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Abstract 

Landslide Investigatíon in the Rio Aguas Catchment, Southeast Spain 

Andrew Barrie Hart 

Many remote and/or rural communities Uve under the threat of major landshde activity. These 
remote areas are also increasingly the focus of development programmes which, without careful 
consideration of the ground conditions, will be at risk. The cost of mitigating against landshde 
activity can also be extremely high, possibly making prevention or avoidance the better long-
term option. It is, therefore, of prime importance to assess the type and magnitude of the 
landslide activity affecting an area, particularly during the feasibility and planning stages of any 
project. The most straightforward approach to any landslide investigation is the compilation of 
a landslide inventory and the development of a geological and geomorphological ground mode! 
for the area under investigation. 

Previous landslide inventory-based projects (for example, in UK, Hong Kong and Nepal) bave 
utilised either desk study or remotely sensed sources (aerial photographs or satellite imagery) 
with only limited field mapping, bave focused on wet monsoonal environments in either 
mountainous and/or heaviiy populated areas and bave usually been completed without reference 
to a ground model for the area being investigated. Therefore, an investigation of the landslide 
activity affecting the 425 km^ Rio Aguas Catchment area has been completed. This is a remote 
and rural part of southeastem Spain, which has an arid to semi-arid climate and is periodically 
affected by both earthquake and flash-fìood activity. 

Through a combination of aerial photographic interpretation (API) and field verification and 
mapping, over 300 landsiides bave been mapped and documented. These data have been used 
to develop a landslide inventory and a conceptual geological and geomorphological ground 
model of the study area, with respect to the landslide activity. The landslide inventory data 
have been used to complete a statistical analysis investigating the factors that control the 
distribution, style and mechanisms of the landslide activity, as well as to examine the 
relationships between landslide volume, runout length and angle of reach. The basis of the 
ground model is a project-derived terrain classification for the study area. 

The data analysis has shown that although a variety of landslide failure mechanisms are seen 
within the study area, the majority of the landsides are rock falls and topples and/or occur within 
incised sections of the drainage network. The analysis has also shown that the landslide activity 
is controlied by a combination of the discontinuities within the rock mass, as well as contrasts in 
the permeability and stiffness of the rock masses/types involved. The influence of human 
activity, as well as tectonic activity, rainfall and expansive day soils has also been considered. 
However, a lack of detaiied historical landslide and rainfall data limits the conclusions that can 
be drawn. 

The mapped landslide distribution (supported by the geological and geomorphological ground 
model) has highiighted that the majority of the landsiides in the Rio Aguas Catchment are 
related to a major river capture and modification of the drainage network that occurred 
approximately 1 OOKa BP, and that they are a key component of the geomorphological processes 
active within the study area. This river capture, driven by differential tectonic uplift between 
sedimentary basins, has caused a wave of incisión to pass through a substantial section of the 
south centrai part of the study area leading to the oversteepening of slopes, the incisión of the 
drainage network and the majority of the landslide activity that is seen within the study area. 
The development of the drainage network has been recorded by a series of river terrace deposits 
that reflect the overall tectonically induced incisión as well as the variable Quatemary climate. 
These river terrace deposits have been used to provide a relative temporal framework for the 
landslide activity, in the absence of any dated landslide chronology. 
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at the site of the Maleguica landslide (described in Section 5.2.1). The Aprii 2004 photograph is 

provided courtesy of Dr M . Stokes (University of Plymouth). 
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Cliapter 1 - Introduction 

1 Introduction 

1.1 Introduction 

The growth in global population and the expansion of settlements and communication 

routes in hazardous areas are increasing the impact of natural disasters in both the 

developed and developing world (Alexander, 1993). Casualties due to natural hazards 

tend to be larger in developing countries (Alexander, 1993; Shah, 1983), whereas 

economic losses are more severe in the industrialised world (Schuster & Fleming, 1986; 

Guzzetti et al., 1999). Both may be increasing because of the higher value of 

endangered structures and the greater number of people potentially involved. Alexander 

(1993) stated that the cost of natural hazards to the global economy exceeded 

US$50,000 million per year, of which a third represents the cost of predicting, 

preventing and mitigating disasters and the other two thirds represent the direct costs of 

the damage. 

Of the numerous natural hazards that affect many countries, the economic losses and 

casualties due to landslide activity is greater than commonly recognised. It has been 

well documented that in many countries, landslide activity generates a yearly loss of 

property larger than that from any other natural disaster, including earthquakes, floods 

and windstorms (Schuster &. Fleming, 1986; Alexander, 1989; Swanston & Schuster, 

1989; Olshansky, 1990; Schuster, 1996; Glade, 1998; Guzzetti et al, 1999). Although 

it should not be forgotten that devastating landslides occur throughout the world (Table 

1.1) "highlighting the point that when a natural process strikes it does not .stop to a.sk 

whether the recipients are developed or not" (Brunsden, 1993). 
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Table 1.1 - Examples of high magnitude/low frequency landsiide events in the latter part of the 20th Century (after Jones & Lee, 1994; Schuster 1996; 

Godt & Savage, 1999; Guadagno & Zampelli, 2000). 

Year Location Name & Type Volume (m )̂ Trigger Impact Comment 
1962 Peru 

(Ancash) 
Huscaran Débris 
avalanche 

13.\10* 4,000-5,000 kiiled; much of 
Ranrahirca village destroyed 

Major débris avalanche from Nevado 
Huscaran; average velocitv 170km/hr 

1963 Italy Vaiont rock slide 250x10' Filling 
Vaiont 
réservoir 

c.2,000 killed; city of Longarone 
badly damaged; total cost in 1963 
US$'200 million 

High velocity rock slide into réservoir 
caused 100m wave to overtop dam. 
Estimated maximum velocitv SOm/s 

1964 Alaska The 1964 Alaskan 
landsiide (spreading 
failures) 

M6.4 
earthquake 

Damages in 1964 cost US$180 million Spreading failures caused major 
landsiide damage in Anchorage, Valdex, 
Whittle & Seward 

1966 Rio de 
Janeiro 
(Brazil) 

Rio de Janeiro 
avalanches débris & 
mud flows 

? Heavy rains -1,000 killed Many landslides around Rio de Janeiro 

1966 Wales Aberfan Tip flow 
slide (débris flow) 

1.1x10' Loose 
tipping on a 
spring 

144 killed including 112 school 
ch il dren 

Flowslide of loose tipped colliery waste, 
estimated maximum velocity 8.8m/s; site 
of previous slides that did not reach the 
village 

1970 Peru Nevados Huscaran 
débris avalanche 

M7.7 
earthquake 

18,000 killed; town of Yungay 
destroyed; Ranrahirca partially 
destroyed 

Rock/debris avalanche from same peak 
as 1962; average velocity 280km/hr 

1974 Peru Mayunmarca rock 
slide - débris 
avalanche 

1.6x10' Rainfall -
river érosion 

Mavainmarca village destroyed; -450 
killed; failure of 150m high landsiide 
dam eau sed major downstream 
flooding 

Débris avalanche with average velocity 
140 km/hr; dammed Maataro River 

1980 USA Mount St Helens 
rotational rock slide 
followed by débris 
avalanche 

2.8x10' Eruption of 
Mt St Helens 

Worlds largest historie landsiide; 5-10 
killed - most people evacuated; major 
destruction to infrastnicture 

Began as rotational rock slide, degraded 
to 23km long débris avalanche with 
average velocity 125km/hr; surface 
remobilised into 95km débris flow 



1982 USA San Francisco Bay 
Région 18,000 débris 
flows 

Januan,- 3-5 
rainstorm 

25 killed and landslide damage 
estimated at US$65 million 

1983 China 
(Gansu) 

Saiasham landslide 35x10' ? 273 killed; 4 villages buried; 2 
réservoirs filled with débris 

Loess landslide 

1985 Columbia Nevado del Ruiz 
débris flow 

? Eruption of 
Nevado del 
Ruiz 

4 towns & villages destroyed; killed 
20,000+ in city of Amerò, flow in 
valley of Langunillas River; 

Death toll unnecessarily high due to 
no évacuation despite nunierous 
hazard wamings 

1986 Papua 
New 
Guinea 

Bairaman rock slide 
- débris avalanche 

200x10' M7.1 
earthquake 

Village of Bairaman destroyed by 
débris flow from breached landslide 
dam; évacuation prevented casualties; 
major environmental effects 

Débris avalanche formed 210m high 
dam that impounded 50 million m 
lake; dam failed causing 100m high 
débris flow - flood downstream 

1987 Ecuador Reventador 
landslides (mainly 
débris flows) 

75-110x10' M6.1 & 
M6.9 
earthquakes 

-1,000 killed; many kms of oil 
pipeline & highway destroyed; 1987 
costs US$ 1 billion 

Landslides mainly in saturated 
residual soils on steep slopes; 
thousands of thin débris flows in 
catchments 

1994 Columbia Paex landslides 
(mainly débris flows) 

Area = 
250km^ 

M6.4 
earthquake 

271 killed; 1,700 missing; 32,000 
displaced; several villages destroved 

Thousands ofthin, residual soil slides 
on steep slopes becoming débris flows 

1997/ 
1998 

USA San Francisco Bay 
région - c.300 
landslide events of 
ail types 

Largest 
individual 
failure: 13 m'' 
(Mission 
Peak 
Earthflow) 

High rainfall Landslide damage estimated at US$ 
158 million; only one fatality 

Rainfall recorded at more than twice 
the annual average as a resuit of a 
Type 1 El Nino Southern Oscillation 

1998 Campani 
(southern 
Italy) 

129 separate initial 
slides -
predominantly débris 
flows 

Area = 
70km' 

Very high 
daily and 
antécédent 
rainfall 

161 killed; towns of Quindici, Samo, 
Bracigliano «S: Siano devastated 

Rainfall retum period calculated as 
100 years; minimum flow rates of 10-
20km/hr; failures mainly in colluvium 
and weathered pyroclastic material 
from Mt. Versuvius 
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Many remote and/or rural communities live under the threat of major landslide activity. 

There may be little understanding amongst these communities about the nature of such 

hazards, or how their everyday activities enhance the risk or can be modified to reduce 

such risks (Charman & Griffiths, 1993; Hearn et al., 2003; Hart et al., 2003a,b; Hart et 

al., in press; Petley et al., in press). These remote areas are also increasingly the focus 

of development programmes which, without carefijl consideration of the ground 

conditions, will be at risk. There is also the problem of mitigating landslide activity. 

Costs can be extremely high, possibly making prevention or avoidance, i f possible, the 

more sustainable long-term option. It is, therefore, of prime importance to assess the 

type and magnitude of the landslide activity affecting an area when considering any new 

development project or engineered structure, particularly during the feasibility and 

planning stages of a project. 

However, to complete such assessments requires data that are frequently unavailable, 

such as detailed maps of topography or geology (Hearn et al., 2003; Hart et al., 2003a; 

Hart et al., in press). Therefore, these data need to be collected, which in turn requires 

suitable, reliable and often relatively rapid data collection techniques. In addition to 

this, there is a requirement to understand the countryside in which the landslide has 

occurred or the engineering project is to be carried out (Fookes, 1997). 

1.2 The Ground Model & Terrain Evaluation 

Prof Peter Fookes (Fookes, 1997) argued that when working within the landscape a 

working conceptual ground model for the site should be developed as soon as possible 

through detailed desk study and field work. This would require considerafion of the 
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regional and more local geological and geomorphological history together with an 

understanding of the current ground conditions. The Information and data coUected 

could then be used to plan and implement more detailed investigations. 

Fookes (1997) states that "the strength of the conceptual model is in providing an 

understanding of the geological processes that made the site. This enables predictions 

to be made or situations anticipated for which explanations need to be sought in the 

geological materials, geological structure and the ancient and active geological 

processes in the ared\ Although referring to engineering problems, this argument 

could also be made when dealing with landslide activity in general whether for regional 

or local planning, or for a specific engineering project. 

The Second Working Party on Land Surface Evaluation for Engineering Practice have 

argued that one effective way to construct a conceptual model for an area or site is 

through land surface evaluation (Griffiths & Edwards, 2001). The Working Party has 

stated that the first objective of any land surface evaluation is to acquire the most 

comprehensive conceptual ground model that can be generated in order to maximise the 

value and justify the cost of any subsequent investigations and therefore minimise the 

geological unknowns (Griffiths & Edwards, 2001). 

The First Working Party on Land Surface Evaluation defined land surface evaluation as: 

"Land surface evaluation (for engineering practice) is the evaluation and Interpretation 

of land surface features and recorded surface data using one or a combination of the 

ground mapping, Interpretation, Classification and Visual remote sensing techniques... 

The object is to provide Information about ground conditions likely to be of 

significance" (Anon, 1982). The main recommended techniques of the First Working 
6 
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Party were geomorphological ground mapping and aerial Photographie Interpretation 

(API) based on a framework of land Classification. The Second Working Party 

extended this to include a detailed and extensive desk study, satellite Image 

interpretadon, and geological and terrain Systems field mapping. They also recognised 

the increasing role of Geographica! Information Systems (GIS) for the storing, analysis, 

interrogation, interpretaron, and presentation of the collected data. This is especially 

true where large data sets are concerned. 

The Second Working Party proposed an updated definition of land surface evaluation 

as: "The evahjation and Interpretation of land siirface and near surface features using 

technicpies that do not involve ground exploration by excavation or geophysics" 

(Griffiths & Edwards, 2001). It was noted by the Working Party that this broader 

definition allowed land surface evaluation to be seen in its most common context as the 

process of data compilation, Interpretation and conceptual ground modelling prior to 

undertaking engineering ground or site investigation work. 

Although the Working Party was referring to the use of land surface evaluation 

techniques for engineering pracfice, these techniques are ideal for idenfifying "problem 

areas" such as áreas of landslide activity (as in this study), soil erosión, karst 

development, land subsidence or flooding. An advantage of this approach over the 

"traditional" approach of investigating each slope of an area in turn (often referred to as 

the "slope by slope" approach) is that ali features in the landscape are mapped, ensuring 

that ali parts of the terrain are given due attention without being overlooked. The 

technique also allows for the production of inventory maps of the location, type, state, 

style of any engineering hazards encountered (e.g., landslide inventory maps -

Wieczoek, 1984; Soeters & Van Westen, 1996). These data can then be used to 
7 
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highlight arcas needed for fùrther investigation, as well as for completing assessments 

of the hazard añecting an area and the rislc posed by that hazard to any potentially 

affected engineering project/structure. 

As a well-established, simple, efficient and flexible technique land surface évaluation 

allows for the rapid assessment of large areas of terrain. It can be used to divide the 

landscape into areas of recurring pattems of topography, soils, geology and végétation 

(Cooke & Doornkamp, 1990). It is, therefore, particularly suitable for mapping 

landslide activity in remóte areas. The method can allow the elucidation of the présence 

or absence of landslide activity and can therefore be used to form the basis of a 

landslide distribution map. 

The land surface évaluation approach can also be used to gain an understanding of the 

processes that bave previously been active in an area (i.e., glacial, fluvial or previous 

landslide activity). This information can then be used to develop a model of how the 

landscape of an area bas developed through time (and particularly through the récent 

past). Such information can then be used to identify those "events" or circumstances 

that bave played the biggest role in creating the landscape of an area (Brunsden, 2001). 

The spatial and temporal scales used will dépend on the scale, and therefore, the détail, 

of the data being used. 

8 
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1.3 Examples of Possible "Best Practice" 

There are a number of examples of where the land surface evaluation approach has been 

adopted. These include: 

• The "Review of Research on Landsliding in Great Britain" and the "National 

Landslide Database" for Great Britain; 

• The Natural Terrain Landslide Investigation in Hong Kong; and 

• The "Landslide Risk Assessment in the Rural Access Sector" project in Nepal 

and Bhutan. 

1.3.1 National Landslide Database, UK 

Jones & Lee (1994) stated that landslide activity was not a hazard that most people 

associated with the UK. In 1984, the Department of the Environment commissioned the 

project "Review of Landsliding in great Britain" and the development of the "National 

Landslide Databank", A landslide database was established through a desk study 

review of all reasonably accessible Information held in the public domain regarding 

landslides. The sources included books, Journals, theses, geologica! maps and the files 

of those engineering companies, locai authorities and public Utilities that granted access 

to data. Each identified landslide was allocated a separate proforma upon which all 

available Information was entered. Analysis led to a series of regional reports, each 

with accompanying folio of 1:25,000 scale county maps, along with a national summary 

volume and map at 1:625,000 scale. By the time the review was completed in 1991, a 

total of 8835 landslides had been identified (Lee et al., 2000). 

9 
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This study is considered to have provided the first cohérent synthesis of the distribution, 

character and significance of mass movement and landshde activity in the U K . This 

study also included national reviews as to the extent, causes and significance to land use 

planning and development of mining subsidence; natural underground cavities; 

foundation conditions; natural contamination; érosion; déposition and flooding; and a 

preliminary assessment of seismic risk (Brook, 1992). The hope was that this 

information would provide, for the first time, a comprehensive régional assessment of 

the then current knowledge regarding the ground conditions of the U K . Jones & Lee 

(1994) considered this essential base-line data for developing stratégies to minimise the 

impact or losses of future hazards. 

The study recognised that the distribution, concentration, extent, variety and 

significance of landslide activity in the U K had been seriously underestimated. To 

quote Lee et al. (2000) "Jones & Lee (1994) concluded that the pattern of recorded 

landslides was dominated by the results of a small number of detailed studies set against 

a backdrop of ignorance". Therefore, the database identifies only a sample of the actual 

number of landslides in existence (Lee et al., 2000). This conclusion was considered to 

have serious implications for many sectors of the economy concerned with land 

development and construction. The récognition of landslide activity as a threat to 

property and a cause of recurring costs were largely confined to coastal areas, especially 

along the rapidly eroding clifflines of Eastern and Southern England stretching from 

Humberside to Devon. The récognition of landslide activity for inland areas was 

"generally poor" and extremely variable. 

10 
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Jones & Lee (1994) argued that this initial study showed that further systematic studies 

were required before it would be possible to assess the true costs of landslide activity in 

the UK. Lee et al. (2000) noted that the study demonstrated the need for landslides to 

be properly considered in the land use planning process, especially during the 

preparation of locai development plans and in determining individuai applications for 

planning permission. The U K Government responded to this study by publishing 

guidance notes for locai planning authorities on land instability issues (DoE, 1990, 

1996). However, Lee et al. (2000) concluded that although there were some concerns 

over the quality and reliability of much of the available Information on landslides held 

within the National Landslide Database, it has provided an excellent platform for desk 

studies for construction projects or the preparation of instability-related policies in land 

use plans. 

1.3.2 Hong Kong Naturai Terrain Landslide Investigation 

Over 60% of the total land area of Hong Kong is characterised by steep naturai slopes 

mantled with weak weathered rocks and superficial deposits. With frequent intense 

rainfall Hong Kong is frequently affected by landslide activity on naturai slopes (Evans, 

1998). The Geotechnical Manual for Slopes (Geotechnical Control Office, 1984) 

highlighted the costly and difficult nature of naturai slope stabilisation works, and 

concluded that the avoidance of unstable naturai terrain is usually the best approach. 

However, the demand for land in Hong Kong is such that building and infrastructure 

developments are increasingly spreading into areas adjacent to steep naturai slopes and, 

over the last few years, the debris from a number of naturai terrain landslides has 

reached areas of development (Evans, 1998). 
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Therefore it became clear that a better understanding was needed of the relative bazard 

from landsliding on natural terrain in order to define areas which may be particularly 

susceptible. In response to this the Geotechnical Engineering Office initiated the 

Natural Terrain Landslide Study (NTLS) in 1995. 

Initially using high level (above 10,000 feet) aerial photographs, an inventory of 

landslide locations and approximate dates of landslides occurring on natural terrain 

slopes was compiled. This database is referred to as the Natural Terrain Landslide 

Inventory (NTLI) and contains records of 26,780 landslides (Evans, 1998). Each 

landslide within the NTLI is numbered, with its location and length of the resulting 

débris trail shown on a 1:5,000 scale map. The following parameters are recorded in 

associated data tables: 

• The data on the aerial photograph on which the landslide was first observed and 

of the photograph immediately preceding it; 

• The width of the landslide scar (less than or more than 20 m); 

• The végétation cover over the landslide source; and 

• The ground slope angle across the landslide head. 

The élévation at the toe and crest of each landslide was later manually recorded from 

the base map and added to the digitised tables. Most of the landslides recorded in the 

N T L I would probably be classified as débris slides, débris flows, complex débris slide-

flows or composite débris slide-flow-falls (Varnes & Cruden, 1996). The landslides 

recorded in the inventory are divided into two groups: 
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1. Recent - if they occurred within the time scale of the available aerial 

photographs; and 

2. Relict - if they occurred earlier. 

Only naturai terrain was surveyed for landslides, and the boundaries of the areas were 

recorded (Evans, 1998). Naturai terrain was defmed as terrain that has not been 

modified substantially by human activity, but includes areas where grazing, bill fires 

and deforestation may bave occurred. Terrain modified substantially by human activity 

was taken to include both urban development and agricultura! terraces. Coastal 

landslides apparently caused by direct undercutting from wave erosión were also 

excluded from the inventory. 

Areas of intense gully erosión occur in Hong Kong and are clearly visible on high level 

aerial photographs. Landsliding may be a factor in the formation and on-going 

development of such gully systems, but due to the difficuhy of recognising individuai 

landslides in these areas, they were excluded from the survey, although their boundaries 

were also mapped (Evans, 1998). 

The data in the N T L l bave been digitised and incorporated with other datasets to form 

the NTLS Geographical Information System (GIS). These data sets include: 

• The Hong Kong 1:20,000 scale geology maps; 

• The Worldwide Fund for Nature digitai vegetation map of Hong Kong; and 

• GEO terrain classification data. 
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A Digital Terrain Model (DTM) has also been created, witb the following surface 

modelling capabilities: 

• Interpolation of surface elevation; 

• Calculation of slope gradients; 

• Calculation of aspect; 

• Calculation of surface area; 

• Calculation of surface length; 

• Generation of profiles; and 

• Analyses of flow paths, source areas and stream networks. 

The NTLI data bave been queried against the other datasets allowing other parameters 

to he extracted for each landslide. The data bave also been used to create landslide 

distribution and isopleth maps. 

A comparison of N T L I data and rainfall has been made for the period 1985 to 1994 

inclusive. This involved using rolling 24 hour rainfall maxima, as well as overlaying 

isohyets of maximum 24 hour rainfall onto the landslide distribution maps for the study 

period (Evans, 1996, 1997, 1998). 

The NTLI is currently being used to develop landslide susceptibility, hazard and risk 

zonation maps of naturai terrain areas for the Hong Kong. The data are also being used 

to develop mitigation strategies and measures. 
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1.3.3 The Landslide Risk Assessment Project (Nepal and Bhutan) 

It has often been argued by donor agencies and governments that the provision of rural 

roads will help reduce the high levels of poverty seen in the remote and rural areas of 

developing countries such as Nepal and Bhutan (Hearn et al, 2003; Hart et al, 2003a, 

b; Hart et al, in press; Petley et al, in press). In both of these countries the existing 

road network is undergoing rapid expansion with plans to carry this on into the fijture. 

However, it has also been noted that the planning of rural access corridors or other 

infrastructure in the remote and rural areas of these developing countries was often 

carried out in a haphazard fashion (Hearn, 2002; Hearn et al, 2003). In particular, there 

are many examples where the planning, design, construction and maintenance of rural 

roads in mountainous areas such as Nepal often led to the occurrence of landslides and 

subsequent loss of life, infrastructure, the road and/or other valuable land. Therefore the 

"Landslide Risk Assessment in the Rural Access Sector" (LRA) Project, fiinded by the 

Department for International Development (DFID) commenced in November 2000. 

The L R A Project has focused on the Himalayan Kingdoms of Nepal and Bhutan, 

working in three remote areas in each country. The philosophy behind the L R A Project 

was: 

• To review techniques commonly used for landslide susceptibility, hazard and 

risk assessment, both globally and locally in Nepal and Bhutan; 

• To identify, develop and assess both field-based and desk study based 

techniques that would be applicable to the assessment of landslide susceptibility, 

hazard and risk in the context of rural access development. This included field 

mapping, engineering walkover surveys, and remote sensing techniques; 
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• To develop a set of best practice guidelines that can be used by planners, 

engineers and developers for niral access development; 

• To complete a landslide susceptibility, hazard and risk assessment for each of 

the six study areas; 

• To disseminate the results and fmdings of the project through project reports, 

training workshops and seminars; and 

• To train government engineers and planners in the above techniques. 

To date, the L R A Project has involved the following activities: 

• The completion of aerial photographic and satellite image interpretation for each of 

the study areas. The project has used Landsat E T M , SPOT, IKONOS (both colour 

and black and white), and IRS (Indian Remote Sensing) satellite imagery (Petley et 

al., in press). 

• Field verification of the fmdings of the remote sensing. 

• Factor mapping in each of the six study areas. This included the landslide 

distribution, geology, geomorphology, existing infrastructure and land use. The 

project has mapped over 2,200 km^ of Himalayan terrain and over 1,300 landslides. 

• The development of a GIS database containing the field collected data and any 

available digitai data (i.e., contours, population and infrastructure). 

• Interrogafion and statistica! analysis of the data held within the GIS. This involved 

comparing the landslide distribution with each of the factor layers (or combinations 

of the factor layers) within the GIS. The aim was to identify those factor layers that 

appeared to explain the landslide distribution with a degree of statistica! confidence. 

• Development of techniques for the assessment of landslide susceptibility, hazard 

and risk. 
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• Production of landslide susceptibility, hazard and risk maps for each of the six study 

areas. 

• Field assessments of the interaction between the local population, land use, 

engineering work along the road corridor or other infrastructure and landslide 

activity, for each of the six study areas and a two other smaller study areas. 

• The testing of the techniques in two flirther study areas through the use of remote 

sensing and published desk study data (i.e., topographic and geological maps). 

Al l of the aspects of the project that have been discussed here have been documented in 

a series of Project Reports (LRA, 2001a, b, 2002a, b, 2003a, b, c) or published papers 

(Petley et al, 2002; Hart et al., 2003a,b; Hearn et al., 2003). The Intention is that at 

some point in the fijture all of these reports will be available on-line. It is hoped that the 

govemments of Nepal and Bhutan (and others) will adopt these techniques as they seek 

to both expand, as well as maintain, their existing road networks. At present, both 

governments are looking at the institutionalisation of these techniques and 

recommendations, within the relevant government departments. 

1.3.4 Synopsis 

Each of the three projects listed above has required the establishment of a landslide 

inventory, as part of an investigation into the landslide activity aflfecting a given area. 

The three projects have each dealt with this problem differently. 

The National Landslide Database in the U K used desk study sources only and no 

primary data collection. Therefore, many landslides that were not recorded in the 
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literatura or on maps were missed. It is also a "snap-shot" database - it was set up to 

establish the situation at that time, but with no programme of updating. However, there 

are now projects updating different parts of the database (Griffiths & Poster, pers. 

comm.). The publication by Jones & Lee (1994), which stems from the landslide 

database (despite the concerns over its accuracy and how up-to-date it is), does provide 

a good overall ground model for the U K with respect to landslide activity Lee et al. 

(2000). 

The NTLI in Hong Kong has used an extensive (and continually growing) aerial 

photograph collection supported by ground investigations to establish a detailed 

database and GIS. This has been used to carry out detailed statistica! analysis of the 

database. In many ways the Hong Kong NTLI is seen as "best practice", with the 

database and the statistical analysis being updated yearly. However, this is over a 

relatively small area (approximatelyl090 km^). It is also a politically driven project, 

with a relatively large budget working in a heavily populated and urbanised area (Chan, 

Y.C., pers. Comm.. - head of the GEO in Hong Kong, 2001). 

The L R A Project in Nepal and Bhutan has sought to use primary data obtained from 

aerial photograph and satellite image interpretation, as well as field mapping, while 

working in relatively remote rural áreas. Frequently there was limited topographical 

and geologica! map coverage, as well as other data such as rainfall records. This was 

especially the case in Bhutan. A GIS was used to compile and statistically analyse the 

data, leading to the development of a scheme that can be used for the assessment of 

landslide susceptibility, hazard and risk in such areas. Although landslide inventories 

were established for each of the study areas where the project worked, the main thrust of 

the project was the development of "best practice" guidelines and training of engineers 
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and others from relevant government agencies. The resuhs have not yet been used to 

develop a geological and geomorphological ground model for the areas studied, 

although such models do exist for the Himalayas (TRL, 1997). 

1.4 The Rio Aguas Landslide Investigation 

1.4.1 Introductioii 

The previous section has shown that although the development of landslide inventories 

has been undertaken in a number of places around the globe, it is generally: 

1. In areas where the data are available through either desk study sources or 

remote sensing; 

2. Has involved the use "high-tech" methods for analysis of the data (i.e., the use 

of Geographical Information Systems); 

3. Has usually been done without reference to a ground model for the area being 

considered (i.e., the landslides are almost studied in isolation from their 

geological and geomorphological setting); and 

4. Has usually been carried out in wet (monsoonal environments) with significant 

vegetation cover. These areas are also often mountainous and/or populated 

areas. 

Very few landslide inventory based projects have sought to use primary field mapping 

(in conjunction with remote sensing) and then to evaluate the data in its geological and 

geomorphological context. Therefore, this project has sought to use land surface 

evaluation techniques to carry out a landslide investigation and develop a landslide 

inventory following the guidelines of the Working Party on the World Landslide 
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Inventory (WPAVLI, 1991, 1993, 1994, 1995) and the Working Party on Land Surface 

Evaluation for Engineering Practice (Griffiths, 2001 and references therein). The work 

of these working parties is discussed in more detail in Chapter 3. Land Surface 

Evaluation techniques are regarded as the ideal way of developing a conceptual 

geological and geomorphological ground model for the study area and allow for a better 

understanding of the landslide activity añecting the study area to be gained. 

The area that has been chosen for this study is a relatively remóte, rural and arid to 

semi-arid región of southeastern Spain, which has, in recent years, seen considerable 

Investment and subsequent development of the infrastructure (i.e., improvements to the 

road network). However, this Investment may be put at risk i f little or no account is 

taken of the natural hazards that affect the región. Due to the remoteness of the región, 

there is very little Information available about the observed (or relict) landslide activity 

aflfecting the area, or some of the triggering factors that will influence its occurrence. 

Previous geomorphological and geological research in the Andalucian Province of 

Almeria, south eastern Spain (Figures 1.1 and 1.2), has shown how the underlying 

geology, diflferential tectonic uplift and changing Quaternary climate have affected the 

evolution and development of the drainage network (Harvey, 1987; Harvey & Wells, 

1987; Mather, 1991; Mather & Harvey, 1995; Hat^ey et al, 1995; Stokes, 1997; Kelly 

et al, 2000; Schulte & Julia, 2001; Schulte, 2002; Stokes et al., 2002; Mather et al, 

2002; Candy et al., 2003). In particular, the catchment area for the Rio Aguas and its 

major tributaries have been well studied and its evolution and long-term landscape 

development are well understood (as will be shown in Chapter 2). It has also been 

shown that those same factors listed above, have also influenced the formation and 

development of the landslide activity that aflfects the Rio Aguas catchment area (Hart, 
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1999; Hart & Griffiths, 1999; Hart et al., 2000; Griffiths et al., 2002, 2003). This 

ongoing research is seeking to study and quantify the interactions between the 

landscape, the drainage network and the observed landslide activity. 

1.4.2 The Study Area 

The study area (Figure 1.3) has been defined as the catchment area for the Rio de Aguas 

(or Río Aguas) in Almería Province, Andalucía, in Southeast Spain. This is an 

ephemeral river system that drains an area of approximately 425 km^. A catchment area 

was chosen as it is the "fundamental unit of geomorphology" (Gregory & Walling, 

1973). The Sierra Bédar, Sierra de Los Filabres and Sierra Cabrera help define the 

catchment area, to the north, north-west and south-east respectively. The southern 

margin of the study area is the Cuesta d'Encantada that runs parallel but slightly to the 

north of the Sierra Alhamilla. The north-eastern and western margins of the study area 

are poorly defined topographic highs. Selected spot heights for each of these areas are 

shown in Figure 1.3. 

The región in which the study area is located is one of the driest parts of Western 

Europe. It has a mean annual precipitation of less than 210mm (Estaban-Para et al., 

1998). Most of this precipitation falls in autumn or winter as relatively short duration 

but high-intensity storms. Field observations bave shown that the rainfall pattern varíes 

across the study area, depending on pbysiographic factors such as closeness to the coast 

or the surrounding mountains. The daytime temperature can vary from c. 15°C in 

January to c. 40°C in July and August (Mather et al., 2001a). 
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The región is seismically active. The city of Almería was virtually destroyed by an 

earthquake in 1522, and the small town of Vera suffered a similar fate during the last 

century. The Andalucian earthquake of 25* December 1884 affected the area near 

Alhama de Granada and reached intensity IX on the Mercalli scale, killing 800 people 

(López-Arroyo et al., 1980). The most frequent earthquakes that affect the Almería 

Province (about 5 each year) are magnitude 3 to 4. Information regarding the latest 

earthquakes is available from the website of the Institute of Andalucian Geophysics at 

the University of Granada (www.ugr.es/~iag/). 

The economy of the study area is a mixture of beach tourism along the coast, 

rural/"Eco" tourism in parts of the inland areas, agriculture and quarrying. 

Traditionally, the agriculture within the study area was predominantly small groves of 

olive, almond and fruit trees. However, recently, there has been a move towards more 

intensive methods, involving the ploughing up of land and use of intensive irrigation 

techniques. Historically, there were small mining operations (for example, iron) in 

some of the mountainous areas surrounding the study area, but the large scale quarrying 

of gypsum has now replaced these. 

Over the last decade, with the help of European Union funding, there has been 

substantial investment in the transport infrastructure and agricultural industries within 

the región (Walsh, pers. conmi., 2000). The E-15 motorway has been constructed 

linking the major cities along the Mediterranean coast. Within the study area, there has 

been significant upgrading of the rural road network, including the upgrading with 

metalled road surfaces of previous dirt tracks. Recently work has started on a rail link 

being constructed through the región, again linking the main population centres with 

each other and the rest of the country (Walsh, pers. conmi., 2003; Hearn, pers. comm., 
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2003). This expansión of the transport network has foliowed the growth of the local 

population. However, the growth of the local population and expansión of the región's 

infrastructure has frequently meant coming into contact with either active or relict 

landslide features. 

The study área is covered by a series of 1:25,000 and 1:50,000 topographic maps (Table 

1.2). A number of 1:50,000 geological maps produced by the Instituto Geológico y 

Minero de España (IGME) are also available for the región. The geological map of the 

región produced by Weijermars (1991) was also used in this study. 

Table 1.2 - The topographic map sheets that cover the Río Aguas Study Área and have 

been used by this project. 

1:25,000 Topographic Map Sheets 
(Mapa Topográfico Nacional de España, 
Instituto Geographico Nacional) 

1:50,000 Topographic Map Sheets 
(Mapa Militar de España) 

1013-IV(Uleiladel Campo) 1013 (Macael) 

1014-ni (Lubrin) 1014 (Vera) 

1014-IV (Vera) 1015 (Garrucha) 

1030-11 (Los Yesos) 1030 (Tabernas) 

1030-IV (Lucaiñena de las Torres) 1031 (Sorbas) 

1031-1 (Sorbas) 1032 (Mojacár) 

1031-11 (Turre) 1046 (Carboneras) 

1031-III (Polopos) 

1031-IV (El Agua Del Medio) 
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1.4.3 Previous Landslide Research in SE Spain 

An extensive review of the published Hterature was undertaken as part of this project. It 

revealed that within southeastern Spain, landshde research has focused on: 

• The use of remotely sensed imagery to identify and map landshde features; 

• The use of GIS-based analysis techniques to assess the landslide hazard affecting an 

area; and 

• The computer modelling of selected slopes to try and gain an understanding of the 

Controls influencing the stability of those slopes. 

The remote sensing work has frequently focused on how the acquired imagery can he 

manipulated, processed and enhanced to identify different types of landslide activity. 

This has sometimes investigated the potential of using automatic classification 

techniques (for example, Eyers et al., 1998). Much of this work has stemmed from the 

postgraduate remote sensing courses at a number of U K universities including Imperiai 

College and the University of Greenwich. The proximity to the UK, as well as the 

geologica!, geographical and environmental conditions, makes the region an ideal 

training area for remote sensing studies (Mather & Stokes, 2000). The different 

imagery sources that bave been tested are Airborne Thematic Mapper (ATM), Landsat 

Thematic Mapper, SPOT panchromatic and ERS-1 synthetic aperture radar (SAR) 

imagery (Eyres et al, 1998; Mason et al, 1998; Garcia-Meléndez et al, 1998). 

Davis et al. (2000) demonstrated how ortho-photographs could be combined with a 

digitai elevation model (DEM) to create three-dimensional views of an area. It was 

argued that this would allow for an improved interpretation of a number of the 

previously mapped landslides in the area. However, the actual details of how the 
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interpretations were improved and the extra knowledge gained have not been described. 

To date, the work has only focused on a small number of very large, previously mapped 

landslides that have been used as "test sites". However, as the techniques are improved, 

and more high-resolution data become available this may change, particularly with the 

increasing use of Geographic Information Systems (GIS). 

A large amount of work in the region that has utilised GIS-based analysis techniques 

has been published (Chacón eí al., 1993, 1994, 1996; Hamdouni etal., 1996; Fernández 

el al., 1994, 1996; Irigaray et al, 1994, 1996a,b, 1999, 2000). This work, which is 

almost solely based in Granada Province, has investigated the use of GIS-based 

analytical techniques for the mapping, investigation and determination of landslide 

causative factors. For example, many of the papers listed above describe areas where 

the landslide distribution and a number of factor layers are mapped and then their spatial 

relationships analysed using a GIS. The factor layers are a mixture of field derived data 

(i.e., lithology or soil type), GIS derived data (i.e., slope angle, slope aspect, or 

elevation) and published/field mapped data (i.e., land use). However, the factor layers 

that are being analysed do not take account of the geomorphological evolution of the 

slopes that are being considered. 

The data stored in the GIS are used to complete bivariate or multivariate statistical 

analyses of the numerous factor layers with respect to the known landslide distribution. 

This is based on either the landslide densities or the landslide areal densities for an area 

(i.e., either the number of landslides or the areal extent of the landslides occurring in the 

"limestone" part of the geology factor layer). The results from such analyses have then 

been used to identify those factor layers that are the most statistically significant in 

explaining the mapped landslide distribution. Those factor layers that have been 
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deemed to be tbe most statistically significant bave tben been "combined" (often using 

unspecified calculations) to produce landslide susceptibility or hazard maps for tbe 

areas concerned. Tbe resulting maps bave tben been statistically compared with tbe 

mapped landslide distribution, and the "effectiveness" at "predicting" the known 

landslide distribution evaluated. Attempts bave also been made to verify these 

"landslide susceptibility maps" in the field, particularly after significant rainfall events 

(Irigaray et ai, 1999, 2000). Similar techniques bave been developed and tested in 

other parts of the world such as Hong Kong (Evans, 1998; Dai & Lee, 2002) and the 

Landslide Risk Assessment Project in Nepal (LRA, 2001, 2002, 2003a, b, c). 

Another area of landslide research in the región has involved the computer modelling of 

hillslope processes. This has particularly focused on seeking to model the processes 

that are acting on the slopes in the Guadelfeo valley area of Granada Province and how 

they interact with each other (Alcántara-Ayala & Thornes, 1996a,b). Factors that bave 

been analysed are the climate, hydrology, geology, structural geology, topography and 

the erosional conditions that are present on the slopes. Thornes & Alcántara-Ayala 

(1998) concluded from their results that on the mountainous slopes of the Guadelfeo 

valley (i.e., the slopes of the Alpujarras) that slope morphology is controlied by the 

long-term geomorphological and erosional history, as well as rare, but extreme, climatic 

events (i.e., flood events). The climate is considered to be important for controlling 

shallow slope failures. 

The above summary of the landslide-related research that has previously been 

undertaken in the región has shown that it has particularly focused on either the more 

"high-tech" approach to investigating landslides or on the modelling of individuai 

slopes within an area. The literature review for this project has also shown that much of 
28 



Cliapter 1 - Introduction 

this research has not sought to develop or utilise a working geological and 

geomorphological model for the region. If such a model was developed it could be used 

to investigate and explain the observed landslide distribution, as well as to identify areas 

of potential instability (Hart et al., 2000; Griffiths et al., 2002). 

1.5 Aims & Objectives 

The above sections have described the background to, and rationale behind, this 

landslide investigation. Therefore, the aims of this project are to: 

1. Identify the types of landslide and landslide activity affecting the study area. 

2. Identify the main factors and controlling conditions that lead to the observed 

landslide activity within the study area. 

3. Investigate the link between the development of the drainage network, the 

Quaternary river terrace deposits, the landscape and the observed landslide 

activity. 

4. Develop a conceptual ground model for the chosen study area in SE Spain. 

The specific objectives for this project are: 

1. To use a detailed and extensive desk study to develop an initial conceptual ground 

model for the study area. 

2. To use aerial photographs as part of the desk study to produce an initial landslide 

and terrain map of the study area. 
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3. To undertake an extensive period of detailed field mapping to ground truth the 

aerial photographic interpretation (API), to map those landslides that were not 

identified in the API, and to collect more detailed geological, discontinuity and 

geomorphological data. 

4. To use the results from the fieldwork to add detail to the conceptual ground model 

for the study area. 

5. To use the landslide data collected both from the API and the fieldwork to 

compile a landslide inventory for the study area, following the guidelines 

suggested by the Working Party on the World Landslide Inventory. 

6. To undertake a statistical analysis of the data held in the landslide inventory. 

7. To use the results from the data analyses and investigations, the data held within 

the landslide inventory, as well as other geological and geomorphological 

observations/information, to develop a conceptual ground model for the study area 

8. To use the results from the data analyses and investigations, as well as the above 

conceptual ground model for the study area, to seek to identify areas of landslide 

susceptibility within the study area. 

9. To look at the implications of the results from this project locally, regionally and 

globally. 
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1.6 Project Assumptions 

The work undertaken by this landshde investigation has sought to foUow the guidehnes, 

recommendations, suggestions, and definitions of BS5930 (1990), WPAVLI (1990, 

1991, 1993, and 1994), Soeters & Van Westen (1996), Turner & McGuffey (1996), 

TRL (1997) and Griffiths (2001). A number of Standard and fundamental assumptions 

have also been made based on the work of Varnes (1984), Hutchinson (1995), Turner & 

Schuster (1996) and Aleotti & Chowdhury (1999). These assumptions are: 

1. All types of slope failure lecn'e discernible morphological featiires that can be 

recognised, classified and mapped. 

2. The present is the key to the past and that the past and present are possibly keys to 

the fiature (based on Hutton's "Principle of Uniformitarianism"). If applied to 

landslides, this would suggest that landslides will have occurred in the past under 

similar geological, geomorphological, hydrogeological and climatic conditions to 

those that cause landslides at present, and that slope failures in the fliture are more 

likely to occur under conditions that have previously led to instability. 

3. The mahl conditions that cause landslides are controlled by identifiable physical 

factors that can be investigated and determined. This Information can be used to 

build predictive models of landslide occurrence. 

4. Landslide processes are controlled by mechanical laws that can be determined 

using empirical, Statistical and/or deterministic techniques. 
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5. Landslide occurrence, either spatially or temporally, can be inferred from beuristic 

investigations, computed through tbe analysis of environmental Information, or 

inferred from pbysical models. 

6. Tbe distribution of existing and future landslides can be approximated by 

reference to conditioning factors alone, such as rock type or slope angle. 

The first assumption in the above list is possibly the most important. If the landslides 

affecting an area cannot be identified, classified and mapped then an inventory and 

distribution map of their occurrence cannot be produced. As indicated above, it is also 

important to be able to identify the Controlling and triggering factors of previous 

landslide activity. It may be feasible to use this Information to predict where, and 

possibly even when, future landslides might occur. However, the occurrence of a 

landslide is seldom linked to a single causative/controlling faeton This, therefore, 

makes it difficult to determine all of the factors involved and their complex 

relationships with each other. 

The assumptions listed above are also affected by: 

• The experience of the investigator(s) in working in a particular type of environment 

or mapping landslides, geology or geomorphology (Hearn & Griffiths, 2001); 

• The age, size and activity of the landslide - the morphological differences between a 

very recent landslide and a relict feature that has become degraded and overgrown; 

• The Classification schema being used and viewpoint of the investigator(s) - there is 

a "grey-area" at the smaller end of the scale where landslide activity, slope 
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deterioration and soil erosión overlap witii one another, depending on the landslide 

Classification scheme that is being used; and 

• The availability of historical data (discussed in Chapters 4 and 5). 

1.7 Chapter Summary & Thesis Structure 

This chapter has introduced the landslide investigation that has been completed within 

the Rio Aguas catchment area. It has introduced the concept of developing a ground 

model based on the geology and geomorphology of a given area as a method for gaining 

a fuller understanding of that area. This model can then be used to develop a better 

understanding of how the landslide activity of an area has developed and those factors 

that are Controlling it. An essential pari of this ground model is the development of a 

landslide inventory datábase. Examples of other landslide inventory based projects that 

are considered as "best practise" have been described. This has been used to establish 

the rationale behind this landslide investigation, including the choice of the Rio Aguas 

catchment area as the project's study area. 

A brief description of the study area has been presented here. A detailed account of the 

geology and geomorphology, as well as the geological and geomorphological setting of 

the study area is presented in Chapter 2. This forms the fundamental basis for the 

ground model, and is based on the findings from the desk study, aerial Photographie 

interpretation (API) and field mapping that have been completed as part of this project. 

The API and field mapping have used Land surface Evaluation techniques to define a 

Classification scheme for the study area, which is described in Chapter 3. This scheme 
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has helped to sub-divide the study área into a number of inappable units with similar 

characteristics and terrain. Chapter 3 also describes the defmitions and tecbniques that 

have been used in developing the landslide inventory datábase that forms the core 

datábase for tbis project. A statistical analysis of the landslide inventory has been 

completed, which highlights the numerous factors that have influenced or controlled the 

landslide activity within the Río Aguas catchment área (Chapter 4). A number of 

examples from the landslide inventory are described and discussed in Chapter 5 as a 

series of "Landslide Type Localities". 

The resuks of the desk study, APL field mapping and statistical analysis of the landslide 

inventory are brought together to form a working ground model for the study área in 

Chapter 6. Tbis final chapter also summarizes the main project findings, highlighting 

potential áreas for fijture research either in the study área or in the field of landslide 

investigation. The local, regional and International implications for this project are also 

discussed. 
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2 Geology and Geomorphology of the Rio Aguas Catchment 

2,1 Introduction 

The previous chapter has outhned the aims, objectives and rationale behind this Project. 

The aims included developing a geological and geomorphological ground model and 

landshde inventory for the study area and investigating the main factors and controlling 

conditions of the observed landshde activity (Section 1.5). The aim of this chapter is, 

therefore, to introduce the geology and geomorphology of the study area. This is based 

on an extensive literature review and will also include data that were collected in the 

field. There will be a description of 

• The geological setting of the région; 

• The geological history of the study area; 

• The geology of the study area; 

• The stratigraphie terminology used by this study; 

• The geomorphology of the study area; and 

• The formation of the Rio Aguas Catchment area. 

This information is needed so as to provide an understanding of how the landscape and 

drainage System of the study area (and therefore the geomorphology of the study area) 

has developed and is influenced by the material strengths and geological structures of 

the underlying geology. This is also true for the landslides that have been studied by 

this Project. As will be demonstrated in Chapters 4 and 5, the landshde activity of the 

study area is controlled by the rock mass properties and structural discontinuities of the 

underlying bedrock geology. 
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2.2 Geological Setting of Southeast Spain 

The study area covers the Sorbas Basin and the southern part of the Vera Basin (Figure 

2.1). These Neogene sedimentary basins are situated within the Internal Zone of the 

Betic Cordillera of southern Spain (Weijermars, 1991). There has been a considerable 

body of work published concerning the geological setting and history of southern Spain. 

This work has focused on the tectonic setting of the region, the development of the 

major fault zones that cut through the region, the formation, development and 

stratigraphy of the numerous sedimentary basins and the basement highs that surround 

them. These include Fallot (1948), Egeler (1963), Egeler & Simon (1969), Weijermars 

et al. (1985), Larouziére et al. (1988), Montenat (1990), Sanz de Galdeano (1990), 

Weijermars (1991), Biermann (1995), Stapel et al. (1996), Montenat & Ott d'Estevou 

(1999), Poisson et al. (1999), Mather et al. (2001), Gibbons & Moreno (2002), Braga et 

al., (2003) and Mather & Stokes (2003) and references therein. 

2.2.1 The Betic Cordillera 

The Betic Cordillera forms part of the Alpine orogenic belt, which originated from the 

relative movements and interaction of the African and Iberian Plates, and relates to the 

rifting of the Atlantic Ocean and the closure of Tethys (Dewey et al., 1973; Biju-Duval 

et al, 1977; Biermann, 1995; Stapel et al, 1996). This began in the early Mesozoic and 

has continued through to the present day. 

The Betic Cordillera is usually subdivided into the Internal and External Zones, each 

relating to a separate continental block distinguished on the basis of lithological, 
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tectonic and palaeogeographical criteria (Fallot, 1948; Sanz de Galdeano, 1990; 

Montenat & Ott d'Estevou, 1999). 

The External Zone forms the northem part of the Betic Cordillera and comprises an 

autochthonous folded terrain linked to the Spanish Meseta (the Pre-Betics) and an 

allochthonous domain thrust northwards over the Pre-Betics (the Sub-Betic) (Fallot, 

1948; Garcia-Hernandez et al, 1980; Sanz de Galdeano, 1990). It represents the Late 

Jurassic-Cretaceous passive continental margin of Iberia (Stapel et al, 1996). 

The Internai (or "Betic") Zone is located within the southern part of the Betic Cordillera 

and is formed by a stack of metamorphic nappe units - the Nevado-Filabride, 

Alpujarride and Malaguide Complexes (Egeler & Simon, 1969; Sanz de Galdeano, 

1990; Sanz de Galdeano & Vera, 1992). The nappe units represent the deep structure of 

an Upper Cretaceous subduction complex (Bakker et al, 1989, Stapel et al, 1996) and 

was formed by the closure of the Tethys Océan. Thèse nappes were thrust to the north 

onto the External Zone during the Oligocène to earliest Miocène (Sanz de Galdeano, 

1990). 

The closure of the Tethys led to crustal thickening under Morocco and Spain 

(Weijermars, 1985) and the formation of the Betic-Rif Arc (or Arc of Gibraltar) and the 

Alborân Basin in the western Mediterranean. The continuity of this orogenic arc, which 

stretches from Minorca to Calabria via Gibraltar, Morocco and Tunisia, indicates a lack 

of significant movement between the African and Iberian Plates since the Oligocène 

(Smith & Woodcock, 1982). 
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Figure 2.1. Map showing the study area, the regional geology, the catchment 
area for the Rio Aguas and the key geographical locations nientioned in the 
text. Based on Hart et al. (2000) and Mather & Harvey (1995). 
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Final emplacement of the nappe stmctures occurred during the early to mid-Miocene 

(Piatt &. Vissers, 1989; Biermann, 1995). The compression was in a NNW-SSE and N -

5 direction (Coppier ei al, 1989; Sanz de Galdeano, 1990) and was the result of the 

continuing convergence between the African and Iberian plates. 

The subsequent compressive interaction between these plates lead to the formation of a 

series of major strike-slip fault systems collectively termed the Trans-Alborán Shear 

Zone (Larouziere et ai, 1988). Orientated NE-SW, this shear zone is characterised by 

an overall sinistral movement which can be traced for several hundred kilometres and 

runs onshore between Almería and Alicante (Hernandez et al., 1987), cutting through 

several of the nappe structures of the Betic Cordillera. In the Almería region, the Trans-

Alborán Shear Zone consists of a series of large fault systems that include the 

Palomares and Carboneras Faults. These faults play an important role in defining the 

sedimentary basins of the region. Variations in the displacement along these faults have 

resulted in localised compression and extension forming networks of basement highs 

and sedimentary basins (Keller et al., 1995). 

2.2.2 Neogene Sedimentary Basins 

Various different models for the formation of the Neogene basins in the Betic Internal 

Zone have been proposed (Longergan & White, 1987; Montenat et al., 1987; Montenat 

6 Ott d'Estevou, 1990; Weijermars, 1991; Sanz de Galdeano and Vera, 1992; Frizon de 

Lamotte et al, 1991, 1995; Biermann, 1995; Vissers et al., 1995; Stapel et al, 1996; 

Martinez-Martinez & Azanon, 1997 and Poisson et al, 1999). The sedimentary basins 

in the eastern Internal Zone are a result o f 
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1. Late Tertiary régional strike-slip tectonics aiong a major NE-SW trending, sinistrai 

strike-slip fault zone (Montenat et al, 1987; Montenat & Ott d'Estevou, 1990); 

2. East-west trending, dextral strike-slip faults (Sanz de Galdeano, 1989; Sanz de 

Galdeano and Vera, 1992; Stapel et al, 1996); and 

3. North-south extension associated with late orogenic collapse (Vissers et al, 1995). 

Rapid subsidence of Neogene basement accompanied the déformation (Cloetingh et al, 

1992) and resulted in a mountain belt which presently forms a discontinuons cbain of 

more or less isolated Sierras separated by Miocène to Quatemary basins. Tbe basins are 

filled with mainly flat lying or slightly tilted or folded sédiments, while the strongly 

deformed Middle Miocène sédiments are restricted to the basin margin fault zones 

(Stapel et al, 1996). 

The down-faulted sedimentary basins are filled with predominantly Neogene sédiments, 

including marine calcareous mudstones, limestones, sandstones and gypsum. Within 

the study area the séquence is thought to represent at least three transgressive/regressive 

épisodes. Importantly, for stratigraphie and lithostratigraphic studies, there is a lack of 

continuity of the stratigraphie units between the Sorbas Basin and the adjoining Vera 

and Tabernas Basins (Mather, 1991). 
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2.2.3 Outlíne Geological History of the Study Área 

The study área is defined by the Sierra de Los Filabres and Sierra Bédar to the north and 

north west respectively, the Cuesta del Encantada to the south and the Sierra Cabrera to 

the south-east (Figure 2.1). These mountain ranges are composed of Palaeozoic and 

Permo-Triassic basement (Egeler & Simón, 1969; García-Hernández eí al, 1980; Sanz 

de Galdeano, 1990). The western and north eastern margins to the Rio Aguas 

catchment área are relative topographic highs within the Neogene sedimentary basins. 

Weijermars (1991) and Mather et al (2001) provide a detailed overview of the geology 

of the región and, therefore, the área that is covered by the study área for tbis project. 

The lithostratigraphy and nomenclature for the Neogene basin fdl used here (Figures 

2.2, 2.3 and 2.4) will follow that used by Mather (1991) and Stokes (1997), which is 

based on the work of Ruegg (1964) and Vólk & Rondeel (1964). 

The Neogene sedimentary rocks of the study área range in age from Burdigalian to 

Quatemary (i.e., 22 Ma BP and younger) and represent three major 

transgressive/regressive cycles, which occurred during the Serravallian-Tortonian, the 

Messinian and the Pliocene. Vólk and Rondeel (1964) divided the Neogene rocks into 

the Older Neogene (Burdigalian - Serravallian) and the Younger Neogene (Tortonian -

Pliocene), based on a change in the source área of the sediments. The Older Neogene 

sequences represent the first phases of deposition during the early to mid-Miocene 

(Burdigalian/Serravallian through to Tortonian). The Younger Neogene sequences 

represent the main depositional phase during the mid- and late Miocene and include 

sediments of Tortonian, Messinian and Pliocene age. The Older Neogene sequences are 
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dominateci by Alpujarride-derived sediment and devoid of Nevado-Filabride material 

(Volk, 1967a,b), wbicb could imply that tbe Nevado-Filabride Nappe was not unroofed 

at tbis time. 

Tbe Older Neogene sediments (coarse terrigenous clastics to deeper water turbidites) 

overstep the basement massifs. Uplift led to the deformation of these Tortonian 

sediments, wbicb, in turn, are overstepped by the Younger Neogene sequence of 

bioclastic and reef carbonates, basinal marls, evaporites and shallow marine to 

terrestrial clastic deposits (Martin & Braga, 1994, 1996; Braga & Martin, 1996). The 

Younger Neogene sediments are also characterised by the presence of large amounts of 

crystalline rock fragments derived from the Nevado-Filabride Complex. 

The Tortonian to Messinian transgressive sequence is represented by the shallow marine 

sandstones and conglomérales of the Azagador Member, Turre Formation (Figures 2.2 

and 2.3) (Weijermars, 1985; Mather et al., 2001). During deposition of the Azagador 

Member, the Sorbas, Vera, Tabernas and Carboneras Basins were interconnected (Ott 

d'Estevou, 1980). The Azagador Member unconformably overlies (at up to 60° angular 

unconformity) the Tortonian sediments (Tortonian II of Ott d'Estevou, 1980; Mather, 

1991). The period of maximum flooding is marked by the deposition of approximately 

120m of marine marls in the Sorbas Basin (the Abad Marls of the Turre Formation; 

Figures 2.2 and 2.3) (Weijermars, 1985). These contain foraminifera that indicate a 

maximum water depth in the región of approximately 100-300m (Troelstra et al., 1980; 

Baggley, 2000). The reefs of the Cantera Member (Turre Formation, Figures 2.2, 2.3 

and 2.4) developed along the margins of tbis seaway and over the Alhamilla/Cabrera 

topographic high (Mather, 1991; Mather et ai, 2001). 
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The reef development in progressively less elevated, more central basin positions marks 

a gradually falling sea level after the peak of the transgression (Mather, 1991 and 

références therein). Hypersaline conditions developed in the Sorbas Basin centre, 

depositing up to 130m of gypsum (Yesares Member, Caños Formation; Figures 2.2, 2.3 

and 2.4). The faunal and micro-faunal assemblages indícate water depths may bave 

varied between 10 to 100m during the déposition of the Yesares Member (Dronkert, 

1976; Pagnier, 1976). Laminâtes of mud, mari and limestone are frequently intercalated 

with the gypsum. They show no évidence of wave ripples or desiccation cracks, 

implying déposition below wave base. The fall in sea level is generally considered to 

be related to the "Messinian Salinity Crisis" of Hsü et al. (1972, 1977, 1978). 

The Yesares Member is overlain by the Sorbas Member (Caños Formation; Figures 2.2, 

2.3 and 2.4) which is represented by a séquence of fmely laminated clay and lime muds 

in its lower part, and calcareous sandstone and conglomérate of a beach-barrier system 

in its upper part (Roep et al., 1979). Hypersaline conditions bave again been inferred 

from the nature of déposition of this member (Pagnier, 1976). Towards the end of 

déposition of the Sorbas Member, access to the Vera and Tabernas Basins was 

restricted, the main Connecting basin becoming the Carboneras Basin to the south. A 

switch to continental conditions occurred after the déposition of the Sorbas Member. 

In the stratigraphie classification of Ruegg (1964), the Zorreras Member was classified 

as part of the Caños Formation. However, the Caños Formation within the Sorbas 

Basin represents an evaporitic séquence (Dronkert, 1976) whereas the Zorreras Member 

represents a switch to continental sédimentation after the evaporitic period (Mather, 

1991). Mather (1991) proposed that the Zorreras Member and a newly identified 

member (the Moras Member) should be grouped together to form the Cariatiz 
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Formation (Figures 2.2, 2.3 and 2.4). The Moras Member consists dominantly of 

conglomerate and the Zorreras Member consists dominantly of sandstone and sihstone. 

Mather (1991) also suggested that during the time of deposition of the Cariatiz 

Formation the Pliocene sea was to the south in the Carboneras/Almería Basin. A small 

part of the southern Sorbas Basin was also under marine conditions connected to the 

Carboneras/Almería Basin through a restricted opening in the Sierra Alhamilla/Cabrera. 

The majority of the Sorbas Basin was a coastal plain (the Zorreras Member), although a 

series of alluvial fans developed along the northern margin of the Basin (the Moras 

Member). Sedimentation was punctuated by the development of lacustrine conditions 

across the Basin, partly reflecting the low gradient of the coastal plain, and the restricted 

topography. The lakes would have been fairly shallow, unstratified and probably 

retaining a connection to the open sea to the south (Mather, 1991; Mather et ai, 2001). 

The conglomerates of the Góchar Formation represent the Pliocene sedimentation 

within the study area, which mark the last phase of deposition before basin inversion in 

the Sorbas Basin (Ott d'Estevou, 1980; Mather, 1991). Continued uplift stimulated 

incision of the drainage networks, and the development of the contemporary landscape. 

This incision history is recorded as a series of Quaternary river terrace deposits that 

have been documented by Harvey (1984), Harvey & Wells (1987), Mather (1991, 

1993a,b), Mather et al. (1991), Mather & Harvey (1995), Harvey et al. (1995), Stokes 

(1997), Kelly et al. (2000) and Mather et al. (2001). These will be discussed ñtrther in 

Section 2.4. 
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2.3 Geology of the Rio Aguas Catchment 

The information presented in the following section is based on the hterature review 

combined with supplementary data that were collected in the field. 

2.3.1 Alpine Basement Geology 

The study area is bordered to the northwest, north and southeast by mountains 

composed of Mesozoic, Palaeozoic and older basement (Figures 2.1 to 2.4). The 

basement can be divided into three major units based on their relative age, degree of 

metamorphism, the number of phases of déformation and their corrélation with regional 

basement lithological pattems. The terminology used here is based on the established 

classification of Egeler & Simon (1969). The différences between the three major units 

are summarised in Table 2.1. The stratigraphie relationship of the basement complexes 

is a resuit of their structural superimposition as a series of thrust nappe units which 

relate to the development of the Betic Cordillera and their subséquent geodynamic 

évolution (Egeler & Simon, 1969). 
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Table 2.1 - Stratigraphie Relationship of the Basement Units (after Gomez-Pugnaire, 

2001). 

Complex Name Dominant Rock Types Deformation Relative 

Ag e 

Malaguide Complex Mica Scbist overlain by Little or no Youngest 

(pre-Permian) sandstones and limestones 

Harzburgite, eclogite, 

metagranite, granulite, gneiss. 

déformation 

Alpujarride Complex migmatite and mica scbist. Some 

(pre-Permian) overlain by pbyliite, quartzite 

and limestone, mudstone and 

dolostones 

déformation 

Nevado-Filabride 

Complex 

Mica scbist, quartzite, mafie and 

ultramafic rocks, marbles and 

carbonates 

Higbly 

deform ed 
Oldest 

2.3.1.1 Nevado-Filabride Complex 

The Nevado-Filabride Complex was first described by Egeler (1963) to include ali of 

the metamorphic rocks beneath the nappes of Higher Betic Units. Brouwer (1926a,b) 

sub-divided the eastem Betic région on the corrélation of two lithologically distinct 

tectonic units found in the Sierra Nevada area. These were described by Weijermars 

(1991) as; 

• The "Upper Tectonic" or "Higher Nevado-Filabrides U n i f ; and 

• The "Tower Tectonic" or "Nevado-Lubrin Un i f . 
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These units are characterised lithologically by a general medium to high-grade 

greenschist facies metamorphism relating to the early emplacement of the Nevado-

Filabride Complex during the early geodynamic history of the Betic Cordilleras 

(Weijermars, 1991). 

Nevado-Lubrin Unit (The Lower Tcctonic Unit) 

The underlying Nevado-Lubrin Unit (Weijermars, 1991), referred to as the Tabal 

Schists by Dicker (1966), occupies the bulk of the Sierra de los Filabres to the north of 

the study area. This unit consists of graphitic, black, garnet-bearing mica-schists, 

overlying garnet-bearing, albite-chlorite, and yellowish, chloritoid-garnet, mica-schist 

(Weijermars, 1991). The Unit is "capped" (Weijermars, 1991) by a brecciated marble 

that is approximately 75 m thick, containing both angular and rounded clasts of both the 

underlying and overlying geology. Weijermars (1991) suggested that this might 

represent some sort of fault gouge. 

Higher Nevado-Filabrides Unit (The Upper Tcctonic Unit) 

Within the eastern Sierra de los Filabres, bordering the Vera Basin, the crystalline 

schists of the Higher Nevado-Filabride Unit that are found in the Sierra Nevada are 

absent and several localised, stratigraphically and lithologically distinct tcctonic units 

can be identified (Bicker, 1966; Table 2.2). 
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Table 2.2 - Units of the Higher Nevado-Filabride Unit (after Weijermars, 1991) 

Relative 
Age Name Description 

Youi Igest 
Lisbona Unit 

Triassic mica-schists and meta-carbonates with 

local intercalations of amphibolite. 

Chivé Unit 
Permo-Triassic chlorite mica-schists, 

amphibolites and tourmaline gneisses. 

Palaeozoic to Permo-Triassic mica-schists. 

Nevado-Lubrin Unit garnet mica-schists and quartzites with localised 

intercalations of carbonate and gypsum. 

Oldest Bédar Unit 
Palaeozoic and older graphite schists and 

tourmaline gneiss complex. 

At least three of thèse individual thrust sheets bave been mapped along the southwestern 

flank of the Sierra de los Filabres (Linthout & Vissers, 1979; Weijermars, 1991). 

The Bédar Unit (found in the Sierra de Bédar) comprises a tourmaline granitic intrusion 

that was then emplaced (Weijermars, 1991). The Rb-Sr isochron of the Bédar Unit 

granité suggests that the intrusion took place in the Early Permian 269 ± 6 Ma BP 

(Priem et al, 1966). The emplacement of the Bédar Unit bas largely deformed the 

Bédar granité info tourmaline-gneiss with large feldspar augen (Weijermars, 1991). The 

Bédar Unit outcrops towards the north of the study area in the Sierra de Bédar. 

2.3.1.2 Alpuîarride Complex 

The Alpujarride Complex is not as spatially extensive as the Nevado-Filabride Complex 

within the sierras surrounding the study area. There are minor exposures of the 

Complex within the Sierra de los Filabres (Bicker, 1966) and Sierra Cabrera (Rondeel, 
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1965). Weijermars (1991) described the Sierra Alhamilla as a basement inlier with the 

Alpujarrides enveloping a core of the Nevado-Filabrides. 

The Alpujarrides Complex was thrust over the Nevado-Filabride Complex in a north to 

northwest direction (Platt ei al, 1983). The Alpujarride nappes comprise low-grade 

metamorphosed Triassic carbonate rocks, phyllite and quartzite, with localised black 

greenschist facies mica-schist (Weijermars, 1991). 

2.3.1.3 Malasuide Complex 

Also known as the Betic of Malaga, the Malaguide Complex occurs as minor outcrops 

within the Sierra Cabrera. It has been extensively eroded away prior to the onset of 

Neogene Sedimentation, leaving only small outcrops preserved as klippen (Weijermars, 

1991). 

The Complex consists of low grade metamorphic schists, phyllite and pelites and non-

metamorphosed grejovackes, sandstones, conglomerates and carbonates of Palaeozoic to 

Oligocene age (Rondeel, 1965;Bicker, 1966). 

2.3.2 The Umbria/Mofar Formation 

The Umbria/Mofar Formation forms part of the "Older Neogene" rocks of Burdigalian 

to Serravallian age (Figures 2.2, 2.3 and 2.4). This Formation outcrops in narrow 

fauUed zones in the steeply dipping cuestas along the northern margin of the Sierra 

Cabrera. It is represented by calcareous mudstones, claystones, sandstones, and 
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conglomerates and reaches a maximum thickness of approximately 600m with 

unconformable upper and lower boundaries (Rondeel, 1965). However, the lack of 

exposure and intense deformation of the Older Neogene sediments makes a study of 

these units quite difficult. 

2.3.3 Chozas Formation 

The Chozas Formation (Serravallian - Tortonian) within the study area is represented by 

four Members (Table 2.3) (Rondeel, 1965; Volk, 1967, Alvado, 1986, Martin-Penela & 

Barragán, 1995; Stokes, 1997). It is significant as it marks the first Neogene marine 

transgression within the study area and occupies much of the southern part of the Sorbas 

Basin along the north flank of the Sierra Cabrera (Figures 2.2, 2.3 and 2.4). It can be 

sub-divided into a lower sequence (?Seravallian/lower Tortonian or Tortonian I of Ott 

d'Estevou, 1980) and an upper sequence (upper Tortonian or Tortonian II of Ott 

d'Estevou, 1980). The lower sequence is the least developed in the Sorbas Basin, 

outcropping along the southern margin of the basin around Gafarillos (Ott d'Estevou, 

1980; Mather, 1991). This lower sequence is separated from the upper sequence by a 

marked angular discordance. The upper part of the sequence dominates and is locally 

some 2000m thick (Ott d'Estevou, 1980; Mather, 1991). It comprises basinal marls and 

intercalated turbidites that have been derived from the north (Weijermars et al., 1985). 

The Tortonian sediments are strongly deformed into open to tight folds as a result of the 

emergence of the Sierra Alhamilla (Weijermars et al., 1985). 
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Table 2.3 - Descriptions of the four Members of the Cbozas Formation sequence 
(based on Rondeel, 1965; Stokes, 1997) 

Member Ñame Description 
Depositional 

Environment 

Gafarillos 

Member 

Mainly confíned to the SE of the Sorbas Basin 

Thickly bedded brownish-red sandstones and 

conglomerates (tabular-shaped coarse clastics 

(micaceous marble, gamet-mica schist, and gamet-

staurolite schist) predominantly from the Nevado-

Filabride Complex). 

Alluvial fan 

activity within a 

continental 

environment. 

Gatar Member 

Mainly very well bedded, alternating white to 

yellowish calcareous mudstones, siltstones, 

sandstones and marine conglomerates. These rocks 

contain a very characteristic spherical weathering 

pattem. The lower part of the member contains many 

poorly Consolidated sandstone layers. 

Deep marine 

basin. 

Loma Colorada 

Member 

Mainly grey to yellowA)rovvnish, very poorly sorted 

boulder conglomerates with irregular beds, composed 

of rocks of different coarseness, alternating with 

more evenly bounded sandstone layers, 

approximately 60cm in thickness. The boulders (in 

the boulder conglomérate) are rounded 

mesonietamorphic rocks (gamet-mica schists, gamet-

staurolite schists, biotite quartzites, epidote-rich mica 

schists, epidote-amphibolite schists, amphibolites, 

marbles, and gneisses). This material is 

predominantly from the Nevado-Filabride Complex. 

Near shore, 

shallovv marine, 

possible shoreline 

environment. 

Salador 

Member 

Red conglomerates. 

Alluvial fan 

activity within a 

continental 

environment. 
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2.3.4 Turre Formation 

The Turre Formation (Figure 2.2; Ruegg, 1964) in the study area has been divided into 

three Members and represents a transgressive sequence that is approximately 500 m 

thick (Dronkert, 1976, 1985). Oldest to youngest, these units are the Azagador, the 

Abad and the Cantera Members (Figure 2.2 and 2.3). The Azagador and Abad 

Members are considered to be partly contemporaneous with each other (Rondeel, 1965; 

Braga et al, 2001). 

2.3.4.1 Azasador Member 

The Azagador Member outcrops in both the Sorbas Basin (Riding et al, 1991; Braga & 

Martín, 1996) and the Vera Basin (Barragán, 1997; Braga et al, 2001) sections of the 

study area (Figures 2.3 and 2.4). In the Sorbas Basin the outcrops form part of the 

Cuesta d'Encantada, and some of the small hills below the Sierra de los Filabres to the 

north east of the study area. It also outcrops along parts of the Rio Aguas from Los 

Molinos (Sorbas Basin) to Turre in the Vera Basin. Along the northern flanks of the 

Sierra Cabrera (southern edge of the Vera Basin) the steeply dipping Azagador Member 

forms a series of ridges that are composed of strong (after BS5930, 1991) and compact 

limestone units with well developed jointing. Rondeel (1965) noted that disintegration 

occurs along these joint planes, resulting in numerous wedge failures that locally cover 

many of the slopes. 

The basal units of the Azagador Member rest unconformably on the underlying 

basement of the Alpujarride Complex. The basal unit is a terrestrial conglomerate, 
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derived locally from the underlying basement material, containing well-rounded clasts 

of Alpujarride mica-schist. These congiomerates rest unconformably on the underlying 

basement. 

The rest of the Azagador Member consists of thickly bedded, algal-rich, mica-rich, light 

coloured (ochre-yellow through to brownish-yellow) sandstones, limestones and 

congiomerates. The overall thickness of the units varies considerably across the study 

area, as does the degree of folding and jointing. 

2.3.4.2 Abad Member 

The Abad Member (as with the Azagador Member) outcrops in the parts of the study 

area covered by both the Sorbas and Vera Basins (Figures 2.2, 2.3 and 2.4). The Rio 

Aguas follows the outcrop of the Abad Member and/or its boundary with the Azagador 

Member, 

The Abad Member is represented by dark coloured (dark yellow-brown-grey-black) 

calcareous mudstones and siltstones interbedded with, more resistant, thin beds of 

lighter coloured limestones and brownish sandstones. The mudstones are moderately 

weak, reasonably friable, and weather to form a dark coloured weathering surface/crust 

The Abad Member macrofauna includes sponges, bryozoans, encrusted nodulos and 

molluscs, while the microfauna is dominated by foraminifera (Baggley, 2000). The vast 

majority of the samples studied by Baggley (2000) contained benthonic foraminifera, 

which, in general, show excellent preservation. Re-crystallisation, pressure distortion of 

the tests and mechanical damage to, or dissolution of, the tests impeded the 
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identification of only 3.5% of the samples. From the 120,000 specimens of 

foraminifera that were picked (60,000 planktonics and 60,000 benthonics), 394 different 

benthonic species and 111 different planktonic species were identified. Such high 

diversities and abundances would only he expected in completely open marine 

environments of normal salinity. The quality of preservation of the fauna would 

indicate little post-depositional diagenesis or other alteration (Hart, M.B., pers. comm., 

2002). 

X R D analysis of some samples that were collected in the field in the Los Molinos area, 

showed that the calcareous mudstone layers contained quartz, calcite, the expansive day 

minerai smectite (chlorite/montmorillonite) and, possibly, a small amount of pyrite. 

2.3.4.3 Cantera Member 

The Cantera Member is only found in the Sorbas Basin part of the study area (Figures 

2.2, 2,3 and 2.4). It caps the Cuesta del Encantada that forms the drainage divide 

between the Rio Aguas and the Rambla de Lucaiñena (and therefore the southern 

margin of the study area). This prominent ridge is the result of the tectonic uplift that 

has affected the area since the Messinian (Mather, 1991). The Cantera Member also 

outcrops in the foothills of the Sierra de los Filabres (south of Uleila) and in the area 

north of the village of Cariatiz. In the Cariatiz area the limestone is part of a reef talus 

slope that is being reworked to form a distinctive escarpment and modem talus slope. 

The Cantera Member is a lightly coloured, strong to moderately strong (after BS5930, 

1991) barrier reef limestone (10-30 m thick) containing Porites coral (Van de Poel et 
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a/., 1984). This limestone is thought to represent the maximum flooding of the 

Messinian transgression in the region (Dronkert, 1976). 

