructurable controllers used in other 
related systems to handle problems. The actual 
ideas discussed below, however, can be modified 
and applied to underwater vehicles_ -

3.1 Faulttolerantcoritrol 

The fault tolerant controller, used in the regula
tion of the feed water system in a four-loop pres
surised water reactor power plant, presented by 
Eryurek and Upadhyaya (15), is capable of hand
ling both sensor faults and controller failure. 
However, this controller cannot handle equip
ment malfunctions (actuator faults) or multiple 
simultaneous faults. The controller is made up 
of five major components: 

I. Parallel control module 

2. Signal validation module 

3. Command yalidation module 

4. Decision making module 

5. System executive module 

These five modules and the method by which 
they are connected can be seen in Figure 2. The 
control system has three different controllers 
working in parallel with each other. The system 
uses a method called horizontal redundancy to 
decide which of the controllers to use at any 
given time. Horizontal redundancy feeds different 
subsets of measurements to each of the control
lers an_d then compares the outputs. When all the 
outputs are the same the horizontal redundancy 
procedure has no effect. When a fault has 
occurred one of the outputs changes and the hor
izontal redundancy procedure overrules the con
troller with a different output. This allows any 
fault to be overruled by the other controllers 
that have fault free information. The three con
trollers used in the example are a reconstructive 
inverse dynamics controller, a fuzzy logic con
troller and a conventional proportional integral 
derivative controller. These three different con
trollers provide different methods to reach the 
same result when controlling the pi_apt. As they 
use different inputs a single fault will only affect 
one controller; this will then be out-voted by the 
other two unaffected controllers. The same result 
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Flgun1 2 Integrated-system components for advanced plant control (after Eryurek and Upadhyaya (15)). 

would be achieved if one of the controllers were to 
develop a failure during normal operations. 

This is the main fault tolerant feature of the 
system, but one of the others is the signal valida
tion module which uses two different routines, 
process empirical modelling and an ANN tech
nique, to check against the actual output of the 
plant before going to the controllers. In a similar 
method the command validation module checks 
the outputs of each controller before the decision 
making m"odule chooses the best response. · 

Tests were performed where faults were intro
duced to one of the controllers. The results show 
that the decision module was capable of handling 
these faults without the system becoming 
unstable. ·It was also shown that the decision 
module changed from one 'controller to another 
without a fault occurring; this took place because 
the controller's approach to the situation was an 
improvement on the original. . 

Despite this fault tolerant controller being 
designed for use in large scale systems, the idea 
of a parallel controller as presented here could 
easily be applied in the area of marine underwater 
technology. In addition, the ability to change 
from one controller to another just to improve 
the performance could provide an UUV with a 
much more flexible control structure. 

Other papers in this area are (16] which gives a 
general review. of fault tolerant controllers some 
of which use ANNs, and [17] which deals with 
sensor faults in a helicopter using ANNs. 

3.2 Reconfigurable control 

Rauch [18) considers autonomous control recon
figuniti.on in relation to fault accommodation 
and learning systems. One of the approaches 

considered is multiple models, another is a 
single model with adaptive techniques for 
updating system characteristics. This may be con
sidered a restructural technique and is not 
discussed here. 

When considering the multiple model 
approach, the general form for a non-linear 
system (eqns (I) and (2)) is presented and the 
appropriate assumptions are stated. 

xk+l =f[xk,uk, q] +plant noise (1) 

zk = h[xk, ukl q] + measurement noise (2) 

where q is the parameter values vector, x is the 
state vector, z is the measurements vector, u is the 
control vector, uk = g[xk., q•] , which is a function 
of x· (estimate"d state) and q• (estimated vector 
parameters), and f and h are the state transition 
and measurement functions. The subscript k is the 
value at the kth time. 

An example is then given for terminal guidance 
of an interceptor missile. The target that the mis
sile is attempting to hit can make unknown man
oeuves. The multiple models represent the sets of 
possible manoeuvres the missile can perform. 

The multiple models are run off-line and a 
single extended Kalman filter is used on-line to 
measure the target state and compare with 
stored estimates from the off-line multiple 
models. The multiple models are· generated 
using a general regression neural network. 

At first glance this may not appear to be an 
RCS, but it does fit the definition given above. 
This example, however, is not conC((med with 
handling a fault within the system, but is con
cerned with a changing variable outside of its 
control. It does have many models each with its-



own centra: configuration ar.d the systl!m <lo~s 
change between them, depending on the si~u:llio~. 

A simulation was performed using ail unmodi
fied Kalman filter, the multiple model approach 
discussed above and a {lerfec.t guidance approach 
where the target trajectory is known exactly. The 
results showed that the multiple model had a hit 
probability of 50% which, as one would expect, is 
better than the original unmodified Kalman filter 
( 15%), but worse than the perfect guidance 
(84%). The results presented show that an 
increase in performance is possible with minimal 
increase in on-line computation. It is suggested in 
the paper that fuzzy logic and artifical neural net

. work techniques could be used in this approach to 
improve the given method and produce even 
better results. 

Gao and Antsaklis [ 19] develop a different. 
approach to RCS design, called perfect model 
following. This is a development of standard 
linear model following methods that are designed 
to make the output of the plant match the output 
of a model system with the desired behaviour. 
There is an explanation of standard linear 
model following methods, which states that they 
need both a feedforward and feedback controller 
in order to fulfil the task. The difference between a 
standard linear model following method and the 
perfect model following method is that for the 
latter the state variables of the model must 
match the state variables of the plant. 

For the perfect model following to be achieved 
then Erzberger's conditions must be satisfied. 
These conditions are formed using equations 
given in [19], which deSl;ribe.the reference model 
and the plant coetfcients. · 

In order to satisfy Erzberger's conditions a 
system must have the same number of inputs as 
states. This is very rare and so it is very difficult 

Demand + 

Conflgurable 
Controller 

System 

to find an appror)riate reference model that 
represents the desired dynamics and satisfies the 
conditions. However, even if the conditions are 
not satisfied then it is still possible to find a 
close solution by reducing the error to a 
minimum. 

There are a couple of drawbacks with this 
method: if the conditions are not met then the 

·system can become unstable and there is no con
trol over the location of the poles of the system. 
The poles are the key to determine if a controller 
is stable; they are the roots of the characteristic 
equation associated with the system transfer 
function. If any of these poles are located on the 
right-hand side-of the s-plane the system can then 
become unstable [6]. One advantage is that this 
type of control system is not very complex and the 
method does not use the output of the plant. 

Kim et al. [20] use fuzzy logic and an ANN for 
the detection and isolation section of the recon
figurable control system, before the remaining 
section reconfigures the control laws of the 
system to handle failures. The block diagram of 
this system can be seen in Figure 3, with the 
neural network using the control signals and the 
measurable system outputs as its inputs. The 
ANN is originally trained off-line to detect 
faults but is then further trained on-line to 
update the network. 

These ideas were then used in conjunction with 
a small waterplane area twin hull (SWATH) 
vessel. A back propagation ANN is used which 
has 16 inputs, two hidden layers with 16 pro
cessing elements in each layer, and one output. 
A fuzzy logic block takes the output for the 
ANN and decides if a failure has occurred. 

ANNs are made up of a collection of neurons 
that are arranged in layers. All ANNs have an 

. input and output layer; however, they also have 

Neural Net 

Fuzzy Logic 
Module Decision 

Output 

Rgura 3 Aeconligurable control system set-up (after Kim et al. [20]). 
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Figure 4 The feedforward multilayer perceptron. 

a varying number of hidden layers depending on 
their function. For fault detection and isolation a 
single hidden layer is sufficient. An example of 
one type of network is the feedforward multilayer 
perceptron, which can be seen in Figure 4. Back 
propagation uses information that is fedback 
from the output layer to the input layer as a 
further input. · 

Two examples of failure detection using a 
SWATH vessel are then performed and 
explained. The first example shows how the 
failure has been detected but no recon.figuration 
occurs. For this example, the ANN detection 
system was trained on four sets of data with one 
control surface failing. A further 10 tests with 
varying levels of failure were then performed. It 
took the system between 8 and 44 seconds to 
detect the failure. No false alarms were recorded 
during any of these tests. 

In the second example, reconfiguration does 
take place after the failure has been detected but 
there was no explanation of how the system is 
reconfigured to handle the failure. The same 
ANN is used for this example and one of the 
previous tests is repeated. The ANN and fuzzy 
logic subsystems take 19 seconds to detect the 
failure. After this, the reconfiguration subsystem 
makes the necessary modifications and the system 
returns to a stable state. 

This system could be improved by training the 
ANN with further examples. This should speed 
up the process of identifying failures, but may 
increase the risk of a false alarm if the ANN 
was overtrained. Overtraining an ANN is where 
the net work has been trained on the trdining. 
data to such a degree that it will match it very 
well, but will lose its generalisation and thus, 
when checking other data, it would incur large 
errqrs. The fuzzy logic decision module could 
also be optimised after further testing. The 
paper does not explain the actual reconfiguration 
but does provide a good example of the other 
two subsystems used, i.e. failure detection and 
identification. 

Other work in this area presents several dif
ferent failure scenarios with respect to aircraft 
control recon.figuration during ftigb.t [4]. The 
aim was to control an aircraft after it had suffered 
surface damage and/or actuator failures by using 
some form of adaptive controller. Three algor
itb.ms are presented and compared. The result 
being that the direct input error algoritb.m 1s 
deemed the most applicable to the problem. 

3.3 Restructurable control 

Rauch [ l 8] also considers a method that fits the 
definition of restructurable control. This is 
illustrated for a non-linear system using an 
adaptive controller in a SWATH ship. This uses 
three proportional integral-derivative controllers 
to control heading, pitch, and roll. It then has 
an adaptive controller consisting of two blocks, 
computation and decision, which choose the 
appropriate control laws for the conditions and 
adapt the control parameters continuously as the 
mission progresses: This can be seen in block dia-
gram form in Figure 5. · 

The algorithm to generate the non-linear func
tion used in the adaptive non-linear model is 
given but there are no examples of it in use. The 
model could be of any system that requires a 
restructurable controller. The basic idea of this 
algorithm is to take a set of training data and 
find a function that fits the data. This forms the 
basic starting model and then new information is . 
input, as it becomes available. The model is then 
updated, with the new information being the most 
important, but the old information is also taken 
into account. This could be used in some-kind of 
fault tolerant system, as thi: new information 
would be from the damaged system. It is 
suggested· that fuzzy logic and artificial neural 
network techniques could be used to improve 
this approach. 

Other papers in this field of research are by 
Looze et al. [21], who used linear quadratic 
design techniques to produce .a control system .. ,: .. 

,._.:;: .... 
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Figure 5 Block diagram of adaptive controller (after Rauch [ t8J). 

for an aircraft suffering one or more control ele
ment failures, and by Ochi and Kanai [22) who 
present a restructurable flight control system 
based on a linearisation method. 

4. Uninhabited Underwater Vehicles 

This section considers the ideas from the previous 
sections and new ideas with respect to UUVs. 
Many of the concepts use a basic controller and 
then append a fault handling portion or redesign 
a standard controller. Eleven .;:ontrol architec
tures for underwater vehicles are given in [23), 
whilst (24) shows that the notion of an UUV 
being able to operate after a fault has occurred 
is a reasonable one. This is achieved by con
sidering the six degrees of freedom that most 
UUVs have as a mathematical set of dynamic 
equations and showing that losing motion in 
one direction does not effect the domain of the 
set and hence is a recoverable fault. This is then 
demonstrated using a model tliat performs a yaw 
movement by using only roll and pitch move
ments. It is shown that by a positive roll and 
then pitch motion followed by a negative roll 

.. and .then pitch motion, the nett motion of the 
underwater vehicle will be in the yaw direction. 

4.1 Fault tolerant controllers 

In the area of underwater vehicles, fault tolerant 
controllers· can be considered the most general 
type of controller and use some of the simplest 
methods. Yang et al. (25) describe two faul! .tol
erant systems for the ODIN (Omni-Directional 
Intelligent Navigator) vehicle. ODIN is an AUV 
with six degrees of freedom. These two fault 
tolerant systems focus on thruster and sensor 
failures in the vehicle. Results are presented to 
show the effectiveness of the systems. 

The first fault tolerant system described is for 
COIN's thrusters. This system uses the thruster 
control matrix (TCM) which represents the 
thruster output force to input force relationship. 
This matrix is used in the calculations to find the 
required thruster force for each thruster as shown 
in eqn (3): 

[Thruster force] = [TCMr1 [Force input] (3) 

This can then be used to find the correct input 
voltage to produce the required movement by 
ODIN. 

There were two constraints placed on the fault 
detection and isolation subsystems. The first 
limits the number of thruste.rs that could fail 
during a mission, one vertical and one horizontal 
thruster. The second constraint is that once a 
thruster fault is detected then it is out of operation 
throughout the mission. 

The fault detection and isolation processes are 
implemented as one process due to each thruster 
being fitted with its own Hall effect sensor [26). 
The desired voltage is then compared with the 
voltage measured by the sensor, using the con
ditional algorithm shown below: 

IF (Input Signal-Output Signal)/ 
Input Signal> TOLERANCE 

THEN count lt of times TOLERANCE is 
continuously exceeded 

IF lt of times> TOLERANCE TIME 
THEN send signal that Thruster is 

Faulty · 
ELSE reset counter and repeat 

monitoring routine 

The thruster fault accommodation subsystem, 
having determined where the fault is located, then 
eliminates the correSponding column in the TCM 
and recalculates the required input voltage for the 
remaining thrusters. This effectively reconfigures 
the TC~ to permit ODIN to continue with a 
mtsston. 