2.3.5 Caños Formation 

The Caños Formation in the Sorbas Basin represents a regressive sequence that has been 

described as one of the best preserved continental remnants of the Messinian Salinity 

Crisis. Numerous workers have suggested that this was a catastrophic event that led to 

the (complete) desiccation of the Mediterranean area 7-5 M a (Hsu et al., 1972, 1977, 

1978). In the study area it is only found in the Sorbas Basin, where it can very clearly 

be divided into the Yesares and Sorbas Members (Figures 2.2 and 2.3). 

2.3.5.1 Yesares Member 

The Yesares*'' Member outcrops over approximately 25 km^ of the central part of the 

study area to the east of Sorbas and Cariatiz (Figures 2.3 and 2.4). The unit has been 

described in detail by Dronkert (1976, 1977, and 1985), Riding ei al. (1999), Calaforra 

(1996) and Calaforra & Pulido-Bosch (1997, 2003), The sequence comprises eight, 

approximately 30m thick, beds of moderately strong gypsum intercalated with thinly 

laminated, moderately weak calcareous mudstones. The mudstone layers strongly 

control the groundwater flow through the rock mass and, ultimately, the karstification 

processes that occur within it. The groundwater passing through the Yesares Member 

Tlie tenn Yesares is derived from tlie Spanish word for gj'psum - 'I'eso" 

59 



Cliapter 2 - Geology & Geomorphology 

cave System forms part of a subterranean tributary to tbe Rio Aguas (Calaforra & 

PuHdo-Boscb, 2003). 

On occasion, tbe mudstone layers also exercise a net geomorpbological control, whicb 

is evidenced on tbe surface by tbe morpbo-structural escarpments and extensive karst 

Systems tbat are found in tbe région (Calaforra & Pulido-Boscb, 1997). Tbese 

geomorpbological features are discussed in Section 2.5.1. 

The Yesares Member represents a period of relatively dramatic environmental 

conditions within tbe Mediterranean région tbat are well documented in the literature. 

Tbe period is often referred to as the "Messittian Salinity Crisis" and is thought to 

represent a time when the sea in the Mediterranean area became desiccated, leaving 

extensive and thick deposits of gypsum and other evaporitic minerais (Martin & Braga, 

1994, 1996; Krijgsman et al., 1999; Braga, 2003). In the study area the Yesares 

Member is economically significant with at least three large working quarries. 

2.3.5.2 Sorbas Member 

The Sorbas Member outcrops over an area of approximately 25 km^ the central part of 

the study area around the town of Sorbas, after whicb it is named (Figures 2.2, 2.3 and 

2.4). The Sorbas Member generally represents a régressive post-evaporite séquence 

deposited under "normal marine conditions" (Ott d'Estevou, 1980; Doyle et al, 2000). 

However, the continuity with the underlying evaporite séquence of the Yesares Member 

and the sporadic présence of gypsum arenites (Pagnier, 1976) suggest the continuing 

présence of hypersaline conditions during at least the earliest stages of déposition. 
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The Sorbas Member is represented by hghtly coloured (mainly off-white), thickly 

bedded, moderately strong calcareous sandstones and thinner beds of laminated 

moderately weak, calcareous mudstones. There are also some minor conglomeratic 

units. The dip direction of the beds around Sorbas is generally to the north and 

northwest, although there are fluctuations in the amount of dip. The member is 

approximately 75 m thick and contains bird and wolf foot imprints, as well as other 

fossil remains (Roep & Van Harten, 1979; Roep et al, 1979; Ott d'Estevou, 1980; 

Doyle et al, 2000). 

2.3.6 Cariatiz Formation 

The Cariatiz Formation, as defined by Mather (1991), is divided into the Zorreras 

Member and the Moras Member. The members were mapped and logged as part of a 

detailed study by Mather (1991). 

The Cariatiz Formation outcrops in the northern and central parts of the Sorbas Basin 

(Figures 2.2 and 2.4). It conformably overlies the Sorbas Member and is capped 

conformably at the basin centre, but unconformably at the basin margins, by a laterally 

extensive "marine unit" (Mather, 1991; Mather & Stokes, 2001) There are two other, 

laterally extensive white carbonate beds that, along with the marine unit, are extremely 

usefiil as marker beds, as they are easily identifiable and can be traced quite easily over 

substantial parts of the central zone of the Sorbas Basin part of the study area. 

61 



Cliapter 2 - Geology & Geoniorphology 

2.3.6.1 Moras Member 

The Moras Member is composed of coarse sediments that are laterally equivalent to the 

Zorreras Member. The Moras Member varies across the Sorbas Basin; coarser 

sediments at the basin margins which become finer towards the basin centre. 

In the area around the village of Moras and the Rambla de Góchar, the member 

comprises of moderately well sorted conglomerates, laminated silts and fine sands with 

some scattered small pebbles. Part of the conglomerate succession is clast supported 

with weak imbrication, while other parts are matrix supported. The conglomerate clasts 

are derived from the Sierra de los Filabres or are reworked laminated carbonate clasts in 

a matrix of poorly sorted sand containing scattered, smaller carbonate fragments. The 

top part of the conglomerate succession fines upwards into poorly sorted sandstones. 

In the Cinta Blanca area (Grid Reference 0573041090) the Moras Member is 

represented by a moderately to well sorted conglomerate with imbricated clasts, and 

weakly laminated sandstones (Mather, 1991). The conglomerate clasts are all from the 

Sierra de Los Filabres. 

Where the Moras Member outcrops in the valley side slopes to the south of Cariatiz, it 

comprises a clast-supported conglomerate with metabasic clasts (derived from the Sierra 

de Bédar), finely laminated red mudstone, graded sandstone units and granular/very 

coarse sand to very fine sandstone and siltstone. 

Mather (1991) suggested that the Moras Member represents an alluvial fan 

environment, with material being derived from both the Sierra de los Filabres and Sierra 

Bédar. The fans would have developed over the existing topography (i.e., the 
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Messinian limestone reef "cliffs" that developed at the basin margins). Distally thèse 

fan deposits interfmger with the coastal plain sédiments of the Zorreras Member. 

2.3.6.2 Zorreras Member 

Mather (1991), who described the Zorreras Member as being continental in nature, 

identified six différent lithofacies within the Zorreras Member succession. The member 

is represented by laminated, red-coloured siltstones and medium to fine grained 

sandstones (l-2m thick) horizontal bands of carbonate nodules and poorly sorted, 

channelised to well sorted and imbricated conglomérâtes (Sierra de Los Filabride 

derived clasts). There is sedimentological évidence in numerous places for localised 

desiccation, pedological/soil development and/or calcium carbonate accumulation. The 

top of a section in the Sorbas area, for example, shows increasing redness associated 

with soil development (Mather, 1991). 

Mather (1991) suggested that the sédiments of the Zorreras Member represent a low 

gradient coastal plain depositional environment. East of Sorbas the plain formed a 

shallow dépression which possibly acted as a focal point for the fluvial drainage within 

the Sorbas Basin. 

2.3.6.3 The Marker Beils 

Mather (1991) described three distinctive beds within the Cariatiz Formation that can be 

traced over large parts of the Sorbas Basin. These "Marker Beds" are two light 

coloured/white "Carbonaie Beds" and a yellow bioturbated sandstone bed {"Marine 

umr). 
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The two carbonate beds range in thickness from 20cm to 2m, with the upper carbonate 

bed being typically thinner and less weil developed than the lower carbonate bed. They 

are both laterally extensive and occur within the Zorreras and Moras Members. Mather 

(1991) identified six lithofacies within the carbonate beds - grey mudstone, red clay, 

fme-grained laminated carbonate, calcarenites and clastics in approximate order of 

stratigraphie appearance. 

The fine-grained carbonate is generally restricted to the more central areas of the Sorbas 

Basin and is more extensive in the lower carbonate band. It reveals no internai structure 

and is composed of pure white micrite (Mather, 1991). The fme-grained millimètre-

centimètre scale laminated carbonate occurs in the marginal areas of the Sorbas Basin 

and is frequently intercalated with sub-millimetre thick, grey clay laminae. The 

carbonate beds in the northern and western margins of the Sorbas Basin become 

calcarenitic, and contain low angle stratification, cross stratification and scour 

sedimentary structures. The clastic lithofacies is also restricted to the margins of the 

Sorbas Basin and comprises centimetre-thick silt and sand layers, decimetre-thick, 

graded sandstone units and thick, poorly sorted calcarenite (Mather, 1991). 

The carbonate units of the lower marker bed contain ostracods and external moulds of 

bivalves, while the fauna of the upper bed is more diverse (Ott d'Estevou, 1980). The 

fauna includes the ostracod Cyprideis parmomania pseudo-argentina (of Messinian âge; 

Mather, 1991) and gastropod moulds (dominantly Melanopsis\ Mather, 1991). The 

carbonate beds in the northern margins of the basin also contain ichnofossils such as 

feeding traces and burrows. 
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The carbonate beds within the Cariatiz Formation reflect déposition in a warm, shallow, 

unstratified, well-oxygenated brackish lagoon which extended across a low-gradient 

geomorphological surface (Mather, 1991). The lagoon would bave been connected to 

the sea to the south (i.e., where the Carboneras Basin is located) (Mather, 1991). 

The so-called "Marine Band" is Pliocène in âge (Montenat & Ott d'Estevou, 1977) and 

marks the top of the Cariatiz Formation. The band lies conformably on the Zorreras 

Member in the central and southern parts of the Sorbas Basin. However, along the 

eastem margin of the Sorbas Basin there is a weakly developed unconformity between 

the Zorreras Member and the Marine Band. This unconformity is most strongly 

developed along the northern margin of the basin over the Moras Member. 

The Marine Band is dominated by a persistent bioturbated, yellow sandstone that 

typically contains shell fragments (including oysters and small bivalves). The strong 

yellow colour is probably due to the présence of limonite, which readily oxidises from 

chamosite. Oxidation could be related to uplift, but Mather (1991) bas suggested that it 

could be due to the extrême bioturbation of this faciès thoroughly aerating the 

sédiments, enabling early oxidation, particularly as less bioturbated units remain 

greenish in colour. 

Although the Marine Band is dominated by the yellow sandstone described above, 

Mather (1991) identified a further eight lithofacies within the unit. Thèse are a 

grey/green bioturbated sandstone, a laminated yellow clay, micro-conglomerate, 

marginal conglomerate, cross-laminated sands and gravels, channel bodies, carbonate 

developments and a basai conglomerate and sandstone. Mather (1991) suggested that 

the marine band faciès of the Carbonate Bands indicate more open marine conditions in 
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the Southern area of the Sorbas Basin and, therefore, a marine connection in this area. 

The opening for the marine incursion was possibly through a narrow gap in the Sierras 

that formed the southern basin margin. 

Field mapping in a number of différent areas around the study area highiighted that 

parts of the Marine Band are highly erosive and susceptible to piping and other related 

dissolution features. Samples taken from the Marine Band in the Los Beneficios area 

were analysed using X-ray diffraction techniques. The results showed the présence of 

dispersive clay minerais such as smectite and chlorite which could explain the observed 

dissolution features and weathering. 

2.3.7 Cuevas Formation 

The Cuevas Formation represents a Lower to mid-Pliocene transgressive marine 

séquence within the Vera Basin (Figures 2.2 and 2.3; Stokes, 1997). It marks the third, 

and final, marine transgression that is identified within many of the Neogene 

sedimentary basins in the région and corresponds to a relative rise in régional sea level 

following the Messinian salinity crisis within the Mediterranean area. 

The contact between the members of the Cuevas Formation and the underlying 

Messinian sédiments of the Turre Formation shows an erosional unconformity. The 

Cuevas Formation shows two distinct faciès (Stokes, 1997). 

• massive, grey coloured siltstones and fine-grained sandstones rich in planktonic 

microfossils {Globorotalia margarilae, Globorotalia piincticulata, Globorotalia 
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crassaformis and Globoroialia iiiflata - (Volk, 1967a; Ott d'Estevou, 1990)) but 

witb limited macrofossils; and 

• thickly bedded, yellow, fossiliferous medium to coarse-grained sandstones. 

2.3.8 Góchar Formation 

Tbe Gócbar Formation, of Pliocene age, immediately overlies tbe Marine Band at the 

top of the Cariatiz Formation and represents a regressive and continental facies (Figure 

2.2). It is dominated by fluvial conglomerates, witb the type locality of Mather (1991) 

being in the Rambla de Góchar (Grid Reference; 752 108). Ott d'Estevou (1980) 

describes various forms of Helicidae (terrestrial gastropods) in the lower parts of the 

succession which imply a Plio-Pleistocene age for the sediments (Mather, 1991). These 

alluvial fan and braid plain conglomerates may locally reach a thickness of up to lOOm 

and are sometimes difficult to distinguish from the Quaternary deposits. 

The Góchar Formation outcrops over much of the western part of the study area (the 

western and centrai parts of the Sorbas Basin - Figures 2.3 and 2.4). It is best studied in 

the canyon walls of the Rambla de Góchar, near to the village of Góchar after which it 

and the Rambla are named. In this area the lithology is a polymict, matrix supported, 

terrestrial conglomerate containing sub-rounded pebbles and cobbles of mica schist, 

quartz and limestone. The matrix is fine-grained orange-red, silty sandstone. The rock 

mass is strong to moderately strong, forming (in this area) near vertical canyon walls 

approximately 50m high. On the basis of clast assemblages and palaeocurrent analysis 

it is possible to identify four drainage systems within the Góchar Formation (Mather, 

1991). 
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2.3.8.1 The Góchar Fluvial System 

Draining from the northem basin margin, this is the largest system and forms a 

séquence of conglomérâtes up to 45 m thick. The clast assemblage is dominated by high 

grade metamorphics derived from the Tahal Unit of the Filabride Nappe in the 

northwest of the Sorbas Basin. The unit is represented by poorly sorted sandstone that 

coarsens upwards. The unit also contains some palaeosol horizons that are typically 

lacking in carbonate and are coloured red (Maunsell colour chart désignation 5YR 5/8; 

Mather, 1991). The Góchar Fluvial System bas a relatively consistent southeast 

palaeocurrent direction, and was dominated by a fluvial braided stream environment 

with highly fluctuating discharges. The Channels were typically shallow, eut by floods 

and filled by smaller scale, more fréquent run-off events (Mather, 1991). 

2.3.8.2 The Marchalico Fluvial System 

The smallest of the Systems, the Marchalico Fluvial System, contains a clast assemblage 

of metamorphic and igneous material derived from the Sierra Bédar. Mather (1991) 

fiirther sub-divided the system into schist-rich and reef-rich sub-systems. The system 

comprises a basai red sandstone unit which coarsens upwards into a séries of 

intercalated hematite-rich sandstones and generally well sorted, intercalated gravels and 

conglomérâtes. Locally they contain a persistent non-pedogenic calerete unit and 

towards the top of the system the conglomerate bodies become thicker and more 

channelised (Mather, 1991), The two suites of clast assemblages suggest the 

development of two alluvial fans sourced from différent catchments. The palaeocurrent 

directions are dominantly towards the south and southwest. 
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2.3.8.3 The Mocatán Fluvial System 

Located along the southern margin of the Sorbas Basin, tbe clasts of the Mocatán 

Fluvial System are derived from the Alpujarride Complex of the Sierra Alhamilla (i.e., 

low grade metamorphosed Triassic carbonates). In the vicinity of the Barranco del 

Mocatán, the System reaches a thickness of approximately 200m and is dominated by 

fme-grained sandstone and siltstone with coarser, laminated, grey sandstone beds. The 

séquence coarsens upwards into conglomérate. Mather (1991) suggested that this could 

represent flood events in a dominantly braided Channel environment. 

2.3.8.4 The Los Lobos Fluvial System 

The Los Lobos Fluvial System is probably the largest of the four Systems and drains the 

basin from west to east. The clast assemblage is characterised by a mixture of the clast 

types found in the other three Góchar sub-systems (Mather, 1991). The System, which 

reaches a maximum thickness of approximately 120m, comprises poorly sorted 

sandstone, overlain by conglomérate and intercalated with red sands and siUs. The 

séquence reflects déposition in a braidplain environment (Mather, 1991). 

2.3.8.5 Synthesis 

The four Systems described above represent the initiation of the drainage network 

within the Sorbas Basin and the study area. Mather (1991) demonstrated how the sea 

that deposited the Cariatiz Formation retreated and fluvial Systems began to prograde 

across the Sorbas Basin. Uplift of the Sierras at the basin margins led to the formation 

of a basinal drainage network that was roughly centripetal. The Góchar, Marchalico 

and Mocatán Fluvial Systems were low-gradient fluvial Systems that developed in the 

more central parts of the Sorbas Basin. These then fed into the larger Los Lobos Fluvial 
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System. This flowed from the Sorbas Basin to the south via a topographic low between 

the Sierra Alhamilla and Sierra Cabrera, into the palaeo-Mediterranean, which at this 

time occupied the Carboneras Basin to the south. 

Geomorphological controls at this time were generally maslced by the active structural 

controls. The presence of mature, well-drained pedogenic profiles lacking in any 

carbonate development despite a readily available source in the surrounding 

environment, indicates that leaching was prominent at this time. This may suggest a 

fairly humid environment. 

2.4 Geomorphological Setting of the Rio Aguas Catchment 

2.4.1 Introduction 

The previous section has described the geologica! formations and units of the study 

area. The material properties and structural controls of the underlying geology, along 

with the tectonic, climatic and geomorphological activity acting upon it bave led to the 

formation of the present landscape. Those processes and controlling factors bave been 

studied in some detail by numerous authors. Por example, Mather (1991, 1993a,b), 

Mather & Harvey (1995), Harvey et ai, (1995), Stokes (1997), Mather & Stokes 

(2001), Stokes et al. (2002) and Mather et al. (2001, 2002 and 2003) bave particularly 

focused on the initiation and development of the drainage networks across the Sorbas 

and Vera Basins. This has included the initiation and development of the Rio Aguas, 

which forms the basis for the study area used by this project. The aim of this next 

section is to: 
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• Describe the transition from marine to continental conditions and tbe initiation 

of tbe drainage network across tbe study area; 

• Describe the évolution of the Rio Aguas and the contemporary landscape; and 

• Describe the role of the différent controlling factors in this development. 

2.4.2 Marine to Continental Transition 

With continued tectonic uplift of the région, many of the sedimentary basins became 

elevated above sea level, despite a global rise in sea-level during the Pliocene (Haq et 

al, 1988; Mather & Stokes, 2001). The continued déformation associated with this 

uplift also led to the increasing isolation of the basins from each other. The history of 

the marine to continental transition is recorded within the Upper Messinian, Pliocene 

and Pleistocene sédiments of the basins. However, the timing of the transition varied 

between the basins as a fiinction of différent relative uplift rates (Mather & Stokes, 

2001). 

Within the Sorbas Basin the marine to continental transition was initiated in the Late 

Messinian, with the development of marginal alluvial fans and coastal plain deposits in 

the basin centre. The later fluvial Systems developed as a ñinction of the early 

émergence of the basin-fed, low-relief Plio-Pleistocene fan-deltas in the Almería Basin 

to the south (Mather, 1993b; Mather 8l Stokes, 2001). The earlier Pliocene in the Vera 

Basin (as well as the Tabernas and Almería Basins) is marked by the development of 

Gilbert-type fan-deltas (Postma, 1984; Postma & Roep, 1985; Boorsma, 1992; Stokes & 

Sendra, 1996; Stokes, 1997). This suggests low-energy, restricted basins with sédiment 

being supplied from the adjacent sierras. It is thought that true continental déposition 

71 



Cliapter 2 - Geology & Geomorphologj' 

within these basins did not appear until tbe ?Early Pleistocene, when alluvial-fan 

deposition dominated tbe basin margins (Matber & Stokes, 2001). 

2.4.2.1 Messinian 

From tbe Messinian onwards, regression was experienced by tbe main sedimentary 

basins due to a fall in relative sea-level. This was first experienced in tbe Sorbas Basin 

after the regression of the Sorbas Member seas and was associated with the 

development of alluvial-fan sediments accumulating at the basin margins (Moras 

Member, Cariatiz Formation; Matber, 1991) and coastal plain sediments (Zorreras 

Member, Cariatiz Formation; Matber, 1991) in the basin centre (described in Section 

2.3.6). 

During the latest Messinian-Pliocene the Sorbas Basin continental sediments were 

aflfected by two basin-wide brackish water lacustrine incursions, with similar deposits 

found in the Vera Basin (Van de Poel, 1991; Mather & Stokes, 2001). These are 

represented by the "Carbonate Marker Beds" of Mather (1991). Sediments within the 

Sorbas Basin show signs of more marine influence only towards the southern margin of 

the basin, implying a link with the Almería Basin across the Feos Gap between the 

Sierra Alhamilla/Cabrera (Figure 2.5). Links between the Sorbas Basin and the 

Tabernas and Vera Basins are absent. The presence of an angular unconformity in the 

sediments at the northern basin margin indicate continued uplift of the Sierra de Los 

Filabres at this time (?Late Messinian-Pliocene; Mather & Stokes, 2001). 

When the sea that deposited the Cariatiz Formation retreated, the fluvial systems (of the 

Moras Member) began to prograde across the Sorbas Basin. Uplift of the Sierras at the 
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basin margins led to tbe formation of a roughly centripeta! basina! drainage network. 

Tbe basin stili an intermittent marine connection with tbe Carboneras Basin (and the 

palaeo-Mediterranean) to the south (Mather, 1991). 

Geomorphological controls at this time were generally masked by the active structural 

Controls (Mather, 1991). The presence of mature, well-drained pedogenic profdes 

lacking in any carbonate development despite a readily available source in the 

surrounding environment, indicates that leaching was prominent at this time. Mather 

(1991) argued that this may suggest a relatively more humid environment. 
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Figure 2.5 - Early Pliocene reconstruction of the Continental to marine transition for the Sorbas and 

Vera Basins. (Modified after Mather, 1991; Stokes, 1997; Mather & Stokes, 2001). 
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2.4.2.2 Plio-Plcistocene 

The top of the Cariatiz Formation in the Sorbas Basin is marked by a yellow, basin-

wide marine unit. The fauna in this unit is thought to imply a link to more open marine 

conditions in the south. This incursion, of Late Phocene age (Roep & Beets, 1977; Ott 

d'Estevou, 1980) most probably reflects flooding in responso to global sea-level rise 

recorded at this time (Haq et al., 1988). In the Sorbas Basin, continental sédimentation 

subsequently became dominated by alluvial-fan and braided-river sédimentation (Figure 

2.5; Ruegg, 1964; Mather, 1991). The sédiment from the Sorbas Basin exited to the 

south across the axis of the Sierra Alhamilla and Cabrera, forming low-relief fan-deltas 

in the north of the Almería Basin (Mather, 1993b). It is thought that this was the only 

cormection that the Sorbas Basin had with any of the adjacent basins. 

During the Pliocène déposition of the upper units of the Cariatiz Formation in the 

Sorbas Basin, the adjacent Vera and Almería Basins were dominated by shallow marine 

déposition marked by the Cuevas Formation. The base of thèse deposits in the Vera 

Basin marks the Mediterranean-type locality for the Mio-Pliocene boundary (Fortuin et 

al, 1995). As sea level reached its maximum, Gilbert-type fan-deltas developed where 

suitable conditions and accommodation space were available (i.e., adjacent to 

pronounced topography, in the sheltered northern parts of the Vera Basin; Figure 2.6). 

In the Vera Basin this is represented by the Espíritu Santo Formation (Vôlk & Rondeel, 

1964; Postma & Roep, 1985; Stokes, 1997). With continued uplift and régression the 

fan-deltas gave way to continental sédimentation, such as the Salmerón Formation 

(Vôlk, 1979; Stokes, 1997; Stokes & Mather, 2000). Both of thèse units lie outside of 

the study area. 
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Figure 2.6 - Late Pliocene reconstruction of the Sorbas and Vera Basins. (Modified after 

Mather, 1991; Stokes, 1997; Mather & Stokes, 2001). 
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Within the study area, the transition from marine to continental conditions occurred first 

in the Sorbas Basin (Early-Middle PHocene) and then in the Vera Basin (Pho-

Pleistocene). As marine conditions withdrew across the study area, alluvial sédiments 

were deposited. Analysis of the sedimentology, the clast assemblages and the available 

palaeocurrent information has allowed the palaeogeography and palaeoenvironmental 

conditions to he reconstructed. 

This analysis has shown that a basinally convergent drainage network existed within the 

Sorbas Basin, represented by the alluvial deposits of the Góchar Formation (Mather, 

1991, 1993a; Mather & Harvey, 1995; Section 2.3.8). Braided river Systems developed 

in the more central parts of the Sorbas Basin fed by the broader, low-gradient marginal 

fluvial Systems. These braided Systems drained from the Sorbas Basin into the 

Carboneras Basin through an opening between the Sierra Alhamilla and Sierra Cabrera. 

Intense déformation related to uplift along the southern margin of the Sorbas Basin 

indicates active tectonism. Subsidence, relating to the déformation, generated 

topographie lows where small lakes developed. Mather (1991) also concluded that the 

influence of climatic and geomorphological controls were difficult to ascertain. 

Düring the "late" Góchar (after Mather, 1991) the existing fluvial Systems reached their 

maximum extent. However, these Systems were not mature braid Systems (Mather, 

1991). They were dominated by infrequent flood events, which typically produce 

simple unit bars as opposed to more complex, braid bars that are associated with more 

mature deposits. 
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At this time, a difference deveioped in the principal Controlling Factors governing the 

behaviour of the drainage Systems. Tectonic controls were now only of minor 

importance, affecting local uplift and subsidence rates, whereas geomorphological 

controls became more influential. The exception to this was along the southern margin 

of the basin along the Sierra Alhamilla/Cabrera axis, where the main drainage was 

slowly displaced towards the basin centre. This was due to uplift-generated, gentle 

basinward tilt. 

Within the Vera Basin, the Upper Pliocene alluvial Sediments of the Salmerón 

Formation, indicate the onset of continental conditions and the establishment of a 

convergent drainage network which flowed eastwards towards a Pliocene 

Mediterranean coastline (Stokes, 1997). This initial drainage network comprised a 

series of distinct coalescent mountain front alluvial fans which prograded over the 

former Pliocene shelf and shoreline areas, as recorded by the underlying Cuevas and 

Espíritu Santo Formations. Modification of the original drainage network occurred 

towards the end of Salmerón Formation times during the Early Pleistocene, when 

extensional tectonic activity resulted in significant changes in the sediment load and 

rerouting of the drainage network (Stokes & Mather, 2000; Mather & Stokes, 2001). 

2.4.3 Quaternary Landscape & Drainage Evolution 

The main continental drainage Systems deveioped during the Pliocene. Drainage lines 

that were transverse to the structure were superimposed and became antecedent 

following uplift (Haivey, 1987, 2001; Harvey & Wells, 1987; Mather & Harvey, 1995; 

Stokes, 1997; Stokes & Mather, 2000; Mather & Stokes, 2001). The Rio Aguas/Rambla 
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Feos became establisbed as tbe master drainage channel of the Sorbas Basin. It is 

thought that this drained into the Alias and eastwards through the Carboneras Fault 

Zone. The Vera Basin, with less uplift, had become a receiving basin for drainage 

systems originating outside of the basin. 

The area between the Sorbas and Vera Basins is drained by the lower Rio Aguas 

system. It becomes a transverse drainage across the Sierra Cabrera and the Palomares 

Fault Zone near to the present coastline. A major tributary to the Lower Rio Aguas, the 

Rio Jauto, is also a transverse drainage across the structures of the Sierra de Bédar. 

This is presumably through a combination of superimposition and antecedence (Harvey, 

2001). 

Controls on the drainage were dominated by geomorphological adjustment to tectonic 

uplift (Mather, 1991). The main drainage at this time was inherited from the end-

Góchar land surface and comprised a series of moderately graded surfaces that grade 

into the basin centre. These surfaces have subsequently been incised by the Quaternary 

drainage network. Modification of this network took place through river capture and re

routing, especially at the basin margins. For example. Tabernas drainage captured the 

western headwaters of the Sorbas drainage, as well as two substantial river captures in 

the southern part of the Sorbas Basin. There was also interaction between the Sorbas 

drainage and the Lower Rio Aguas tributary system, the Rio Jauto/Rambla de Los 

Castaños system in the north-east of the Sorbas Basin (Mather, 1991, 1993a; Harvey, 

2001). 
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2.4.3.1 River Capture 

The incisión history of the Rio Aguas and some of its main tributaries (i.e., the Rambla 

de Sorbas, Rambla de Góchar and Rambla de Mora) is recorded as a series of well-

developed river terrace deposits (Harvey, 1987a, 2001; Harvey & Wells, 1987; Miller, 

1991; Harvey et al., 1995, Kelley et al., 2000; Schulte & Julia, 2001; Candy et al., 

2003). These different terrace levéis bave been identified on the basis of field 

observations and relationships and, therefore, represent a relative time-scale. They are 

correlated on the basis of soil development (Harvey et al., 1995; Table 2.4). The 

deposits lie unconformably on the older basin fdl and post-date the youngest Góchar 

sediments and the main deformation within the Sorbas Basin. 

Mapping of the river terrace levéis has shown that during the early part of the 

Pleistocene the Sorbas Basin was stili draining to the south through a topographic low 

between the Sierra Alhamilla and Sierra Cabrera into the Carboneras Basin (via the 

Rambla de Los Feos; Harvey & Wells, 1987; Mather, 1991, 1993a,b). This is marked 

by the terrace levéis A to C of Harvey & Wells (1987) and Harvey et al. (1995). 

Terrace levéis A, B and C ali bave a distinctive red colouring and show aggradational 

thickness of up to c.20m between Sorbas and Los Molinos, but up to c. lOm elsewhere. 

Dating from the ?Early to Middle Pleistocene, the terrace gravéis rest unconformably on 

basement or Neogene rocks. They are usually well cemented both at the surface, by 

strongly developed calcretes derived from pedogenic carbonate, and at the base at the 

gravel^edrock contact. For example, river terrace level A has developed on top of an 

erosional geomorphic surface that truncates the Plio/Pleistocene fili (Mather, 2000a) 

and grades into a mature calerete (Stage V - V l , after Machette, 1985). Al i three of the 

terrace levéis bave carbonate-accumulating red soils, with well-developed Bt horizons 
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and well developed Bk or K horizons with at least Stage III carbonate accumulation 

(Harvey et al, 1995; terminology after Gilè et al, 1966; Machette, 1985). The colours 

of the Bt horizons generally reach 5YR Munsell colour hues or stronger. Harvey & 

Wells (1987) suggested a pre-Wiirm age for the youngest stage C gravels. 

Where the deposits overlie the horizontally bedded conglomerates of the Moras 

Member or the Góchar Formation they are often difficult to distinguish fi-om the older 

deposits, especially where they have similar palaeocurrent directions and clast 

assemblages. More commonly, however, they lie unconformably over the older 

deposits. Present day morphology of the sites (inset below the top of the Góchar 

sequence), and the development of well-developed soil profiles are often good 

indicators of the presence of terrace gravels. 

The soils on the younger (Late Pleistocene and Holocene, D and E) terraces show much 

less maturity. Only on terrace D l does the Bt horizon reach 7.5YR colouration, and 

carbonate accumulation reach Stage II. Terrace D is usually subdivided into three 

aggradational terraces. The older D l terrace usually comprises up to c. 10m of gravels, 

sometimes weakly cemented or capped by a thin, immature calerete. The younger D3 

terrace is more extensive but thinner (generally <3m), and comprises non-cemented 

gravels. In the vicinity of Cortijo Urrà, between Sorbas and Los Molinos, the middle 

D2 terraces comprise of very thick sequence (>35m) of fine sediments that developed in 

response to local deformation (Mather et al, 1991). Kelly et al, (2000) dated a calerete 

from the D l terrace level at 8.97 +/- 0.28Ka (Table 2.5) which seemed to be at variance 

with the expectations of Harvey et al (1995). 
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Table 2.4 - Summary of soil properties on terrace surfaces of the Río Aguas (modified after Harvey et al., 1995; CaCOs Stages after Giles et ai, 1966; 

Relative Age Holocene Late Pleistocene Late-Mid Pleistocene 

Terrace Level E D3 Dl C B A 

Characteristic 

soil properly 

Approx. depth 9cm) <50 <80 >150 150-200 Characteristic 

soil properly CaCOs Stage* 0 1 1-11 11-111 III-IV IV 

B Horizon 

Hue¥ lOYR lOYR 7.5YR 5YR 2.5YR 2.5YR 

Redness Indexd) Mean <1.0 <1.0 4.2 9.1 12.7 14.0 Redness Indexd) 

Approx. ränge 1-7 7-14 9-16 12-16 

Percentage clay, max na 13 13 35 46 Na 

Fcd percentage ränge 0.1-0.5 0.3-0.6 0.6-1.0 1.0-2.2 1.4-3.0 1.3-2.6 

Activity ratio€ 0.34-0.66 0,31-0.57 0.29-0.35 0.17-0.34 0.13-0.27 0.13-0.27 

Mineral magnetic characteristics, B Horizon 1^ 

Magnetic susceptibility (ränge) lO'̂ 'm^kg'' 23 76 135 135-220 83-173 105-110 

Frequency dependent susceptibility percentage 

Xß{rangQ),XcF-X„FX 100 

4.5 9.8 1.2 2.2-7.8 4.9-7.7 5.2-9.2 

Anhysteretic Remnant Magnetization (ARM) 

(ränge), IQ-̂ Am^kg-' at 1 Tesla 

34 121 145 128-368 84-145 74-150 

SIRM (ränge) 2,620 7,601 15,052 13,259-16,378 7,270-8,132 9,179-10,192 

* = After Gilè et ai, (1966) and Machette (1985) / ¥ = Munsell colour hues / 0= After Hurst (1977); Table modified from Harvey et al. (1995) and Harvey (2001) / 

€ = See text / 4̂  = See Thompson & Oldfield (1986) for definitions. 
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Afler the initial dissection of the D l terrace to near présent river level, up to 35m of 

mainly silts and sands were deposited under limnic/paludal conditions (D2 terrace) 

(Mather et al, 1991), foUowed by fiirther dissection (D3 terrace). The soils of thèse 

terraces are (from oldest to youngest) typically coloured 5YR, 7.5YR and lOYR 

(standard Munsell colour chart for hue/chroma), and the carbonate accumulation of the 

younger D soils reach Stage L They are believed to be of a Würm to Holocene âge 

(Mather, 1991; Mather et al, 1991). A '''C radiocarbon date for a sample taken from 

the E terrace is 2310 +80/-90 years BP (Harvey & Wells, 1987; Kelly et al, 2000). 

Table 2.5 - Comparison of age estimâtes for terrace features 

Terrace 

Soil & landform 

development / ka 

(Harvey e/a/., 1995) 

U/Th date / ka 

(Kelly et al, 2000) 
Period 

E 2310+80/-90 Holocene 

D3 10-20 Holocene 

D2 8 Holocene 

DI Early Würm (80?) 9 Holocene/late Würm? 

Early D l ? 31 Würm (cl0-70 ka) 

C > 100 88 (68 - 104) Tyrrhenian III (c.95 ka) 

B 145 Tyrrhenian II? (cl25 ka) 

A 700 <1600 224 > 380 mid-Pleistocene 

The river terrace levéis bave been used to demónstrate that the drainage network has 

been substantially modified by at least two major river capture events (Mather, 

2000a,b). The earliest occurred in the Early Pleistocene and isolated approximately 

15% of the original Sorbas Basin drainage network from its source area in the Sierra 

Alhamilla (Mather, 1993a, 2000a,b). This part of the drainage network (i.e., the 

Rambla de Lucaiñena) had progressively extended headwards as a strike-orientated 
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Stream, capturing some of the basinal drainage hnes in the south of the Sorbas Basin 

(Mather, 1991, 1993a; Mather «& Harvey, 1995; Harvey, 2001). These were then 

diverted southwards into the Carboneras Basin. 

The second river capture (referred to here as the "Rio Aguas/Rambla Feos River 

Capture") occurred in the late Pleistocene, approximately 100,000 years BP, leading to 

approximately 73% of the original Sorbas Basin drainage being re-routed eastwards into 

the Vera Basin (Harvey & Wells, 1987; Harvey et al., 1995; Mather, 1991, 1993a, 

2000a,b; Mather et al., 1991). The river capture was the result of the Lower Rio Aguas 

headward erosion and retreat westwards along the regional strike of the sedimentary 

basin fill and the similarly orientated basin margin fault systems (Harvey & Wells, 

1987). This was driven by the relatively higher uplift of the Sorbas Basin with respect 

to the Vera Basin. The site of the river capture is considered to be the "Wind Gap" or 

Col area between the villages of Los Molinos and Los Perales. The river terrace 

remains of the Rambla Feos can be found in this area. The E-15 motorway now passes 

through this Col area. 

The evidence for this river capture are the differences in the clast assemblages, as well 

as the spatial distribution of the river terraces in the Rio Aguas (both upstream and 

downstream of the river capture Col) and the Rambla Feos. 

The main sediment sources feeding the Rio Aguas headstreams are the metamorphic 

rocks of the Sierra de los Filabres. The differing importance of this sediment source 

upstream and downstream of the capture site is expressed in the pre- and post-capture 

sediments in the terrace gravels (Table 2.6). In the upstream reach there is little 

difference between the pre- and post-capture sediments, either in terms of size or in 
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terms of lithology (Table 2.6). Tbe distinctive ampbibolite mica scbist and garnet mica 

schist, outcropping in tbe Filabres nortb and west of Uleila (Figure 2.2), bas been traced 

in decreasing proportions of tbe total clast assemblage, in tbe A-C terraces downstream 

from tbe Upper Aguas into tbe Feos system (Harvey & Wells, 1987; Harvey et al., 

1995), and tbrougb to tbe soutb of tbe Sierra de Albamilla (Mather, 1991). Along tbe 

route of tbe Rambla Feos, post-capture sédiments are mucb fmer tban tbe earlier 

sédiments and contain only rare reworked Filabride clasts (Harvey &. Wells, 1987; 

Harvey et al., 1995). In contrast, in tbe Lower Aguas no distinct Filabride clasts can be 

found in the pre-capture terrace sédiments, but they are présent in tbe post-capture 

sédiments (Harvey & Wells, 1987; Harvey étal, 1995). 

Table 2.6 - Clast litbologies from river terrace deposits pre- and post- river capture. 

upsteam and downstream of tbe capture site (percentage occurrence). Modified from 

Harvey et al. (1995). 

Upper Rio Aguas Rambla Feos Lower Rio Aguas 
Urrà A rojos La Huelga 

River Terrace* 
Clast Lithology 

C D3 B DI C F 

Green spotted gneiss (F) 34 38 20 2 0 7 
Mica Schists (B) 28 20 10 11 35 33 
Black Phyllite (A) 0 0 15 26 0 0 
Quartz (B) 27 23 7 6 7 9 
Sandstone (T, Mt) 0 5 4 9 15 6 
Dark Limestone (T) 0 0 11 20 15 11 
Pale Limestone (Mm) 9 13 32 23 15 18 
Mudstone (Mt, m) 0 0 0 0 4 11 
Mise. (X) 2 0 2 4 9 5 
(A) = Sierras de Alhamilla/Cabrera; (B) = Basement; (F) = Sierra de los Filabres; (M) = 
Miocene rock; (m) = Messinian rocks; (t) = Tortonian rocks; (T) = Triassic rocks; (Mm) = 
Quateraary calerete or unidentified rocks; (X) = other sources (i.e. gypsum) 
* Terraces B and C = pre-river capture; Terraces D and F = post-river capture 

The episodio nature of the incision is apparent in the terrace séquence A-C. AH three 

terraces are présent throughout the headstream areas mapped, and are separated 

ahitudinally by up to c. 20m. They become divergent downstream, perhaps indicating 
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increasing rates of incision downstream. There is then an incision of several tens of 

meters through the early stages of terrace D, especially downstream of Sorbas. Harvey 

et al. (1995), Harvey (2001), Matber et al. (2002) and Stokes et al. (2002) bave ail 

argued tbat tbis represents the accelerated capture-induced incision working headwards 

from the capture site. 

Downstream of the capture site, along the Feos Valley, the A-C séquence is similar to 

tbat upstream of the capture. Ail three terraces can be traced across the southern margin 

of the Sorbas Basin and through the mountains. There, terrace B at least, bas been 

deformed by faulting (Harvey & Wells, 1987; Harvey et al, 1995). South of the 

mountains, terrace A is impossible to follow and may be deformed and buried by 

younger deposits. Faulted fluviatile gravels overlying Gôchar-age (?) fan delta deposits 

in the Polopos/Lower Feos area, may be the équivalent of tbis terrace (Matber, 1991; 

Harvey étal, 1995). 

There bas been almost no dissection since terrace C times in the Feos Valley. Terrace D 

deposits bury terrace C. The abundance of terrace D-age colluvial and tributary 

junction alluvial fan deposits attests to the "underfit" nature of the Feos in post-C times 

(Harvey t?/a/., 1995). 

In the Lower Aguas the picture is almost the reverse of tbat in the Feos Valley. From 

the capture site downstream to La Huelga, no A-C terraces are présent. The whole area 

is deeply incised, as a resuit of the headwards érosion through the calcareous mudstones 

of the Abad Member (Section 2.3.4.2), that brought about the capture in terrace C times. 

Red soils only occur on the uppermost hillslopes on the southern side of the valley, 

above a zone of landslides induced by the rapid incision. The northern side of the 
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valley is occupied by rapidly eroding badlands below the gypsum caprock escarpment 

(Harvey, 1987; Section 2.5). downstream of La Huelga an extensivo terrace with a red 

soil appears to be the local équivalent of terrace C. The clast content indicates a local 

and Cabrera source area, indicating a pre-capture origin. Terrace fragments, apparently 

équivalent to D l , D3 and E terraces can be traced intermittently from Los Molinos, 

through the post-capture course of the Lower Aguas, downstream to beyond La Huelga. 

2.4.3.2 The Effects of River Capture 

The resuit of the Rio Aguas/Rambla Feos River Capture was to dramatically decrease 

the base level and increase the stream power of the Rio Aguas at the capture site, and 

the propagation upstream of a wave of incision (Harvey et al., 1995; Mather, 2000a; 

Harvey, 2001; Griffiths et al., 2002; Stokes et al., 2002; Mather et al, 2002, 2003). The 

présence of this wave of incision is reflected in the development of a number of nick 

points within the river profiles of many of the drainage lines in the study area (Figure 

2.7). Some of thèse nick points reflect: 

• Lithological boundaries - the first nick point above the capture site; 

• Increased stream power as a function of discharge changes at the confluences of 

rivers - the nick point at the Ramblas Gochar and Cinta Blanca 10-17 km 

upstream); and 

• Nick points that are within spécifie lithologies, suggesting that the nick point 

must bave actively migrated from the lithological boundary - examples seen 

around Sorbas. 
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Figure 2.7 - Profiles of the Río Aguas, the Río Jauto and some of their major tributaries. 
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Above tbese knick points tbe river profiles appear to be relatively unaffected. Tbis 

suggests tbat tbe headward propagation of the wave of incisión is still active via a series 

of nick points and tbat it has reached approximately 18 km upstream from the Rio 

Aguas/Rambla Feos capture site (Table 2.7). It also suggests tbat there is much scope 

for continued elevated levéis of erosión within the fluvial System as a flmction of its 

response to the base level change which occurred as a result of the Rio Aguas/Rambla 

Feos River Capture approximately 100 K years BP (Stokes, et al., 2002; Mather et al., 

2002, 2003). Tbis will probably decay with time, as suggested from empirical and field 

observations(Begine/a/., 1981;Begin, 1988; Gardiner, 1983). 

Table 2.7 - Distances upstream of the nick points relating to the Rio Aguas/Rambla 

Feos River Capture. 

River Total Distance Upstream (km) 
Distance Upstream from 

Capture Site (km) 

Rambla Sorbas / 

Rambla Gochar 
45 18 

Rambla Mora 45 & 47.5 18 & 20.5 

Río Jauto 17 &35 NA 

Examination of how the Río Aguas/Rambla Feos River Capture has affected the 

drainage network (particularly focusing on the Rambla Feos, Lower Aguas and the 

Upper Aguas as far as the knick points) has demonstrated that the resulting wave of 

incisión has led to the development of over steepened valley side slopes and canyons, 

the lowering of the land surface, especially in the áreas closest to the capture site and 

changes in the amount and rate of incisión (Table 2.8; Mather et al., 2002; Stokes et al., 

2002). 
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Table 2.8 - Summary of tbe Pre- and Post-River Capture valley incision. 

Pre-Capture Post-Capture 

Amount of 

Valley Incision 

Terrace séquence is 

cbaracterised by low to 

moderate amounts of incision 

Terrace séquence typically 

shows higher amounts of 

incision and a greater degree of 

variance between valley zones -

incision amounts are moderate 

to high within tbe Upper and 

Lower Aguas Valleys but only 

negligible within tbe Feos 

Valley 

Rate of Valley 

Incision 

Terrace séquence is 

cbaracterised by low-moderate 

rates of incision, althougb there 

is some spatial variance, witb 

tbe higbest values recorded from 

tbe Feos Valley 

Terrace séquence shows higher 

rates of incision but witb more 

spatial variance - the highest 

rates of incision are recorded 

from the Lower Aguas Valley 

and contrast witb the negligible 

rates recorded from the Feos 

Valley. 

Valley Shape Mean width to depth ratio of 25 Mean width to depth ratio of 3 

2.4.3.3 Coastal Section of Rio Aguas 

The coastal section of the Rio Aguas bas also been modified during the Pleistocene. In 

the area to the north of Mojacár, the modem Rio Aguas, when in flood, flows across an 

extensive fiat piain that overlies the deep-water calcareous mudstones of the Turre 

Formation. In the coastal áreas this fiat plain is punctuated abmptly by a series of 

basement inliers which relate to fault "slithers" or "pop-up" stmctures, exposed by 

strike-slip movement along the Palomares Fault Zone (Stokes, 1997). The spacing of 
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these basement inliers would suggest tbat the ancestral Río Aguas once flowed around 

them, eventually joining the Mediterranean Sea within the Garrucha area (Stokes, 

1997). This is confirmed by the presence of conglomeratic deltaic sediments with an 

Overall northeasterly transport direction within the Garrucha area, suggesting that a 

major river system once joined the Mediterranean Sea at this locality (Stokes, 1997). 

Presently, the Rio Aguas joins the Mediterranean Sea to the south of Garrucha town, 

whilst the Rio Antas and Almanzora join to the north. 

Stokes (1997) was able to demónstrate that these deltaic sediments are not part of the 

ancestral Rio Antas or Almanzora drainage Systems. Düring the Pleistocene the 

ancestral Rio Almanzora is thought to bave joined the Mediterranean Sea in more or 

less the same location as it does today. Terrace remnants corresponding to the ancestral 

Rio Antas are characterised by conglomerate only within the oldest, most proximal 

mountain front regions, becoming dominated by sand grade material within younger, 

more distai regions. Therefore they do not match those that are found in the Garrucha 

area (Stokes, 1997). 

2.4.3.4 The Role ofCUmate 

The Iberian Península líes between the climate pattems of the Atlantic Ocean, the 

Mediterranean Basin, northern Africa and northern Europe. The majority of the 

Quaternary climate research has focused on what was happening in each of these areas 

and how they may bave interacted with each other (i.e., northern Europe and the 

Atlantic Ocean). However, assessing the climate pattern interactions over boundary 

areas, such as the Iberian Península, can be complex. 
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Carrion et al. (2000, 2001) considered that a basic outline of the vegetational history 

(and therefore possibly the climate history) of the Iberian Península (and SE Spain in 

particular) still remains elusive. This is in-spite of the fact that over the last few 

decades there bave been numerous workers studying pollen spore, micro- and macro-

fossil (including isotopie analysis) and archaeological évidence taken from peat bog 

cores, cave deposits and cores taken form either the Mediterranean Sea or the Atlantic 

Ocean (Table 2.9 provides a summary of some of this work). However, this évidence is 

sparse with sites in southern and eastern Spain, as well as a combination of coastal and 

mountainous areas (i.e. Alicante, Valencia, Cordoba and Granada). This, therefore, 

limits the amount of interprétation and extrapolation between the sites. 

A number of trends or key points bave been identified in the fmdings from these 

studies: 

• Large parts of southern Spain were covered by pine forests during the coldest 

phases of the last glacial (Carrion, 1992b). 

• A period of significant landscape change with extensive fluvial erosión, 

transport and déposition during the "Oxygen Isotope Stage 2" period (Macklin et 

al., 1995). 

• The présence of steppe grassland and mixed deciduous forest in southeast Spain 

during the Quatemary (Huntley & Birks, 1993). 

• The mid-Holocene landscape of southeast Spain seems to bave been open with a 

wide range of mesothermophilous taxa, and that the coastal belt could maintain 

significant reserves of biodiversity throughout the pleniglacial stages (Carrion et 

al, 1999). 
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• The Younger Dryas Event (between I IK and lOK years BP) appears to have 

been characterised by a severe cold period with dramatic drops in both 

température and précipitation over approximately a 400-year period (Pons & 

Reille, 1988; Carrion & Dupre, 1996; Carrion & Van Geel, 1999). 

• Pollen and dinoflagellate data from western Mediterranean Sea cores reveal arid 

conditions on the neighbouring continent during the first déglaciation phase and 

the Younger Dryas interval, which contrasts with the improvement during the 

Bolling/Allerod Period (Perez-Obiol & Julia, 1994). 

Very little work bas been published concerning the Quaternary climate of the study 

area. This is unfortunately due to a lack of évidence, apart from the river terrace 

deposits (which are discussed in more détail in Section 2.5.2). Investigation of the river 

terrace deposits found in the study area indicate that terrace formation occurred along 

with major dissection of the drainage network during milder interglacial periods. The 

major aggradation phases, resulting in sustained fluvial déposition, appear to relate 

broadly to cold, dry but stormy climates which equate temporally with the northern 

European glacials (Amor & Florschutz, 1964; Butzer, 1964; Sabelberg, 1977; 

Rhodenburg & Sabelberg, 1980; Harvey, 1987a, 2001; Harvey et al, 1995; Stokes & 

Griffiths, 1999; Mather, 2000a,b). 

The fluctuating climate would have influenced the végétation cover, surface runoff, 

rates of érosion and rates of sédiment supply to the drainage network (Stokes & 

Griffiths, 1999; Mather, 2000a, b). Thèse factors in turn would have also influenced, 

and been influenced by, slope stability. For example, Harvey (1990), Stokes & Griffiths 

(1999) and Mather (2000a,b) have ail argued that during glacial periods a decrease in 
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végétation cover due to more arid, cooler conditions would have allowed an increase in 

érosion and, therefore, sédiment supply. Hart (1999), Hart et al. (2000), GrifFiths et al. 

(2002) and this study (Section 4.2.14) have shown that a significant proportion of the 

sédiment would have come from mass movement activity. 

At présent, the study area is considered one of the driest parts of Europe, with a semi-

arid to arid thermomediterranean climate (Canton et al, 2001). Rainfall events are 

produced by rain bearing fronts, associated with the Atlantic Océan, coming from the 

west, principally in the cold season (Canton et al, 2001). The pronounced semi-arid 

climate of the région is determined by its geographical location, in the rainfall shadow 

of the main Betic ranges and the proximity of northern África (Rodriguez-Puebla et al. 

1998). Rodriguez-Puebla et al. (1998) argued that précipitation over the Almerian 

région was influenced by both the December North Atlantic Oscillation and by the 

October Southern Oscillation. Autumnal rainfall is associated with incoming fronts 

from the Mediterranean Sea, which sometimes resuit in storms and torrential rains. The 

average annual rainfall for the Sorbas area is less than 210 mm, most of which falls in 

autumn or winter, in relatively short duration but high intensity storms (Walsh pers. 

Comm., Thornes, 1974; Esteban-Parra et al, 1998; Mather et al, 2001; Table 2.10). 

Daytime températures range from approximately 15°C in January to approximately 

40°C in July and August. Frosts are rare except in the Sierras. 
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Table 2.9 - Palaeoclimate researcb in Southern Spain or the Mediterranean Region 

Pons 8c Reihe (1988) 
Analysis of pollen from a Holocene peat record in Padul 

(Granada Province) 

Carrion (1992a, b) Pollen analysis from cave deposits near Granada &. Alicante 

Harrison & Digerfeldt (1993) European lake levéis 

Huntley & Birks (1993) pollen analysis for northem Europe 

Perez-Obiol & Julia (1994) Pollen record from a lake near Barcelona 

Macklin et al. (1995) Overview of the Mediterranean regional climate 

Carrion &Dupre (1996) 
Vegetational history from pollen analysis taken from a peat 

sequence in Navarres (Valencia Province) 

Goy etal. (1996) 
Coastlines and changing sea levéis along the coast of 

soudiern Spain 

Torres-Giron & Recio-Espejo 

(1997) 
Periglacial features from Cordoba Province 

Carrion e/ al. (1998) Palynology of cave deposits (Granada Province) 

Carrion et al. (1999) 
Late Quatemary pollen sequence from a cave in Granada 

Province 

Carrion & Van Geel (1999) Palynology from Valencia 

Terral &Mengil( 1999) 
Holocene climate reconstruction using olive wood and 

charcoal (caves in Valencia) 

Rosee/ al. (1999) 
Climate change in the western Mediterranean for the last 

140Ka based on deep sea cores 

Navarro et al. (2000) Palynology of cave deposits in Alicante Province 

mutet al. (2000) 
Holocene climate changes along the Mediterranean coast 

from SE France to SE Spain (based on pollen analysis) 

Carrion et al. (2000) Forest successions in southern Spain 

Carrion al. (2001) 
Vegetational history from lake and peat deposit in Albacete 

Province 
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Table 2.10 - Rain station data for Almería, Alicante and Murcia (after Esteban-Parra et 

al., 1998). 

Station Almería Alicante Murcia 

Altitude (m.a.s.l.) 7 82 66 

Period 1911 - 1991 1856- 1992 1862- 1984 

A ver age (mm) 210 357 316 

Minimum (mm) 63 122 99 

Máximum (mm) 552 673 765 

2.5 GeomorDhology of the Río Aguas Catchment Study Área 

Tbe study área bas a predominantly erosional landscape, witb depositional zones 

restricted to tbe coastline, tbe main river valleys and alluvial fans in mountain-front 

zones. Tbe erosión of tbe landscape was controlled by changes in base level relating to 

tbe incisión of the drainage system. Therefore, the resultant erosional landform patterns 

partly reflect the regional tectonic patterns and history, partiy the resistance of the 

bedrock lithologies and partly the Quaternary climate. The main erosional landforms 

that are present in the study área are canyons, badlands and scarplands, while the main 

depositional landforms are coastal sediments and river terrace sediments (Figure 2.8; 

Harvey et al., 2001). The information and observations presented here were then used 

to develop a terrain classification model for the study área. Tbis is presented in Chapter 

3. 
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2.5,1 Quaternary Erosional Landforms 

2.5.1.1 Canyons 

Deep canyons and incised valleys developed where rapid vertical incision coincided 

with the outcrop of more résistant rocks. They occur within uplifted mountains both on 

rivers originating from the mountains and on superimposed/antecedent transverse rivers. 

For example, where the Rambla de Lucaiñena crosses the Sierras Alhamilla and 

Cabrera, the Rio Almanzora (Stokes & Mather, 2003) or the Rio Jauto crossing the 

Sierra de Bédar (Figure 2.9A). They also occur where vertical incision coincides with 

the outcrop of more résistant rocks within the basin-fill séquences. For example, the 

Rio Aguas and Rambla de Sorbas canyons that eut through the limestones of the 

Azagador Member or the sandstones of the Sorbas Member (Figure 2.9B). 

Harvey et al. (2001) noted another interesting feature associated with some of the 

canyons in the study area - abandoned incised meander loops. Examples of thèse are: 

• Cut-offs in the headwaters at Moras; 

• A meander in the hillside above the Rambla de Sorbas, just upstream from the 

town of Sorbas; 

• The meander that isolâtes the "knoll" on which the town of Sorbas is built; and 

• A number along the Barranco de Hueli near Urrà. 
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Yesares Member (Gypsum) 

A. 

Hígher Nevado-Fìlabrides 
Complex (Gneiss) 

B. 
Figure 2.9 - Canyons in the study área. A. Río Aguas passing through Yesares Member 

gypsimi at Los Molinos (Grid Reference: 0582141059 / Facing southeast). The canyon is 

approximateíy 70m deep. B. Río Jauto passing through gneiss outcropping in the Sierra Bédar 

(Grid Reference: 0591641125 / Facing northwest). The canyon is approximateíy 90m deep. 
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2.5.1.2 DissectedErosionalLandscapes & Badianas 

Where rapid incisión coincides with the outcrop of weaker rocks, selective weathering 

and erosión of soft rock areas has produced deeply dissected erosional landscapes, 

characterised by gullying and, in extreme cases, by badlands (Calvo-Cases et al., 

199la). The Tabernas badlands are considered by some the most spectacular in Europe 

(Harvey, 2001). The Tabernas badlands dissect a considerable thickness of Tortonian 

mudstones. This dissectional relief is the result of tectonic activity. It is thought that 

they date back to the Pleistocene (Alexander et al, 1994). 

There are two distinct areas of badlands within the study area (Figure 2.8). These are: 

• "The Gypsum Escarpment Badlands", which are found along the Rio Aguas 

between Los Molinos and La Huelga (Figure 2. lOA); and 

• The Barranco de Mocatán area = erosión of mudstones, sands and silts of the 

Zorreras and Góchar Formations (Figure 2.10B). 
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Gypsum Plateau 
Calcareous 
mudatone of Abad 
Mem ber 

Aspect Control on vegetation -
vegetation predominantly on N 
facing slopes 

Figure 2.10 - Dissected erosional landscape and badlands. A, Los Molinos Badlands 

showing gullying and riiling tbrmed on slopes with very little vegetation cover (Grid 

Reference: 0587641078 / Facing northwest. B. Mocatán Badlands near Sorbas showing 

aspect control on vegetation cover (Grid Reference: 0576541045 / Facing north). 
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Both of thèse areas have been affected by deep dissection of the landscape following the 

Rio Aguas/Rambla Feos River Capture. The styles of modem processes operating 

within the badiand areas reflect the interactions between geological, topographie and 

climatic factors (Harvey, 1982; Calvo-Cases et al., 1991a,b; Alexander et al., 1994). 

The badlands themselves range from apparently simple zones of relatively récent 

dissection, some of it undoubtediy human-induced, to zones of complex multiple 

séquences of badiand development and stabilization. 

The so called "Gypsum Escarpment Badlands" refer to an area of badlands that occur 

along the Rio Aguas from the Los Molinos area northwards (undercutting the Gypsum 

Plateau escarpment) to near to the village of Los Castaños. They aiso stretch eastwards 

to the villages of La Huelga and Alfaix in the Vera Basin. The badlands have formed 

within the calcareous mudstones of the Abad Member, and undercut the gypsum of the 

Yesares Member. 

Some parts of the Zorreras Member are highly erosive and susceptible to piping and 

other related dissolution features. In a number of places around the study area they 

weather to form badland-type topography. One example is the Mocatán area where 

Spivey (1997), Alexander et al. (1999) and Faulkner et al. (2000) have studied the 

geochemical and ecological aspects of badiand weathering and morphology. This much 

smaller area of badlands occurs approximately 2km south of Sorbas. The Mocatán 

Badlands occur within part of the Zorreras Member and part of the overlying Góchar 

Formation (Spivey, 1997; Alexander et al., 1999; Faulkner et ai, 2000). The highly 

erosive nature of the material is related to the clay minerai content (Alexander et al, 

1999; Faulkner et al., 2000). Samples that have been analysed using X-ray diffraction 
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techniques have highlighted the presence of dispersive day minerals such as smectite 

and chlorite. 

2.5.1.3 Scarplands 

Where erosión has coincided with ahernating strong and wealc rocks, the resistant bands 

form ridges or escarpments (Figure 2.8). The main resistant rocks and escarpment 

formers within the study area are: 
• Limestones of the Azagador Member - southern margin of the study area. 

• Reef limestones of the Cantera Member - southern margin of the study area and 

in the Cariatiz area (Figure 2.11 A). 

• Gypsum of the Yesares Member - in the Los Molinos area and along the Rio 

Aguas valley downstream to La Huelga and northwards to Los Castaños (Figure 

2.11B). 
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4V 
f 

B . 

Figure 2.11 - Escarpments of the study area. A. Litnestone escarpment above Cariatiz (Grid 
Reference: 0579641113 / Facing east). The limestone (Turre Formation) is dipping slightly out 
of the siepe B. Gypsiun plateau and escarpment of the Yesares Member above El Tesoro (Grid 
Reference: 0583141060 / Facing east). 
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2.5.1.4 Relict DepositionalSurfaces andPediments 

Zones of less intense érosion include relict depositional surfaces and uplifted pediments. 

In basin centres, away from tectonically induced dissection, are relict landscapes 

dominated by the remuants of tbe last stages of basin filling. Little-dissected Plio-

Pleistocene depositional surfaces occur on conglomérâtes in tbe west of tbe Sorbas 

Basin (Harvey, 1987). 

In some areas of soft rock, where the vertical incision has been limited, erosional 

pediment landscapes bave developed. Thèse occur on the margins of uplifted mountain 

areas in the Almería Basin, and in the eastern part of the Vera Basin. In many places 

the pediments are mantled by a thin depositional veneer of Early Pleistocene gravéis. 

2.5.1.5 The Gypsum Plateau & Karst 

The Gypsum Plateau covers approximately 25km^ of the study area, located to the east 

of the Sorbas Basin part of the study area (Figures 2.3, 2.4 and 2.8). The Yesares 

Member contains some exceptional examples of gypsum karst morphology, which have 

been described in détail by Calaforra & Pulido-Bosch (1997). 

There are eight gypsiferous levéis, each with a thickness of up to 30 m. The interbeds 

of calcareous mudstone strongly control the hydraulic flow through the gypsiferous 

series and, uhimately, the karstification processes that occur. On occasion, the 

calcareous mudstone also exercises a net geomorphologicai control, which is evidenced 

on the surface by the morpho-structural escarpments to be found in the région. 
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The solution and coUapse dolines are small and only a few of them are over 30 m in 

diameter. The collapses are caused by the breakdown of the gypsiferous material when 

the layers of calcareous mudstone have eroded away. This is a spécial phenomenon that 

occurs in the gypsum karst of Sorbas (Calaforra & Pulido-Bosch, 1997). 

The karren landforms in the outcrop are well represented, but are frequently affected by 

the texture of the gypsiferous material (Calaforra, 1996). The types of morphology seen 

within the outcrop suggest that the solution of the gypsiferous material is controlled by 

the gypsum crystallography. The greatest crystal solution takes place through the 

exfoliation planes and the selenitic gypsum twins, while solution is least on the crystal 

faces (Calaforra & Pulido-Bosch, 1997). 

One of the most important features of the Yesares Member in the Sorbas Basin is the 

interstratification karst. Thèse have developed as a resuit of the présence of the 

calcareous mudstone intercalations within the gypsiferous séquence. The cave passages 

frequently develop along the interstratification planes, between the calcareous mudstone 

and the gypsum. This usually means that the roof and floor are within the gypsum and 

the walls formed of the calcareous mudstone. 

The origin of thèse interstratal cavities is related to the hydrogeological development of 

the gypsiferous aquifer (Calaforra, 1996). During the initial stages, the gypsiferous 

aquifer may be considered a multilayer aquifer under confined conditions. In this 

situation, the gypsum only dissolves by the formation of small proto-conduits, the 

position of which is determined by fracturing and by the présence of the calcareous 

mudstone, (which make up the impervious levels of the différent gypsum layers). In the 

secondary stage, characterised by the present-day vadose conditions, the gypsum hardly 
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dissolves at ail; instead, there is an intensely erosive action within the interstratal 

calcareous mudstone, producing the typical triangular section of the passages. In this 

situation, it is normal to fmd the présence of proto-conduits that form as a resuit of the 

présence of the interstratified calcareous mudstones, and its meandriform advance along 

the roof of the passage. Thèse proto-conduits might be considered "false ceiling 

channels", as their origin is unrelated to the posterior filling of the passage with detrital 

materials. 

Many of the longest caves in the area are configured to différent levéis marked by the 

présence of interbedded maris. The génesis of thèse features is related to the 

hydrogeological history of the multi-layer aquifer from phreatic conditions (when 

prédominance of gypsum solution took place) to vadose conditions (prédominance of 

mari érosion). 

In the Southern part of the study area, close to the site of the Rambla Feos/Rio Aguas 

river capture, the gypsum plateau is underlain by the calcareous mudstones of the Abad 

Member. The relative weakness and high érosion potential of this member bas meant 

that it has formed a fairly distinctive badland topography, as well as undercutting the 

overlying gypsum. This bas resulted in the formation of a very prominent scarp-slope 

escarpment that follows the course of the Rio Aguas in this area. 
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2.5.2 Quaternary Depositional Landforms 

2.5.2.1 Coastal Sediments 

Quaternary coastal deposits are restricted to the modern Mediterranean coast. Only in 

the Almería area is there a sequence of Quaternary coastal deposits, spanning from the 

Eariy to the Late Quaternary (Zazo et al., 1981; Goy & Zazo, 1986; Goy et al., 1986). 

OfFlap and interdigitation between terrestrial and coastal sediments in this zone reflects 

interaction of the Alhamilla uplift and the Almeria/Rioja downfaulting with Pleistocene 

sea-level change (Ovejero & Zazo, 1971; Zazo et al., 1981). 

A number of shoreline sequences have been identified along parts of the western 

Mediterranean coastline of the Vera basin. These shoreline sequences have been 

investigated by a number of authors: 

1. Volk (1979) - mapped and described Pleistocene "strandlines" as part of an 

examination of the Quaternary relief of the Vera Basin. 

2. Goy & Zazo (1982) - mapped and surveyed the Pleistocene shoreline sequences 

within the Mojacár-Garrucha region as part of a regional study. 

3. Goy & Zazo (1986) - described the Pleistocene shoreline sequences in the Mojacár-

Garrucha region and the affect of neotectonics on them as part of a regional study. 

4. Bull (1988) - surveyed Pleistocene shoreline sequences in the Mojacár-Garrucha 

region as part of a local study into the geomorphology and soils of the Vera Basin. 

5. Harvey (1997) - described the shoreline sequence in the Macenas area, south of 

Mojacár, as part of a regional study of the geomorphological development of the 

Almería region. 
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6. Stokes (1997) - reviewed the previous work by the above authors and examined the 

Pleistocene shoreline sequences along the Vera Basin coastline from around 

Garrucha southwards to Mojacár and Macenas. 

Stokes (1997) includes detailed descriptions of the shoreline sequences that can be 

observed at each of these loctions. Using the distribution of the shoreline sequences and 

the geomorphology of the area. Stokes (1997) was able to infer that the Rio Aguas once 

drained into the present Mediterranean Sea in the area around Garrucha. 

The Pleistocene shoreline sequences within the Vera Basin are consistently 

characterised by gravel-pebble conglomerates deposited within a relatively high-energy, 

wave-dominated "beachface" environment, which received and reworked large inputs 

from nearby river systems (Stokes, 1997). However, as none of these shoreline 

sequences are directly involved with the observed landslide activity that is seen within 

the study area, they will not be described any further. Information on these sequences is 

available in the publications of the authors mentioned above. 

It is likely that these deposits relate only to the late Pleistocene Tyrrhenian I (Volk, 

1979; Mather et al, 2001). Some of the deposits also show deformation relating to 

either the Caboneras or Palomares Faults (Angelier et al, 1976; Goy & Zazo, 1986). 

The modern shoreline within the study area ranges from shingle to sand beaches. 
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2.5.2.2 River Terrace Sédiments 

A well developed series of river terrace deposits can be found along the major river 

valleys, representing an altemating séquence of incision punctuated by major phases or 

aggradation. The incision is considered to represent an erosional response to regional 

uplift (Harvey, 1987; Harvey et al., 1995). The major aggradation phases, resulting in 

sustained fluvial déposition, appear to relate broadly to cold, dry but stormy climates 

which equate temporally with the northem European glacials. The major dissection 

phases, producing the terraces, appear bere, as elsewhere in the western Mediterranean 

région, to relate broadly to the milder interglacials (Amor & Florschutz, 1964; Butzer, 

1964; Sabelberg, 1977; Rhodenburg & Sabelberg, 1980; Harvey, 1987; Harvey & 

Wells, 1987; Harvey t;/a/., 1995). 

However, there are local variations, some of which may be related to tectonic activity 

(i.e., the lake at Tabernas). Other variations can be related to topographical and base-

level changes following river capture, and include the complex and deformed terrace 

séquence at Urrà (Mather et al, 1991). 

In the northern part of the Almería Basin, along the Río Alias, there ís a séquence of 

several terraces. The gravéis of the oldest terrace level bave been deformed by the 

Carboneras Fault Zone near E l Argamasón (Mather et al, 2001). However, the 

relatíonship between thís terrace séquence and the prevíously described terrace 

séquence of the Río Aguas i s unknown. 

In the Vera Basin, there are major terrace séquences along the Río Antas and Río 

Almanzora. These record the séquence of fluvial dissection following Early Pleistocene 
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alluvial fan sedimentation (Stokes, 1997; Stokes & Griffiths, 1999; Stokes & Mather, 

2000). 

Along most of the river valleys the modem floodplain sediments range between silts on 

the smaller streams, to sands and gravels, especially on rivers fed from mountain 

catchments. In a number of places, the sediments record relationships between lateral 

and vertical accretion: for example, the Rio Aguas at Urrà. The modem river channels 

tend to be wide, shallow, ephemeral, braided rivers although locally meandering does 

occur (Mather et ai, 2001). 

2.6 Chapter Summary 

The aims of this Project include developing a geological and geomorphological ground 

model and landslide inventory for the study area and investigating the main factors and 

controlling conditions of the observed landslide activity (Section 1.5). To meet these 

aims requires an understanding of the geology and geomorphology of the study area, 

including how the landslides, landscape and drainage system of the study area have 

developed and is influenced by the material strengths and geological stmctures of the 

underlying geology. This chapter has, therefore, provided a detailed review and 

description of 

• The geological setting of the study area and surrounding region; 

• The geology of the study area; 

• The transition from a marine to the present continental environment; 

• The development of the drainage network; and 

• The geomorphology of the study area. 

Ill 



Clujpter 2 - Geology & Geomorphology 

This chapter has shown that the study área covers parts of two Neogene sedimentary 

basins; the Sorbas and Vera Basins. The northwestern and southeastem sections of the 

study área are bordered by Sierras composed of predominantly metamorphic rocks. The 

present drainage network was initiated during the PHo-Pleistocene and has incised 

through the sedimentary succession. This drainage network, which originally flowed 

southwards, has been modified by a number of river capture events. 

One of these events (referred to here as the Río Aguas/Rambla Feos River Capture) has 

had a sígníficant ímpact on the landscape in the south central part of the study área 

closest to the capture site. The river capture has led to: 

• A relatívely rapid drop in base level; 

• A wave of incisión to pass through a section of the drainage network, leading to 

the over-steepening of many of the valley sides slopes and formation of river 

canyons; 

• The incisión of the drainage network in the área closest to the capture site ínto 

the underlyíng bedrock geology; and 

• An íncrease in the rate of incisión, erosión and land surface lowering, especíally 

in the áreas closest to the river capture site. 

It is this combination of events that has contributed to the landslide activity that is seen 

in the study área. It is argued here, therefore, that to understand the landslide activity 

one needs to appreciate the details of the underlying geology, the tectonic and structural 

setting of the región, the transition from marine to continental conditions and the 

formation and subsequent development of the drainage network. How this has affected 
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the distribution, style and nature of the landslide activity in the study area will be 

described and discussed as part of the data analysis in Chapter 4 and the case study 

examples in Chapter 5. The final ground model, based on the geology and 

geomorphology of the study area (as described here) will be presented in Chapter 6. 

The following chapter (Chapter 3) will describe the landslide investigation, including 

the use of aerial photographic interpretafion, field mapping, a project-derived terrain 

classification, and the project-derived landslide inventory. 
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"We only observe that which we can see, bui we can 
only see that which is already in the mind." 

- Detective Bertillion 
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3 The Landslide Investigatíon 

3.1 Introduction 

This landslide investigation that has been undertaken in the Río Aguas Catchment área 

of southeast Spain has ínvolved the multi-díscíplinary approach of land surface 

evaluatíon, as outlíned in Chapter 1. The rationale behind this approach, and the 

definítions of the terms used wil! be further descríbed in this chapter. This approach 

makes use of standard mapping tecbniques such as geological and geomorphological 

investígations. 

Therefore, this chapter wíll include a description of 

• Land Surface Evaluatíon tecbniques; 

• The considerations and assumptions that were made when desígning the 

investigation; 

• The data sources and collectíon tecbniques that were used; 

• The landslide definítions and classificatíon schemes that were used; and 

• The landslide inventory datábase that was developed by this project. 
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3.2 Land Surface Evaluation 

3.2.1 Rationale 

As discussed in Chapter 1, the First Working Party on Land Surface Evaluation for 

Engineering Practice defined the technique as "the evaluation and Interpretation of land 

surface features and recorded surface data using one or a combination of the ground 

mapping, interpretation, Classification and Visual remote sensing techniques... The 

object is to provide Information about ground conditions likely to be of significance" 

(Anon, 1982). The Second Working Party has recently proposed an updated definition 

of land surface evaluation as "the evaluation and interpretation of land surface and 

near surface features using techniques that do not involve ground exploration by 

excavation or geophysics" (Griffiths & Edwards, 2001). As such, land surface 

evaluation is the process of data compilation, interpretation and conceptual ground 

modelling. The Working Party suggested that the technique should be used prior to 

undertaking any engineering ground or site investigation work. It is argued here that the 

technique can also be adopted for either geological, geomorphological or landslide 

investigations (or a combination of the three as in this study). It is also argued here that 

this technique is ideal for covering large areas of relatively remote terrain. 

The Second Working Party stated that the first objective of any land surface evaluation 

is to acquire the most comprehensive conceptual ground model that can be generated. 

The aim being to maximise the value and justify the cost of any subsurface investigation 

and laboratory testing and to minimise the engineering geological unknowns (Griffiths 

& Edwards, 2001). Both of the Working Parties proposed the combined use of remote 

sensing and field mapping backed up by a detailed and extensive desk study. The field-
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based tecbniques recommended were geological, geomorpbological, engineering 

geological and land classification (terrain systems) field mapping (Anon, 1972, 1982; 

Griffitbs & Edwards, 2001). Tbese mapping techniques have been extensively 

reviewed in the literature (i.e., Brunsden et al., 1975; Doornkamp et al., 1979; Goudie, 

1981; Anon, 1982; de Gräfe / al., 1987; Cooke & Doomkamp, 1990; Lawrance et al., 

1993; Fookes, 1997; Petley, 1998; Griffiths, 2001; Hutchinson, 2001; Lee, 2001, 

Phipps, 2001) and it is not the intention to repeat that here. 