Two tests where two of the thrusters failed 
during a simple mission, were performed and 
showed that the system could handle this fault 
by doubling the voltage to the remaining . 
thrusters. This. allowed the vessel to finish a 
mission and remain at the desired depth. These 
two tests do show that the system ca,n h!~,ndle 
some simple faults, but it is not shown if it 
could handle a fault where it is not possible. to· 
simply double the voltage to the . n;maining • 
thrusters. This would be the case if the thrusters 
were already operating at their maximum when 
the fault occurred. 

The second fault tolerant system presented is 
concerned with sensor faults. The sensor fault 
considered is in the heave direction, for which 
ODIN has two different sensors and one virtual 
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se11sor obi~ined oy iln an.:!yrical mo!lel of itself .. 
··for this system three assumption are made about 

the fault that may occur. The fault is permanent, 
only one-fault may occur and if a sensor is faulty, 
it is completely inactive and outputs zero. These 
assumptions limit tl)e range of this system. It is 
not too hard to envisage a situation where the 
faulty sensor gives a reading of a fixed de level 
or the fault is only temporary or intermittent. 

Once again the fault detection and isolation 
processes are implemented as one process. This 
process is a series of IF-THEN logic rules that. 
compare the outputs of the two sensors and one 
virutal sensor to determine which one has the 
fault. 

The fault accommodation subsystem for this 
system could not be simpler, as the algorithm 
simply switches over to the good sensor and 
ignores the faulty sensor output. This shows 
why only one fault is allowed to occur, as a 
second fault would leave no good sensors left 
for the controller to use. 

This subsystem was then tested for a fault 
occurring in each sensor. Both tests showed that 
the subsystem worked well with the only notice
able effect being the change in oscillation of 
ODIN. This was caused by the different charac
teristics of the sensQrs and not the fault tolerant 
system. The oscillation was greater when the 
sonar sensor was used. This was due to its 
relatively low resolution when compared to the 
pressure sensor. 

The fault tolerant systems presented were 
reasonably effective at detecting, isolating and 
accommodating faults for the ODIN vehicle. 

Navigation System 

--. Position Attitude 
Predictors 

These systems are unique to the ODIN vehicle, 
but the approach and concept can be extended for 
use in other underwater vehicles in order to deal 
with similar types of faults. 

4.2 Reconfigurable controllers 

This section is concerned with methods used in 
reconfigurable controllers and shows how they 
can be used with respect ·to UUVs in order to 
handle faults and in some cases improve general 
performance. 

In the paper by Katebi and Grimble [27] a 
whole control scheme is proposed for an AUV, 
which is composed of three fully integrated layers. 
These can be seen in Figure 6. The top layer is the 
navigation layer and this is where all of the recon
figuration will take place. The middle layer is the 
guidance subsystem and the bottom layer is the 
AUV autopilot. 

The AUV model used for this work is described 
by a set of non-linear differential equations. A 
linear state-space model of the system is then 
presented for use in the local controller and 
diagnostic subsystems. 

The local controller is based on H-in.finity 
theory [28] and is a trade-off between the plant 
controller and the diagnostic controller. This con
troller is designed particularly for the model used, 
but the same H -infinity approach could be used to 
design controllers for other UUV models. 

The guidance system of this AUV is a predic
tive controller (PC) which does not suffer from 
the problems of a line of sight [29] algorithm. 
This is because the PC predicts where the AUV 

Otherda ta 

Reconfiguration Module 
~ 

~ 
Guidance System· 

GPC Controller 
Logic Threshold 

-

+0--t. H-infinity Controller 

(Regulation C12) 
C21 Diagnosis 

~ y Sensors L I AUV L I Actuators ~ r I I 
Figure 6 AlN control scheme (after Katebi and Grimble (27]). 
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will need to be and so has less overshoot when 
way points (target points for the AUV) are close 
together. The robustneSs of the H-infinity and PC 
are discussed with the· outc:Ome being that optimi
sation can be -obtained by appropriate choice of 
weighting functions for the H-infinity controller 
and then suitable tuning of the PC. 
· The main area of interest, reconfigurable con

trol, is then considered. Two approaches to 
reconfigurable control are examined: multiple 
models, and single models with adaptive tech
niques. For the multiple model approach a 
number of system models, each with their own 
corresponding control law, are first obtained 
and then a decision element chooses which is 
the most appropriate model and associated con
trol law. For fault diagnosis a model must be 
included for each particular fault condition and 
a normal no-fault condition model. 

The single non-linear model, which is continu
ously adapting, is then presented as the second 
approach to reconfigurable control. In general, 
the initial model is based on prior information 
and then continuously adjusted as new informa
tion is received. An example is given which uses a 
gain scheduling scheme. 

Simulations were carried out to demonstrate 
the improved performance of the new controller 
compared with a simple H2 controller [28). The 
H2 controller works in a similar manner to a H
infinity controller but is less complicated in its 
structure. A further simulation was performed 
in which the steering system developed a fault 
and the gyro failed· simultaneously (sensor and 
actuator faults). The recontlguration controller 
was activated when a set level had been passed 
in the heading. The new control system stabilised 
the plant after 30 seconds of activity. 

The proposed scheme has some advantages 
over standard control strategies and is worthy 
of further research. 

Tacconi and Tiano (30) explore reconfigurable 
control techniques applied to an AUV where they 
consider both sensor and actuator faults. 

A mathematical model of an AUV using a 
mobile reference system is used in the study. 
The model of the vehicle uses six non-linear 
coupled equations and by considering a linearisa
tion with respect to a given equilibrium condition, 
a state-space model of the type shown in eqn (4) is 
obtained. 

:i: = A:c + Bu + Gw (4) 

where x = (uvwpqrqJ(JrpX0 Y0Z0]T is ·an augmented 
state vector,· which contains u, v, 111 the velocity 
components along the three ·axes; p, q, r the 
three components of pitch, roll and yaw angular 
velocities, 0, t/1, rp the corresponding angles and 
Xo, Yo. Zo the fixed reference system of the 
vehicles position; u = (n51525154JT is the control 
vector, which contains n the propulsion rpm, 5, 
and 5! the upper and lower rudder a·ngles, 51 and 

54 the port and starboard elevators; w is a vector 
which takes external disturbances into account. 
The three matrices, A, B and G are determined 
by both ·the hydrodynamic derivatives and the 
vehicle's speed. 

A linear quadratic Gaussian (LQG) method, 
whi_ch is robust and can handle small faults, is 
discussed. This removes the need to consider 
such faults later and allows the focus to be on 
larger faults caused by system failures. 

An LQG control system design requires the 
control vector be chosen during each transition 
from one way point of the AUV mission task to 
the subsequent one, in such a way that the 
expected value of a quadratic cost function J of 
state and control vector u(t) is given by: 

J
'r 

J = L (:eT (t)Qx(t) +uT (i)Ru(t)) dt 

'• 
(5) 

Different types of missions can be easily managed 
by a proper choice of the weighting matrices Q 
and R. 

If it is assumed that t1 » 10 , then a computa
tionally simpler problem can be solved, which 
supplies a linear feedback of the type shown in 
eqn (6). 

u(t) = -Ki(t) (6) 

where the matrix K is obtained by solving a time
invariant Riccati equation, while i(t) is an 
optimal estimate of the ·state vector x( t) supplied 
by a Kalman filter: 

.i(t) = Ai(t) + Bu(t) + H(y- CX(t)) (7) 

The· linear quadratic method for controlling 
plants is a robust form of controller and therefore 
very good at- compensating for noise in the 
system. For further details of LQG control 
theory, see Dorato et al. (3 1). 

Brief consideration is then given to integrated 
navigation systems, on-line monitoring and fault 
detection. The model uses Kalman filters in the 
navigation system and a statistical decision test 
for the .fault detection and identification module. 

When faults occur in the AUV, structural 
changes may occur in the mathematical model, 
which will cause the vehicle's performance to 
decrease to an irreparable level. The robust 
LQG design can be used to provide a reconfigur
able controller. This is achieved by using a pre
viously computed mathematical model to handle 
the new system. It computes the new model as 
required; however, it would be computatioiUIIIY 
advantageous to have the solutions stored in a 
look-up table. · 

These methods were originally proposed for 
use in the aerospace field and have easily been 
adapted for implementation in an AUV control 
system. Unfortunately, despite discussing the 
method in detail, no results are presented. 

Derradji and Mort (32) describe and test two 
methods of reconfigurable co'!tr<?l_.for a sub-
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mersible vehicle, using an ANN approach. The 
traditional algorithm for an ANN controller 
used in such vehicles has problems if any form 
of control failure occurs. In order to deal with 
this, these two new methods are presented, both 
of which are capable of handling faults. 

The first of these is the linear model- following 
approach, which uses a state-space model of the 
normal plant as the ideal model and the plant as a 
state-space model of the impaired model. Whilst 
in operation this approach modifies the signal 
from the neural network controller to make the 
impaired system act the same as the ideal system. 

The second method is the error . vector sup
pression (EVS) method. This approach simply 
disregards the error vector element in the adjust
ment algorithm and thus forces the impaired 
closed loop system output to be the same as the 
ideal systems output. 

These two methods were tested using a linear 
multivariable state-space model of a large sub
marine vehicle. 

For the tests, a three layer neural network with 
an input layer containing eight linear neurons, an 
output layer containing four linear neurons and 
30 non-linear neurons in the hidden layer, were 
used as the controller. The tests involved simu
lating several levels of control surface failure, 
first in the rudder and then the starboard stern 
plane. Both methods provided satisfactory per
formance over a variety of conditions. The EVS 
and linear model following both managed to 
reconfigure the remaining control surfaces to 
accommodate the failures. There was very little 
to choose between the methods in performance, 
but the EVS used less computer memory and so 
makes it a much better option for real-time appli
cations. 

lshii et al. [33] control an A UV using an adap
tive ANN, which is continuously updated as the 
AUV operates. For the method described, an 
ANN is first trained off-line to be the controller 
for the given AUV and then a second ANN is 
used to model the output of the system, known 
as the identification network. These two ANNs 
act together almost as a single ANN to control 
the AUV. In the improved method, however, the 
identification network is regularly updated as ttie 
mission develops. This simply improves the per
formance of the controller, but could, with a little 
work, be adapted to become some form of recon
figurable controller or even a restructurable con
troller, where the ANN adapts to the new input of 
the now impaired system to restructure the con
troller and regain total control of the AUV. 

Caccia and Veruggio [34] use a proportional 
plus integral-type guidance algorithm to control 
a prototype ROV's depth and motion. This con
troller has a three level hierarchical architecture. 
The motion, during operation, is estimated by a 
set of sensors, all with different capabilities. This 
information is compared with the mission tasks in 

order to keep a theoretical track of what the ROV 
has accomplished and is still required to under
take. Once the controller is informed of the inten
tions of the ROV, the information is used to 
compute the force and torque that must be 
applied to complete the given tasks. The next 
step performed by the controller is to take the 
required force and torque information and trans
late it into actuator outputs. Jhis is where recon
figuration takes place. ln theory, when an 
actuator fails, the translation will simply ignore 
"that actuator as a possible output. As the same 
force and torque are still required, the workload 
wil[ need to be redistributed between the actua
tors that remain functioning, hence reconfiguring 
the controller to cope with the loss of an actuator. 
Their reconfigurable controller is capable of 
handling total failure in one or more thrusters, 
as was shown in the presented test results. 

5. Concluding Remarks. 

ln this paper several different approaches to the 
problem of handling a fault in a given system are 
presented. The tYJX: of approach depends heavily 
on the system and its requirements. lt can be seen 
that as the complelcity and non-linearities in a 
system increase, the more elaborate both the con
trol and fault tolerant subsystems have to become 
in order to cope with such phenomena: As UUVs 
tend to be highly non-linear, there is a need for 
most of their control strategies to be complex. 
Thus, many of _the systems presented here have 
used concepts such as fuzzy logic and/or artificial 
neural networks in order to solve respective prob
lems. ln addition, several other different 
approaches to handling a failure within an 
UUV have been described. It is clear that there 
is considerable scope for research work to be 
undertaken in this area. 

The simplesfinethod of fault tolerance is to 
have more than one actuator for each process 
and to switch to the backup one after a failure 
occurs. This method is highly effective but is 
unacceptable in UUVs, as such an approach 
increases the payload of the vehicle and is 
expensive. 

The most appropriate type of fault tolerant 
system for an UUV is a reconfigurable controller. 
This type of controller does not require the extra 
space required for redundant .parts. It has been 
shown here that within certain limits most 
methods can recover the original performance 
after failure. The biggesfdrawback for this type 
of control system is its lack of ability to handle 
unpredicted failures. However, they are capable 
of handling a large range of fault conditions. '-

The restructurable controller should, in an 
ideal world, be a standard subsystem for all 
UUVs. This is not possible due to the large com
puter memory required to operate such subsys
tems. As computer memory is limited onboard 



,.,. TechnuloxJ', Vol. 2~ No. 2, J999j2000 

Vs. a recontigurable controller which has a 
comprehensive portfolio of stored predefined 
failure solutions, is an acceptable solution to the 

problem. 
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·s paper is concerned with using Kalman filter theory in a 
ault tolerant control scheme for a given autonomous 

rwater vehicle (AUV). Both sensor and-actuator failures 
simulated within the yaw and roll channels to test the 

bility of both a normal adaptive neuro-fuzzy inference 
m (AANFIS controller and the Ka1man filter enhanced 
S controller. Results are presented to show how both the 

ntrol systems cope with faults occurring within the sensor 
back system and the control actuators. 

Introduction 

recent years, considerable interest has been shown into the 
mmercial, scientific and naval use of AUVs. An AUV 
ing a marine craft which fulfils a mission or task without 
ing constantly monitored. and supervised by a human 

rator. 
AUVs have many uses in areas such as the fields of 

ientific research, military and commercial activity. They 
operate in places that would otherwise be inaccessible, 

eh as at extreme depths and/or in confined areas. 
nfortunately, owing to the nature of these vehicles, data 

lansmi': ssions to and from the craft to the mother station 
ugh the sea water medium are poor. However, if these 

UVs become damaged during operation in some way, they 
· I be lost unless they have some form of fault tolerant 
ntrol system on-board It is therefore vital to the future 

are actuator failures, again within both the yaw and roU 
channels. The faults considered are total actuator failure at a 
given angle and percentage actuator failure. These faults weri: 
also considered while the AUV was manOeuvring through the 
three step inputs for the yaw study and with three initial roU 
angles for the roll study. 

The controllers . used throughout this work are those 
developed by .Craven [1) specifically for the given AUV and 
are bitsed upon an ANFIS approach. The control systems 
were not designed to cope with the faults considered within 
this paper, however it was vital to test them to create a 
benchmark set of results for comparison. 

The · complete control authority of the AUV model is 
shown in Figure 1. lt should be noted at this time that the yaw 
ANFIS controller only has command of the upper and lower 
canards, and that the roll ANFIS controller only has command 
of the port and Starboard planes. 

Figure 1. Control authority of the AUV 

2 Fault tolerant controller 

rk of AUVs that fault tolerant control systems, such as the To attempt to cope with the failures it is proposed to place 
man filter approach discussed in this paper, are developed. both a linear model of the AUV and a Kalman filter in
Within this paper, two of the most common types of between the sensor feedback and the ANFIS controller. This 

'Jure will be considered. The first addressed are sensor Improvement should give the control system a level of fault 
· ures in the yaw and roll channels. The following two types tolerance to the failures that are being considered. Before the 
faults considered are, percentage and intermittent signal · Kalman filter could be developed several identification 
ure. Both of these faults were considered over three yaw models around the given AUV were required. The optimum 

inputs (10, 50, and 90 degrees) for the work with the yaw model developed of the yaw dynamics was the continuous 
el. The faults were considered over three initial roll linear state space model shown in equation (1 ). The optimum 

gles (S, IS, and 30 degrees) for the roll channel. The second model developed of the roll dynamics was the continuous 
linear state space model shown in equation (2). 
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vi=[~ _ 2.:326 ]vr+[_o_;J9s]a 

. =[ 0.2210 1.1462] +[-0.2252] 
tP -2.0047 -0.9984 tP 1.1971 p 

100% is no fault This was achieved within a Matlab 
(I) environment by setting up the system shown below in Figure 

2 and putting the relevant value in the gain block. The roll 
rate sensor was set-up in an identical fashion for the relevant 

(2) tests. 

Where vi is the new vector for yaw and yaw rates, vr is 
e old vector for yaw and yaw rate, a is the control signal 

m the ANFIS yaw controller,~ is the new vector for roll 

d roll rate, vr is the old vector for roll and roll rate, and p is 
e control signal form the ANFIS roll controller. 

These two models were then used, in conjunction with 
nsor information from the AUV, to produce two Kalman 
lters. One for the yaw channel and the other for the roll 

el. The standard use for a Kalman filter is to remove 
oise from sensor feedback within a given plant However, 
r this paper the Kalman filter will be used in a slightly 

· erent way. Instead of being used to filter noise from 
nsor feedback, it will attempt to compensate for failures 
'thin the AUV system. It will be using the linear models 
ven above (I) and (2). The Kalman filter will, when there is 

fault present, produce a best estimate between the AUV 
nsor information and the linear model output liOd when a 
ult does occur it will compensate for it and allow the AUV 
continue operating. 
In the interests of brevity the standard Kalman filter 

uations have been omitted however for the interested reader 
ese maybe found in [2). 

Faults 

test the Kalman filters ability to handle faults it was 
lcessaJry to create several failure scenarios. Sensor and 

uator faults were considered for this paper. These two 
es of faults will present the Kalman filter with two very 
erent problems. The sensor faults will test the Kalman 
rs ability to recover lost informatioJL The actuator faults 

I change the way the AUV responds to control signals and 
ge its dynamic behaviour. 

Sensor faults 

r researching many papers on the subject of sensor 
ure, the following types of faults were selected: 
Percentage signal failure. [J) and (4) 
Intermittent signal failure. [S) 
For the yaw channel both of the types of sensor failure 

considered for the yaw sensor over three step inputs (10, 
and 90 degrees). The failures were implemented in the 
sensor, as opposed to the yaw rate sensor, due to the 

trollers bias towards the yaw information. Similarly for 
roll channel both types of faults were considered for roll 

sensor over three initial roll values (S, IS, and 30 
). The failures were implemented in the roll rate 

r, as opposed to the roll sensor, due to the controllers 
towards the roll rate informatioJL 

e first type of failure involved placing a g8i.n on the 
r feedback to permit only a given percentage of the 
to return to the controller. The percentages considered 

100, 7S, SO, 2S and 0. Where zero is total failure and 

Gain 

Figure 2. Gain on yaw sensor feedback for yaw channel ·A 

The second type of failure involved using a random signal 
to intermittently create a total signal failure on the given 
sensor. This sensor failure was implemented within the 
Madab model as shown below in Figure 3. The roll rate 
sensor was set-up in an identical fashion for the relevant tests. 

Constant 

Figure 3. Flip switch between total and partial 
failure on yaw sensor 

3.2 Actuator faults 

Also to be considered are actuator failures, from a literature 
survey of the subject, the following types offaults were used: 
(I) Total actuator failure at a zero angle. [6) 
(2) Total actuator failure at a given angle. [7) 
(3) Percentage actuator failure. [8) 

For the yaw channel all of these failures were considered 
for the upper stem rudder which was used by the control 
system to control yaw, when being subjected to three step 
inputs (10, SO, and 90 degrees). For the roll channel the 
failures were implement in the same manor but in the 
starboard canard. Within the AUV model the actuators are 
formed using three blocks, a rate limiter, a saturation block 
and a transfer function, as shown in Figure 4. This is where 
all of the actuator failures will be implemented. 

Figure 4. Actuator simulator within Matlab AUV model 

The first type of failure is total failure of one control 
surface at zero degrees. This failure has been chosen to 
simulate the control surface becoming locked and thus being 
unable to move. This failure was accomplished by setting the 
input from the controller (see Figure 4) to zero. 

The second failure is of a similar nature but involves the 
rudder being frozen at a given angle. This simulates the 
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'control surface becoming inoperable when the AUV is 
onning a manoeuvre. This failure was achieved by setting 

e oulput to the AUV dynamics (see Figure 4) to the required 
gle before the simulation began. 
The third type of failure is to reduce the effectiveness of 

e controller by limiting the maximum angle it turn as a 
rcentage of the normal maximum angle (25.2 degrees for 
e yaw channel and S degrees for the roD channel). The 
rcentages considered were 75, so; and 25~ Where zero 
ould be total failure and lOO would be no fault This failure 

achieved simply by altering the values within the 
turation block shown in Figure 4. 

Results 

the previous sections the Kalman filter, linear models and 
e faults to be used were presented. The faults were then 

"mulated in the AUV and the two types of control systems 
ttempted to handle them. 

.I Yaw sensor faults 

first type of sensor failure to be implemented was the 
rcentage signal failure. These failures were implemented 
seconds into the simulation. The reswts for the standard 

S controller attempting to achieve a yaw angle of 90 
can be seen in Figure S. From the results it can be 

n that as the percentage of Information which is being sent 
ck form the AUV decreases the standard ANFIS controller 

mes more unable to find the demanded yaw angle. This 
at its worst when a total failure occurred, at which the 
S controller sent the AUV into a circular path. 

~0.-----~----~----~----~--~ 

400 

350 

1300 
&'250 
~ 
..11200 

!150 

i 100 

50 

-100% 
-75% 
-50% 
+ 25% 
• 0% 

~o~--~17o----~27o----~~~----40~--~so
llme (seconds) 

igure S. The yaw responses of the AUV when the normal 
ANFIS control system is used 

These results can be explained by a little bit of simple 
ematics. For all of the results shown above the control 
m believed it was reaching the demanded angle. This can 

shown by taking the final achieve yaw angle and 
"plying it by the percentage signal failure. For all but the 

!Vo gain failure this will give a final angle of 90 degrees. 
e Kalman filter was far better at handling this fault The 
I system using the Ka1man Filter to attempt to correct 

for yaw sensor failures, was able to minimise the error 
occurring. For small errors the Kalrnan filter had only a smau 
effect if any. However as the level of failure increased, so did 
the effect of the Kalman filter. This can be seen below in 
Figure6. 

120,-----~----~----~-----.------. 