Through the use of aerial photographic interpretation or satellite image interpretation 

land surface evaluation can be used to cover large areas of terrain, particularly that 

which is remote or where access is limited, difficult or dangerous. Another advantage 

of this approach is that all features in the landscape are mapped, ensuring that all parts 

of the terrain are given due attention without being overlooked. It can be used to divide 

the landscape into areas of recurring patterns of topography, soils, geology and 

vegetation, thereby summarising the physical aspects of a terrain. These are then 

analysed to decide the degree of influence that each may have, in order to derive a 

ground model that takes account of all factors in appropriate measure (Cooke & 

Doomkamp, 1990; Lawrance et al., 1993; Lee, 2001). This means that land surface 

evaluation techniques are ideal for identifying "problem areas" such as areas of 

landslide activity, soil erosion or karst development and, therefore, the production of 

inventory maps. These maps would include information on the location, type, state, 

style of any engineering hazards encountered (i.e., landslide inventory maps; Finlayson, 

1984; Wieczoek, 1984; Soeters & Van Westen, 1996). These data can then be used to 

highlight areas requiring further investigation, as well as for completing assessments of 

the hazard(s) affecting an area and the risk posed by that hazard to any proposed or 

existing engineering project/stmcture. 
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The land surface évaluation approach can also be used to gain an understanding of the 

processes that have previously been active in an area (i.e., glacial, fluvial or previous 

landslide activity). This information can then be used to develop a model of how the 

landscape of an area bas developed through (for example) the Quaternary. Such 

information can then be used to identify those "events" or circumstances that have 

played the biggest rôle in creating the landscape of an area over that period of time 

(Brunsden, 1993). However, this will dépend on how long évidence of processes such 

as landslide activity or geomorphological features such as river terraces or meanders are 

discernable in the landscape. This in turn will dépend on the size and nature of the 

"signature" left in the landscape by the feature being studied (Brunsden & Thornes, 

1979; Schümm, 1979). For example, the L R A Project in Nepal identified that within 

that particular terrain and environment, relatively small landslides (generally formed 

from relatively weak material) remained discernable in aerial photographs for 

approximately 15 years (LRA, 2001b). Much larger landslides (such as the Maleguica 

landslide described in Chapter 5) will have a much longer lasting "signature" in the 

landscape, possibly several thousand years. 

The increasing use of remote sensing techniques and compilation of large inventory 

databases bas required the use of computer Systems such as Geographical Information 

Systems (GIS) that can be used to store, analyse, interrogate and Interpret large 

quantifies of data. There is a rapidly growing number of examples and reviews of how 

GIS-based techniques have been used in landslide investigations (Wadge, 1988; Carrara 

et al., 1991, 1999; Leroi et al., 1992; Rengers et al., 1992; Dikau et al., 1996; 

Mantovani et al., 1996; Soeters & Van Westen, 1996; Turner & Schuster, 1996; Gruden 

& Fell, 1997; Van Westen et al, 1997; Aleotti & Chowdhury, 1999; Guzzetti et al.. 
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1999; Lazzari & Salvaneschi, 1999; Thurston & Degg, 2000; Hearn et al., 2001; 

Nathanial & Symonds, 2001, Petley et a\., 2002; L R A , 2003c; Hart et al., 2003a; Hart et 

al., inpress; Petley et al., inpress.) and it is not the intention to repeat that here. 

The GIS approach requires a large amount of accurate and detailed data to be effective 

and a substantial investment of time for data input. At the start of this project no digital 

data were available, which would have meant a considérable amount of time would 

have been spent just digitising ail of the required data. There were also "holes" in the 

published map data at scales below 1:50,000. However, digital contour data have now 

become available and as a continuation of this project it could be used in conjunction 

with the results from this study to develop a substantial database for the study area 

combining contour (and therefore slope data) with the geological, geomorphological 

and landslide information presented here. It is however beyond the scope of this présent 

project. 

3.2.2 Définitions 

The term "terrain Systems mapping" originated in the I930's and early 1940's when the 

requirement to be able to classify large areas of terrain for the purposes of locating 

potential agricultural and économie resources, as well as identify suitable sites for 

development in mainly undeveloped rural areas was identified (Mitchel, 1991; Phipps, 

2001). Phipps (2001), following Christian & Stewart (1968), suggested that the tenus 

"terrain" and "land" were synonymous. 

The mapping units for a land (or terrain) classification are defined by several terrain 

attributes in combination: landform, parent material and hydrological régime (Table 
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3.1). The most important aspect of a land Classification is a choice of mapping units 

that are (a) essentially homogeneous for the purpose of the intended land use and (b) 

easy to recognise and, therefore, easy to map quickly and accurately (Lawrance et al, 

1993). The landscape of any area, however, is highly complex malcing this task 

difficult. A seven-fold hierarchical system of describing a given landscape has been 

developed and has been reviewed extensively (i.e., Cooke & Doornkamp, 1990; 

Mitchell, 1991; Lawrance et al., 1993; Phipps, 2001). This study will use the three 

"lowest" (or "smallest") terrain units from this system - the "Land System", "Land 

Facet" and "Land Element" (Figure 3.1). These have been used as they are easily 

mapped at scales of between 1:25,000 and 1:50,000 and provide the most detailed 

picture of the landscape. 
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Land System Genite hills wBh broad terraced river valleys 

Land Facets 

3b. Bluff 3a. Surface 2a. Floor 2b. Stream 

1. Hill 

4a. Abandoned 
channd 

4b. Stream 
4c. Floodplain 

la. Slope 
b. Gully side 

1d. Slream 
le. Gully floor 

Figure 3.1 - Relationship between Land Systems, Land Facets and Land Elements 

(Modified from Lawrance et al., 1993; Pbipps, 2001). 
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Table 3.1 - Definitions and key characteristics of Land Systems, Land Facets and Land Elements 
Land System Land Facet Land Element 

• A large area with a recurring pattern of landforms, 
soiis and hydroiogical regimes. Its physical attributes 
give it a distinctive, unified character, recognisable on 
the ground but more especially from the air or space, 
when the regulär arrangement of surface features are 
apparent. 

• Is recognised and mapped by its pattern of streams, 
landforms and Vegetation. A substantial change in any 
one of these indicates a new land system. 

• Vegetation, although an important factor in the 
recognition of land Systems (being a major contributor 
to air photograph patterns), is not used in the defmition 
of land Systems. This is because Vegetation can be 
temporary, especially in areas of marginai habitability, 
and can be destroyed or modified by such events as 
fire, successive years of drought, changes in 
agricultural activity, overgrazing and deforestation. 

• The land facet is the fundamental unit of the 
Classification, the "building block" that makes up a 
land system. 

• A land facet is a terrain unit of uniform slope, parent 
material, soils and hydroiogical conditions. It is 
sufficiently homogeneous to be considered uniform 
for most practica! purposes. 

• A land element is a sub-division 
of a land facet, although it has 
no specified minimum size. 

• It is the smallest unit of the 
Classification. Land facets can 
contain minor features that are 
too small to be called facets 
themselves. These are often too 
small to be mapped at any 
practicable scale, yet they are of 
significance to a project. 

• Examples would be the inside 
or outside of a meander in a 
river, a scarp-slope escarpment 
or a river terrace 

Key Characteristics 
1. Areaof at least lOOkm ;̂ 
2. Mappable at about 1:250,000 - 1:1,000,000 scale; 
3. The climate is uniform at a similar altitude; 
4. It is developed on a parent material that is either uniform, 

or consists of several closely related rock types, or contains 
a range of rock types (e.g. a sequence of bedded sandstones 
and mudstones); 

5. A recurrent land pattern that is clearly identifiable in the 
aerial photographs is a good indication of consistent land 
forming processes, and hence of uniform ground 
conditions; and 

6. Land Systems are contiguous: there are no gaps of 
unclassified land between Systems. 

1. The land facets of a land system are geomorphologically 
related to each other; 

2. Mappable at scales between 1:10,000 and 1:100,000; 
3. The hydroiogical characteristics are consistent for ali 

occurrences of the same facet within a land system; 
4. Parent material can vary in the same manner as for a land 

system, although the total range of Variation within a facet 
would normally be much smaller than Variation of parent 
material within a land system. Ideally it is uniform; 

5. Land facets are named after the landform that they 
comprise (e.g. "river terrace", "plateau top"). These 
simple names are not unique. 

6. Land facets are contiguous: there are no gaps of 
unclassified land between facets. 

1. The land elements of a land facet are 
geomorphologically related to each 
other; 

2. Mappable at scales below 1:50,000; 
3. Parent material can vary in the same 

manner as for a land facet, although 
ideally it is uniform; 

4. Land elements are named after the 
landform that they comprise 
although these names are not unique. 

5. Land facets are contiguous: there are 
no gaps of unclassified land between 
facets. 
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3.2.3 Project Defíned Terrain Classification Model 

The geomorphological setting and geomorphology of the study area was described in 

Chapter Two. This included a description of the main landforms and processes that are 

found in the study area. This information and the resuhs from the initial aerial 

photographie interprétation have been used to develop a terrain classification scheme 

based on the concept of Land Systems, Facets and Eléments for the study area. This 

was then refined through the fieldwork and field validation of the API results (described 

in the following section of this chapter). The final version of that scheme is presented 

bere (Figure 3.2 and Table 3.2) with a series of photographs and examples of thèse Land 

Systems taken from the study area (Figures 3.3 to 3.9). 

The Land Systems defined for this study are: 

1. Mountain slopes incised by gullies, canyons and river channels; 

2. Mountain slopes with gullies; 

3. Hi l l áreas incised by canyons and gullies; 

4. Hi l l áreas with river valley side slopes; 

5. Gypsum plateau and karst; 

6. Badlands; and 

7. Level terrain. 
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Figure 3.2 - The Land Systems Map for the Rio Aguas Catchment Study Area Developed by this Study. 



Table 3.2 - Terrain Classification developed by this project for the Río Aguas Study Area. 

Land System Location Description Geology Fig. No. 
Mountain slopes incised 
by gullies, canyons and 
river channels 

Sierra Cabrera and 
Sierra Bédar 

Steep mountain slopes, drainage channels are incised, 
narrow and steep, basin margin fault Systems. 

Basement Material 
(gneiss, mica schist, 
phyllite) 

3.3 

Mountain slopes with 
gullies Sierra F i labres Steep mountain slopes covered by scree material. Very 

little dissection of the drainage channels. Very steep slopes. 
Basement Material 
(gneiss and mica schist) 

3.4 

Hill areas incised by 
canyons and gullies 

The central western 
parts of the study area 

Areas that have been incised by the drainage network. 
Characterised by steep sided gullies and canyons. Neogene sediments 3.5 

Hill areas with river 
valley side slopes 

The centrai western 
parts of the study area 
away froin the main 
drainage channels 

Areas with valley side slopes formed by the dissection of 
the drainage channel. Some gullies, but generally open side 
slopes 

Neogene Sediments 3.6 

Gypsum Plateau and 
Karst 

Central part of the 
study area 

Large area of level terrain. Very thin or no soil cover. 
Sparse végétation cover. Characterised by dissolution 
features such as sinkholes, and cave Systems, as well as 
other karstic features. 

The eastern edge of the plateau is marked by a distinctive 
escarpment. 

Yesares Member -
gypsum interbedded with 
calcareous mudstone 

3.7 

Badlands 

1. Between the 
Gypsum Plateau 
Land System and 
the Rio Aguas 

2. Mocatán area 

Typical "Badland" landscapes. Areas of high rates of 
érosion and dissection. 

Zorreras and Góchar 
Formations 

3.8 

Level Terrain 

NE and SW parts of 
the study area, as well 
as areas below the 
Sierra Filabres 

Relatively level terrain. Some parts of this area (i.e. central 
parts of Sorbas Basin) will relate to the Gôchar érosion 
surface 

Neogene and Quaternary 
sediments 

3.9 

to 
LO 



Chapter 3 - Landslide Investigation 

Figure 3 J - "Mountain slopes with incised drainage" Land System. 

A. Mica schist slopes (part of the Higher Betic Units) within the Sierra Cabrerà (Grid 

Reference: 0594841079 / Facing almost due east). The southern basin margin faults of the Vera 

Basin also pass through this area B. Gneiss slopes (part of the Higher Nevado-Filabrides 

Complex) within the Sierra Bédar (Grid Reference: 05854113 / Facing south). 
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^Mountain Slopes with 
gullies and scree-mantied 
slopes" 

\ Sierra de Los Filabres 

Figure 3.4 - "Mountain slopes with gullies and scr^-mantled slopes" Land System. 

The photograph is taken looking to the north from the roadside of the AL-813. approaching the 

village of Uleila del Campo. The highest peak in the picture is the 'Emuta de la Virgen de la 

Cabeza" (1304 m above sea level). The slopes of this part of the Sierra de Los Filabres are 

formed from gamet mica schist of the Nevado-Lubrin Unit. 
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Landslìde occurring within 
the Zorreras Member 
conglomerate & mudstone 

Scarp-slope formed from 
Azagador Member limestone 
overlying Chozas Formation 
mudstone 

Large 
rock fall 

Very large landslide OD 
a dip-slope formed 
from Azagador 
Member limestone 
overlying Chozas 
Formation mudstone 

Si* Rio Aguas 

B. 
Figure 3.5 - "Hill areas with incised drainage" Land System. 
A. The incised Rambla del Aguaron (Grid Reference: 0579041074 / Facing northeast from Alto 
de Zorreras / the incisión is approximately 30-40m at this point). 
B. A view along the incised section of the Rio Aguas at Los Perales (Grid Reference: 
058304105Ó / Facing cast). The scarp slope indicated above is approximately 70m high. 
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RÍO Aguas Landslide oo a dip-

B. 
Figure 3.6 - "Hill áreas witñ valley side slopes" Land System. 

A, Río Aguas valley near Urrà (Grid Reference: 0579541050 / Facing northeast from near to the 

farm "La Clauda") 

B. Rambla de Los Chopas near to Cortijo de Mojonera (Grid Reference: 0573641058 / Facing 

southeast from Alto de la Mojonera) 
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Sierra de Los Filabrcs 

a 
Figure 3.7 - "Gypsum plateau and karst" Land System. 

A. View across tlie Gypsum Plateau towards the Sierra de Los Filabres (Grid Reference: 

0583441066 / Pacing northwest). The "Gypsum Plateau" is at approximately the same level as 

the "Góchar Erosion Surface". B. Gypsum karst feature (tumulus dome structure that has 

collapsed). Photograph taken near to Marchalico Vinicas (Grid Reference: 0585541074). 
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Figure 3.8 - '"Badlands" Land System. The Badlands are forming in the calcareous mudstones 
of the Abad Member. The photograph was tallen from the southem side of the Río Aguas above 
the villagc of La Herrería, looking towards the northwest. 

Rambla de Los Loma de la 
Chopas headwaters Cumbre 

Figure 3.9 - "Level terrain" Land System. Víew across the southwestem comer of the study 
área, taken from "Alto de la Mojonera" (Grid Reference 0573641058) looking towards "Loma 
de la Cumbre". 
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3,3 Data Sources & Collection 

Landslide activity is the result of the interaction of a large number of difFerent factors. 

Any landslide investigation, tberefore, needs to adopt a multi-disciplinary approacb, 

sucb as tbat cbampioned by Fookes (1997), Hutcbinson (2001) and Brunsden (2002). 

Tbe Land Surface Evaluation approacb to landslide investigation utilises data from a 

number of different sources (Section 3.2; Griffitbs, 2001 and references tberein). Tbis 

landslide investigation has used an extensive and detaiied desk study, along witb a 

detailed aerial photograpbic Interpretation (API), backed up by an extended period of 

field mapping. 

The amount, type and quality of the data collected by any landslide investigation will 

subsequently determine the type of susceptibility, hazard and risk analysis tbat can be 

completed using tbat Information (Soeters & Van Westen, 1996). Tbis could ränge 

from purely qualitative assessment through to a complex Statistical, and/or analytical 

assessment. However, the prime concern of any project should be data quality, as this 

will influence the results obtained regardless of the method of assessment or techniques 

used. Data quality should, tberefore, be continually assessed throughout the lifetime of 

the investigation. This can be undertaken by independent experts in the subject area or 

by the investigator(s) themselves. This study has sought to question the accuracy of the 

data being used and results at every stage of the investigation. 
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3.3.1 Aerial Photographic Interpretation 

One of the predominant advantages of remóte sensing Interpretation techniques is that 

they allow for an individual site (i.e., a landslide) to be placed within the overall 

landscape. This information can be added to any desk study-based ground model that is 

being developed. Aerial Photographie Interpretation (API) techniques, particularly 

those utilising stereo-images, are well suited to landslide investigations. The stereo-

images can provide diagnostic information concerning the type of movement (Crozier, 

1973), as well as information concerning the overall terrain conditions, which are 

critical in determining the susceptibility of a site to slope instability (Soeters & Van 

Westen, 1996; TRL, 1997). Landslide information, extracted from aerial photographs 

(as well as other remotely sensed images), is mainly related to the morphology, 

Vegetation and drainage conditions of the slope (see the tables of the characteristic 

features used in landslide Identification by Soeters & Van Westen, 1996). Identification 

is based on studying the variations in tone, texture, shape and any lineaments in relation 

to the expected ground conditions and landforms associated with slope instability 

processes. (Allum, 1982; Soeters & Van Westen, 1996; TRL, 1997) 

The interpretation of landslides from aerial photographs is based on recognition or 

Identification of Clements associated with slope instability and the interpretation of their 

significance to landslide activity. The implication is that a particular type of slope 

failure is seldom recognised directly but is interpreted to exist by analysis of a certain 

number of Clements pertaining to slope instability features that are observed on the 

images. Therefore, the interpretation of landslides from aerial photographs requires 

knowledge of the distinctive features associated with slope movements and of the image 
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characteristics associated with thèse features (see the tables of the characteristic features 

used in landslide identification by Soeters 8l Van Westen, 1996). The contrast between 

a landslide feature and the surrounding landscape (resulting from either spectral or 

spatial différences) will affect the image characteristics and, therefore, the ease of 

interprétation. Spectral différences may relate to shadowing affects from a backscar, 

différences in végétation or the différences between the disturbed and undisturbed parts 

of a slope. Factors that will affect image interprétation are (not in specific order): 

• The size of the landslide; 

• The age of the landslide (and therefore the time period between the landslide 

occurring and the image being taken); 

• Local topography; 

• Erosional processes within or around the landslide; 

• Vegetation growth within or around the landslide; 

• Shadowing affects caused by either végétation or slope aspect; 

• Landslide activity and rate of movement; and 

• The severity of the landslide movements and their effect on slope morphology, 

drainage and végétation. 

Soeters & Van Westen (1996) discuss in detail the role of image resolution and 

interpretability in landslide inventory mapping and the advantage of using stereo pairs. 

They suggested the use of two scales of photographs. Small-scale aerial photographs 

(i.e., 1:25,000 to 1:50,000) can be used for determining the regional spatial landslide 

distribution of variables affecting landslide activity. Large-scale aerial photographs 

(i.e., 1:5,000 to 1:15,000) could be used for landslide inventory mapping and analysis of 
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possible casual factors. Due to the availability, tbis project bas used 1:30,000 and 

1:13,333 scale aerial pbotograpbs (Table 3.3). 

Table 3.3 - Details of tbe aerial pbotograpbs used by tbis study. 

Source Flight 
Details 

Scale / 
Description Áreas Covered Quality 

Spanish 
Catalunya 
Cartographic 
bistitute 

September 
1984, April 
1985 & 
October 
1985 

1:30,000/ 
Black and 
White 

Complete coverage 

Reasonable quality, 
some problems with 
shadowing, some 
patches of cloud cover 

Natural 
Environment 
Researcb 
Council 

Spring 1996 1:13,333 / 
Colour 

Two mns - southem 
margin of the study 
área between Sorbas 
and Los Molinos 

Good quality, no cloud 
cover problems 

Natural 
Environment 
Research 
Council 

April2001 1:13,333 / 
Colour 

Four mns - nortliem 
margin of the study 
área between the Sierra 
Bédar, Rambla de Mora 
(in the west) and Los 
Goliardos (in the east) 

Good quality, no cloud 
cover problems 

The API has been an ongoing part of the project. The aerial pbotograpbs (Table 3.3) 

were used as part of the initial desk study in order to gain an initial overview of the área 

and to provide a more focused approach to the fieldwork. The desk study API enabled 

an initial landslide inventory to be established. Subsequent use of the aerial 

pbotograpbs (in light of the knowledge gained through the fieldwork) meant that more 

meaningful results could be obtained for áreas that could not be reached during the 

fieldwork, or that áreas visited in the field could be "revisited". Tbis tecbnique proved 

very useful while trying to link the observed landslide activity with the development of 

the Río Aguas. 

Each stereo-pair of pbotograpbs was viewed stereoscopically. The Information was 

recorded onto a series of acétate overlays and then transferred onto topographic base 
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maps (Allum, 1982). The same Information was coUected following the same 

procedure for each aerial photographic print analysed: 

1. The drainage in as much detail as possible; 

2. The ridge crests or escarpments; 

3. Any identifiable landslide backscars and/or deposits; 

4. Any other identifiable areas of unstable ground and/or accumulations of 

colluvium (unattributed debris); 

5. Any areas of creep or erosion; 

6. Locations of deep shadow - these often coincide with steep slopes or canyon 

walls and might obscure any landslides; 

7. Outcrops of geological exposure; 

8. Terrain units; 

9. Areas of standing water or spring lines; and 

10. Land use. 

Al i this information was recorded in ink using a symbol, line and colour system. Any 

other potentially usefial information was also recorded including observations such as 

structural control, and dip and dip direction lineations and any unusual features. A 

number of acetate sheets were used for each photographic print so as not to over clutter 

them with data. Where appropriate these data were transferred to the topographic base 

maps for the study area. 

While undertaking an API the distortion effects that occur at the edge of the prints must 

he taken into account. The distortion effects are dependent on the relative relief of the 

area being studied. As the topography of the study area has a relatively subdued relative 

relief then the distortion effects are not considered to be that significant, in this case. 
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3.3.2 Fieldwork 

Field investigations bave long been recognised as tbe centrai and decisive part of any 

investigation into landslide activity and landslide-prone regions (Tumer & Scbuster, 

1996). During the period from spring 1998 tbrough to spring 2000, over 17 weeks of 

field mapping were undertaken in tbe study area. An additional 2-week visit was made 

to the study area in June 2003. The field mapping involved carrying out a number of 

activities. These were; 

1. Field validation of the resuits from the API (including those areas that are not 

covered by the aerial photographs); 

2. Mapping of the landslides and development of the landslide inventory; 

3. Mapping of the geology, structural geology and geomorphology (this information 

has been used to develop the ground model for the study area); 

4. Collection of more detailed data that could not be obtained from the aerial 

photographs (i.e., rock mass properties and structural information); 

5. Repeat visits and monitoring of certain key sites; 

6. Consultation with members of the locai population or locai landowners; and 

7. Selecting areas within the study area for fiarther investigation, including more 

detailed fieldwork, data collection and analysis (described in Chapter 4). 

3.3.2.1 Field Validation ofAPI 

This process is often referred to as "Ground-Truthing". The aim is to check whether the 

features that bave been mapped during the API bave been identified properly/correctly. 

The field validation for this study involved: 
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• Checking the locations and details of as many of landshdes identified by the API as 

possible; 

• Mapping the locations and details of any landslide features that were not identified 

by the API; 

• Checking the accuracy of the geological and geomorphological mapping that was 

completed using the API (i.e., lithological contacts, significant breaks of slope, 

drainage patterns); 

• Monitoring of ceitain key sites; 

• Check for any new infrastmcture that may bave been built since the aerial 

photographs were acquired; and 

• Mapping any other details that cannot or were not identified by the API which are 

signi fi cant to the project. 

3.3.2.2 FieldMaypins 

Standard geological and geomorphological field mapping techniques were used (i.e., 

Brunsden et al, 1975; Barnes, 1981; Tucker, 1982; Fry, 1984; Thorpe & Brown, 1985; 

McClay, 1991; BS5930, 1990; Cooke & Doornkamp, 1990; TRL, 1997; Griffiths, 2001; 

Lee, 2001; Phipps, 2001). The data collected during the field mapping (and the API 

Validation) were recorded using field notebooks in conjunction with a series of proforma 

tables, as well as onto a number of topographic base maps. A number of field samples 

were also collected for fiarther laboratory-based analysis. 
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3.3.2.3 Local Knowledse 

While undertaking the field mapping, various members of tbe local population were 

consulted as to tbe nature and frequency of some of tbe landslides encountered in tbe 

study area. Tbis approacb yielded limited (and sometimes contradictory) results. It is 

beavily dependant on tbe individual's understanding of landslide activity, their memory 

for sucb events and, above all, tbeir actual Observation of tbe landslide in tbe first place 

(as distinct from second or tbird band "Information"). Often tbe only reason for a 

member of tbe local population noticing a landslide was wben it affected tbeir property, 

or tbeir daily life, in some way. However, tbe Information provided by tbe local 

population was useful in gaining a longer-term understanding of bow the landscape 

behaves. 

3.4 The Landslide Inventory 

3.4.1 TheDatabase 

The most straightforward approacb to any landslide investigation is the compilation of a 

landslide inventory (Soeters & van Westen, 1996). Therefore, the landslide inventory is 

the principal database for this project. It contains Information on all of the landslides 

that have been mapped for this study, including the geometry, geology, and slope 

morphology of the landslides (Table 3.4). A printout of the database is included as 

Appendix B. The data have been stored electronically as a Microsoft Access database. 

The reasons for using this Software are: 
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• The ability to set up a "front page" onscreen form that can be used for quicker 

data entry; 

• The abihty to search and interrogate (or "query") the database; and 

• The abihty to export the data into a number of différent spreadsheet and GIS 

computer packages, so that more detailed data manipulation and analysis can be 

completed in more detail. 

To minimise on file space, the majority of the data are stored as a séries of numerical 

codes. The codes used by this project are shown in Appendix C. The use of codes also 

bas the advantage of making the data language-independent (i.e., only the code lookup 

tables as show in Appendix C need to be translated and not the entire database). 

A reliable landslide inventory defining the type and acfivity of ail landslides, as well as 

their spatial distribution, is essential before any analysis of the occurrences of landslides 

and their relationship to environmental conditions can be undertaken (Soeters & Van 

Westen, 1996; Evens, 1998). AU assessments of landslide susceptibility, bazard or risk 

require the compilation of a detailed landslide inventory. As previously discussed, this 

can be developed using data obtained during an aerial photographie interprétation, 

satellite image interprétation, ground survey or a literature review (concerning the 

historical occurrences of landslides in an area). 

A landslide distribution map based on the landslide inventory will give the spatial 

distribution of mass movements, which may be indicated as either affected areas (drawn 

to scale) or as point symbols (Wieczorek, 1984). Landslide inventory maps can also be 

used as an elementary form of hazard map because they display the location of a 

140 



Cliapter 3 - Landslide Investigation 

particular type of slope movement. They provide Information only for the period 

shortly preceding the date that aerial photographs were taken or the fieldwork was 

conducted. They may not, however, provide an insight into any temporal changes in the 

distribution of mass movement activity. This can be achieved, to a certain extent, by 

using aerial photographs of various ages and/or numerous field visits, as well as any 

available historical Information. These data can be presented as a landslide activity map 

and used to assess the temporal variability of a factor, such as land use. 

3.4.2 Defìnitions 

Düring the United Nation's International Decade for Naturai Disaster Reduction 

(IDNDR ) , the International Association of Engineering Geology (lAEG) Commission 

on Landslides and Other Mass Movements set up the Working Party on the World 

Landslide Inventory (WPAVLI). It was set up to examine the terminology that is used 

to describe landslide activity and the way in which landslide data is coUected and 

recorded. The WP/WLI has since published a series of papers defining the various 

facets of landslide Classification (WP/WLI, 1990, 1993, 1994, 1995; Gruden, 1991). 

This has included a definition of a landslide and the dififerent parts of a landslide, as 

well as the state, style, distribution, and rate of movement of the observed landslide 

acfivity. These guidelines and defìnitions bave been used during this investigation, 

along with the works of Dikau et al. (1996), Gruden & Varnes (1996), Turner & 

Schuster (1996) and Gruden & Fell (1997). 
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Table 3.4 - Details of tbe data contained in the landslide inventory database. 

Category Data that were collected 

Location 
The geographical location of the landslide including the grid reference and the 

longitude and latitude co-ordinates of the centre of the landslide. 

Certainty of 

Identification 

The data source used (i.e. field mapping and/or API) and the certainty of 

Identification of the landslide. 

Land use 

The land use of the area in vvhich the landslide has occurred and the relative 

Position of the landslide to the land use. Any remedial measures that have 

been undertaken were also recorded. 

Elevation The elevation of the crown and toe area of the landslide. 

Geometry 
The height, width and length of the backscar and debris accumulation, as well 

as the area covered by the landslide and the volume of the debris accumulation. 

Angle of Reach The angle of reach of die landslide, measured from tlie crown to Üie toe. 

Landslide 

Mechanisms 

Up to six landslide mechanisms were recorded for each landslide, using the 

definitions described by Cruden (1991), Dikau et al. (1996) and Turner & 

Schuster (1996) and outlined in Section 3.4.2 

Landshde 

Activity 

The State, style, distribution and rate of the landslide, based on the definitions 

ofÜieWPAVLI(1990, 1993, 1994, 1995). 

Landslide Age Relative age of the landslide based on a project-derived scheme. 

Causative 

Factors 

Up to ten factors attributed to either Controlling or actually triggering the 

landslide, per landslide using tlie WPAVLI definitions (WPAVLl, 1990, 1993, 

1994, 1995). 

Slope 

Morphology 
The aspect, profile and angle of the slope on which die landslide has occurred. 

Geomorphology 
The Land System, Land Facet and Land Element in which the landslide has 

occurred, as described in Section 3.2.3. 

Geology 

The geology of the slopes in which the landslide has occurred. Additional 

Information conceming die geotechnical properties of both Üie rock material 

and rock masses involved in the landslide are contained within a second 

database. 

Vegetation 
The type and density of the Vegetation covering the slopes on which the 

landslide has occurred. 

Drainage Tlie type of drainage within and around the landslide. 

References Any published or unpublished material referring to die landslide. 

Other 

Information 
Any other relevant Information. 

142 



Chapter 3 - Landslide Investigation 

3.4.2.1 Landslides 

For this investigation a landslide is defined as "The movement of a mass of rock, earth, 

or debris down a slope" (Cruden, 1991). However, because it is not practical to report 

every Single "landslide" (using tbe above definition) that bas occurred witbin tbe study 

area, it was necessary to establish a working definition of a "significant landslide". 

Based on tbe Suggestion made in WPAVLI (1990), it is proposed tbat for tbe purposes of 

tbis researcb, a significant landslide must satisfy at least one of tbe following criteria: -

1. Has a measurable backscar and/or debris accumulation; and 

2. Covers a minimum plan area of lOm^. 

3.4.2.2 Landslide Mechanisms 

One of tbe conclusions of Dikau et al. (1996) was that tbe most important Information 

requhed about a landslide is the correct recognition of tbe failure type, mecbanisms and 

causes. Tbe topic of landslide Classification is, however, a complex one, with many 

workers approaching the subject from a variety of diflferent perspecfives. These include 

soil or rock mechanics, engineering/applied geology, engineering/applied 

geomorphology, or "pure" geomorphology. Each different perspective has brought a 

different set of terms, defmitions and Classification schemes to the subject. The most 

widely accepted and used schemes are those of Varnes (1958, 1978, 1984), Hansen 

(1984), Crozier (1986), Hutchinson (1988), Dikau et al. (1996) and Cruden & Varnes 

(1996). This landslide investigafion has adopted the classificafion scheme proposed by 

Dikau et al. (1996), which was based on the schemes proposed by Hutchinson (1988) 

and EPOCH (1993). These Classification schemes are based on the morphology, the 
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processes and types of material involved, as well as the rate of movement (Table 3.5 

and Appendix C). 

The terminology used by this study for landslide mechanisms are (Figure 3.10): 

• A fall is taken to denote the free-fall movement of material from a steep slope or 

cliff; 

• A topple normally involves a pivoting action rather than a complete separation at 

the base of the failure; 

• Movements occurring on a distinct slope or shear surface are termed slides. 

These may be subdivided into rotational and translational according to the 

geometry of the failure surface. 

• Rotational landslides involve a semi-circular shear surface; 

• Translational failures usually occur on planar slip surfaces; 

• Non-rotational landslides involve movement on a curved, but non-circular slip 

surface. The slip surface may have a high angle in the upper part of the failure; 

• Lateral spreading is characterised by the low-angled slopes involved and the 

unusual form and rates of movement; 

• Flows normally behave as a fluidised mass in which water or air is significantly 

involved; and 

• The complex failures are principally a combination of two or more of the 

previously described movements. 
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In reality nearly ail landslides involve more than one type of movement either acting 

concurrently in différent parts of the failure (compound landslides) or evolving 

downslope over time info a différent process (i.e., initial failure to subséquent 

déformation (complex landslides)). Many rotational slides, tberefore, develop into a 

flow form at tbe toe, described by some autbors as a slump-eartbflow (Dikau et al., 

1996). A rockslide or rockfall may also advance into a flow form, known as a rock 

avalanche or sturzstrom. This type of failure is very destructive, with a high velocity 

run-out of rock débris. The high velocities associated with thèse failures bave been 

attributed to one of the following processes: fluidisation, cohesionless grain flow, beat 

or steam génération, frictionite production or strength changes caused by the rate of 

shear (Dikau et al., 1996). Another complicated form of landslide is the débris flow. It 

begins and is fed by débris slides, rotational slides, bank collapse, bed érosion and falls. 

The resuit is a mixture similar to "wet concrète". It may also be on a free rectilinear 

slope confmed in a valley or so catastrophic that it overwhelms the topography (Dikau 

étal, 1996). 
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Table 3.5 - The Landslide Mechanism Classification Scheme used by this Landslide Investigation (after Brunsden, 1985; Hutchinson, 1988; EPOCH, 

1993; Dikau et al, 1996). Each category should be read continuously from left to right. 

TYPE OF MOVEMENT FORM OF INITIAL FAILURE SURFACE SUBSEQUENT DEFORMATION 

F A L L 
Detachment from a 

(a) planar 
(b) wedge 
(c) stepped 
(d) vertical 

failure surface Free fall, may break up, roll bounce, slide flow down 
slopes below. May involve fluidisation, liquéfaction, 
cohesionless grain flow, beat génération, chemical, 
rate effects or other secondary mechanisms 

TOPPLE 
Detachment from 

(a) single (a) pre-existing discontinuities 
(b) multiple (b) tension failure surfaces 

As above. 

SLIDE 
Rotational movement (sliding) on a (a) single 

(b) successive 
(c) multiple 

circular failure surface Toe area may deform in a complex way. 
May bulge, override, flow, creep. 
May be retrogressive. 

Non-rotational compound 
movement (sliding) on a 

(a) single 
(b) progressive 
(c) multistoried 

non-circular 
(i) listric / (ii) bi-planar 
failure surface 

Often develops a graben at the head. 
May bave a toe failure of différent type. 

Translational movement 
(sliding) on a 

(a) planar 
(b) stepped 
(c) wedge 
(d) non-rotational 

failure surface May develop complex run-out after 
disintegrating. As for falls and flows. 

4^ 



SPREAD 
Latéral spreading of 
ductile or soft material 
which deforms in 

(a) a layer beneath hard rock 
(b) a weak interstratified layer 
(c) a collapsible structure 

topographie Can develop sudden spreading failure in 
surface quick clays. Slope opens up in blocks and gulls 

or fissures. Liquéfaction can occur and the whole slope 
spreads either as a totally collapsed flow or with 
"floating" blocks and grabens. 

FLOW 
Débris movement 
by flow on a 

(a) natural slope 
(b) complex slope 

(i) unconfined slope 
(ii) channelised slope 

Flow will involve complex run-out from source. 
May move in sheets or lobes and involve viscous 
or rheological mechanisms. 

Movement by creep on any hillslope Creep may be gravity, seasonal, pre-failure or progressive. 

Rock flow (sagging, (a) single sided mountain slope May be slow gravity creep or early stages oflandsliding, 
Sackung) movement on (b) double sided (a) of rotational but not displaying toe déformation other than bulging. 

(b) compound form 
(i) listric / (ii) bi-planar 

(c) stepped discontinuity May involve toppling. 

COMPLEX - movements involving two or more of the catégories above. 
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1 

Figure 3.10 - Landslide Mechanisms (after Dikau et al., 1996). The descriptions are 

given overleaf. 
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The descriptions for the différent types of landshde mechanism shown in Figure 3.10 as 

stated by Dikau et al. (1996): 

1. A fall starts with detachment of soil or rock front a steep slope along a surface 

on which little or no shear displacement takes place. The material then descends 

largely through the air by falling, saltation or rolling. 

2. A topple is the forward rotation, out of the slope, of a mass occurring 

dominantly on surfaces of rupture or relatively thin zones of intense shear strain. 

3. A slide is the downslope movement of a soil or rock mass occurring dominantly 

on surfaces of rupture or relatively thin zones of intense shear strain. 

4. A spread is an extension of cohesive soil or rock mass combined with a gênerai 

subsidence of the fractured mass of cohesive material into softer underlying 

material. The rupture surface is not a surface of intense shear. Spreads may 

resuit from liquéfaction of flow (and extrusion) of the softer material. 

5. A flow is a spatially continuons movement in which surfaces of shear are short-

lived, closely spaced and usually preserved. The distribution of velocities in the 

displacing mass resembles that in a viscous fluid. 
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The type of material involved in the landsüde should also be defined. Debris is material 

that is coarser than 2mm but usually describes an assortment of material including clasts 

incorporated into a matrix. Soil is fmer than 2mm and rock is considered as a coherent, 

consohdated mass of a significant size and volume (BS5930, 1990). 

While undertaking field mapping, it was observed that many of the slopes (including 

many of the landslides) exhibited smaller scale failure mechanisms than those described 

above. Nicholson et al. (2000) described these as slope deterioration processes. They 

defined it as the progressive alteration, detachment and removal of material from the 

surface of a parent rock mass by mechanical and chemical processes. 

The slope deteriorafion scheme of Nicholson et al. (2000) was based on observations of 

man-made slopes and limited to relatively small scale surface processes (Figure 3.11). 

It was therefore designed with these slopes and processes in mind and not natural terrain 

landslides. However, it was decided to record which landslides in the landslide 

inventory for this project were affected by these processes and therefore use the 

Nicholson et al. (2000) scheme to classify them. This enables a more detailed 

understanding to be gained of the processes acting on the slopes of the study area, 

especially due to the large number of canyon slopes in the Rio Aguas study area. 

However, this landslide investigafion has already defined a minimum size limit for the 

landslides that are included in the landslide inventory. The criterion is a plan area of 

lOm^, as well as identifiable/measurable backscar and/or debris accumulation. 

Therefore this means that slopes affected by the smaller-scale failures described in 

Figure 3.11 were considered too small to be mapped as individual landslides for this 
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project. However, where these mechanisms were present as secondary or tertiary 

mechanisms, they were recorded in the landslide inventory. 

3.4.2.3 LandslideActivity 

The terminology used in this landshde investigation to describe the State, style, 

distribution and rate of landslide movement, as well as the anatomy of the mapped 

landslides has followed that of the Working Party on the World Landslide Inventory 

(WPAVLI, 1990, 1993, 1994, 1995). The suggestions and recommendations of 

Hutchinson (1988), Dikau et al. (1996) and Turner & Schuster (1996) have also been 

followed. The defmitions and codes used in the database are listed in Appendix C. 
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3.4.2.4 Landslide Causes 

The factors that cause landshdes to occur can be differentiated into three categories 

(Terzaghi, 1950; Crozier, 1986; Bninsden, 1988; WPAVLI, 1994; Dikau et al., 1996; 

Turner & Schuster, 1996): 

1. Preparatory factors - the cumulative events which prepare the slope for failure but 

do not necessarily produce movement; 

2. Triggering factors - those factors that initiate landsliding to occur; and 

3. Sustaining factors - those factors that keep the material involved in motion, either 

intermittently or continuously. 

For this investigation, those factors that could be identified (or inferred) as influencing 

the stability of a slope or landslide were recorded in the landslide inventory (Appendix 

C). 
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3.5 Chapter Summary 

This chapter has described the "building blocks" of the Project - land surface évaluation 

and terrain classification, aerial photographie interprétation, field mapping and the 

landslide inventory. This description has included discussion of the varions techniques, 

définitions and classifications that bave been used 

As part of the Land Surface Evaluation of the study area, a terrain classification bas 

been developed for the Rio Aguas Catchment study area. This terrain classification is 

based on the results of the aerial photographie interpretaron and field mapping, and 

divides the study area into seven areas of similar geology, geomorphology and 

topography. It is this terrain classification that will form the basis of the ground model 

that will be presented in Chapter 6. 

The design of the landslide inventory bas been introduced, as well as the définitions of 

the différent catégories of the data which it contains. This datábase forms the 

fimdamental datábase for this Project and was produced as a resuk of the landslide 

mapping which was a major part of the aerial photographie interprétation and field 

mapping. The resuhs from a stafistical analysis of this datábase will be presented in the 

following chapter (Chapter 4). A number of the landslides will also be presented as a 

series of "Landslide Type Localities" in Chapter 5. 
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4 Landslide Distribution Analysis 

4.1 Introduction 

The landsHde inventory map (Figure 4.1) shows the distribution of landslides in the 

study area. By studying the distribution of the landslides with respect to the geology 

and geomorphology of the study area, it is possible to gain a better understanding of 

how the landscape and drainage network bave evolved over time. By studying the data 

recorded in the landslide inventory it is also possible to estímate the volume of material 

within the study area that is involved in landslide activity. This provides an insight into 

the rates of slope processes acting within the Rio Aguas catchment study area. 

Analysis of the landslide distribution will also highlight some of the factors that bave 

been controlling the stability of the slopes in the study area, and allow the possible 

identification of those combinations of geology and geomorphology that are the most 

susceptible to failure. Field observations bave shown that certain combinations of rock 

type and geomorphological setting tend to give rise to particular landslide failure 

mechanisms or other geological bazards (i.e., dissolution features). This information is 

vital when attempting to assess the nature and extent of the landslide susceptibility and 

hazard affecting the study area. 
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The aim of this chapter is, therefore, to present the resuhs that have been obtained 

during this landsHde investigation and specifically to discuss: 

• The observed landslide distribution (Section 4.2); 

• The role of geology and geomorphology in explaining the landslide distribution 

(Section 4.2); 

• The observed mechanisms involved in slope failure (Section 4.2); 

• The state, style and activity of the observed landslides (Section 4.2); and 

• The controlling and triggering factors behind the landslide distribution (Section 4.3). 
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4,2 Analysis of the Landslide Inventory 

Over 300 hundred landslides or áreas of slope ¡nstability were identified within the 

study área. Of these, 316 have been described in detall in the landslide inventory. The 

remaining landslides or unstable áreas were not mapped in detall because of either 

uncertainty in identification, difficulty in access, and/or a lack of suitable aerial 

photographic coverage for those áreas. Over 75% of the mapped landslides have been 

described as "Clearly Identifíable" - a landslide where both the backscar and 

accumulation zone were clearly mappable without uncertainty (Figure 4.2). Landslides 

where there was a slight degree of uncertainty when mapping either the backscar or 

accumulation zone accounted for 6.6% and S.2% of the 316 landslides respectively 

(Figure 4.2). The remaining 9.2% of the landslides (classified as "Other") are where the 

exact location of the backscar or accumulation zone was slightly debatable due to either 

the remote location not allowing full access to the landslide, or vegetation cover or 

shadowing afifects on the aerial photographs. 

As described in Chapter 3 the landslide mapping comprised an API (using 3 sets of 

aerial photographs) followed by field verification. Interestingly, the API accounted for 

only 54.4% of the landslides that were mapped (Figure 4.3). Of these approximately 

21.5% were verified with limited fieldwork (observed at a distance due to difficult 

access) and approximately 25% with detailed field mapping. Tbis means that over 45% 

of the landslides contained within the landslide inventory were only identifíable in the 

fíeld (Figure 4.3). These figures may reflect the nature and size of the majority of the 

landslides that were mapped, as well as the scale of the black and white aerial 

photographs that were used for the majority of the study área. 

159 



Chapter 4 - Landslide Distribution Analysis 

Certainty of Identification 
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Figure 4.2 - Graph showing the certaint>' of identification of the mapped landslides 
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Figure 4.3 - Graph showing the data sources used to identify the mapped landslides 
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Of the 240 landslides that were classifíed as being "Clearly Identifiable" only 9 

landslides (2.8%) were mapped using only tbe aerial pbotograpbs, and 78 of tbe 

landslides (24.7%) mapped using a combination of API and detailed field verification 

(Figure 4.4). Tbe remaining 132 landslides (approximately 42%) were only identifiable 

in tbe fíeld. Tbe majority of the landslides that were classifíed as "Backscar Only" 

(where the backscar was clearly identifiable but there was some uncertainty of the exact 

location of the accumulation zone) were mapped using the aerial pbotograpbs and with 

only limited field verifícation (Figure 4.4). 

The age and state of activity of a landslide will aíTect how clearly it is visible within the 

landscape. It is important, therefore, to consider how tbis may influence the landslide 

mapping and the data being used in this study. Of the 76% of the mapped landslides 

that are considered "Clearly Identifiable", almost 58% of them are considered 

"dormant" (Figure 4.5). A dormant landslide is defíned as "a landslide that has not 

moved for more than one annual cycle of seasons, but where the causes of movement 

apparently remain" - WPAVLI, 1993). "Rel icf landslides (WPAVLI, 1993) which 

would normally be considered to be the most difficult to identify within a landscape, 

would perhaps be expected to make up a large proportion (if not the majority) of the 

landslides not established as "Clearly Identifiable". However, this is not the case. The 

majority of "relict" landslides were in fact classified as being "Clearly Identifiable" 

(Figure 4.5). This could be a reflection of the relatively "young" nature of this 

landscape and/or the size and type of failures involved. 

A more detailed analysis of the state of landslide activity within the study área will be 

described later. 
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Certainty of Identification Compared wrth Data Source Used 
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The following sections describe the analysis of the landslide inventory that has been 

completed. This analysis has helped to identify those factors that are relevant in either 

controlling or leading to, the observed landslide activity within the study área. 

Subsequently these results have been used to develop a ground model for the study arca. 

4.2.1 Landslide Distribution & Density 

The landslide inventory for this study contains detailed data for 316 landslides for a 

study área of approximately 425km^. This means that the Río Aguas Catchment (and 

therefore this study área) has a landslide density of approximately 0.75 landslides/km^. 

Compared with other áreas in southem Spain (Table 4.1) this figure is relatively low. 

However, this may reflect the nature of the study área. The other áreas listed in Table 

4.1 are more specific áreas that were studied because of their high concentration of 

landslide activity, whereas the study área used by this project is based on the 

fundamental unit of geomorphology - a catchment área. 

Table 4.1 - Landslide density figures 1 br other arcas in southem Spain 
Área Área 

(km )̂ 
Noof 
Landslides 

Landslide Density 
(landslides/km^) 

Reference 

Rio Aguas Catclunent 425 316 0.75 Tliis study 
Albunelas river basin. Granada 89 215 2.42 Hamdouni etal., 1996 
Contraviesa área. Granada, 
souüi of tlie Sierra Nevada and 
tlie Guadalfeo river 

94 898 9.55 Fernández et al., 1996 

Colmenar área, Malaga 234 133 0.57 Irigaray etal., 1996a 
Genil River área 503 800 1.6 Irigaray etal., 1996b 

However, this figure for the Rio Aguas Catchment Área does not reflect the actual 

distribution of the observed landslide activity. Even with a cursory glance at the 

landslide distribution map for the Río Aguas (Figure 4.1) it is apparent that the majority 
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of the landslides are very closely associated with the drainage network and are primarily 

found in four parts of the study area: 

1. Close to the town of Sorbas - this is the largest "cluster" of landsHdes in the 

study area 

2. Close to the village of Cariatiz 

3. Close to the village of Góchar 

4. Along a section of the Rio Jauto 

There also are a number of smaller Clusters of landslides within the Sierra Cabrera. 

The landslide distribution has been investigated fiirther with the use of a landslide 

isopleth or density map (Figure 4.6). This map has been constructed using the 

technique described by Hansen (1984) and Wright & Nilsen (1974). However, due to 

the Scale of the maps being used and the size of the majority of the landslides that have 

been mapped it was decided to count the number of landslides per counting circle 

instead of calculating the areas of the landslides within the counting circle. Figure 4.6 

confirms the presence of the Clusters described above. 

The largest concentration of landslides is found in the south central part of the study 

area (around the town of Sorbas). This is 10 km upstream from the area where the Rio 

Aguas/Rambla Feos river capture occurred (as described in Section 2.4) approximately 

100,000 years BP (Harvey & Wells, 1987). Interestingly, the landslide distribution and 

landslide isopleth maps (Figures 4.1 and 4.6) show that this Cluster of landslides only 

extends upstream as far as a series of nick points that have been mapped in the field 

(Figure 4.7). It is argued here that these nick points relate to the "Wave of Incisión" 

(GrifFiths ei al, 2002, 2003) that has worked upstream from the site of the river capture. 
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These nick points are picked out in the river profile diagrams in Section 2.4 (Figures 2.6 

and 4.8) where the gradient becomes relatively steeper. 

When the landshde distribution is added to these profiles it is noticeable that the 

landshdes are clustered along those sections of the drainage network with the steepest 

gradients, which for the Río Aguas is upstream of the Río Aguas/Rambla Feos river 

capture site near to Los MoHnos (Figures 4.8). The following sections will look more 

closely at the relationship between the mapped landshde activity and the 

geomorphological, morphological and slope settings of those landslides. It should also 

be noted that there are a number of sizeable landslides downstream of the river capture 

site. 

Interestingly, the westem end of the study área is almost conspicuous by the absence of 

any mapped landslides. The southwest córner of the study área is relatively flat terrain 

with few slopes. The reasons for the apparent absence of landslides in the Sierra de Los 

Filabres (the northwestem comer of the study área) will be discussed later in tbis 

chapter. 
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4.2.2 Slope Setting & Morphology 

The majority of the mapped landshdes (44.6%) in the study area were classified as 

occurring along "escarpments" (Figure 4.9). This also included those landslides that 

occurred on cliffs or canyon walls. This observation is in agreement with the analysis 

of the slope angle data. 

The slope angle class data show that as the angle of the slope on which the landslide 

occurred increases so does the landslide incidence (Figure 4.10). A comparison of the 

slope angle classes with the simplified slope profile data shows a similar relationship 

(Figure 4.11). The majority of the backscars of the mapped landslides occur on slopes 

above 75° bave been classified as being either canyon walls or escarpments. 

Slope aspect does not appear to he influential in controlling the mapped landslide 

distribution (Figure 4.12). However, there do appear to he slightly more landslides on 

west facing slopes. This could he a reflection of the drainage pattern, which in some 

parts of the study area trends roughly north - south. This pattern is also a reflection of 

the tectonic setting of the study area and surrounding region. 
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Slope Profile and Slope Angle Class of Landslide Location 
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Figure 4.11 - Graph showing the slope angle classes compared with the simplified 
slope profile data for the landslides mapped by this study 
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4.2.3 Terrain Classification 

During the aerial photographie interprétation and field mapping it was apparent that the 

landslides occurred in certain geomorphological settings. This is because the Land 

Systems, Facets and Eléments of the study area will reflect the underlying geology and 

the geomorphological history of the study area. Therefore, this section will consider 

which are the most susceptible combinations of Land Facet and Land Elément within 

each of the Land Systems used by this study, for landslide activity. 

Using the descriptions of the study area described in Section 3.2.3, 52.8% of the 

mapped landslides occur in "hill areas incised by canyons and gullies" (Figure 4.13 and 

Table 4.2). It should be noted that this class covers a large part of the central part of the 

study area. Landslides occurring in areas classified as being either "mountainous slopes 

incised by gullies, canyons and river channels" or "hill areas with river valley slopes" 

account for 24.4% and 13.3% of the landslides respectively. 

Table 4.2 shows the results from a detailed analysis of the landslide inventory database. 

It shows the number of landslides occurring in each of the combinations of Land 

System, Facet and Elément that were encountered in the study area. In the majority of 

thèse combinations only a small number of landslides were mapped. In thèse cases it is 

unlikely that this is a "susceptible" combination and there could be other reasons for the 

mapped landslide activity. However, the analysis bas highlighted some combinations 

that could be regarded as "susceptible combinations". Thèse combinations have been 

highlighted in Table 4.2 by a five-fold colour scheme, as well as summary Table 4.3. 
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Land Systems of the Rio Aguas Study Area affected by 
landslide activity 
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Figure 4.13 - Graph showing the breakdown of mapped landslides in the Land System 

classes used by this study 
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Table 4.2 - Distribution of mappei landslides within the teirain classification used by this study 
Land System Land Facet Land ËlemeDt 

1. Gypsum Plateau & Karst (2.5%) Open river valley formed by the dissection of the drainage channel 
without river terraces (2.5%) Scarp-slope escarpment (2.5%) 

2. Mountain slopes incised by 
gullies, canyons and river channeïs 
(24.4%) 

Hill and Mountain slopes (10,4%) 

Ridge crest (7.0%) 

2. Mountain slopes incised by 
gullies, canyons and river channeïs 
(24.4%) 

Hill and Mountain slopes (10,4%) 
Scarp-slope escarpment (0.6%) 

2. Mountain slopes incised by 
gullies, canyons and river channeïs 
(24.4%) 

Hill and Mountain slopes (10,4%) Valley side slopes (0.3%) 

2. Mountain slopes incised by 
gullies, canyons and river channeïs 
(24.4%) 

Hill and Mountain slopes (10,4%) 
Outside meander of active drainage channel (0 3%) 

2. Mountain slopes incised by 
gullies, canyons and river channeïs 
(24.4%) 

Hill and Mountain slopes (10,4%) 

Mountain side slope (1.3%) 
2. Mountain slopes incised by 
gullies, canyons and river channeïs 
(24.4%) 

Incised drainage channels without river terrât^ ( ! 3 9%) 

Ridge crest (1.3%) 2. Mountain slopes incised by 
gullies, canyons and river channeïs 
(24.4%) 

Incised drainage channels without river terrât^ ( ! 3 9%) 

Valley side slope (0.9"/o) 

2. Mountain slopes incised by 
gullies, canyons and river channeïs 
(24.4%) 

Incised drainage channels without river terrât^ ( ! 3 9%) 
Canyon side slope (5 4%) 

Incised drainage channels without river terrât^ ( ! 3 9%) Inside meander of active drainage channel (0.9%) Incised drainage channels without river terrât^ ( ! 3 9%) 

Outside meander of active drainage channel (3 2%) 

Incised drainage channels without river terrât^ ( ! 3 9%) 

Outside meander of abandoned drainage channel (0.6%) 

Incised drainage channels without river terrât^ ( ! 3 9%) 

Mountain side slope (1.6%) 

4. Hiil areas with river vallev side 
slopes (13,3%) 

Open river valley formed by the dissection of the drainage channel 
with river terraces (4.7%) 

Ridge crest (0.3%) 

4. Hiil areas with river vallev side 
slopes (13,3%) 

Open river valley formed by the dissection of the drainage channel 
with river terraces (4.7%) 

Dip-slope mid-slope (0.3%) 

4. Hiil areas with river vallev side 
slopes (13,3%) 

Open river valley formed by the dissection of the drainage channel 
with river terraces (4.7%) 

Mountain & valley side slopes (O.'^/o) 

4. Hiil areas with river vallev side 
slopes (13,3%) 

Open river valley formed by the dissection of the drainage channel 
with river terraces (4.7%) Gully side slope (0.3%) 

4. Hiil areas with river vallev side 
slopes (13,3%) 

Open river valley formed by the dissection of the drainage channel 
with river terraces (4.7%) 

Outside meander of active drainage channel (2.5%) 

4. Hiil areas with river vallev side 
slopes (13,3%) 

Open river valley formed by the dissection of the drainage channel 
with river terraces (4.7%) 

Outside meander of abandoned drainage channel (0,6%) 
4. Hiil areas with river vallev side 
slopes (13,3%) 

Open river valley formed by the dissection of the drainage channel 
with river terraces (4.7%) 

Inside meander of abandoned drainage channel (0.3%) 4. Hiil areas with river vallev side 
slopes (13,3%) 

Open river valley formed by the dissection of the drainage channel 
without river terraces (4.7%) 

Dip-slope escarpment (0.9%) 
4. Hiil areas with river vallev side 
slopes (13,3%) 

Open river valley formed by the dissection of the drainage channel 
without river terraces (4.7%) 

Valley side slope (0.9%) 

4. Hiil areas with river vallev side 
slopes (13,3%) 

Open river valley formed by the dissection of the drainage channel 
without river terraces (4.7%) 

Outside meander of active drainage channel (1.6%) 

4. Hiil areas with river vallev side 
slopes (13,3%) 

Open river valley formed by the dissection of the drainage channel 
without river terraces (4.7%) Gully side slope (1.3%) 

4. Hiil areas with river vallev side 
slopes (13,3%) 

Open river valley formed by the dissection of the drainage channel 
without river terraces (4.7%) 

GuUy side slope (0.6%) 

4. Hiil areas with river vallev side 
slopes (13,3%) 

Open river valley formed by the dissection of the drainage channel 
without river terraces (4.7%) 

Valley side slope (1.9%) 

4. Hiil areas with river vallev side 
slopes (13,3%) 

Hill and Mountain slopes (1.3%) Dip-slope mid-slope ( 1 3%) 



Hill and Mountain slopes (0.9%) 
Dip-slope mid-slopes (0.3%) 

Hill and Mountain slopes (0.9%) 
Valley side slopes (0.6%) 
Scarp-slope escarpment (5.4%) 
Dip-slope escarpment (6.6%) 
Scarp-slope mid-slope (0.3%) 
Dip-slope mid-slope (0.6%) 
Valley side slope (2.8%) 

bicised drainage channel with river terraces (38,3%) 
Canyon side slope (3.5%) 

bicised drainage channel with river terraces (38,3%) 
Gully side slope (0.9%) 
Inside meander of active drainage channel (2.2%) 
Outside meander of active drainage channel (12.0%) 
Inside meander of abandoned drainage channel (0,3%) 

3. Hill areas with incisai by canyons 
and gullies (59.8%) 

Outside meander of abandoned drainage channel (2.2%) 
3. Hill areas with incisai by canyons 
and gullies (59.8%) 

Cut slope (1,3%) 3. Hill areas with incisai by canyons 
and gullies (59.8%) 

Scarp-slope escarpment (0.6%) 
Dip-slope escarpment (2.8%) 
Dip-slope mid-slope (0.9%) 

Incised drainage channel without river terraces (14.6%) 
Valley side slope (1.3%) 

Incised drainage channel without river terraces (14.6%) 
Canyon side slope (1.3%) 
Gully side slope (0.3%) 
Inside meander of active drainage channel (0,3%) 
Outside meander of active drainage channel (7.0%) 
Dip-slope mid-sîope (0.3%) 
Gully side slope (3.2%) 

Gully System (6.0%) Inside meander of active drainage channel (1.3%) 
Outside meander of active drainage channel (0.9%) 
Mountain side slope (0.3%) 



Clapter 4 - Landsiide Distribution Analysis 

T a b l e 4.3 - Summaiy table of tbe distribution of mapped landslides within the terrain 
classification used by this study 

Land System 
(Approximate % of 
mapped landslides) 

Key Findings from Table 4.2 
(Land Facet / Land Elément / % of the mapped landslides*) 

1. Gypsum Plateau and 
Karst (2.5%) 

• River valley fonned by the dissection of the drainage system 
• Scarp-slope escarpment 
• 2.5% of the mapped landslides (8 landslides) 

2. Mountain slopes 
incised by gullies, 
canyons and river 
channels (24.4%) 

• Hill and mountain area 
• Ridge crests 
• 7.0% of the mapped landslides (22 landslides) 

2. Mountain slopes 
incised by gullies, 
canyons and river 
channels (24.4%) 

• Incised drainage cliamiels with river terraces 
• Canyons side slopes 
• 5.4% of the mapped landslides (17 landslides) 

2. Mountain slopes 
incised by gullies, 
canyons and river 
channels (24.4%) 

• Incised drainage cliaïuiels without river terraces 
• Outside ineanders of active drainage chaimels 
• 3.2% of tlie mapped landslides (10 landslides) 

3. Hill areas vvith incised 
drainage channels 
(59.8%) 

• Incised drainage channels with river terraces 
• Outside meanders of active drainage chaïuiels 
• 12.0% of the mapped landslides (38 landslides) 

3. Hill areas vvith incised 
drainage channels 
(59.8%) 

• Incised drainage channels witli river terraces 
• Dip-slope escarpments 
• 6.6% of the mapped landslides (21 landslides) 

3. Hill areas vvith incised 
drainage channels 
(59.8%) 

• Incised drainage cliannels \vitli river terraces 
• Scarp-slope escarpments 
• 5.4% of the mapped landslides (17 landslides) 3. Hill areas vvith incised 

drainage channels 
(59.8%) • Incised drainage cliamiels with river terraces 

• Canyon side slopes 
• 3.5% of the mapped landslides (11 landslides) 

3. Hill areas vvith incised 
drainage channels 
(59.8%) 

• Incised drainage cliamiels without river terraces 
• Outside meanders of active drainage cliamiels 
• 7.0% of the mapped landslides (22 landslides) 

3. Hill areas vvith incised 
drainage channels 
(59.8%) 

• Gully system 
• Gully side slope 
• 3.2% of the mapped landslides (10 landslides) 

4. Hill areas vvith gentle 
valley side slopes 
(13.3%) 

• No combination with significant numbers of mapped landslides 

* = Thèse percentages will not add up to 100% as this is a summary table showing 
extracts from Table 4.2. 

The above table (Table 4.3) highlights the apparent importance of both incised drainage 

channels (with river terraces) and the outside meanders of active drainage channels. 

This fits with observations made during the field mapping and aerial photographie 

interprétation. 
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Chapter 4 - Laiidsiide Distribution Analysis 

Within the "mountain slopes" Land System, the most "susceptible" combinations for 

landslide activity involve ridge crests or areas wbere tbe drainage bas been incised to 

form canyons. Tbe most "susceptible" combinations witbin the "hill areas with incised 

drainage" Land System involve the outside meanders of active drainage channels that 

bave been incised. Dip-slope and scarp-slope escarpments are also seen to be 

"significant" for landslide activity. The majority of thèse landslides fall within the area 

influenced by the Rio Aguas/Rambla Feos river capture and the subséquent "wave of 

incision" that bas influenced the formation of the présent Rio Aguas. 

Although 13.3% of the mapped landslides occur within the Land System "hill areas 

with gentle valley side slopes", they do not occur in any "significanf concentrations in 

any of the possible Land System, Facet and Elément combinations. Interestingly, 

considering the number of landslides used in this study (316 mapped landslides) there 

are not many combinations of Land System, Facet and Eléments with "significanf 

clusters of landslides. This is probably due to the fact that due to the complexity of the 

classification scheme used by this study, there are a large number of combination 

possibilities. 

4.2.4 Geology and Lithology 

The field mapping involved the mapping of the geology and geomorphology of the 

study area, as well as the landslide distribution. This means that for each entry within 

the landslide inventory, the geological formations and/or members were recorded as 

well as the lithological units that were involved in the observed landslide. Both sets of 

data bave been anal y sed. 
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By overlaying the landshde distribution on the geoiogy map for the study area it is 

possible to quickly identify those hthological units or combinations of units that are 

involved with the landshde activity of the study area (Figure 4.14). 

The majority of the mapped landslides bave occurred within the Nevado-Filabride 

Complex, the Sorbas Member, the Góchar Formation or the Azagador Member (16.8%, 

15.5%, 12.3% and 9.5% of the mapped landslides respectively; Figure 4.15). However, 

there is not much of a difference between these units and the other units that bave been 

mapped. This result does not help gain an understanding of the landshde activity in the 

study area. This is due to the fact that geological formation or member names do not 

necessarily indicate the rock type (or lithology) of the material involved in the landshde. 

Therefore it is cruciai to analysis the hthological data that bave been collected. 

The majority of the mapped landslides were seen to occur in conglomerate, limestone, 

sandstone or mica schist (14.6%, 13.9%, 10.1%) and 10.4%) of the mapped landslides 

respectively; Figure 4.16). Approximately 26% of the landslides involve basement 

geoiogy such as mica schist, gneiss, phyllite or combinations of these. It should also he 

noted that over 42% of the mapped landslides involve more than one rock type, and that 

these combinations are predominantly "hard rock" over "soft rock". 
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Figure 4.15 - Graph showing the geological units involved in the mapped landslide 
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Figure 4.16 - Graph showing the lithological units involved in the mapped landslide 

activity of the study area. 
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Again, the spread of the data is not very large, restricting the number of conclusions that 

can he drawn. To gain a better idea of how the geology is controUing the landsHde 

activity of the study area further analysis has been completed comparing the geology 

with the geomorphological location and failure mechanisms of each mapped landslide. 

The results from these analyses will he described in subsequent sections of this chapter. 

4.2.5 Geology and Terrain Classification 

The occurrence of a landslide is related to the material involved and the 

geomorphological location. It has been shown in previous sections that the majority of 

the landslides occur in areas where the drainage channel has been incised, and 

particularly in the outside of active meanders. But which are the rock types that are 

least favourable to slope stability in these locations? 

An analysis has been completed looking at the number of landslides occurring in the 

diflferent combinations of Land System, Facet and Element and rock type which were 

recorded in the landslide inventory. The results from the analysis are presented in Table 

4.4 and a summary of those combinations with the highest percentages are presented in 

Table 4.5. 
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Table 4.4 - Distribution of mapped landslides within the terrain classification and rock type combinations used by this study. 
Land Svstem Land Facet Land Elément Rock Type 
1. Gypsimi Plateau & Karst 
(2.5%) 

Open river valIey forraed by the dissection of the drainage 
channel without river terraces (2.5%) Scarp-slope escaipment (2.5%) Gypsura over lying mudstone (2.5%) 

Hill and Mountain slopes (10.4%) 

Ridge crest (7.0%) Schist (2.2%) 

Hill and Mountain slopes (10.4%) 

Ridge crest (7.0%) 
Basement (4.7%) 

Hill and Mountain slopes (10.4%) 

Scarp-slope escarpment (0.6%) Limestone (0.6%) 

Hill and Mountain slopes (10.4%) Valley side slopes (0.3%) Limestone (0.3%) Hill and Mountain slopes (10.4%) 
Outside meander of active drainage channel (0.3%) Gneiss (0.3%) 

Hill and Mountain slopes (10.4%) 

Moimtain side slope (1.3%) 
Schist (0.6%) 

Hill and Mountain slopes (10.4%) 

Moimtain side slope (1.3%) Gneiss (0.3%) 

Hill and Mountain slopes (10.4%) 

Moimtain side slope (1.3%) 
Basement material ( 1.3%) 

2. Vlountain slopes incised by 
gutlies, canyons and river 
channels (24.4%) 

Incised drainage channel without river terraces ( 13.9%) 

Ridge crest (1.3%) Schist (0.3%) 
2. Vlountain slopes incised by 
gutlies, canyons and river 
channels (24.4%) 

Incised drainage channel without river terraces ( 13.9%) 

Ridge crest (1.3%) 
Basement material (0.9%) 2. Vlountain slopes incised by 

gutlies, canyons and river 
channels (24.4%) 

Incised drainage channel without river terraces ( 13.9%) 

X'alley side slope (0.9%) Gneiss (0.9%) 
2. Vlountain slopes incised by 
gutlies, canyons and river 
channels (24.4%) 

Incised drainage channel without river terraces ( 13.9%) 

Canyon side slope (5.4%) Schist (4.7%) 

2. Vlountain slopes incised by 
gutlies, canyons and river 
channels (24.4%) 

Incised drainage channel without river terraces ( 13.9%) 

Canyon side slope (5.4%) 
Gneiss (0.6%) 

2. Vlountain slopes incised by 
gutlies, canyons and river 
channels (24.4%) 

Incised drainage channel without river terraces ( 13.9%) Inside meander of active drainage channel (0.9%) Schist (0.3%) 

2. Vlountain slopes incised by 
gutlies, canyons and river 
channels (24.4%) 

Incised drainage channel without river terraces ( 13.9%) Inside meander of active drainage channel (0.9%) 
Basement material (0.6%) 

2. Vlountain slopes incised by 
gutlies, canyons and river 
channels (24.4%) 

Incised drainage channel without river terraces ( 13.9%) 

Outside meander of £u;tive drainage channel (3.2%) 
Schist (1.3%) 

Incised drainage channel without river terraces ( 13.9%) 

Outside meander of £u;tive drainage channel (3.2%) Gneiss (1.3%) 

Incised drainage channel without river terraces ( 13.9%) 

Outside meander of £u;tive drainage channel (3.2%) 
Basement material (0.6%) 

Incised drainage channel without river terraces ( 13.9%) 

Outside meander of abandoned drainage channel (0.6%) Schist (0.6%) 

Incised drainage channel without river terraces ( 13.9%) 

Mountain side slope (1.6%) Gneiss (0.6%) 

Incised drainage channel without river terraces ( 13.9%) 

Mountain side slope (1.6%) 
Basement material (0.9%) 

Open river valley formed by the dissection of the drainage 
channel without river terraces (4,7%) 

Ridge crest (0.3%) Gypsimi & Sandstone (0.3%) 

Open river valley formed by the dissection of the drainage 
channel without river terraces (4,7%) 

Dip-slope mid-slope (0.3%) Gypsum & Sandstone (0.3%) 

Open river valley formed by the dissection of the drainage 
channel without river terraces (4,7%) 

Mountain & valley side slopes (0.9%) Conglomerate & Sandstone (0.6%) 

Open river valley formed by the dissection of the drainage 
channel without river terraces (4,7%) 

Mountain & valley side slopes (0.9%) 
Sandstone & Mudstone (0.3%) 

Open river valley formed by the dissection of the drainage 
channel without river terraces (4,7%) 

Gully side slope (0.3%) Conglomerate & Mudstone (0.3%) Open river valley formed by the dissection of the drainage 
channel without river terraces (4,7%) 

Outside meander of active drainage channel (2.5%) 

Conglomerate & Mudstone (0.3%) Open river valley formed by the dissection of the drainage 
channel without river terraces (4,7%) 

Outside meander of active drainage channel (2.5%) Conglomerate & Sandstone (0.3%) 

Open river valley formed by the dissection of the drainage 
channel without river terraces (4,7%) 

Outside meander of active drainage channel (2.5%) 
Conglomerate (0.3%) 

Open river valley formed by the dissection of the drainage 
channel without river terraces (4,7%) 

Outside meander of active drainage channel (2.5%) 

Sandstone (0.9%) 

Open river valley formed by the dissection of the drainage 
channel without river terraces (4,7%) 

Outside meander of abandoned drainage channel (0.6%) Sandstone (0.6%) 

Open river valley formed by the dissection of the drainage 
channel without river terraces (4,7%) 

Inside meander of abandoned drainage chaimel (0.3%) Mudstone (0.3%) 
4. Hill areas with river va l l ^ Dip-slope escarpment (0.9%) Limestone (0.9%) 
side slopes (13.3%) 

Open river valley formed by the dissection of the drainage 
channel without river terraces (4.7%) 

Valley side slope (0.9%) Conglomerate (0.6%) 
side slopes (13.3%) 

Open river valley formed by the dissection of the drainage 
channel without river terraces (4.7%) 

Valley side slope (0.9%) 
Limestone <& Mudstone (0.3%) 

side slopes (13.3%) 

Open river valley formed by the dissection of the drainage 
channel without river terraces (4.7%) 

Outside meander of active drainage channel ( 1.6%) Conglomerate ( 1.6%) 

side slopes (13.3%) 

Open river valley formed by the dissection of the drainage 
channel without river terraces (4.7%) 

Gully side slope (1.3%) Sandstone & Mudstone (0.9%) 

side slopes (13.3%) 

Open river valley formed by the dissection of the drainage 
channel without river terraces (4.7%) 

Gully side slope (1.3%) 
Conglomerate (0.3%) 

side slopes (13.3%) 

Incised drainage channel with river terraces (0.6%) Gully side slope (0.6%) Sandstone (0.3%) 

side slopes (13.3%) 

Incised drainage channel with river terraces (0.6%) Gully side slope (0.6%) 
Conglomerate & Mudstone (0.3%) 

side slopes (13.3%) 

Incised drainage channel witiiout river terraces ( 1.9%) Valley side slope (1.9%) Gneiss (1.6%) 

side slopes (13.3%) 

Incised drainage channel witiiout river terraces ( 1.9%) Valley side slope (1.9%) 
Conglomerate (0.3%) 

side slopes (13.3%) 

Hill and Moimtain slopes (1.3%) Dip-slope mid-slope ( 1.3%) Limestone (1.3%) 



Table 4.4 (Conrinued) - Distribution of mapped landslides within the terrain classification and rock type combinations used by this study 

Land System Land Facet Land Element Rock Type 
3. Hill areas with incised by Hill and Mountain slopes (0.9%) Dip-slope mid-slopes (0.3%) Limestone (0.3%) 
canyons and gullìes (59.8%) Hill and Mountain slopes (0.9%) 

Valley side slopes (0.6%) Gneiss (0.6%) 
Sandstone (0.3%) 
Limestone (0.3%) 

Scarp-slope escarpment (5.4%) Conglomerate & Mudstone (0.3%) Scarp-slope escarpment (5.4%) 
Limestone & Mudstone (0.3%) 
Conglomerate & Gypsum (0.3%) 
Gypsum & Mudstone (3.8%) 
Sandstone (2.2%) 
Limestone ( 1.6%) 

Dip-slope escarpment (6.6%) Gypsimi & Mudstone (1.9%) Dip-slope escarpment (6.6%) 
Sandstone & Mudstone (0.6%) 

Limestone & Mudstone (0.3%) 
Scarp-slofw mid-slope (0.3%) Gypsum & Mudstone (0.3%) 
Dip-slope mid-slope (0.6%) Limestone & Mudstone (0.6%) 

Limestone (0.9%) 
Valley side slope (2.8%) Conglomerate (1.6%) 

Limestone & Mudstone (0,3%) 
Conglomerate ( 1.6%) 

Canyon side slope (3.5%) Conglomerate & Mudstone ( 1.3%) Canyon side slope (3.5%) Sandstone (0.3%) 
Gypsum & Mudstone (0.3%) 
Gypsum (0.3%) 

Incised drainage channel with river terraces (38.3%) Gully side slope (0.9%) Limestone & Mudstone (0.3%) 
Mudstone (0.3%) 
Conglomerate (0.6%) 

Inside meander of active drainage channel (2.2%) Sandstone (1.3%) 
Limestone & Mudstone (0.3%) 
Conglomerate (3.2%) 
Conglomerate (0.9%) 
Sandstone (0.3%) 
Limestone (0.6%) 

Outside meander of active drainage channel (12.0%) 
Conglomerate & Mudstone ( 1.6%) 

Outside meander of active drainage channel (12.0%) 

Conglomerate & Sandstone ( 1.6%) 

Sandstone & Mudstone (0.6%) 
Limestone & Mudstone (2.5%) 
Mudstone (0.6%) 

Inside meander of abandoned drainage channel (0.3%) Conglomerate (0.3%) 
Sandstone (0.3%) 
Conglomerate & Mudstone (0.3%) 

Outside meander of abandoned drainage channel (2.2%) Conglomerate (0.3%) 
Sandstone (0.6%) 
Limestone & Mudstone (0.6%) 

Cut slope (1.3%) Sandstone (1.3%) 



Incised drainage channel without river terraces ( 14.6%) 

Gully system (6.0%) 

Scarp-slope escarpment (0.6%) Limestone (0.6%) 

Dip-slope escarpment (2.8%) 
Gypsum (0.3%) 

Dip-slope escarpment (2.8%) Limestone ( 1.9%) Dip-slope escarpment (2.8%) 
Sandstone & Mudstone (0.6%) 

Dip-slope mid-slope (0.9%) Limestone (0.6%) Dip-slope mid-slope (0.9%) 
Conglomerate & Sandstone (0.3%) 

Valley side slope (1.3%) Limestone (0.9%) Valley side slope (1.3%) 
Schist (0.3%) 

Canyon side slope ( 1.3%) Limestone (0.9%) Canyon side slope ( 1.3%) 
Basement material (0.3%) 

Gully side slope (0.3%) Limestone & Mudstone (0.3%) 
Inside meander of active drainage channel (0.3%) Limestone (0.3%) 

Outside meander of active drainage channel (7.0%) 

Conglomerate (2.2%) 

Outside meander of active drainage channel (7.0%) 

Gypsum (0.3%) 

Outside meander of active drainage channel (7.0%) 
Mudstone (0.3%) 

Outside meander of active drainage channel (7.0%) 
Limestone (1.3%) 

Outside meander of active drainage channel (7.0%) 

Sandstone & Mudstone (2.2%) 

Outside meander of active drainage channel (7.0%) 

Conglomerate & Mudstone (0.6%) 
Dip-slope mid-slope (0.3%) Conglomerate & Sandstone (0.3%) 

Gully side slope (3.2%) 

Sandstone (0.6%) 

Gully side slope (3.2%) Limestone (0.6%) Gully side slope (3.2%) 
Conglomerate (0.3%) 

Gully side slope (3.2%) 

Conglomerate & Sandstone (1.6%) 

Inside meander of active drainage channel ( 1.3%) Conglomerate (0.3%) Inside meander of active drainage channel ( 1.3%) 
Sandstone (0.9%) 

Outside meander of active drainage channel (0.9%) Sandstone (0.6%) Outside meander of active drainage channel (0.9%) Sandstone & Mudstone (0.3%) 
Moimtain side slope (0.3%) Sandstone & Mudstone (0.3%) 

Legend for Table 4.4 

No. Landslides % Range 

>6 > 1.9% 

7-12 2.2-3.8 

13-18 4.1 -5.7 

19-25 6.0-7.9 

<26 < 8.2% 
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T a b l e 4,5 - Summaiy table of the distribution of the mapped landslides within the 
terrain classification/rock types combinations used by this study 

Land System 
(Approximate % of 
mapped landslides) 

Key Findings 
(Land Facet /1 *md Elément / Lithology / % of tlie mapped landslides*) 

1. Gypsum Plateau and 
Karst (2.5%) 

• River valley formed by tlie dissection of the drainage system 
• Scarp-slope escarpment 
• Gypsum overlying calcareous mudstone 
• 2.5% of the mapped landslides (8 landslides) 

2. Mountain slopes 
incised by gullies, 
canyons and river 
channels (24.4%) 

• Hill and mountain area 
• Ridge crests 
• Basement material (Mica schist, gneiss, phyllite) 
• 4.7% of the mapped landslides (15 landslides) 

2. Mountain slopes 
incised by gullies, 
canyons and river 
channels (24.4%) 

• Hill and mountain area 
• Ridge crests 
• Mica scliist 
• 2.2% of the mapped landslides (7 landslides) 

2. Mountain slopes 
incised by gullies, 
canyons and river 
channels (24.4%) 

• Incised drainage chamiels with river terraces 
• Canyons side slopes 
• Mica sellisi 
• 4.7% of tlie mapped landslides (15 landslides) 

3. HilJ areas witli incised 
drainage channels 
(59.8%) 

• Incised drainage chamiels wiUi river terraces 
• Outside meanders of active drainage chaïuiels 
• Conglomerate 
• 3.2%. of tlie mapped landslides (10 landslides) 

3. HilJ areas witli incised 
drainage channels 
(59.8%) 

• Incised drainage chaïuiels with river terraces 
• Outside meanders of active drainage chamiels 
• Limestone and calcareous mudstone 
• 2.5% of the mapped landslides (8 landslides) 

3. HilJ areas witli incised 
drainage channels 
(59.8%) 

• Incised drainage chamiels with river terraces 
• Scarp-slope escarpments 
• Gypsum overlying calcareous mudstone 
• 3.8% of Uie mapped landslides (12 landslides) 3. HilJ areas witli incised 

drainage channels 
(59.8%) • Incised drainage cliamiels with river terraces 

• Dip-slope escarpments 
• Sandstone 
• 2.2% of the mapped landslides (7 landslides) 

3. HilJ areas witli incised 
drainage channels 
(59.8%) 

• Incised drainage cliamiels without river terraces 
• Outside meanders of active drainage chaimels 
• Conglomerate 
• 2.2% of the mapped landslides (7 landslides) 

3. HilJ areas witli incised 
drainage channels 
(59.8%) 

• Incised drainage cliamiels without river terraces 
• Outside meanders of active drainage channels 
• Sandstone and Mudstone 
• 2.2% of Uie mapped landslides (7 landslides) 

4. Hill areas widi genUe 
valley side slopes 
(13.3%) 

• No combination with significant nunibers of mapped landslides 

* = Thèse percentages will not add up to 100% as this is a summary table showing 
extracts from Table 4.4. 
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In many ways, the above summary table (Table 4.5) bigbligbts many of tbe results seen 

in Table 4.3. The Land Eléments that appear to be most "susceptible" to landslide 

activity are again the outside meanders within active and incised drainage channels, or 

the présence of dip-slope or scarp-slope escarpments. However, by increasing the 

number of possible combinations, the resuit is to decrease the number of "significanf 

clusters of landslides occurring in any given combination. 

The prominence of either mica schist or "basement material" (a combination of mica 

schist, gneiss, phyllite and other basement rock types) within the "mountain slopes" 

Land System is not surprising, and reflects the nature of this Land System. Within the 

"hill areas with incised drainage channels" Land System, it appears that combinations of 

rock types (usually involving mudstone), in conjunction with the previously noted 

outside meanders of incised and active drainage channels is the most "susceptible" to 

landslide activity. This fits with previous observations that the "classic" combination of 

"hard" rock over "soft" rock (which in this case is calcareous mudstone) is a 

combination that is "susceptible" to landslide activity within this study area. This 

observation is also true for the gypsum escarpment, scarp-slope that occurs along the 

edge of the "Gypsum Plateau" Land System. 

4.2.6 Landslide Mechanisms 

The Rio Aguas catchment area is aflfected by a wide variety of différent failure 

mechanisms. In most cases, each mapped landslide itself is a combination of différent 

failure mechanisms acting together, either at the same time or at différent stages during 

the development of the landslide. The landslide mechanism classification and 
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definitions that were used in the database were described and discussed in Chapter 3. 

Where it was apphcable, up to six different failure mechanisms were recorded for each 

of the mapped landslides. These were recorded on the basis of which mechanisms were 

judged to be the primary, secondary, tertiary failure mechanisms, etc, for that particular 

landslide. However, the majority of the landslides mapped by this study only involved 

two failure mechanisms. This analysis has, therefore, only considered the first two 

failure mechanisms (Table 4.6 and Figure 4.17). 

Analysis of the landslide inventory shows that approximately 67% of the mapped 

landslides involve rock falls and topples, and 21% of the mapped landslides are non-

rotational landslides (Table 4.6 and Figures 4.17 and 4.18) as the primary mechanism. 

A further 9% of the mapped landslides involve rock falls and topples as secondary 

mechanisms (Table 4.6). This means that approximately 80%> of the mapped landslides 

involve rock falls or topples and approximately 40% of these failures involve slope 

deterioration processes as a secondary mechanism. These relatively high figures reflect 

the rocky nature of the topography, with oversteepened canyon walls and other cliff 

faces or escarpments. Interestingly, only 15% of the mapped landslides just involve 

rock falls and topples with no other failure mechanism. This reflects the complex 

nature of landslide activity within the study area and highlights the need for considering 

more than one failure mechanism for any given landslide. It also highlights the need for 

a relatively "flexible" landslide classification scherno that allows for multiple 

mechanisms to be considered. 

Only 8.2% of the landslides within the study area bave been classified as "Other" 

Landslides (Table 4.6 and Figures 4.17 and 4.18). The term "Other" is used bere to 
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describe landslides involving débris movements, rock avalancbes, rock flows, Sackung 

(as defined in Table 3.5 and Dikau et ai, 1996) and slope cambering. Translational 

landslides account for approximately 3.8% of the landslides mapped witbin tbe study 

area (Figures 4.17 and 4.18). 

Tbe classification scbeme tbat bas been used in tbis project also sub-divides failures 

sucb as rock falls into spécifie types of rock fall based on the shape or orientation of the 

failure surface. For example, the majority of the rock falls (as a primary failure 

mechanism) occur on joint-controlled wedge-shaped failure surfaces (45.3% of the 

mapped landslides; Figure 4.19). 

T a b l e 4.6 - Table showing the breakdown of the primary and secondary failure 

Primary Failure Mechanism 
Falls & 
Topples 

Non-
rotational 
Landslides 

Translation 
al 
Landslides 

"Other" 
Landslides# 

Totals 

E 
en 
C 
es 
.s 

s 
' « 
Es. 
t-
«s 

•9 
S 
o 

Falls & 
Toppics 

62 
(19.6%) 

16 
(5.1%) 

2 
(0.6%) 

10 
(3.2%) 

90 
(28.5%) E 

en 
C 
es 
.s 

s 
' « 
Es. 
t-
«s 

•9 
S 
o 

Non-rotational 
Landslides 

14 
(4.4%) 

6 
(1.9%) 

1 
(0.3%) 

13 
(4.1%) 

34 
(10.8%) 

E 
en 
C 
es 
.s 

s 
' « 
Es. 
t-
«s 

•9 
S 
o 

Translational 
Landslides 

5 
(1.6%) 

5 
(1.6%,) 

E 
en 
C 
es 
.s 

s 
' « 
Es. 
t-
«s 

•9 
S 
o 

"Other" 
Landslides 

3 
(0.9%) 

4 
(1.3%) 

E 
en 
C 
es 
.s 

s 
' « 
Es. 
t-
«s 

•9 
S 
o 

Slope 
Détérioration 

87 
(27.5%) 

14 
(4.4%) 

101 
(32.0%.) 

E 
en 
C 
es 
.s 

s 
' « 
Es. 
t-
«s 

•9 
S 
o 

Primary 
Mechanism 
Only 

48 
(15.2%) 

23 
(7.3%) 

9 
(2.8%) 

2 
(0.6%) 

82 
(25.9%.) 

Total s 211 
(66.8%) 

67 
(21.2%) 

12 
(3.8%) 

23 
(8.2»/o) 

316 

# "Other" Landslides includes here rock flow and débris movements, although thèse bave been 
plotted separately in Figure 4.17. 
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Primary ä Secondary Failure Mechanisms 
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Figure 4.17 - Graph showing the breakdown of the primary and secondary landsHde 

failure mechanisms mapped within the study area. 
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Figure 4.18 - Graph showing the breakdown of the primary landslide failure 

mechanisms mapped within the study area. 
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Figure 4.19 - Graph showing the detaiied landslìde failure mechanisms mapped within the study area. 
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4.2.7 Landslide Mechanisms and Geology 

The relationship between the différent landshde failure mechanisms that have been 

mapped and the rock types involved bas been investigated. Approximately 66.5% of 

the mapped landshdes have been described as "Rock Falls". Within this group, the 

majority of the mapped landshdes occur within limestone {\2.1%; Figure 4.20) and a 

fiirtber 3.2% involve limestone overlying mudstone. Landshdes occurring within mica 

schist, gneiss or "basement material" account for approximately 10.1%), 3.5% and 9.5% 

of the mapped landshdes respectively. Sandstone and conglomerate account for a 

further 7.6%> and 8.5% of the total number of mapped landshdes respectively, which are 

involved with rock falls and topples. 

The majority of the landshdes classified as involving either rock flow, rock avalanche or 

"other" failure mechanisms were found to occur within gypsum overlying mudstone 

(7.3%; Figure 4.20). This matches with field observations from along the gypsum 

escarpment. 

The relationships seen in Figure 4.20 also match with the field observations and 

expectations. For example, the majority of the rock falls and topples and slope 

détérioration processes occur within hard or brittle rocks (i.e., sandstone or limestone). 

Failure mechanisms involving sliding either along a rotational, non-rotational or linear 

shear surface are seen to occur within lithological combinations involving a brittle rock 

unit (i.e., limestone) overlying a more ductile lithological unit (i.e., mudstone). 
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Chapter 4 - Landslide Distribution Analysis 

4.2.8 Landslide Mechanisms and Terrain Classification 

In the previous section the relationship between landslide failure mechanism and rock 

type was investigated. The landslide mechanism by which a slope fails is also 

controlled by the geomorphology of the slope. 

An analysis has been completed looking at the nimiber of landslides with specified 

failure mechanisms occurring in the different combinations of Land System, Facet and 

Element which were recorded in the landslide inventory. The results from the analysis 

are presented in Table 4.7 and a summary of those combinations with the highest 

percentages are presented in Table 4.8. 

Legend for Table 4.7 

No. Landslides % Range 

>6 > 1.9% 

7-12 2.2-3.8 

13-18 4.1-5.7 

19-25 6.0-7.9 

<26 < 8.2% 
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Table 4.7 - Distribution of mappcd landslides within the terrain classifícation/landslide failure mechanism combinarions used by this study. 
Land System Land Facet Land Element Mechanism 
1. Gypsum Plateau & 
Karst (2.5%) 

Open river valley formed by the dissection of the drainage channel 
without river terraces (2.5%) Scarp-slope escarpment (2.5%) Other / Complex Combinations (2.5%) 

2. Mountain slopes 
incised by gullies, 
canyons and river 
Channels (24,4%) 

Hill and Mountain slopes (10.4%) 

Ridge crest (7.0%) Falls &Topples (7.0%) 

2. Mountain slopes 
incised by gullies, 
canyons and river 
Channels (24,4%) 

Hill and Mountain slopes (10.4%) 
Scarp-slope escarpment (0.6%) Falls & Topples (0.6%) 

2. Mountain slopes 
incised by gullies, 
canyons and river 
Channels (24,4%) 

Hill and Mountain slopes (10.4%) Valley side slopes (0.3%) Falls ÄTopples (0 3%) 

2. Mountain slopes 
incised by gullies, 
canyons and river 
Channels (24,4%) 

Hill and Mountain slopes (10.4%) 
Outside meander of active drainée channel (0.3%) Translational Landslide (0.3%) 

2. Mountain slopes 
incised by gullies, 
canyons and river 
Channels (24,4%) 

Hill and Mountain slopes (10.4%) 

Mountain side slope (1.3%) Fal ls* Topples (1.3%) 

2. Mountain slopes 
incised by gullies, 
canyons and river 
Channels (24,4%) 

Incised drainage channel without river terraces (13.9%) 

Ridge crest (1.3%) Falls & Topples (0.3%) 2. Mountain slopes 
incised by gullies, 
canyons and river 
Channels (24,4%) 

Incised drainage channel without river terraces (13.9%) 

Valley side siope (0.9%) Falls & Topples (0.6%) 
2. Mountain slopes 
incised by gullies, 
canyons and river 
Channels (24,4%) 

Incised drainage channel without river terraces (13.9%) 

Valley side siope (0.9%) 
Non-rotation al Landslide (0.3%) 

2. Mountain slopes 
incised by gullies, 
canyons and river 
Channels (24,4%) 

Incised drainage channel without river terraces (13.9%) 

Canyon side slope (5.4%) Falls & Topples (5.4%) 

2. Mountain slopes 
incised by gullies, 
canyons and river 
Channels (24,4%) 

Incised drainage channel without river terraces (13.9%) Inside meander of active drainage channel (0.9%) Falls & Topples (0.9%) Incised drainage channel without river terraces (13.9%) 

Outside meander of active drainage channel (3.2%) Falls & Topples (3.2%) 

Incised drainage channel without river terraces (13.9%) 

Outside meander of abandoned drainage channel (0.6%) Falls & Topples (0.6%) 

Incised drainage channel without river terraces (13.9%) 

Mountain side slope ( 1.6%) Falls & Topples (1.6%) 

4. Hill áreas with 
river Valley side 
slopes (13.3%) 

Open river valley formed by the dissection of the drainage channel 
without river terraces (4.7%) 

Ridge crest (0.3%) Non-rotational Landslide (0.3%) 

4. Hill áreas with 
river Valley side 
slopes (13.3%) 

Open river valley formed by the dissection of the drainage channel 
without river terraces (4.7%) 

Dip-slope mid-slope (0.3%) Translational Landslide (0.3%) 

4. Hill áreas with 
river Valley side 
slopes (13.3%) 

Open river valley formed by the dissection of the drainage channel 
without river terraces (4.7%) 

Mountain & valley side slopes (0.9%) Non-rotafional Landslide (0.9%) 

4. Hill áreas with 
river Valley side 
slopes (13.3%) 

Open river valley formed by the dissection of the drainage channel 
without river terraces (4.7%) 

Gully side slope (0.3%) Falls & Topples (0.3%) 

4. Hill áreas with 
river Valley side 
slopes (13.3%) 

Open river valley formed by the dissection of the drainage channel 
without river terraces (4.7%) 

Outside meander of active drainage channel (2.5%) 
Falls & Topples (0.6%) 

4. Hill áreas with 
river Valley side 
slopes (13.3%) 

Open river valley formed by the dissection of the drainage channel 
without river terraces (4.7%) 

Outside meander of active drainage channel (2.5%) Non-rotational Landslide (1.3%) 

4. Hill áreas with 
river Valley side 
slopes (13.3%) 

Open river valley formed by the dissection of the drainage channel 
without river terraces (4.7%) 

Outside meander of abandoned drainage channel (0.6%) Non-rotational Landslide (0.6%) 

4. Hill áreas with 
river Valley side 
slopes (13.3%) 

Open river valley formed by the dissection of the drainage channel 
without river terraces (4.7%) 

Inside meander of abandoned drainage channel (0.3%) Falls & Topples (0.3%) 
4. Hill áreas with 
river Valley side 
slopes (13.3%) 

Open river valley formed by the dissection of the drainage channel 
without river terraces (4.7%) 

Dip-slope escarpment (0.9%) Falls & Topples (0.9%) 4. Hill áreas with 
river Valley side 
slopes (13.3%) 

Open river valley formed by the dissection of the drainage channel 
without river terraces (4.7%) 

Valley side slope (0.9%) 
Falls & Topples (0.3%) 

4. Hill áreas with 
river Valley side 
slopes (13.3%) 

Open river valley formed by the dissection of the drainage channel 
without river terraces (4.7%) 

Valley side slope (0.9%) Non-rotational Landslide (0.3%) 

4. Hill áreas with 
river Valley side 
slopes (13.3%) 

Open river valley formed by the dissection of the drainage channel 
without river terraces (4.7%) 

Valley side slope (0.9%) 
Translational Landslide (0.3%) 

4. Hill áreas with 
river Valley side 
slopes (13.3%) 

Open river valley formed by the dissection of the drainage channel 
without river terraces (4.7%) 

Outside meander of active drainage channel ( 1.6%) Falls & Topples (0.9%) 

4. Hill áreas with 
river Valley side 
slopes (13.3%) 

Open river valley formed by the dissection of the drainage channel 
without river terraces (4.7%) 

Outside meander of active drainage channel ( 1.6%) 
Non-rotational Landslide (0.6%) 

4. Hill áreas with 
river Valley side 
slopes (13.3%) 

Open river valley formed by the dissection of the drainage channel 
without river terraces (4.7%) 

Gully side slope (1.3%) Falls & Topples (0.9%) 

4. Hill áreas with 
river Valley side 
slopes (13.3%) 

Open river valley formed by the dissection of the drainage channel 
without river terraces (4.7%) 

Gully side slope (1.3%) 
Non-rotational Landslide (0.3%) 

4. Hill áreas with 
river Valley side 
slopes (13.3%) 

Incised drainage channel widi river tenaces (0.6%) GuUy side slope (0.6%) Falls & Topples (0.6%) 

4. Hill áreas with 
river Valley side 
slopes (13.3%) 

Incised drainage channel without river terraces (1.9%) Valley side slope ( 1.9%) Falls & Topples (0.3%) 

4. Hill áreas with 
river Valley side 
slopes (13.3%) 

Incised drainage channel without river terraces (1.9%) Valley side slope ( 1.9%) 
Translational Landslide ( 1.6%) 

4. Hill áreas with 
river Valley side 
slopes (13.3%) 

Hill and Mountain slopes (1.3%) Dip-slope mid-slope (1.3%) Falls & Topples (1.3%) 



Table 4.7 (Continued) - Distribution of mapped landslides within the terrain classification and andslide failure mechanism combinations used by this study 
Land System Land Facet Land Elément Mechanism 

3. Hill areas with 
incised by canyons 
and gullies (59.8%) 

Hill and Mountain slopes (0.9%) Dip-slope mid-slopes (0.3%) Non-rotational Landslide (0.3%) 

3. Hill areas with 
incised by canyons 
and gullies (59.8%) 

Hill and Mountain slopes (0.9%) 
Valley side slopes (0.6%) Translational Landslide (0.6%) 

3. Hill areas with 
incised by canyons 
and gullies (59.8%) 

Incised drainage channel with river terraces (38.3%) 

Scarp-slope escarpment (5.4%) Falls & Topples (1.3%) 

3. Hill areas with 
incised by canyons 
and gullies (59.8%) 

Incised drainage channel with river terraces (38.3%) 

Scarp-slope escarpment (5.4%) 
Other (4.1%) 

3. Hill areas with 
incised by canyons 
and gullies (59.8%) 

Incised drainage channel with river terraces (38.3%) 

Dip-slope escarpment (6.6%) 
Falls & Topples (6.0%) 

3. Hill areas with 
incised by canyons 
and gullies (59.8%) 

Incised drainage channel with river terraces (38.3%) 

Dip-slope escarpment (6.6%) Other (0.3%) 

3. Hill areas with 
incised by canyons 
and gullies (59.8%) 

Incised drainage channel with river terraces (38.3%) 

Dip-slope escarpment (6.6%) 
Non-rotational Landshde (0.3%) 

3. Hill areas with 
incised by canyons 
and gullies (59.8%) 

Incised drainage channel with river terraces (38.3%) 

Scarp-slope mid-slope (0.3%) Other (0.3%) 

3. Hill areas with 
incised by canyons 
and gullies (59.8%) 

Incised drainage channel with river terraces (38.3%) 

Dip-slope mid-slope (0.6%) Non*rotational Landslide (0.6%) 

3. Hill areas with 
incised by canyons 
and gullies (59.8%) 

Incised drainage channel with river terraces (38.3%) 

Valley side slope (2.8%) Falls & Topples (0.9%) 

3. Hill areas with 
incised by canyons 
and gullies (59.8%) 

Incised drainage channel with river terraces (38.3%) 

Valley side slope (2.8%) 
Non-rotational Landshde (1.9%) 

3. Hill areas with 
incised by canyons 
and gullies (59.8%) 

Incised drainage channel with river terraces (38.3%) Canyon side slope (3.5%) Falls & Topples (2 8%) 

3. Hill areas with 
incised by canyons 
and gullies (59.8%) 

Incised drainage channel with river terraces (38.3%) Canyon side slope (3.5%) 
Other (0.6%) 

3. Hill areas with 
incised by canyons 
and gullies (59.8%) 

Incised drainage channel with river terraces (38.3%) 

Gully side slope (0.9%) Falls & Topples (0.6%) 

3. Hill areas with 
incised by canyons 
and gullies (59.8%) 

Incised drainage channel with river terraces (38.3%) 

Gully side slope (0.9%) 
Non-rotational Landslide (0.3%) 

3. Hill areas with 
incised by canyons 
and gullies (59.8%) 

Incised drainage channel with river terraces (38.3%) 

Inside meander of active drainage channel (2.2%) Falls & Topples (1.9%) 

3. Hill areas with 
incised by canyons 
and gullies (59.8%) 

Incised drainage channel with river terraces (38.3%) 

Inside meander of active drainage channel (2.2%) 
Other (0.3%) 

3. Hill areas with 
incised by canyons 
and gullies (59.8%) 

Incised drainage channel with river terraces (38.3%) 

Outside meander of active drainage channel (12.0%) Falls & Topples (7.6%) 

3. Hill areas with 
incised by canyons 
and gullies (59.8%) 

Incised drainage channel with river terraces (38.3%) 

Outside meander of active drainage channel (12.0%) 
Non-rotational Landslide (4.4%) 

3. Hill areas with 
incised by canyons 
and gullies (59.8%) 

Incised drainage channel with river terraces (38.3%) 

Inside meander of abandoned drainage channel (0.3%) Falls & Topples (0.3%) 3. Hill areas with 
incised by canyons 
and gullies (59.8%) 

Incised drainage channel with river terraces (38.3%) 

Outside meander of abandoned drainage channel (2.2%) Falls & Topples (0.6%) 
3. Hill areas with 
incised by canyons 
and gullies (59.8%) 

Incised drainage channel with river terraces (38.3%) 

Outside meander of abandoned drainage channel (2.2%) 
Non-rotational Landslide (1.6%) 

3. Hill areas with 
incised by canyons 
and gullies (59.8%) 

Incised drainage channel with river terraces (38.3%) 

Cut slope (1.3%) Falls & Topples (1.3%) 

3. Hill areas with 
incised by canyons 
and gullies (59.8%) 

Incised drainage Channel without river terraces (14.6%) 

Scarp-slope escarpment (0.6%) Falls & Topples (0.6%) 

3. Hill areas with 
incised by canyons 
and gullies (59.8%) 

Incised drainage Channel without river terraces (14.6%) 

Dip-slope escarpment (2.8%) Falls & Topples (2.2%) 

3. Hill areas with 
incised by canyons 
and gullies (59.8%) 

Incised drainage Channel without river terraces (14.6%) 

Dip-slope escarpment (2.8%) 
Non-rotational Landslide (0.6%) 

3. Hill areas with 
incised by canyons 
and gullies (59.8%) 

Incised drainage Channel without river terraces (14.6%) 

Dip-slope mid-slope (0.9%) Falls & Topples (0.3%) 

3. Hill areas with 
incised by canyons 
and gullies (59.8%) 

Incised drainage Channel without river terraces (14.6%) 

Dip-slope mid-slope (0.9%) 
Translational Landslide (0.6%) 

3. Hill areas with 
incised by canyons 
and gullies (59.8%) 

Incised drainage Channel without river terraces (14.6%) Valley side slope (1.3%) Falls & Topples (0.9%) 

3. Hill areas with 
incised by canyons 
and gullies (59.8%) 

Incised drainage Channel without river terraces (14.6%) Valley side slope (1.3%) 
Non-rotational Landshde (0.3%) 

3. Hill areas with 
incised by canyons 
and gullies (59.8%) 

Incised drainage Channel without river terraces (14.6%) 

Canyon side slope ( 1.3%) Falls & Topples (1.3%) 

3. Hill areas with 
incised by canyons 
and gullies (59.8%) 

Incised drainage Channel without river terraces (14.6%) 

Gully side slope (0.3%) Falls & Topples (0.3%) 

3. Hill areas with 
incised by canyons 
and gullies (59.8%) 

Incised drainage Channel without river terraces (14.6%) 

Inside meander of active drainage channel (0.3%) Falls & Topples (0.3%) 

3. Hill areas with 
incised by canyons 
and gullies (59.8%) 

Incised drainage Channel without river terraces (14.6%) 

Outside meander of active drainage channel (7.0%) Falls & Topples (2.8%) 

3. Hill areas with 
incised by canyons 
and gullies (59.8%) 

Incised drainage Channel without river terraces (14.6%) 

Outside meander of active drainage channel (7.0%) 
Non-rotational Landslide (4.1%) 

3. Hill areas with 
incised by canyons 
and gullies (59.8%) 

Gully System (6.0%) 

Dip-slope mid-slope (0.3%) Non-rotational Landslide (0.3%) 

3. Hill areas with 
incised by canyons 
and gullies (59.8%) 

Gully System (6.0%) 
Gully side slope (3.2%) Falls & Topples (13%) 

Gully System (6.0%) 
Gully side slope (3.2%) 

Non-rotational Landslide (1.9%) Gully System (6.0%) 
Inside meander of active drainage channel (1.3%) Falls & Topples (1.3%) 

Gully System (6.0%) 

Outside meander of active drainage channel (0.9%) Falls & Topples (O.90/0) 

Gully System (6.0%) 

Mountain side slope (0.3%) Falls & Topples (0.3%) 
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Table 4.8 - Summai7 table of the distribution of the mapped landslides within the 

terrain classification/landslide failure mechanism combinations used by this study 

Land System 
(Approximate % of 
mapped landslides) 

Key Findings 
(Land Facet / Land Elément / Meclianisms / % of the mapped landsUdes*) 

I. Gypsum Plateau and 
Karst (2.5%) 

• River valley fonned by the dissection of tlie drainage system 
• Scarp-slope escarpment 
• "Otiier" - complex combination of meclianisms 
• 2.5% of Uie mapped landslides (8 landslides) 

2. Mountain slopes 
incised by guUies, 
canyons and river 
channels (24.4%) 

• Hill and mountain area 
• Ridge crests 
• Rock Falls and Topples 
• 7.0% of the mapped landslides (22 landslides) 

2. Mountain slopes 
incised by guUies, 
canyons and river 
channels (24.4%) 

• Incised drainage cliaiuiels with river terraces 
• Canyons side slopes 
• Rock Falls and Topples 
• 5.4% of the mapped landslides (17 landslides) 

2. Mountain slopes 
incised by guUies, 
canyons and river 
channels (24.4%) 

• Incised drainage cliamiels wiUi river terraces 
• Outside meanders of active drainage chaïuiels 
• Rock Falls and Topples 
• 3.2% of the mapped landslides (10 landslides) 

3. Hill areas with incised 
drainage channels 
(59.8%) 

• Incised drainage cliaiuiels with river terraces 
• Outside meanders of active drainage chaïuiels 
• Rock Falls and Topples 
• 7.6% of the mapped landslides (24 landslides) 

3. Hill areas with incised 
drainage channels 
(59.8%) 

• Incised drainage cliannels with river terraces 
• Dip-slope escarpments 
• Rock Falls and Topples 
• 6.0% of tlie mapped landslides (19 landslides) 

3. Hill areas with incised 
drainage channels 
(59.8%) 

• Incised drainage channels with river terraces 
• Scarp-slope escarpments 
• "'Otlier" - complex combination of meclianisms 
• 4.1% of the mapped landslides (13 landslides) 3. Hill areas with incised 

drainage channels 
(59.8%) • Incised drainage chaïuiels without river terraces 

• Outside meanders of active drainage chamiels 
• Non-rotational Landslides 
• 4.1% of the mapped landslides (13 landslides) 

3. Hill areas with incised 
drainage channels 
(59.8%) 

• Incised drainage cliaiuiels without river terraces 
• Outside meanders of active drainage chamiels 
• Rock Falls and Topples 
• 2.8% of the mapped landslides (9 landslides) 

3. Hill areas with incised 
drainage channels 
(59.8%) 

• Incised drainage channels without river terraces 
• Dip-slope escarpments 
• Rock Falls and Topples 
• 2.2% of the mapped landslides (7 landslides) 

4. Hill areas witli gentle 
Valley side slopes 
(13.3%) 

• No combination \rith sigiiificant nunibers of mapped landslides 

* = Thèse percentages will not add up to 100% as this is a summary table showing 
extracts from Table 4.7. 
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In many ways, the above summaiy table (Table 4.8) higbligbts many of tbe results 

already seen in Table 4.3 (i.e., tbe Land Eléments tbat appear to be most "susceptible" 

to landslide activity are again tbe outside meanders witbin active and incised drainage 

channels, or tbe présence of dip-slope or scarp-slope escarpments). Again, by 

increasing the number of possible combinations, the resuit is to increase the number of 

"significant" clusters of landslides occurring in any given combination, but to decrease 

the number of landslides occurring within those clusters. 

The dominance of rock falls and topples is not surprising considering the results 

presented in Section 4.2.6 (section on landslide failure mechanisms). However, there 

are some noticeable exceptions. For example, within the "hill areas with incised 

drainage channels" Land System 4.1% of the mapped landslides were classified as 

"other" and occur on scarp-slope escarpments (Table 4.8). An additional 4.1% of the 

mapped landslides within this Land System also occur as non-rotational landslides in 

the outside meanders of incised and active drainage channels. 
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4.2.9 Landslide Mechanisms, Geology and Geomorphology 

In developing a ground mode! for the study area it is essential to have some 

understanding of which combination of hthology and geomorphological setting will 

potentially give rise to which types of landslide failure mechanisms. Therefore a 

relatively complex analysis has been completed combining these three sets of variables. 

These will be presented by Land System unit. 

An analysis has been completed looking at the number of landslides with specified 

failure mechanisms occurring in the different combinations of terrain classification and 

rock type which were recorded in the landslide inventory. The results from the analysis 

are presented in Table 4.9 and a summary of those combitiations with the highest 

percentages are presented in Table 4.10. 

Legend for Table 4.9 

No. Landslides % Range 

>6 > 1.9% 

7-12 2.2-3.8 

13-18 4.1-5.7 

19-25 6.0-7.9 

<26 < 8.2% 
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Table 4.9__- Oigtribution ofmapped laiìdslides within the terrain classification/rock t>'pe/landslide Failure mechanism combinations used by this study 
:Lsiiii System 
1 G>psum Pla:ea» & 
Karst (2.5%) 

Land Facet 
Open river valley formed by the dissection of the 
drainage channel without rivCT terraces (2.5%) 

Land Elément 

Scarp-slope escarpment (2.5%) 

Rock Type Mechanism 

Gypsum over lying mudstone (2.5%) Other / Complex Combinations (2.5%) 

Ridge crest (7.0%) Schist (2.2%) 
Basement (4.7%) 

Scarp-slope escarpment (0.6%) Limestone (0.6%) 
Valley side slopes (0.3%) Limestone (0.3%) 
Outside meander of active drainage channel (0.3%) Gneiss (0.3%) 

Schist (0.6%) 
Mountain side slope (1.3%) Gneiss (0.3%) 

Basement material ( 1.3%) 

lOÙTitain dopes 
ircised by guHies. 
canyons and river 
cha:mels(24.4%) 

Ridge crest (1.3%) Schist (0.3%) 
Basement material (0.9%) 

river vaîlsy sicie 
sïcpes(13.3%) 

Valley side slope (0.9%) Gneiss (0.9%) 

Canyon side slope (5.4%) Schist (4.7%) 
Gneiss (0.6%) 

Incised drainage channel without river terraces (13,9^b) Inside meander of active drainage channel (0.9%) Schist (0.3%) 
Basement material (0.6%) 
Schist (1.3%) 

Outside meander of active drainage channel (3.2%) Gneiss (1.3%) 
Basement material (0.6%) 

Outside meander of abandoned drainage channel (0.6%) Schist (0.6%) 

Mountain side slope (1.6%) Gneiss (0.6%) 
Ba^ment material (0.9%) 

Open river valley formed by the dissection of the 
drainage channel without river terraces (4.7%) 

C»pen river valley fomied by the dissection of the 
drainage channel without river terraces (4.7%) 

Incised drainage chaimel with river terraces (0.6%) 

Incised drainage channel without river terraces (1.9%) 

Hill and Mountain slopes ( 1.3%) 

Ridge crest (0.3%) Gypsum & Sandstone (0.3%) 
Dip-slope mid-slope (0.3%) Gypsum & Sandstone (0.3%) 

Mountain & valley side slopes (0.9%) Conglomerate & Sandstone (0.6%) 
Sandstone & Mudstone (0.3%) 

Gully side slope (0.3%) Conglomerate & Mudstone (0.3%) 
Conglomerate & Mudstone (0.3%) 

Outside meander of active drainage channel (2.5%) Conglomerate & Sandstone (0.3%) 
Conglomerate (0.3%) 
Sandstone (0.9%) 

Outside meander of abandoned drainage channel (0.6%) Sandstone (0.6%) 
Inside meander of abandoned drainage channel (0.3%) Mudstone (0.3%) 
Dip-slope escarpment (0.9%) Limestone (0.9%) 

Valley side slope (0.9%) Conglomerate (0.6%) 

Limestone & Mudstone (0.3%) 

Outside meander of active drainage channel (1.6%) Conglomerate (1.6%) 

Gully side slope (1.3%) Sandstone & Mudstone (0.9%) 
Conglomerate (0.3%) 

Gully side slope (0.6%) Sandstone (0.3%) 
Conglomerate & Mudstone (0.3%) 

Valley side slope (1.9%) Gneiss (1.6%) 
Conglomerate (0.3%) 

Dip-slope mid-slope ( 1.3%) Limestone (1.3%) 

Falls & Toppics (2.2%) 
Falls & Topples (4.7%) 
Falls & Topples (0.6%) 
Falls & Topples (0.3%) 
Translational Landslide (0.3%) 
Falls & Topples (0.6%) 
Falls & Topples (0.3%) 
Falls & Topples (1.3%) 
Falls & Topples (0.3%) 
Falls & Topples (0.9%) 
Falls & Topples (0.6%) 
Non-rotational Landslide (0.3%) 
Falls & Topples (4.7%) 
Falls & Topples (0.6%) 
Falls & Topples (0.3%) 
Falls & Topples (0.6%) 
Falls & Topples (1.3%) 
Falls & Topples (1.3%) 
Falls & Topples (0.6%) 
Falls & Topples (0.6%) 
Falls & Topples (0.6%) 
Falls & Toppics (0.9%) 

Non-rotational Landslide (0.3%) 
Translational Landslide (0.3%) 
Non-rotational Landslide (0.6%) 
Non-rotational Landslide (0.3%) 
Falls & Topples (0.3%) 
Falls & Topples (0.3%) 
Falls & Toppics (0.3%) 
Non-rotational Landslide (0.3%) 
Non-rotational Landslide (0.9%) 
Non-rotational Landslide (0.6%) 
Falls & Toppics (0.3%) 
Falls & Topples (0.9%) 
Falls & Topples (0.3%) 
Non-rotational Landslide (0.3%) 
Translational Landslide (0.3%) 
Falls & Topples (0.9%) 
Non-rotational Landslide (0.6%) 
Falls & Topples (0.9%) 
Non-rotarional Landslide (0.3%) 
Falls & Topples (0.3%) 
Falls & Topples (0.3%) 
Translational Landslide (1.6%) 
Falls & Topples (0.3%) 
Falls & Topples (1.3%) 



Table 4.9 (Continued) - Distribution of mapped landslides within the terrain classi: Ication. rock type and landslide failure mechanism combinations used by this stud\ 
Land Svstem Land Facet Land Elément Rock Type Mechanism 
3. Hill areas with Hill and Mountain slopes (0.9%) 

--——— -, . r_ , 

Dip-slope mid-slopes (0.3%) Limestone (0.3%) Non-rotational Landslide (0.3%) ^ 
incised by can>'ons Hill and Mountain slopes (0.9%) 

--——— -, . r_ , Valley side slopes (0.6%) Gneiss (0.6%) Translational Landslide (0.6%) • 
and gullies (59.8%) Incised drainage channel with river terraces (38.3%) Sandstone (0.3%) Falls & Topples (0.3%) 

Limestone (0.3%) Falls & Topples (0.3%) 

Scarp-slope escarpment (5.4%) Conglomerate & Mudstone (0.3%) Falls & Topples (0.3%) Scarp-slope escarpment (5.4%) 
Limestone & Mudstone (0.3%) Falls & Topples (0.3%) 
Conglomerate & Gypsum (0.3%) Odier (0.3%) 

' ' ' 
Gypsum & Mudstone (3.8%) Other (3.8%) 
Sandstone (2.2%) Falls & Topples (2.2%) 

! Limestone (1.6%) Falls & Topples (1.6%) 

Gypsum & Mudstone ( 1.9%) Falls & Topples (1.6%) 
Dip-slope escarpment (6.6%) Gypsum & Mudstone ( 1.9%) 

Other (0.3%) 

Sandstone & Mudstone (0.6%) Falls & Topples (0.3%) Sandstone & Mudstone (0.6%) 
Non-rotational Landslide (0.3%) 

Limestone & Mudstone (0.3%) Falls & Topples (0.3%) 
Scarp-slope mid-slope (0.3%) Gypsum & Mudstone (0.3%) Other (0.3%) 

r Dip-slope mid-slope (0.6%) Limestone & Mudstone (0.6%) Non-rotational Landslide (0.6%) 
i 
1 Limestone (0.9%) Falls & Topples (0.9?/o) i 
1 Valley side slope (2.8%) Conglomerate ( 1.6%) Non-rotational Landslide (1.6%) 

^ 

Limestone & Mudstone (0.3%) Non-rotational Landslide (0.3%) 
Conglomerate (1.6%) Falls & Topples (1.6%) 

i 
Canyon side slope (3.5%) Conglomerate & Mudstone (1.3%) Falls & Topples (1.3%) Canyon side slope (3.5%) 

Sandstone (0.3%) Other (0.3%) 
Gypsum & Mudstone (0.3%) Other (0.3%) 
Gypsum (0.3%) Falls & Topples (0.3%) 

i Gully side slope (0.9%) Limestone & Mudstone (0.3%) Falls & Topples (0.3%) 
1 Mudstone (0.3%) Non-rotational Landslide (0.3%) t 

Conglomerate (0.6%) Falls & Topples (0.6%) j 
Inside meander of active drainage channel (2.2%) Sandstone (1.3%) Falls & Topples (1.3%) 

Limestone & Mudstone (0.3%) Other (0.3%) 
Conglomerate (3.2%) Falls & Topples (3.2%) 
Conglomerate (0.9%) Non-rotational Landslide (0.9%) 
Sandstone (0.3%) Falls & Topples (0.3%) 
Limestone (0.6%) Falls & Topples (0.6%) 

i Conglomerate & Mudstone (1.6%) Falls & Topples (0.9%) 
1 

Outside meander of active drainage channel (12.0%) 
Conglomerate & Mudstone (1.6%) Non-rotational Landslide (0.6%) Outside meander of active drainage channel (12.0%) 
Conglomerate & Sandstone (1.6%) Falls & Topples (0.3%) 

t 
Conglomerate & Sandstone (1.6%) 

Non-rotational Landslide (1.3%) 
1 Sandstone & Mudstone (0.6%) Falls & Topples (0.6%) 

Limestone & Mudstone (2.5%) Falls & Topples (1.6%) Limestone & Mudstone (2.5%) 
Non-rotational Landslide (0.9%) 

Mudstone (0.6%) Non-rotational Landslide (0.6%) 
Inside meander of abandoned drainage channel (0.3%) Conglomerate (0.3%) Falls & Topples (0.3%) 

Sandstone (0.3%) Falls & Topples (0.3%) 
Conglomerate & Mudstone (0.3%) Falls & Topples (0.3%) 

Outside meander of abandoned drainage channel (2.2%) Conglomerate (0.3%) Non-rotational Landslide (0.3%) 
Sandstone (0.6%) Non-rotational Landslide (0.6%) 
Limestone & Mudstone (0.6%) Non-rotational Landslide (0.6%) 



Incised drainage channel without river terraces (14.6%) 

Cut slope (1.3%) 
Scarp-slope escarpment (0.6%) 

Dip-slope escarpment (2.8%) 

Dip-slope mid-slope (0.9%) 

Valley side slope (1.3%) 

Canyon side slope (1.3%) 

Gully side slope (0.3%) 

Sandstone (1.3%) 
Limestone (0.6%) 
G>psum (0.3%) 
Limestone (1.9%) 
Sandstone & Mudstone (0.6%) 

Limestone (0.6%) 

Conglomerate & Sandstone (0.3%) 
Limestone (0.9%) 
Schist (0.3%) 
Limestone (0.9?'o) 
Basement material (0.3%) 

Inside meander of active drainage channel (0.3%) 

Outside meander of active drainage chaimel (7.0%) 

Limestone & Mudstone (0.3%) 
Limestone (0.3%) 

Conglomerate (2.2%) 

Gypsum (0.3%) 
Mudstone (0.3%) 

Limestone (1.3%) 

Sandstone & Mudstone (2.2%) 

Falls & Topples (1.3%) 
Falls & Topples (0.6%) 
Falls & Topples (0.3%) 
Falls & Topples (1.9%) 
Non-rotational Landslide (0.6%) 
Falls & Topples (0.3%) 
Translational Landslide (0.3%) 
Translational Landslide (0.3%) 
Falls & Topples (0.9%) 
Non-rotational Landslide (0.3%) 
Falls & Topples (0.9%) 
Falls & Topples (0.3%) 
Falls & Topples (0.3%) 
Falls & Topples (0.3%) 
Falls & Topples (0.9%) 
Non-rotational Landslide (1.3%) 
Falls & Topples (0.3%) 
Falls & Topples (0,3%) 
Falls & Topples (0.6%) 
Non-rotational Landslide (0.6%) 
Falls & Topples (0.6%) 
Non-rotational Landslide ( 1.6%) 

Conglomerate & Mudstone (0.6%) 

Gully systön (6.0%) 

Dip-slope mid-slope (0.3%) Conglomerate & Sandstone (0.3%) Non-rotational Landslide (0.3%) 

Gully systön (6.0%) 

Gully side slope (3.2%) 

Sandstone (0.6%) Falls & Topples (0.6%) 

Gully systön (6.0%) 

Gully side slope (3.2%) Limestone (0.6%) Falls & Topples (0.6%) 

Gully systön (6.0%) 

Gully side slope (3.2%) 
Conglomerate (0.3%) Non-rotational Landslide (0.3%) 

Gully systön (6.0%) 

Gully side slope (3.2%) 

Conglomerate & Sandstone (1.6%) Non-rotational Landslide (1.6%) Gully systön (6.0%) 
Inside meander of active drainage channel (1.3%) Conglomerate (0.3%) Falls & Topples (0.3%) 

Gully systön (6.0%) 
Inside meander of active drainage channel (1.3%) 

Sandstone (0.9%) Falls & Topples (0.9%) 

Gully systön (6.0%) 

Outside meander of active drainage channel {0.9°^o) Sandstone (0.6%) Falls & Topples (0.6%) 

Gully systön (6.0%) 

Outside meander of active drainage channel {0.9°^o) 
Sandstone & Mudstone (0.3%) Falls & Topples (0.3%) 

Gully systön (6.0%) 

Mountain side slope (0.3%) Sandstone & Mudstone (0.3%) Falls & Topples (0.3%) 

Non-rotational Landslide (0.6%) 



Cliapter 4 - Landsiide Distribution AnaJysis 

Table 4.10 - Summaiy table of tbe distribution of tbe mapped landslides within tbe 

terrain classification/landslide failure mechanism/rock type combinations used by tbis 

study. 

Land System 
(Approximate % of 
mapped landslides) 

Key Findings 
(Land Facet / Land Elément / Litliology / Mechanisms / % of the mapped 

landshdes*) 

1. Gypsum Plateau and 
Karst (2.5%) 

• River valley fonned by tlie dissecdon of the drainage system 
• Scarp-slope escarpment 
• Gypsum overlying calcareous mudstone 
• "Other" - complex combination of mechanisms 
• 2.5% of tlie mapped landslides (8 landslides) 

2. Mountain slopes 
incised by gullies, 
canyons and river 
channels (24.4%) 

• Hill and mountain area 
• Ridge crests 
• Basement Material (Mica scliist, gneiss, phyllite) 
• Rock Falls and Topples 
• 4.7% of the mapped landslides (15 landslides) 

2. Mountain slopes 
incised by gullies, 
canyons and river 
channels (24.4%) 

• Hill and mountain area 
• Ridge crests 
• Mica Sclùst 
• Rock Falls and Topples 
• 2.2% of the mapped landslides (7 landslides) 

2. Mountain slopes 
incised by gullies, 
canyons and river 
channels (24.4%) 

• Incised drainage cliamiels witli river terraces 
• Canyons side slopes 
• Rock Falls and Topples 
• Mica Schisi 
• 4.7% of the mapped landslides (15 landslides) 

3. Hill areas witli incised 
drainage chaimels 
(59.8%) 

• Incised drainage channels with river terraces 
• Outside meanders of active drainage chaïuiels 
• Conglomerate 
• Rock Falls and Topples 
• 3.2% of the mapped landslides (10 landslides) 

3. Hill areas witli incised 
drainage chaimels 
(59.8%) 

• Incised drainage cliamiels witli river terraces 
• Dip-slope escarpments 
• Sandstone 
• Rock Falls and Topples 
• 2.2% of the mapped landslides (7 landslides) 

3. Hill areas witli incised 
drainage chaimels 
(59.8%) 

• Incised drainage cliaïuiels witli river terraces 
• Scarp-slope escarpments 
• Gypsum overlying calcareous mudstone 
• "Other" - complex combination of mechanisnis 
• 3.8% of the mapped landslides (12 landslides) 

4. Hill areas wiUi gentle 
valley side slopes 
(13.3%) 

• No combination witli significant nuinbers of mapped landslides 

* = Thèse percentages will net add up to 100% as this is a summary table showing 
extracts from Table 4.7. 

Once again, tbe above summary table (Table 4.10) highlights many of the results 

previously seen in Tables 4.3 and 4.8. However, once again, by increasing the number 

of possible combinations, the resuit is to increase the number of "significant" clusters of 
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landslides occurring in any given combination, wbile at the same time decrease tbe 

number of landslides occuiring within tbose clusters. 

Tbe two most "susceptible" combinations of Land System, Facet and Elément with rock 

type and failure mecbanism for landslide activity occur witbin tbe "mountain slopes" 

Land System. Tbese are: 

1. Basement material (mica scbist, gneiss and/or pbyllite) failing as rock falls 

and/or topples along ridge crests in "bill and mountain areas" (4.7%). 

2. Mica scbist failing as rock falls and/or topples on canyon side slopes in "incised 

drainage cbannels" (4.7%). 

Tbis is despite the fact that the majority of the landslides occur within the "bill areas 

with incised drainage cbannels" Land System. However, the third and fourth most 

"susceptible" combination for landslide activity occurs within that Land System: 

3. Gypsum overlying calcareous mudstone failing as a complex combination of 

cambering and high-angle non-rotational landsliding (classified here as "other" 

landslides) on scarp-slope escarpment above incised drainage cbannels (3.8%). 

4. Conglomerate failing as rock falls and/or topples in the outside meanders of 

incised and active drainage cbannels (3.2%). 

However, it should be noted that out of the 316 landslides that bave been considered in 

tbis investigation, thèse four "susceptible" combinations account for only 51 (16.4%) of 

the mapped landslides. Tbis means that the majority of the mapped landslides are not 

occurring in thèse "susceptible" combinations. This is a resuit of the complexity of the 
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analysis that has been compieteci bere and the total nmnber of possible combinations of 

terrain classification, rock type and landslide failure mecfaanism that coiUd occur. 

4.2.10 Landslide Mechanisms, Slope Angle and Geology 

The relationship between rock type and slope angle is very important for slope stability 

{LRA, 2003a, b). lî will aiso influence the type of failure mechanism by which a slope 

may fail. Therefore, a comparison was made between the incidence of landsiides of 

différent failiue mechanisms with slope angle (Figures 4.21). This was then repeated 

usmg rock type combined with failure mechanism (Figures 4.22 to 4.25). 
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Figure 4.21 - Graph comparing the incidence of mapped landsiides within the slope 

angle classes used by this study 
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The majority of rock falls and topples (43.0% of the mapped landslides) occur on slopes 

between 61° and 90°, with almost 26%> of the mapped landslides occurring on slopes 

above 76° (Figures 4.21 and 4.22). A fijrther 11.4% of the mapped landslides occur on 

slopes classified as having a variable slope angle. There is also an increase in the 

number of landslides occurring as the slope angle increases. These are not surprising 

observations, as rock falls and topples, by defmition, require a steep slope on which to 

occur. It also fits with the observations that the largest concentration of landslides was 

found in the canyons and incised drainage Channels in the Sorbas area (Figure 4.6). 

The largest proportion of non-rotational landslides are found on slopes between 76° and 

90° (5.7% of the mapped landslides; Figure 4.23). Again, the number of landslides 

occurring increases with slope angle, except for slopes between 46° and 60°, where the 

second largest proportion of landslides are seen to occur (Figure 4.23). This is partly 

due to the relatively higher number of landslides involving limestone and limestone and 

mudstone. This could, therefore, be a lithological control. 

The twelve translational landslides that bave been mapped in the study area occur on 

slopes between 61° and 75° (1.6% of the mapped landslides) and between 31° and 45° 

(1.3% of the mapped landslides) (Figure 4.24). Again, this is not a surprising resuh as 

translational landslides will tend to only occur on moderately steep slopes (Hutchinson, 

1988; Dikau et al., 1996). A lithological control is also apparent with the translational 

landslides involving gneiss only occurring on the steeper slopes, while all of the other 

translational landslides occur on the slopes between 31° and 45°. This is probably due 
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to the more competent and relatively stronger nature of the gneiss compared with the 

relatively weaker sedimentary rocks (i.e., hmestone & mudstone). 

A l i of the landslides classified as "other" (landslides involving combinations of rock 

flow, cambering, non-rotational or high angle rotational landslides) occur on slopes 

greater than 46° or were classified as occurring on slopes with a "variable" slope angle. 

The majority of these landslides occur on slopes between 76° and 90° (Figure 4.25). 

This probably reflects the nature of the landslide failure mechanisms involved, as well 

as the lithologies involved. Ali but three of the landslides being considered bere (7.3% 

of the mapped landslides) involve failure of gypsum overlying calcareous mudstone 

along the Gypsum Escarpment. 
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Figure 4,22 - Graph comparing the incidence of rock falls and topples within the siepe 

angle classes used by this study for different rock types 
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Figure 4.23 - Graph comparing the incidence of non-rotational landslides within the 

siope angle classes used by this study for different rock types. 
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Slop« Angle agalnst Rock Type (Translational Landslides) 
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Figure 4.24 - Graph comparing the irtcidence of translationa! landshdes within the 

siepe angle classes used by this study for different rock types. 
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Figure 4.25 - Graph comparing the incidence of '*Other" landslides within the siepe 

angle classes used by this study for different rock types 
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4.2.11 Landslide Activity 

The state of landsHde activity in the study area is difficuh to assess without Constant 

monitoring. However, this can he partially overcome by using a combination of 

geomorphological mapping and repeat visits to some of the landshde sites. This led to 

approximately 80% of the mapped landshdes being classified as "dormant" ("a 

landslide that has not moved for more than one annual cycle of seasons, but where the 

causes of movement apparently remain" - WP/WLI, 1993) (Figure 4.26). This is quite 

significant because it means that the vast majority of the landslides, although considered 

not to be currently active, stili bave the potential to become active. Suspended 

landslides (those that bave "moved within the last annual cycle of seasons, but is not 

moving at presenf ) account for 8.5% of the mapped landslides. 

However, the classification of the above landslides depends on the accuracy of being 

able to identify when the landslides were last active. Within the study area, this 

depends on field observations, as well as sometimes on eyewitness accounts. Therefore, 

it depends on how easy it is to be able to determine how frequently a landslide is active. 

Through the combination of aeriàl photographic interpretation and geological and 

geomorphological field mapping it was possible to map a number of "Relict" landslides 

within the study area. These accounted for just over 4% of the total number of the 

mapped landslides (Figure 4.26). 

The majority of the mapped landslides in the study area (approximately 80%; Figure 

4.27) bave been classified as "Multiple". WPAVLI (1993) states that a multiple 
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landislide exhibits 'Tepeated development of the same type of movement along the same 

rupture surface and involving the same displaced material". 

Three-quarters of the mapped landslides (Figure 4.28) are classifîed as "retrogressing". 

WPAVLI (1993) defîned a "retrogressing" landshde as one where "the rupture surface is 

extending in the direction opposite to the movement of the displaced material". 

Approximately 17% of the mapped landslides are considered as "enlarging" (i.e., having 

a ruptiu^e surface that is extending in two or more directions - WPAVLI (1993); Figure 

4.28). 

State of Landsiide Activity 

RelJct 
4.4% 

Dormant ^ ^ ^ . ^ ^ Active Dormant ^ ^ ^ . ^ ^ Active 
80 4% 4 7% 

_ Re-activated 
1 9% 

^ ^ - - v , . . ^ Suspended 
8 5% 

Figure 4.26 - Graph showing the breakdown of mapped landslides within the "State of 

Landsiide Activity" classes used by this study. 
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Figure 4.28 - Graph showing the breakdown of mapped landslides within the 

"Distribution of Landslide Activity" classes used by this study. 
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4.2.12 Landslide Activity & Faiiure Mechanism 

Examination of the relationship between the state, style and distribution of the mapped 

landslide activity has highhghted the following points (Figures 4.29,4.30 and 4.31 ): 

• That the vast majority of either suspended or dormant landslides are rock falls 

and topples. 

• That most of the mapped relict landslides are non-rotationa! landslides 

• That the majority of "composite" landslides bave been classified as "other" 

(landslides involving cambering, rock flow or debris movements). 

• That the majority of retrogressing landslides are rock falls and topples, while the 

majority of enlarging landslides are non-rotational landslides. 
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Figure 4.29 - Graph comparing the state of the mapped landslide activity against 

landslide faiiure mechanism. 
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Figure 4 J0 - Graph comparing the style of the mapped landslide activity against 
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Figure 431 - Graph comparing the distribution of the mapped landslide activity against 

landslide failure mechanism 
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4.2.13 Landslide Activity & Geomorphology 

The relationship between the geomorphological location (using the previously described 

terrain classification for the study area) and the state of landslide activity has been 

investigated. As already stated in the previous section, the overwhelming majority of 

the landslides mapped in this study have been described as being "Dormant" using the 

classification scheme of the WPAVLI (1993). This result would suggest that the state of 

landslide activity is not dependant on the geomorphological location of the landslide. 

Unfortunately, due to the fact that the majority of the landslides in every Land System 

have been classified as "dormanf it is not possible to draw any conclusions as to how 

the geomorphological location of a landslide may affect its state of activity. This may 

reflect the nature of the landslide activity in the study area. However, it may also reflect 

the problem of having very limited historical records of landslide activity within the 

study area - a problem with most landslide studies (Griffiths,/^eri'. comm.). 
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4.2.14 Landslide Statistics 

The landshdes recorded in the landshde inventory vary greatly in size and volume 

(Table 4.11). For example, the smallest landslides (involving a few cubic metres of 

material) measured a few metres in width, whereas the largest (measuring 

approximately 300x10^ cubic metres) was approximately 2 km wide. However, the 

majority of the landslides recorded in the inventory are at the smaller end of the scale. 

Table 4.11: Selected statistics relating to the geometry of the mapped landslide activity, 

as recorded in the landslide inventory. 

Parameter Max Mean Median Skewness' 
Height (m) 250 54.44 40 1.52 
RS Width (m) 2000 162.01 75 3.10 
AZ Length (m) 900 92.42 32.5 2.61 
AZ Area (m') 1.50 X 10" 19,782.53 50 11.54 
AZ Volume (m^ 1.47 X 10" 2.32 X 10' 3.67 X 10̂  10.79 
Angle of Reach 84 39.99 39.5 -0.06 

RS = Rupture Surface / A Z = Accumulation Zone 

The landslide geometry data that has been collected shows that at least 700 million 

cubic metres (0.7 km'') of material is currently involved in landslide activity, covering 

an area of over 6 million square metres (6 km^). This implies that 1.4% of the study 

area is covered by landslide activity. The mapped landslides vary in volume from 10m'' 

to 147 million m'' of material (Figure 4.32). The largest 15 landslides are listed in Table 

4.12 and shown in Figure 4.33. This landslide distribution map shows that the largest 

13 landslides are found in two relatively distinct clusters; in the area close to the Rio 

' Positive skewness indicates a distribution with an asymmetric tail extending toward more positive 

values. Negative skewness indicates a distribution witli an asymmetric tail extending toward more 

negative values. 
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Aguas/Rambla Feos river capture and in tbe highest part of tbe Sierra Cabrera. Tbe 14̂ '' 

and IS'** largest landsHdes are found along the Rambla de Los Castaños and Río Jauto 

respectively. 

Table 4.12 - Table sbowing tbe máximum estimated volumes of tbe 15 largest 

landslides in tbe Río Aguas study área. 

No. Grid Landslide Location or Ñame Volume 
Reference (10** m') 

1 0585041055 Cuesta del Honor 147.3 
2 0581541034 Barranco Los Barrancones 58.9 
3 0599541085 Cerro de Cucar 32.7 
4 0595841075 Cerro de Los Peralicos 29.3 
5 0594541085 Loma del Colorado 2 28.4 
6 0598241075 Barranco de Mofar 1 27.5 
7 0586541064 La Parrica 26.2 
8 0598541080 Barranco de Mofar 2 23.6 
9 0585341074 Marchalico Vínicas 2 ("Relict") 17.0 
10 0598541083 Barranco de Mofar 3 16.8 
11 0585141071 Marchalico Viñicas ("Recent") 15.1 
12 0583841053 Tensión Crack Ridge 14.7 
13 0593841065 La Carrasca 12.6 
14 0581041122 Limestone Escarpment Failures (near to Cariatiz) 11.5 
15 0590541135 Río Jauto Canyon 4 10.5 

Wben compared witb a selection of well known landslides described in tbe literature 

(Table 4.13) it is seen that tbese landslides are on a comparable scale. It should be 

noted tbat in the majority of cases tbese volumes are estimates as it is almost impossible 

to measure the dimensions of a landslide accurately and, therefore, calcúlate the volume 

of displaced material. 
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Table 4.13 - Table showing the volumes of a number of landsiides selected from the 

literature (Tumer & Schuster, 1996; Vames, 1978; Voight, 1978). 

Landsiide Location or Name Volume (10*̂  m̂ ) 
Blackhawk Slide 300 
Nevados Huscaran (1970) 50-100 
Medicine Lake 86.0 
Vancouver Slide (Ok Tedi, PNG) 61.0 
Hope Slide 47.3 
Frank Slide 30.0 
Nevados Huscaran (1962) 13.0 
Sherman Glacier Rock Avalanche 10.1 
Ebn 10.0 
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Figure 4.32 - Graph showing the distribution of the volumes of the mapped landsiide 

activity. 
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Mather et al. (2002) and Stokes et al. (2002) both estimated that between 1.29 and 1.39 

km^ of material bas been removed from the upper section of tbe Río Aguas catchment 

área due to surface lowering and incisión of tbe drainage system. Tbeir study área was 

approximately 0.76 km^. Tbis researcb project bas mapped 180 landslides witbin tbis 

área, witb a combined volume of approximately 0.23 km''. Tbis would suggest tbat 

landslide activity accounts for approximately 17.8% of tbis material. 
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4,2.15 Runout Length and Volume 

The runout length for all of the landslides has been plotted against the volume of the 

landslide (Figure 4.34). The runout length of a landslide is the distance from the crown 

of the landslide scar to the toe of the landslide debris (Corominas, 1996) and has been 

measured for each of the landslides recorded in the landslide inventory. 

Analysis of the relationship between the runout length of the mapped landslides and 

their volumes has shown a strong positive relationship (R^ value of 0.9162 with 263 

degrees of freedom and a t-test percentile of greater than 0.995 suggesting that this 

relationship is statistically significant; Table 4.14). There is very little scatter in the 

data when all plotted together (Figure 4.34). A general trend of increasing runout 

length with increasing volume can be seen in the data when combined together. The 

scatter in the data increases at the higher runout lengths. This may indicate that some of 

the landslides may have travelled slightly further than might be expected. 

By studying the relationship between the runout distance and the landslide volume for 

landslides involving different rock types and/or failure mechanisms, it may be possible 

to gain an understanding of how any fijture landslide might behave. The best 

correlation was between landslide volume and runout length based on the basis of the 

rock type or types involved in the landslide (Figures 4.35 and 4.36). A series of best-fit 

lines were calculated for each rock type or failure mechanism examined (Table 4.14). 
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Landslide Volume agalnst LandsMde Runout Length 

1000 -1 

5. 
t 

100 

10 

1 

01 J 

y = 0.6761x°^* 
R̂  = 0.9162 

1 00 ;+00 1.00E+01 1 OOE+02 10(^+03 10OE+04 1 OOE+05 1 OOE+06 1.00E+07 1.00E+08 

Landslide Volume (cubk m) 

Figure 4.34 - Graph comparing the relationship between landslide voIume and nmout 
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Figure 4.35 - Graph comparing the relationship between landslide volume and runout 

length based on primary landslide failure raechanisms. 
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Table 4,14 - Table showing the R-squared values and best fit equations for the 

relationships between landslide runout and volume of the mapped landslide activity. 

Geology Equation 
Degrees of 

Freedom 

t-test 

Percentile 

All Data y = 0.6761 x^^^^^ 263 0.9162 0.995 

Conglomerate y= 1.1708x" '̂̂ ^ 35 0.8792 0.995 

Mudstone y = 0.8949 x*̂ '̂*̂  3 0.9871 0.995* 

Sandstone y = 0.886 x"**^ 24 0.886 0.995 

Limestone y = 0.4891 x"-*""̂  31 0.9512 0.995 

Schist y = 0.3219 x " " ' " 27 0.8523 0.995 

Gneiss y = 0.7297 x"'*'^' 16 0.7985 0.995 

Basement 

Material 
y = 0.6614 x " ™ 17 0.6337 0.995 

Conglomerate 

& mudstone 
y = 4Ex-05x + 28.556 16 0.8747 0.995 

Conglomerate 

& sandstone 
y = 5Ex-05x+ 18.513 7 0.9082 0.995* 

Gypsum & 

mudstone 
y = 0.8378 x " * ' ' 22 0.7309 0.995 

Sandstone & 

mudstone 
y - 1.3054 x*^ '̂̂ * 25 0.8531 0.995 

Limestone & 

mudstone 
y = 0.7833 x**^''' 17 0.894 0.995 

Rock falls & 

topples 
y = 0.5297 x"**'' 170 0.8906 0.995 

Non-rotational 

landslides 
y = 0.5080 x ^ ^ ^ 58 0.6029 0.995 

Translational 

landslides 
y-0.1385 x ^ ^ ^ 10 0.8192 0.995 

"Other" 

landslides 
y = 0.8016 x'^*^'' 22 0.4017 0.995 

* = Ignored due to less than 10 degrees of freedom. A t-test percentile of 0.995 implies 

that the probability of the relationship occurring by chance is less than 1 in 500 (p < 

0.005). 
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When examining the relationships between landshde nanout and volume for landslides 

of differing rock types or failure mechanisms, the following observations were made: 

• Landslides with larger volumes and long runout lengths involve mica schist, 

gneiss, "basement material" or gypsum overlying mudstone. 

• Non-rotational and translational landslides tend to bave moderate volumes and 

runout lengths. 

• Landslides classified as "Other" tend to bave the largest volumes and runout 

lengths. These are also the landslides that involve gypsum overlying mudstone. 
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Figure 4,36 - Graphs comparing tlie relationship between landslide volume and ainout 

length for different rock types. A . Single rock types. B. Multiple rock types. 
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4.2.16 The Angle of Reach 

The angle of reach of a landslide is the angle of a line Connecting the head of the 

landslide source to the distal margin of the displaced mass (Corominas, 1996). Heim 

(1932) called this the "fahrbôschung angle" and proposed that it was a measure of the 

relative mobility of rock avalanches or sturzstroms. Shreve (1968) called this angle the 

équivalent coefficient of friction, and Scheidegger (1973) claimed that for a sliding 

body the tangent of the reach angle is the coefficient of friction of the surface of contact 

between the sliding mass and the ground. However, Hsu (1975) and Voight (1978) both 

showed that Scheidegger's assumption is valid only in the case of the slope of the line 

linking the centres of gravity of the landslide source and deposit (Corominas, 1996). 

Plots of the tangent of the angle of reach (expressed as the ratio between the vertical 

drop H and the horizontal projection of the distance L) versus the landslide volume 

show that large landslides tend to develop lower angles of reach than smaller ones, and 

because of this, they are considered more mobile (Scheidegger, 1973; Hsu, 1975; 

Lucchitta, 1978; Tianchi, 1983; Voight et al., 1983). Corominas (1996) noted that 

Skermer (1985) insisted that there is no relationship between the angle of reach and the 

volume of a landslide. He argued that the increase in mobility in large landslides is 

mostly due to the height of the fall. A greater height of fall should correspond to longer 

horizontal displacements. 

Corominas (1996) bas also stated that a volume threshold was observed in landslide 

mobility. Scheidegger (1973) had stated that a decrease in the angle of reach occurs 

when the volume of the landslide approaches or exceeds 1 x 10̂  m''. For lesser 

volumes, a constant coefficient of friction can be assumed in most cases. Hsu (1975) 
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revised this limit up to 0.5 x 10̂  m"', the volume below which the H/L relation is 

approximately equal to 0.6, the value of the coefFicient of friction of most natural rock 

types. Other authors do seem to agree with this value (McEwen, 1989). However, 

additional data suggest that small landslides display a variable angle of reach that can be 

similar to those for large landslides. For example, Hutchinson (1988) demonstrated 

how flow slides and chalk failures of relatively small dimensions exhibited H/L ratios 

similar to those of large landslides. It has also been noted by Corominas et al. (1988) 

that some rock falls, planar slides and debris flows between a few hundred and several 

thousand cubie meters in volume exhibit relatively low angles of reach and that the 

reach is also controlied by the landslide failure mechanism. 

This highlights a lack of agreement between researchers, with opposing conclusions 

being derived from these simple relations Corominas (1996) then argued that this 

seems to suggest that a direct inference from the plots of volume versus the tangent of 

the angle of reach cannot be made and that additional considerations are needed to 

properiy understand the relationship between the volume of a landslide and the angle of 

reach of that landslide. Other factors that were looked at by Corominas (1996) that 

were argued to control the angle of reach of a landslide were the type of failure 

mechanism and the runout path of the landslide, including any obstacles in that path. 

Corominas (1996) concluded that: 

• A l l movements, regardless of mechanism, experience a continuous reduction in the 

angle of reach with increasing volume. 

• The scattering in the plots relating to landslide volume to angle of reach is mostly 

due to the effect of obstacles and topographic constraints on the runout path. 
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The horizontal distance covered is not only dépendent on the volume of the 

landslide but on the height of fall which, in turn, is a resuU of the steepness of the 

path. Potential highly mobile landslides will not develop long runout unless the 

path is steep enough. Because of this, in order to express the degree of mobility in 

terms of distance reached, the use of a relative index such as the relative excess of 

travel distance {Lr) was recommended. 

Many small landslides appear to bave relative excess of travel distance similar to 

some large landslides. However, the relative mobility increases with the volume of 

the landslide. 

Slow-moving landslides display angles of reach as low as very rapid rock 

avalanches. For thèse rnovements, no spécial mechanism like air trapping, vapour 

fluidisation, or acousric fluidisation can be used to explain their high degree of 

mobility. 

The continuous and rapid decrease of the angle of reach from the smallest volumes 

suggest that beside pore-water pressure, scale effects must be considered to play an 

important rôle in the mobility of landslides. 

The angle of reach is an index of the efficiency of landslide motion because ail of 

the movements displaying lowest angles of reach attain the farthest horizontal 

distance in relation to the height of fall or the potential energy of the moving mass. 

The angle of reach can also be used as an index of relative mobility. 

The angle of reach and the distance travelled are the resuit of the process of 

emplacement of the landslide; this includes its mass, débris properties, mechanism 

of motion, geometry of the runout path, présence of obstacles, présence of pore-

water pressures, and scale-effects. 
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Corominas (1996) concluded that he agreed with the statement made by Heim (1932) 

that the travel distance of a sturzstrom depends on height of fall, regularity of the 

pathway, and size of the fallen mass. 

The angle of reach for each of the landslides recorded in the Landslide Inventory was 

calculated using the geometric parameters that were collected either in the field or fi-om 

the APL The angle of reach was also measured in the field wherever possible. In all 

cases where the angle of reach was both measured in the field and calculated using the 

measured geometric parameters there was very good correlation. 

The relationships between the angle of reach and landslide runout length and the angle 

of reach and the landslide volume have both been investigated. In both cases, there is a 

negative correlation with some scatter in the data (Figures 4.37 and 4.38). However, 

in both cases the values are significant with over 99.999% confidence (Tables 4.15 

and 4.16). The data show that the angle of reach decreases with increasing landslide 

volume and landslide runout length. This fits with the trend of increasing runout length 

with increasing landslide volume described in the last secfion. 

These relationships were then investigated on the basis of either the rock type (or types) 

or landslide failure mechanism involved in the landslide (Figures 4.39 to 4.42). The 

best fit relationships were calculated for all of these relationships (Tables 4.15 and 

4.16). 
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Figure 4,37 - Graph comparing the relationship between landslide runout length and 

the angle of reach for all mapped landslides with the specified data. 
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Figure 4.38 - Graph comparing the relationship between landslide volume and the 

angle of reach for all mapped landslides with the specified data. 
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Figure 4 J9 - Graph comparing the relationship between landsHde ninout length and 

the angle of reach based on the primary landsiide failure mechanísm. 
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Figure 4,40 - Graph comparing the relationship between landslide volume and the 

angle of reach based on the pnmary landslide failure mechanísm. 
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Figure 4.41 - Graph comparing the relationship between landslìde runout length and 

the angle of reach based on the rock type involved in the landslìde. A. Single rock 

types. B . Multiple rock types. 
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Figure 4.42 - Graph comparing the relationship between landslide volume and the 

angle of reach based on the rock type involved in the landslide. A. Single rock types. 

B, Multiple rock types. 
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Table 4.15 - Table showing the R-squared values and best fit equations for the 

relationships between the landslide angle of reach and runout length of the mapped 

landslide activity. 

Geology Equation 
Degrees of 

Freedom 

t-rest 

Percentile 

All Data y = -9.7616Ln(x)+ 79.111 263 0.5835 0.995 

Conglomerate y - 63.069 x ^ ' " " 35 0.4413 0.995 

Mudstone y = 92.552 x-"^'^' 3 0.8719 0.975* 

Sandstone y = -0.5119x 4^3.414 24 0.5197 0.995 

Limestone y = 93.31 Ix^^^" 31 0.6986 0.995 

Schist y = -13.051Ln(x)+ 100.23 27 0.6465 0.995 

Gneiss y = 65.161e-"'^ 16 0.6093 0.995 

Basement 

Material 
y = -15.89Ln(x)+ 119.68 17 0.5242 0.995 

Conglomerate 

& mudstone 
y-40.415e^™' 16 0.1801 0.950 

Conglomerate 

& sandstone 
y= 162.67x-*'̂ '̂  7 0.5601 0.990* 

Gypsum & 

mudstone 
y = -13.81Ln(x) +97.816 22 0.8117 0.995 

Sandstone & 

mudstone 
y-57.485e^*^=^ 25 0.3290 0.995 

Limestone & 

mudstone 
y= 174.25x-'-^" 17 0.6994 0.995 

Rock falls & 

topples 
y = -8.7178Ln(x) +76.828 170 0.5358 0.995 

Non-rotational 

landslides 
y=!40.54x-^^^ 58 0.5025 0.995 

Translational 

landslides 
y=58.309e^*^ 10 0.4717 0.990 

"Other" 

landslides 
y = 404.55X "̂ ^̂  22 0.7155 0.995 

* = Ignored due to less than 10 degrees of freedom. A t-test percentile of 0.995 implies 

that the probability of the relationship occurring by chance is less than I in 500 (p < 

0.005). 
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Table 4.16 - Table showing the R-squared values and best fit equations for the 

relationships between the landslide angle of reach and volume of the mapped landslide 

activity. 