100 

-100% 
-75% 
-50% 
+ 25% 
• 0'16 

~~~----1~0-----2~0-----~~----40====~60 
l1me (seconds) 

Figure 6. The yaw responses of the AUV when the Kalman 
filter is used in the control loop 

At the point of. failure the Kalman filter takes 
approximately S seconds to start compensating. The positive 
aspect of these results is that the control system does handle 
the failure, but the AUV does not achieve the demanded yaw 
angle of 90 degrees. 

For the intermittent signal failure test the failure was 
implemented at the beginning of the simulation. The failure 
will not affect the AUV until the yaw angle moves away from 
zero. The results for both control systems attempting to 
handle this failure during manoeuvre consisting of a final 
demanded yaw angle of 90 degrees are shown below in 
Figure 7. 

180,-----~----~----~-----.------. 

160 

140 

20 

·201!-----~--~~----""":-----..._----...J 
0 10 ~ ~ 40 50 

llme (seconds) 

Figure 7. The normal and Kalman filter AUV yaw responses 
to the intermittent failure scenario 

This shows how the Kalman filter enhanced control 
system was able to achieve and maintain an almost constant 
yaw angle with more success than the normal ANFIS control 
syStem. Despite not achieving the desired yaw angle the 
Kalman filter was did manage to stay closer than the standard 
ANFIS controller. 
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4.2 Roll rate sensor faults 

For the roll rate sensor the first type of failure to be 
considered was the percentage signal failure. The failures, 
outlined above, were implemented after one second. This was 
because of the speed at which the ANFIS controller was ~ble 
achieve the desired roll angle of zero degrees. The results for 
the standard ANFIS controller attempting to achieve the 
desired roll angle of zero degrees from the largest initial roll 
angle (30 degrees) can be seen in Figure 8. 
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Figure 8. The roll responses of the AUV when the nonna.l 
ANFIS control system is used 

These results show how the controller became more 
ble as the percentage of information the controller 

ives drops. Despite taking an increasingly longer time to 
ttle down the AUV did always reach the required roll angle. 
The same set of failures were then presented to the system 

hen the Kalman filter was used. Tite results to this set of test 
be seen below in Figure 9. 
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igure 9. The roll responses of the AUv when the Ka1man 
filter is used in the control loop 

These results show how the Kalman filter was able to 
die tile loss of roll rate information was incredible ease. 
fact that the AUV responded almost exactly the same for 

levels of failure proves that tlte Kalman filter managed to 
ply the ANFIS controller the correct information 

ess of what sensor information it received. 

4.3 Yaw actuator faults 

Next the actuator failures within tlte yaw channel are 
considered. All of the results presented in this section are for 
the AUV attempting to achieve a yaw angle of 90 degrees. 
Firstly tlte locked actuator set of failures as described above, 
are presented. When the actuator controlling tile upper canard 
becomes locked at a given angle tile standard ANFIS 
controller is able to achieve a yaw angle close to the demand 
for all but one case. This is when the upper canard is locked at 
-~5.2 degrees. As one canard is locked at the maximum angle 
against the desired outcome, it is impossible for the lower 
canard to botil compensate for this level of failure and then ~ 
steer tile AUV to tile desired yaw angle using the given 
controller. For the other sizes of failure the AUV achieved a 
yaw angle around the desired mark. As can be seen in Figure 
10 . 
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100 

- +25.2 degrees 
+ +12.6 degrees 
o 0 degrees 
- ·12.6 <legrees 
• -252 degrees 
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Time (seconds) 

Figure 10. llte AUV responses to the locked actuator set of 
failures using the standard ANFIS controller 

The most important feature to notice from these results is 
the time taken to reach the final yaw angle. The worst case of 
this is when the rudder is fixed at - 12.6 degrees, it takes the 
AUV almost 30 seconds to reach the yaw angle of just over 
89 degrees. 

For tile same set of failures the Kalman filter controller 
performed poorly. It did manage to attain a constant yaw 
angle witlt tile rudder locked at zero degrees, however it did 
not get as close to the demanded angle as tile standard ANFIS 
controller. For all the oilier failures of this type the Kalman 
filter controller sent the AUV into a circular path in an 
attempt to achieve the demanded 90 degree yaw angle. As can 
be seen in Figure ll. 

For the reduced maximum angle set of failure scenarios 
the standard ANFIS controller performed quite well. It 
reached the 90 degree yaw angle for every level of failure, but 
as the size of the failure increased the AUV was taking 
increasingly longer to reach that angle. This can be seen in 
Figure 12. 
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Figure 11. TI1e AUV responses to the locked actuator set of 
failures using the Kalman ftlter controller 
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Figure 12. The AUV responses to the reduced maximum 
angle set of failures using the normal controller 
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Figure 13. The AUV responses to the reduced maximum 
angle set of failures using the Kalman filter controller 

can be seen above in Figure 13 the Ka1man filter control 
stem did not have as much success witl1 this set of failures. 

or the 100% and 75% failures the AUV did manage to 
hieve the demanded 90 degrees. However when the fault is 

increased the AUV's final yaw angle became less than the 
required 90 degrees. Just like for the standard controller the 
AUVs response becomes slower as the level of failure 
increases. 

4.4 Roll actuator faults 

The final collection of failures to be considered in this paper 
are the actuator failures in the roll channel. The actuator 
affected in these tests is the starboard stem plane. All of the 
results presented in this section are for the AUV attempting to 
achieve a roll angle of zero degrees from an initial value of 30 
degrees. Firstly the locked actuator set of failures as described 
above, are presented. When the actuator controlling the 
starboard plane becomes locked at a given angle the standard 
ANFIS controller is able to achieve its aim only for the zero 
degrees failure. For all other failures AUV eventually 
maintains a roll angle of approximately one third the value of 
the angle of the locked plane. As can be seen in Figure 14. 
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Figure 14. The ANFIS controller locked actuator results 

The same set of failures were then simulated with the 
Kalman filter enllanced ANFIS control system used. These 
results were very similar to the previous set of results, the 
final roll angles were approximately half the value of the 
angle of the locked plane and it took almost five seconds 
longer for the roll angle to settle at its final value. 'This results 
can be seen in Figure 15. 
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Figure 15. The Kalrnan filter locked actuator results 
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The starboard stem plane was then subjected to the 
reduced maximum angle set of failure scenarios. The standard 
ANFIS controller perfonned quite well. It reached the desired 
zero degree roll angle for every level of failure, but as the size 
of the failure increased the ATN was taking increasingly 
longer to reach that angle. Also it should be noted that as the 
level of failure increased then the overshoot also increased. 
These results can be seen in Figure 16. 
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Figure 16. The ANFIS controller reduced maximum angle 
results 

The same set of failures were then simulated using the 
Kalman filter enhanced ANFIS control system. These results 
were very similar to the previous set of results. The major 
difference when the Kalman filter was used, was that it took 
over two seconds longer for the roll angle to settle at its final 
value. This results can be seen in Figure 17. 
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igure 17. The Kalman filter reduced maximum angle results 

Conclusions 

rom the results given in tllis paper there are several 
nclusions whlch can be drawn. Firstly the Kalman fllter 

bowed great promise for recovering sensor infonnation. This 
hlglilighted by the results from the roll rate failures where 

e Kalman filter was almost unaffected by the failures. 
The Kalman filter did manage to handle the roll actuator 

"lures, but not as well as tlte standard ANFIS controller. The 

Kalman filters worst test results were for the yaw actuator 
failures, were it was unable to control tile AUV witll any level 
of success. 

The control system could be more fault tolerant if it was 
able to control some of the other actuators shown in Figure l. 
The control system may also be improved by using a fuzzy 
logic system to attempt both sensor and actuator failures. 
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Abstract: This paper is concerned with using fuzzy logic in a fault ·tolerant control 
scheme for a given autonomous underwater vehkle (AUV). Actuator failures are 
simulated within the yaw channel to test the ability of both a normal adaptive neuro
fuzzy inference system (ANFIS) controller and a fault tolerant fuzzy control system 
tuned using a simulated annealing algorillun. Results are presented to show how each of 
ll1e control systems coped with faults occurring within one of the two control actuators of 
ll1e AUV. Copyright@200l JFAC 

Keywords: autonomous underwater vehicle, fault tolerant, fuzzy logic, simulated 
annealing. 

1. INTRODUCTION 

Commercial, naval and scientific operational 
specifications for uninhabited w1derwater vehicles 
(UUVs) continue to become more challenging in line 
with the advances being made in llle field of control 
engineering. In order to survive actuator failure 
during a mission, such vehicles need to possess either 
a reconfigurable or a fault tolerant control system. 

In recent years, considerable interest has been shown 
into ilie commercial , scientific and naval use of 
UUVs. UUV being a generic expression to describe 
boili an AUV and a remotely operated vehicle 
(ROV). An AUV is a marine craft which fulftls a 
mission or task will1out being constantly monitored 
and supervised by a hwnan operator, whilst a ROV is 
a marine vessel lllat requires instruction from an 
operator via a tethered cable. 

Demands are growing for ll1e requirement of AUVs 
to be able to operate effectively at extreme depll1s 
and/or in confined areas such as under packed ice. 
Unfommately communication to and from ilie crafi 
to ll1e moll1er station lluough l11e sea water mediwn 

are poor. Thus, an AUV has to be self-sufficient for 
the duration of a mission. Fault tolerant control 
systems could also be beneficially installed within 
ROVs. Their employment within ROVs would 
significantly lighten ilie workload of t11e hwuan 
operators aJiowing them to concentrate on tl1e 
mission, whilst pennitting tl1em to maintain overall 
supervisory control. 

Tlus paper starts witl1 llle dynrunics of the vehicle 
and the set-up of both ilie control system and the 
faults to be considered. Then the approach used to 
make l11e AUV fault tolerant is described. FinaJiy the 
results are presented to show how the controllers 
handle ll1e faults. 

2. AUV DYNAMICS 

The standard controller referred to tl1roughout tl1is 
paper is iliat developed by Craven ( 1999) specifically 
for the given AUV model used within tlus study. It is 
an intelligent fuzzy logic controller developed using 
t11e ANFJS approach (Jang 1991). The control system 
was not designed to cope willl tl1e types of fault 



which are considered within this paper, however it 
was vital to test this controller to create a benclunark 
set of results. These results will be used for 
comparisons with the new control system design. 

2.1 The Control Authority 

The complete control authority of the AUV model is 
shown in Fig 1. It should be noted at this time that 
both the standard yaw ANFIS controller and the new 
fuzzy fault tolerant controUers only have command 
of the upper and lower canards (forward control 
surfaces) during this work. 

ROLL CONTROL 

PITCH CONTROL 

Fig. 1. Control Authority of the AUV 

2.2 The Yaw Controller 

The fuzzy logic rules for the standard ANFIS yaw 
controller used in this paper are given below in 
equation 1. 

If 'Ifs is Neg and If is Neg tl1en 

o= -0.4863 'l's-0.8791 If -0.02926 

If 'l'c is Neg and If is Zero then 

o= -0.4890 'l'c -0.9021 If +0.001381 

If 'l'c is Neg and If is Pos then 

o= -0.4858 'l'c -0.8962 If +0.003143 

If 'l'c is Zero and If is Neg then 

0 = -0.2994 'lfc -0.7034 lf -0.1227 

If 'l'c is Zero and If is Zero tlten 

o= -0.4879 "'" -0.8910 If +0.003723 

If 'l'c is Zero and If is Pos then 

o= -0.3053 'l'c -0.3055 If -0.03744 

If 'l'c is Pos and if! is Neg Uten 

o= -0.5902 'l's -0.8387 rf -0.1172 