Geology Equat ion 
Degrees o f 

Freedom 

t-test 

Percentile 

All Data y = -3.n83Ln (x) +77.184 263 0.3900 0.995 

Conglomerate y = 55.552e -̂ -̂̂ "̂  35 0.1838 0.995 

Mudstone y = 94.889x-"'̂ ^^ 3 0.8528 0.975* 

Sandstone y = 78.696x'^-*"' 24 0.2421 0.995 

Limestone y= 1 0 3 . 8 2 x ™ 31 0.5600 0.995 

Schist y = ̂ .38791 ,n(x)+ 101.39 27 0.3625 0.995 

Gneiss y--4.6576Ln(x)+ 106.12 16 0.3918 0.995 

Basement Material y = -4.1812Ln(x) +97.931 17 0.1599 0.950 

Conglomerate & 

mudstone 
y = 63.913x-'*'' 

16 
0.1367 

0.900 

Conglomerate & 

sandstone 
y = 48.484e-4E-7 

7 
0.3232 

0.950* 

Gypsum & 

mudstone 
y =-5.1839Ln(x) +98.564 

22 
0.5672 

0.995 

Sandstone & 

mudstone 
y = -1.4724La (x) + 57.975 

25 
0.0716 

0.900 

Limestone & 

mudstone 
y -135 .17x^ ' ^ 

17 
0.4323 

0.995 

Rock falls & 

topples 
y = -2.7U3Ln (x) +74.977 

170 
0.3670 

0.995 

Non-rotational 

lan^hdes 
y = 94.I55x 

58 
0.1645 

0.995 

Translational 

landshdes 
y = -3.E-5x+ 52.097 

10 
0.3172 

0.950 

"Odier" iandshdes y = 398.32x^-^^' 22 0.3380 0.995 

* = Ignored due to less than 10 degrees of fireedom. A t-test percentile of 0.995 implies 

that the probability of the relationship occurring by chance is less than 1 in 500 (p < 

0.005). A t-test percentile of 0.950 implies that the probability of the relationship 

occurring by chance is less than 1 in 20 (p < 0.05). 
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In particular, the analysis seems to agree with the observations of Scheidegger (1973) 

that a decrease in the angle of reach occurs when the volume of the landslide 

approaches or exceeds 1 x 10'' m' (Figure 4.43). For example, the analysis highlighted 

the following points: 

• Very few of the low volume landslides have low angles of reach; 

• That the converse is also true - that very few large volume landslides develop 

high angles of reach; 

• Landslides with volimies less than approximately 1 x 10̂  m" lend to have 

relatively high angles of reach; and 

• Landslides with volimies greater than approximately 1 x 10̂  m" tend to have 

relatively low angles of reach. 

Angl* of Reach a^ inst LandsIM* Volume 

1 DDE+M 1 DDE+D1 1OCE+02 1 0GE*D3 1,DDE+D4 1 ODE+05 1 DDE+06 1 ES)E+07 I DOE+DB 

Landslide Vofume (cubic m) 

Figure 4.43 - Annotated graph comparing the relationship between landslide volimie 

and angle of reach for all mapped landslides with the specified data. 
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This analysis agrees with the observations of Scheidegger (1973), Hsii (1975), Lucchitta 

(1978), Tianchi (1983), Voight et al. (1983) and Corominas (1996) who all stated that 

larger volume landslides tend to develop lower angles of reach. They all suggested that 

this showed a higher mobility in the larger volume landslides with respect to the smaller 

volume landslides. This analysis has shown that: 

• The majority of the landslides involving gypsum overlying mudstone (as well as 

those landslides classified as being "Other") had large volumes and low angles 

of reach (and therefore fell into the fourth category listed above). The majority 

of the "Other" landslides involve gypsum overlying calcareous mudstone and 

occur along the edge of the Gypsum Escarpment. 

• The majority of the landslides involving either mica schist, gneiss or "basement 

material" tend to have higher volumes and higher angles of reach. This could be 

a reflection of the fact that the majority of these landslides occur on mountain 

slopes with relatively steep slope angles. Therefore, the slope morphology is 

affecting the angle of reach and the apparent mobility of the landslide. 

• A large number of the non-rotational landslides have volumes of approximately 

1 X 10 'm^ but a range of angles of reach. This may also be a reflection of the 

slope and morphological setting of the landslide. 

• The statistical analysis of the best fit lines for the different relationships studied 

(using the t-test) has shown that almost all of these relationships are statistically 

significant, with percentile values above to.995. This indicates that the 

relationships studied have a less than 1 in 500 probability of occurring by 

chance. 
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Many of these observations seem to agree broadly with the observations and 

conclusions of Corominas (1996) that were described earlier in this section. It should 

also be noted that the data set used by this study is larger than the data set used by 

Corominas (1996). 

4.2.17 Land Use 

The land use of a landslide site and its location with respect to the landslide has been 

recorded in the landslide inventory. These data would be required for both landslide 

susceptibility and landslide risk analysis. 

Unsurprisingly for a relatively remote and rural area, the majority of the mapped 

landslides (approximately 73%) do not affect any particular land use or infrastructure 

(Figure 4.44). Those landslides that affect agricultural land or abandoned agricultural 

land account for 8.9% and 1.9% of the mapped landslides respectively (Figure 4.44). 

An observation that may be of some concern for a remote rural area, are the 3.3% of the 

mapped landslides that occur above or below private, residential buildings (Figure 

4.44). Another concern would be the number of mapped landslides occurring either 

above, below or crossing the roads and tracks of the study area (9.3%) of the mapped 

landslides; Figure 4.44). 

It is difficult to ascertain whether land use influences slope stability within the study 

area. In many cases it is a question of either cause or effect or both. For example, 

agricultural land may be abandoned due to landslide activity, as in the case of the 
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landslides at Casa del Aguarico (Figure 4.45; Grid reference: 0579341077), or a 

landslide may occur because of agricultural land (and associated irrigation ditches) not 

being maintained. For example, poorly maintained drainage lines may result in water 

seeping into the ground and causing dissolution and/or soil erosion. Field observations 

suggest that this can lead to slope instability. 

The situation is further complicated by the suggestion that a particular land use may 

lead to slope instability. In the example of Casa Del Aguarico, the blocks (sliding on a 

high-angle, non-rotational compound shear surface) incorporate ploughed ground, 

which was obviously in use at the time of the landslide occurring (Figure 4.45). An 

important consideration to be made would be whether it was the irrigation of the area 

that actually led to the landslide occurring, or whether that was just coincidental. After 

talking with locai residents about this particular example, it is highly unlikely that the 

plants being grown in the area where the landslide occurred were being irrigated. This 

would suggest that the landslide was a naturai occurrence and not the result of human 

activity. 

In general, the results from this analysis and observations made in the field would 

suggest that the majority of the landslides mapped in the study area are naturai terrain 

landslides, and not the result of human interference in the landscape. However, as 

expansion of the transport network, intense agricultural practises and settlements 

continues this picture may change. 
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Figure 4.44 - Graph showing the different types of land use (as defined by this study) affected by the mapped landslide activity in the study area. 
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Figure 4.45 - Photograph of a back tilted block with remains of crops growing on its 

surface at Casa Del Aguarico (Grid Reference: 0579341079 / Facing to the South). The 

landslide occurs in the conglomerate and mudslone of the Zorreras Meniber. The back 

tiled block is approximately 10m across. 
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4.3 Landsiide Causes 

Paît of the landsiide investigation has included an investigation of the possible causes of 

the observed and mapped landsiide activity. The Working Party on the World 

Landsiide Inventory proposed two classes of factors that lead to landsiide activity 

(WPAVLI, 1994): 

1. Preparatory Casual Factors - those factors, which make the slope susceptible to 

movement without actually initiating it and thereby tending to place the slope in a 

marginally stable state 

2. Triggering Casual Factors - those factors, which initiate movement. Thèse casual 

factors shift the slope from a marginally stable to an actively unstable state. 

The identification of Preparatory Factors can be achieved through a combination of 

geological and geomorphological mapping as well as more detailed geotechnical 

investigations. However, the identification of those factors that actually trigger a 

particular landsiide are more difficuit to identify, particulariy in the absence of detailed 

historical évidence or actual eye witnesses to the event. Therefore, this study has 

sought to identify only the Preparatory Casual Factors that are thought to be significant 

in leading to the observed landsiide activity in the study area. This has been through 

field mapping only. There is also the argument that many landslides may have 

numerous causes but only one triggering factor. Therefore, this study has sought to 

identify as many of the causes as possible. However, the landsiide inventory database 

was designed to record up to a maximum of twelve causes for each landsiide. 
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The Working Party identified a list of factors that they considered to be significant in 

causing instability or landslide activity. This list can be sub-divided into four categories 

- geology, morphology, physical and human factors. These will be discussed in the 

following sections. 

4.3.1 Geological Factors 

All of the landslides mapped within the study area had some degree of geological 

control that was responsible for decreasing the stability of the slope (i.e., acting as 

preparatory factors). Within the study area the geological factors identified were: 

- Jointed or fissured material; 

- Adversely orientated mass discontinuities (bedding, cleavage, faults or 

unconformities); 

- Contrasts in permeability and its effects on groundwater; 

- Alternating sequences of "hard rocks" over "soft rocks"; and 

- Contrasts in stiffness (stiff, dense material over plastic material). 

4.3.2 Morphological Factors 

The role of the morphological factors acting on a slope or landslide is often speculative. 

As with the geological factors, the morphological factors acting on a slope or landslide 

will predominantly act to reduce slope stability rather than actually trigger a landslide. 

The majority of the landslides (203 or 64.2% of the mapped landslides) are closely 

related to the drainage network and therefore are influenced, if not directly affected by 

fluvial activity. For example, in the case of one landslide, an eyewitness account did 
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suggest that fluvial érosion of a slope during a river flood event led to the initiation of 

that particular landsiide. However, as this was during a rainstorm event it is unclear as 

to how much the rainfall also influenced the triggering of this landsiide. 

Therefore, those factors that were assessed in the field as being significant in explaining 

the majority of the observed landsiide activity in the study area were: 

- Tectonic uplift of the study area; 

Fluvial érosion of many of the slopes; 

Subterranean érosion through piping and dissolution features (Figure 4.46); and 

Vegetation removal (by érosion, forest fire or drought). 

Interestingly, the Working Party includes "tectonic uplift" as a morphological factor and 

not a geological factor. This is not helped by a lack of explanation for the scheme. 

Large subterranean soil pipes and dissolution features were found in a number of 

locations around the study area. They were found in both very fine grained sandstone 

and mudstone (Figure 4.46) or within the gypsum of the Yesares Member. A number of 

thèse features were found in close proximity to approximately 99 (31.3%) of the 

mapped landslides. In some of the cases field mapping identified that some of the pipes 

and dissolution features were possibly channelling water into the landslides. 

The dissolution features within the gypsum are related to the karst features that are 

widely seen within the Gypsum Plateau Land System (Section 2.4). 
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The presence of the pipes and dissolution features also highìights the hìghly erosive 

nature of some of the rocks units within the study area. This is reiated to the presence 

of expansive soils and highly erosive day minerals being present in these rock units. It 

is, therefore, possible that this characteristic acts to decrease the stabihty of the rock 

material or rock mass and subsequently for a landshde to form. 

Figure 4.46 - Photograph of soil pipe within fine grained sediment (Grid Reference: 

0600741114; approximately 1.5km west of Mojacàr). The pipe has coilapsed, leaving 

the large open cavem that is seen above. Third year students and staff for scale. 
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4.3.3 Physícal Factors 

The physical factors acíing on a slope can act to reduce the stability of the slope, 

reactívate an existing landslide or actually trigger a new landslide. These factors are all 

heavily dependent on either historical documentation and/or eye witness accounts. As 

these two sources of Information are very limited in the study área, this study has had to 

rely heavily on circumstantial evidence. Therefore, the following list of factors that are 

considered as being significant in causing the observed landslide activity in the study 

área is speculative. The factors are: 

- Intense, short period rainfall; 

Earthquake activity; and 

Shrink and swell weathering of expansive soils and clays. 

Unfortunately, detailed rainfall records (i.e., 24 hour records) over an extended period 

of time (i.e., several decades or longer) are not available for the study área. However, 

eyewitness accounts do suggest that a small number of the landslides have occurred 

during periods of intense rainfall (Thornes, 1974; Walsh, pers. comm.). However, in at 

least one example the rainstorm had led to the Río Aguas being in flood. This means 

that the landslide could have been triggered by either the rain or the flood event (or 

both). Unfortunately this means that it was impossible to complete an analysis of how 

many of the mapped landslides have been caused or influenced by rainfall. 

Globally, earthquakes have long been recognised as a major cause of landslides (Keefer, 

1984, 1999). Earthquake-induced landslides have been documented from at least as 

early 373 or 372BC (Seed, 1968). Despite their geomorphological and economic 
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significance, eailhquake-induced landslides are still not well understood. In his key 

paper, Keefer (1984) argued that among the unanswered questions are: How does the 

number and distribution of landslides dépend on earthquake magnitude, ground-shaking 

intensifies and other seismic parameters? What types of landslides are caused by 

earthquakes? Which types of landslides are most hazardous to human life and property? 

What geological materials are most susceptible to landslides in earthquakes? Do 

earthquakes reactivate landslides originally triggered by non-seismic causes? 

In answer to thèse questions, Keefer (1984, 1999) sought to investigate the relationship 

between the distribution and nature of landslide activity compared with earthquake 

activity of différent magnitudes and intensities. He also considered the rôle of geology 

and other environmental parameters. 

Keefer (1984, 1999) concluded that the area affected by landslides in an earthquake 

correlates with the magnitude of the earthquake (Figure 4.47). This area increases from 

almost 0 at M ~ 4.0. to approximately 500,000km^ for a M = 9.2 earthquake. Factors 

other than magnitude that control the area affected by landslides include the local 

geological conditions, earthquake focal depth, and the spécifie ground motion 

characteristics of a particular event. Certain threshold levels of ground shaking are 

necessary for triggering the various types of landslides. Indirect measures of thèse 

thresholds are the smallest earthquakes that cause landslides, the maximum distance of 

landslides from the epicentre or fault rupture (Figures 4.48) and the minimum intensity 

for landslides (Figure 4.49). 
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Figure 4.47 - Area affected by landslides in earthquakes of different magnitudes. 

Number beside data points are earthquakes listed in Table 1 of Keefer (1984). Dots = 

onshore earthquakes; x = offshore earthquakes. Horizontal bars indicate range in 

reported magnitudes. Solid line is approximate upper bound enclosing all data (Taken 

from Keefer, 1984). 
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Figures 4.48 - Maximum distance from epicentre to landslides for earthquakes of 
different magnitudes. Numbers beside data points are earthquakes listed in Keefer 
(1984, table 1). Vertical bars indicate uncertainties, where known, in locations of 
epicentres, in locations of most distant landslides, or both. Horizontal bars indicate 
range in reported magnitudes. A . Maximum distance from epicentre to disrupted slide 
or fall. Solid line is approximate upper bound enclosing all data. B . Maximum distance 
from epicentre to coherent slide. Solid line is approximate upper bound enclosing all 
data. Dot-dash line is upper bound determined by Kurbayashi & Tatsuoka (1975, 1977) 
for soil-liquefaction phenomena in earthquakes in Japan. D. Comparison of upper 
bounds from A , B and C. Dashed line is bound for disrupted falls and slide, dash-
double-dot line is bound for coherent slides, and dotted line is bound for lateral spreads 
and flows. Taken from Keefer (1984). 
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Figure 4.49 - Maximum distance from fault-rupture zone to landslides in earthquakes 
of different magnitudes. Numbers beside data points are earthquakes listed in Keefer 
(1984, table 1). Vertical bars indicate uncertainties, where known, in boundaries of 
fault-rupture zones, in locations of most distant landslides, or both. Horizontal bars 
indicate range in reported magnitudes. A . Maximum distance from fault-rupture zone to 
disrupted slide or fail. Solid line is approximate upper bound enclosing ail data. B . 
Maximum distance from fault-rupture zone to coherent slide. Solid line is approximate 
upper bound enclosing all data. C. Maximum distance from fault-rupture zone to lateral 
spread or flow. Solid line is approximate upper bound enclosing all data. Dot-dash line 
is upper bound determined by Youd & Perkins (1978) for significant soil-liquefaction 
phenomena. D . Comparison of upper bounds from A , B and C. Dashed line is bound 
for disrupted slides and falls, dash-double-dot line is bound for coherent slides, and 
dotted line is bound for lateral spreads and flows. Taken from Keefer (1984). 
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Thèse measurements indicate that roclc falls, roclc slides, soil falls, and disnjpted soil 

sHdes are initiated by the weakest shaking. In particular, thèse shallow, highly 

disrupted landslides from steep slopes are probably susceptible to the short-duration, 

high-frequency shaking characteristic of small earthquakes. Cohérent, generally deep-

seated landslides are initiated by stronger and probably longer-duration shaking, and 

latéral spreads and flows by shaking that is still longer and stronger. With possible rare 

exceptions, rock avalanches and soil avalanches have the highest thresholds of ail 

(Keefer, 1984). 

Keefer (1984) also concluded that the Modified Mercalli shaking intensities for 

landslides determined by comparing isoseismal maps with maps of landslides 

distribution are one to five levels lower than those indicated by explicit criteria on the 

Modified Mercalli scale. He argued that this discrepancy suggests that the landslide-

related criteria on the scale need to be revised to conform to intensities based on other 

criteria. Thèse could be: 

1. that shallow, highly disrupted landslides from steep slopes are common at M M l 

VI ; 

2. that rapid soil flows, soil latéral spreads, and cohérent deep-seated slides from 

gentler slopes are common at M M I VII; and 

3. That landslides of ail types occasionally occur at intensities one to two levels 

lower than the levels at which they are common. 
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The Study (Keefer, 1984) also identified several materials that appear especially 

susceptible to earthquake-induced landslides. The materials and the predominant types 

of landslides in each are: 

• weakly cemented, weathered, sheared, intensely fractured, or closely jointed 

rocks - rock falls, slides, avalanches, slumps and block slides; 

• "more-indurated rocks" with prominent discontinuities - rock falls, slides, 

block slides, and, possibly slumps; 

• unsaturated residual or colluvial sand - disrupted soil slides and soil 

avalanches; 

• saturated residual or colluvial sand - rapid soil flows; 

• saturated volcanic soils containing sensitive clay - disrupted soil slides, soil 

avalanches and rapid soil flows; 

• loess - rapid soil flows; 

• cemented soils - soil falls; 

• deltaic sediments containing little or no clay - soil lateral spreads and sub

aqueous landslides; 

• flood-plain alluvium containing little or no clay - soil slumps, block slides and 

lateral spreads; and 

• uncompacted or poorly compacted man-made fill containing little or no clay -

soil slumps, block slides, lateral spreads and rapid soil flows 

Seismic data for the majority of places around the globe can be downloaded from the 

website of the National Earthquake Information Centre (NEIC) of the United States 

Geological Survey (USGS). The available seismic data for the study area and 

surrounding region have been downloaded. The data set dates back to 1973 and 
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contains over 660 entries (or seismic events) and includes the time, magnitude, location 

of the epicentre and the focal depth of the eaithquakes. 

A plot of the distribution of these eaithquakes shows that they are predominantly 

associated with the basin margin fault Systems as well as the major strike-slip 

Carboneras and Palomares Fault Zones (Figure 4.50). These fault zones (which were 

also identified in Chapter 2) are probably responsible for the majority of the earthquakes 

affecting the study area. Al l of these earthquakes occur within 33km of the Earth's 

surface, and are therefore considered as being shallow. 

The majority of the earthquakes (66%) occurring in the región during 1973-2002 had a 

magnitude of between 2.0 and 2.9 on the Richter Scale (Figure 4.51). Approximately 

16%i of the earthquakes had a magnitude of between 3.0 and 3.9 on the Richter Scale 

and 14% between 1.0 and 1.9 on the Richter Scale. 

By comparing the earthquake data set that has been downloaded from the USGS with 

the mapped landslide distribution it is unlikely that any of the earthquakes triggered any 

of the landslides mapped within the study area. This is based on assessing the distance, 

depth and magnitude of the earthquake in comparison to the location of the landslides 

(Figure 4.47). 
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Figure 4.50 - Map of SE Spain showing the distribution of earthquake epicentres 

recorded in the USGS Data. 
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Figure 4,51 - Graph showing the distribution of earthquakes of given magnitudes as 

recorded in the USGS database. 
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Approximately 34% of the mapped landslides (107 out of 316) were associated with 

units that exhibited features relating to shrink and swell weathering of the rock and/or 

soil, and therefore the presence of expansive clays and soils. These also tended to be 

related to the dissolution features described in Section 4.3.2. Soil samples from some of 

these locations were collected and analysed for the presence of expansive clay minerals. 

Preliminary X R D analysis of these samples highlighted the presence of smectite, 

montmorillonite, chlorite and illite. All of these clay minerals are commonly associated 

with shrink and swell weathering, high rates of erosión and subterranean dissolution 

features in the Sorbas and Tabernas región (Spivey, 1997; Alexander et al., 1999; 

Faulkner etal., 2000; Bell, 1993). 

An interesting question that is still under consideraron is how the presence of these 

minerals within the soil or rock mass of a slope añects slope stability. It is likely that 

the presence of these minerals leads to the formation of the observed dissolution 

features and discontinuities within the rock or soil mass and it is these that decrease the 

stability of the slope, leading to the observed landslide activity in these áreas. 
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4.3.4 Human Factors 

The identification of those factors that were significant in causing the observed 

landsHde activity in the study área carne down to circumstantial evidence. Por example, 

the excavation and/or loading of slopes around the town of Sorbas may have influenced 

and/or caused many of the landslides seen in this área. The landslide inventory records 

that 41 of the mapped landslides (13.0%) were aflfected by human activity. In some 

cases more than one factor were identified for an individual landslide (Figure 4.52). 

Those factors that were assessed in the field as being significant in explaining the 

observed landslide activity were: 

- excavation of slopes; 

- loading of the slope or at its crest; 

defective maintenance or leaking of service pipes; 

vegetation cover removal (deforestation); and 

quarrying. 

Loading and excavation of slopes accounted for approximately 4.4% and 3.8% of the 

mapped landslides respectively. This fits with the observations made around the town 

of Sorbas where many of the landslides are the result of human activity. These 

examples will be discussed fiírther in Chapter 5. The removal of vegetation was also 

seen as a significant factor. This was seen in áreas where the removal of vegetation 

exposed highly erosive soils to slope erosión processes such as rilling and gullying 

which then progressed further to affect a larger área and greater volume of material and 

therefore become a landslide. 
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Human causes of landsiide activity within the study area 
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Figure 4.52 - Graph showing the number of mapped landsHdes related to human 

activity within the study area. 

4.4 Age of Landsiide Activity 

An understanding of the spatial and temporal occurrence of landslides and other slope 

movements is useful for obtaining a better understanding of what might have caused or 

triggered those landsiide movements in the past (González-Diez et al, 1999). As the 

climate is both an important conditioning and triggering factor for slope movements, 

landsiide chronologies may help to establish or test climate models for the past. 

However, the corrélation between slope movements and climatic change is dépendant 

on the ability to date periods of landsiide activity and periods of climatic change, and 

therefore link the two. 
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The incisión history of the Rio Aguas has been recorded by a series of river terrace 

levéis (Section 2.4; Harvey & Wells, 1987; Mather, 1991; Harvey ei al., 1995; Kelly ei 

al., 2000). If the relationship between the landslides and these river terraces is known, 

then they can be used to provide a relative chronological Framework for the landslide 

activity in that same area. Also, work is currently underway to determine absolute ages 

for some of these river terrace levéis (Kelley et al, 2001). 

Geomorphological mapping of the area between the site of the Rio Aguas/Rambla Feos 

River Capture site and the area around the town of Sorbas, has indicated that the 

distribution of the landslides may represent at least three distinguishable stages of 

landslide activity (Hart & Griffiths, 1999): 

1. Present day landslide activity. 

2. Those that have occurred post the Rio Aguas/Rambla Feos River Capture 

approximately 100,000 years BP (Harvey & Wells, 1987). 

3. Those that occurred prior to the Rio Aguas/Rambla Feos River Capture. 

Therefore, it has been possible to "date" a large number of the landslides with respect to 

the river terraces and the stages listed above. Examples, of how this "relative dating 

scheme" has been used and some examples of the landslides from each of the different 

stages listed above are described and discussed in the following Case Studies chapter. 

When examining the landslide data for the whole study area, the majority of the 

landslides occurred post the Rio Aguas/Rambla Feos River Capture (60.4% of the 

mapped landslides) with a fiirther 38.0%) of the mapped landslides being classified as 

having an "Unknown" age (Figure 4.53). However, all of these "Unknown" landslides 

are within the areas that were not directly affected by the Rio Aguas/Rambla Feos River 
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Capture. Being outside of this area means that they cannot be correlated easily to the 

river terraces that have been mapped in the Rio Aguas/Rambla Feos area. 

Ongoing research in the study area (i.e., along the Rambla de Los Castaños and Rio 

Jauto), suggests that the presence of Clusters of landslides (i.e., not single landslides), 

may highlight fiirther anomalies within the landscape and drainage network. This may 

be related to other drainage network reorganisations within the Rio Aguas catchment 

area, or other geological or geomorphological factors that have affected the región (i.e., 

landslides occurring along fault zones). 

Of the 316 landslides found in the study area, 183 (57.9% of the mapped landslides) are 

located upstream of where the Rio Aguas/Rambla Feos River Capture took place 

(referred to here as the "Upper" Rio Aguas). Half of these (29.4%> of the mapped 

landslides) are classified as "Recent" landslides with the majority of the remaining 

landslides (26.9% of the mapped landslides) being classified as occurring since the river 

capture event (Figure 4.54). Only 1.6% of the mapped landslides upstream from the 

capture site are thought to have occurred prior to the Rio Aguas/Rambla Feos River 

Capture. 
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Figure 4.53 - Graplí showing the estimated ages of the mapped landshde activity 

within the study área. 
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Figure 4.54 - Graph comparing the estimated ages of the mapped landshde activity 

upstream and downstream of the Rio Aguas/Rambla Feos capture site. 
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These observations are also confirmed when the Land System locations of the mapped 

landslides are considered. The majority of landsHdes with the "Unknown" age grouping 

are found in the "mountain slopes with incised drainage channels" Land System (24.1% 

of the mapped landslides; Figure 4.55). The majority of the landslides are found in the 

"Neogene hills with incised drainage channels" Land System (Figure 4.54). A similar 

picture is also observed at the Land Facet level of description. The majority of the 

landslides are found in "incised áreas with river terraces" or "incised áreas without river 

terraces" (38.9% and 28.5% of the mapped landslides respectively; Figure 4.56). 

The 18.7% of the mapped landslides (59 landslides) that are classified as being of an 

"Unknown" age and in the "incised áreas without river terraces" Land Facet are the 

landslides that were mapped along some sections of the Rambla de Los Castaños 

(Figure 4.56). In the Cariatiz área (Figure 4.1) this river has been incised by 

approximately 90-100 m below the surrounding countryside/Góchar erosión surface. 

This área has also not been affected by the Rio Aguas/Rambla Feos River Capture and 

therefore cannot be related to the river terrace sequence in that part of the study área. 

However, the aerial photographic interpretation completed for this study and other 

ongoing research projects in that área (Mather &. Gx'xíñihs, pers. comm.) would suggest 

that the Rambla de Los Castaños/Rio Jauto have been affected by a number of drainage 

re-organisations. These may have influenced the stability of some of thé slopes in this 

área, and therefore given rise to the observed landslide activity. This is currently being 

investigated as part of another ongoing research project. Unfortunately, at present there 

are no identifiable terrace sequences that can be used to "date" any of the landslide 

activity that affects this área. 
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Figure 4.55 - Graph comparing the Land System classification against the estimated 

age of the mapped landslide activity within the study area. 
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Figure 4.56 - Graph companng the Land Facet classification against the estimated age 

of the mapped landslide activity within the study area. 

261 



Cliapter 4 - Landslide Distribution Analysis 

The Rio Aguas river terrace sequence is thought to possibly reflect an overall 

tectonically induced incisión onto which climate change is superimposed, producing 

minor aggradations of sediment within an overall framework of incisión (Harvey, 1987; 

Harvey & Wells, 1987; Mather, 1991; Harvey et al., 1995). Periods of aggradation and 

river terrace formation are thought to have occurred during Quatemary glacials and 

periods of degradation and incisión during Quatemary interglacials. The 

geomorphological mapping would suggest that the larger landslides are likely to have 

occurred during periods of incisión and, therefore, possibly during interglacial periods. 

Therefore, as well as reflecting the incisión of the drainage network, the "stages" listed 

above may also reflect changes in the Quatemary climate. As the climate changed there 

would have been fluctuations in the amount of available water in the system, including: 

The level of the water table; 

The presence or absence of standing water; 

The frequency of intense rain storm events and associated flood events; and/or 

- The frequency of light or heavy frosts. 

These factors would all have influenced the style and frequency of landslide activity in 

the area. 

Berrisford & Matthews (1997) and Gonzalez-Diez et al. (1999) identified a number of 

periods of landslide activity within northern and western Europe (Figure 4.57). This 

was based on examining the landslide activity in Cantabria, the Pyrenees, the Swiss 

Alps, the French Alps, Italy, Germany, the Carpathians, Scandinavia and the U K , as 

part of two research projects - the "European Palaeoclimate and Man since the Last 
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Glaciation" Project and the T E S L E C Project (temporal stability and activity of 

landslides in Europe with respect to climatic change). This work has highlighted some 

possible clusters at about 5,000 and 10,000 years BP. However, the figure (Figure 4.57) 

displays a lot of scatter in the data, which could be interpreted as showing landslide 

activity as occurring continuously throughout the last 10,000 years. Also the lack of 

dated landslides prior to 10,000 years BP makes attempting any corrélations difficult. 

This does raise the question of how long a landslide can remain recognisable in the 

landscape. This will of course dépend on their size, location, style of landslide activity 

and failure mechanism. 

Unfortunately, due to the lack of dated landslides in the Rio Aguas study area, it is not 

possible to fit the landslides described here with the chart shown in Figure 4.57 beyond 

what i s shown. 
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Figure 4.57 - Comparison between the information on temporal occurrence of landslides in the study area and periods of major landslide activity in Europe derived 

from data of an EPOCH (European Programme on Climate and Natural Hazards) project. (A) From Brunsden et al. (1996a); Brunsden & Ibsen (1997) (Starkel 

refers to Starkel (1996); Cantabria refers to a former analysis by Cendrero et al. (1994)). (B) From Starkel (1985). (C) From González-Diez et al. (1999). Diagram 

modified after González-Diez et al. ( 1999). Terrace dates for the Río Aguas study area are from Harvey et al. ( 1995). 
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4.5 Chapter Summary 

This chapter describes the results of the Statistical analysis that has been completed by 

this project. It has examined the spatial and temporal distribution of the mapped 

landslide activity. The analysis (based on regression analysis) has sought to identify 

those geological or geomorphological factors and/or settings that are significant in 

explaining the observed distribution. These factors include the underlying geology, the 

steepness of the slope, as well as the proximity of the landslides to the Rio 

Aguas/Rambla Feos River Capture. 

Regression analysis has been used because it is a method that helps to identify 

dependant and independent relationships within the data. Geomorphological data are 

often skewed and inter-correlated (Griffiths, pers .comm.) which means that it does not 

normally meet the requirements and assumptions for other higher level parametric 

Statistical tests such as Principie Component Analysis (PCA), discrimínate íunction 

analysis or Cluster analysis. These techniques require that the data have a normal 

distribution and variables that are not correlated with each other. However, future 

Statistical analysis of this datábase (and refinements of it) could potentially utilise such 

techniques, in conjunction with the use of a Geographica! Information System (GIS). 

The landslide inventory datábase contains data on 316 landslides. As the Rio Aguas 

study area Covers approximately 425 km^, this is a landslide density of approximately 

0.75 landslides/square km. The results of the regression factor analysis of the landslide 

inventory datábase are summarised below (Tables 4.17 and 4.18). The analysis has also 

sought to identify those factors that have either caused or controlled the landslide 

activity (Table 4.19). 

265 



Cliapter 4 - Laiidslide Distribution Analysis 

Table 4.17 - Summaiy of the results from this landsHde investigation. The table shows 

those factors with the highest incidence of landslides, for each of the main factors 

considered by this study. AH percentages are percentages of the total number of 

mapped landslides. 

LandsHde Factor Analysis 

Landsiide Mechanism: Rock falls and topples = 66.8% 

Non-rotational Landslides = 21.2% 

Geological Unit: 
Nevado-Filabride Complex = 16.8% / Sorbas Member = 15,5% 

Góchar Fomiation = 12.3% / Azagador Member = 9.5% 

Rock Types: 
Conglomerate = 14.6% / Limestone= 13.9% / 

MicaSchist= 10.4% / Sandstone= 10.1% 

Slope Angle & 

Mechanism: 

• Falls & Topples & Non-rotational Landslides = increasing 

landsiide incidence with siepe angle 

• Transiational 1 andslides - highest landsiide incidence on 

moderately steep slopes 

• "Other" Landslides = Highest landsiide incidence on very 

steep slopes 

Slope Angle & Rock 

Type: 

• The highest incidence of landslides involving conglomerate, 

sandstone, limestone and schist occur on slopes > 60°. 

• For landslides involving gneiss the slope angle is >45° 

• For landslides involving gypsum overlying mudstone the 

highest incidence is on slopes >75° 

Landsiide Activity 

State of Landsiide 

Activity: 

Dormant = c.80% ("a landsiide that has not moved for more than 

one annual cycle of seasons, but where the causes of movement 

apparently remain" - WPAVLI, 1993) 

Style of Landsiide 

Activity: 

Multiple = 80% (a landsiide that exhibits "repeated development of 

the same type of movement along the same rupture surface and 

involving the same displaced material" - WPAVLI, 1993). 

Distribution of 

Landsiide Activity: 

Retrogressing = 75% ("a landsiide where the rupture surface is 

extending in the direction opposite to the movement of the 

displaced material" - WPAVLl, 1993). 
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Table 4.18 - Summary of the results from the statistical analysis of the number of landslides occurring in the différent combinations of geology, terrain 
classification and landsiide failure mechanism considered by the project. 
Geomorphology Geomorphology & Mechanism Geomorphology & Lithology Geomorphology, Lithology & 

Mechanism 
• Hill areas with incised drainage 

channeis 
• Incised drainage channeis with river 

terraces 
• Outside meanders of active drainage 

channeis 
• 12.0% of the mapped landslides (38 

landslides) 

• Hill areas with incised drainage 
channeis 

• Incised drainage channeis with river 
terraces 

• Outside meanders of active drainage 
channeis 

• Rock Falls and Topples 
• 7.6% of the mapped landslides (24 

landslides) 

• Mountain slopes incised by gullies, 
canyons and river channeis 

• Hill and mountain area 
• Ridge crests 
• Basement material (Mica schist, 

gneiss, phyllite) 
• 4.7% of the mapped landslides (15 

landslides) 

• Mountain slopes incised by gullies, 
canyons and river channeis 

• Hill and mountain area 
• Ridge crests 
• Basement Material (Mica schist, 

gneiss, phyllite) 
• Rock Palis and Topples 
• 4.7% of the mapped landslides (15 

landslides) 
• Hill areas with incised drainage 

channeis 
• Incised drainage channeis without 

river terraces 
• Outside meanders of active drainage 

channeis 
• 7.0% of the mapped landslides (22 

landslides) 

• Mountain slopes incised by gullies, 
canyons and river channeis 

• Hill and mountain area 
• Ridge crests 
• Rock Falls and Topples 
• 7.0% of the mapped landslides (22 

landslides) 

• Mountain slopes incised by gullies, 
canyons and river channeis 

• Incised drainage channeis with river 
terraces 

• Canyons side slopes 
• Mica schist 
• 4.7% of the mapped landslides (15 

landslides) 

• Mountain slopes incised by gullies, 
canyons and river channeis 

• Incised drainage channeis with river 
terraces 

• Canyons side slopes 
• Rock Falls and Topples 
• Mica Schist 
• 4.7% of the mapped landslides (15 

landslides) 
• Mountain slopes incised by gullies, 

canyons and river channeis 
• Hill and mountain area 
• Ridge crests 
• 7.0% ofthe mapped landslides (22 

landslides) 

• Hill areas with incised drainage 
channeis 

• Incised drainage channeis with river 
terraces 

• Dip-slope escarpments 
• Rock Falls and Topples 
• 6.0% of the mapped landslides ( 19 

landslides) 

• Hill areas with incised drainage 
channeis 

• Incised drainage channeis with river 
terraces 

• Scarp-slope escarpments 
• Gypsum overlying calcareous 

mudstone 
• 3.8% of the mapped landslides (12 

landslides) 

• Hill areas with incised drainage 
channeis 

• Incised drainage channeis with river 
terraces 

• Scarp-slope escarpments 
• Gypsum overlying calcareous 

mudstone 
• "Other" - complex combination of 
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Cliapter 4 - Landslide Distribution Analysis 

Table 4.19 - Summary of the results from the analysis of landslides causative factors. 

Al i percentages are percentages of the total number of mapped landslides. 

Landslide Causes 

Geological Factors: 

These factors were identifiable in the field: 

• jointed or fissured material; 

• adversely orientated mass discontinuities (bedding, cleavage, 

faults or unconformities); 

• contrasts in permeability and its effects on groundwater; 

• alternating sequences of "hard rocks" over "soft rocks"; and 

• contrasts in stiffness (stiff, dense material over plastic 

material). 

Morphological 

Factors: 

These factors were inferred from field observations or eye-witness 

accounts: 

• tectonic uplift of the study area; 

• fluvial erosion of many of the slopes; 

• subterranean erosion through piping and dissolution features 

(Figure 4.45); and 

• vegetation removal (by erosion, forest fire or drought). 

Physical Factors: 

Insufficient detailed information and no dated landslides to allow 

for a full investigation of these factors. However, these factors 

were inferred from field observations or eye-witness accounts: 

• Intense, short period rainfall; and 

• Shrink and swell weathering of expansive soils and clays are 

important. 

Human Factors: 

These factors were inferred from field observations or eye-witness 

accounts: 

• excavation of slopes; 

• loading of the slope or at its crest; 

• defective maintenance or leaking of service pipes; 

• vegetation cover removal (deforestation); and 

• quarrying. 
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The data analysis has also included investigating the relationship between the runout 

length and angle of reach of a landslide with its volume and/or the elevation difFerence 

between the crown and toe of the landslide. The results from this investigation bave 

been compared with the fmdings of other projects detailed in the literature. This has 

shown how this study has come to very similar conclusions as these other projects, in 

many cases using a larger database. This information could be used to estimate the 

runout lengths of potential landslides within the study area, if an estimate can be made 

of the size or volume of any potential landslide. 

The above summary has shown that the landslides of the study area involve a number of 

dififerent failure mechanisms, rock types and slope angle combinations. The 

comparison of the landslide distribution with the terrain classification has shown that 

the majority of the landslides are in areas of incised drainage, relatively steep terrain or 

areas of active erosion. The landslides also vary greatly in volume (lOm^ to 1.47 xlO^ 

m^), the area covered by landslide debris and runout length (up to 900m). 

The following chapter will use a number of examples from the landslide inventory 

database to bring together some of the results from statistica! analysis described bere, 

and the results of the API and field mapping. These examples are presented bere as a 

series of "Landslide Type Localities" (similar to geologica! type localities). 
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5 Case Studies 

5.1 Introduction 

A number of case studies have been chosen from within the study area to Highlight 

some of the findings from the aerial Photographie Interpretation, the field investigations 

and some of the results and observations that were described and discussed in the 

previous chapter. These case studies are grouped into two "case study areas" - the town 

of Sorbas (and surrounding area) and the area immediately upstream and downstream of 

the Rio Aguas/Rambla Feos Wind Gap (Figure 5.1). Both of these areas are within the 

part of the study area most greatly affected by the Rio Aguas / Rambla Feos River 

Capture and provide some of the best examples of the landslide problems being 

addressed by this research project (Hart & Griffiths, 1999; Hart, 2000; Griffiths et al., 

2002, 2003). These two areas will also allow for the individual landslides and the 

statistics from the analysis of the landslide inventory to be seen in the context of the 

ground conditions in each of these case study areas. Therefore, the landslides are 

presented here (Table 5.1) as a series of "Landslide Type Localities" that can be used to 

highlight: 

• The effects of the Rio Aguas / Rambla Feos River Capture; 

• The link between the geology, geomorphology and observed landslide activity; 

• The factors Controlling the landslide activity and how these vary across the study 

area depending on the geological and geomorphological setting; 

• The ränge of landslide activity that is seen within the study area (styles, failure 

mechanisms and geomorphological setting); and 

• The interaction between landslide activity and the infrastructure and population of 

the study area. 
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Table 5.1 - Landslides mapped in the case study areas. "River Capture" refers to the Rio Aguas/Rambla Feos river capture (Mb = Member / Fm = Formation). 
Locality Mcchanism Volume Geology Rock Type Geomorphology Relative Age Comment 

Maleguica Complex 3.14x 10*m^ Sorbas Member Sandstone 
Dip slope / outside 
of a meander Post River Capture Large scale failure associated 

with the River Capture 

Alfarería Sackung 5.50 X 10' m̂  
Góchar Fm & 
Cariatiz Fm 

Sandstone & 
Mudstone 

Outside of a 
meander Post River Capture Large scale failure associated 

with the River Capture 

Sorbas Tlieatre 
Rock fall & 
topple 

1.05 X 10̂  m̂  Sorbas Member Sandstone Canyon wall Recent Urban risk & construction 
activity 

Los Beneficios Complex 2.36 X 10̂  m̂  Góchar Fm & 
Cariatiz Fm 

Sandstone, 
Mudstone & 
Conglomerate 

Outside of a 
meander Post River Capture Large scale failure associated 

with tlie River Capture 

Bird's Footprint 
Rock fall & 
topple 

9.43 X 10' m̂  Sorbas Member Sandstone Canyon wall Recent Urban risk & 

New Museum 
Rock fall & 
topple 

45 m̂  Sorbas Member 
Mudstone & 
Sandstone 

Canyon wall Recent Urban risk & Human activit>' 

Abandoned 
Meander & Cave 
Collapse landslides 

Various Various Sorbas Member Sandstone Abandoned incised 
meander 

C to D terrace 
level & Recent Urban risk & Human activitv' 

Los Molinos Relict 
Feature 

Debris flow / 
complex 

1.10 X 10̂  Yesares Mb & 
Abad Mb 

Gypsum & 
Mudstone 

Witliin incised 
canvon Post River Capture Large scale failure associated 

with tlie River Capture 

Cerro 
Molatas/Carrasco 

Complex -
translational & 
non-rotational 
movements 

4.91 X 10̂  m̂  
Azagador Mb & 
Chozas Fm 

Limestone & 
Mudstone 

Dip slope adjacent 
to Ri\er Capture 
Site 

Post River Capture Large scale failure associated 
with the River Capture 

El Tesoro 
Rock falls and 
topples 

1.05 X lO^m'à 
12.5 X 10̂  m̂  

Yesares Mb & 
Abad Mb 

G\psum & 
Mudstone Scarp slope Post River Capture Large scale failures associated 

with the River Capture 
Tensión Crack 
Ridge 

Complex 14.7 X 10̂  m̂  Azagador Mb & 
Chozas Fm 

Limestone & 
Mudstone 

Dip slope / active 
erosion on 2 sides 

Prior & Post to 
River Capture 

Large scale failure associated 
with tlie River Capture 

Cuesta del Honor Complex 147.3 X 10̂  m̂  Azagador Mb & 
Chozas Fm 

Limestone & 
Mudstone Dip slope Prior & Post to 

River Capture Large scale failure 

Marchalico Viflicas 
("Recent") 

Complex 15.1 X 10̂  m̂  Yesares Mb & 
AbadMb 

Gj-psum & 
Mudstone Scarp slope Prior & Post to 

River Capture Large scale failure 

Marchalico Viñicas 
("Relict") 

Complex 17.0 X 10*̂  m̂  Yesares Mb & 
AbadMb 

Gypsum & 
Mudstone Scarp slope Prior & Post to 

River Capture Large scale failure 
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5.2 The Sorbas Área 

The town of Sorbas (Figures 5.1 and 5.2) provides some of the best examples of the 

landslide problems being addressed by this research project (Hart & Griffiths, 1999; 

Hart, 2000; GrifFiths et al, 2002, 2003). The API and subsequent field validation of the 

área around Sorbas and its environs identified over 30 landslides. The landslide 

isopleth map for the study área (Figure 4.6) highlights this área as having the highest 

density of landslides within the study área (approximately 7.5 landslides per km^). 

Geomorphological mapping of the área has shown that the majority of the landslides are 

associated with the Quatemary development of the drainage network (Hart & Griffiths, 

1999). The mapping also highlighted the presence of several relict landslide features, 

and confirmed the importance of understanding the geomorphological history of an área 

before undertaking engineering works. Therefore, the geomorphological mapping 

undertaken by this study has allowed for the identification of at least three stages of 

landslide activity in the Sorbas área, reflecting the incisión history of the drainage 

network as described in Sections 2.4 and 4.4; see also Hart & Griffiths (1999). The 

Sorbas área is also a good example of how human interaction with the landscape has led 

to a number of the landslides around the town. It is this combination of Quaternary 

history, relict features and human activity that has led to the high number of landslides 

in this part of the study área. 
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Sorbas (37°06'00"N and 2°07 '30" W) is split into two parts, with the old town built on 

a "knoll" within an incised drainage system (Figure 5.2). The active channel of the Rio 

Aguas drains around the eastem part of the town. A tributary of the Rio Aguas (the 

Rambla de Los Chopas) is located to the north of the town where it joins the Rio Aguas. 

An abandoned channel runs around the western and southern part of the "knoll" on 

which Sorbas is built. The newer parts of Sorbas are found to the west of the old town, 

on either side of the main Almería to Murcia road (the N-340). 

The majority of the town is built upon moderately strong, thickly bedded sandstone that 

is occasionally interbedded with thin laminations of calcareous mudstone (the "Sorbas 

Member"). The rock is heavily jointed and fractured, with the joint sets almost 

perpendicular to the bedding. To the north of the town, the Sorbas Member is overlain 

by a sequence of fine to medium grained sandstones and conglomerates (the "Zorreras 

Member"). This moderately strong unit is also jointed and fractured in a similar fashion 

to the Sorbas Member. These rock units bave been described more fiilly in Section 2.3 

respectively. River terrace deposits also cap many of the slopes in the area (Harvey & 

Wells, 1987; Harvey et al., 1995; Hart & Griffiths, 1999). 

The river terrace deposits record the incisión of the drainage system, particularly after 

the Rio Aguas/Rambla Feos ríver capture (Harvey & Wells, 1987; Mather, 1991; 

Harvey et al, 1995). These river terrace deposits therefore provide an insight into the 

formation of the present day Río Aguas valley, and are therefore helpfial in "dating" 

some of the observed landslide activity that is seen in the case study area. 
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Sorbas is situateci approximately 10 km upstream from the site of the Rio 

Aguas/Rambla Feos river capture (Section 2.4) and is within the area most heavily 

afFected by it. The river capture led to the formation of the canyon system around 

which the town is located. The canyon that passes around the northem and eastern sides 

of the older part of Sorbas contains the active drainage channels (the Rambla de Los 

Chopas and the Rio Aguas respectively) and reaches a depth of about 90 m. The 

confluence of the Rambla de Los Chopas and Rambla de Sorbas (to form the Rio 

Aguas) is located at the northeastern corner of the Sorbas knoll. The canyon that passes 

around the western and southern sides of the old town has been abandoned since the 

formation of the D2 river terrace (Harvey & Wells, 1987; Harvey et al, 1995; Harvey, 

2001). This canyon was abandoned when two meanders, one on the Rambla de Los 

Chopas and another on the Rambla de Sorbas, cut back into each other (Figure 5.3). 

The Rambla de Sorbas was probably at a slightly lower level than the Rambla de Los 

Chopas and therefore "captured" this drainage line (Harvey, 2001). 

The 32 landslides that bave been identified in and around the town of Sorbas vary 

greatly in their size, activity and failure mechanisms. Only seven of them are included 

bere. The landslide mechanisms observed include rock fall, rock topple, high-angle 

rotational sliding, non-rotational sliding, and Sackung (after Dikau et al, 1996), with 

the majority of failures involving rock falls. However, many of the larger landslides 

tend to exhibit a combination of different failure mechanisms. This reflects the 

geology, as well as the geomorphological setting of this area. For example, the 

formation of the steep canyon slopes allows for the formation of rock falls and topples. 

Rotational or translational landslides are often the result of combinations of harder, 

more brittle rock, overlying weaker, more ductile rock. Therefore, the factors affecting 

slope instability around Sorbas include: 
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• Unloading of the canyon walls (due to the incision of the drainage networic); 

• Discontinuities within the rock mass and their orientation; 

• Collapse of man-made cavities within the canyon walls; and 

• Construction activity in the area. 

The examples presented below are three of the largest landslide complexes in the study 

area, as well as a number of smaller landslides that were chosen to illustrate the points 

and issues referred to above. Thèse include the link between the landslide activity and 

the relatively rapid incision of the drainage network, the relative âges of the mapped 

landslide activity and the relationship between the mapped landslide activity and human 

activity in the area. The case studies are presented in the order one would encounter 

them moving upstream through the case study area. 
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Figure 5.3 - Map of the drainage evolution in the Sorbas area (a) Map of the terrace sequence on the Río Aguas feeder streams at Sorbas, (b) 

Interpretation of the sequence of valley development during incisión of the Río Aguas at Sorbas. Note cut-off valley meander loops. (Modified after 

Harvey et al., 1995; Harvey, 2001). 
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5.2.1 The "Maleguica Landslide" 

The Maleguica landslide is an extensive mass movement situated to the south-east of 

the older part of Sorbas (Landslide No. 28; Figure 5.2) that has been described by Hart 

(1999), Hart & Griffiths (1999), Hart et al. (2000) and GriflTiths et al. (2002). The 

landslide was also identified and very briefly described by Eyers et al. (1998) as part 

of a satellite image interpretation study in the región, and is clearly identifiable on 

aerial photographs (Figure 5.4; Hart, 1999). 

The landslide occurs on the outside of a meander in the Río Aguas contemporary 

active channel. This part of the Río Aguas has been incised below the level of the 

surrounding countryside to a depth of about 80m below the Góchar erosión surface. 

The "canyon" is approximately 500m wide at its widest point and is related to the 

incisión that occurred after the Rio Aguas/Rambla Feos river capture, and can be 

mapped through a number of different river terrace levéis in the área (Mather, 1991; 

Harveye/a/., 1995; Mather t?/a/., 1995). 
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c. 500m 

Figure 5.4 - Eniargement of a Colour Aerial Photograph showing the Maleguica Landslide. 
Reproduced courtesy of NERC Earth Observation Data Centre. The Photograph was taken in 1996. 
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The geology of the case study area consists of the sandstones and calcareous 

mudstones of the Sorbas Member and the underlying gypsum and calcareous 

mudstones of the Yesares Member. The dip of thèse units in this area is to the north 

and north-east and, therefore, out of the backscar cliff face and into the Rio Aguas, 

although there is a slight variation in the amount of geological dip across the landslide 

area. The thickly bedded sandstone of the Sorbas Member is well jointed, with the 

jointing being perpendicular to the dip of the bedding. 

A number of faults were identified cutting through the landslide, including the 

Infiemo-Marchalico Linéament (Mather, 1991). This feature is visible at the far 

eastem end of the main landslide complex and follows the trend of the Rio Aguas, 

which changes direction at this point from NW-SE to SW-NE. The other, minor 

fauhs, were either parallel to this orientation of perpendicular to it. 

The Maleguica Landslide is a complex landslide exhibiting différent types of failure 

mechanism (Dikau et al., 1996). Thèse are rock falls, rock topples and non-rotational 

landslides. Some of the détails included in the landslide inventory are shown below 

(Table 5.2). This landslide is one of the largest in the study area, with a width of 

approximately one kilomètre and a volume of over 3 million cubic mètres of material. 

However, the exact runout length of the landslide is difficult to ascertain. It may bave 

been removed by fluvial activity in the Rio Aguas or been buried by the river terraces 

within the valley floor area . 
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Table 5.2 - Maleguica landslide data 

Landslide No.: 28 

Grid Reference: 05780 41055 

Height: 

Length: 

50 - 60 m 

150 m 

Width: 1,000 m 

Angle of Reach: 18.0° 

Volume: 3.14 X l O ^ i ' 

The landslide can be divided roughly into three sections, on the basis of its 

geomorphology, mode of failure and state, style and distribution of activity (Figures 

5.5 and 5.6). 

The western section of the landslide appears to be the most active with very little 

vegetation and a substantial accumulation of debris. This section is bounded by three 

large cliff faces that are approximately 50-60 m in height. The backscar cliff face 

trends NW-SE, while the two cliff faces that form the flanks of the landslide trend at 

approximately NE-SW. Geological mapping shows that this NE-SW and NW-SE 

trend fits within the regional discontinuity pattern. Geomorphological mapping of this 

section of the landslide was used to identify a number of back-tilted blocks, the size 

and shape of which are controlled by the discontinuity pattern. The back-tilted nature 

of the blocks indicates that they have undergone some degree of discontinuity 

controlled rotational sliding along a very high angle shear surface. 
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There bave also been a number of large rock falls, with the debris covering some of 

the older back-tilted blocks (Figure 5.7). The rotational movements involve most of 

the cliff face, while the rock falls seem to only occur in the upper parts of the cliff 

face. The difference in failure mechanism could indicate a change in the ground 

conditions or discontinuity pattern within the rock mass. They could also simply 

reflect two stages of slope failure within this section of the landslide. For example, 

the discontinuity pattern of the rock mass will allow for the development of the back 

tilted blocks. As these blocks progress towards failure, smaller rock falls could occur 

along the edge of the cliff face (the backscar of the previous failures). The rock falls 

could also relate to smaller blocks that initiated as high angle non-rotational/rotational 

slides but then subsequently failed as rock falls. 

The crown area of this western section of the landslide is extensively affected by 

tensión cracks. The largest tensión crack (which runs approximately parallel to the 

NW-SE cliff face) defines a block that is approximately 200m in length and up to 40-

50 m wide (Figure 5.8). Parts of this block bave moved over 2m both horizontally and 

vertically (Figure 5.9). The block itself is broken up into several smaller blocks by a 

set of smaller tensión cracks that follow the overall discontinuity pattern of the 

hillside. The fi"ont of this block has failed as a series of smaller rock falls. 
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Top of Tilted 
8IQJ.|5̂  Rock Fall Debris 

Figure 5.7 - Photograph of the back tihed blocks with rock fall debris at Maleguica The 

height of the chff above river level is approximately 50 m (Grid Reference: 0577941057 / 

Facing approximately south southeast). 

Figure 5.8 - Photograph of the back scar to the western section of the landslide and the 

tensìoD crack and large block that has been displaced (Grid Reference: 0578441054 / Facing 

approximately west northwest). The line indicates the location of the tension crack shown in 

Figure 5.9. 

288 



Cliapter 5 - Case Studies 

The middle section of the landslide has undergone a series of reasonably complex 

discontinuity controlled movements. These movements are partially picked out by the 

heavily jointed NE-SW orientated cliff that marks out the eastern side of the western 

section of the landslide (Figure 5.10). Using a combination of discontinuity and 

geomorphological mapping it is possible to show that this cliff face was actually a 

series of separate blocks. The lower blocks have undergone a small amount of non-

rotational sliding, while some of the higher blocks have ridden up against them. 

These movements can be picked out by the discontinuities that are clearly visible in 

the cliff face that separates this section of the landslide from the western section. The 

movement of these blocks has resulted in a very large tension crack opening between 

the backscar and the uppermost moving block (Figure 5.11). 

The eastern section is relatively well vegetated which tends to mask the underlying 

disturbed ground (Figure 5.12). Field mapping highlighted the presence of a number 

of back-tilted blocks that have undergone high-angle rotational sliding. The shape and 

size of these blocks, as before, are controlled by the discontinuities affecting the area. 

The relatively thick vegetation cover suggests that this section of the landslide is 

currently slightly less active than the other two sections. This may relate to the 

ground conditions or that this section is away from the active river channel, and 

therefore is less affected by toe erosion than it would have been in the past. 
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Tensión crack with 2 m 
dispiacement in white. 

Figure 5.9 - Photograph of the leiiiioa ciack aiid backscai associated with the displaced block 

shown in Figure 5.8 (Grid Reference: 0578041056). 

Rio Aguas e. 20 m high 

Rock fall 
debris & tops 
of rotated 
blocks 

Figure 5.10 - Photograph of the jointed cliff face in the western section of the landslide (Grid 

Reference: 0578041056 / Facing cast). 
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Figure 5.11 - Photograph of the chasm behind the central part of the Maleguica landslide 

(Grid Reference: 0578341055 / Facing northwest). 

Degraded slipped blocks 

Figure 5.12 - Photograph of the Eastern-section of the Maleguica landslide (Grid Reference: 

0578541058 / Facing south). The sewage treatment works are now located on the terrace at 

the foot of the iandsUde. 
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An interesting question is whether this landslide has ever blocked the Rio Aguas. 

Field mapping failed to find any evidence that would support this hypothesis. 

However, that does not mean that the course of the Rio Aguas has not been afFected 

by the landslide. The canyon floor is probably sufficiently wide enough, that i f a 

landslide had occurred the river would bave had room to alter its course and, 

therefore, not be blocked. 

Geomorphological mapping of the landslide and surrounding area identified a number 

of river terrace levéis within the valiey, as well as the presence of numerous 

"hanging" valleys and guUies along the edge of the backscar cliff face. The river 

terraces, although modified by human activity, stili help to highlight the previous river 

course. 

The hanging valleys and gullies can be picked out (particularly in the aerial 

photographs for the area) by the presence of agricultural terraces that bave been built 

along the drainage lines. These terraces bave been constructed to make use of the 

naturai drainage of the hillside. The fact that they bave been truncated by the current 

drainage, and are approximately 50 m above the present river level confirms the 

relatively rapid incisión of the current drainage system (i.e., the landscape is stili 

adjusting to the incisión). Mather (2000) estimated that tributary catchments in the 

Sorbas area experienced up to a ten-fold increase in the rate of incisión post the Rio 

Aguas/Rambla Feos River Capture. 

The crown area of the landslide (and the top of the canyon wall) is at approximately 

the same height as the C river terrace level. A number of D terrace levéis bave been 
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identified along the canyon floor (Harvey et al., 1995; Mather et al., 1995; Harvey, 

2001). These level areas within the canyon floor are currently being used for 

agriculture. This spatial distribution of the river terraces wouid suggest that the 

incisión of the river has occurred post river terrace C and prior to the formation of the 

D river terraces, which fits in with the incisión history of the Rio Aguas described 

previously. It would also imply that the landslide was initiated during this time 

interval, and is a relatively old feature within the landscape, but remains "active" (the 

fresh tensión cracks and rock falls within the western section of the landslide). 

This relative age of the landslide may help to explain the differences in landslide 

activity described earlier in the three different sections of the landslide. After the Rio 

Aguas/Rambla Feos River Capture, the rate of incisión of the drainage channel was 

relatively high (Mather, 2000) leading to the formation of over steepened slopes and 

the present canyon system. This is when the landslide could bave been initiated. As 

the canyon then developed fiarther, and the rate of base level change slowed down 

after the initial wave of incisión through the drainage system, the activity of the 

landslide would bave also changed. This would bave occurred in different parts of the 

landslide as the drainage pattern in the canyon evolved and shifted course. 

As far as the risk being posed by this landslide to infrastructure or the locai 

population, the landslide complex is not located near to any of the houses or roads 

associated with the main town of Sorbas. However, in the spring of 2000 a new 

sewage treatment works was built on the D3/E river terrace at the foot of the centrai to 

eastem section of the landslide (on the terrace level shown in Figure 5.12). If a 

significant failure was to occur in this centrai section, the runout could affect the 
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sewage works. Also during the spring of 2000, a locai farmer started to dig out 

agricultural terraces within parts of the western section of the landslide. Some of 

these were based on the slipped blocks from previous failures. However, by 2003 

these agricultural terraces seem to bave been abandoned for no apparent reason. 

5.2.2 The "Alfarería Landslide" 

The Alfarería landslide is located immediately to the cast of the old part of Sorbas in 

an area known as "Alfarería" (Figure 5.2). Sorbas is well known for its pottery and it 

is within Alfarería that most of the pottery is made. The landslide has been previously 

described in Hart & Grififiths (1999). 

The landslide is located in the outside of a meander in the active channel of the Rio 

Aguas. The river channel is within the canyon that surrounds Sorbas and is 

approximately 50 m below the level of the surrounding countryside and the Góchar 

erosión surface. However, due to its location, on the inside of the meander. Alfarería 

is located only just above the level of the river on a post D3 river terrace level. The 

canyon is approximately 400-500 m wide in this area. The incisión is related to the 

incisión that occurred after the Rio Aguas/Rambla Feos river capture, which occurred 

approximately 10 km downstream from the landslide. 

The geology of the Alfarería landslide consists of the Góchar Formation overlying the 

Cariatiz Formation. The lithology of the landslide area is a succession of near-shore 

and inter-tidal sandstones, interbedded with calcareous mudstones and overlain by 

terrestrial conglomerates. There are also three distinctive beds within the succession 
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that can be used to correlate across the landslide, as well as to correlate the landslide 

deposit with the backscar. These are the médium grained yellow sandstone "Marine 

Band" and the two fine grained white "Carbonate Bands" described by Mather (1991) 

and Section 2.3. 

The geological dip of the bedding (which is approximately 10-15°) is to the north and 

northeast, although there is some variation in the dip across the landslide área. A 

number of small normal faults were also identified within the área. 

The Alfarería Landslide is a complex landslide dominated by high-angle rotational 

movements, as well as rock falls and topples and some sagging-type movements 

(Dikau et al., 1996). The landslide also exhibits a number of different other type of 

failure mechanism such as sporadic stone fall and rock fall. Some of the details 

included in the landslide inventory are shown below (Table 5.3). 

Table 5.3 - Alfarería landslide data 

Landsl ide No.: 24 

G r i d Reference: 05785 41063 

Height: 50 m 

Length: 30 m 

W i d t h : 700 m 

Angle of Reach: 59.0° 

Volume: 5.5 X 10' 

The measured runout length for the landslide is much shorter than would be expected 

for this type of landslide. This is because the debris from the landslide is highly 

erodible and, therefore, easily removed by flood activity in the Río Aguas. The runout 

from this landslide is likely to have blocked or aflFected the course of the Río Aguas, 
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and may explain the reasonably lange river terrace (topographically) below the 

Alfarería area (Figures 5.2 and 5.13). 

The crown area of the landslide (and the top of the canyon wall) is capped by an 

outcrop of river terrace level A. The inside of the meander is possibly a D3/E river 

terrace (Harvey et al., 1995; Mather et al., 1995). This would suggest that the incisión 

of this section of the river has occurred post formation of the river terrace A and prior 

to the formation of the D/E river terraces. This fits with the previously described 

incisión history of the Rio Aguas. It would also imply that the landslide was initiated 

during this time interval although this covers most of the recent history of the study 

area. Geomorphological mapping and analysis of the spatial distribution of the river 

terraces in the area would suggest that the landslide is probably related to the wave of 

aggression and incisión after the Río Aguas/Rambla Feos River Capture (i.e., post 

Terrace C formation and prior terrace D formation). 

The landslide is not located near to any of the roads or other infrastructure associated 

with the main town of Sorbas. Alfarería is located opposite the landslide, although it 

is unlikely that any activity within the landslide area would affect Alfarería directly. 

An interesting scenario would be if the landslide blocked the Río Aguas. Any 

backflow from a landslide dam could añect the farmhouses and/or farmland that are 

located within the canyon floor or some of the lower parts of Alfarería. 
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Location for 

B. 

Figure 5.13 - Photographs of Alfarería and the Alfarería Landslide. A. Photograph of 

Alfarería taken from the crown of the landslide looking towards the west (Grid Reference: 

0578641064). B. The Alfarería Landslide taken from Sorbas looking towards the east. 

Alfarería is in the foreground (Grid Reference: 0578341064). 
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Interestingly, the landslide is slowly being removed by quarrying activity in the crown 

area. This part of the landslide is within fme-grained sandstone that is used locally for 

brick making. Within the last 4-5 years, the size of the Operation has increased 

rapidly, with a large portion of the northern part of the backscar being removed. 

Some material has been spoiled over the edge of the canyon wall into the river below, 

causing some minor rock falls and topples. This quarrying activity could result in the 

removal of the majority of the head area of this landslide. This could reduce the 

activity and impact of the landslide. 

5.2.3 The Sorbas Theatre Rock Fall 

This rock fall is named after the Sorbas Theatre that is built directly above the 

backscar of the landslide. The theatre, which is located on the northem side of the 

Sorbas "knoll", was opened in the autumn of 1997 (Landslide 15; Figure 5.2). The 

landslide had already occurred when the author first visited the site in the spring of 

1998, but is not seen in the colour aerial photographs that were flown in 1996. The 

site is of particular interest as it is an example of how construction activity in the area 

influences slope stability and how the locai population sometimes tries to deal with 

the instability. It has been described in Hart & Griffiths (1999) and Hart et al. (2000). 

The site is located above a river terrace level that lies at what would bave been the 

area of the confluence of the Rambla de Los Chopas and the abandoned meander. 

However, the river terrace is below the level of the abandoned meander and is 

therefore younger than the D3 age of the floor of the abandoned meander. Due to the 
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current drainage pattern, the river terrace (and therefore the landsHde site) is now in 

the outside of a meander, in the active drainage channel of the Rambla de Los Chopas. 

This part of the drainage system is incised below the surrounding countryside and the 

Góchar erosión surface. The depth of the drainage channel below this level is 

approximately 30-40 m. The canyon is approximately 20-25 m wide at this point. 

The canyon wall consists of the thickly bedded, white sandstone interbedded with thin 

intercalations of calcareous mudstone of the Sorbas Member. At least two, well 

defined joint sets bave been identified in the rock mass. The very top of the canyon 

wall consists of made-ground, involving building waste and other debris. A number 

of river terrace levéis bave also been mapped in this area, particularly on top of the 

canyon wall on the other side of the drainage channel (Harvey et al., 1995). 

The canyon wall under the Sorbas Theatre is affected by rock fall activity (Dikau et 

al, 1996) initiating from a wedge failure surface (Table 5.4). It is thought that this 

rock fall occurred at some point during the construction of the theatre, possibly as a 

result of the new building loading the edge of the canyon wall. The spoiling of 

building material over the edge of the canyon wall may bave also affected the stability 

of the slope. At present, this rock fall does not appear to afifect the foundations of the 

theatre. However, in June 2003 there were some cracks beginning to form along the 

back wall of the theatre, which could be related to subsidence of the building. It is 

unclear at present whether this is related to the rock fall or ftirther instability of the 

canyon wall. 
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Table 5.4 - Sorbas Tbeatre landslide data 

Landslide No.: 15 

Grid Reference: 05777 41064 

Height: 

Length: 

20m 

50m 

Width: 15-20m 

Angle of Reach: 22.0° 

Volume: 3,000 

The author has been able to observe the degradation of the landslide over a period of 

six years (1998-2003). This has enabled the author to investígate how quickly the 

backscar and debris have degraded during this period (Figure 5.14). In this time, 

vegetation has started to grow up over the backscar and deposit of the landslide. 

Some of the debris was also removed shortly after the landslide occurred so that an 

agricultural terrace below the landslide could be re-instated. An understanding of how 

quickly the vegetation has grown over the landslide and how quickly the back scar has 

degraded could be used to assess the relative ages of other failures in the canyon walls 

around the Sorbas área and therefore (possibly) gain some idea of their frequency of 

occurrence. 
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5.2.4 The "Los Beneficios Landslide" 

The Los Beneficios LandsHde has been described in Hart & Griffiths (1999) and Hart 

et al. (2000). It is a reasonably extensive mass movement, which is idenfifiable on 

aerial photographs. It is located to the north-west of the new part of Sorbas (Landslide 

No. 3; Figure 5.2). 

The landslide is located within the outside of a meander in the active channel of the 

Rambla de Los Chopas. This part of the river system is a relatively open valley, but 

has been incised below the level of the surrounding countryside to a depth of about 

34-40 m below the Góchar erosión surface and is related to the incisión that occurred 

after the Rio Aguas/Rambla Feos river capture 11-12 km downstream from the 

landsHde, as described in Section 2.4. 

The geology of the Los Beneficios area is very similar to the Alfarería area, consisting 

of the Cariatiz Formation overlain by the Góchar Formation. The lithology of the 

landslide area is a succession of sandstones, interbedded with calcareous mudstones 

and overlain by terrestrial conglomerates. 

As in the case of the Alfarería landslide area, the same three distinctive marker 

horizons described by Mather (1991) are seen within the succession, and facilitate 

correlation across the landslide and the Identification of some of the moved materials. 

Dissolufion features were found within some of the units of this succession. These 

highlight the highly erosive nature of some of the rock material involved in this 

landslide. 
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The dip direction of the bedding is approximately to the north and northeast, ahhough 

there is some variation in the amount of dip across the landslide área. The amount of 

dip is also variable, between almost horizontal and 10-15°. A number of smaller 

faults were also identified within the rock mass. These are predominantly small-scale 

normal faults with throws of < 1-2 m. 

The Los Beneficios Landslide is a complex landslide dominated by both high-angle 

and lov^-angle rotational and non-rotational movements (Dikau etal., 1996). It is also 

one of the largest landslides in the study área with a volume of several tens of millions 

of cubic metres. These are picked out by a number of large back-tilted blocks 

(Figures 5.15 and 5.16). The landslide also exhibits a number of different types of 

failure mechanism such as backward topples, rock fall, sporadic stone fall, and non-

rotational sliding. Some of the details included in the landslide inventory are shown 

below (Table5.5). 

Table 5.5 - Los Beneficios landslide data 

Landslide No.: 3 

Grid Referente: 05769 41069 

Height: 50 m 

Length: 150 m 

Width: 600 m 

Angle of Reach: 18.0° 

Volume: 2.36 X 10* 
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The landslide can be roughly divided into four different sections, based on the state, 

style, and distribution of the landsHde, as well as the geomorphology of the landslide 

(Figure 5.15). This is also dependent on the relative position of the geological units 

within the meander, and the geological dip of the beds. 

The western section of the landslide lies within the outside of the meander of the 

Rambla de Los Chopas. This section is marked by a 30 m high, almost vertical cliff 

face which forms the backscar to the landslide and a number of back-tilted blocks 

(Figure 5.17). Only one of these is clearly defined, while the others are ali fairly 

degraded, but they can be picked out on the profiles (Figure 5.16). Slope angles 

within this section of the landslide vary between 30° and 70°. Most of the cliff face is 

composed of conglomerate (Góchar and Cariatiz Formations). However, there are one 

or two lithological units within the cliff face that can be traced through different parts 

of the landslide complex. One of these is a moderately weak, coarse grained 

sandstone bed. 

To the north and centre of the landslide complex there is a large rock debris cone. 

This seems to be a combination of a rock fall and back-tilting block that subsequently 

broke up to form a rock fall (Figure 5.18). The remains of the block can be found 

under parts of the rock fall debris. Another, smaller block can be seen at the top of the 

cliff above the rock fall debris. This block has dropped by a few metres and is now 

slowly breaking up to form a rock fall. 
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Figure 5.17 - Photograph of the western section of tiie Los Beneficios iandslide (Grid 

Reference: 0576941066 / Facing north). showing back tilted blocks and rock fall deposits are 

clearly visible. 

Figure 5.18 - Photograph of the central section of the Los Beneficios Iandslide (Grid 

Reference: 0577241067 / Facing north). The rock fall deposits and back tilted block are 

clearly visible. 
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The eastem section of the landslide is very different from the western and centrai 

northem section described above. The slope angles are gentler and the slopes are not 

mantled with rock fall debris. Both sections are characterised by an undulating slope 

profile (Figure 5.16 - profiles E and F). These undulations may indicate the presence 

of very degraded blocks or lithological boundaries within the hillside, but this is 

uncertain. The underlying rock mass appears to be weaker giving rise to the more 

subdued profile. However, this is capped by a more resistant conglomeratic unit that 

forms a bluff along the crown of the landslide complex in this section. 

Although the bulk of the hillside is the Góchar Formation conglomerate, there is a 

distinctive yellow mudstone unit that can be traced through this section of the 

landslide. This unit is aflfected by a number of dissolution soil pipes and other 

associated dissolution features. Some of the pipe structures are up to a 1.5m in 

diameter. This unit has been identified as the yellow "Marine Band" marker horizon 

described by Mather (1991). This observation is of particular significance to the 

landslide as any pipe structure within the slopes can either concentrate any water 

passing through them or directiy destabilise parts of the slope as a result of collapsing. 

As discussed in Section 4.3, the presence of pipe structures is indicative of a 

dispersive, highly erodible material. 

The eastem section of the landslide complex is part of a ridge-like structure that is 

affected by landslide activity on both sides. This northern slope forms the northem 

section of the overall landslide complex. The northern section is a relatively small 

dip-slope, translational/high angle rotational landslide. It is possible that the landslide 
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is being controlied by both the dip of the geology and the erosive nature of the 

carbonate mudstone that was described above. 

The crown area of the landslide (and the top of the canyon wall) is at approximately 

the same height as the B river terrace level. A number of D or E terrace levéis bave 

been identified on the opposite side of the river (Harvey et ai, 1995; Mather et ai, 

1995; Harvey, 2001). Thèse areas are currently being used for agriculture. This 

spatial distribution of the river terraces would suggest that the incision of the river has 

occurred post river terrace B and prior to the formation of the D river terraces, which 

fits in with the incision history of the Rio Aguas as previously described. It would 

also imply that the landslide was initiated during this time interval, and is a relatively 

old feature within the landscape. 

However, this time interval covers a considerable amount of the recent history of the 

study area. Geomorphological mapping and analysis of the spatial distribution of the 

river terraces in the area suggests that the landslide is probably related to the wave of 

aggression and incision after the Río Aguas/Rambla Feos River Capture (i.e., post 

terrace C formation and prior terrace D formation). In support of this, Mather (2000) 

has estimated that this section of the Rio Aguas may bave experienced up to a five-

fold increase in the rate of incision after the Rio Aguas/Rambla Feos River Capture. 

The western section of the landslide complex would bave initiated as a resuit of the 

formation of the over steepened canyon walls on the outside of this meander. The 

eastem section, being on the inside of the meander, would bave been affected by 

fluvial érosion of the lower slopes, but not to the same extent. 
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Therefore, based on the field mapping observations, the factors that seem to be 

controlHng the activity of this landslide are: 

• The location of the landslide on the outside of a meander; 

• The relative rapid incisión of the drainage and, therefore, the relatively rapid 

formation of the valley side slopes; 

• The geological dip and dip direction of the Góchar Formation; and 

• The dissolution features (i.e., the pipe structures) and the dispersive nature of 

some of the units within the rock mass. 