If "'" is Pos and if! is Zero then 

o= -0.4811 "'" -I.081 If -0.o6111 

If 'Ifs is Pos and If is Pos tlten 

o= -0.6596 "'" -1.311 If+ o.7814 

(I) 

Where 'l's is tl1e yaw angle error given by yaw angle 

demand minus actual yaw angle, If is tl1e yaw rate, 

o is t11e desired rudder angle, Neg stands for negative 
and Pos stands for positive. 

3. FAULT TOLERANT CONTROLLER 

To attempt to cope witl1 the failures it is proposed to 
situate a fuzzy logic system between tl1e ANFIS 
controller and the AUV dynamics. Titis will multiply 
the control signal to Ute actuators, as shown in Fig 2. 
Tltis improvement should give the control system a 
level of fault tolerance to the failures tltat are being 
considered in tltis paper. 

Fig. 2. Fault Tolerant Control System Set-up 

The fuzzy logic system can be seen to take tluee 
batches of information for use in determining the 
degree of failure wltich has occurred and Uten makes 
U1e necessary correction for il The tl1ree pieces of 
information the system will have as inputs are, (1) 
U1e demand being placed on the standard ANFIS 
controller, (2) the demand being placed on the 
actuators by tl1e standard ANFIS controller, (3) U1e 
error in ilie damaged actuator. The fuzzy logic 
system compensates for tllis and returns the AUV to 
a fully functional or near fully functional situation. 
When tllere is no fault present, tl1e fault tolerant 
system will have a minimal affect on tlle ANFIS 
control signal. However when a fault does occur it 
will compensate for it and allow the AUV to continue 
operating and complete its mission. 

For this paper two fuzzy fault tolerant systems were 
tested. The first was a heuristic fuzzy inference 
system (FIS). This was designed by taking a simple 
approach to ilie problem, t11e bigger the error, tl1e 
larger Ute value tlle control signal must be multiplied 
by in order to compensate. This was tlten tuned using 
the simulated annealing metl10d (Kirkpatrick, et a/ 
1983) to create ilie second FIS. 



4. ACTUATOR FAULTS 

To test the fault recovery ability of the fuzzy logic 
controllers to handle fauJts it was necessary to create -
several failure scenarios. Faults occurring within only 
one of the two control actuators are considered in Utis 
paper. The actuator faults will change U1e way the 
AUV responds to control signals and will also affect 
the dynamic behaviour of the AUV. 1l1e fault used 
here is one whereby one of tlte two control surfaces 
suffers a loss of efficiency (LOE) (Mort, and 
Derradj~ 1999). The upper canard was U1e actuator 
chosen for Ule faults to be simulated wiiliin. 

When Ule AUV is undamaged Ule LOE for each of 
the actuators would be 0%. As an actuator becomes 
more damaged this value wiU rise up to a maximum 
of 100%, which would be total failure where the 
actuator wouJd not be able to move. 

For tltis study, all of the work has been executed 
wiiliin Ule yaw charmel. The same principles and 
techniques can be used in any of the oilier charmels 
to produce similar resuJts. The failures have been 
simulated in tl1e upper canard which is used to 
control yaw. The system was tested by being 
subjected to three step inputs (10, 20, and 30 
degrees). Within the AUV model U1e actuators are 
formed using tluee blocks, a rate limiter, a saturation 
block and a transfer function, as shown in Fig 3. 

IJ]Ff--___.11>+-[I]-f----Jf--_.11>+-rn'*--i---+lll>l ~ ~o A
1
UV 

Input ram Rate Umiter Saturation · · '' 
Controller 9_9 degrees +/-25_2 Transfer Dynamics 

per second degrees Function 

Fig. 3. Actuator simulator wiiliin Matlab AUV model 

The first type of fai lure is total LOE, wltich can also 
be tl10ugl1t of total failure of one control surface at 
zero degrees. 111is failure has been chosen to 
simuJate U1e control surface becoming locked. 111is 
failure was accomplished by setting U1e input from 
the controller (see Fig 3) to zero. 

The second type of failure is to reduce U1e 
effectiveness of the controller. 1l1e percentages of 
LOE considered for tlus work were 75%, 50o/o, and 
25% (Mort, and Derradji, 1999). There are three 
types of failure which can be implemented using Utis 
approach for actuator failures. 1l1ese failures can be 
achieved by altering t11e values wiiliin Ule saturation 
and Ule rate limiter blocks shown in Fig 3. For Utis 
paper U1e actuator failures were simulated fustly by 
altering only the value in U1e saturation block (shown 
in the tables as Saturation), secondly by altering only 
Ute value in the rate linuter block (shown in tables as 
Rate limiter), and tJlirdly by altering both values 
simultaneously to the same level of failure (shown in 
tables as Both). 

5. RESULTS 

The standard non-fault tolerant ANFIS controller and 
t11e fault tolerant controllers were all subjected to tl1e 
complete range of faults described it the previous 
section using the Matlab SIMULINK computer 
package. 

5. 1 The Standard ANFJS Controller 

The first set of tests were perfom1ed on the standard 
ANFIS control system. Below Ule performance of 
Utis controller can be seen as it attempts to aclueve 
t11e 30 degree demanded yaw angle while enduring 
an increase in U1e level of failure (using the failure 
defined as Boili) for successive simulations (Fig 4). 
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Fig. 4. The Standard ANFIS Controller System 
Attempting to Handle Various Levels of tl1e Both 
Failure Scenario. 

ln order to make comparison of tl1e controllers easier 
two forms of infonnation have been recorded. Firstly 
U1e root mean squared error (RMSE) value, between 
the desired and Ule actual results was calcuJated. 1l1e 
RMSEs for t11e standard control system, for all of Ule 
given faults for tl1e given demanded yaw angles, have 
been compiled in Table I shown below. 

Table I The RMSEs (degrees) for the Complete Set 
of Results for the Standard ANFIS Controller 

s tep type of 25% 50% 75% 100% 
s ize failure 
10° Saturation 0 0 0 .099 1 .065 

Rate 0.075 0 .188 0 .380 1 .065 
limiter 
Both 0 .075 0 .188 0.380 1 .065 

20° Saturation 0 0.127 0 .741 2 .360 
Rate 0 .205 0 .546 1 .080 2 .360 
limiter 
Both 0.205 0 .546 1 .132 2.360 

30° Saturation 0.094 0 .691 1 .904 4.125 
Rate 0 .434 1.088 2 .172 4 .125 
limiter 
Both 0.436 1.172 2 .390 4 .125 



The second type of infonnation used to evaluate the 
systems was the rise times. Where the rise time is 
defined as the time taken for Ute AUV to rise from 
five to ninety five percent of the demanded yaw 
angle. The rise times for the standard control system, 
when attempting to handling the all of U1e given 
faults for Ule given demanded yaw angles, have been 
compiled in Table 2 shown below. 

Table 2 The Complete Set of Rise Times (seconds) 
of The Chosen Heuristic Control System. 

step size type of failure 25% 50% 75% 100% 
10° Sat 4.5 4.5 4.7 7.1 

Rate limiter 4.6 4.7 4.8 7.1 
Both 4.6 4.7 4.8 7.1 

20° Sat 4.8 4.9 5.4 7.5 
Rate limiter 4.7 4.7 4.9 7.5 
Both 4.7 4.7 5 7.5 

30° Sat 4.9 5.3 6 .1 7.9 
Rate limiter 4.3 4.5 5.3 7.9 
Both 4.4 4.7 5.7 7.9 

5.2 The Heuristic Controllers 

Several heuristic controllers were created as starting 
points for U1e tuning programs. The first of Ulem was 
to have a FIS whose starting point did not affect Ute 
output of Ute standard controller. As expected Ulis 
gave results identical to Ute standard ANFIS 
controller shown above. The oU1ers all worked on the 
principle Umt as U1e size of fault increased Ulen the 
signal must also be increased. Below is shown Ute 
results for one such FIS attempting to compensate for 
Ule set of failures defined above as Both over t11e 30 
degree step input (Fig 5). 
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Fig. 5. A Heuristic Control System Attempting to 
Handle Various Levels of the Both Failure 
Scenario. 

The complete set of RMSEs for Ule same heuristic 
controller when subjected to aU U1e given failure 
scenarios have been compiled below in Table 3. 

Table 3 The Complete Set of RMSEs (degrees) 
of The Chosen Heuristic Control System. 

s tep type of 25% 50% 75% 100% 
size failure 

·---·-- ·----- -
10° Saturation 0.004 0.004 0.095 1.024 

Rate 0.072 0.183 0.367 1.024 
limiter 
Both 0.072 0.183 0.367 1.024 

20° Saturation 0.1 12 0.113 0.711 2.255 
Rate 0.181 0.494 1.051 2.255 
limiter 
Both 0.181 0.494 1.098 2.255 

30° Saturation 0.060 0.603 1.829 4.001 
Rate 0.548 1.120 2.114 4.001 
limiter 
Both 0.529 1.145 2.320 4.001 

5.3 The 1imed Controllers 

The heuristic FJS mentioned above was t11en tuned 
for 500 epochs using a set of training data, which 
comprised of various sizes of steps with different 
levels of failures occurring. The FJS was tuned using 

t11e simulated annealing meUlod (Kirkpatrick 1983). 
TI1e FlSs which perfonned best on t11e training data 
were Ulen re-tested on Ule failures used above. After 
the training and testing of the FISs lmd taken place it 
was possible to detennine which of Ute FISs handled 
the faults optimaUy. This was done by taking into 
account the perfonnance of each FIS wit11 respect to 
all of the faults. The fuzzy logic rule base for this 
system is shown below in equation 2. 

If o is Neg and lf/6 is Neg and 17 is Small 
Ulenp =0.9784 

If o is Neg and lf/c is Neg and '1 is Medium 
tlten p = 1.0048 

If o is Neg and lflc is Neg and 'I is Big 
tlten p = 1.6817 

If ois Neg and lf/c is Zero and '7 is Small 
t11en p = 1.08l0 

If o is Neg and lf/6 is Zero and '7 is MediUill 
Ulen p = 0. 9574 

If o is Neg and lflc is Zero and 11 is Big 
t11en p = 1.3934 

If o is Neg and lflc is Pos and 'I is Small 
Ulen P = 1.3150 

If o is Neg and lf/.- is Pos and '7 is Medi wn 
tlten p = 1.0566 

If o is Neg and lf/c is Pos and '7 is Big Uten p = 0. 9854 
If o is Zero and lf/c is Neg and '1 is Small 

then p = 0. 9792 
If o is Zero and lf/.- is Neg and '1 is MediUill 



then P = 1.1607 
If o is Zero and '1/c is Neg and 'I is Big 

then P = 1.3252 
If 0 is Zero and lj/6 is Zero and 'I is Small 

thenP= 0.8898 
If o is Zero and '1/c is Zero and 'I is Mediwn 

then p = 1.5735 
If o is Zero and '1/c is Zero and 'I is Big 

then p = 1.3664 (2) 
If ois Zero and '1/c is Pos and '7 is Small 

then p = 1.0 124 
If o is Zero and '1/c is Pos and Tf is Medium 

thenP = 1.0105 
If o is Zero and '1/c is Pos and 'l is Big 

thenP = 1.2517 
If o is Pos and lj/6 is Neg and 'l is Small 

then p = 0.990 I 
If o is Pos and '1/c is Neg and '1 is Medium 

then p = 1.0883 
If o is Pos and '1/c is Neg and '1 is Big 

then p = 1.1980 
If o is Pos and lj/6 is Zero and 'l is Small 

then p = 1.0779 
If o is Pos and '1/c is Zero and 'l is Medium 

then p = 1.0762 
If o is Pos and '1/c is Zero and 11 is Big 

t11en p = L.3498 
If o is Pos and '1/e is Pos and '1 is Small 

tltenp = 0.9751 
If o is Pos and lj/6 is Pos and '1 is Medium 

then p = 1.0641 
If o is Pos and '1/c is Pos and 17 is Big then p = 1.3499 

Where Pos, Neg, o and '1/c are as defined above and 'l 
is t11e error in actuator and p is t11e control signal 
multiplier. 

The results, expressed as RMSEs, for t11e chosen FIS 
are shown below in Table 4. 

Table 4 The Complete Set of RMSEs (degrees) for 
The Best Tuned Heuristic Control System. 

step type of 25% 50% 75% 100% 
size failure 
10° Saturation 0.016 0.016 0.101 0.820 

Rate 0.079 0.158 0.317 0.820 
limiter 
Both 0.079 0.158 0.317 0.820 

20° Saturation 0.024 0.101 0.657 1.949 
Rate 0.172 0.469 0.995 1.949 
limit er 
Both 0.172 0.470 1.036 1.949 

30° Saturation 0.070 0.557 1.695 3.749 
Rate 0.579 1.174 2.062 3.749 
limiter 
Both 0.557 1.152 2.210 3.749 

Below is shown the results for tlus best tuned FIS 
attempting to compensate for t11e set of failures 
defined above as Both over t11e 30 degree step input 
(Fig 6). 
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Fig. 6. The Best of the Tuned Control Systems 
Attempting to Handle Various Levels of the Both 
Failure Scenario. 

The rise times for tl1e chosen FIS, when attempting to 
handling the all of the given faults for the given 
demanded yaw angles, have been compiled in Table 
5 shown below. 

Table 5 The Complete Set of Rise Times (seconds) 
of The Best Tuned Heuristic Control System. 

step size type of failure 25% 50% 75% 100% 
10° Sat 4.6 4.6 4.7 6.6 

Rate limiter 4.7 4.7 4.8 6.6 
Both 4.7 4.7 4.8 6.6 

20° Sat 4.9 4.9 5.4 6.9 
Rate limiter 4.7 4.6 4.8 6.9 
Both 4.7 4.6 5 6.9 

30° Sat 5 5.2 6 7.4 
Rate limiter 4.3 4.3 5 7.4 
Both 4.3 4.6 5.5 7.4 

The RMSEs displayed within Table I and Table 4 
were then used to calculate the percentage increase in 
performances achieved by the tuned FIS for the faults 
which have been considered in tllis paper. These 
percentages are shown below in Table 6. 



Table 6. The Percentage Increases For the 
Best Tuned FuiD Control System. 

step type of 25% 50% 75% 100% 
size failure 

10° Saturation -2.3% 23.0% 
Rate -0.5% 16.4% 16.6% 23.0% 
limiter 
Both -0.5% 16.4% 16.6% 23.0% 

20° Saturation 20.5% 11 .3% 17.4% 
Rate 16.0% 14.1% 7.9% 17.4% 
limit er 
Both 16.0% 14.0% 8.5% 17.4% 

30° Saturation 26.4% 19.4% 11 .1% 9.1% 
Rate -33.6% -7.9% 5.1% 9.1% 
Iimiter 
Both -27.8% 1.7% 7.5% 9.1% 

6. ANALYSIS 

Fig 4 and Tables l and 2 show how the standard 
ANFJS controller struggled to cope with the faults 
presented to it It was also clear that as the level of 
faults increased then the performance of the 
controller degraded and that the rise times increased. 