The landslide is not located near to any of the houses, roads or other infrastructure 

associated with the main town of Sorbas. There are some agricultural fields located 

just below the eastern section of the landslide. 

5.2.5 The "Bird's Footprint" Rock Fall 

Bird footprints bave been found preserved within part of the white sandstone 

succession of the Sorbas Member (Doyle et al, 2000). The landslide described bere is 

a rock fall that has occurred immediately above one of the best locations for seeing 

these footprints. The author first visited the site in the spring of 1998, and has 

retumed frequently to monitor the site, and has previously described the site in Hart et 

al (2000). 

The site is located a short distance to the west of the Los Beneficios Landslide at the 

western end of Sorbas (Landslide 1; Figure 5.2). The rock fall has occurred within the 
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canyon wall onto the upper section of the drainage channel. The active drainage 

channel is carved into bedrock and is split into two levéis, with 2-3 m in height 

diiFerence between them. They are located in a slightly wider channel. 

The canyon wall predominantly consists of the thickly bedded, white sandstone 

interbedded with thin intercalations of calcareous mudstone of the Sorbas Member. 

Two joint sets are clearly visible in the cliff face. The upper most part of the cliff face 

is composed of semi-unconsolidated rock material and river terrace deposits. There is 

also a river terrace C capping the cliff face (Harvey et al., 1995; Harvey, 2001). 

The canyon wall is afifected by rock fall activity (Dikau et al., 1996) initiating from a 

partially wedged failure surface (Figure 5.19; Table 5.6). The landslide is thought to 

bave occurred during a high magnitude flood event in 1973 (Mather & Griffiths, pers. 

comm.). However, it is unclear whether it was the flood event itself undercutting the 

slope or the associated rainfall that triggered the actual rock fall. The measured 

runout length for the landslide is possibly slightly shorter than might be expected for 

this type of landslide. This could be because the debris from the landslide has been 

removed by either flood or human activity in the drainage channel. 

The landslide is not located near to any of the houses, roads or other infrastructure 

associated with the main town of Sorbas. There are also no agricultural areas dose to 

the landslide. The landslide area is, however, of scientiftc importance (i.e., the 

presence of fossilised bird's footprints) and the locai authorities, in conjunction with 

numerous universities, are trying to "open" up the site, possibly even to tourists. It is 
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suggested here that i f this site was to be opened to the public, then this would require 

at least some form of stabUity assessmem to be made of the clitTface. 

Table 5.6 - Bird's Footprint landslide data 

Landslìde No.: 1 

Grìd Reference: 05769 41065 

Height: lOm 

Length: 4m* 

Width: 5m 

Angle of Reach: 24.0° 

Volume: 300 

* = part of the debris has been removed by a combination of human and flood activity 

Figure 5.19 - Photograph of the "Bird's Footprint" rock fall (Grid Reference: 

0576941065 / Facing north). The rock face is approximately 10-15m high at this 

point. 
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5.2.6 The Abandoned Meander Section 

There are a number of reHct and active landslides in the abandoned meander that is to 

the south and west of the Sorbas "knoll" (Figures 5.2 and 5.20). Hart & Griffiths 

(1999) and Hart etal. (2000) have described the majority of these landslides. 

The abandoned channel has been incised to a depth of approximately 30-40 m below 

the surrounding countryside and the Góchar erosion surface. The Canyon is a uniform 

width at approximately 100-150 m wide. The floor of the canyon is now used for 

agriculture and has been identified as a D2 or D3 river terrace (Harvey et al., 1995; 

Harvey, 2001). The formation of this abandoned meander was described in the 

introduction to Section 5.2. The landslides all occur within the canyon walls. 

The canyon walls under the town of Sorbas consist of the thickly bedded, fine to 

medium-grained, white sandstone interbedded with thin intercalations of fine-grained 

calcareous mudstone, of the Sorbas Member. The rock mass is affected by at least 

two clearly visible joint sets, which are approximately 60 degrees to each other. The 

canyon walls on the outside of the meander consist of both Sorbas Member bedrock 

and unconsolidated rock material. 

Geomorphological mapping of the hillside above the areas of unconsolidated material 

identified two "hanging" valleys/gullies. On the aerial photographs these are picked 

out by the presence of drainage lines that have now been used for agricultural terraces. 

These hanging valleys/gullies relate to an older land surface that existed before the 

Rio Aguas/Rambla Feos River Capture. These hanging valleys/gullies are 
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approximately 20 m above tbe canyon floor, suggesting that they were active before 

D3, but after B (the river terrace on which Sorbas is built and which caps slopes above 

the outside of the meander). They were then possibly filled in with loosely 

Consolidated rock debris before being truncated by the incisión of the canyon to its 

present level. 

The in-fill is predominantly loosely Consolidated white sandstone (Figure 5.21). The 

material ranges fi"om coarse sand to angular/sub-angular boulders. The contact with 

the underlying white sandstone bedrock of the Sorbas Member can be seen in a 

number of places (Figure 5.21). The angular nature of the material would suggest that 

it has not travelled very far, and the lithology is very similar to the local bedrock. 

Mapping of the hillside above the deposit (above the meander on what would bave 

been the palaeo-surface) has shown that the debris seems to be confmed to the 

"palaeo-guUies". It is suggested that the debris represents a small landslide that 

initiated a relatively short distance to the south of the current abandoned meander. 

The mechanism may bave been rock fall with some form of ravelling (possibly 

sporadic rock fall or stone fall) filling the gully with material. The debris, confmed to 

the guilles, may bave then travelled a short distance down slope. Subsequently, the 

guilles were truncated by the incisión of the now abandoned meander. 

When constructing the N-340 through the abandoned meander section, a number of 

road cuttings were created. These cut through the relict features, causing them to be 

reactivated. The failures from these relict features bave been small rock falls and 

sporadic stone falls (Dikau eí al., 1996; Nicholson et al, 2000). These slopes may be 

afifected by water seeping along the relict drainage lines within the hanging 
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valleys/gullies through the unconsolidated material, as well as water on the cut-slope 

surface. Mitigation of these failures has included trimming the road cuttings back, as 

well as a drainage/catch ditch at the base of the slope. The road is also relatively wide 

at this point. 

Many people (both locals and visitors) have commented on the apparent stability of 

the knoll on which the old part of Sorbas is built. The evidence used for this is the 

presence of the houses that are built right along the very edge of the canyon wall. 

However, field mapping has identified a rock talus slope that runs all the way around 

the foot of the Sorbas knoll. In addition to this, over the last six years, at least four 

landslides have occurred around the town, affecting this canyon wall. The most recent 

landslide (Landslide No. 20) occurred during the spring of 2003 within the abandoned 

meander opposite the locations described above. It was a rock fall that has undercut 

the foundations of a house (Figure 5.22). This rock fall may have been initiated by a 

combination of building work being undertaken in the house and the ongoing 

construction work for a footpath around the Sorbas knoll. This work has involved 

digging a path into some parts of the rock talus slope. 
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Figure 5.21 was taken from here Old Drainage 

Contact Landslide Debris Bedrock 

Figure 5.21 - Photograph of N-340 road cutting exposing unconsohdated landshde debris 

(Grid Reference: 057741062). Material is moving out of slope towards road. Author, for 

scale, is approximately 1.8m tall. The line shows the contact between the bedrock and 

displaced material. 
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Figure 5.22 - Photograph of Landslide Number 20 that occurred during the Spring of 

2003 (Grid Reference: 0577941062 / Facmg northwest). The cliff face on which 

Sorbas is built is approximately 30-40m high at this pomt 
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5.2.7 Cave-collapse Landslides 

Several of the landslides mapped around Sorbas bigbligbted the important relationsbip 

between tbe geology and buman activity (Hart & GrifFiths, 1999; Hart et al., 2000). 

The foUowing examples will demónstrate how the geology (influenced by the human 

activity) has directly affected slope stability around the town of Sorbas. These 

examples will also underline the importance of repeat visits to a site and of talking to 

the local population about observed landslide activity and ongoing construction 

activity. 

There are a number of caves found at varióos locations around the "knoll" on which 

the oíd part of Sorbas is built. These caves have been dug by the local inhabitants of 

Sorbas and seem to be used for storage. These locations are: 

• The clifif face behind the new Sorbas museum (Landslide 16); 

• The cliff above the eastern road into Alfarería (Landslide 21); and 

• Beside the small street going from Alfarería up into the main part of Sorbas 

(Landslide 22). 

The caves are all dug into the same part of tbe Sorbas Member. Tbe Sorbas "knoll" 

predominantly comprises thickly bedded, moderately strong, white sandstone. The 

Sorbas Member is capped by a Quaternary river terrace deposit that can be found at a 

number of places around the Sorbas "knoll". Within the Sorbas Member, there is at 

least one unit of moderately weak, thinly laminated, calcareous mudstone that has a 

máximum thickness of approximately 2-3 m. It is within this mudstone unit that the 
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caves bave been dug, with the floors and ceibngs being left in the stronger sandstone 

units. 

A number of these caves bave collapsed, often giving rise to flirther failures in that 

part of the cliff face or increased signs of instability. These failures can be quite 

sizeable considering their location. Por example, in 1998 a cave collapsed causing a 

landslide to occur behind what was a car mechanic's workshop (Table 5.7; Figures 5.2 

and 5.23). The landslide had not destroyed the building but the cliff was stili unstable 

(tensión cracks were clearly visible), therefore stili posing a risk to the building. The 

building was demolished and the landslide debris cleared away The cliff face was 

then trimmed back and covered in shotcrete. As a ilirther measure, a large retaining 

Wall was built to cover the lower parts of the cliff face. Recently, a new museum for 

Sorbas has been built on the site to encourage tourists to visit Sorbas. It is unlikely 

that this part of the slope will fall again in the near fliture. However, other parts of 

this hillside are stili vulnerable. These remediai measures will also bave to be 

maintained. For example, the drainage pipes will bave to be cleaned regularly or this 

could lead to a build up of water in the slope and subsequent failure. 

Table 5,7 - New Museum landslide data 
Landslide No.: 16 

Grid Referente: 05778 41064 

Height: 5m 

Length: 3m 

Width: 5m 

Angle of Reaeh: 59.0° 

Volume: 45 
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Spritìgì9^ 

June 2003 

Original 
Cave 

Slippage 
of builders 
spoil 

New 
Museum 

Retaining 
Walls 

Figure 5.23 - Phoiogiaph^ of the new museum area taken durirLg the mitigation works and 

construction of the museum (1999 and 2000) and after completion (2003). Ali photographs 

taken from Grid Reference 0577741065, facing southeast. 
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Another example is the cave collapse and rock fall that occurred on the small lane that 

links Alfarería Square to the main part of the old town. This rock fall was cleared up 

during 2000, with the backscar and debris being completely removed from the site 

(Figure 5.24). This photograph also shows where another cave exists but has been 

covered up by the construction of the building alongside the road. The newly cut rock 

face undercuts the properties located above this site. By 2003 this site had been 

abandoned and closed to the public. Structural supports bave been built into the cliff, 

in an attempt to support the weight of the cliff face and the properties above. The 

author believes that flirther remediai work should be undertaken on this slope to 

stabilise it and prevent fiirther failure. If nothing is done, the houses above and below 

the site are at risk. The houses above the slope are at risk from their foundations being 

undermined. The houses below the slope are at risk from the houses and other debris 

above them falling on to them. In addition to this, road users are also at rísk from this 

slope failure. 

From the point of view of carrying out a landslide investigation, these two examples 

(as well as a number of the other landslides around Sorbas) highlight an interesting 

problem. How many landslides bave occurred around Sorbas and been cleaned up or 

the evidence "removed"? For example, the only indication of the originai cave and 

subsequent landslide at the site of the new museum is the slight depression that has 

been left in the cliff face behind the small garden area behind the museum (Figure 

5.23). The next question is then "how representative is the current data set of the level 

of landslide activity in the Sorbas area?" If, due to pressure on land use, landslides are 

cleared up relatively quickly after an event, then the landslide database for the Sorbas 
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área may be an under estimate. Tbis problem, if not properly addressed, would also 

binder any calculations of the frequency of landslide activity in tbe area. 

Tbese observations would imply that a number of diflferent strategies would need to be 

adopted when working in such areas, including: 

• Repeat visits to a site; 

• An awareness of such practises; 

• Consultation with local engineers and/or members of the local population; and 

• The ability to identify where tbese events have occurred in the past (the "eye for 

landscape" of Hutchinson, 2001). 

Field mapping has shown how the presence of tbese caves within the rock face (and 

therefore under parts of the town) can increase the inherent instability of the area. 

Tbis could increase the risk to those who use, or work, in tbe caves, although the 

extent to which tbis occurs is difficult to assess. There is also tbe problem of 

settlement caused by the collapse of tbese caves. Tbis would be difficult to assess and 

has not been investigated within tbis research project. 
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Figure 5.24 - Photograph of a site in the lane at the back of Sorbas that was affected 

by a landslide in 1998 which was cleared up in 1999 (Grid Reference: 0578241063). 

The site is now being redeveloped. 
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5.2.8 Synopsis of the Sorbas Case Study Area 

The API and field mapping have identified a number of factors that control the 

landslide activity affecting this case study area. These are: 

• The presence of the tensión cracks and geologically controlied discontinuities 

within the Sorbas Member; 

• The dispersive nature and therefore extreme weathering potential of the calcareous 

mudstones within Cariatiz Formation; 

• The relative rapid incisión of the drainage and, therefore, relatively rapid 

formation of the valley side slopes and canyon walls; and 

• Human activity involving the construction of roads or buildings which involve 

either the loading or undercutting of slopes. 

This case study area is within the part of the Rio Aguas study area that has been 

afifected by the "wave of incisión" relating to the Rio Aguas/Rambla Feos River 

Capture described in Section 2.4. By using the geomorphological mapping results it is 

possible to construct a tentativo landscape history for the landslides. 
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1. Dissection of the Góchar érosion surface by tbe formation of tbe ancestral Lower 

Aguas. 

2. The above dissection would have been driven by the differential uplift between the 

Sorbas and Vera Basins (Mather, 1991; Stokes, 1997; Mather étal, 2001; Stokes 

et al, 2002; Mather et al, 2003). 

3. The Rio Aguas/Rambla Feos River Capture. 

4. An increase in the gradient and stream power of the Rio Aguas, leading to 

increased rates of drainage incision and slope érosion. 

5. Incision of the Rio Aguas and érosion of the Góchar érosion surface to almost 

présent locations. 

6. The modification of the slopes by human activity in the area. 
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5.3 The Gvpsum Escarpment / River Capture Section 

There are a number of places along the edge of the gypsum escarpment that are 

afFected by landslide activity. Many of these landslides have been identified and 

described ¡n Hart (1999) and Hart «& Griffiths (2000). Eyers et al. (1998) and Davis et 

al. (2000) also identified some of the larger features as part of satellite image (Landsat 

or SPOT) or Airbome Thematic Mapper (ATM) image interpretation studies. Tbis 

área was also identified as one of the parts of the study área with a higb landslide 

density (Section 4.2.1; Figure 4.6), and therefore provides an excellent example of the 

problems being addressed by this research project (Hart, 1999; Hart & Griffiths, 1999; 

Griffiths eíai, 2002). The case study área covers approximately lOkm^ and is located 

approximately lOkm east of Sorbas, some 55km north-east of Almería, the Provincial 

capital (Figures 1.2 and 2.1). 

This case study área contains the site where the Rio Aguas/Feos River Capture 

occurred (Figure 5.25). The API and subsequent field validation showed that over 25 

landslides aflfect this case study área. It is, therefore, an ideal place to study how this 

geomorphological event has influenced the Rio Aguas, the surrounding landscape and 

the observed landslide activity, both upstream and downstream of the river capture 

site. Field mapping showed that the majority of the landslides were associated with 

the Quatemary development of the drainage network, confirming the apparent cióse 

relationship between drainage/landscape evolution and the observed landslide activity 

(Hart & Griffiths, 1999; Griffiths et al., 2002). The mapping also highlighted the 

presence of several relict landslide features, and confirmed the importance of 
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understanding the geomorphological history of an área before undertaking engineering 

works. 

Tbe case study área follows tbe course of tbe Río Aguas and tbe gypsum escarpment 

from just west of tbe village of E l Río de Aguas del Los Molinos*, downstream to the 

abandoned village of Marchalico Vínicas (Figure 5.25). The key locations within the 

study área are: 

• El Río de Aguas del Los Molinos'' (0582341054) - just upstream from the river 

capture site; 

• The Río Aguas/Rambla Feos Capture Col (0584041045); 

• Los Perales (0584541058) - just downstream from the river capture site; and 

• Marchalico Vínicas (0585241073) - approximately 4 to 5 km downstream from 

the river capture site. 

The geology of the case study área is a mixture of Neogene sedimentary basin fill, 

capped, in places, by Quaternary river terrace deposits (Figure 5.25). The succession 

generally dips to the north or north-west (i.e., towards the basin centre). The amount 

of dip varíes, but is generally between 15° and 20°. Apart from the gypsum of the 

Yesares Member, each of these lithological units rests unconformably on the unit 

underneath it. 

* Tlie village of El Río de Aguas del Los Molinos is also known as Los Molinos 
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Stnjcturally, this part of the study área has experienced some of the highest upHft rates 

of the región, with approximately 160 m Ma"' of uplift over the Plio-Pleistocene 

interval (Mather, 1991). This ¡s associated with continued regional deformation 

during the Quatemary, which has been dominantly north-south compression, and east-

west extensión (Mather & Westhead, 1993). Field evidence for this comes from the 

Quatemary river terrace sediments in the área, some of which have been tilted up to 

70° (Mather eí al, 1991; Mather & Stokes, 1996). 

The river terrace deposits in this área record the incisión of the drainage system, 

particularly after the Río Aguas/Rambla Feos river capture (Harvey & Wells, 1987; 

Mather, 1991; Harvey eí al, 1995). The distribution and nature of the river terrace 

deposits provide an insight into the formation of the present day Rio Aguas valley 

and, therefore, are helpful in "dating" some of the observed landslide activity that is 

seen in the case study área. 

The following sections are selected examples of the landslide activity that affects this 

case study área. The examples include four of the largest landslide complexes in the 

Río Aguas study área (Table 5.1). They are presented here in their downstream order 

from the village of Los Molinos to the abandoned village of Marchalico Vínicas 

(Figure 5.25). 
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5.3.1 Los Molinos 

The village of Los Moliitos is situateci between 20 and 40 m above the present level of 

the Rio Aguas. This section of the river is within a deeply incised valley/canyon 

beneath the level of the gypsum plateau (Yesares Member). Calcareous mudstone 

(Abad Member) forms both valley-side slopes within the canyon and erodes to form a 

typical badiand-type landscape. The limestone of the Azagador Member outcrops 

along parts of the valley floor and makes up part of the southern valley-side slopes. It 

also forms an escarpment feature on the northern side of the Rio Aguas near to the 

abandoned farmhouses at Carrasco (Grid reference: 0583241054). The Azagador 

Member is underlain by the calcareous mudstones of the Chozas Formation. This 

means that the slopes on the southwestern side of the Rio Aguas valley are dip-slopes 

and those on the northeastern side of the valley are scarp-slopes. 

5.3.1.1 Gypsum Escarpment Lanclslides 

The whole length of the Gypsum Escarpment on the northern side of the Rio Aguas is 

afifected by landslide activity. There are combinations of failure mechanisms at work 

- rock falls, rock topples, high-angle rotational and non-rotational landslides, and 

sagging-t3^e failures. These nearly ali involve both the gypsum and underlying 

calcareous mudstones. The landslide activity is ali related to the incisión of the Rio 

Aguas over steepening the valley side slopes. 

This same situation can also be seen in the area along the length of gypsum 

escarpment that runs southwest from Los Molinos to the gypsum quarry and then 
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southeast to the Cerrón de Huelí (Grid reference: 0581341023) at the southern margin 

of the study área. 

5.3.1.2 The Los Molinos Relict Landslide 

The aerial photographic interpretation and field-based geomorphological mapping has 

enabled a number of relict features to be identified in the study área. However, 

subsequent erosión and/or human activity has meant that some of these features are 

more difficult to identify than others. One example is the landslide referred to here as 

"The Los Molinos Relict Landslide". 

The landslide is located in the same área as the village of Los Molinos (Landslide No. 

36; Figure 5.25). This village was abandoned (possibly during the Spanish Civil War) 

but has now been re-inhabited by an "alternative lifestyle" community (possibly since 

the 1970s). They have sought to rebuild some of the houses and irrigation ditches and 

use the agricultural terraces that are located beneath the village, but above the active 

channel for the Rio Aguas. 

The upper part of the Los Molinos village is built on moderately weak calcareous 

mudstones that are intercalated with shale and occasional beds of moderately strong, 

thin beds of sandstone (Abad Member). The lower part of the village and the 

agricultural terraces are built on a moderately strong, ligbt coloured limestone 

(Azagador Member). The crown área of the landslide is in the gypsum of the Yesares 

Member. 
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Los Molinos is located on a lower valley slope 30-40ni above tbe level of tbe Rio 

Aguas active cbannel. Tbe section of river below the village has standing water, with 

the water Coming from natural Springs in the gypsum a short distance upstream from 

Los Molinos. 

The morphology of tbe landslide has been altered and heavily masked by tbe presence 

of the road AL-104, the agricultural terraces above tbe village and tbe village itself 

The landslide was identified by an anomalous occurrence of randomly orientated, 

broken up blocks of gypsum that are held within a silty clay matrix outcropping 

underneath a part of Los Molinos (Figure 5.26). This material now infills what was 

probably a slight topographic low at the time of the landslide occurring. 

A combination of geomorphological field mapping and aerial Photographie 

Interpretation were used to identify the possible location and size of the backscar and 

the debris accumulation. The backscar has been identified as the arcuate feature in tbe 

gypsum escarpment directly above the Los Molinos. Interestingly, the hollow formed 

by tbe landslide has been used for tbe switchbacks in tbe AL-104 as it passes out of 

the very steep sided Los Molinos valley (Figures 5.27 and 5.28). 

The southern part of tbe backscar may bave been removed by erosión of the gypsum 

escarpment and underlying calcareous mudstone. The debris accumulation has been 

either removed or extensively altered by the construction of tbe agricultural terraces 

and tbe road. However, particularly with tbe use of aerial photographs, a track of 

debris can be traced from the backscar down to the toe of the landslide. This has 
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meant that the geometry of the landslide can be measured in some places and inferred 

in others (Table 5.8). 

Table 5.8 - Los Molinos relict landslide data 

Landslide No.: 36 

Grid Reference: 05820 41054 

Height: 60m 

Length: 350m 

Width: 60m 

Angle of Reach: 15.9° 

Volume: l . lOx lO'm^ 

The removal and/or masking of this landslide has made identifying the controlling 

factors difficult. However, it is assumed that those factors that bave been observed or 

inferred as controlling other landslides in this immediate area would bave also 

influenced this landslide. These factors are: 

The NE-SW and NW-SE tectonic related discontinuity pattern of the area; 

The presence of the pipe structures, tensión cracks and geologically controlied 

discontinuities along the edge of the gypsum plateau; 

The presence of the minor drainage features and guilles in the area; 

The dispersive nature and therefore extreme weathering potential of the calcareous 

mudstoiies within the Abad Member; and 

The una'ercuiting of the gypsum escarpment through erosión of the calcareous 
I 

mudston ÌS. 
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The crown area of this landslide is level with the Gypsum Plateau and the B or C river 

terrace levéis (Harvey & Wells, 1987; Mather, 1991; Mather et al., 1995; Harvey et 

al., 1995; Harvey, 2001). The toe of the landslide is approximately the same height as 

river terrace level D3. This landslide has, therefore, occurred since the formation of 

this slope, which is after the Rio Aguas/Rambla Feos River Capture and subsequent 

incisión of the drainage system. It is possible that this landslide occurred at 

approximately the same time as the formation of the D3 terrace, and has been stable 

since then because it does not appear to bave affected the E river terrace below the 

' village. 

The fact that both a village and a main road through the area bave been built on this 

landslide makes this an interesting case study. Their presence has led to the re-

activation of the landslide, albeit on a relatively small-scale. Some of the bouses in 

the village that are built on the landslide show signs of structural damage that is 

slightly different in nature to the damage seen on other houses in the village (most of 

which are in some state of dis-repair). The locai residents bave also commented that 

the houses "appear to move" during rainstorms. 

The AL-104 road also shows signs of subsidence and cracking. This may not be 

helped by the almost Constant heavy lorry trafFic travelling between the Hueli gypsum 

quarry and the gypsum processing plant on the coast at Carboneras. 
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H 
Figure 5.26 - Photograph of the debris of the relict feature under the houses of Los Molinos 

(Grid Reference: 0582641056 / Facing southwest). 

Relict 
Landslide 

Figure 5.27 - Photograph of Los Molinos Relict Landslide and the main road (Grid 

Reference: 0583141047 / Facing northwest). 
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5.3. L3 The "Cerro Molatas / Carrasco LandsUde" Complex 

This landslide was identified and briefly described by Eyers et al. (1998) and Davis et 

al. (2000) as part of a satellite image interpretation study ¡n tbe región. It bas been 

described in more detall by Hart (1999) and Hart et al. (2000). Tbe "Cerro Molatas / 

Carrasco Landslide" is located immediately to tbe west of tbe "Wind Gap" or 

"Capture Col" (Figures 5.25, 5.29 and 5.30; Landslide No. 38; Grid Reference: 

05834105), attbe southwestem end of tbe Los Molinos valley. 

The landslide occurs within tbe light-coloured limestone of tbe Azagador Member and 

tbe underlying calcareous mudstones and shales of tbe Chozas Formation. The 

limestone rests unconformably on the Chozas Formation and dips towards tbe 

northwest at approximately 30-40 degrees. The limestone is affected by both jointing 

and dissolution features. 

The landslide occurs on a dip-slope within the outside of a meander of the Río Aguas 

active channel (Figure 5.30). The toe of the landslide appears to be at the same level 

as the contemporary active channel of the Río Aguas. As stated above, the site is 

adjacent to the site of the Río Aguas/Rambla Feos River Capture and has experienced 

approximately 90-100 m of incisión. 
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Río Aguas/Rambla Feos The Carrasco Landslide Curved nature of 

B. 
Figure 5.29 - Photographs of the Cerro Molatas/Carrasco Landslide. 

A. View from above Los Molinos Village (Grid Reference: 0581941055 / Facing east). 

B. View from opposite side of the Río Aguas (Grid Reference: 0582941054 / Facing south). 
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The "Cerro Molatas / Carrasco Landslide" is a complex landslide exhibiting different 

types of failure mechanism. It is characterised by dip-slope translational movements 

with some smaller, high-angle non-rotational movements. There are also minor rock 

falls and topples along parts of the backscar. Although the slip-surface has not been 

found, the geomorphology of the landslide suggests that the slip-surface is along the 

contact between the limestone and underlying calcareous mudstone. Some of the 

details included in the landslide inventory are sbown below (Table 5.9). 

Table 5.9 - Cerro Molatas / Carrasco landslide data 

Landslide No.: 38 

Grid Reference: 0583 4105 

Height: 150m 

Length: 250m 

Width: 250m 

Angle ofReach: 31.0° 

Volume: 4.91 x l O S n ' 

Geomorphological mapping within the landslide complex has sbown that the 

limestone blocks bave moved in a general downslope direction but with a degree of 

lateral migration across the slope (Figures 5.29 and 5.30). This would imply that the 

retrogression direction has changed from dip-slope to slightly oblique to it. This could 

be related to a combination of the shape or direction of the slip-surface, as well as the 

morphology of the bill slope. 

Aerial photographic interpretation, supported by field mapping, has sbown that the 

shape of the mass movement is closely controlied by the major discontinuity pattern 

for the area. For example, part of the landslide backscar has a very distinctive 
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rectangular shape trending NW-SE and NE-SW. There are also a series of lateral 

tensión cracks running approximately parallel to each of the sides to the backscar. 

The majority of these occur along the western flank of the landslide backscar and 

would suggest that this is currently the most active part of the landslide complex. This 

could bave implications for the AL-104 main road, which passes within 10 m of this 

part of the mass movement. 

The landslide has occurred on a slope that was formed as a result of the incisión of the 

drainage system after the Rio Aguas/Rambla Feos River Capture. Due to the height of 

the crown area in relation to the height of the River Capture Wind Gap, and the dip-

slope nature of the landslide, it is possible that there had been a considerably smaller 

landslide at this location before the river capture. However, the current landslide has 

formed as a result of the river capture and subsequent rapid incisión of the Rio Aguas 

and formation of the slopes in this area. The presence of tensión cracks at various 

locations around the backscar of the landslide and the fact that it reaches the floor of 

the Valley indicate that this landslide is stili active. 

The locai AL-104 road is within lOm of the backscar to the landslide (Figure 5.30). 

Further failure of the backscar could start to undercut the road. There was also a dirt 

track that once went through part of the eastern section of the landslide. This was 

used to access E l Tesoro and the piers to the motorway bridges. 

340 



0583 

4105 
4105 

— 1 — T — 1 — 

I I I I I I I I I 

V W 

0583 

Spot Height (m.a.s.l.) 

Drainage Line 

Motorway & Road 

10 m Contours 

Landslide Debris 

Tension Cracks 

Landslide Backscar 

Escarpment 

Concave Change of Slope 

Concave Break of Slope 

Convex Change of Slope 

Convex Break of Slope 

Active River Channel 

River Terraces D & E 

Abad Member 
(Calcareous Mudstone) 

Azagador Member 
(Limestone) 

Chozas Formation 
(Mudstone) 

Figure 5.30 - Map of the Cerro Molatas/Carrasco Landslide 



Cliapter 5 - Case Studies 

5.3.1.4 Landslide Related Geomorpholosical Feature 

Düring the geological and geomorphological field mapping of the Los Molinos valley 

an anomalous outcrop of sediment was identified. From a distance, the outcrop has a 

similar weathering appearance to the surrounding area. However, closer inspection 

revealed that the feature did not fit in with the surrounding geology or 

geomorphology. 

The anomalous outcrop is located approximately 10-20m above the present level of 

the Rio Aguas active Channel, opposite the "Carrasco Landslide" (Figure 5.25). The 

area is (despite appearances) relatively inaccessible and protected by the "Cuevas de 

Sorbas, Parje Naturale" (Sorbas Caves Natural Park). 

Behind the anomalous outcrop is a 20-30m high cliff face of moderately strong, 

thickly bedded and lightly coloured, fossiliferous limestone (the Azagador Member). 

This is overlain by approximately 50m of moderately weak, calcareous mudstone that 

is intercalated with shale and the occasional thin bed of moderately strong sandstone 

(the Abad Member). The Abad Member is capped by the moderately strong and 

thickly bedded gypsum and interbedded calcareous mudstones of the Yesares 

Member. 

The geological units all dip towards the north, implying that the slopes above the 

anomalous outcrop are scarp-slopes. A definite ledge in the valley slope marks the 

contact between the limestone and the calcareous mudstone. This highlights the 

differences in erosión rates of the two geological units. 
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The anomalous outcrop sits above, and behind, a relatively large area of river terrace. 

This is thought to be a either a level D3 (?) or E (more likely due to height above 

current Channel) river terrace after Harvey & Wells (1987). The terrace is located on 

the inside of the Río Aguas active Channel. Geomorphological mapping of the area 

showed that the anomalous outcrop seems to be in the downstream "shadow" of an 

outcrop of the Azagador Member limestone which is immediately to the west of the 

anomalous outcrop (Figures 5.30 and 5.31). 

The anomalous outcrop is approximately 15m high, 150 m long and up to 50 m wide. 

Weathering of the northern side of the outcrop, along its contact with the limestone, 

means that it almost Stands alone as an Island defined by two steep gullies (along the 

northern and western sides). 

A light grey weathering crust that makes the study of the sedimentology rather 

difficult Covers the surface of the outcrop. However, there are three sections where it 

is possible to do so (Figure 5.31): 

• A weathering hollow on the northern side of the outcrop (Figure 5.32a); 

• A three-roomed man-made cave accessed through a hole in the front of the 

outcrop (this may bave been used for cold Storage by the owners of the abandoned 

farmhouse, but is now home to a swarm of African Bees - Figure 5.32b); and 

• A weathering hollow at the eastem end of the outcrop. 
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Figure 5.32b - Photographs of the second section (Scale is 1 m ruler) showing the 

chaotic nature and possible imbrication of the sediments (Grid Reference: 

0583241053). 
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Sedimentological analysis at these sections showed: 

• Thin horizontal laminations of rusty orange, brown, grey, and off-white/cream 

coloured, silts, clays and fine to medium grained, sub-angular sands; 

• The mineralogy consisted predominantly of quartz and mica; 

• The occasional layer (up to c.4cm thick) of coarser-grained quartz gravel; 

• Towards the base of the outcrop there are layers of sub-angular to sub-rounded 

pebbles of white sandstone (Sorbas Member?), light coloured limestone (Azagador 

Member?) and moderately well rounded pebbles of mica schist and ironstones; 

and 

• Internal structures within these pebble-rich layers show faint imbrication that 

possibly indicate a "flow" direction similar to the present river system. A small 

number of possible channel-like structures were also identified. 

The sediment that makes up the outcrop is relatively unconsolidated and easily 

erodible. However, a number of very thin layers (up to c.2 cm thick) of black organic 

matter and thicker layers (up to c.6 cm thick) of cemented material have been 

identified. These cemented layers are rich in calcium carbonate and contain "pipe

like" structures that have been identified as rootlets. These have been interpreted as 

possible calcrete layers (M. Watkinson «fe G. Ai\\ud,pers. comm.). 

Samples fi-om the three sections examined were brought back to the University of 

Plymouth for fiirther analysis. The samples have been analysed using standard 

micropalaeontological techniques. 
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The sediment (including sediment taken from between the layers of calcrete and 

carbonate material) has yielded abundant, but pooriy preserved foraminifera. The 

poor preservation, as well as etching and broken chambers, indicates that the 

foraminifera have been reworked by erosion of the parent rock (Figure 5.33; M . 

Oxford, C. Smart & M . B . Hart, pers. comm.). The foraminifera include both 

benthonic and planktonic taxa of Messinian age, indicating that they are derived from 

the calcareous mudstones of the Abad Member (Baggley, 2000; Section 2.3.4.2). 

Fine-grained, laminated sediment tends to indicate deposition in a low energy 

environment with the material being derived locally. The coarser material could then 

be interpreted as occasional "storm" or "flood events" that could transport material in 

from slightly ftirther afield from within the catchment area. The presence of rootlets 

and calcrete would suggest either a surface or sub-surface environment, with calcium-

rich groundwater conditions. 

The combination of predominantly locally derived sediment (containing relatively 

deep water planktonic and benthonic foraminifera), calcium-rich material (containing 

both rootlets and deep-water foraminifera) and carbonate-rich material possibly 

indicates a low energy, ephemeral environment for the deposition of the anomalous 

outcrop. This would tend to imply that the anomalous outcrop was either deposited 

under lacustrine conditions or as part of a river terrace. 

348 



Figure 5.33 Foraminifera from the Geomorphological Feature in the Los Molinos Valley. A. Globigerina sp.; 
B. Globigerinoides ir/Voèa. (Reuss, 1850); C. Neogloboquadrina acostaensis (Blow, 1959); D. Neogloboquadrina 
acostaensis (Blow, 1959); E. Orbulina universa d'Orbigny, 1839; F. Bulimina sp.cf. Bulimina elongata d'Orbigny, 
1826; G Bulimina Ínflala Seguenza, 1862; H. Uvigerina sp.cf. Uvigerinaperegrina Cushman, 1923; L Bulimina 

fiisiformis Williamson, 1858; J. Pullenia bulloides (d'Orbigny, 1864); K. Heterolepa dutempli (d'Orbigny, 1846); 
L. Elphidium crispum (Linnaeus, 1758); M. Epistominella exigua (Brady, 1884); N. Heterolepa dutempli 
(d'Orbigny, 1846). Scale bars are ali lOOfim, except D which is 50nm. Compared to the specimens figured by 
Baggley (2000, pls 1-3) these specimens are broken, abraded and lacking clear omament. 
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A similar dominantly fme-grained, sequence of laminated silt and clay with occasionai 

intercalated organic soils and fluvatile debris has been described at Cortijo Urrà (Grid 

reference: 0580441061) approximately 4 km upstream (Figure 5.34). Mather et al. 

(1991) and Harvey et al. (1995) described the Cortijo Urrà deposit as the D2 part of 

the three-part D river terrace sequence. In the Cortijo Urrà area, the deposit reaches a 

thickness of approximately 35m, and may extend below the modem river level 

(Mather et al., 1991). The D2 terrace deposits at Cortijo Urrà also contain numerous 

syn-sedimentary deformation structures, which are restricted only to tbis level (i.e. the 

significantly thinner, overlying D3 river terrace is not deformed). Mather et al. (1991) 

proposed that the deposition and deformation of tbis relatively thick river terrace 

deposit was the result of diapirism in the underlying gypsum, as well as possibly 

localised tectonic activity in the Cortijo Urrà area. The diapirism activity in the 

gypsum was possibly initiated by the unroofing of the gypsum, as the overlying 

material was eroded away as a result of the incisión of the Rio Aguas and its 

tributarles, post river capture (Mather et al, 1991). They argued that the diapirism 

and tectonic activity could bave led to ponding of sediment and, therefore, the 

deposition of the D2 river terrace. 

The question that is raised is whether or not the Cortijo Urrà D2 river terrace deposit 

and the anomalous outcrop in the floor of the Los Molinos valley are related? The 

anomalous outcrop has not been affected by any deformation, but then it is 3 km 

downstream from Cortijo Urrà. The anomalous outcrop is also a similar height above 

the current river level to both the D2 terraces at Urrà and several of the D3 river 

terraces along this section of the Rio Aguas (between Los Molinos and Urrà). 
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Mather et al. (1991) describe the D2 terrace at Cortijo Urrà as extending below the 

modem river bed. This would imply that the river had been cut to below the modem 

river level before the formation of the D2 terraces. The D2 terraces would therefore 

represent the infilling of the river channel. This level has then subsequently been 

incised by the Rio Aguas before the deposition of the D3 river terraces. This brief 

history would imply that the base level of the Rio Aguas has fluctuated during its 

incisión history. 

The D2 and D3 terraces (as mapped by Harvey et al., 1995) in the area between the 

entrance to the gypsum canyon and the Cortijo Urrà area, form reasonably large and 

level areas either side of the current active channel (Figure 5.34). The D3 terrace 

areas are also bounded by a series of closely spaced abandoned meander scars that 

suggest a very sinuous drainage pattern. This could indicate that the river, at that 

time, had a very low gradient and was, therefore, very dose to - or at - the base level 

of the drainage network. 

So how can these observations be explained? What would cause a "blip" in the 

incisión of the Rio Aguas and the formation of the relatively thick D2 terraces? One 

possibility is the occurrence of a landslide and the formation of a landslide dam 

downstream of Cortijo Urrà, possibly within the Rio Aguas canyon in the Los Molinos 

or Los Perales area. The river is very confined in these areas, and so a blockage of the 

river would bave the greatest affect. The landslide mapping has identified a number 

of landslides that could bave potentially blocked the river at this time. These are: 
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• The failures from the gypsum escarpment between the entrance to the gypsum 

canyon and Los MoHnos (although these would possibly not explain the 

formation of the anomalous deposit); 

• The "Tension Crack Ridge Landslide" (Section 5.3.4.1); or the 

• The Cuesta del Honor landslide near to Los Perales (Section 5.3.4.2). 

Any or all of these landslides could bave blocked the Rio Aguas during the formation 

of the D level river terraces. The sequence of events could possibly have been: 

1. Occurrence of a landslide or landslides that blocks the Río Aguas to form a 

landslide dam; 

2. Damming of water and sediment behind the dam; 

3. Relative raising of the Río Aguas base level; 

4. Relative decrease in the stream power of the Rio Aguas; 

5. Formation of tightly spaced meanders; 

6. Deposition of fine grained material (?D2 terrace deposits); 

7. Breach of the landslide dam; and 

8. Continued incisión of the Rio Aguas. 

Landslide dams are relati vely short-li ved phenomena that tend to leave very little 

evidence of their existence (Costa & Schuster, 1988). Often the evidence left behind 

consists of 

• Remains of meanders indicating that the stream power of the river was 

decreased, possibly as a result of base level being raised; 

• Remains of landslide material at the sides of the river Channel (the bulle of the 

material may be washed away when the dam is breached); and 
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• Flood deposits from when the landslide darti was breached. These can 

sometimes be catastrophic. 

The tightly spaced D3 terrace meanders may be related to this event, a second, 

shorter-lived event (henee no apparent deposits) or some otber factor that influenced 

the base level and/or the stream power of the Rio Aguas. 

Therefore the significance of the anomalous outcrop is that it may provide: 

• Evidence for the formation of a landslide dam that blocked the Rio Aguas for a 

period of time; 

• The possibility of being able to link the deposit (and therefore any potential age or 

environmental conditions) to any of the river terraces or landslide activity in the 

immediate area; 

• Evidence for the environmental conditions present at the time of deposition; 

• Pollen or otber micro/macrofossils that could provide a "dating" source for the 

deposit; and 

• A "date" for the deposition of the carbonate layers within the anomalous deposit. 

It is therefore potentially a significant source of Information concerning the geology 

and geomorphology of the Los Molinos area and the development of the Rio Aguas. 

It may even provide a link between the river terrace sequence and some of the 

landslide activity in the Los Molinos area. 
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5.3.2 The Rambla Feos Wind Gap 

The "Rambla Feos Wind Gap" marks the área where the ancestral drainage of the 

Sorbas Basin flowed southwards into the Carboneras Basin (Figure 2.1). It now 

marks the watershed between the Rio Aguas and the Rambla Feos. The "Wind Gap" 

(or "Capture Col") is 80 m above the present level of the Río Aguas and forms a 

relatively level plateau between Cerro Molatas in the west and Cerro de la Matica and 

the Sierra Cabrera in the east (Figures 5.25 and 5.35), 

Mapping of the river terraces by Harvey & Wells (1987) along the route of the Río 

Aguas and Rambla Feos identified a number of river terraces in tbis área. The floor of 

the Wind Gap has been "dated" as being a C river terrace (Harvey & Wells, 1987; 

Harvey et al., 1995). Tbis is underlain by the calcareous mudstones and sandstones of 

the Chozas Formation. The bilis immediately to the west of the Wind Gap consist of 

the moderately strong limestones of the Azagador Member. Limestones of the 

Azagador Member also outcrop in the bilis to the east of the Wind Gap, as well as the 

Chozas Formation and the mica schists (and other basement material) of the Sierra 

Cabrera. 
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5.3.3 The EI Tesoro Landslides 

El Tesoro is an abandoned village that is located in a relatively large, bowl shaped area 

immediately to the north of the Rambla Feos Wind Gap (Figure 5.25; Landslide 

Numbers 40-43; Grid Reference = 05834106). The village is immediately underneath 

the gypsum escarpment that is a continuation of the escarpment described in Section 

5.3.1.1. Some of the landslides that occur in tbis area bave been described by Hart 

(1999). 

The village is built on the moderately weak, thinly bedded, laminated calcareous 

mudstones of the Abad Member. In this area, the Abad Member contains the occasionai 

thin band of stronger, and more resistant, orange sandstone. The Abad Member is 

overlain by the moderately strong gypsum of the Yesares Member, which contains thin 

intercalations of moderately weak calcareous mudstone and siltstone. The Yesares 

Member thins out in the western part of this site (at the southern corner of the 

escarpment) and is replaced by deposits of Quaternary river terrace. These rest 

unconformably on the Abad Member. Below the Abad Member, the Rio Aguas is cut 

into the limestone of the Azagador Member. Al i three geological units present in this 

area dip towards the north and northwest. The more resistant geological units in the 

area are affected by the NE-SW and NW-SE trending discontinuity pattern that is seen 

elsewhere in this case study area. 

The village is built on scarp slopes in a relatively large bowl-shaped area that represents 

the outside of an older, higher level meander in the Rio Aguas, that was formed after the 

Rio Aguas/Rambla Feos River Capture. The valley side slopes are very steep and in 
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places vertical. The gypsum plateau above the area exhibits a number of différent karst 

features that bave been described by Calafarra & Pulido-Bosch (1997). One of the most 

significant karstic features observed above E l Tesoro are pipe structures. In a number 

of places, thèse bave developed into tension cracks that run parallel to the edge of the 

escarpment. 

Numerous landslides affect this relatively small area (Table 5.10). One could argue that 

the whole escarpment shows évidence of instability and that the majority of the bowl 

area is either covered or affected by landslide débris (Figure 5.36). The majority of the 

landslide activity involves a combination of sagging/rock avalanche at the edge of the 

escarpment, rock fall, rock topple, followed by sliding (and sometimes possibly rolling). 

Thèse movements are ail due to érosion within the calcareous mudstones that is 

undercutting the gypsum. Examples of this type of failure can also be seen along the 

section of gypsum escarpment underneath Penon Diaz and the gypsum quarry and along 

the opposite side of the valley from Los Molinos (Figure 5.25). 

It is interesting to note that landslides listed in Table 5.10 vary considerably in size, 

volume, runout length and angle of reacb. In particular, the angle of reach of thèse 

landslides decreases with the volume of the displaced mass. This agrées with the results 

presented in Section 4.2.16. The size and runout length of thèse landslides may also 

reflect the topography, of both where the landslide initiated from and the ground over 

which it has moved. 

On the eastern side of the El Tesoro area (Figure 5.25; Grid Référence = 05834106), a 

section of the escarpment has undergone a combination of rotational and non-rotational 

sliding. This has led to a stepped appearance in the hillside, which has subsequently 
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been modified by tbe construction of tbe village and agricultural terraces. Similar 

landslide activity can also be seen along parts of tbe canyon opposite the village of Los 

Molinos. 

Field mapping has shown that dissolution features within the gypsum play an important 

role in the location of the landslides along the gypsum escarpment (Hart, 1999). An 

example of this is seen in the northern part of the El Tesoro area (Figure 5.25; Grid 

Reference = 05834106). Here a small number of drainage lines on top of the gypsum 

plateau drain into a naturai pipe structure a short distance away from the edge of the 

escarpment. The gypsum in this section of the escarpment has broken up into a series of 

very large blocks. These blocks bave then undergone a combination of either 

translational, forward rotational or toppling movements. Some of these blocks bave 

then either toppled or fallen into the Barranco El Tesoro, following this initial 

sagging/rock flow-style movement. 
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Gypsum Plateau ^^P^"" Large Rock falls Lorry 

Gypsum Plateau Rock falls Slìpped g>i)$uin blocks 

Figure 5.36 - Photographs of the El Tesoro area. A. Large scale rock falls and topples within 

the El Tesoro area (Grid Reference: 0583841054 / Facing northwest). B. Looking north-

eastwards along the edge of the El Tesoro Gypsum Escarpment and the large scale failures 

within the bowl-shaped landscape (Grid Reference: 0583041057). 
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Table 5.10 - Extract of data frotn the Landslide Inventory for four of the 

landslides mapped in the El Tesoro area. 

"West El Tesoro 02" "West El Tesoro 03" 

Landslide No.: 40 41 

Grid Reference: 05831 41059 05831 41061 

Height: 50m UOm 

Length: 150m 250m 

Width: lOOm lOOm 

Angle of Reach: 18.0° 24.0° 

Volume: 0.015 X 10̂  0.625 X 10̂  

"El Tesoro NW" "EL Tesoro NE" 

Landslide No.: 42 43 

Grid Reference: 05834 41063 05837 41063 

Height: 50m lOOm 

Length: 200m 500m 

Width: 500m 400m 

Angle of Reach: 14.0° 11.0° 

Volume: 2.0 X 10̂  12.5 X 10̂  

Numerous factors have been identified as influencing the landslide activity (and to a 

certain degree the bowl shape) of the area. These are: 

• The NE-SW and NW-SE tectonic related discontinuity pattern of the area; 

• The presence of the pipe structures, tensión cracks and geologically controlied 

discontinuities along the edge of the gypsum plateau; 

• The presence of the Barranco del Tesoro and other minor drainage features in the 

area; 

• The dispersive nature and therefore extreme weathering potential of the calcareous 

mudstones within the Abad Member; 
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• The undercutting of the gypsum escarpment by erosión of the underlying mudstone; 

and 

• The relative rapid incisión of the drainage and therefore relatively rapid formation of 

the Valley side slopes and canyon walls. 

Apart from the abandoned village there is no other infrastructure located within the area. 

The motorway, which passes through the bowl area of E l Tesoro, has been built on an 

elevated section over the Barranco del Tesoro. Movement of the large rotational failure 

on the eastem side of the area could possibly affect the piers of this elevated section. 

5.3.4 Los Perales 

The village of Los Perales is located approximately 1.5 km downstream from the site of 

the Rio Aguas/Rambla Feos River Capture (Figure 5.25). It is situated approximately 

20 m above the present level of the Río Aguas within a steep sided, asymmetrically 

shaped river valley. It is also located beneath the level of the gypsum plateau (Yesares 

Member). Immediately above the village (on the northem side of the Rio Aguas), but 

below the gypsum plateau escarpment, is a lower escarpment cut into the limestone of 

the Azagador Member. Between the gypsum escarpment and the limestone escarpment 

are the calcareous mudstones of the Abad Member, which form a badland-style 

landscape. The valley floor and southern side of the valley are composed of the 

calcareous mudstones and conglomerate of the Chozas Formation, all of which dip to 

the north. 
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The orientation of the main Rio Aguas valley at Los Perales suggests it is following the 

regional strike of the geological units of the area. Therefore, there are dip-slopes on the 

southem side of the Rio Aguas valley and scarp-slopes on the northem side of the 

valley. 

5.3.4.1 The "Tension Crack Ridse" 

The name "Tension Crack Ridge" that is used here for the ridge that is located to the 

east of the "Wind Gap" and séparâtes the Los Molinos valley from the Los Perales 

valley (Figures 5.25; Landslide No. 39; Grid Référence = 0583741054). The term 

refers to the very large tension cracks that can be clearly seen affecting this ridge Hart 

(1999) and Hart et al. (2000). Davis et al. (2000) also identified some of the features of 

this landslide as part of a satellite image interprétation study in the région. 

The ridge is predominantly composed of light coloured limestone (the Azagador 

Member) that is dipping between 30° and 40° to the north and north-west. This 

unconformably overlies the calcareous mudstones and shales of the Chozas Formation. 

Geological mapping at the contact (wherever accessible) suggests that the contact 

between the two rock units has a dome-like shape with variable dip amount and dip 

direction. The limestone is affected by both jointing and dissolurion features. The 

jointing follows the regional trend. 

The ridge is located immediately to the east of the Rambla Feos Wind Gap, and to the 

south of where the Lower Aguas undercut and captured the drainage of the Sorbas 

Basin. The ridge is a dip-slope occurring on the inside of a deeply incised active 

meander channel. The slopes to the southeast of the ridge are also affected by landslide 
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activity (Section 4.4.2.6). The active channel of the Rio Aguas has undergone 

approximately 100 m of incisión at this point and flows around three sides - the 

southwestem, northwestem and northeastern sides - of the ridge (Figure 5.37). 

Although the área to the north of the ridge is a large open área of badland erosión 

undercutting the gypsum escarpment (El Tesoro), the current active channel has cut a 

deep and very narrow channel through the limestone. 

Aerial photographic interpretation, followed by geological and geomorphological field 

mapping, has shown that the ridge is dissected by a series of large tensión cracks within 

the Azagador Member limestone (Figures 5.37, 5.38 and 5.39). These tensión cracks 

define a series of "blocks" which vary greatly in size and exhibit varying degrees of 

movement, both in distance moved and angle of tilt. The tensión cracks reach widths of 

up to 10 m and lengths of over 100 m, and the blocks can be up to tens of metres across 

and several tens to hundreds of metres in length. Field mapping also highlighted that 

the tensión cracks trend predominantly NW-SE and NE-SW (Figure 5.37). This trend 

follows the discontinuity pattern for the case study área being discussed here, as well as 

the overall tectonic regime for the región. Interestingly, the ridge itself follows this 

trend, suggesting that its shape is controlled by the discontinuities in the limestone. 
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Figure 5.39 - Photographs of the "Tensión Crack Ridge". The landshde invoives 
blocks of Azagador Member limestone moving over mudstone (Chozas Formation). A . 
Looking along the ridge itself (Grid Reference: 0583841054 / Facing northwest). B . 
The ridge observed from the Gypsum Escarpment above El Tesoro (Grid Reference: 
0583041055 /Facing cast). 

367 



Cliapter 5 - Case Studies 

The western side of the ridge is a vertical rock face of the Azagador Member limestone 

(Figures 5.37 and 5.38). The base of the cliff face is covered by rock debris, which 

potentially covers an outcrop of the Chozas Formation. This rock debris is the result of 

rock falls from this cliff face. 

The "snout" of the ridge is a relatively broad northwest facing dip-slope that is broken 

up by the numerous tensión cracks described above (Figure 5.39). The Rio Aguas at 

this point passes through a very narrow (<5 m wide) limestone canyon. There are also 

some very large boulders at the northern end of this canyon. 

The northeastern side of the ridge forms a complex slope that is covered by a number of 

large blocks, boulders and rock debris (Figures 5.37, 5.38 and 5.40). It appears that the 

blocks (mentioned and described above) "move out" over the slope, and then either 

topple and slide or fall down the slope. The rock debris and boulders also fili the Rio 

Aguas canyon below the slope. 

Identification of the mechanisms involved in this complex landslide has not been 

straightforward. However, by studying the blocks, boulders, and the rock debris, as 

well as the distribution of the tensión cracks it has been possible to gain an 

understanding of the movements and mechanisms affecting the ridge. The movements 

involve: 

• The limestone sliding over the contact with the calcareous mudstones, with a slight 

outward component, as seen on the eastern side of the complex. These blocks then 

either fall or topple into the valley below. Examples of this are seen on the eastern 

side of the ridge; 
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• The larger blocks breaking up to form relatively small-scale rock avalanches as seen 

on the eastern side of the ridge; and 

• High-angle, non-rotational shear failures within the calcareous mudstones, with the 

limestone carried short distances downslope as intact blocks. An example of tbis is 

seen on the western side of the ridge. 

A cross section of the ridge (based on the geological and geomorphological mapping) 

highlights the rôle of the unconformity between the limestone and the underlying rock 

units, as well as the variation in the dip amount and direction of the unconformity 

(Figure 5.38). 

Using the classification schemes of Varnes (1978) and Turner & Schuster (1996), this 

mass movement would be classified as being a combination of latéral spreading, with 

"smaller" translational and non-rotational movements. Thèse continue until the rock 

mass becomes unstable, giving rise to rock falls, rock topples, and relatively small-scale 

rock avalanches. Parts of the landslide complex also exhibit some of the features 

associated with rock flow movements (Sackung) as defined by Dikau et al. (1997). 

Brunsden et al. (1996b) identified a similar combination of mechanisms affecting the 

Isle of Portland in southern England. This may suggest that this combination of 

controlling factors and geological and geomorphological setting is significant for 

landslide activity (i.e., a compétent rock mass overlying a ductile rock mass, 

outcropping along a "ridge-like" structure, with active érosion on both sides). 
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The details of the landslide, as contained within the landslide inventoiy for this study 

are shown in Table 5.11. 

Table 5.11 - Tension Crack Ridge landslide data 

Landslide No.: 39 

Grid Reference: 05838 41053 

Height: 140m 

Length: 500m 

Width: 400m 

Angle of Reach: Variable - depends 
on location 

Volume: 14.7 X 10* 

The factors that appear to control the activity of this landslide are: 

• The resistant but strongly jointed limestone overlying the weaker mudstones; 

• The discontinuities within the limestone; 

• The differences in permeability of the two rock units; 

• The varying dip amount and direction of the geological units and the unconformable 

contact; and 

• The relative rapid incision of the drainage and therefore relatively rapid formation of 

the valley side slopes and canyon walls. 

An interesting question is how old is the landslide? The top of the ridge is roughly at 

the same height as the River Capture Wind Gap and, therefore, river terrace level C. It 

is possible that the ridge only became unstable once the Rio Aguas had incised below 

the level of the limestone and mudstone contact. This would be post-river terrace C but 

before formation of the D river terrace levels. 
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If the ridge were to collapse towards the north and/or east, it would block the Rio 

Aguas, particularly as the river is within a very narrow canyon in this area. This could 

result in the formation of a lake, although this would not take place very quickly 

considering the climate of the area and the amount of water in the river. The sizeable 

boulder field and rock talus slopes in this area suggests that this side of the ridge is very 

active. The extremely large size of some of the boulders in this area would also suggest 

that any failure in this area could bave devastating effects on any infrastructure located 

in this area. However, the only infrastructure in the area, at this time, is the E-15 

motorway. The motorway is on an elevated bridge section above the valley and the 

river (Figure 5.41). 

Failure of the western side of the ridge could also afFect the Rio Aguas but possibly not 

to the same extent as described above. Although, there is a rock talus slope at the base 

of the ridge, it is dramatically smaller than the rock talus slope on the eastem side of the 

ridge. This would suggest that this side is more stable and, therefore, potentially poses 

a lower risk. 
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Figure 5.41 - Photograplí of the elevated section of the E-15 Motorway above the Río 

Aguas (Grid Reference: 0583041055 / Facing east). 
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5.3.4.2 The "Cuesta del Honor" Landslide Complex 

The "Cuesta del Honor" landslide complex is situated directly to the south of Los 

Perales (Figure 5.25; Landslide No. 44; Grid Reference = 05844105). The landslide 

covers the whole of the valley side from the ridge crest down to the Río Aguas (Eyers et 

al., 1998; Hart, 1999; Davis et al, 2000; Hart et al, 2000). 

The valley slope (and therefore the landslide) is formed from the interbedded calcareous 

mudstones and sandstones of the Chozas Formation. Outcrops of Azagador Member 

limestone can be seen at the ridge crest of the hillside and in the floor of the valley. The 

dip of both of these units is towards the north. The limestone is thickly bedded and 

moderately strong, whereas the calcareous mudstones are thinly bedded, moderately 

weak and highly eroded. The interbedded sandstones form bands of more competent 

material that can be traced through the rock succession. 

The geological dip of the área means that the landslide is located on a dip slope. The 

valley slope has a complex morphology, reflecting the complex history of landslide 

activity that aflfects the área. The Rio Aguas forms a very narrow channel at the base of 

the valley slope. The north side of the channel is a wall of Azagador Member 

limestone. However, there is little evidence of this on the southern side of the river. 

The landslide activity involves a combination of diflFerent mechanisms including 

rotational and non-rotational sliding. This is picked out by a series of blocks or "steps" 

within the hillside, some of which are slightly back-tilted (Figure 5.42). Both field 

mapping and API has shown that these vary in size and relative age. Many of the 

blocks are well degraded and vegetated. This suggests that this is an older feature 
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within the landscape and that the smaller movements are all part of a much larger 

landslide complex that affects almost the whole of the valley side slope (Table 5.12 and 

Figure 5.25). It is likely that the landslide initially started during the incision of the 

drainage system after the Rio Aguas/Rambla Feos River Capture and has been 

developing since that time. However, there is a possibility that the upper parts of this 

valley slope were unstable before this time, as the Lower Aguas was at a lower level 

than the Rambla Feos prior to the river capture. 

Table 5.12 - "Cuesta del Honor" landslide data 

Landsl ide No.: 

G r i d Reference: 

Height: 

Length: 

W i d t h : 

Angle of Reach: 

Vo lume: 

44 

05850 41055 

250m 

750m 

2000m 

18.0° 

147.3 X 10'm' 

The location of the smaller movements within the overall landslide complex is possibly 

influenced by the presence of a small number of springs within the hillside, which can 

often be picked out by areas of more dense vegetation. The presence of these springs is 

probably controlled by the underlying geology (i.e., boundary contacts between the 

mudstone and sandstone layers in the Chozas Formation). 

The geomorphological mapping of the lower valley side slopes has indicated that the 

landslide may have blocked the Rio Aguas. The section of the valley slope opposite 

Cortijo de Lentiscar (Grid reference: 0585041061) is a large back-tilted block (on which 

an electricity pylon has been placed). The block is composed of disturbed and slightly 

unconsolidated material (blocks of mudstone, shale and conglomerate). The area was 
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difFicult to map due to the very disturbed and wet nature of tbe ground (there was a 

spring ¡n the área). A limestone clifF face on the northern side of the river restricts the 

width of the river at this point. The river also flows around the toe of tbis back tilted 

block, and is possibly out of "alignment" with the main trend of the river. This could be 

the resuU of the landsHde blocking the river at this point, which has eroded around the 

back tilted block to cut the present river channel (Figures 5.25 and 5.42). 

The field mapping and API identified a number of different factors that have, or are, 

potentially controlling this landslide. Tbey are: 

• The location of natural springs within the hillside; 

• The dip of tbe geological units involved in the landslide activity; 

• The variable properties of the material involved in the landslide activity; and 

• The relative rapid incisión of the drainage and, therefore, relatively rapid formation 

of the valley side slopes and canyon walls 

The village of Los Perales is located on the opposite side of the valley from the 

landslide. It is also built above one of the river terrace levéis in the área (possibly 

terrace level E). This is used for agriculture. The access road for Los Perales descends 

to the valley floor through the western part of the landslide. This part of the landslide 

does appear to be stable at present, although there are the remains of back-tilted blocks 

that indícate previous failures in this área (high-angle rotational slides). 
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Los Perales! Terrace Level? The toe of the Landslide 

Figure 5.42 - Photograph of the toe área of the Cuesta del Honor Landslide and the village of Los Perales (Grid Reference: 0584341053 / Facing northeast). 
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5.3.5 Marchalico Vínicas 

The abandoned village of Marchahco Vínicas is located just below the level of the 

eastem edge of the gypsum escarpment, above the Rio Aguas. The village was possibly 

abandoned as a result of either the economie migration to the cities in the 1960s and 

1970s or the Spanish Civi l War. The village looks out over the eastem edge of the 

Sorbas Basin and the southem part of the Vera Basin (Figure 5.25). The village also 

provides an excellent view of a number of landslide features that affect this part of the 

study area (Eyers et al., 1998; Hart, 1999; Hart et al., 2000). 

Between Los Perales and Marchalico Viñicas the Rio Aguas valley opens up into a 

broader river valley. The valley side slopes below the gypsum plateau escarpment are 

composed of the calcareous mudstones of the Abad Member and weather to form a 

typical badland-style landscape. In the Los Perales valley area the limestone (Azagador 

Member) outcrops at river level. The dip-slopes on the southern slopes of the Rio 

Aguas valley (which are outside of this case study area) comprise of the limestone and 

the mudstones and shales of the Chozas Formation. The landscape (particularly below 

Marchalico Viñicas) has been altered by the constmction of the E-15 motorway, feeder 

roads and agricultural activity. 

The village itself is built on the scarp-slopes of the Abad Member, immediately 

underneath the escarpment of the gypsum of the Yesares Member. 

The village is approximately 150m above the current level of the Rio Aguas active 

channel, at the site of a naturai spring. The spring is found at the contact between the 

gypsum and the calcareous mudstones of the Abad Member, and is part of the extensive 
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karst System that is found within the gypsum (Section 2.3.5 and 2.5; Calaforra & 

Pulido-Bosch, 1997). The gypsum plateau above the village is one of the key example 

areas for some of the karst features described by Calaforra &. Pulido-Bosch (1997) that 

have contributed to the area being designated the "Cuevas de Sorbas, Parje Naturale" 

(Sorbas Caves Natural Park). One of the most significant karstic features along the 

edge of the gypsum escarpment are pipe structures. In a number of places, these have 

developed into tensión cracks that run parallel to the edge of the escarpment. 

There are two distinct landslide features in this area, as well as several smaller features 

(Figure 5.43). The two larger landslides (Table 5.13) can be clearly distinguished from 

each other on the basis of their geomorphology. They are also clearly identifiable on 

both the colour and black and white aerial photographs of the study area. Field 

evidence suggests that these landslides are of different ages and are, therefore, referred 

to here as the "Relict" and "Recent" Landslides. 
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Table 5.13 - Extract of data from the Landslide Inventory for the "Relict" and "Récent" 

landslides at Marchalico Vinicas. 

"Récent" Feature "Relict" Feature 

Landslide No.: 46 47 

Grid Référence: 0585141071 05853 41074 

Height: I80m 180m 

Length: 800m 900m 

Width: 200m 200m (min) 

Angle of Reach: 13.0° 11.0° 

Volume: 15.1 X 10*̂  m' 17.0 X 10' m^ 

5.3.5.1 The "Récent" Feature 

The "récent" landslide forms a very prominent feature on the ground and is clearly 

visible on aerial photographs and A T M images (Eyers et al., 1998; Hart, 1999; Hart et 

al., 2000). The reason for this is due to the extremely large gypsum boulders within the 

débris accumulation and the long runout of the débris. Geomorphological mapping of 

the area suggests that the landslide occurred as a combination of a large non-rotational 

movement within the Abad Member and collapse of the overlying gypsum. The débris 

then moved downslope as a large debris/rock avalanche. 

The village is located directly under the backscar, in a small dépression formed by the 

top of a slightly back tilted block (Figures 5.43 and 5.44). Parts of the village are also 

located within the runout of gypsum boulders that cover the upper slopes suggesting 

that the landslide occurred prior to the construction of the village. The spring (see 

above) is found at the back of one of the gullies mentioned above, and is covered by the 

edge of the runout (Figure 5.43). 
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Figure 5.44 - Photograph of the Marchalico Vinicas abandoned village, the crown areas for both landslides described here and the edge of the Gypsum 

Escarpment (Grid Référence: 0585541077 / Facing southwest). 
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The debris accumulation in the crown area of the iandslide (i.e., under the level of the 

gypsum escarpment) is not confined by the topography. In the middle section of the 

slope the debris accumulation is confined within two gullies. Further downslope the 

two gullies join together and the debris is completely confined within tbis topographic 

low. The Iandslide runout ends just above the motorway embankment. Although the 

toe area may bave been modified by the construction of an embankment, there is no 

evidence that the debris would bave travelled beyond the observed point. 

Tbis Iandslide is probably the result of a number of sagging and non-rotational 

movements (Dikau et al., 1997) involving both the gypsum and underlying mudstone. 

Due toe the nature of the rock material involved the moving blocks would bave broken 

up to form the observed rock debris. It would then bave moved downslope as a rock 

flow. The presence of the spring near to the backscar area of the Iandslide may also be 

significant in explaining the mobility of the rock material. The inifial movements along 

the edge of the Gypsum Escarpment may bave been similar to the sagging movements 

seen at the Tension Crack Ridge and described by Brunsden et al. (1996b). 

Further movement of the "recent" Iandslide may affect the houses of Marchalico 

Viriicas. However, as the buildings are abandoned and show signs of decay, any 

structural damage caused by Iandslide activity (past, present or future) would be 

difficult to ascertain. Recently, however, there was some speculafion that a developer 

was looking to buy the site and use it for secluded holiday homes (Walsh, pers. comm.). 
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5.3.5.2 The "Reliei" Feature 

The "relict" landslide, which is located just to the north of the village and adjacent to 

the "recent" landslide, is a well-degraded and masked feature in the landscape. 

Although the landslide and surrounding slopes have been considerably modified by 

human activity, (i.e., the construction of the village, agricultural terraces and a track), it 

can be picked out on aerial photographs by its overall morphology. The landslide is 

approximately 800 m long, reaching from the gypsum escarpment down to just above 

the level of the Rio Aguas active channel (Figure 5.43). 

Geological and geomorphological field mapping of the landslide has indicated that the 

landslide has been modified by surface processes, erosión and more recent landslide 

activity. For example, the northem of the two guilles, down which the "recent" 

landslide has travelled, has dissected the "relict" landslide. The gully wall shows a 

section through the landslide, as well as the contact with the underlying geology (Figure 

5.45). The landslide has also been dissected by the construction of the motorway and a 

feeder road (Figures 5.45 and 5.46). The toe of the landslide outcrops in the slope just 

above the active channel of the Rio Aguas. However, this slope may bave been afifected 

by the construction of the motorway and feeder road. 

The four sections mentioned above (the gully wall, two road cuttings and the toe area) 

have allowed the internai structure of the landslide to be studied. They show that the 

lower parts of the debris accumulation zone consist of a chaotic "jumble" of relatively 

large, well-rounded gypsum boulders, held within a calcareous mudstone/siltstone 

matrix (Figures 5.45 and 5.46). The contact between the debris accumulation and the 

originai ground surface (i.e. the shear surface) shows evidence for scour and removal of 
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material, as well as for filling-in dépressions on the original ground surface. The shear 

surface is at a much gentler angle than the current topography. 

It is likely that the landslide involved a number of différent failure mechanisms. The 

initial movement may bave been similar to the sagging movements described for the 

Tension Crack Ridge and the "Récent Landslide" at this locality (see above). Thèse 

movements may bave then progressed into a number of non-rotational landslides (Dikau 

et al, 1997). The cross sections througb the landside (Figures 5.45 and 5.46) would 

indicate that the final movements of the landslide were very similar to a débris flow or 

rock avalanche. Again, the présence of the spring in the crown area of the landslide 

may bave influenced the mobility and mechanism of the landslide. 

The débris from the road construction bas been tipped down some of the surrounding 

slopes into the river channel. However, it is possible to distinguish between the two 

types of material: 

• The lack of matrix material in the tipped material; 

• The conditions of the gypsum boulders - the tipped boulders are more broken and 

some are more angular; and 

• The degree of weathering - the tipped material is slightly more weathered; 
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• 

Recent TandsUde" Mudatone Redrork "Relict Landslide" 

B. 
Figure 5.45 - Photographs of a section through the MarchaHco Vinicas "ReHct" LandsHde. 
exposed in a gully wall. adjacent to the E-15 Motorway (Grid Reference: 0586041067 / Facing 
northwest). Photograph B is a close-up of Photograph A. 
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Figure 5.46 - Photographs of sections through the Marchalico Vínicas "Relict" landslide. A. 

Road cutting on the minor road to La Herrería. B. Motorway road cutting. Both photographs 

are taken from the tops of the road cuttings either side of the minor road to La Herrería, at the 

approximate Grid Reference 0586041070, facing almost northwest. 
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The field mapping revealed a number of tensión cracics (severa! tens of metres long) that 

cut through the "relict" landslide feature within approximately 5m of the top of the 

motorway road cutting. They reach widths of approximately 10-20cm. These may 

indicate reactivation of this part of the "relict" landslide debris accumulation. The 

tensión cracks also pass by the foundation block for a high voltage electricity pylon. 

5.3.5.3 Other Landslide Features 

Other sections of the gypsum escarpment adjacent to the two features described above 

bave failed as either rock toppling failures or as a number of fairly large rock falls. The 

latter are the result of the gypsum being undercut by the erosión of the underlying 

calcareous mudstones. The topples may be the result of shear surfaces developing in 

the underlying calcareous mudstones, which then cause the gypsum blocks to rotate and 

topple forwards. The size and shape of the blocks are defmed by the pipe structures and 

other discontinuities within the gypsum. 

5.3,6 Synopsis of the Gypsum Escarpment Case Study Area 

The API and field mapping bave identified a number of factors that control the landslide 

activity affecting this case study area. These are: 

• The presence of the active springs in the crown area for both the "relicf and 

"recent" failures at Marchalico Viñicas and in different parts of the Cuesta Del 

Honor landslide; 
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• The presence of the pipe structures, tensión craclcs and geologically controlied 

discontinuities along the edge of the gypsum plateau; 

• The dispersive nature and therefore extreme weathering potential of the calcareous 

mudstones within the Abad Member; 

• The undercutting of the gypsum escarpment; and 

• The relative rapid incisión of the drainage and, therefore, relatively rapid formation 

of the valley side slopes and canyon walls. 

This last point is particularly interesting, as this site is downstream of the Rio 

Aguas/Rambla Feos River Capture site. The idea of a "wave of incisión" moving 

upstream from the river capture site has already been described (Section 2.4). Field 

mapping at this site, and upstream towards the river capture site, would indicate that a 

similar "wave of incisión" was also felt downstream of the river capture site (Stokes, et 

al., 2002; Mather et al, 2002). This is not surprising, considering that the river capture 

would bave meant that the catchment area for the ancestral Rio Aguas (i.e., the "Lower 

Aguas") increased dramatically. This would bave led to an increase in the stream power 

(and therefore erosión potential) of the river. However, unlike the area immediately 

upstream of the river capture site, where the "wave of incisión" led to the formation of 

river canyons, the geology of the downstream section has led to the formation of a 

slightly more open river system. 

By using the geomorphological mapping results it is possible to construct a tentative 

landscape bistory for the landslides: 
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1. Dissection of the Gypsum Plateau and Góchar érosion surface by tbe formation of 

tbe ancestral Lower Aguas, accompanied by landslide activity (e.g., the proto-

Cuesta Del Honor and Carrasco landslides). 

2. The above dissection would bave been driven by the diflferential uplift between the 

Sorbas and Vera Basins (Mather, 1991; Stokes, 1997; Mather et al., 2001; Stokes et 

al., 2002; Mather et al., 2003). 

3. The Rio Aguas/Rambla Feos River Capture. 

4. An increase in the gradient and stream power of the Rio Aguas, leading to increased 

rates of drainage incision and slope érosion. 

5. Incision of the Rio Aguas and érosion of the gypsum escarpment to almost présent 

locations. 

6. The failure of the "Relict" landslide. 

7. The formation/incision of the présent gully through spring activity, that cuts through 

tbe "Relict" landslide. 

8. The failure of the "RecenC landslide, iurther modifying the landscape and the 

geomorphological fingerprint of the "Rel ief landslide. 

9. The modification of the slopes by human activity in tbe area. 
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5.4 Chapter Summary 

A number of case studies bave been cbosen from witbin the study area to bighlight 

some of the findings from the aerial photographie interprétation, the field investigations 

and some of the results and observations that were described and discussed in the 

previous chapter. The examples ail came from two parts of the study area - the area 

around the town of Sorbas and the area immediately upstream and downstream of the 

Rio Aguas/Rambla Feos Wind Gap (Figure 5.1). Both of thèse areas are witbin the part 

of the study area most greatly affected by the Rio Aguas/Rambla Feos River Capture 

and are presented here as a series of "type localities" that bave bigblighted: 

• The effects of the Rio Aguas/Rambla Feos River Capture; 

• The link between the geology, geomorphology and observed landslide activity; 

• The factors controlling the landslide activity and how thèse vary across the study 

area depending on the geological and geomorphological setting; 

• The range of landslide activity that is seen witbin the study area (styles, failure 

mechanisms and geomorphological setting); 

• The diversity of landslide failure mechanisms, including rock fall, rock topple, bigh-

angle rotational sliding, non-rotational sliding, and Sackung failures (Dikau et al, 

1996); and 

• The interaction between landslide activity and the infrastructure and population of 

the study area. 

The factors affecting slope instability in thèse example areas bas been shown to be: 

• Unloading of the canyon walls and valley side slopes (due to the incision 

of the drainage network); 

• Discontinuities witbin the rock mass and their orientation; 
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• Flood events (usually occurring during intense periods of rainfall); 

• Sub-surface groundwater flow; 

• Weathering of the materials involved; and 

• Construction activity in the area. 