This was certainly to be expected due to the design 
used for the standard ANFIS controller used for the 
AUV. 

It has then been shown via Fig 5 and Table 3 that 
even a basic heuristic FIS can enhance the fault 
tolerant perfonnance of the AUV. 

Finally the perfonnance of the best-tuned FIS was 
displayed. The results of these tests showed how the 
simulated annealing program had adapted the FIS in 
order improve the performance of the AUV. The 
most significant improvement was 26.4%, which was 
in the saturation fault of 25% over a 30 degree step 
inpuL With the worst result being a drop in 
performance of 33.6% in the rate limiter fault of 25% 
over a 30 degree step input This may be due to the 
starting FIS used in the tuning. From Table 3 it is 
clear that a large RMSE is produced by this fault. 
The training does improve the results, but not to a 
sufficient level to produce an improvement in all of 
the faults considered. 

The rise times shown in Tables 2 and 5 present a far 
better view of the tests, with two thirds of the rise 
times being reduced, and only four cases show an 
increase in time taken. Titis shows that the FIS is 
forcing the AUV to turn slightly faster, to try and 
compensate for the faults. 

7. CONCLUSIONS 

The analysed results show how the perfonnance of 
the AUV has been enl1anced by the fault tolerant FIS. 
:n1e results for the large errors are good showing 
unprovements of between 9.1% and 23%. Overall 
twenty seven of the tests produced an increase in 
performance and only five showed a decrease. It is 
unmistakably clear that for a small error over the 
large step tl1e fault tolerant controUer actuaUy inhibits 
the performance of the AUV. This problem was due 
to training method used, whereby a general 
improvement is accepted even if for some of the 
results the perfonnance has decreased. Titis may well 
be correctable if the FIS could be trained for a great 
number of epochs. 

The rise time results show that for a large LOE aU of 
the rise times have decreased. For a small LOE the 
rise tinles have remained the same or as shown in six 
of the tests, actually increased. Nineteen of the thirty
six results displayed the rise time decreasing. With 
furtl1er training it should be possible to have all 
thirty-six rise times reduced. 

One solution to tl1is would be to limit tJ1e maximwn 
angle tl1e AUV turns in one motion, or only use tl1e 
FTCS when there is a large fault occurring within tJ1e 
actuator. This would perhaps slow the process of any 
mission down, but not to the extent that continuing 
on the mission with the non-fault tolerant controller 
in place would. 
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Abstract: This paper is concerned with using fuzzy logic in a fault tolerant control 
scheme for a given autonomous underwater vehicle (AUV). Actuator failures are 
simulated within the yaw channel to test the ability of both a normal adaptive neuro
fuzzy inference system (ANFIS) controller and a fault tolerant fuzzy control system 
tuned using a tabu algorithm. Results are presented to show how each of the control 
systems coped with faults occurring within one of the two control actuators of the AUV. 

Keywords: autonomous underwater vehicle, fault tolerant, fuzzy logic, tabu search. 

1. INTRODUCTION 

Commercial, naval and scientific operational 
specifications for uninhabited underwater vehicles 
(UUVs) continue to become more challenging in line 
with the advances being made in the field of control 
engineering. In order to survive actuator failure 
during a mission, such vehicles need to possess either 
a reconfigurable or a fault tolerant control system. 

In recent years, considerable interest has been shown 
into the commercial, scientific and naval use of 
UUVs. UUV being a generic expression to describe 
both an AUV and a remotely operated vehicle 
{ROV). An AUV is a marine craft which fulfils a 
mission or task without being constantly monitored 
and supervised by a hwnan operator, whilst a ROV is 
a marine vessel that requires instruction from an 
operator via a tetltered cable. 

Demands are growing for the reqtii.rCment of AUVs 
to be able to operate effectively at extreme depUIS 
and/or in confined areas such as under packed ice. 
Unfortunately communication to and from the craft 
to the motller station through the sea water medium 
are poor. Thus, an AUV has to be self-sufficient for 
the duration of a mission. Fault tolerant control 
systems could also be beneficially instal!ed within 
ROVs. Their employment within ROVs would 
significantly lighten Ute workload of the human 
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operators allowing iliem to concentrate on the 
mission, whilst permitting them to maintain overall 
supervisory control. 

This paper begins \viili the dynamics of the vehicle 
and the set-up of both the control system and the 
faults to be considered. Then the approach used to 
make U1e AUV fault tolerant is described. The results 
are then presented to show how tlte controllers 
handle Ute faults before, finally, ilie concluding 
remarks are given. 

2. AUV DYNAMICS 

The standard controller referred to Ulfoughout this 
paper is iliat developed by Craven [ l) specifically for 
U1e given AUV model used within this study. It is an 
intelligent fuzzy logic controller developed using the 
ANFIS approach [3). TI1e control system was not 
designed to cope with the types of fault which are 
considered witllin this paper, it is only designed to 
control the yaw angle for the given AUV when it is 
fully operational. It was vital to test this controller to 
create a benclunark set of results. Titese results will 
be used for comparisons with tile new control system 
design 

0 i 



2.1. The Control Authority 
The complete control authority of the AUV model is 
shown in Fig l. It should be noted at this time that 
both the standard yaw ANFIS controller and U1e new 
fuzzy fault tolerant controllers only have command 
of the upper and lower canards (forward control 
surfaces) during this work. 

ROLL CONTROL 

PITCif CONTROL 

Fig. l. Control Authority of tlle AUV 

2.2. The Yaw Controller 
The fuzzy logic rules for ilie standard ANFfS yaw 
controller used in this paper are given below in 
equation I. 

If Vl6 is Neg and tjf is Neg then 

(j = -0.4863 Vl&-0.8191 tjf -0.02926 

lf VIs is Neg and tjf is Zero then 

/i= -0.4890VI6 -0.902 J tjf+0.00138l 

If VIe is Neg and tjf is Pos U1en 

/i= -0.4858 VIe -0.8962 tjf +0.003143 

If VIe is Zero and tjf is Neg then 

/i= -0.2994 V'e -0.7034 tjf -0.1227 

If VIe is Zero and tjf is Zero then 

(j = -0.4879 VIe -0.8910 tjf +0.003723 

If VIe is Zero and tjf is Pos U1en 

/i= -0.3053 VIe -0.3055 tjf -0.03744 

If VIe is Pos and tjf is Neg then 

/i= -0.5902 VIe -0.8387 tjf -0.1172 

If VIe is Pos and tjf is Zero then 

/i= -0.4811 Vl6 -l.08l tjf -0.06111 

If '1'4 is Pos and tjf is Pos t11en 

(j= -0.6596 VIe -1.311 tjf + 0.7814 

(l) 

Where 'l'e is the yaw angle error and is tlle difference 
between tlle yaw angle demand and the actual yaw 

angle, tjf is the yaw rate, /i is t11e desired rudder 

angle, Neg and Pos, and Zero are fuzzy sets. 
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J. FAULT TOLERANT CONTROLLER 

To attempt to cope with tlle failures it is proposed to 
situate a fuzzy logic system between tlle ANFIS 
controller and ilie AUV dynamics. This wiJl multiply 
the 'control signal used by tlle actuators, as shown in 
Fig 2. This improvement should give the control 
system a level of fault tolerance to t11e failures that 
are being considered in this paper. 

Fig. 2. Fault Tolerant Control System Set-up 

The fuzzy logic system can be seen to take three 
batches of information for use in determining the 
degree of failure which has occurred and ilien makes 
t11e necessary correction for it The three pieces of 
information tlle system will have as inputs are, ilie 
demand being placed on ilie standard ANFIS 
controller, U1e demand being placed on ilie actuators 
by the standard ANFIS controller and, tlle error in U1e 
damaged actuator. The fuzzy logic system 
compensates for the fault and returns tlle AUV to a 
fully functional or near fully functional situation. 
When iliere is no fault present, ilie fault tolerant 
system will have a mininlal aff~ct on tl1e ANFIS 
control signal. However when a fault does occur it 
will compensate for it and allow the AUV to continue 
operating and complete its mission. 

For tllis paper two fuzzy fault tolerant systems were 
tested. The first was a heuristic fuzzy inference 
system (FIS). This was designed by taking a simple 
approach to tlle problem, the bigger t11e error, the 
larger t11e value tlle control signal must be multiplied 
by in order to compensate. Tllis was t11en tuned using 
t11e tabu method [2] to create the second FIS. 

4. ACTUATOR FAULTS 

To test tlle fault recovery ability of tlle fuzzy logic 
controllers it was necessary to create several failure 
scenarios. Faults occurring within only one of tlle 
two control actuators are considered in this paper. 
The actuator faults will change ilie way the AUV 
responds to control signals and will also affect the 
dynamic behaviour of t11e AUV. The fault used here 
is one whereby one of U1e two control surfaces 



suffers a los.c; of efficiency (LOE) [4). The upper 
canard was the actuator chosen for the faults to be 
simulated within. 

When the AUV is undamaged the LOE for each of 
the actuators would be 0%. As an actuator becomes 
more damaged this value will rise up to a maximum 
LOE of 100%, which would be total failure where 
the actuator would not be able to move. 

For this study, all of the work has been executed 
within the yaw channel. The san1e principles and 
techniques can be used in any of the other channels 
to produce similar results. 11te failures have been 
simulated in tlte upper canard which is used to 
control yaw. The system was tested by being 
subjected to three step inputs (10, 20, and 30 
degrees). Within tbe AUV model tlte actuators are 
formed using three blocks, a rate limiter, a saturation 
block and a transfer function, as shown in Fig 3. 

m ~rn ~m ~1 .2:+1 ~ 
ilput From Rate Umlter Saturation To AUY 
Controller 9.9 degrees +/-25.2 Trans~er- Dynamics 

per second degrees Funchon 

Fig. 3. Actuator Simulator Within Matlab AUV 
Model 

Tite first type of failure is total LOE, which can also 
be thought of total failure of one control surface at 
zero degrees. lllis failure has been chosen to 
simulate tlle control surface becoming locked. Tilis 
failure was accomplished by setting tl1e input from 
the controller (see Fig 3) to zero. 

Tite second type of failure is to reduce the 
effectiveness of the controller. 11te percentages of 
LOE considered for tllis work were 75o/o, 50%, and 
25% [4) . There are three types of failure which can 
be implemented using tllis approach for actuator 
failures. These failures can be achieved by altering 
the values within the saturation and the rate limiter 
blocks shown in Fig 3. For this paper the actuator 
failures were simulated firstly by altering only the 
value in tlle saturation block (shown in tJte tables as 
'Saturation'), secondly by altering only tlte value in 
ilie rate limiter block (shown in tables as 'Rate 
linliter'), and thirdly by altering both values 
simultaneously to tlte sante level of failure (shown in 
tables as 'Botll'). 

S. RESULTS 

The standard non-fault tolerant ANFIS controller and 
the fault tolerant controllers were all subjected to the 
complete range of faults described in tlle previous 
section using the Matlab SIMULINK computer 
package. 
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S. l . The Standard ANFIS ControUer 
The first set Q..f tests were performed on tbe standard 
ANFIS control -'system. Below the performance of 
this controUer can be seen as it attempts to achieve 
the 30 degree demanded yaw angle while enduring 
an increase in the level of failure (using tlle failure 
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defined as 'Botlt ') for successive simulat.ions (Fig 4). 
Fig. 4. The Standard ANFJS Controller System 
Attempting to Handle Various Levels of t11e 'Both' 
Failure Scenario. 

In order to make comparison of the controllers easier 
two forms of infom1at.ion have been recorded. Firstly 
the root mean squared error (RMSE) value, between 
t11e desired and tl1e actual results was calculated. 
Where the desired results are defined as tlle recorded 
yaw angle of tlte AUV when LOE was 0%. The 
RMSEs for the standard control system, for all of the 
given faults for t11e given demanded yaw angles, have 
been compiled in Table 1 shown below. 

Table I. Tile RMSEs (degrees) for t11e Complete Set 
of Results for tlte Standard ANFIS Controller 
step type of 25% 50% 75% 100% 
size failure 
10° Saturation 0 0 0.099 1.065 

Rate 0.075 0.188 0.380 1.065 
limiter 
Both 0.075 0.186 0.360 1.065 

20° Saturation 0 0.127 0.741 2.360 
Rate 0.205 0.546 1.080 2.360 
limiter 
Both 0.205 0.546 1.132 2.360 

30° Saturation 0.094 0.691 1.904 4.125 
Rate 0.434 1.088 2.172 4.125 
limit er 
Both 0.436 1.172 2.390 4.125 

The second type of information used to evaluate t11e 
systems was the rise times. Where the rise time is 
defined as the time taken for tlle AUV to rise from 
five to ninety five per cent of the demanded yaw 