The examples presented in this chapter have also highlighted the relative ages of the 

landslide activity within the study area. This is: 

1. Contemporary landslide activity; 

2. Those that occurred after the Rio Aguas/Rambla Feos River Capture and 

during the incision; and 

3. Those that initiated before the Rio Aguas/Rambla Feos River Capture. 

The case studies that have been described and discussed in this chapter have shown how 

the evolution of part of the drainage system of the study area has affected slope stability. 

These examples have highlighted how a river capture occurring approximately 100,000 

years BP led to a wave of incision passing through part of the Rio Aguas and some of 

its tributaries leading to a dramatic increase in base level lowering and incision. The 

incision led to the formation of river canyons and over steepened slopes. It is on these 

slopes that the majority of the landslides mapped by this study have occurred. 

The information that has been presented in this chapter has been combined with the 

results from the previous chapter covering the analysis of the landslide distribution and 

the information described and discussed in Chapter 2 concerning the geology and 

geomorphology of the study area to develop a ground model for the Rio Aguas study 

area. This is presented in the following chapter. 
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Chapter 6 - The Río Aguas Geological Model & Summary 

"... ifyou do not know whatyou should be lookingfor in a site investigation, 

you are not likely to find much of valué " - Glossop (1968) 
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6 The Rio Aguas Ground Model 

6.1 Introduction 

One of the main aims of this research project has been to develop a geológica! and 

geomorphological ground mode! for the Rio Aguas catchment area. The previous two 

chapters have described the results from this landslide investigation. Chapter 4 

describes the results from the Statistical analyses, highlighting those geological, 

geomorphological and morphological factors that appear to be significant in explaining 

the mapped landslide activity. In particular, this makes use of the terrain Classification 

that is described in Section 3.2.3. Chapter 5 uses a number of case studies to highlight 

the link between the mapped landslide activity and the geological and geomorphological 

setting of the study area (outlined in Chapter 2) and, in particular, the role of the Rio 

Aguas/Rambla Feos River Capture. The details contained in the case studies are 

derived from the aerial Photographie Interpretation and field work, plus the results of the 

Statistical analyses. This chapter provides a conclusión to this work and has the 

following aims: 

• To demónstrate how these observations and results have been used to develop a 

geological and geomorphological ground model for the Rio Aguas catchment 

area; 

• To highlight topics of ongoing and/or fiirther areas of research, relating to the 

topics covered by this study; and 

• To summarise the fmdings of this study. 
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6.2 Rationale for the Development of the Ground Model 

The ground conditions at any site are a product of the geological and geomorphological 

history. Hutchinson (2001), in the fourth Glossop Lecture, described the 

geomorphology of any site as "precious and fragile, the end result of an interplay of 

thousands to millions of years between solid and Quatemary geology, hydrogeology, 

climate, process and the nature of the ground as controlied by its physical properties". 

Brunsden (2002), in the fifth Glossop Lecture, quoting Skempton (1953), Terzaghi & 

Peck (1967), Peck (1969), Legget (1977), Henkel (1982), Fookes (1997) and Fookes et 

al. (2000) argued that to understand any particular site we must attempi to consider the 

total geological and geomorphological history of any site, including the event 

magnitude/frequency relationships. 

In the first Glossop Lecture, Fookes (1997) referred to tbis as developing a geological 

model for a site based on the "Total Geological History" of the site, and stated that it 

included strafigraphy, structural geology, former and current geomorphological 

processes and the past and present climatic conditions. 

Fookes (1997) suggested that geological models provide a way to conceptualise the 

ground conditions of a site and to make predictions. A geological model should provide 

a fi'amework for the raw data being used, and allow for the Identification of patterns 

both within the landscape and the data. To develop such a model, practitioners will 

draw on experience and published case histories (Fookes et al., 2000). A site specific 

geological model is essential to make sense of the total geological history and predict 

395 



Chapter 6 - Ground Model & Suininary 

how this will influence the engineering performance of a site during, and after, 

engineering works (Total Geology Website, 2001). 

Fookes (1997) argued that such ground models were conceptual and not prescriptive. 

There is no model "model" and, to a certain degree, it should be site specific. It was 

suggested by Fookes (1997) that the model should comprise geologica! cross-sections 

with, or without, surface geologica! plans. Larger areas might bave complex block 

models. 

The strength of the ground model is in enabling predictions to be made or situations 

anticipated for which explanations need to be sought in the geologica! materials, 

geologica! structure and in the ancient and active geologica! and geomorphological 

processes in the area. It provides a rationa! basis for interpretation of the geology fi'om 

understanding and correlation of observed geologica! features and exposures. It can 

also provide an indication of the potential variation in the properties of the soi! and/or 

rock mass (Fookes, 1997). 

The Fookes et al. (2000) paper and the subsequent "Total Geology" website (Total 

Geology Website, 2001) bave proposed a number of different idealised models for a 

number of different geologica! and geomorphological settings. Their closest 

geomorphological model to the Rio Aguas study area is for a "hot dry climate" (Figure 

6.1). This model was based on observations from Nortb Africa, the Middle East and 

parts of Arizona (Fookes et al, 2000). The closest geologica! models defined by 

Fookes et al. (2000) for the Rio Aguas study area are: 
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- Hot arid and hot wet climates (Figure 6.1; based on Selley, 1985; Tucker, 1991; 

Emery & Myers, 1997); and 

- open folds and joints (Figure 6.1; based on Price & Cosgrove, 1990), 

Recently, Delgado et al. (2003) developed a geotecbnical ground model for the Segura 

River flood plain of SE Spain, using subsurface data. The investigation focused on the 

bearing capacity and liquefaction potential of the subsurface material. It did not 

however, investígate the geomorphological history of the área or the presence of other 

geological hazards. 

Therefore, although none of these models match what is seen in the Rio Aguas study 

área, they do provide an insight into some of the landforms and processes that are found 

in the study área. They can, therefore, provide a starting point for developing a more 

site specific ground model for the Rio Aguas. 
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6.3 The Río Aguas Ground Model 

The synoptic ground model of the overall ground conditions for the Río Aguas study 

área presented here includes: 

• The landslide inventory (Appendix B); 

• Chapter 2 - the descriptions of the geology and geomorphology of the study 

área; 

• Chapters 4 and 5 - descriptions of the results and many of the landslides mapped 

in the study área; 

• A series of summary tables describing the various parts of the study área; 

• A series of photographs highlighting different parts of the study área; 

• An annotated map showing the distribution of the Land System and other 

features; and 

• A three-dimensional model of the study área. 

The geomorphological setting and geomorphology of the study área were described in 

Chapter Two. Tbis included a description of the main landforms and processes that are 

found in the study área. This Information, and the results from the aerial photographic 

interpretation, were used to develop a terrain classification scheme based on the concept 

of Land Systems, Facets and Elements for the study área. This classification was tben 

refíned through the fieldwork and field validation of the API results, with the final 

scheme being described in Chapter 3 (Table 3.2). This scheme has now been modifíed 

to take into account the results from the statistical analysis of the landslide inventory 

presented in Chapter 4, as well as the field and API observations of the landslide 

399 



Cliapter 6 - Ground Model & Suminary 

activity affecting the study área, many of which were presented in Chapter 5 (Table 6.1 

and Figures 6.2 to 6.9). 

The ground model presented here highlights: 

• The relationship between the underlying geology, the geomorphology (based on 

the project derived terrain classification) and the landslide distribution; 

• The link between the landslide distribution, the Rio Aguas/Rambla Feos River 

Capture and the extent of the resulting wave of incisión picked out by the nick 

points within the drainage system; 

• The relationship between the Rio Aguas and other major tributarles such as the 

Rambla de Los Castaños and the Rio Jauto; 

• Those "anomalies" within the landscape that could provide flirther Information 

about individual landslides or the evolution of a particular part of the study área; 

and 

• A summary of the main fmdings of tbis study. 
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Table 6,1 - Descriptions of the Ground Model units developed by this project for the Rio Aguas Study Area, based on the terrain classification. 

Land System Location Geology Description Landslide Activity Fig. No. 
Mountain slopes 
incised by 
gullies, canyons 
and river 
channels 

Sierra Cabrera and 
Sierra Bédar 

Basement Material 
(gneiss, mica schist, 
phyllite) 

Steep mountain slopes, drainage 
channels are incised, narrow and 
steep, basin margin fault Systems. 

Rock falls and topples, as well 
as slope détérioration 
processes 

6.4 

Mountain slopes 
with gullies Sierra Filabres 

Basement Material 
(gneiss and mica 
schist) 

Steep mountain slopes covered by 
scree material. Very little dissection 
of the drainage channels. Very steep 
slopes. 

Rock falls and slope 
détérioration processes 6.5 

Hill areas incised 
by canyons and 
gullies 

The centrai western 
parts of the study area Neogene sediments 

Areas that have been incised by the 
drainage network. Characterised by 
steep sided gullies and canyons. 

Rock falls and topples, with 
some high-angle rotational and 
non-rotational landslides 

6.6 

Hill areas with 
river valley side 
slopes 

The centrai western 
parts of the study area 
away from the main 
drainage channels 

Neogene Sediments 

Areas with valley side slopes formed 
by the dissection of the drainage 
channel. Some gullies, but generally 
open side slopes 

High-angle rotational and non-
rotational landslides, 
translational landslides, as well 
as minor rock falls and topples 

6.7 
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Table 6.1 (contínued) - The Ground Model developed by this project for the Río Aguas Study Área. 

Land System Location Geology Description Landslide Activity Fig. No. 

Gypsum Plateau 
and Karst 

Central part of the study 
area 

Yesares Member -
gypsum interbedded 
with calcareous 
mudstone 

Large area of level terrain. Very thin 
or no soil cover. Sparse végétation 
cover. Characterised by dissolution 
features such as sinkhoies, and cave 
Systems, as well as other karstic 
features. 

The eastern edge of the plateau is 
marked by a distinctive escarpment. 

Focused along the eastern 
escarpment. Characterised by 
high-angle rotational and non-
rotational landslides, sagging 
and rock falls and topples. 

6.8 

Badlands 

1. Between the 
Gypsum Plateau 
Land System and 
the Río Aguas 

2. Barranco de 
Mocatán area 

1. Abad Member 
2. Zorreras and 

Góchar 
Fonnations 

Typical "Badiand" landscapes. 
Areas of high rates of érosion and 
dissection. 

Predominantly affected by soil 
érosion and other "badland-
type" processes. Landslide 
activity found in areas where 
badlands undercut stronger 
rock types. 

6.9 

Level Terrain 

NE and SW parts of the 
study area, as well as 
areas below the Sierra 
Filabres 

Neogene and 
Quaternary 
sediments 

Relatively level terrain. Some parts 
of this area (i.e. central parts of 
Sorbas Basin) will relate to the 
Gôchar érosion surface 

No observed or mapped 
landslide activity NA 
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Large rock fall and topple, in the 
area of one of the Vera Basin, 
basin margin faults. \ 

A. 

Large rock fall and topple, along the Rio Jauto. 

B. 
Figure 6.4 - Landslides within the "mountain slopes with incised drainage" Land System. A. 

Landslides in mica schist (pari of the Higher Betic Units) within the Sierra Cabrera (Grid 

Reference: 0594541077 / Facing cast). B. Rock fall and topples in gneiss (part of the Higher 

Nevado-Filabrides Complex) within the Sierra Bédar (Grid Reference 0591541125 / Facing 

east). 
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slopes" 

Chapter 6 - Ground Model & Summary 

Sierra de Los Filabres 

^Level Terrain (tfie "ííóchar Erosion Surface") 

Figure 6.5 - The Mountain slopes with gullies and scree-raantled slopes" Land System. The 

photograph is taken looking to the north from the roadside of the AL-813, approaching the 

village of Uleila del Campo. The highest peak in the picture is the "Ermita de la Virgen de la 

Cabeza" (1304 m above sea level). The slopes of this part of the Sierra de Los Filabres are 

fomied from gamet mica schist of the Nevado-Lubrin Unit. 

406 



Chapter 6 - Ground Model & Summary 

Backscar cliff face 

Backscar cliff face Landslide debris 

Figure 6.6 - Landslides within the Land System "hill areas with incised drainage". A. Large 
rock fall just below a knick point in the Góchar Formation conglomerates and mudstone within 
the Rambla de Góchar (Grid Reference: 0576241106 / Facing north). The canyon is 
approximately 30m deep at this point. B. Non-rotational landslide within the Zorreras Member 
conglomerate and mudstone within the Barranco del Aguaron, near to Cortijo Urrà (Grid 
Reference: 0579141074 / Facing north). The rambla has been incised approximately 30-40m 
below the surrounding counlryside. 
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Translation landslide involving fine grained sediment sliding along the 
contact with underlying g\'psum of the Yesares Member. Slope angle c. 30-. 

Land System. This landslide is located at "La Clauda" near to Cortijo Urrà (Grid 

Reference: 0579541050 / Facing northeast from near to the farm "La Clauda"). 
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Gypsum Plateau t.^^. r_||„ Slipped gypsum blocks 

A. Large scale rock falls and topples within the El Tesoro area ("Grid Reference: 0583841054 / 
Facing northwest). B. Looking north-eastwards along the edge of the El Tesoro Gypsum 
Escarpment and the large scale failures within the bowl-shaped landscape (Grid Reference: 
0583041057). . 
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Highiy eroded slopes & slope instability 

Figure 6.9 - Photograph of the Badiands at Mocatân near Sorbas. The area is heavily 

aiîected by soil érosion and dissolution features, often leading to small-scale slope 

instability (Grid Référence: 0576841036 / Facing east northeast along the Barranco de 

los Contreras). 
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6.4 Summary 

As outlined in Section 1.5, the aims of this study have been to: 

1. Identify the types o f landslide and landslide activity affecting the study area, 

including the main factors and Controlling conditions that lead to the observed 

landslide activity. 

2. Investigate the link between the development of the drainage network, the 

Quatemary river terrace deposits, the landscape and the observed landslide 

activity. 

3. Develop a conceptual ground model for the Rio Aguas catchment area, based on 

the desk study research, API, field observations and Statistical analysis of the 

landslide inventory. 

Most landslide investigations involve some form of landslide inventory database. Three 

such examples were discussed in Chapter 1. It was shown that these landslide 

inventories (often quoted as examples of "best practice") used either desk study sources 

or remotely sensed Images (satellite data or aerial photographs) for the data collection 

and "High-tech" methods for the data analysis such as Geographical Information 

Systems (GIS). These studies have usually been undertaken without reference to a 

ground model for the area being considered (i.e., the landslides are almost studied in 

Isolation from their geological and geomorpbological setting) and were usually carried 

out in wet (monsoonal environments) with significant Vegetation cover. These areas are 

often mountainous and/or heavily populated areas. The importance of developing and 

using a ground model for a given area was stressed in Section 6.2, when it was shown 
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that to understand any particular site, or landslide we must attempt to consider the total 

geological and geomorphological history of the site and the processes that have been 

active during that period. It was, therefore, noted that very few landslide inventory 

based projects have sought to use primary field mapping (in conjunction witb remote 

sensing) and then to evalúate the data in its geological and geomorphological context, 

particularly in a relatively remote, arid environment. 

This project has, therefore, sought to use the full range of land surface evaluation 

techniques to carry out a landslide investigation and develop both a landslide inventory 

and a geological and geomorphological ground model for the 425 km^ catchment área 

for the Río Aguas. This is a relatively remote, rural and arid to semi-arid región of 

southeastem Spain. Although the geology and geomorphology of the área are well 

understood (as described in Cbapter 2), the landslide activity of the área was less 

understood. Previous work had focused on the use of satellite image processing 

techniques for landslide mapping, rather than the landslides themselves. 

The framework for the ground model was a project-derived terrain classification scheme 

based on the concept of Land Systems, Land Facets and Land Elements (Section 3.2). 

The ground model also broadly indicates áreas of landslide susceptibility within the 

study área. The terrain classification and landslide inventory were both developed 

through a combination of aerial photographic interpretation and field mapping (Section 

3.3). This methodology, in conjunction witb the desk study, is regarded as the ideal 

way of developing any landslide inventory datábase or ground model. 
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The study área falls within the two Neogene sedimentary basins - the Sorbas and Vera 

Basins. The basin fill is a succession of marine calcareous mudstones, limestones, 

sandstones, conglomérales and gypsum. This is capped in a number of places by river 

terrace deposits. The northwestem and southeastern sections of the study área are 

bordered by Sierras composed of predominantly metamorphic rocks. The present 

drainage network was initiated during the Plio-Pleistocene and has incised through the 

sedimentary succession. This drainage network, which originally flowed southwards, 

has been modified by a number of river capture events. 

One of these events (the Rio Aguas/Rambla Feos River Capture approximately 100,000 

years BP) has had a significant impact on the landscape in the south central part of the 

study área closest to the capture site. The river capture has led to: 

• A relatively rapid drop in base level. 

• An increase in the rate of incisión, erosión and land surface lowering, especially 

in the áreas closest to the river capture site. 

• A wave of incisión to pass through a section of the drainage network, leading to 

the over steepening of many of the valley sides slopes and formation of river 

canyons. The upstream extent of this wave of incisión is picked out by a 

number of knick points. It is within the área affected by this wave of incisión 

that the majority of the observed landslide activity is found. 

It is this combination of events that has contributed to the majority of the landslide 

activity that is seen in the study área. Analysis of the landslide inventory datábase 

(described in Chapter 4 and summarised in Figure 6.10 and Tables 6.2 to 6.4) has 

shown that the landslide activity of the study área is closely controUed by the 
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underlying geology, geomorphological location and slope morphology of a particular 

site. The causes of individual landslides have been considered but due to the lack of 

exact dates and other historical information that has proven difficult. However, those 

factors that control the landslide activity of the study area have been considered and are 

summarised in Table 6.3. 

Relative ages for the landslide activity can be estimated by comparing the spatial 

distribution of the landslides with the spatial distribution of a succession of Quatemary 

river terraces that have been mapped in the study area. These river terraces relate to the 

incision of the drainage network and described in detail in Sections 2.4 and 2.5. The 

link between the landslide distribution and the development of the landscape and 

drainage network has been described in Chapter 5. A number of "Landslide Type 

Localities" were also described. These were chosen to highlight the nature, variety and 

Scale of the landslide activity that is seen within the parts of the Rio Aguas catchment 

area most greatly affected by the Rio Aguas/Rambla Foes River Capture described 

above and in previous chapters. 

It is argued here, that to understand the landslide activity of the Rio Aguas catchment 

area and be able to develop a working ground model for the area, one must understand 

the détails of the underlying geology, the tectonic and structural setting of the région, 

the transition from marine to continental conditions and the formation and subséquent 

development of the drainage network. This approach is significant as: 
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• It has provided a working model for the assessment of landslide activity in the 

Rio Aguas Catchment and will provide a valuable database for fiiture 

infrastructure development; and 

• The development of complex ground models is little understood, but the 

methodology is applicable world-wide (as suggested by Fookes, 1997 and 

Fookes et al., 2000). The methodology developed here, for the Rio Aguas 

Catchment Area, can therefore, be regarded as a pilot investigation (particularly, 

for an arid to semi-arid environment). 

Of potential significance for the Rio Aguas Catchment Area, the development of the 

ground model presented here has helped to identify; 

• Clusters of landslides which are linked to changes or anomalies within the 

landscape or drainage network that may relate to geological or 

geomorphological processes such as faulting or river capture; and 

• A lake deposit/river terrace (described in Section 5.3.1.4) that could provide 

further palaeontological, micropalaeontological, sedimentological and 

environmental information about that part of the study area and the development 

of the Rio Aguas in the last 10,000 years. 
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T a b l e 6.2 - Summary of the results from this landsHde investigation. The table shows 

those factors with the highest incidence of landslides, for each of the main factors 

considered by this study. Al i percentages are percentages of the total number of 

mapped landslides. 

No. Landslides: 316 

Size of Study Area: 425 km' 

Landslide Density: Approximately 0.75 landslides/square km 

Geologica! Unit: 
Nevado-Filabride Complex = 16.8% / Sorbas Member = 15.5% 

Gòchar Formation = 12.3% / Azagador Member = 9.5% 

Rock Types: 
Conglomerate = 14.6% / Limestone = 13.9% / 

MicaSchist= 10.4% / Sandstone = 10.1% 

Landslide Mechanism: 
Rock falls and topples = 66.8% 

Non-rotational Landslides = 21.2% 

Landslide Activity 

State of Landslide 

Activity: 

Dormant = c.80% ("a landslide that has not moved for more than 

one annual cycle of seasons, but vvhere the causes of movement 

apparently remain" - WPAVLI, 1993) 

Style of Landslide 

Activity: 

Multiple = 80% (a landslide that exhibits "repeated development of 

the same type of movement along the sanie rupture surfece and 

involving the same displaced material" - WPAVLI, 1993). 

Distribution of 

Landslide Activity: 

Retrogressing = 75% ("a landslide where the rupture surface is 

extending in the direction opposite to the movement of the 

displaced material" - WPAVLI, 1993). 

Landslide Factor Analysis 

Slope Angle & 

Mechanism: 

• Falls & Topples & Non-rotational Landslides = increasing 

landslide incidence with slope angle 

• Translational Landslides = highest landslide incidence on 

moderately steep slopes 

• "Other" Landslides = Highest landslide incidence on very 

steep slopes 

Slope Angle & Rock 

Type: 

• The highest incidence of landslides involving conglomerate, 

sandstone, limestone and schist occur on slopes > 60°. 

• For landslides involving gneiss the slope angle is >45° 

• For landslides involving gypsum overlying mudstone the 

highest incidence is on slopes >75° 
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Table 6.3 - Summary of the results from the analysis of landslides causative factors. 

A l i percentages are percentages of the total number of mapped landslides. 

Landslide Causes 

Geological Factors: 

These factors were identifiable in the field: 

• jointed or fissured material; 

• adversely orientated mass discontinuities (bedding, cleavage, 

faults or unconformities); 

• contrasts in permeability and its effects on groundwater; 

• alternating sequences of "hard rocks" over "soft rocks"; and 

• contrasts in stiffness (stiff, dense material over plastic 

material). 

Morphological 

Factors: 

These factors were inferred from field observations or eye-witness 

accounts: 

• tectonic uplift of the study area; 

• fluvial erosion of many of the slopes; 

• subterranean erosion through piping and dissolution features 

(Figure 4.45); and 

• vegetation removal (by erosion, forest fire or drought). 

Physical Factors: 

Insufficient detailed information and no dated landslides to allow 

for a full investigation of these factors. However, these factors 

were inferred from field observations or eye-witness accounts: 

• Intense, short period rainfall; and 

• Shrink and swell weathering of expansive soils and clays are 

important. 

Human Factors: 

These factors were inferred from field observations or eye-witness 

accounts: 

• excavation of slopes; 

• loading of the slope or at its crest; 

• defective maintenance or leaking of service pipes; 

• vegetation cover removal (deforestation); and 

• quarrying. 
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Table 6.4 - Summary of the results from the statistica! analysis of the number of landslides occurring in the différent combinations of geoiogy, terrain 
classification and landslide failure mechanism considered by the project. 
Geomorphology Geomorphology & Mechanism Geomorphology & Lithology Geomorphology, Lithology «& 

Mechanism 
• Hill areas with incised drainage 

channels 
• Incised drainage channels with river 

terraces 
• Outside meanders of active drainage 

channels 
• 12.0% of the mapped landslides (38 

landslides) 

• Hill areas with incised drainage 
channels 

• Incised drainage channels with river 
terraces 

• Outside meanders of active drainage 
channels 

• Rock Falis and Topples 
• 7.6% of the mapped landslides (24 

landslides) 

• Mountain slopes incised by gullies, 
canyons and river channels 

• Hill and mountain area 
• Ridge crests 
• Basement material (Mica schist, 

gneiss, phyllite) 
• 4.7% of the mapped landslides (15 

landslides) 

• Mountain slopes incised by gullies, 
canyons and river channels 

• Hill and mountain area 
• Ridge crests 
• Basement Material (Mica schist, 

gneiss, phyllite) 
• Rock Falls and Topples 
• 4.7% of the mapped landslides ( 15 

landslides) 
• Hill areas with incised drainage 

channels 
• Incised drainage channels without 

river terraces 
• Outside meanders of active drainage 

channels 
• 7.0% of the mapped landslides (22 

landslides) 

• Mountain slopes incised by gullies, 
canyons and river channels 

• Hill and mountain area 
• Ridge crests 
• Rock Falls and Topples 
• 7.0% of the mapped landslides (22 

landslides) 

• Mountain slopes incised by gullies, 
canyons and river channels 

• Incised drainage channels with river 
terraces 

• Canyons side slopes 
• Mica schist 
• 4.7% of the mapped landslides (15 

landslides) 

• Mountain slopes incised by gullies, 
canyons and river channels 

• Incised drainage channels with river 
terraces 

• Canyons side slopes 
• Rock Falls and Topples 
• Mica Schist 
• 4.7% ofthe mapped landslides (15 

landslides) 
• Mountain slopes incised by gullies, 

canyons and river channels 
• Hill and mountain area 
• Ridge crests 
• 7.0% of the mapped landslides (22 

landslides) 

• Hill areas with incised drainage 
channels 

• Incised drainage channels with river 
terraces 

• Dip-slope escarpments 
• Rock Falls and Topples 
• 6.0% of the mapped landslides (19 

landslides) 

• Hill areas with incised drainage 
channels 

• Incised drainage channels with river 
terraces 

• Scarp-slope escarpments 
• Gypsum overlying calcareous 

mudstone 
• 3.8% ofthe mapped landslides (12 

landslides) 

• Hill areas with incised drainage 
channels 

• Incised drainage channels with river 
terraces 

• Scarp-slope escarpments 
• Gypsum overlying calcareous 

mudstone 
• "Other" - complex combination of 

mechanisms 
• 3.8% ofthe mapped landslides (12 

landslides) 

•tu 
3 



Geomorphology Geomorphology & Mechanism Geomorphology & Lithology Geomorphology, Lithology & 
Mechanism 

• Hill areas with incised drainage 
channels 

• Incised drainage channels with river 
terraces 

• Dip-slope escarpments 
• 6.6% of the mapped landslides (21 

landslides) 

• Mountain slopes incised by gullies, 
canyons and river channels 

• Incised drainage channels with river 
terraces 

• Canyons side slopes 
• Rock Falls and Topples 
• 5.4% of the mapped landslides (17 

landslides) 

• Hill areas with incised drainage 
channels 

• Incised drainage channels with river 
terraces 

• Outside meanders of active drainage 
channels 

• Conglomerate 
• 3.2% ofthe mapped landslides (10 

landslides) 

• Hill areas with incised drainage 
channels 

• Incised drainage channels with river 
terraces 

• Outside meanders of active drainage 
channels 

• Conglomerate 
• Rock Falls and Topples 
• 3.2% of the mapped landslides (10 

landslides) 
• Mountain slopes incised by gullies, 

canyons and river channels 
• Incised drainage channels with river 

terraces 
• Canyons side slopes 
• 5.4% of the mapped landslides (17 

landslides) 

• Hill areas with incised drainage 
channels 

• Incised drainage channels with river 
terraces 

• Scarp-slope escarpments 
• "Other" - complex combination of 

mechanisms 
• 4.1% ofthe mapped landslides (13 

landslides) 

• Gypsum plateau and karst 
• River Valley formed by the dissection 

of the drainage System 
• Scarp-slope escarpment 
• Gypsum overlying calcareous 

mudstone 
• 2.5% of the mapped landslides (8 

landslides) 

• Gypsum plateau and karst 
• River valley formed by the dissection 

of the drainage system 
• Scarp-slope escarpment 
• Gypsum overlying calcareous 

mudstone 
• "Other" - complex combination of 

mechanisms 
• 2.5% of the mapped landslides (8 

landslides) 
• Hill areas with incised drainage 

channels 
• Incised drainage channels with river 

terraces 
• Scarp-slope escarpments 
• 5.4% of the mapped landslides (17 

landslides) 

• Hill areas with incised drainage 
channels 

• Incised drainage channels without 
river terraces 

• Outside meanders of active drainage 
channels 

• Non-rotational Landslides 
• 4.1% of the mapped landslides (13 

landslides) 

• Hill areas with incised drainage 
channels 

• Incised drainage channels with river 
terraces 

• Outside meanders of active drainage 
channels 

• Limestone and calcareous mudstone 
• 2.5% of the mapped landslides (8 

landslides) 
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6.5 Further Research 

The purpose of the ground model developed by this project is to provide information 

about the geoiogy and geomorphology of the study area, with spécifie référence to the 

landslide activity. The intention is that the ground model can continue to be refined as 

our understanding of the study area and the landslide activity increases. This would be 

through ongoing research into the différent aspects of the geoiogy and geomorphology 

of the study area, as well as through flirther field work, continued monitoring of the 

known landslides or unstable areas and additional remote sensing interprétation and 

interprétation. 

One further development of the study that will be required is the use of a Geographical 

Information System (GIS). However, the GIS approach requires a large amount of 

accurate and detailed data to be effective and a substantial investment of time for data 

input. At the start of this project no digital data were available, which if a GIS approach 

had been adopted at the onset would bave meant a considérable amount of time spent 

digitising ail of the required data. There were also gaps in the published map data at 

scales larger than 1:50,000. However, digital contour data bave now become available 

and as a continuation of this project the data could be used in conjonction with the 

results from this study to develop a GIS database. This would combine contour (and 

therefore slope data) with the geological, geomorphological and landslide information 

obtained during this research. It was, however, beyond the scope of this current project. 

A few researchers bave looked at using satellite imagery to investigate the landslide 

activity in the study area (i.e., Eyres et al., 1998; Davies et al., 2000). However, this 
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has mainly focused on using Landsat E T M data and A T M data, and in particular how it 

can be processed. With recent developments in higb resolution satellite imagery (LRA 

Project, 2001, 2002, 2003; Petley et al., 2003), tbis work could be developed much 

fiírther within the Río Aguas study área. 

This research project has, therefore, identified a number of áreas where flirther research 

is needed. Within the study área, potential topics for flirther research are: 

1. To continué to build and develop the landslide inventory for the study área (and 

thereby develop a longer-term view of the landslide activity in the study área). 

2. To continué to assess those factors that are the most relevant in explaining the 

mapped landslide activity, including relict features such as the one described by 

Mather etal., (2003). 

3. To continué observing some of the landslide sites described in Section 5, to 

provide longer-term Information on the development of tbese sites and their "life-

time" in the landscape. 

4. To obtain dates for as many of the river terrace levéis as possible and establishing 

the Holocene phases of landslide history, as well as confirm the phases of incisión 

and aggradation. 

5. To continué to develop the ground model for the study área. 

6. Development of the existing ground model to include other potential or existing 

hazards such as piping, soil erosión, soil liquefaction, rainfall activity and/or 

seismic activity. 

7. Inclusión of subsurface data to develop a geotechnical aspect to the ground model 

(and therefore help in the inclusión of some of the potential hazards Usted above); 
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8. Development of further ground models for neighbouring areas to gain a better 

understanding of the observed landslide activity and ground conditions in this 

región of SE Spain. 

9. To undertake a detailed geotecbnical investigation of some of the landslide sites 

described in Section 5. 

10. To evalúate the role of the Quaternary climate changes on the development of the 

Rio Aguas and the development on the present landscape and the observed 

landslide activity. 

11. To investigate the development of the Rambla de Los Castaños and Rio Jauto in 

the northem parts of the study area (this part of the drainage System developed 

separately from the bulk of the Rio Aguas catchment area and was therefore 

unafFected by the Rio Aguas/Rambla Feos river capture). 

12. To investigate the development of the observed landslide activity in relation to the 

basin margin fault Systems along the northern flanks of the Sierra Cabrera (this 

area has been extensively affected by landslide activity, faulting and thermal 

alteration of the underlying geology). 

13. To fiirther investigate the relict landslide features in the landscape and the 

Information that they provide regarding the landscape and the processes acting on 

that landscape. 

14. To fiirther investigate the "anomalous outcrop" near Los Molinos including 

detailed micropalaeontological and palynological study of the outcrop's 

succession; possible carbón dating of the organic material that was found in the 

anomalous outcrop (landslide related geomorphological deposit in the Los 

Molinos Valley). 



Cliapter 6 - Grouiid Model & Suitunary 

15. To refine the use and efFectiveness of applying the angle of reach and the various 

geometric ratios for assessing the mobility and potential mn-out length of 

Potential landslides. 

16. To develop a Geographical Information System (GIS) for the study area, 

containing data on the topography, geology, structural geology, engineering 

geology, geomorphology, terrain Classification, landslide distribution, as well as 

any other available Information and data (i.e., rainfall, seismic activity). 

17. To use a GIS to investígate the spatial relationships between the landslide activity 

and the factors held within the datábase. Such investigations have been carried 

out in a number of different countries and geological/geomorphological settings, 

and the Rio Aguas study area would make a good comparison. 

18. To use the landslide inventory (and any GIS datábase that is developed) to carry 

out a complete landslide susceptibility, bazard and risk assessment of the study 

area. 

19. To further investígate the relationships between landslide volume, runout and 

angle of reach for the Rio Aguas landslides, comparing it with other similar 

studies. Such data could possibly be used to develop predictive runout models for 

any fijture landslides in the study area or other similar environments. 

20. To apply and test the techniques described here in other parts of the región and 

other environments. These techniques should be directly applicable. 
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Landslide susceptibility in the Río Aguas catchment, 
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'Department of Geologica! Sciences University of Plymoutti, Dral<e Circus, Plymouth!, Devon PL4 8AA, 

United Kingdom (e-mail: j1griffittis@plymoutti.ac.uk) 
^Department of Geographical Sciences, University of Plymoutfi, Drake Circus, Plymouth, Devon PL4 8AA, 

United Kingdom 

/ ' <^^Abstract y s. 

When subject to careful investigation the causes and 
mechanisms of an individual landslide occurrence can 
generally be described in détail. Based on such studies 
it has been possible to develop general théories 

about landsiide behaviour, and the state-of-the-art has 
recently been summarized in Tumer & Schuster (1996). 
However, for most planning and feasibility studies in 
engineering the main requirement is for the potential of 
landslides occurring to be established and the scale of 
the hazard to t)e defined. This subject was examined in 
détail in the 1997 Honolulú Workshop on Landsiide 
Risk Assessment (Cruden & Fell 1997). From this work 
it became apparent that, whilst the définitions of suscep
tibility, hazard and risk in landslide studies are well 
established in the scientific literatura (Heam & Grilfiths 
2001; Royal Society 1992) many studies failed to incor
pórate the necessary landslide frcquency data to provide 
actual estimâtes of hazard. The Workshop also demon-
strated that the methods for carrying out susceptibility, 
hazard and risk assessments were available but that 
more studies were needed both to provide the necessary 
base data on landslide occurrence and to refine and 
develop the techniques. Against this backgroimd this 
paper describes a research programme imdertaken in SE 
Spain to examine the occurrence of landsliding within 
the 550 km^ Rio Aguas catchment (Fig. 1). Data were 
compiled in a landslide inventory from remóte sensing 
interprétation and field mapping and this was analysed 
to establish the nature and extent of landsUde suscept
ible situations. In this study it was recognized that there 
was a lack of information on landsUde frequency, there-
fore, a genuine assessment of landslide hazard was not 
possible. The only control on landsUde frequency that 
became apparent concemed some of the degraded an-
cient or 'fossil' landslides that had been identified. In 
places thèse could be related to the Quatemary terrace 
séquence of the area that had been dated approximately 
by Harvey et aL (1995). However, the récognition and 
occurrence of ancient landslides did not assist in the 
définition of the contemporary landsUde hazard. 

In addition to geological and geomorphological 
détails, the landsUde inventory contained data on the 
various éléments at risk within the landscape. However, 
the vulnerabiUty of the various éléments and probabiUty 
of occurrence of the identified risks was not been defined 
and this wiU require further research. The authors are 
presently undertaking further research on the triggering 
causes of the landsUdes in the région, notably seismic 
activity and rainfaU conditions. This paper, therefore, 
concentrâtes on the underlying processes that need to be 
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Fig. 1. Location map of the Almeria región showing the major tectonic units, fault systems and the Rio Aguas catchment (after 
Mather & Harvey 1995). 

taken in to account before the hazard and risk from 
landsliding can be evaluated. 

The study area 
The study area is located in the Almería Province of SE 
Spain. It has an arid climate with annual precipitation 
recently established as less than 210 mm (Esteban-Parra 
1998). The area is seismically active with regular small 
magnitude events of less than 4, and major earthquakes 
with intensities of X on the Modified MercalU Scale 
identified in the historic record (WWW 2001). 

The modem Rio Aguas catchment covers an area of 
approximately 550 km^ and drains the Neogene sedi
mentary basins of Sorbas, and a small part of Vera. The 
study area is botmded by the Sierra de los Filabres to the 

north, the Sierra Alhamilla/Cabrera to the south and a 
low drainage divide with Tabernas Basin to the west. To 
the east the Rio Aguas drams in to the Mediterranean 
Sea near the town of Mojacar. 

The general geology of the study area is presented in 
Figure 1 and the detailed stratigraphy in Figure 2. The 
Sorbas and Vera basins are part of the Trans-Alboran 
shear zone of Larouziére et al. (1988), a zone dominated 
by sinistral movement within the internal zone of 
the Betics. The mountains (sierras) surrounding the 
basins are composed of Mesozoic and older basement 
rocks which can be broadly divided into the Nevado 
Filabride and Alpujarride nappes (Egeler & Simon 1969; 
Garda-Hernández et al. 1980; Sanz de Galdeano 1990), 
whilst the faulting helps define the Neogene'Basins. 
Localized variations in compression and extension direc
tions were generated over the period of sedimentary 
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500m 

Fïg. 2. Stratigraphy in the study area (after Mather 1991). 

basin évolution (Keller et aL 1995). Within the Sorbas 
Basin, during the Quaternaiy, compression has been 
dominantly north-south, with associated east-west 
extension (Mather & Westhead 1993). UpUft rates for 
this part of the basin have been cakulated at 160 m/Ma 
over the PUo/Pleistocene (Mather 1991). Rates were 
calculated using the current élévation of the last 
(lower PUocene) marine incursion into the région, and 
corrected for sea level fluctuation (Mather 1991). 

Dififerential uplift has increased régional gradients 
which, when combined with the variable Uthologies of 
the basin fill, lead to idéal conditions for incision and 
river capture. The Rio Aguas catdmient has been 
affected by two significant river captures. The first 
occurred in the early Pleistocene and removed the 
headwaters of the original conséquent drainage 
(Mather 1991, 1993, 20006; Mather & Harvey 1995). 
The second river capture event is estimated to have 
occurred at about 100 ka (Harvey et aL 1995). This 
100 ka date is substantiated by U/Th isochron methods 
used by Kelly et aL (2000) to date carbonate soils from 
the terrace landforms at c.88 ka (68-104 ka). This 
second river capture lowered base-levels at the point 
of capture (Figs 1 & 3) by c. 90 m (Harvey et al. 
1995) and re-routed 73% of the original Sorbas Basin 

drainage from the Nijar/Carboneras Basin in the south 
to the Vera Basin in the east (Fig. 1; Mather 20006). 
This created a local base-level change both upstream 
and downstream on the Rio Aguas and it has been 
estimated that there was a five fold increase in incision 
rates ôver most of the river network, whilst close to 
the point of capttu-e incision rates may have increased 
ten fold (Mather 2000a). The sédiment flux calculated 
for the post capture period in the main river showed 
an increase by a factor of bctween 2 to 9 (Stokes et aL 
2QQ2). 

The change in the local base-level resulting from the 
second river capture had a profound efifect on the 
geomorphology of the whole Sorbas Basin. Incized 
canyons have developed in the stronger geological 
strata, whereas large ' V shaped valleys are predomi-
nantly found in the weaker Uthologies. During the 
formation of this terrain, sédiment has been eroded from 
the slopes to provide both suspended and bedload 
material to the fluvial System through a variety of 
hillslope processes. Given the rapid rates of incision over 
the past clOOka, the landscape has had Uttle lime to 
adjust and many hillside slopes may be regafded 
as over-steepened, and, henee, in a state of marginal 
stability. 



12 GRIFFITHS ET AL. 

Table 1. Parameters compiled in the landslide inventory 

No Parameter Définition 

1 Location The geographical location of the landslide and the longitude and latitude co-ordinates of the 
centre of the landslide. 

2 Land me The use of the land either above, below or adjacent to the landslide and any remediai measures 
that have been undertaken. 

3 Elévation The élévation of the crown and the toe of the landslide. 
4 Geometry The height, width and length of the backscar and débris accumulation, as well as the area 

covered by and the volume of the débris accumulation. 
5 Landslide mechanisms The landslide failure mechanisms involved. 
6 Angle of reach The an^e of reach of the landslide (measured as an indicator of landslide mobility). 
7 Î andslide activity The state, style, distribution and rate of the landslide. 
8 Causative factors The factors that have been attributed as either decreasing the stability of the slope or actually 

triggering the landslide. 
9 Morphology The aspect, profile and angle of the slope. 
10 Geomorphology The Land System, Land Facet and Land Elément in which the landslide is located. 
11 Geology The geology of the landslide. Addidonal information conceming the geotechnical properties of 

both the rock material and rock masses involved in the landslide are contained within a second 
database. 

12 VegeUtion The type and extent of végétation cover associated with the landslide. 
13 Drainage The nature of the drainage within and around the landsUde. 
14 Références Any publisbed or unpublished material refetring to the landslide. 
15 Other information Any other relevant information. 

The landslide investigation 
It is apparent that there is a h i ^ levd of understanding 
about the récent geolo^cal histoty of the Sorbas and 
Vera basins and the rôle of fluvial activity in the 
development of the contemporary landscape (see above). 
A preliminary site reconnaissance in 1997, however, 
established that landsUding is a significant mechanism 
for sédiment transfer from hillslopes to the fluvial net
work. Therefore, in March 1998 a research programme 
was initiated to investigate the scale and extent of 
landsUding in the région with the aims: to evaluate 
landsUde causes and mechanisms, identify the controls 
on susceptibiUty and hazard, and estabUsh the rôle of 
landsUde processes in landscape development. This work 
was based on field mapping, remote sensing interprét
ation, data collation and analysis. In order to provide a 
direct link with the on-going investigations in sédiment 
flux, it was decided to base the study on a single major 
drainage basin, namely the Rio Aguas. 

Landslide inventory 

The fiirst stage in any régional landsUde study is the 
création of a landsUde inventory. In order to identify 
the situations where landsUdes were most likely to occutr, 

the inventory compiled data on the range of parameters 
listed in Table 1. AU data were encoded in a database to 
aUow ease of analysis and this database was Unked to 
other environmental information in a Geographical 
Information System. For the création of the inventory 
the classification and reporting Systems recommended 
by the UNESCO Working Party on World LandsUde 

Inventory (WPAVLI (UNESCO Working Party for 
World LandsUde Inventory), 1990, 1991, 1993; Cruden 
1991) were adopted. The checkUst for the causes of 
landsUding was based on the work of Bnmsden (1993), 
and Dikau et al. (1996), although the interpretation of 
field situations was strongly influenced by the work of 
Professor Hutchinson simimarized in his Glossop 
Lecture (Hutchinson 2001). 

For the aerial photograph interpretation stereo 
images were used and landsUdes were identified by 
reference to the morphological and tonal indicators 
contained in Soeters & Van Westen (1996); TRL (1997); 
Rib & Liang (1978); Dikau et aL (1996). Two types of 
aerial photographs were used for the investigation: 

(1) 1:30000 black and white prints from the Spanish 
Catalunya Cartographic Institute, acquired on 
flights in September 1984, April 1985 and October 
1985. 

(2) 1:13 333 coloiu prints from the National Environ
ment Research Council (NERQ, acquired from a 
flight flown m the spring of 1996. 

Fieldwork comprised geological and geomorphologi-
cal mapping using standard systems and nomenclature 
(Barnes 1997; Cooke & Doomkamp 1990; Brunsden 
et aL 1975; Gardner & Dackombe 1983). The field 
mapping was used to both ground-truth the aerial 
photograph interpretation and identify landslides not 
easily identifiable on the aerial photographs, because 
their size was less than approximately 10 m x 10 m (i.e. 
0.75 mm x 0.75 mm on 1:13 333 scale photographs). 

To date, nearly 250 landslides have been mapped in 
the catchment (Fig. 3), an increase in 50 since the work 
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was last reported (Hart et aL 2000). This gives a land
slide density of approximately 0.45 landslides per km .̂ 
Nearly 70% of the landsUdes identified were foimd to bc 
rockfalls and a further 23% were non-rotational com-
pound failures. The landsUdes varied in volume from 
tens of cubic mètres up to several miUion cubic mètres. 

During initial site reconnaissance of the catchment it 
was apparent that the landsUdes oocurred in certain 
geomorphological settings. Thereforc, it was decided 
that some form of systematic representadon o f the 
landscape was needed that identified difierent geomor-
pholo^cal situations. After considérable debate o n a 
range of landscape models, of the type proposed by 
Fookes (1997); Fookes et aL (2000), a terrain Systems 
subdivision of the landscape was adopted. This terrain 
System classification is presented in Table 2. Each major 
terrain System was subdivided first into land facets and 
then into smaller land clients, as described by Phipps 
(2001). The terrain System was included in the database 
as an ordinal dataset as the requirement was simply to 
look at the cross-correlation between geomorphological 
settings and the occurrence of landslides of différent 
types. The main terrain Systems were primarily a fimc-
tion of the différent bedrock lithologies, whereas the 
land facets more closely reflected the way the local 
geological structure and geotechnical properties o f soils 
and rocks influenced geomorphological processes. 

Whilst this particular land System classification is ofily 

appropriate for use in the study arca, Waller & Phipps 
(1996) suggested the land Systems approach can be 
used in a wide range of engineering studies at difierent 
scales. 

For the classification of the geological materials two 
types of data were coUected, the stratigraphie unit based 
on the stratigraphy presented in Figure 2, and a Utho-
logical description. The Uthological description was 
carried out in the field using the standard engineering 
System presented in BS 5930 (BSI 1999). 

Landslide susceptibility 

Whilst the triggers of individual landsUde events could 
rarely be identified a number of clear relationships 
between the location of a landsUde and particular 
geological and geomorphological situations were 
estabUshed. 

The Gróchar Formation with 20% of recorded land
slides, the Sorbas Member of the Caños Formation with 
21% and the Turre Formation with 22% were the most 
susceptible stratigraphie imits. OveraU, because of its 
widespread occurrence within the Rio Aguas catchment, 
33% of recorded landsUdes were found to occur in the 
Caños Formation. Of the Uthologjes involved in land
sUdes, conglomérâtes accounted for 30%, limestone 24% 
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Table 2. Terrain Systems Classification used in the landslide inventory 

Teirain Systems 
1 Gentle slopes incized by canyons and guUies 
2 Gentle slopes with terraced river valleys 
3 Mountain slopes incized by river channels 
4 Plateau área 

Land FaceU 
1 Hill / Mountain área 
2 Incized river channel / canyon bounded by 

river terraces 
3 Incized river channel / canyon without any 

river terraces 
4 Opcn River valley bounded by river terraces 
5 Open River valley bounded by slopes formed 

by the dissection of the drainage system 
6 Terraces 
7 Level terrain (Interfluve área) 
8 Badlands 
9 Gully System 
10 Plateau área 

Land Elements 
1 plateau área 17 river tenace surface 
2 crest or ridge área 18 river terrace slope 
3 scarp-slope escarpment / diff face / canyon 19 artificial terrace 

wall 
4 dip-slope escarpment/diff face/canyon wall 20 man-made slopc/road catting 
5 scarp-slope transportational mid-slope 21 scarp slope - inside of an active ineander 
6 dip-slope transportational mid-stope 22 inside of an active meander 
7 slope perpendicular to dip direction 23 scarp slope - outside of an active meander 
8 valley side slope 24 outside of an active meander 
9 colluvial footslope / talus 25 dip-slope - inside of an active meander 
10 gully side wall 26 dip-slope - outside of an active meander 
11 scarp-slope gully side/wall 27 scarp slope - inside of an abandoned 

meander 
12 dip-slópe gully side / wall 28 inside of an abandoned meander 
13 gully floor 29 scarp slope - outside of an abandoned 

meander 
14 abandoned river diannel or canyon 30 outside of an abandoned meander 
15 floodplain 31 dip-slope - inside of an abandoned meander 
16 active river diannel or canyon 32 dip-slope - outside of an abandoned meander 

and sandstone 22%. Where more than one lithology was 
involved in a failure the most widespread combination 
was gypsiun over mari (22%) and Umestone over mari 
(17%). When individual failures were examined, it was 
apparent that the scale and mode of failure fie topple, 
wedge, planar) of many were controlled by the local 
discontinuity pattems. This is exempliñed by the large-
scale failure at Maleguica (Fig. 4), approximately 1/2 km 
south of Sorbas Town. This landsUde has formed in 
maris and gypstun from the Yesares Member overiain 
by Umestones and sandstones of the Sorbas Member. 
The bedding is dipping northwards out of the clifif face in 
Figure 4, and the shape of the eastem lateral scar Oeft 
side of Figure 4) and backscar are controUed by two 
joint sets perpendicular to the bedding and at 60° to each 
other. The overaU failure, therefore, is a translational 
block slide along a bedding plane, with secondary top-
pUng and rockfalls controUed by the joint pattern, that 

has developed on the outside of a meander loop of the 
Rio Aguas. 

The land Systems approach to classifying the 
landscape highU^ted some very interesting concen
trations of landsUding. Not surprisingly the vast 
majority of the landsUdes oocurred within the general 
category of 'Motmtain Slopes Indzed by Rivet 
Chaimels', and within the land facets 70% of failures 
were associated with these incized rivers. At the land 
élément level, however, the outside of active rivei 
meanders only accounted for 32% of failures (e.g. ai 
Malaguica, Figure 4) and 21% were found to be or 
cliff-faoes or canyon walls developed at the edge o 
dii>-slope escarpments. Other notable geomorpho 
logeai situations susceptible to landsUding were clifi 
faces or canyon walls developed at the edge''of scaq 
slopes (9%) and on the inside of abandoned meander 
(8%). However, one general observation that coul' 
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Fig. 4. Maleguica landslide, south of the town of Sorbas. 

be made from the overall landslide distribution map 
was that the density of landslides was highest in the 
vicinity of the Late-Pleistocene river captm̂ e site 
(Fig. 3). 

Landslide hazard 

The majority of the landslides were identified as either 
active or récent but insufficient data were available to 
provide a genuine estímate of frequency that coidd be 
used as a basis for a hazard analysis. However, studies 
by Corominas (1986) demonstrated that the travel angle 
O-e. the angle between the horizontal and a line drawn 
from the crest to the toe of a landslide) could be used as 
a mobiUty index for landslides. This woidd provide an 
indication of at least one facet of the hazard from 
landsUdes in a région, namely the extenf of the area 
likely to be covered by a landsUde event. For this study 
oiie of the relationships investigated was between land
sUde volume and travel angle (Fig. 5). In this analysis a 
minimimi cut-off travel an^e of 10 degrees could be 
identified, and the coeflBcient of détermination (r̂ ) for 
the relationship between the angle of rcach and the 
natural logarithm of the voliune was 0.396. Given the 
subset of 153 landslides for which thèse parameters were 
available this was a very significant relationship and 
produced the régression équation: 

Y = -3.171 loĝ  (X) + 73.74 
Where: Y = Angle of Reach (in degrees). 

X = LandsUde Voliune (in m') 

The strength of this relationship for landsUdes within the 
Rio Aguas catchment is a function of the relatively 
limited number of landsUde types. However, with 
on-going investigations to détermine the triggering 
causes of landsUdes and the attempts to defîne the fre
quency of occurrence of failures, this régression relation
ship will provide the basis for defining the scale of the 
nuout hazard from landsUde events of aU magnitudes. 

A further area of investigation stems from the results 
of the detailed geological mapping of the Sorbas Basin 
reported in Mather (1991). During this work sites were 
identified where the dip and dip direction of faults did 
not fit the overall pattem of faïUting in the région and 
could not be ascribed to local tectonic structures or 
particular stratigraphie imits. An investigation of one of 
thèse anomalous fault Systems in a sub-catchment of the 
Rio Aguas, the Mocatân catchment to the south of the 
town of Sorbas, has been carried out by Mather et aL 
(in press). This work has shown that an alternative 
interprétation is that some of thèse fault anomaUes 
represent the degraded remuants of andent landsUdes, 
labeled as 'fossil landslides' by Mather et aL (in press). 
On the basis of its relationship with the Sorbas Basin 
river terrace séquence established by Harvey et aL 
(1995), the Mocatân andent landslide has been shown to 
have occurred soon after the second Rio Aguas river 
capttû e event in the Late Pleistocene. Other possible 
andent landsUdes have been identified and are subj«;t to 
further investigation. If a Late Pleistocene history of 
landsUding can be established by référence to the river 
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terrace sequence then it might be possible to evaluate the 
landslide hazard over this period of time. However, it 
will not provide a realistic estimate of the contemporary 
landslide hazard. 

Conclusions 
The density of landsUding in the Rio Aguas catchment 
exceeds that on any single Uthology in Great Britain 
(Jones & Lee 1994), suggesting that the potential risk 
from landsliding in the area is high. One of the original 
aims of the research programme was to investigate the 
controls and causes of landsUding within a single catch
ment. Whilst certain Uthologies and gcomorphological 
sittiations were identified as particulariy landsUde sus
ceptible, it became apparent during the investigation 
that the contemporary distribution of landsUding was 
best understood by référence to the geomorphological 
history of the area. The identiâed concentration of 
landsUde activity around the site of a Late-Pleistocene 
river capture (Fig. 3) suggests that this resulted in a local 
change in base level. The érosion resulting from the river 
capture created a 'wave of indsion' (Garcia et aL 1999) 
similar to the 'wave of aggression' identified by Bjerrum 
& J0rstad (1968) in relation to changes in sea level. This 
resulted in oversteepening of vaUeyside slopes, which in 
taxa has led to the concentration of landsUde activity. It 
is also likely that the contemporary landsUde 'hazard' is 
accentuated by seismic activity in the area, although this 
has yet to be demonstrated. 

This investigation illustrâtes the need for investi
gations of landslides to fuUy take into account the 
geological and geomorphological history of a re^on if 
the contiols on current instabiUty are to be understood. 
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GLOBAL CLIMATE CHANGE; A GEOLOGICAL PERSPECTIVE. 

M. B. HART & A. B. HART 

Hirt, M.B. and Hart, A.B. 2000. Global Climate Change; a geological j>crspcctive. 
Geoscience in soutb-uiest England, 10, 14-17 

Climate is changing globallyl The world is about 0.6°.C warmer than 100 years ago and, in the UK, seven of the warmest years 
ever recorded have been in the present decade. The 199Ò's have, so far, been about 0.5°C warmer than the 1961-1990 average and 
the five warmest years in the 340-ycar Central England Temperature Series have occurred since 1988. 

Coupled with' these temperature changes there is evidence of inajor change in the world's atmosphere. The levels of ozone in 
the atmosphere, particularly over Antarctica, are known to be decreasing. Concentrations of atmospheric carbon dioxide arc known 
to be rising and this rise can be traced back to the industrial revolution; it is reportedly anthropogenic and not (apparently) part 
of a natural cycle. 

The debates over the cause of these changes, and their impact, will continue well into the future. 'While many find it difScult to 
come to terms with the idea of dimacc change, geologists have a wealth of experience to bring to the discussions. Ten thousand years 
ago the last ice age maximum was coming to an end, with temperatures changing and sea level rising rapidly as a direct result of the 
melting icefields. Since that time there have been less severe, but nonetheless significant reversals of the warming trend. Historians 
have vividly described the effects of the *Uttle ice age* when the River Thames regularly froze in winter over an extended period of 
years. 

Geologists appreciate these global changes and have documented the climatic changes that have shaped the planet over periods 
of hundreds of millions of years. Using radiometric and palacomagactic time-scales we now have an appreciation of the natural rates 
of change that have left a record in the gcologicai succession. 

The current dimatological data suggest a modem rate of change that is beyond our geological expérience and, as a direct 
consequence of this, there have been established a number of key bodies; e.g., the UK CUmate Impacts Programme and the Intcr-
Govemmcntal Panel on CUmate Change. Models of climate change, and the associated rise in global sea levels, arc now available 
and it is the responsibility of the sdence commimity to present these in a way in which the general public can appreciate both the 
problem and the likely consequences. This must, however, be done in a measured way and we all have a responsibility in this regard. 
Adassicezainplcòftfaisbelnglù-lackedbytfaemediawasthcdiff-fallatBcachyHeadin 1999. ThcchalkdiffisofSusscxhavcdcvcloped, 
by sudi falls over recent mlllmnia and to attribute the last sucfa. event to "global warming" is to totally miss the point. Coastal stability 
maywdlbe anissue forfiiture investigation. Many major landslides (e.g., the Lyme Regis area) have ahistory back into the Pleistocene 
and will, almost certainly, be affected by changes in sea level and increased wirucr rainfalL Quick soundbites ate, however, not the 
appropriate way by which to communirate the problems that may confixjnt many coastal areas. 

GeologicaUy speaking, we are in an Intcr-gladal period in Earth History. TTie evidence suggests that extensive glacial conditions 
will return to N.W. Europe in the not too (geologically) distant future. The dilemma for humanity is which gets us first - ice-house 
or green-house? 

M.B.Hart, A.BJIart, Department of Geological Sciences aaä Plymouth EniHronmental Research Centre, 
University of Plymouth, Drake Circus, Plymouth PL4 SAA 

iNTRODuenoN GLOBAL CLIMATE CHANGE 

TheclimateoftheeariyEarthwasprobablyverywarm(Figure Throughout geological time the climate has been changing 
1). This was the direct result of tl¿ build-up of gravitational arid it should come as no surprise that these natural processes 
energy, loss ofldnetic energy and the heat liberated by short-lived arc ongoing. The latest figures suggest that the average tcmpera-
radlOHsotopes as the planet was forming 4,600 milUonyears ago. ture of the planet is about 0.6°C warmer than one hundred years 
Despite the calculated increase in solar luminosity during geo- ago (Hulme & Jenkins, 1998). The wannest year since records 
loglcaltime,thesur&cctefflperatureoftfaeEarthhas,ingeneral, began in the UK (the 3^0-year Central England Temperature 
reduced since the Ardiean, apart from occasional warm inter- Series) was 1999, with 1997,1995 and 1990also recording some 
vals,espedaItyintheCretaccou$.Themaincontrolsontheg}obal of the highest values on record. The 1990"s have been about 
dimate through the Fhanerozoic appear to be:- 0.5°C wanner than the 1961-1990 average and 1999 is the 
• the bio-rcgiilatory effect of photosynthetic marincAerrestrial warmest year since about 1204 (using tree-ring dau as a proxy 

algae and plants; for temperature). 
• themovcmentsoftheciustalplatcsandthcrate(s)ofseafloor Over the next 100 years the rate ofglobal wanning (Hulme & 

spreading; Jenkins, 1998) U predicted to rise between 0.16°C per decade to 
• the increasing soUr lumlnosity(r) ; and 0.35°C per decade. In the same time period global sea level is 
• the variations in the proportion of "greenhouse" gases in the predictedtorisefix(mbetwecn2.4cmpcrdecadetol0.0cmpcr 

atmosphere. decade (see Table 1). These rates of change are quite dramaUc 
throughout this time the Earth has migrated between "green- and most geologists regard them as eaora-ordinary. There have 

house' and "icehouse" conditions, when large terrestrial and been times, however, when comparable rates of change have 
marine ice sheets expanded over significant areas of the globe. been recorded (e.g., the Younger Dryas period) although, for 
Bcrwccn these major glacial aqnuisions (shown in Figure 1) much of the gcologicai record, such accurate measurements 
thcremayhavebeenintervaJswithUcdc(secKcUcr&Stiimesbeck, would be impossible. 
1996; MiUcr et al., 1999) or no polar ice. 
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Global climate change; A geological perspective 
Mean Global Temperatine 

i i ^ m M W J r . . lena 

Figure I. GeneraUsed temperature bistory o/tbe Eartb 
(adaptedfrom Merritts et aL, 1998). 

THE CENOZOIC CCMATIC DECLINE 

After the mid-Cietacepus temperature maximum (Figure 1) 
global températures fell, altfaougfa the détails of the changes are 
relativctf Utde known. In the mid-Late Turonian thcre was a 
dramâtic drop in global sea ievel (Hancock & Kaiiffman, 1979; 
Haxt, 1990 andreferenccstherein) the cause ofwfaicfaisnotfully 
understood. Few authors have suggestcd that aa Antàrctic ice 
cap was présent in the Ccnomanian or Turonian (see Price, 1999, 
for a rcceiu revìcv^ although tt has been suggcsted (Keller & 
Stinncsbeck, 1996; MiUer et al, 1999) that Ice may have been 
présent in the Maastrichtian. As indicated in Figure 2 tfaere was 
little change betwcen the latest Cretaceous and the earliest 
Cenozoic (aside from the short-term perturbations at the K/T 
boundjuy- howcver causcd). The Cenozoic temperature maxi
mum was in the Earty Eocene and is marked, in the UK, by the 
présence of NutnmulUes spp. (á large, benthonic, foraminiferid) 
in liie Hampshire Basin (Murray era¿, 1989); the nortfaemmost 
Occurrence of this normally Tethyan gcnus. \?ith the progressive 
build-ùp of glaciers on the Antàrctic landmass, global tempéra
tures dcdüned tfarough.the remainder of the Palaeogcne, with an 
assodated drop in global sea levéis. With the major ice advance 
in the Antàrctic durihg the mid-Miocene the pattern of cooling 
accelerated and about 3-5 million years ago the Arctic Occan 
began to be dosed over by an ice sheet. During the Pleistocene 
thé major advances of this ice sheet covered substaaUal parts of 
Northern Europe, Asia and North America. Sincc the last gladal 
matimnm températures have improred rapidi/ (in geological 
terms); desplte a major reversai in the Younger Dryas, attalncd 
modott levéis about 11,600 years ago (Alley et al, 1993)-
Fluctuations in oxygen isotope ratios in ice cores provide a major 
source of information on wfaicfa sudi interprétations are bascd. 

Over the last 3,500 years dendrochronology not only pro-
vides a valualjle time-scale but the relative slzc of the growth rings 
of trees sucfa as the Bristlecone Pines of the Western USA providc 
a good proxy of temperature (Figure 3). From a maximum 
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Figure 2. Cooling oftbe Eartb after tbe latest Cretaceous as 
recorded by oxygen isotopes in béntbonic marine 
Foramintfera (adopted from Miller et aL, 19S7). 

temperature in 1204, tempcraturcs have tdlen and, by the time 
aie Central England Temperature Scrics began in 1659, tempera-
turcswereatalowlevcL Even at the brginningof the 19* Century 
the Utde Ice Age was still baving an effect, with warming only 
taking place after about 1820. 

THE 1 9 " AND 20™ CENTUFY WARMING 

Since the industriai revolution in N.'W.Europe there has been 
an increasing discharge of poUucants into the atmosphere. The 
yeàrs bctween 1750 and 1830 are generali/ regarded as the 
cruciai years of the Industriai revolution in the UK and elscwfaere 
in Europe (Burke, 1974). With the near-exponential rise in die 
human populaUoa and the increasing use of fossil fiiels, the 
cmissions are carfoon dioxidc, chlorofluorocarfoons, mcthane 
and nitrous oxide (Merritts et al, 1998). Unfortunatcly, for 
scientists trying to tmdcrstand the present rise in temperature, 
diis increasing anthropogcnic impact on the atmosphere began 
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Figure 3. Predicted temperature curve for the last3500 
years based on the proxy data from growtb-ring tbicknesses 
in the Bristlecone Pine trees in the western USA (based on 
Lamb, 1995, using data aqiplied by Professor V.Cla 
Marche). The lowergrapbsbows the post-Uttle Ice Age data 
oftbe Central England Temperature Series to whicb bave 
been added some oftbe present temperature predictions of 
the Climate Research UnU (Hulme &Jenkins, 1998).^ 
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l>*<J-fctàcl»wopJI«tfcH'a(oaio««iop«elKdr. (S<»iiao«j|>cc<c<( l»90 
roÀfe /. Eaimations of change in gUAal sea leoel (after 
Mart,A.B.,1997). 
atabout che time ofttie end oftfae Unie Ice Age Are the twocvcncs 
related? Uone looks at the temperature proxjr pravided by the 
tree-flng thickncsses (Figure 3) comparable changes in Medieval 
Times wcre-dearif-iiotcatiscdbranthropogenic Impacts. . 

One viev7 is tfaat tfac temperature rise we are ezperiencing is 
the natural qrde of the Eartfa's climate wltfa glacial auDdnu at 
approxlmaietjr 100,000 ycar intervais and the imer-gladals fol-
lowing the same pattern. If tfaat is tfae case, cutbiog grecnhousc 
gas émissions is botfa fiítüc and cconomically suicidaL The 
alternative view is tfaat there ts a sigiilficant chance that tfae 
current wariniiig Is drivcn by anthJropogetiic activity and tfaat to 
ignore it at the présent time is botfa fooUuirdy and - in tfae long 
terni - jmt rrñnnmic-ally ctamjging 

Tfae décisions about tfae global economie stratega are not to 
be considcred in this report. If températures are rising and the 
climate is chaiiging, yiiatcver tfae cause, there wlll be an impact 
and some of tfae implications for tfae soutfa-wcst of England are 
considered here. 

IMPACTS m SOUTH-WEST ENGLAND 

Soutfa-west England is predicted to suffer cfaanging dimatlc 
conditions over tfae ncxt cêntury and models are nov? available 
as part of the UK Climate Impacts Programme. As indicated in 
Table 2 tfae West Cotmtry may ezperience:-
• wimers tfaat are sUghtlywaimer and significantiywetter; 
• summers tfaat are markcdty warmer and slightiy dricr. 
Thère are a liumber of conséquences tfaat follow from tfaese 

prédictions. 

2020'S 2050'S 2080*S 

average T*C +0.5/1.3 +0.8/2.2 +1.2̂ .0 

suminerT*C •0.7/1.4 +0.9/2.4 +1.4/2.9 

winterl-C +0.5/1.4 +0.9/2,3 +1.2/3.0 
total rainfaU 
% change +1.0/4.0 +3.0 +2.0/6.0 

summer rainfall 
% change -i.ora.o -1.0/10.0 -5.0/7.0 

«rinter ralntalt 
14 change +5.0m.O +7.iyi3.0 +7.0C3.0 
wtnterwtnd 

speeds +1% -1% +1% 
spfingwind 

spee<ls -3% -2% -1% 
summer wind 

speeds -1% 0% + 1% 
«utumhwinil 

tpeeds +2% +2% +2% 

Table 2. Predicted chattes in tettiperature, raiàfaU and 
wind speeds in Soutb-west England (ranges of values given) 
based oh the UK Climate Impacts Programme (Hulthe & 
Jenkins, 1998): The general cortdusions are that winters will 
be sli^btly warmer and signiflcantfy wetter wbile summers 
will be markedly warmer emd slightiy drier. 

• tfae drier, warmer summers mayallow for changes in some of 
tfae crops that can be grown in the région; 

• there may be an impaa on water supply, mucfa of whicfa is 
rcservoir-based; 

• tfaeremaybcasignificantriskoffloodingduringthewiiuer 
montfas and flood protection wotlcs and/or drainage schemes 
sfaould be considered a priority (e.g., problems in Devoti 
during Decembcr 1999 and tiie significant flooding of the 
Somerset Lcvcls; 

• instabilityofhedgebanksandsoilrun-offinthesunkçnlanes 
that are so typical of this n^on; and 

• increased instabilityofpre-cñstinglandslides that are already 
known to be triggàed by excessive rainfïll levéis (Brunsdcn 
Se Chàndler. 1996). 
The increased sea levéis (sec Table 1) would almost certainly 

affea tfae landslide stability on the Devon/Dorsct coastUne as tfae 
toes of tfae slips become attacked by tfae sea. That removal of 
material, coupled witfa more rainfall-induced activity, could 
significantiy cfaange tfae disposition of slides on Black Ven, 
StonebarrowHill, etc., and make occupancyofHigher Sea Lane 
in Charmouth (Conway, 1976; Deoncss étal, 1975) apr^Alem 

The increase In winter lainfall is primarily due to tfae iooeased 
temperature of sea water in tfae North Atlantic Océan and tfae 
generation of more active dépressions. There is, below eacfa 
depressioti, a significant "bulge" of sea water caused by tfae low 
pressure. Thls bulge, coupled witfa strong winds and faigfa tides 
(or botfa) can cause significant coastal érosion or flooding. As 
illustratcd by Hart (2000) it was a situation sucfa as tfaat outlincd 
above tfaat caused tfae disastrous flooding of EastÀiigUa in 1953 
andwfaicfa,dircctiy,lcdtotfaebuildingofhi^crmarinedcfenccs 
and the Thames Banicr. During December 1999 strong winds, 
an high tide' and a depression-induced bulge threatened tfae 
Sussex coastline witfa flooding and severe damage. This was only 
avcrted by a last minute change in wind direction. 

CONCLUSIONS 

Whlle tiie majority of environmental sdentists belieye tfaat tfae 
présent rise in global températures is antfaropogcnlc in origin. 
there are tfaose that would daim that it is tfae direct resuit of tfat 
Eartfa's natural évolution. 'Whatcver tfae Cause, thé óutcomc is tht 
same. The Earth is experiendng a rapid rise in global temperature 
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and this, coup(ed with thc associated rise in global sea levek, will 
.. directly impact on the cUmate of south-wcst England. These 
changes will affect agriculture, coastal stabüity, land use, flood 
protection and water supplies. 
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Abstract: 
This paper présents the outputs fiora the Landslide Risk Assessmcnt in the Rural Access Sector (LRA) project This is a 
thrce-ycar research project investigating ways by which landslide hazard and risk can be assessed in the context of low 
cost roads in rural áreas, developed in response to the clear need ftom govemment agencies for rapid and rcliable 
methods for the assessment of landslide hazard for preliminary decision-making prior to committing large resources to 
expensive field investigations. The research has concentrated upon six field sites in Nepal and Bhutan, and has 
incorporated a range of techniques including remote sensing, aerial photography, field mapping, and GIS analysis, but 
the primary focus has been on the application of techniques that use desk study data sources to provide a preliminary 
assessment of landslide potential for planning and engineering ptirposes. 

The Landslide Risk Assessment project has examined tìie contribution that a range of remote sensing platforms can 
make to landslide mapping, focussing on botfa the effectiveaess of the techniques tfaemselves and their economie worth. 
It is concluded that Landsat 7 ETM+ provides a veiy cost-effective data source for route corridor planning and the 
mapping of medium sized and large landslides. IKONOS is considerably more expensive but provides far greater 
ground resolution, offering similar feature detection to aerial photography. It is clear that in the near fiiture the 
advantages offered by conventional aerial photograph interprétation will be eclipsed by advances in satellite imagery, 
but at présent aerial photographs often remain the most practical sources of multi-environmetttal data for planning and 
engineering purposes. 

With regard to landslide mapping, the LRA Project has demonstiatcd that a reasonable degree of confidence can be 
placed in the mapping of landslide susceptibility using simple lithological and topographical factors derìved fiom 
published geoiogical inaps, topographie maps and aerial photographs. GIS enables the various data capture and 
analytical stages to be imdertaken relatively easily and it is concluded that the technology should be taken up readily by 
govemment agencies with appropriate training and field checks. 

Introduction 
In récent years there has been increasing récognition of the importance of the provision of transport 
infrastructure for sustainable development in remote mountain areas (Jacoby 2000; Saïkar and Ghosh 2000 
for exançle). A road network provides access to markets, the importation of commodities from beyond the 
sunoimding area, and enables the population to access médical, educational and other social facilities. Thus, 
rural communities rely on the provision of reliable transport facilities for improved livelihood and économie 
growth. 

However, most mountainous areas are also prone to the effects of a range of natural hazards, including 
seismic activity, landslides, floods, glacial Iake outburst floods and avalanches. Of thèse, landslides possibly 
pose the greatest challenge to the infrastructural plaiiner and road engineer, as well as a fréquent threat to 
rural communities and infrastructure. Landslides regularly lead to fatalities, injuries, the loss of livelihood 
and économie disruption, road closures, blockage or destruction of drainage structures, imdermining of 
foundations, and frequently cause damage to road carriageways, ranging from cracking and settlement to 
complète failure. Whilst roads are normally designed to provide access to rural communities, the 
construction and opération of a road will usually attract spéculative development in this corridor. Thèse 
roadside communities are also frequently at risk from landslide hazards (Heam et al., this volimie). This 
may, for example, be a major factor in the large and increasing numbers of fatalities associated with 
landslides in Népal. During 2002, for example, there were a total of 346 reported human fatalities and 73 
reported injuries as the resuit of 110 reported landslides (Hart et al, this volume). In addition to the himian 
costs, at ieast 650 houses wete damaged or destroyed and 500 cattle were lost. Of course thèse events led to 
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the closure of many of the country's roads for days or weeks, imposing a substantial impact on the national 
economy. 

Therefore, the assessment of landslide susceptibility, hazard and risk is an essential requirement in the 
planning of any new transportation project. In recent years a ränge of techniques have been developed to 
facilitate this. However, most techniques are limited in the geographical area in which they can be applied; 
are complex to understand and apply; require a ränge of data that is frequently not available; and have an 
unknown level of reliability and accuracy. Therefore, in many rural road projects in developing countries, 
the level of landslide susceptibility, hazard or risk assessment that is undertaken is minimal, and decisions 
continue to be made imder conditions of uncertainty and unreliability, 

The Situation is also exacerbated by rural population growth and, consequently, increasing demands on 
marginal land and for rural infrastructure and roads. Therefore, the govemment agencies involved with rural 
access and development require a rapid and reliable method for assessing landslide susceptibility and hazard. 
This is particularly important during the preliminary decision-making stages of any infrastructure 
development project, before limited resources and money are committed to expensive field investigations or 
construction activity. 

The Landslide Risk Assessment Project 
In Order to address these problems, the "Landslide Risk Assessment in the Rural Access Sector" Project 
(LRA) was established in 2000. This three-year project, which has been funded by the UK Govemment 
through the Department for Intemationai Development (DFID), has been undertaken in collaboration with 
the Department of Local Infrastmcture Development aiid Agricultural Roads (DoLIDAR) in Nepal and the 
Department of Roads (DoR) in Bhutan. Activities have included: 

• Comprehensive worldwide reviews of remote sensing and landslide susceptibility and hazard 
mapping techniques 

• Analyses of satellite imagery to evaluate its applicability to terrain evaluation and landslide 
susceptibility assessments for rural infrastructure plaiming purposes 

• Interpretation of aerial photographs to map landslides and assess landslide frequency through 
sequential photography 

• Field mapping and the compilation of landslide inventories to develop databases for landslide 
susceptibility mapping 

• Surveys of land use and social impact parameters in landslide areas to assist in the development of 
rural risk assessment and risk management guidelines 

• TTie development of techniques for landslide susceptibility, hazard and risk mapping for rural 
access planning 

• The development of a database of reported landslide occurrence in Nepal using various data sources 
(including the national press) 

• The production of Best Practice Guidelines based on the above shidies. 