angle. The rise times for tlle standard control system, 
when attempting to handling the all of the given 
faults for the given demanded yaw angles, have been 
compiled in Table 2 shown below. 

·~ 



Table 2. The Complete Set of Rise Times (seconds) 
. . Co 1 s of The Chosen Heunstic ntro ,ystem. 

step size type of failure 25% 50% 75% 100% 

10° Sat 4.5 4.5 4.7 7.1 
Rate limiter 4.6 4.7 4.8 7.1 
Both 4.6 4.7 4.8 7.1 

20° Sat 4.8 4.9 5.4 7.5 
Rate limiter 4.7 4.7 4.9 7.5 
Both 4.7 4.7 5 7.5 

30° Sat 4.9 5.3 6.1 7.9 
Rate limiter 4.3 4.5 5.3 7.9 
Both 4.4 4.7 5.7 7.9 

5.2. The Heuristic Controllers 
Several heuristic controllers were created as starting 
points for the tuning process. The first of them was to 
have a FIS whose starting point did not affect the 
output of the standard controller. As expected this 
gave results identical to those of the standard ANFIS 
controller shown above. The others all worked on the 
principle that as the size of fault increased then the 
signal must also be increased. Below is shown the 
results for one such FIS attempting to compensate for 
the set of failures defined above as 'Both' over the 30 
degree step input demand (Fig 5). 
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Fig. 5. A Heuristic Control System Attempting to 
Handle Various Levels of the 'Botl1' Failure 
Scenario. 

The complete set of RMSEs for the same heuristic 
controller when subjected to all the given failure 
scenarios have been compiled in Table 3. 
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Table 3. The Complete Set of RMSEs (degrees) of 
Th Ch H 'sti Co tr l S st e osen eun c n o ~ em. 

step type of 25% 50% 75% 100% 
size failure 

10° . Saturation 0.004 0.004 0.095 1.024 
Rate 0.072 0.183 0.367 1.024 
limit er 
Both 0.072 0.183 0.367 1.024 

20° Saturation 0.112 0.113 0.711 2.255 
Rate 0.181 0.494 1.051 2.255 
limiter 
Both 0.181 0.494 1.098 2.255 

30° . Saturation 0.060 0.603 1.829 4.001 
Rate 0.548 1.120 2.114 4.001 
limiter 
Both 0.529 1.145 2.320 4.001 

5.3. The Tuned Controllers 
The heuristic FIS mentioned above was t11en tuned 
for 500 epochs using a set of training data, which 
comprised of various sizes of steps with different 
levels of failures occurring. The FIS was tuned using 
the tabu method [2]. The FISs which performed best 
on the training data were then re-tested on the 
failures used above. After the training and testing of 
the FISs had taken place it was possible to determine 
which of t11e FISs handled the faults optinlally. This 
was done by taking into account t11e perfonuance of 
each FIS with respect to all of the faults. The fuzzy 
logic rule base for the best system is shown below in 
equation 2. 

If o is Neg and 'Ifs is Neg and tf is Small 
then p =0.8802 

If o is Neg and f//6 is Neg and tf is Medium 
t11en p = 1.3311 

If o is Neg and f//s is Neg and tf is Big 
then p = 1.1293 

If-b'is Neg and f//s is Zero and tf is Small 
then p = 1.1034 

If o is Neg and f//£ is Zero and tf is Medium 
then p = 1.2944 

If o is Neg and 'fc is Zero and 17 is Big 
then p = 1.1031 

If o is Neg and f//c is Pos and tf is Small 
then p = 0.9496 

lf o is Neg and 'Ifs is Pos and tf is Medium 
thenp= 0.9229 

If o is Neg and f//c is Pos and '7 is Big then p = 1.30 10 
If o is Zero and '1/& is Neg and '7 is Small 

thenp= 0.9940 
lf o is Zero and 'fc is Neg and '7 is Medium 

then P= 0.7219 
If o is Zero and 'fc is Neg and t/ is Big 

then p = 1. 2037 
lf o is Zero and '1/& is Zero and '1 is Small 

then p = 1.0284 
lf o is Zero and f//& is Zero and tf is Medium 

then P = 1.0490 



If o is Zero and "'"is Zero and '7 is Big 
thenP= 1.2851 (2) 

lf o is Zero and "'" is Pos and tJ is Small 
thenP= 1.0503 

If o is Zero and "'"is Pos and '7 is Medium 
then p = 1.1073 

If o is Zero and "'"is Pos and '1 is Big 
then p = 1.0012 

If o is Pos and "'"is Neg and '7 is Small 
· thenP= 6.7378 

If o is Pos and 'Ifs is Neg and '7 is Medium 
U1enp = 7.2062 

If o is Pos and "'" is Neg and '1 is Big 
U1en p = 7.2363 

lf o is Pos and "'" is Zero and '7 is Small 
then p = 1.2028 

If o is Pos and "'" is Zero and '7 is Medium 
thenp= 0.9834 

If o is Pos and "'"is Zero and '7 is Big 
thenP= 1.0905 

If 8 is Pos and "'" is Pos and '1 is Small 
U1en p = 0.8235 

If 8 is Pos and "'"is Pos and 17 is Medium 
then p = 1.0272 

If ois Pos and "'"is Pos and '1 is Big Ulen p = 0.8852 

Where Pos, Neg, Zero, o and 'l'c are as defined above 
and '1 is the error in actuator and p is Ule control 
signal multiplier. 

TI1e results, expressed as RMSEs, for the chosen FIS 
are shown below in Table 4. 

Table 4. The Complete Set of RMSEs (degrees) for 
The Best Tuned Heuristic Control System 
step type of 25% 50% 75% 100% 
size failure 
10° Saturation 0.064 0.064 0.056 0.951 

Rate 0.044 0.139 0.325 0.951 
limiter 
Both 0.044 0.139 0.325 0.951 

20° Saturation 0.209 0.086 0.618 2.1 27 
Rate 0.265 0.509 0.975 2.127 
limit er 
Both 0.264 0.507 1.017 2.127 

30° Saturation 0.081 0.489 1.763 3.938 
Rate 0.698 1.281 2.093 3.938 
limit er 
Both 0.660 1.180 2.278 3.938 

Below is shown the results for Ulis best tuned FIS 
attempting to compensate for U1e set of failures 
defined above as 'Both' over the 30 degree step input 
demand (Fig 6). 
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Fig. 6. The Best of Ule Tuned Control Systems 
Attempting to Handle Various Levels of Lhe 'Both' 
Failure Scenario. 

The rise times for the chosen FIS, when attempting to 
handle all of U1e given faults for the given demanded 
yaw angles, have been compiled in Table 5 shown 
below. 

Table 5. The Complete Set of Rise Times (seconds) 
0 fTh B t T ed H . ti C tr I S t e es un euns c on o ~ys em. 
step size type of failure 25% 50% 75% 100% 

10° Sat 4.4 4.4 4.5 6.8 
R~te limiter 4.5 4.6 4.6 6.8 
Both 4.5 4.6 4.6 6.8 

20° Sat 4.6 4.7 5.3 7.2 
Rate limiter 4.3 4.2 4.7 7.2 
Both 4.3 4.2 4.8 7.2 

30° Sat 4.9 5.1 6 7.7 
Rate limiter 4.1 4.3 5.2 7.7 
Both 4.2 4.5 5.6 7.7 

The RMSEs displayed within Table I and Table 4 
were then used to calculate the percentage increase in 
perfonnances achieved by the tuned FIS for the faults 
which have been considered in this paper. These 
percentages are shown below in Table 6. 

Table 6. The Percentage Increases For the Best 
edF Co IS Tun uzzy ntro system. 

step type of 25% 50% 75% 100% 
size failure 

10° Saturation 41.7% 10.7% 
Rate 41.8% 26.2% 14.3% 10.7% 
limit er 
Both 41 .8% 26.2% 14.3% 10.7% 

20° Saturation 32.2% 16.6% 9.9% 
Rate -39% 6.7% 9.8% 9.9% 
limiter 
Both -39% 7.2% 10.1% 9.9% 

30° Saturation 14.6% 29.2% 7.4% 4.5% 
Rate -61% -18% 3.7% 4.5% 
limiter 
Both -51.3% -0.7% 4.7% 4.5% 



6. ANALYSIS 

Fig 4 and Tables 1 anci 2 show how the standard 
ANFIS CQntroller struggled to cope with the faults 
presented to it It was also clear that as the level of 
faults increased then the performance of the 
controller degraded and that the rise times increased. 
This was certainly to be expected due to the design 
used for the standard ANFlS controller used for the 
AUV and the faults used. 

It has then been shown via Fig 5 and Table 3 that 
even a basic heuristic FIS can enhance the fault 
tolerant performance of the given AUV. 

Finally the performance of the best tabu search 
algorithm tuned FIS was displayed. The results of 
these tests showed how the tabu program had adapted 
the FIS in order improve the perfonnance of the 
AUV. The highest percentage increase was 41.8o/o, 
which was in two tests, the 'Saturation' fault and the 
'Both' fault of 25% over a 10 degree step input With 
the worst result being a drop in performance of 61% 
in the 'Rate limiter' fault of 25% over a 30 degree 
step input. This may be due to the starting FIS used 
in the tuning. From Table 3 it is clear that a large 
RMSE is produced by this fault The training does 
not improve the results, which may be due to the 
tuning process accepting a decrease in perform on 
tltis fault if overall it judged tl1e controller to be an 
improvement. 

The rise times shown in Tables 2 and 5 present a far 
better view of the tests, witll all but one of tile rise 
times being reduced, and the remaining one result 
having the same rise time. This shows that the FIS is 
forcing' the AUV to twn slightly faster, to try and 
compensate for tile faults. 

7. CONCLUDING REMARKS 

The analysed results show how the performance of 
tile AUV has been enhanced by the fault tolerant FIS. 
The results for tile large errors are good showing 
improvements of between 4.5% and 10.7%. Overall 
twenty seven of the tests produced an increase in 
perfonnance and only six showed a decrease. It is 
unmistakably clear that for a small error over the 
medium and large steps that the fault tolerant 
controller actually inllibits tile performance of the 
AUV. This problem was due to tile training metllod 
used, whereby a general improvement is accepted 
even if for some of the results tile performance has 
decreased. This may well be correctable if the FIS 
was to be trained for a great number of epochs. 

The rise time results show that for all levels of LOE, 
all but one of the rise times have decreased. Witll 
further training it should be possible to have all 
~-six rise times reduced. This shows that tile 
training is effective at producing a FIS which will 
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speed up the process of reaching tile desired yaw 
angle and hence reduce the rise time back to that of 
tile LOE 0% results. 

One .solution to tile poor results for small LOE faults 
would be to limit tile maximum angle tile AUV turns 
in one motion. Tilis would perhaps slow the process 
of any mission down, but not to the same extent as 
with tile non-fault tolerant controller. A second 
possible solution would be to only use the fault 
tolerant control system when there is a large fault 
occurring within the actuator. 
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Appendix B Open loop Results 

Type of Model Input Path Outputs Input Path Outputs 
Type Type 

Random yaw rate yaw RMSEs Small Step yaw rate yaw RMSEs 
(training data) RMSEs (degrees) (5 degrees) RMSEs (degrees) 

(degrees per (degrees 
second) I per second) 

DERA 3.7968 94.6567 0.9733 29.8461 

Linear 4.1625 280.7301 0.6888 19.5272 

fuzzy 2.4877 40.4470 0.5128 14.7005 

Elm an 4.1328 683.8166 0.5373 12.9213 
Medium Step Large Step 
(15 degrees) (25.2 degrees) 

DERA 1.7359 51 .7064 1.1376 28.5099 
Linear 1.0489 20.8646 1.4189 24.1161 

fuzzy 0.4660 10.6065 1.1361 31 .8414 

Elm an 1.6798 51 .8552 3.9686 122.7443 
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Appendix C Elman ANN Yaw Channel Model 

The weight matrices and bias vector for the Elman ANN used in Chapter 3 are shown 

below. 

The weight matrix for recurrent layer is: 

Columns 1 through 7 

-0.0249 -0.0275 -0.0890 0.2150 0.2031 -0.0047 0.0662 
-0.0211 0.0022 -0.0729 -0.2253 -0.1736 -0.0878 0.1446 
0.0521 0.0575 0.0079 -0.1764 0.0089 -0.1753 0.2336 
0.0471 0.0589 0.0746 -0.1292 0.1220 0.1937 0.2128 
0.1284 0.1566 0.0831 0.2019 -0.1120 -0.1683 0.0108 
0.0072 0.0328 0.1127 -0.1930 0.0215 0.0395 0.0600 
0.0163 -0.0147 0.0514 0.1886 0.2272 -0.0833 0.0320 

-0.0370 -0.0016 -0.1389 0.0622 -0.1682 0.1925 -0.0490 
0.0081 -0.0046 -0.0163 0.1377 0.1875 -0.1468 0.0757 
0.0056 0.0158 0.0042 0.0781 -0.1826 0.0980 -0.2076 
0.0168 -0.2415 0.1830 -0.1852 -0.1557 0.2196 0.0598 
0.0052 0.0164 0.0211 0.2683 0.0327 -0.1071 0.0596 
0.0040 0.0200 -0.0055 0.0074 0.0538 0.0313 -0.1425 
0.2208 0.1860 0.1226 -0.0730 -0.2015 0.1379 0.0841 
0.0069 -0.0042 -0.0177 -0.2174 0.0414 -0.1172 0.0841 

-0.0078 0.0117 -0.0408 0.1495 -0.0312 -0.1480 0.1419 
0.0034 -0.0050 0.0427 -0.1832 -0.0308 0.1336 -0.0799 
0.1695 0.1 507 0.0798 -0.1690 -0.1433 0.1856 0.0964 
0.3320 0.3424 0.2625 0.1907 -0.2525 -0.2189 -0.1671 
0.0030 0.0005 0.0019 -0.0099 0.0716 0.1836 -0. 1044 
0.0389 -0.0379 -0.0013 -0.0574 0.0979 0.1913 0.0651 

-0.1163 -0.1123 -0.0376 0.1948 0.0151 -0.1462 -0.0618 
-0.0044 -0.0043 -0.0112 -0.2107 -0.0769 -0.0175 0.0690 
0.0332 0.0157 0.1384 0.0078 0.1217 0.0224 -0. 1956 

-0.0047 0.0135 -0.0381 -0.0817 -0.0511 -0.1356 -0.1996 
0.1333 0.1055 0.3932 0.0996 0.0419 0.0169 0.0495 
0.0 I 03 0.0013 0.0568 0.1197 -0.2355 0.1910 0.0902 
0.0016 -0.0214 0.0294 -0.0345 0.0863 0.1153 -0.0481 
0.2202 0.2420 0.2012 -0.1329 -0.0314 -0.0101 -0.1398 

-0.1272 -0.1187 -0.0432 0.1874 0.1824 -0.1028 -0.0506 
-0.0033 0.0106 -0.0055 0.0452 0.1564 -0.0967 -0.1288 
0.0188 0.0304 0.1319 -0.2055 0.2132 0.0217 0.0829 

Columns 8 through 14 

0.1152 0.1486 -0.11 21 0.0064 0.1775 -0.1705 0.1632 
0.1742 -0.1973 0.0914 -0.1693 0.1654 0.0195 -0.1313 
0.0755 0.0413 -0.1290 -0.1067 0.1820 -0.0008 0.1788 

-0.0253 -0.1914 0.0361 0.2029 0.0891 0.1839 0.1752 
0.1185 0.0053 -0.0643 -0.2001 0.0594 -0.1756 -0.1 143 

-0.1091 0.1711 -0.2231 -0.0204 0.0467 0.0453 -0.1515 
-0.0155 0.1106 0.0829 0.1704 -0.0865 0.1561 -0.1491 

326 



0.0704 0.0992 0.1007 -0.1251 -0.2326 -0.2294 -0.1248 
0.0220 -0.0212 -0.0002 0.0353 0.0849 -0.0809 -0.0539 

-0.2013 -0.23 13 0.1753 -0.0430 -0.0067 0.2274 0.1427 
0.1973 0.1235 0.0988 0.1523 -0.0448 -0.0557 -0.2190 
0.0047 0.0664 0.1648 0.1626 0.2659 0.1930 0.0834 

-0.0882 -0.07 10 0.0755 -0.0364 0.2039 -0.0009 0.0022 
0.1649 0.1982 0.0103 0.0892 -0.0996 -0.0289 0.1 673 
0.0357 -0.0206 -0.2184 0.1262 0.1549 0.3150 0.2245 

-0.0642 -0.0538 0.1156 0.0217 -0.0765 -0.0495 0.0816 
-0.1202 -0.1646 -0.2264 0.0176 0.1144 -0.0245 -0.0560 
-0.0185 -0.0207 -0.1911 -0.0619 0.1996 -0. 1148 0.0358 
0.2853 0.2377 -0.0999 -0.1276 0.0917 -0.1010 -0.1878 
0.0469 -0.0584 -0.1812 0.2279 0.0960 0.2143 0.1987 
0.0943 0.1492 -0.0177 0.0031 0.3 174 -0.0514 0.1128 
0.1430 -0.1982 -0.1230 -0.0960 0.1255 -0.1260 -0.0878 

-0.1942 -0.0796 -0.0796 -0.0058 -0. 1898 0.0805 0.1265 
-0.2670 -0.0974 -0.2553 0.1042 0.0877 0.1422 -0.1626 
0.0941 -0.2116 0.2070 0.1336 0.1845 0.0468 -0.0651 

-0.1735 -0.1895 -0.2506 -0.1412 0.1618 0.2430 0.0748 
-0.0465 0.0094 -0.0027 -0. 1295 -0.0135 0.1960 -0.0690 
0.1342 0.1469 -0.1383 0.0347 -0.1255 0.0434 -0.0752 
0.1722 -0.1108 0.0357 -0.1690 0.0779 -0.1202 -0.2425 

-0.1658 0.1135 -0.0809 0.0060 0.2178 0.2405 -0.1507 
-0.0682 0.1506 0.0351 0.1683 0.0147 -0.1830 -0.1984 
0.0473 0.0228 -0.1013 -0.1715 -0.1441 -0.11 25 -0.0049 

Columns 15 through 21 

-0.0416 0.0241 -0.0743 -0.2009 0.0498 -0.2000 0.0578 
-0.1647 -0.0558 0.1618 0.0418 0.0471 0.2247 0.0029 
-0.1870 -0.07 11 -0.1401 0.1802 -0.0172 0.1489 -0.0646 
-0.0295 -0.1346 0.1054 -0.1635 -0.0971 0.0278 0.1307 
0.1453 0.2092 0.1488 0.0826 0.1872 -0.1380 0.0921 

-0.0834 -0.0958 -0.1925 0.1172 -0.0530 0.1176 -0.1472 
0.0807 -0.0432 0.0995 -0.1571 0.0171 -0.1360 0.1230 

-0.2036 -0.1245 -0.2500 -0.0753 -0.0809 -0.0320 -0.1989 
0.2396 0.1435 0.2076 0.1751 -0.1710 -0.1035 0.1765 
0.0730 0.0505 0.1677 -0.0508 0.0309 -0. 1747 -0.1163 

-0.0661 -0.1884 0.0661 0.1293 0.1438 0.1256 0.2 151 
-0.1060 -0.1490 0.0394 0.1650 0.1592 0.0878 -0.1663 
-0.0698 0.1011 -0.0552 -0.1327 0.1827 -0.1093 -0.2842 
-0.1432 -0.0013 -0.1979 -0.1123 0.1191 -0.0557 0.1719 
-0.1009 0.0042 0.1605 0.2669 0.1105 -0.2 170 0.0585 
-0.2142 0.1995 -0.0261 0.2397 0.0717 -0.1588 0.1955 
-0.0234 -0. 1084 -0.0956 -0.0538 0.0930 0.2437 -0.1562 
0.0752 0.1536 0.0055 0.1753 0.0133 0.1773 0.0861 

-0.2358 -0.0804 0.0537 -0.1336 -0.1623 0.0826 0.1260 
-0.0808 0.1782 0.1827 0.1134 0.0062 0.1580 -0.1823 
0.2085 -0.0967 0.0492 0.2100 -0.0837 0.0261 -0.1489 
0.1224 -0.0739 0.1202 0.1460 0.2022 -0.0069 0.0979 
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-0.1073 0.1118 -0.0026 -0.0614 -0.0025 0.0471 -0.1683 
0.1521 0.1993 -0.2424 0.1096 0.0168 0.0294 -0.0830 

-0.1203 -0.1124 -0.0762 0. 1238 -0.0773 0.0010 -0.2328 
-0.0342 0.0462 -0.0547 -0.0720 0. 1330 0.0955 -0. 1435 
0.0724 -0.0545 -0.0211 0.0883 0.1530 -0.2142 -0.0068 

-0.0849 -0.0813 0.1839 -0.2598 -0.1807 -0.1074 0.2000 
-0.2678 -0.2314 0.1844 -0.1946 -0.0786 -0.1966 0.0298 
-0.1621 -0.1060 0.0746 0.0006 -0.0853 0.1705 0.1407 
-0.1214 -0.0887 -0.1894 -0.0849 -0.2077 0.1761 -0.1651 
-0.1692 0.1125 -0.0329 0.0260 -0.0164 0.2554 0.2887 

Columns 22 through 28 

0.1928 -0.0797 0.1425 -0.1594 0.1499 0.1336 -0.1335 
-0.0577 -0.0399 0.0074 -0.0148 -0.0748 0.0679 0.0581 
-0.0802 0.0989 -0.1589 -0.1803 0.1257 -0.1071 0.0490 
0.1858 -0.0131 -0.0693 0.1151 -0.1703 -0.0640 -0.0282 
0.1325 0.1182 0.0568 -0.1366 -0.0874 0.0026 0.1618 
0.2293 0.0482 -0.1068 -0.2121 -0.1898 -0.0595 -0.1285 

-0.2097 -0.1486 -0.0843 0.0376 -0.0905 -0.1641 -0.0968 
-0.0142 -0.1931 -0.2017 -0.0657 0.1527 -0.0914 0.1799 
0.2005 0. 1906 -0.1463 -0.0046 0.1445 -0.1113 -0. 1881 

-0.1344 0.2065 0.1755 0.1335 -0. 1357 0.1073 -0.0678 
-0.1072 0.1059 0.0859 -0.1713 -0.2340 -0.2170 0.0729 
-0.0419 0.2271 0.0857 0.1157 -0.2921 -0.1920 0.1582 
-0.1320 -0.1642 0.0691 0.0866 0.0290 -0.1667 0.2737 
0. 1939 -0.0648 0.0849 0.0778 0.1936 0.1144 0.1385 

-0.0018 -0.0747 0.2154 0.0159 -0.1926 -0.0557 -0.0319 
-0.2113 -0.0611 -0.1479 0.0142 -0.1866 -0.0104 0.1035 
0.0681 -0.1902 0.0990 -0.1370 -0.0558 -0.1938 0.1564 

-0.1115 -0.1632 -0.1946 -0.0006 -0.0756 0. 1651 -0.1673 
-0.1137 -0.2284 -0.2094 -0.0025 0.0498 0.0393 0.2686 
0. 1620 0.2608 -0.0648 -0.0245 -0.2464 -0.2114 0.2310 

-0.1264 0.3102 0.1415 0.0098 -0.3261 -0.0412 0.0127 
0.1270 0.0626 0.0047 -0.0732 0. 1944 0.1685 0.0606 

-0.1248 -0.1244 -0.2122 -0.1946 0.2862 0.1419 -0.0982 
-0.2198 0.1815 0.2078 -0.1196 0.0362 -0.0746 -0. 1948 
-0.0507 0.1764 -0.2193 -0.0500 0.2020 -0.1534 0.0149 
0.0391 -0.1843 0.0067 0.0288 0.0607 -0.0149 0.1660 

-0.1913 0.0142 0.1558 -0.1914 0.1343 -0.1205 -0.0417 
0.2017 0.0860 0.1790 0.1260 -0.0896 0.0261 -0.1927 

-0.1398 -0.0291 -0.0452 -0.2049 0.049 1 0.1010 0.0953 
-0.0455 0.0721 0.1962 -0.1227 -0.0478 0.0007 -0.0378 
-0.0345 0.0366 -0.0969 -0.0843 0.1673 0.1869 -0.2168 
-0.0200 -0.1628 0.2756 0.0676 0.0113 0.0759 -0.0757 
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Columns 29 through 3 5 

0.0605 -0.1687 0.1190 0.0685 -0.1627 0.01 22 -0.0677 
-0.0678 -O. l135 -0.0146 0.2352 0.0273 -0.2360 0.2507 
-0.0798 -0.0785 0.2473 0.0541 -0.1110 0.1765 0.0738 
-0.0551 -0.092 1 -0.1253 0.1234 -0.1806 -0.2161 -0.1959 
0.0404 -0.0260 0.0766 -0.1514 0.1059 -0.1369 0. L 745 
0.1529 0.1583 0.1668 0.1409 0.1472 0.0221 0.0683 
0.0239 0.0545 0.0412 -0.1570 -0.1972 0.0341 -0.2704 
0.0542 -0.2645 -0.2159 -0.2541 -0.0487 0.1389 0.0544 
0.0733 0.0598 -0.0657 -0.0734 -0.0151 -0.2757 -0.1033 

-0.0695 -0.2203 0.0916 0.0577 -0.1334 -0.2488 -0.1531 
-0.0352 0.0675 -0.1052 0.0917 -0.2338 -0.1523 -0. 1493 
-0.0051 -0.1551 0.0445 -0.1275 0.0663 -0.1208 0.1667 
0.1896 -0.0975 -0.1910 -0.1911 -0.2349 -0.1571 -0.0086 

-0. 1654 0. 1953 0.1675 -0.0279 -0.0795 -0.0382 0.1597 
0.2200 -0.0280 -0.3103 0.1987 -0.1148 -0.1205 -0.0733 

-0.0510 -0.1850 -0.2177 0.1019 0.1577 0.1993 -0.0006 
0.1635 0.1962 -0.0784 0.0507 -0.1488 0.1286 0. 1751 
0.1683 0.0401 0.1184 -0. 1186 0.1154 -0.1921 0.1711 
0.0009 -0.0363 0.1400 -0.0155 0.0650 0.0213 -0.1033 

-0.0839 0.1019 0.0787 0.0840 -0.0599 0.0672 -0.0417 
0.1271 -0.2176 -0.2 148 -0.2016 -0.1119 0.0874 0.1567 

-0.1932 0.1516 0.0106 -0.0646 0.0608 -0.2126 -0.1962 
0.1519 -0.0604 0.1341 0.0608 -0.0781 0.2906 0.1776 

-0.3036 0.0092 -0.1975 -0.2564 -0.113 1 -0.1607 -0.0952 
0.1673 -0.1669 -0.0791 -0.2412 -0.0057 -0.0864 0.1043 

-0.0535 0.1070 0.0573 0.1811 -0.0435 -0.2051 0.1332 
-0.1453 0.2017 0.2578 0.1903 -0.0170 -0.0342 0.1453 
0.1337 0.2111 -0.0643 0. 1255 0.1399 0.1187 -0.1007 
0.1994 -0.2316 0.1366 0.0263 0.1478 -0.0739 0.0694 

-0.0328 0.1472 0.0915 -0.1344 0.2043 0.0840 -0.1585 
-0. 1472 0.1631 0.1236 0.0663 0.2060 0.1494 0.1701 
-0.0430 -0.1768 -0.1726 0.0422 -0.0421 -0.1127 0.2350 
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The bias (column) vector for recurrent layer is: 

-0.6493 
-0.4405 
0.0936 

-0.2617 
-0.2907 
0.0386 
0.2674 
0.0212 

-0.2241 
0.4002 

-0.4078 
-0.5000 
-0.4250 
0.1793 
0.6843 
0.5057 

-0.5170 
0.5878 
0.6792 
0.3297 

-0.4496 
0.3577 
0.1658 

-0.0017 
-0.6466 
0.7286 
0.3128 

-0.6597 
-0.3003 
-0.0021 
0.3660 
0.6124 

The weight matrix for output layer is: 

Columns 1 through 7 

0.1516 0.4586 -0.2028 -0.3301 -0.7525 -0.2961 -0.9439 

Columns 8 through 14 

0.9270 0.4822 0.7508 0.7957 0.8822 0.8143 -0.0569 

Columns 15 through 21 

1.0863 0.4672 -0.2682 -0.1295 0.4110 0.5524 1.0385 

Columns 22 through 28 
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0.0912 -0.7070 -1.0058 0.4212 -0.6026 -0.1907 -0.7691 

Columns 29 through 32 

0.2242 0.0997 -0.5035 -0.4377 

The bias (column) vector for output layer is: 

0.4930 
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Appendix D Yaw Channel Sensor Failure Results 
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Standard Yaw Responses to Yaw Sensor 
Signal to Noise Ratios (1 o• demand) 
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Kalman Filter Yaw Responses to Yaw Sensor 
Percentage Faults (50° demand) 
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Kalman Filter Yaw Responses to Yaw Senaor 
Signal to Nolae Ratios (50° demand) 
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Yaw Responses to Yaw Sensor 
lntennlttent Total Failure (90" demand) 
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Standard Yaw Responses to Yaw Rate Sensor 
Percentage Faults (10° demand) 
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Standanf Yaw Responses to Yaw Rate Sensor 
Signal to Noise Ratios (10" demand) 
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Kalman Filter Yaw Responses to Yaw Rate Sensor 
Percentage Faulta (50° demand) 
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Kalman Filter Yew Responses to Yaw Rate Sensor 
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Appendix E Roll Channel Sensor Failure Results 
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Appendix F Yaw Actuator Failure Results 
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PD Controller Yaw Angle Responses for Saturation 
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Kalman Flltar Enhanced Controller Yaw Angle Responses 
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Appendix G Yaw Channel Sensor Recovery FISs Results 
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ANFIS Tuned FIS Yaw Aoapon:aos to Yaw Sensor 
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Simulated Annealing Tuned FIS Yaw Responses to 
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Appendix H Roll Channel Sensor Recovery FISs Results 
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ANFIS Tuned FIS RoD Responses to Roll Sensor 
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Stmulatod AnneaDng Tuned AS Roll Responses to 
RoD Sensor Signal ID Noise Ratios (15" Initial position) 
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Appendix I Actuator Recovery FISs Canard Responses 
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Upper Canard Responses to Actuator LOE In SaturaUon 
Block Using Simulated Annealing Tuned FIS (20° demand) 
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Upper Canard Responses to Actuator LOE In SaturaUon 
Block Using Simulated Annealing Tuned FIS (30° demand) 
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Upper Canard Responses to Actuator LOE In 
Saturation Block Using Tabu Tuned FIS (1 o• demand) 
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Upper Canard Responses to Actuator LOE In 
Saturation Block Using Tabu Tuned FIS (20° demand) 
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Upper Canard Rasponsas to Actuator LOE In 
SaturaUon Block Using Tabu Tuned FIS (30° demand) 
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Appendix J Actuator Recovery Without Error Sensor Results 

3 Rule FIS Controller Yaw Angle Responses for 
SaturaUon Block Actuator Percentage LOE Faults 

12r-------------~--------------, 

·- Ueal 
- 2S" 

- ""' ... 75% 
• lOO% 

~.~------~-------.~.~----~.~.-------72'0 
Tune (uc::oodt) 

3 Rule FIS Controller Yaw Angle Responses for Both 
Block Actuator Percentage LOE Faults 

12r-------------~--------------, 

10 

-- ldaal 
- 25% 
-SO% 
+ 75% 
• 100% 

·2.~------~-------.~.~----~.~.-------7, .• 
Twe (ucondt) 

3 Rule FIS Controller Yaw Angle Responses for 
Rate Umlter Block Actuator Percentage LOE Faults 

l!r-------------~--------------, 

- Ueal 
- 25% 

- '"" + 75% 
• 100% 

-$.~------~------~ •• ~----~.~,------~, •. 
Tune (recond.J) 

3 Rule FIS Controller Yaw Angle Responses for 
Rate Umller Block Actuator Percentage LOE Faults 

12r-------~------~--------~------. 

·-Ued 
- 259i 
- $0% 
+ 75% 
• IOOIMI 

-2 .~------~-------.,,:':.------~.~. -------:!.20 
lime (sccoads) 

3 Rule FIS Controller Yaw Angle Responses for 
Saturation Block Actuator Percentage LOE Faults 

2Sr-------~------~------~------, 

-Ideal 
-25% 

- '"" + 75% 
• 100% 

·5 OL.. ______ ~-------,~.--------,~, -------'20 
T~:mo (reeondr) 

3 Rule FIS Controller Yaw Angle Responses for Both 
Block Actuator Percentage LOE Faulte 

l!r-----~------~------~------, 

-- Ueal 
- 25'Mo 
-50% 
+ 15" 
• 100% 

~.~------~------~,:':.~----~.~.------~,.
Tune (1 OCODcb) 

383 
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Appendix K Sensorless Actuator Recovery FISs Canard Responses 
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Block Using 3 Rule Estimator FIS (10" demand) 
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Upper Canard Responses to Actuator LOE in Saturation 
Block Using 3 Rule Estimator FIS (20° demand) 
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Upper Canard Responses to Actuator LOE In Saturation 
Block Using 3 Rule Estimator FIS (30° demand) 
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Upper Canard Responses to Actuator LOE In 
Saturation Block Using 5 Rule Estimator FIS (1 0° demand) 
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Upper Canard Responses to Actuator LOE In 
SaturaUon Block Using 5 Rule EsUmator FIS (20" demand) 
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Upper Canard Rosponsos to Actuator LOE In 
SaturaUon Block Using 5 Rule EsUmator FIS (30° demand) 
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Upper Canard Responses to Actuator LOE In saturation 
Block Using 7 Rule Estimator FIS (1 o• demand) 
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Upper Canard Responses to Actuator LOE In Saturation 
Block Using 7 Rule Estimator FIS (20° demand) 
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Upper Canard Responses to Actuator LOE In Saturation 
Block Using 7 Rule Estimator FIS (30" demand) 
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Upper Canard Responses to Actuator LOE In 
Saturation Block Using 9 Rule Estimator FIS (10° demand) 
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