The aim of the LRA Project is to develop a set of rapid, reliable and cost-effective techniques that can be 
used to provide a preliminary assessment of landslide potential. This Information can then be used in the 
planning stages of a project, as well as during the design and engineering stages. 

A systematic Programme of remote sensing, field mapping, land use and social survey, landslide 
susceptibility analysis, and landslide hazard and risk assessment, has been completed in all six of the project 
study areas (three in each of Nepal and Bhutan). The results have been combined to yield Outputs relevant 
to both countries, thus providing the basis for application outside the study areas. The focus has been to use 
data sources that would be available at the desk study stages of any project. This has included the 
exjimination of the ways in which remote sensing data, published map data and GlS-based methods can be 
used, as well as looking at how to overcome the problems of limited, out of date or inaccurate data. 

Remote Sensing 
Satellite, remote sensing technology is rarely used for infrastructure development projects, and particularly 
for route corridor selection for a variety of reasons, including cost, resolution and technological limitations 
(see Petley & Heara, this volume). An assessment has been undertaken of the ways in which different 
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remotely sensed data sources, including Landsat 7 ETM+, SPOT, 1RS, IKONOS, and conventional aerial 
photographs, can be used for landslide susceptibility and hazard mapping. The results of the research are 
encouraging. Overall, Landsat 7 ETM+ proved to be the most cost-effective satellite tool for delineating and 
mapping large landslides (greater than 50m in dimension). It also proved to be effective for the mapping of 
land use, végétation cover and even soil type through the analysis of the multi-spectral data. It was also 
found to be effective for mapping areas of colluvium that might be susceptible to sliding, although field 
vérification is required to validate interprétations, given some of the uncertainties of interpreting terrain at 
the relatively small scales offered by Landsat imagery. The high resolution IKONOS product proved to be 
the most effective satellite tool for mE^ping smaller landslides (10 m or less), especially where multi-
spectral data were available (Petley et al., 2002). However, at présent the relatively high cost precludes its 
use in most rural infrastructure projects. 

Aerial photographie interprétation (API) provides an effective tool for landslide mapping and terrain 
évaluation. The advantages of API over satellite image interprétation (SU) include the availability of stereo 
images and the visual-familiarity with the terrain shown in the photographs. The "low technology" method 
used for the interprétation of aerial photographs (i.e. a stéréoscope) also means that the work can be carried 
out on site without the need for a computer to cany out multi-spectral analysis. However, the disadvantages 
include distortion and relief exaggeration in mountainous areas and the relatively high cost and practical 
difficulties of updating the images on a regular basis (Petley & Heam, this volume). Potential applications 
of Landsat 7 ETM-i-, IKONOS and aerial photography are briefly discussed below. 

Landsat 7ETM+ 
The effectiveness of approaches using True Colour Composite (TCC) images, False (Tolour Composite 
(FCC) images. Principal Components Analysis (PCA), clay ratio analyses, iron oxide ratio analyses and 
Abram ratio analyses have ail been tested. Of thèse, the TCC approach proved to be the most effective for 
mapping landslides. In particular a RGB457 FCC, pan-sharpened image using the panchromatic data, 
yielded excellent results. A RGB 542 FCC also proved relatively successful. In both cases motphological 
évidence obtained from a TCC was used in conjunction with the FCC images to support the identification of 
landslide areas (i.e. concave or convex slopes, drainage pattem, shadows, etc). The FCC's were also used to 
map land use pattems, wet areas, soil type and végétation cover. For example, in some of the study areas, 
colluvium was clearly identifiable, as were areas of barren land, bare soil or seepage. 

Petley et al. (2002) concluded that a multi-spectral analysis of a Landsat image could assist landslide factor 
mapping. The présence of disturbed groimd, wet areas (or seepage lines), bare soil or colluvium is often 
indicative of either creep or incipient failure. However, wet areas have the same spectral signature as tin 
roofs, paddy fields and river alluvium. Therefore, the need for field vérification is vital. The analysis 
should also not be done in isolation from the rest of the project, but as an intégral part of the project, with 
both the computer specialist and the field specialist working together. 

IKONOS 
Although IKONOS data are considerably more expensive than the other satellite images such as Landsat 7 
ETM+ or SPOT iv, they provide far greater ground resolution and allows similar feature identification to 
API. Because of Ûie limited spectral capability of the IKONOS instrument (only four bands plus the 
panchromatic band are available), most interprétation has been undertaken using panchromatic and TCC 
images. In both cases, ridges, valleys and rivers were clearly évident; whilst land-cover information such as 
végétation type, soil type and rock outcrops were also visible. Areas of bare soil were bright and lighter in 
comparison with the surrounding darker végétation. This meant that récent and active landslides whose 
width and length exceeded 10 m were visible. Relict (inactive) landslides proved to be difficult to identify 
however due to the lack of stereo capability. The availability of stereo images would have further increased 
the effectiveness of the imagery, making it similar to 1:5,000 scale stereo aerial photographs in terms of 
ground surface interprétation. However, until this stereoscopic capability is widely available, and the cost is 
reduced, the widespread adoption of IKONOS imagery appears to be limited in developing coimtries. 

Aerial Photographs 
Aerial photography still remains the most practical and readily-available image data source. Its application 
for multi-enviroiunental data collection, planning and engineering purposes has been well demonstrated, by 
many infrastructure development projects, as well as the LRA Project (Dhakal et al. 1999 for example). In 
Népal, there is relatively récent aerial photographie coverage for the whole country. However, some parts of 
the country have several epochs of aerial photographs, providing a usefiil insight into how the landscape and 
land use has changed in thèse areas. In Bhutan, the situation is not as good as Népal. There is limited 
photographie coverage of the country, with the majority of the photographs being taken during the early 
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1990's. Aerial photographs in Bhutan also sufFer from the distortion afTects caused by the very steep terrain. 
However, in both countries API mapping techniques proved useful in the mapping the landslide distribution 
and for classiiying the terrain during the LRA Project. 

Geographical Information Systems 
A Geographical Information System (GIS) is a powerftil computer-based tool for the Storage, management 
and analysis of spallai data. Until recently GIS was a very specialised tool that was only really usable by 
specialists due to the complexity and cost of the required software and hardware. However, in recent years 
the availability of powerful, low cost computers and the development of user-friendly software systems bave 
meant that GIS is now a tool that is applicable to a wide range of projects. Numerous govemment and non-
govemmcnt agencies in both Nepal and Bhutan are currently using GIS. 

The LRA Project has generated very large amounts of complex data, for which a GIS has proven to be the 
ideal tool for Storage, manipulation and analysis. GIS has proven to be effective in enabling the various data 
capture, data entry and data analysis activities to he undertaken relatively quickly and easily. It has also 
been demonstrated that a GIS can be effectively used for carrying out rapid assessments of landslide 
susceptibility over large areas. Thus, it is clear that GIS is a very powerful tool for the assessment of 
vulnerability of the infrastructure and population of a given area to landslides, and it is thus an excellent tool 
for planning puiposes. 

For each of the project study areas a GIS database has been developed to manage a wide variety of dataseis, 
which include information pertaining to the topography, geology, geomorphology, land use, regional 
seismicity and infrastructure. These data bave been obtained from a number of sources, including published 
and unpublished maps and reports; API, SII and field mapping. GIS was utilised to identify those factors 
that were significantly correlated with the distribution of mapped landslides in each study area. The resuits 
obtained from these analyses were used to create a set of landslide susceptibility maps for each of the six 
study areas. 

One advantage of a GIS is the ability to produce maps that are of a very high graphical quality. 
Unfortunately this can lead to a feeling that the information that they are portraying is accurate, which of 
course, may not be the case. Output data can only be as good as the data that has been used as an input. If 
the input data quality is poor then the output will also be poor. In addition, it is critically important that the 
user understands what the computer is actually doing when it undertakes an analysis. It may therefore be 
necessary to bave a GIS specialist working in conjunction with a field specialist so as to utilise the 
experience, skills and knowledge of both. 

Landslide Susceptibility and Hazard Mapping 
The LRA Project has carried out detailed landslide susceptibility mapping in three study areas in Nepal and 
three study areas in Bhutan (Table 1) using a combination of SII, API and field mapping. In each case the 
SII and API was completed first, with the field mapping being used for field verification, as well as for the 
coUection of primary data (geology, structural geology, soil cover and social survey mapping). The data 
bave been stored and analysed using a GIS. 

The use of a GIS allowed spatial relationships between the landslide distribution and the contributory factore 
to be analysed (Table 2). The investigation involved the analysis of either single factors (i.e. rock type) or 
several factors combined together (i.e. bi-variate or multi-variate analysis - rock type and slope angle; or 
slope angle, slope aspect and structural geology). Standard statistica! techniques were used to compare and 
test the significance of the resuits. This analysis was undertaken for each of the six study areas individually 
and then with the data from ali study areas combined as a single data set. The combined database contains 
over 1300 landslides mapped by the LRA Project. 
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Table 1: Different data types and sources used during the research 

Field Derìved Data Published Data GIS Derived Data Remote Sensing 
Derìved Data 

Landslide distrìbution Conto urs Elevation Landslide distrìbution 
Rock type Rainfall Slope angle Terrain classification 
Structural geology Seismicity Slope aspect Land use 
Terrain classification Land use Drainage line distances 
Land use Social data Lineament distances 
Infrastructure Infrastructure 

Table 2: Statistics for each of the LRA Project Study Areas 

Country Study Area Area (km square) No. Landslides 
Mapped 

Nepal Baglung 528.45 232 
Arghakhanchi 327.05 389 
Ilam 363.86 226 

Bhutan Mongar - Trashigang 346.19 229 
Chhukha 201.91 41 
Sunkosh - Daga 251.18 219 

Total 2,018.64 U36 

The landslide susceptibility analyses undertaken by the LRA Project bave shown that, when working at the 
regional scale, the most significant factors determining landslide activity are slope angle and rock type. 
However, at the regional scale, mappable geologica! units are usually a combination of different rock types. 
For example, phyllite is often found in conjunction with limestone, and schisi is often found in conjunction 
with gneiss. The predominant rock type has been identified in each case through field mapping and 
consultation with Nepalese and Bhutanese experts. However, in many cases it proved necessary to combine 
two or more rock types into a single "lithotype" (see below) if each of the rock types present was judged to 
be important in goveming slope stability. 

The simple landslide susceptibility scheme developed is therefore based upon a list of rock types, each of 
which has been divided into four slope angle classes. For each rock type-slope angle combination the 
density of landsliding across the six study areas has been determined to provide an indication of the 
susceptibility of the tmit to the occurrence of landslides. This list, referred to as the "Regional Landslide 
Susceptibility Rating List" is provided in Table 3. In many cases the formations on the geological map will 
not exactiy coincide with those in Table 3, and therefore, some interpretation of the geological data will be 
required. This can be supplemented by field mapping or verification. 

To undertake an assessment tising this scheme, it is necessary to obtain a map showing the distrìbution of 
rock types of the study area. This can usually be achieved from published geological maps, ideally at a scale 
of 1:25 000 or 1:50 000. In most cases tìiese maps will be in pj^er not digitai form, and will thus require 
tablet digitising. Field mapping can also provide an input and should where possible be used to validate the 
information being used. The slope angle Information is generally availabie in the form of contour maps 
compiled by national mapping agencies. Increasingly, this is availabie in digitai form. Standard fimctions 
within the GIS can then be used to convert the contour data into the necessary slope angle data with the 
specified classes. 

Standard GIS ftinctions are again used to create a single factor layer combining the rock type data with the 
slope angle data. The landslide susceptibility factor ratings given in Table 3 are used to create the landslide 
susceptibility map for the area being studied. An example of such a map for the Chhukha study area in 
Bhutan is shown in Figure 1. 
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Table 3: The regional landslide susceptibility rating list 

Susceptibility Rock Type Slope Indicative 
Class Angle landslide density 

(landslides/Sq km) 
Granite 0° - 20° 0.00 
Granite 20° - 30° 0.00 
Granite 30° - 40° 0.00 
Granite >40° 0.00 
Limestone/Dolomite with Quartzite, Phyllite Sdoi shale 0°-20° 0.00 
Slate/shale with Limestone &/or Quartzite 0° - 20° 0.00 
Quartzite & Phyllite 0° - 20° 0.16 

Low Landslide Mica Schist & Gneiss 0° - 20° 0.20 
Susceptibility Limestone/Dolomite with Quartzite, Phyllite &/or shale 20° - 30° 0.20 
(Rating ofl) Mica Schist and other minor rock types 0° - 20° 0.22 

Gneiss & Mica Schist 0° - 20° 0.25 
Mica Schist & Phyllite 20° - 30° 0.26 
Mica Schist & Quartzite 0° - 20° 0.27 
Gneiss 0° - 20° 0.30 
Phyllite (with (Juartzite &/or Limestone) 0° - 20° 0.30 
Limestone/Dolomite with Quartzite, Phyllite &/or shale 30° - 40° 0.36 
(Juartzite & Phyllite 20° - 30° 0.36 
Limestone/Dolomite with Quartzite, Phyllite &/or shale >40° 0.40 
Mica Schist & Phyllite 0° - 20° 0.43 
Phyllite (with Quartzite &/or Limestone) 20° - 30° 0.46 
Mica Schist and other minor rock types 20° - 30° 0.48 
Mica Schist & Gneiss 20° - 30° 0.53 

Moderate Quartzite & Phyllite 30° - 40° 0.54 

Landslide 
Susceptibility 
(Rating of 2) 

Gneiss 
Mica Schist 
Slate/shale with Liinestone &/or Quartzite 

20° - 30° 
0° - 20° 
30° - 40° 

0.55 
0.56 
0.59 

Landslide 
Susceptibility 
(Rating of 2) Mica Schist & Quartzite 20° - 30° 0.60 

Slate/shale with Limestone &/or Quartzite 20° - 30° 0.60 
Quartzite & shale &/or Sandstone 20° - 30° 0.62 
Quartzite & shale &/or Sandstone 0° - 20° 0.65 
Gneiss & Mica Schist 20° - 30° 0.66 
Slate/shale with Limestone &/or Quartzite >40° 0.67 
Quartzite & Phyllite >40° 0.72 
Mica Schist 30°-40° 0.75 
Mica Schist 20° - 30° 0.77 
Fine grained Sandstone (siltstone/mudstone) 0° - 20° 0.78 
Mica Schist >40° 0.80 
Mica Schist & Gneiss >40° 0.81 
Gneiss 30° - 40° 0.82 
Mica Schist & Phyllite 30° - 40° 0.83 
Phyllite (with Quartzite Sdot Limestone) 30° - 40° 0.88 
Mica Schist and other minor rock types 30° - 40° l.OO 
Gneiss & Mica Schist 30° - 40° 1.00 
Mica Schist & Gneiss 30° - 40° 1.02 

High Landslide 
Susceptibility 
(Rating of 3) 

Gneiss 
Medium to coarse grained Sandstone 

>40° 
0° - 20° 

1.02 
1.03 High Landslide 

Susceptibility 
(Rating of 3) Quartzite & shale &/or Sandstone 30° - 40° 1.15 

High Landslide 
Susceptibility 
(Rating of 3) 

Mica Schist & Quartzite 30° - 40° 1.19 
Quartzite & shale StJoi Sandstone >40° 1.45 
Phyllite (with Quartzite Sdot Limestone) >40° 1.55 
Mica Schist & Quartzite >40° 1.58 
Mica Schist and other minor rock types >40° 1.58 
Medium to coarse grained Sandstone 20° - 30° 1.64 
Gneiss & Mica Schist >40° 1.89 
Medium to coarse grained Sandstone >40° 2.15 
Medium to coarse grained Sandstone 30°-40° 2.48 
Mica Schist & Phyllite >40° 2.62 
Fine grained Sandstone (siltstone/mudstone) 20° - 30° 2.91 
Fine grained Sandstone (siltstone/mudstone) 30° - 40° 3.33 
Fine grained Sandstone (siltstone/mudstone) >40° 6.85 
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Figure 1: The Chhukha landslide susceptibility map as generated using the LRA methodology 

To test this susceptibility model, the scheme was applied to each of the six shidy areas, as well as to two 
further test areas in Nepal. In each case the map was compared with the mapped landslide distribution and a 
number of standard statistical techniques were used to test the results. For each of the areas where the 
susceptibility model has been tested, it has performed well when compared to the existing landslide 
distribution, indicating that the model is potentially applicable to other areas within Nepal and Bhutan. 

Of course it is essential to ensure that the outputs of the LRA Project are made available to potential users in 
the most cost-effective way. Because the LRA Project has been implemented in full co-operation with 
govenmient agencies, namely DoLIDAR m Nepal and DoR in Bhutan, maximisation of output sustainability 
has been possible. It has been concluded that the use of landslide susceptibility maps in conjunction maps 
showing topography and infrastructure (Figure 2) is most useful to plaimers and engineers. 

These maps can be developed to provide an indication of landslide hazard and risk. In the case of landslide 
hazard, this involved the incorporation of information regarding the frequency of landslide occurrence and 
the mapping of areas that will be affected by nmout, lateral extension and retrogression. At present both of 
these parameters are difficult to define. Landslide frequency is best determined through the analysis of 
historical landslide records combined with precipitation and seismic records, but unfortimately data quality 
is rarely sufficient to establish clear relationships. Because of this, the best estimate that can be made is 
usually to assume a frequency based on the susceptibility class - i.e. that the highest susceptibility class = 
100% probability in a given period, i.e. 20 years for the nominal design life of a low cost road. Rimout is 
best determined in a general way based on the analysis of nmout distances for existing landslides in similar 
materials. Risk can then be established by examining the potential cost of each landslide in terms of lives 
threatened and land use/infrastructure at risk. 

Unlike many other schemes, the LRA landslide susceptibility model follows a relatively simple logic tree 
type approach. The simplicity of the LRA scheme means that potentially it could readily be applied to other 
areas outside of Nepal and Bhutan, as rock type and slope angle are likely to be significant factors in many 
other environments (see Petley and Heam, this volume). However, it should be noted that the scheme 
described above is intended for use in, for example, the corridor selection of rural roads and should be used 
at a regional or district scale (i.e. c. 1:200,000) and not for detailed planning and design. It will always 
require field verification as part of the analysis. 
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Figure 2: The Chhukha landslide susceptibility map overlain with information on topography and 
infrastructure vulnerability. This type of map has proven particularly usefiil for planning purposes. 

LRA Sustainability in the Public Sectors of Nepal and Bhutan 
As stated earlier, the aim of the project was to develop a set of rapid, reliable and cost-effective techniques 
that can be vised to provide a preliminary assessment of landslide pqtential in any given area. This 
information can then be used during the planning and feasibility study stages of any rural development 
projecL Therefore, the critical issue relates to whether or not the techniques developed by the LRA Project 
can be effectively used by the govemment agencies of Nepal and Bhutan who are involved with rural 
development (and more specifically rural access). Furtfaermore, do these govemment agencies have the 
technology and expertise to implement them? 

As described by Petley and Heam (this volume), at présent satellite image remote sensing technology is 
rarely used in route corridor sélection. There are a number of reasons for this. In the context of Nepal and 
Bhutan, there is a perception that the technology is expensive in comparison with conventional mapping 
techniques and requires specialised expertise and equipment. There are also concems over the spatial 
resolution of the available images. Similar arguments are also used with respect to the use of GIS-based 
methods for route corridor sélection - the technology is expensive, its use requires specialised training and 
the data is very expensive, not available or not sufficiently accurate for the purpose. 

The LRA Project bas demonstrated that the Outputs are both manageable and practicable. Although 
currently, there are problems with the availability, accuracy or âge of some of the available data, these are 
slowly being addressed by those agencies within Nepal and Bhutan that are working in the fields of 
geological and topographical survey. In both countries, the problem is sometimes not data availability, but 
knowing that the data are available, where to find it or how frequently it has been updated. There are many 
examples where data have been generated by some agencies from first principles despite the fact that the 
same data already existed within other govenmient domains. Very oflen those agencies producing, creating 
or digitising the data are not publicising their data, or are unwilling or unable to pass it on to those who need 
it Those agencies that require the data may not (or do not) have the resources to produce it themselves. 
This is an issue that is frequently discussed at LRA meetings, seminars and Workshops by numerous 
govenunent and non-govemment agencies, as well as private companies. Part of the problem is sometimes 
related to the cost of the data. Should there be a charge, and if so, how much? Should govemment agencies 
be sharing their data freely with each other? What is the rôle of private consultants? 
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The use of a GIS does require specialised training. However, the expertise is present in many government 
agencies and non-govemment organisations and companies within Nepal and Bhutan. There are also 
frequent workshops and training courses being organised in both countries, either by government agencies, 
private organisations and private companies (e.g. ESRI), or INGO's (e.g. ICIMOD). 

Summary and Conclusions 
While the LRA scheme is not intended to provide detailed slope assessment for design, it can allow broad 
assessments of landslide susceptibility (relative tendency of slopes to failure), landslide hazard 
(susceptibility combined with landslide probability and runout) and risk (damage potential) to be assessed in 
order to allow route corridor identification and assessment to proceed. The importance of developing a 
terrain evaluation-based groimd model early in the plaiming stages of an infrastructure development project 
has been demonstrated. It is believed that the techniques developed by this project enable the mapping of 
landside susceptibility through the use of geological and topographical factors derived from published maps 
and API with a reasonable degree of confidence. 

Trainiiig has formed an important component of the LRA Project Seconded staff have been trained 
throughout the project duration and 15 training workshops have been held in Nepal and Bhutan covering the 
subjects of remote sensing, GIS, geology, geomorphology, field mapping and landslide management A 
series of Best Practice Guidelines have been developed with the intention that they could be used by 
govenmient and non-govemment agencies working in the field of mral access at every stage of the planning 
and implementation of a project 

In the context of developing countries such as Nepal and Bhutan, where resources are limited, there is a need 
for greater coordination and sharing of resources, experience and manpower However, these problems are 
not insurmountable and it is therefore believed that the technology and techniques developed and applied by 
the LRA Project for the mapping of landside susceptibility and the plaimirig of other rtu l̂ infrastructure can 
be taken up readily by govenmient agencies with appropriate training. 
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Abstract: 
LandsUdes are a fàct of geology in Nepal. It is only in the geologically Recent time that they bave become a fact of life: 
impacting on communities and infrastructure, and most notably roads. In order to be able to pian for landslides it is 
important to first ascertain where they are likely to occur. This is an inexact science butknowledge of wherc landslides 
bave occuired in the past is a good starting point. The Landslide Risk Assessment Project has discussed landslide 
probletns wìth several iclevant agencies in Nepal and concluded that there is no single database that provides an overall 
picture of only landslide occurrence. Consequently, a detailed search has been undertaken to record landslides reported 
in the national press going back as far as 1968, using six different newspapers, covering both the Nepali and English 
language press. A database has been establìshed that contains reference to over 730 reported landslides. Information on 
location, date and consequencc of cach reported landslide has been recorded wherever this data has been published. 
Additiotial data has been obtained from a nimiber of Government or university departments within Nepal, including 
geologica!, seismic and lainfal! data, as well as the location of major senlements and infrastructure. The database is 
unique in Nepal and probably imique in most countrìes. While the database is not statistically significant, given tìiat 
only the bigger landslides with the greatest economie and social consequences will bave been reported, it does provide 
the basis for anaiysing some of the relationships betvsreen the reported landslide activity and such factors as the geology 
or rainfall distrìbution of Nepal. The database also highlights the increasing economie risk and social impact associated 
with the landslide activity affecting Nepal. 

Introduction 
The combination of geological, topographical and climatic conditions found in Nepal promotes high levels 
of landslide activity. With an ever-growing population, landslide activity is increasingly impacting on 
communities and infrastructure, and in the remote rural areas of the country this impact is becoming 
increasingly difïicult to manage. To be able to make any disaster preparedness plans it must first be 
ascertained where landslides are likely to occur. This is an inexact science but a working knowledge of 
where landslides have previously occurred, or the conditions that initiate landslide activity is a good starting 
point. It is also in these rural areas that the majority of the infrastructure development projects are currently 
being plaimed or executed. Hart et al., (this volume) argue that an essential element of any proposed 
infrastructure project in these areas should be the assessment of landslide susceptibility, hazard and risk. 

Carrying out such assessments requires a range of data that is frequently not available. The result is that in 
many developing countries, the level of landslide susceptibility, hazard or risk assessment that is vmdertaken 
for a rural road project is small or non-existent, and decisions continue to be made under conditions of 
uncertainty and unreliability (Hart et al., this volume). One of the fundamental data sets required is a 
database of existing landslide activity. This may be in the form of a landslide distribution map or a database 
(digital or hard copy) of their occurrence. However, there are very few cases of such data sets being 
available for a whole country. 

After consultation with a ntunber of relevant agencies in Nepal it became apparent that there was no single 
database for landslide occurrence in the country, although there is a database for landslide and flood events 
maintained by the Ministry of Home Affairs (MoHA). Therefore, the Landslide Risk Assessment in the 
Rural Access Sector (LRA) Project established a database dealing solely with landslide activity affecting the 
coimtry. As there is limited published data available on landslide occurrence in Nepal it was decided to use 
information reported in the national press. Five different newspapers were used, dating back to 1968 and 
covering both the Nepali and English language press. Additional data was obtained from a number of 
government or university departments within Nepal. 

This paper briefly describes the database, the data it contains and some of the analysis that has been 
completed. A brief description of the results is also provided. The aim of the paper is to provide an 
indication of the level of landslide activity affecting Nepal and some of the impact it has on the country. 
The data presented in this paper provides a useful setting for the subject nature of this PI ARC seminar. 



The Landslide Database 
The aim of the database is to provide an insight into the distribution, frequency and social-economie impact 
of the reported landslide activity across Nepal. It is not intended to he a definitive database covering ali 
landslide activity within the coimtry. The database contains Information on over 730 reported landslides, 
covering the period from 1968 to 2002. Fot each landslide the following information has been recorded in 
the database: 

• The location (name of village, lov/n, Village Development Committee (VDC) and/or Districi 
Development Committee (DDC) 

• The date of landslide occurrence (both English and Nepali calendar) 
• The number of human casualties and fatai ities 
• The number of animais lost or killed 
• The infrastructure damaged or lost 
• Estimated cost of damage 
• Any additional information, such as the causes (or inferred causes) 
• The source of the information (i.e. the name of the newspaper) 

The newspapers used during the study were the Gorkhapatra, Rising Nepal, Kantipur, the Kathmandu Post, 
and the Space Times Daily. 

A number of data sets were obtained from the Department of Mines and Geology, the Department of 
Hydrology and Metrology, the Department for Disaster Management (Ministry of Home Affairs), the 
Department of Roads and the Central Departments of Geology and Geography (Tribhuvan University). This 
data included the geology and earthquake distribution of Nepal, the rainfall distribution, and the road 
network of Nepal. 

The data is held within a Microsoft Access Database, as well as the ArcView Geographical Information 
System (GIS) software (Figure 1), Both of the software allows quick data entry and querying, with ArcView 
allowing the production of output maps. The GIS also allows the spatial distribution of the reported 
landslide activity to be investigated and compared against the other datasets such as the geology, rainfall and 
earthquake distribution of Nepal. A number of standard statistica! techniques were used during this analysis, 
similar to those described by Hart et al., (this volume) for carrying out the landslide susceptibility mapping 
for each of the LRA study areas. 

Figure 1: The landslide database is stored and analysed using MS Access and ArcView GIS. 

Landslide Occurrence, Fatalities, Casualties and Damage 
The landslide database for Nepal developed by the LRA Project contains information on over 730 landslides 
that bave been reported in the national newspapers covering the period from 1968 to 2002. The database 
shows that during this period, landslide activity in Nepal has claimed the lives of over 2400 people, left over 
500 people injured and caused over NRs 344.5 million (US$ 4.4 million) of damage (Table 1). 
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Table 1: Summary of landslide, fatality and casualty data contained within the LR A database. 

Landslides Human Human Houses Estimated Landslides Fatalities Injuries Destroyed or 
Damaged 

Cost (NRs.) 

Minimum reported 5 4 0 0 0 
in a year 
Maximum 111 342 73 642 242.5 million 
reported in a year (2002) (2002) (1972/2002) (2002) (1998) 
Average reported 20 70 15 96 9.8 million 
per year (1968 to 
2002) 
Total reported for 734 2,441 516 3,366 344.5 million 
the period 1968 to 
2002 

1970, 1985, 1970, 1972, 1970, 1972. 1971, 1983, 1982, 1986. 

Peaks in reported 
figures 

1988, 1991, 1976, 1982, 1988, 2001. 1985, 1987, 1988, 1998. Peaks in reported 
figures 1999, 2001, 1983, 1985, 2002 1998,1999. 2001 
Peaks in reported 
figures 2002 1988, 2001. 

2002 
2000, 2001. 
2002 

A number of "peaks" can be seen in the data (Table 1; Figures 2, 3, 4 and 5). These dates have been 
compared with the available rainfall data for the period 1989 to 2000 (Figure 6) to see if they correspond to 
years with either "wet" or "dry" years (Table 2). A "wet" year has been defined as a year with high (or 
higher than average) rainfall recorded at a number of rainfall stations across the country and a "dry year" as 
a year with low (or lower than average) rainfall recorded at a number of rainfall stations. There seems to be 
a limited correlation between the number of reported landslides, human fatalities, injuries and houses 
destroyed and the relative amount of rainfall. This could be because the rainfall data only covers 12 years 
while the LRA landslide database covers 34 years. 

Table 2: Reported Statistics for "Wet" and "Dry" Years 
"Wet" No. Reported No. Reported No. Reported No. Reported 
Years Landslides Fatalities Injuries Houses Lost 

1990 7 18 11 1 
1993 8 29 2 27 
1995 6 12 15 7 
1998 29 79 9 151 
2000 35 53 23 22 
2002 111 342 72 321 

"Dry" 
Years 

No. Reported 
Landslides 

No. Reported 
Fatalities 

No. Reported 
Injuries 

No. Reported 
Houses Lost 

1992 5 24 3 0 
1994 15 26 18 11 
1997 13 22 2 49 
1999 44 82 22 78 

There does appear to be a lack of correlation between the "peaks" for some of the data listed in Table 1 or 
shown in Figures 2 to 5. For example, there is a peak in the estimated cost of the damage attributed to 
landslide activity for 1986 but this year is not represented by peaks in any of the other attributes. There is 
also a peak in the number of fatalities reported to have occurred as the result of landslide activity during 
1976 but again this is not seen for any of the other attributes. 

From about 1996, there appears to be a steady increase in the number of landslides, fatalities, injuries, and 
houses damaged or destroyed being reported each year (Figures 2, 3, and 4). The reported estimated cost of 
the damage caused by the landslide activity also appears to be increasing (Figure 5). This is also highlighted 
by the three-year running average figures that have been calculated tising the data from 1968 to 2002 
(Figures 3, 4 and 5). The question is whether this is an increase in the efficiency of landslide reporting or a 
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real increase in the occurrence of landslides, or a combination of both. Without an independent database for 
landslide activity (derived from field mapping or remote sensing) this issue cannot be easily resolved. 
However, it should be remembered that the number of reported human fatalities and casualties, or the 
estimated cost of the damage caused by a landslide may not necessarily reflect the number of reported 
landslides. For example, one or two large landslides may be more devastating or costly than ten or fifteen 
smaller events (which may be reported for other reasons such as damage to infrastructure). 

Comparison of the fatality figures contained within the LRA daubase with the undifferentiated landslide and 
flood data collected by the Ministry of Home Affairs for the last 20 years (1983 to 2002) seems to suggest 
that it might be an increase in the level of reporting. For much of this period there seems to be little 
agreement between the data sets, except for the last few years (Figure 7). Interestingly, although the 
numbers of fatalities and injuries recorded by both the LRA and MoHA databases for the last two years have 
been very similar, there is a big discrepancy in the numbers of houses destroyed, as are recorded in the two 
databases (Table 3). It should however, be remembered that the LRA database deals solely with landslide 
activity while the MoHA database deals with both landslide and flood activity combined. Therefore part of 
the discrepancy between the two data sets will be the influence of the flood data. For example. Figure 3 
shows that the MoHA database records that over 1200 people were killed in 1993 as a result of landslide and 
flood activity. This figure will mostly be due to the devastating floods that rffected many parts of Nepal 
during the monsoon of that year. 

Table 3: Comparison of the fatality, injury and houses destroyed figures contained within the LRA and 
MoHA Databases for 2001 and 2002. The LRA data is for landslides only. The MoHA data covers both 

landslide and flood activity. 
Year Fatalities Injuries Houses Destroyed Year 

LRA MoHA LRA MoHA LRA MoHA 
2001 185 196 45 88 187 3,934 
2002 342 444 72 108 321 21,559 

The mmibtt o l npartta landslkles. hunun ta t i l i t i»s mat human c a » u a t t i « n c o n l e d fa> Om L R A daUbas* (1368 lo 2S02) 

2 

Qtandsltdes 
aHuman Fatalities 
a Human Casualties 

Ml 1 ^.X.J.Il,H(1,l.^.i.l,il.i.l 
Year 

Figure 2: The number of reported landslides, human fatalities and human casualties per year from 1970 to 
2002 recorded in the LRA Landslide Database. 
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Three-year running averages for the reported number of landslides, human fatalities and human 
casualties recorded in the LRA database (1970 • 2002) 

Figure 3: The running three-year average figures for the number of reported landslides, human fatalities and 
human casualties per year from 1970 to 2002 recorded in the LRA Landslide Database. 

The number of houses repocted damaged or destroyed by landslide activtty (1966-2002) and the three-yearninnlng average 

1. 

B a Houses damaged or destitiyed 
3-ïear fmning average 

1 I \ 1 \J L I I 
1 i f e i i t - r ™ J : l i 

Figure 4: The number of reported houses damaged or destroyed by landslide activity per year from 1970 to 
2002 recorded in the LRA Landslide Database. 
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Reported esUmated costs of damage per year caused by landslide activity in Nepal and the 3-year running 
average figures (1968 - 2002) 

250 
I Estimated Costs 
- 3-year njnning average 

100 

Year 

Figare 5: The estimated costs of the damage caused by landslide activity each year in Nepal that has been 
reported in the national press (1968 - 2002) and the three-year running average figures. 

Rainfall recorded at a numiier of different locations in Nepal (1989 - 2000) 

PattiarKot 

-Tuisi 

-Oankuta 

-OamTeaEsöl« 

-AnannaniBirta 

Figure 6: Comparison of the annual rainfall data from a number of rainfall stations located across Nepal for 
the period 1989 to 2000. (Data provided by the Department of Hydrology and Metrology, Nepal.) 

This study has found that the estimated cost of the damage caused by landslide activity have only been 
recorded for approximately 10% of the reported landslides that are recorded in the LR A database. This 
means that the figure reported earlier in this paper of NRs. 334.5 million (over last 34 years) does not reflect 
the true picture for the country, and that it should be considerably higher. The problem might be that this 
infonration may not be reported as it may not be seen as important by the press unless it is a very high 
figure (and therefore "newsworthy"). Another problem associated with reporting the cost of a landslide is 
how to evaluate the cost of the damage. For examp le, in many cases the newspapers report that a landslide 
closed a section of road (i.e. the Prithvi Highway) for a number of days. The reported costs of road closures 
most likely relate to the capital costs of opening or reinstating the road only and not the added economic 
losses that result from a break in communications. 
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Comparison of LRA & MOHA Landslide Data - Human Losses 

1400 
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Year 

Figure 7: Comparison of the human fatality figures for the period 1983 to 2002 recorded in the LRA 
Landslide Database and the MoHA landslide and flood database. 

If the cause of the landslide was reported in the newspaper article then this was also recorded in the LRA 
—landslide database.- This is most likely to be an inferred cäüse,äs in many cases it is unlikely that a detailed 

investigation into the factors leading to the landslide's occurrence had been completed for purposes of 
newspaper reporting. As most of the landslides reported in the national press occurred during the monsoon, 
it is not surprising that rainfall is listed most frequently as the triggering mechanism (approximately 60%; 
Figure 8). Toe erosion or flood activity was also described in a mmiber of cases as the cause of the reported 
landslide, although usually in conjunction with heavy rainfall or cloudburst events. 

The causes attributed to the reported landslide activity that is recorded in the LRA database 
(1968-2002) 
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Landslide Distribution 

A source of bias in the LRA database is the fact that it will probably only contain those landslides that have 
impacted on the population and infrastructure of Nepal. It is therefore concluded that a large number of 
landslides that do not cause loss of life or damage to nationally-important infrastructure go unreported. This 
may mean that the distribution of reported landslides could be focused on the more populated parts of the 
country. To see how the reported landslide distribution reflects the population distribution of Nepal, the 
population density figures for each district were calculated using the 2001 population data. These were then 
compared with the number of repotted landslides and the calculated reported landslide density figures for 
each district (Table 4). The comparison shows that those districts with the highest landslide densities are not 
necessarily those districts with the highest population densities. This may indicate that the reporting of the 
landslide activity affecting Nepal is not biased towards the major population centres of the country. This 
data also gives an indication of the relative level of risk posed to these districts by landslide activity. 

By using a GIS it is possible to plot a map of the reported landslide distribution and compare it visually with 
the population centres and infrastructure such as the major road network for Nepal (Figure 9). This figure 
suggests that there is a very close coimection between the reported landslide distribution and the major road 
network (and therefore some of the major population centres, such as Kathmandu and Pokhara). Is this a 
true representation of the situation or the result of reporting bias? How many of the reported landslides are 
natural failures and how many are the result of human (predominantly engineering) activity? It is often 
difficult to establish the cause of an individual landslide without a detailed ground investigation which has 
obviously been beyond the scope of this study. Another question that could be asked is whether this map 
supports the argmnent that road corridors attract ribbon development and therefore an increase in the level of 
risk posed by landslide activity associated writhin road corridors (Heam et al, this volume). 

Table 4: Comparison of the district population data for Nepal and the reported landslide density figures 
calculated using the figures held within the LRA database. The data shown is for the 20 districts with the 

highest reported landslide density figures. 

Rank 
based on 

SUde 
Density* 

District Population (Sq. km) 
Area Population 

Density 
(pop/Sq. km) 

Rank based 
on 

Population 
Density* 

Reported 
Landslide 

Density 
(Landslides/ 

Sq.km) 
1 Kathmandu 
2 Syangja 
3 Nuwakot 
4 Palpa 
5 Lalitpiu: 
6 Kavre 
7 Parbat 
8 Sindhupalchok 
9 Kaski (Pokhara) 

10 Dolakha 
11 Gulmi 
12 Baglung 
13 Dhading 
14 Khotang 
15 Okhaldhunga 
16 Terhathum 
17 Arghakhanchi 
18 Ham 
19 Bhojpur 
20 Dhankuta 

1,081,845 
317,320 
288,478 
268,558 
337,785 
385,672 
157,826 
293,719 
380,527 
175,912 
296,654 
268,937 
338,658 
231,385 
156,702 
113,111 
208,391 
282,806 
203,018 
166,479 

395 
1,164 
1,121 
1,373 

385 
1,396 

494 
2,542 
2,017 
2,191 
1,149 
1,784 
1,926 
1,591 
1,074 

679 
1,193 
1,703 
1,507 

891 

2,738.85 
272.61 
257.34 
195.60 
877.36 
276.27 
319.49 
115.55 
188.66 
80.29 

258.18 
105.75 
175.83 
145.43 
145.91 
166.58 
174.68 
166.06 
134.72 
186.85 

1 
19 
22 
26 

3 
18 
16 
49 
29 
56 
21 
41 
31 
44 
43 
33 
32 
34 
48 
30 

0.0380 
0.0369 
0.0294 
0.0218 
0.0208 
0.0208 
0.0202 
0.0189 
0.0174 
0.0132 
0.0131 
0.0129 
0.0125 
0.0113 
0.0112 
0.0103 
0.0101 
0.0100 
0.0093 
0.0090 

* Nepal has 75 districts 
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Figure 9: The reported landslide distribution with the major road network for NepaL The road network data 
was supplied by the Department of Roads, Nepal. 

Data Analysis and Results 
By importing the reported landslide database into ArcView GIS it is possible to examine the spatial 
relationships between the reported landslide distribution and several different factor layers of data held 
within the GIS. This analysis may help to identify those factors that, at the country scale, influence the 
landslide activity that affects the country. The factor layers used in this study are the geology, seismic 
activity and rainfall intensity of Nepal. Each factor layer was analysed using a number of standard statistical 
techniques, similar to those used for the landslide susceptibility mapping described by Hart ef al., (this 
volume). These were the Chi-Squared, O/E and landslide density statistics. Both the Chi squared and 0/E 
statistics compare the distribution of the observed or reported landslides with the number of landslides that 
would be expected if the distribution of landslides was even or random across the whole area. The landslide 
density figures give an indication of the concentration of landslides found occurring within a given unit. 
The data used to calculate these figures is shown in Table 5. 

The analysis of the importance of any factor has been undertaken using a standard Chi Sq test. This test is 
well established, providing an analysis of spatial distribution compared with a control dataset. Here, the 
control dataset has been generated by assuming an even distribution of landslides across the study area - i.e. 
that none of the factors involved in the analysis affect the landslide distribution. For each factor, ?̂  has been 
calculated using the following formula: 

?^=S((0-E)^/E) ^ Equation 1 

Where: O = the observed number of landslides occurring in the area covered by that class or factor 
E = the expected number of landslides in that area if the distribution were even 
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Table 5: The data that was coUected and the statistics calculated during the analysis of the reported landslide 
data held within the LRA database. 

Area covered: 

% of total Area: 
Reported (Observed) No. 
Landslides (O): 
Expected No. Landslides (E): 

O/E: 

Chi-squared (f) test: 
Landslide Density: 

% of total No. landslides 

The area covered by the specified factor category (i.e. "Siwalik" 
within the geology factor layer). 
The % of the Népal covered by the specified factor category. 
The actual number of reported landslides that are found within the 
specified factor category. 
The number of landslides that would be expected to have occurred 
in the specified factor category if there was a uniform landslide 
distribution within the specified category. 
The ratio of the reported or observed number of landslides against 
the expected number of landslides. 
The standard chi-squared statistic (described below). 
The density of landslides occurring within the specified factor 
category. 
The % of the total number of landslides occurring in the specified 
factor category. . 

Therefore, a value of "î  = 0 indicates a random distribution, whereas larger values of "î̂  indicates a non-
random distribution. However, f values must be considered in terms of the degrees of freedom, which 
provides an indication of the probability that the distribution analysed occurred by chance. It is important to 
note that a high ?̂  value does not necessarily mean that the technique is accurately determining the actual 
distribution, but rather one that is non-random. For this reason it is essential to consider the results in the 
context of the map to détermine how well a non-random distribution coïncides with the true distribution. 

Another statistic that bas been used is the O/E value. This basically divides the observed number of 
landslides by the expected number of landslides (if the distribution was even). Although not as powerfùl as 
the Chi-squared statistic this value can give a very quick indication as to the significance of a particular 
factor. For example: 

For an O/E of less than one = the factor being considered may not be significant. 
For an O/E of greater than one = the factor being considered may be significant. 
An O/E value of one may indicate an even or random distribution. 

Landslide density figines were also calculated for each of the classes within the différent factor layers. This 
gives an indication of the concentration of landslides occurring within that class or category and helps to 
identify susceptible classes. For this investigation a combination of thèse statistics have been used, so as to 
reduce the risk of being misled by an individual statistic. 

Rainfall Intensity 
The rainfall intensity map (Figure 10) was produced by the Central Department of Geography at Tribhuvan 
University, using data provided by the HMG Department of Hydrology and Meteorology. The map divides 
Népal into five différent classes based on the average rainfall per 24 hours. 

The results from the rainfall intensity factor analysis are shown in Table 6. The highest landslide density 
figures (and therefore the most susceptible landslide areas) occur where the rainfall intensity exceeds 
300mm per 24 hours and the lowest landslide density figures (and therefore the least susceptible landslide 
areas) correspond with areas which have rainfall intensities less than 150mm per 24 hours. The Chi-Squared 
value of 385.3 with four degrees of freedom is highiy significant. 
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Table 6: Summary of Rainfall Intensity Factor Analysis Results 
Rainfall 
Intensity 
(mm / 24 
Hours) 

Area 
(Thousand 

Sq. km) 

%of 
Nepal 

Expected 
Landslides 

(E) 

Reported 
Landslides 

(R) 
R/E Chl-

Squared 

Landslide 
Density 

(Slides/Sq. 
km) 

%of 
Slides 

Very High 0.9 0.6 4.5 23 5.17 77.4 0.0255 3.2 
(Above 300) 
High 4.1 2.8 20.2 79 3.91 171.1 0.0193 10.8 
(250-300) 
Moderatdy 49.9 33.7 246.3 352 1.43 45.4 0.0071 48.2 
H i ^ 
(200-250) 
Moderate 83.2 56.2 410.5 275 0.67 44.7 0.0033 37.7 
(150-200) 
Low 9.8 6.7 48.6 1 0.02 46.6 0.0001 0.1 
(Below 150) 
Total 148.0 100.00 730.0 730 11.20 385J 0.0049 100.0 

Geology 
The geology map (Figure 11) used in the analysis was provided by the Department of Mines and Geology. 
It shows the five main geological stratigraphie units found in Népal. The landslide factor analysis bas 
shown that the most susceptible stratigraphie unit to landslide activity in Népal is the Lesser Himalayan Unit 
(Table 7). This unit appears to be considerably more susceptible than the other units. The Lesser 
Himalayan Unit comprises quartzite, meta-sandstone, phyllite, slate, schist, marble, dolomite and limestone 
(Table 8). The Chi-Squared value of 425.2 with four degrees of freedom is highly significant. 

A large proportion of the population and infrastructure of Népal is located within the Lesser Himalayan 
Unit This implies that this population and infrastructure are at greatest risk from landslide activity. 
However, as the landslide occurrence data used in this investigation came from newspaper sources, this high 
corrélation could also reflect a higher degree of reporting when compared to the more rural and remote areas 
of the country. 

Table 7: Summary of Geology Factor Analysis Results 

Geology 

Area 
Covered 

(Thousand 
Sq. km) 

%of 
Nepal 

Expected 
Landslides 

(E) 

Reported 
Landslides 

(R) 
R/E Chi-

Squared 

Landslide 
Density 

(SUdes/Sq. 
km) 

%of 
Slides 

Lesser 43.5 29.4 214.4 450 2.10 259.1 0.0104 61.6 
Himalayan 
Higher 47.1 31.8 232.1 208 0.90 2.5 0.0044 28.5 
Himalayan 
Siwalik 14.8 10.0 73.1 36 0.49 18.8 0.0024 4.9 
Tibetan 15.6 10.5 76.8 16 0.21 48.2 0.0010 2.2 
Tethys 
Quatemary 27.1 18.3 133.6 20 0.15 96.6 0.0007 2.7 
Total 148.0 100.0 730.0 730 425.2 0.0049 100.0 

Table 8: Summary of the major rock types found in each of the major stratigraphie units of Népal 
Stratigraphie Unit Major Rock Types 
Quatemary River terrace and lacustrine deposits (conglomerates and unconsolidated deposits) 
Tibetan Tethys Limestone, sandstone and shale 
Siwalik Sandstone, mudstone and conglomerate 
Lesser Himalayas Quartzite, meta-sandstone, phyllite, slate, schist, marble, dolomite and limestone 
Higher Himalayas Gneiss, schist and quartzite 
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Figure 10: Rainfall intensity map for Nepal with the reported landslide distribution. The rainfall intensity 
data was suppHed by the Department of Hydrology and Metrology and the Central Department of 

Geography, Tribhuvan University. 
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Figure 11: Published geology map for Nepal with the reported landslide distribution. The geology map was 
supplied by the Department for Mines and Geology. 
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Seismic Activity 
Earthquake data for Népal and the surrounding région was obtained from the United States Geological 
Survey (USGS) as well as from the Department for Mines and Geology in Népal (Figure 12). The data 
displayed in Figure 12 shows the distribution of both the earthquake activity affecting Népal and the 
reported landsiide activity that is recorded in the LRA Database. The relationship between thèse data sets 
bas been examined. However, the relationship between earthquake activity and associated landsiide activity 
is a complex one (and is complicated even further if the earthquake occurs during the monsoon rains). The 
area affected by an earthquake and the number of landslides that might be triggered by an earthquake event, 
will vary according to the magnitude of the earthquake, the topography, geology and soil of the area. There 
is also the problem that unless the date and time of a landsiide are known then it is very difficult to correlate 
it with a particular earthquake event. 

During 1988, several large earthquakes affected Népal and it is possible that thèse events led to some of the 
landslides that were reported to bave occurred. There is a "peak" in the two data sets for 1988 (Figures 2 
and 13). However, none of the reported landslides that have been recorded in the LRA database were 
attributed to earthquake activity (Figiu-e 8). 

Discussions held at the international mountain hazards seminar held in Kathmandu in November 2002 
(organised by DoLIDAR and Scott Wilson and sponsored by the UK Department for International 
Development (DFID)) indicated that spatial relationships between seismic events and landsiide occurrences 
are difficult to find because of the lack of detailed data available. Furthermore, it is common to fmd that 
many 'earthquake-generated landslides' do not occur instantaneously but as a resuit of heavy rain during 
following wet seasons. The lack of association is therefore considered to be due to the way in which seismic 
data is reported, the limited ground resolution of recorded data and the complex way in which many 
landslides are initiated. 

Legend 
. USGSEarthqiake Data (1973 - 2012) 
• Reported LandsSde C t̂ribution 

A/Cowtoy Boundary 
/ \ / R o a d Ndtwork o( Népal Earthqaake CMstitbution map of Népal wtf h ttie 

Reported Landslkte Distiibtftion (1968 . 2002) 

Figure 12: Earthquake epicentre distribution and reported landsiide distribution map for NepaL The 
earthquake epicentre distribution data was obtained from the United States Geological Survey (USGS) and 

the Department for Mines and Geology, Népal 
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The number of earthquakes per year recorded by the USGS (1973 - 2002) and the three-year ninning 
average 

Year 

Figure 13: The number of earthquakes per year recorded by the USGS for the period 1973 to 2002 for 
NepaL The earthquake data was obtained from the United States Geological Survey (USGS) and the 

Department for Mines and Geology, NepaL 

Summary 

Landslide activity is an accepted fact of nature in Népal, and therefore the création of a database of reported 
landslide occurrence enables a better understanding of the geographical extent of this problem to be gained. 
This database; dealing solely with reported landslide activity, is unique to Népal and probably most other 
developing coimtries. The database enables a quantification of the problem and identification of those parts 
of the country where either there is an elevated risk posed by the landslide activity or where more data needs 
to be collected so that a better understanding of the problem across the country as a whole can be gained. 
Such a database is therefore a valuable resource for policy makers, plaimers, engineers and researchers alike. 
Once established, such a database needs to be maintained and annually updated. 

The data collected to establish the LRA database bas been analysed both temporally and spatially. The 
spatial analysis of the landslide activity reported in the national press involved comparing the landslide 
distribution with a munber of différent factors. The analysis bas shown that there is a close corrélation 
between the reported landslide distribution and the geology and rainfall distribution of Népal. Over 60% of 
the landslides occur in areas affected by rainfall intensities of greater than 200 mm of rain per 24 hours 
(Table 7) and within the Lesser Himalayan geological unit. This resuit confirms the widely accepted view 
that the landslide activity of Népal is predominantly controlled by the geology and the climate of the 
country. 

There is also a close association between the reported landslide distribution and the major population centres 
and road network of the country. In one sensé, this is to be expected as it reflects the nature of the database 
- a database of reported landslide activity. The database developed by the LRA Project was not intended to 
reflect the naturel landslide distribution of the country, but to provide an insight into how landslide activity 
affects the population and infrastructure of the country. This close corrélation between the reported 
landslide activity and the country's infrastructure and population centres could also reflect the effects of 
human activity on the environment. For example, a large number of the landslides are reported to have 
occurred along the Prithvi Highway where steep and deep eut slopes have been formed in the Lesser 
Himalayan Unit. 

The investigation bas shown that over the last five years there bas been an increase in the number of reported 
landslides and landslide related fatalities, injuries and damage to infrastructure, as well as other économie 
losses. Whether this is a true reflection of the situation (and therefore an increasing level of risk) or the 
resuit of an increase in public awareness (and therefore an increase in reporting) is still to be determined. It 
is interesting to note from Figure 2 that there are three main periods when landslide activity was reportedly 
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the highest. Excluding 2002, neither of these periods have a higher recorded incidence of landslide activity 
than the other. This might suggest that the efficiency of landslide reporting has not increased significantly 
over time; leading to the conclusion that time -series analysis is likely to he statistically significant. The lack 
of an independent, field or remote sensing based, landslide database for the country does not help to resolve 
this issue. 

An enhancement of the database would be to differentiate between naturai and human induced failures 
wherever possible. This would give a better imderstanding of how human activity across the country is 
contributing to the observed landslide problem. 

If combined with field mapping, the assessment of aerial photographs and satellite imagery, as well as a 
more thorough document search (i.e. govemment records), the database of reported landslide activity 
developed by the LRA Project, as discussed in this paper, could become the starting point for a landslide 
database covering ali aspects of landslide activity within Nepal. What is clear is that landslides pose a 
significant rìsk to population and infrastructure through the foothills and middle hills of Nepal. This 
distribution is linked to the weaker rock types and clusters along road oarridors where slopes have been 
steepened for highway earthworks. However, landslides are by no means confined to these areas and appear 
to be triggered by threshold rainfall intensities of 250-300mm in 24 hours. In addition to the valuable data 
set collected by the LRA project, there is a wealth of information coUected by MoHA, and it is clear that this 
latter database needs to be subdivided into human and economie losses caused by landslides and floods 
individually, as soon as possible. 

The overall quality of the landslide «latabase could be strengthened considerably by improved reporting at 
the level of locai govemment with this information being fed through to the relevant authorities at centrai 
level. The creation and maintenance of such a database will eventually assist in the development of disaster 
preparedness plans and the allocation of resources for pre-emptive avoidance and mitigation. 
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ABSTRACT 

Landslides represent a serious threat to human life and activities in most high mountain chains. 
However, due to the difficult nature of such terrain, it is often difficult to assess directly the susceptibility 
of slopes to landslldlng. Hence, remote sensing offers many attractions for the examination of landslide 
potential In such environments, especially in less developed nations In vrtilch resources are stretched 
and levels of environmental infbnnation are limited. . However, there is a need to ensure that the 
techniques are effective, reliable, and offer value for money in tenns of the amount and accuracy of data 
that can be extracted. Using a case-study, this paper compares the appOcabllity of Landsat ETM+ and 
IKONOS imagery for the assessment of landslide susceptibility in natural terrain. This has been 
und^laken on the basis of six study areas located h upland areas of Nepal and Bhutan. In each case, 
the imagery has be&i used both to directly map landslides and to examine the occurrence of factors that 
might be Important in landslide initiation, such as water seepage. The results from the imagery have 
been bench-marked using field surveys. The study has demonstrated that at present Landsat ETM+ 
remains the most costeffective tool for mapping landslide susceptibility, due to its relatively tow cost and 
high spectral resolutton. However, Its spatial esolution remains a significant limlfation. This limitation is 
avoided by high resolution, multispectral IKONOS Imagery, which finally allows even small landslWes to 
be mapped In detail. However, the more limited spectral resolutton is less useful for fector type mapping. 
Unfortunately, the high cost of this Imagery will continue to preclude the development and use of this 
technique in devetoping countries. 

INTRODUCTION 

Recent research has demonstrated that in mountain chains undergoing high rates of uplift, landslides are 
an inevitable and essential environmental process (Petley and Read 1999 for example). Unfortunately 
this has Importent Implications for humans, who are often adversely affected by landslides. As a result, 
the delineation of bndslides is extremely important, but there Is a general recognition that the process is 
difficult, especially where the slopes are covered in dense vegetation or are cultivated. 

This is particularly the case In the Himalayas, where the on-going colllsbn has altowed the generation of 
a high mountain chain characterised by steep, unstable slopes. The monsoonal climate allows the rapid 
growth of vegetetton, although the environment is considerably altered by the activities of humans, In 
particular with respect to the drainage pattem and the landuse. Consequently landslides occur 
throughout the Himalayas. Unfortunately, landslide identification and delineation in this environment Is 
problematic. The high, steep terrain means that the Identification of mass movement features is difficult, 
especially wtiere the features are not presently active. Many slopes are covered In forest or have b>een 
terraced for cultivation, meaning ttiat surface forms are hard to Identify. Finally, ftxim a practical 
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perspective, access to ttie mountain areas is hindered by the absence of good quality roads - a Catch 
22 situation given that the laclc of roads is due In part to the problems assoclated with landsildes. 

Satellite remote sensing potentialty offers a solution to at leasl some of these problems. Good quality, 
multispectral imagery can allow landslides to be Identified using a combinatlon of direct inspection and 
computer-based analyses. The availability of imagery with a sub-metre resolution means that even small 
landsildes are potentially observable. However, research into the use of such techniques for landsilde 
delineatlon has so far been limited. In this paper, the results of tfie application of various remote sensing 
mettiods for the dellneation of landslides In the mountalns of Népal and Bhutan are described, 
demonstrating the very high potential that these techniques now offer. 

2. SATHJJTE RBrtOTC SeiSING RDR LANDSUEE MAPPING 

Satellite imagery has been used In the analysis of landslide occunence primarilytfirough the analysis of 
colour composites. Several studies have experimented with the use of a tme colour composite (TCC) 
(e.g. Sauchyn and Trench 1978; Greenbaum ei a/. 1996). In most cases the primary restriction has 
proven to be spatial resolution, with only landsildes of approx. 50 m x 50 m or larger being easily 
resoh^ed. Rather better results were achieved using the 5.8 m spatial resolution of the IRS-1 Instrument 
tiowever (Nagarajan ef al. 1998). 

False colour composite (FCC) Images have proven u sefui In some cases, especially where a landslide 
scar provides a dear change In the surface properties, such as the removal of foresi to expose bare soli. 
Greenbaum ef a/.{1995) successfully used this technique for the examination of landslides In Papua 
New Guinea for example. Similar results were also achieved by Rothery (1987) to identify rock 
avalanche deposits. 

Mixed success has been achieved with the use of more complex analyses techniques. For exempte, 
Huang and Chen (1991) reported considerable success using a principal components analysis. Kusaka 
ef al. (1996) on the other hand used the LANDSAT thennal bands to identify areas of perennially wet 
soli, which were linked vñth potential landsildes. In ail cases, spatial résolution has provento be a key 

This study has examinad the use of satellite 
imagery In six study areas within Nepal and 
Bhutan. However, this paper wlll concentrate 
upon one of fríe sites, tocated witiin the 
Arghaklianchi district of Nepal at approx. 83° 
10'E. 27° 55'N (Figure 1). The study site has a 
surface area of 340 km, sun-ounding an existing 
agricultural road that has been severely affected 
by landslides. The road Is orientated broadly 
norttvsouth, mnning across terraln formed from 
young sedimemts including shales, sandstones, 
llmestones, mudstones; and older 
metamorphosed rocks including quartzites, and 
schists. The area is forested, although there are 

extensive areas of cultivation and some and medium-sized setUements. The rellef of the area extends 
from about 100 m above sea level on the Ganges plain to the south of the study area up to 2500 m In a 
ridgeline across which the road passes. 

4. THE SATHUTE IMAGERY 

limitatton, and shadows cause considerable problems. 

3. THE STUDY OTE 

Figure I : Field site location map 

This Study has concentrated on the use of LANDSAT 7ETM+ and IKONOS imagery. 



4.1 Landsat ET1VI-«- imagery 

A description of ttie Landsat 7ETM+ imagery can be found in table 1. In general ttie image is of very 
good quality, v«th no visible doud, haze, distortions or noise. The image was referenced to the local 
Custom Transverse l\4ercator (Everest 1830) map projection system using quadratic polynomial 
rectification. High quality, scanned and mosalced 1:25000 FInMap topographic maps were used for 
ground control points. The rectified image was checked against the base map. As the maximum error 
was 10 m the rectification was deemed to be acceptable. A sub-scene of the Image to remove all but ttie 
study area was taken for ease of processing. 

4J2IKONOSimageiy 
IKONOS imagery has been acquired for 100 km^ in the centre of the 340 km' study area. The imagery Is 
fornied from two north-south orientated, parallel stiips (Table 2). Unfortunately, the two sfrips of data 
were noticeably difference in contest and clarity, witti strip 2 being considerably clearer than Strip 1. In 
addition, Stiip 1 was affected by haze and had some thick cksud cover (7% of image). Overall however 
the terrain features were dearly visible, with individual houses, trees, tenaces, water courses and roads 
being easy to Identify. In many respects the Image was similar to digital black and white aerial 
photography. 

Datemme of acquisition: 13"' December 2000 c.09:30 kxal 
Path/Row: time 
Sun azimuth: 142-41 
Ctoud cover (%): SSE 

1 
Bands Resolution 

30 m 
30 m 
30 m 
30 m 
30 m 
60 m 
30 m (sub-sampled to 30m fi-om B6) 
30m 
15m 

B1 Visible blue 
B2 Visible green 
83 Visible red 
B4 Near Infrared 
B5 Mkl Infi died 
B6 Thermal Inficued 
B62 Thennal Infrared 
B7 Mkl Infrared 
B8 Panchromatic 

Table 1 : Undsat ETM+ metadata 

Botii Images were taken in the late afternoon so stiadowing on northern and eastern stapes was a 
problem, but the shadow on northern, western, southern and south eastern stapes aded to highlight 
ground morpfiotagy. Both sbips were georeferenced using quadratic polynomial rectification to the kxal 
coordinate system (as per the Landsat Imagery) using scanned and mosalced 1:25 000 topographic 
maps of the study area. The two images were then combined to fonm a single image and colour matched 
t>y contrast stretching. 

Strip 1 (Western) Strip 2 (Eastern) 
Date / Tone: 24''January 2000, Date/Tone: 19'"Odober2000, 

17:12 (tocal) 17:13 (Local time) 
Sun Azimuth / Angle: 147°. 36° Sun Azimuth / Ajigle: 152°, 48° 
Qoud cover 7% Ctoud cover 0% 
Bands Resolution Balds 
B1 (Panchromatic) 1m B1 (Panchromatic) 1m 

Table 2: IKONOS metadata 



5.RESULTS 

5.1 Landslide Mapping 

5.1.1 Landsat 7 ETM+ Direct landslide mapping tías been tested using both the Landsat and the 
IKONOS imagery. For ttie Landsat imagery this was undertaken usIng the false colour composite 
Images. Comparison with the field landslide map suggested that the most effective technique utilises the 
RGB 457 FCC, pan sharpened using the panchromatic Band 8 and centrasi stretched with a 99.9% 
tansfonn in all bands. A 3x3-edge enhancement filter kernet was applied to Increase the contrast. Bare 
soll in the resulting Image varied fixMn tight to dark blue dependíng on tight Incidence and molsture 
content, meaning that tandstldes and areas of erosión were clearty highlighted. These were easy to 
differentiate from areas of forest (deep red) and cuttivatlon (brighi pink/orange). Little difference in cotow 
was noted between landslldes and other areas of bare soll. However, morphotogical evidence coiid be 
used to Support ttie dasslficatton, induding morphdogy (landslldes typicalty have an arcuate back 
(upslope) scarp and a convex form) and slope (shadowing asslsted In the elíminatk>n of areas of flat 
ground). 

Some success was also achieved trough he use of the RGB 542 FCC, created using Pan sharpening 
from ttie pandiromaöc band, and enhanced with a 3x3 edge filter kemel and contrast stretchlng in each 
band. This composite highlighted wet, bare soil as blue tones, with increases in moisture content leadIng 
to a darkening of ttie blue colour. Vegetation appeared as a brighi green and dry bare soll as brown 
tones. Thin Vegetation representìng áreas of vyelt-managed paddy cultivation (Khetiand) were highlighted 
as purpte colours. Other Vegetation was represented by dark green colours and bare ground by deep 
brown cotours. Areas of gravet alluvium were represented by a tight pink colour. Water appeared dark 
blue. Ttie ablilty to ascertain ttie soll moisture level of bare soil greatiy asslsted the Interpretation. Best 
resutts were achieved where the RGB 542 and RGB 457 FCCs were examlned together using a GIS. 

The usefulness of a Prindpal Components Analysis (PCA) approach using an RGB 123 FCC was also 
tested. Again, this Image was pan sharpened to hcrease darity. The resulting Image exhibited a very 
diverse ränge of cotours (see fig 2). Areas of bare soils and landslldes were particularly distind and 
appeared atmest white. In contrast to this all ottier cotours were relatively dark. This was particularly 
usefui for resolving relatively smalt finding small landslldes. 

FInally, testing was undertaken of the usefut ness of the day ratio, the ¡ron oxide ratto and the Abrams 
ratio. In ttie Himatayan región ttie day ratto was found to be of limited use as it did not distinguish 
adequately t)etween Vegetation and areas of day rieh soils. The iron oxide performed rattier better, 
dearty differentiating between areas of Vegetation and areas of bare soli. However, there was little 
advantage over ttie FCC approach. FInally, the Àbrams Ratio, whtoh projeds the day ratio, ttie Iron 
oxide ratio and ttie NDVI (Vegetation) ratio Info ttie red green and blue cotour guns respectivety, was 
found to t>e rather more useful. The resulting Image had an extremely diverse ränge of cotours and was 
very good at distinguishing bare soil types from Vegetation. Clay rieh soils appear as red cotours, whitst 
Iron oxide-rich soils were seen as green cotours and Vegetation appears as blue. A mixture of iron soils 
and thin Vegetation show as a cyan tone and granite soils virith thin Vegetation as magenta. Thus, ttils 
ratto appeared to glve rather promising resutts and is worthy of further developmenL 

After ground bxrthlng, and ttirough ttie use of ttie RGB 457 and RGB 457 FCCs, ttie RCB 123 PCA and 
the At>rams ratio a total of 67 landslldes were identified from the imagery. The ground mapping deteded 
a total of 388 landslldes. Thus, alttiough ttìe Imagery attowed ttie detection of a signiflcant proportion of 
ttie total landslide population, more ttian 75% of ttie total were not deteded. The reasons for ttils 
anomaly are: 

• Landslldes on the shadowed slopes In the Imagery were consistentìy under represented. In 
areas affeded by shadows the unvegetated slopes had a similar appearance to those ttiat 
had Vegetation due to their low refledance in many of ttie bands. 

• The spatiat resolution of Uie Landsat 7 ETM+ instmment Is stili too low to altow the detection 
of many of tlie smaller landslldes. Based upon the resuits from this study, 50 m remains the 
smallest landslide width and length that can be resolved confidentty using this instmment 
Unfoftunately, alttiough many landstides tiave a length in excess of 50 m, their width is very 
often less than ttiis, such ttiat ttìe slide cannot be dellneated. 

• The spectiral resolution is stili not realty good enough to be able to produce finetytuned, high 
quatity FCC Images. 



However, the resuits dld show that for very larga, rellct landslldes the use of Landsat 7 ETM+ produced 
better resuits ttìan dld ground mapping. Such very larga slldes are drffìcult to detect from the surface, but 
proved to be very obvious in FCC images. 

Based upon the ground mapping and the satellite image Interpretation, an anatysis has been conducted 
of ftie typical spectral range of landsides in the ArghakanchI study area (Table 3). Using an algorittim 
based upon these parameters, and excluding areas with a slope angle of less 15°, It wouid be possible to 
delineate 21 of the 30 active landslldes within the study area. 

Band number DN value 
1 60-100 
2 60-100 
3 50-120 
4 70-130 
5 80-140 
6 140-190 
7 60-110 

Tat>le3: Active landslide band ranges 

The increase in accuracy of this classification was tremendous and 21 of the 30 active landslldes were 
dassified. 2 small debris flows were also Identified. It also helped In the mapping of areas of erosión, 
discusseti later. 
In total 32 landslldes were mapped by a combination of the techniques Usted below before any ground 
truthing was completed. After some ground truthing this number was increased to 67 (détails of the 
ground tnjthing exercise can be found In this section). 

5.1.2 IKÖNOS Due to the high cost, for this study only ttìe 1 m panctiromatic imagery was acquired. Of 
course, this has restricted this part of the study to direct examination of the imagery (Figure 2). The 
black and white images were plotted onte high resolution paper at a scale of 1:5000 and 1:10 000 and 
interpreted much the same as regular aerial photography in conjunction with the digital imagery on 
screen. 

Use of the IKONOS Imagery proved to be very stralghtforward. RkJges. Valleys and rivers were dearly 
evident, virtiilst land cover infonnation sudi as végétation type, soil type and rock outcrops were also 
vistole. Areas of bare soll were brighi and lighter in comparison with the surrounding darker végétation, 
so recent and active landslldes were vistole. The smallest landslldes that couid be mapped were in the 
order of lOm in width and length. Relid (inadive) landslldes were much more difficult to spot, and in 
particular ttìe very large, relid features Wentìfied witti Landsat 7 ETM+ and in ttìe fiekl were not visible. 

Overall because of the crispness of the imagery medium sized recent landslldes were mapped very 
easily. Improvements couId be achieved with the a/ailability of stereo images, vfhich wouId have meant 
ttiat the imagery is the équivalent of 1:5000 scale aerial photography, which is known to have great 
potentiel for landslide mapping. 

In total 74 landslldes were mapped using the IKONOS Imagery, althou^ the imagery covered only 50% 
of ttìe study area Thus, the effectiveness of ttie higher resolution of this imagery is dearly evident, 
demonstrating that the imagery offers great potentiel. Indeed, if stereo coverage were freely available 
ttìe Imagery woüld offer better potentìal ttian ttìe standard 1:25 000 or 1:50 000 scale aerial photography. 

For Une ArghakanchI area multispedral IKONOS imagery were not available. For otìier study areas ttiis 
imagery has been acquired. The construction of a FCC improved the visual appearance of the imagery 
but offered litUe in terms of improving the abillty to résolve landslldes, especlally in view of the lower 
spatial resdution. The construction of other FCCs, using the VNIR band, proved to provide litUe 
advantage Unfortunately, ttìe limited spedral resdution remains a problem with ttìe IKONOS 
Insbument The avallabillty of mid IR and Uiemial IR bands wouId potentially improve ttìe instmment 
very constoeraWy. 

5.2 Factor Mapping 
Satellite imagery has the potentiel to allow the klentification of fadors that are important in the initiatton of 
landslldes, such as areas of Increased soli moisture content and of disturbed grourìd. If this Is possible. 



then the imagery can potentially be used to delineate areas of high landslide susceptibility rather than 
just those that have aiready suffered slope fallure. 

5i1 Landsat 7 ETM+ A multispectral analysis of the Landsat Imagery can allow landslide factor 
mapping to be completed. The présence of disturtied ground is fiequently taken to be an Indication of 
the présence of stow landslide processes such as creep (Deannan and Fookes 1974). In many cases 
this Is an Indication of indpient or ongoing fallure. The use of the RGB 457 and RGB 542 FCC Images 
allowed the idenlfication of the morptwtogical ctiaracteristics of creep, such as slopes with mottied 
texture and disrupted végétation. In additfon, colluvium was dearly kJentlfiable on the RGB 457 image 
as It appeared as brighi blue tones. In the PCA 123 image bare coluvium and alluvial fans appeared as 
green colours when in shadow, and as orange colours where there was brighi sunlight, although some 
variatwn across the image was noted, presumably reflectìng lithological différences. 

Considérable success was also adileved In the Identifìcatkjn of areas of high moisture content or water 
seepage. Based on a training area Identified during a field visit, a wet are algorithm was construded 
based upon the band parameters given in Table 4. This was completed by kjentilying potential areas 
with high moisture content The spectral responses of these areas were then deduced to produce 
minimum and maximum ranges of DN values, from which dassifìcation algorithm was created using 
minimum and maximum values. 

Band number DN value 
1 53-120 
2 35-67 
3 32-90 
4 40-70 
5 35-95 
6 130-149 
7 21-90 

Table 4: Wet Area Secondary Classifìcation Parameters 

This dassificatwn highlighted irrigated paddy flelds. shadowed hollows, areas of pondlng, and river 
alluvium. Whiist In a number of cases this was successful In the identification of areas that are prone to 
landslldes. this tended to be swamped by the occunence of high moisture content for other (I.e. non 
landslide-related) reasons. For this reason, such an analyste has proven to be of limited use. 

5 i2 IKONOS For the ArghakanchI area multispectral imagery was not available, so stmilar fador 
analyses approaches were not possible. However. mapping of disturbed ground from the panchromatic 
imagery was possible based upon texture and ground cover type. Tbis couW have tieen enhanced 
ttirough the analysis of .the multispedral imagery. but the improvement wouId have been limited given 
the tow spectral resolution. The high spatial resolution of the IKONOS imagery couId also be used to 
map éléments that are vulnerable to the effects of landslkles, vrtilch couW greatly assist in the 
compilation of a landslide rìsk map. 

& CONCU n̂NS 

LANDSAT 7 ETM+ offers many advantages In the mapping of landslides in high mountain chains, 
espedally with resped to large features that are difficult to deted on the ground. The use of FCCs, and 
In particular the combination of the RGB 457 and the RGB 542 FCCs, PCA RGB 123 highlighted 
landslldes well. However, the combination of the ali of he techniques still allowed the dellneation of only 
about 25% of the total number of landslides In the study area, the major limitation being the spatial 
resolution. 

Tfie resutts achieved using the IKONOS panchromatic imagery are very promising. The Im spaltial 
resolution allows even small landslldes to be mapped, with failures as small as 8 m length and width 
beIng kjentified. At present the multispedral capabllity of the instrument appears to offer relatively small 
advantage due to the limitations in spedral resolution. However, the greatest restriction In the use of this 
technk̂ ue is the high acquisition cost of ttie imagery, which will prevent ils widespread use In less 
developed countries. 
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The Role of Landsliding in Landscape Development in the 
Rio Aguas Catchment, South-east Spain 

A. B. H A R T , J. S. GRIFFITHS DqMutmcnt of Geological Sciences, Plymouth and A . E . 
M A T H E R , Department ofGeogra{diical Sciences, University of Plymouth, Plymouth, U K 

ABSTRACT 
The Rio Aguas catchment covos an area of a{q)roximately SSOkm^ aiKl drains the nuyority of 
tìie Soibas Basin and the southern part of tìie Vera Basin, in Üie Almería Province of South-
East Spain. These sedimentaiy basins fotmed duiing aie mid-Miocene as a result of Üie 
interaction between tìie A&ican and Ibenan Plates. They have a complex sedimentary fili of 
mainly Ncogcne sediments bordered by Palaeozoic and Pcnno-Triassic bascment rocks. 
Upliñ since the Late Fliocoie of 3^>pioxìmately 160 m Ma'* and associated defotmation has 
caused a change fiom net depositìon tó net erosión in tìie basins, tesulting in the formation of 
deq>ly indsed canyons. The area has a scmi-aríd climate Ocss than 270mm per annum) and is 
also subject to regular seismic shod:s (conunonly aiound Richter magnitude 3, but 
historically up to 7). In this Situation mass-movement proccsses would be c:q>ected to form a 
voy significant component in the geomotphological dcvelopment of the región and this has 
bccn confirmed by remote sensing and field studies. Based on these studies, the nature and 
extent of landsliding in the r ^ o n are examiiKd with an evaluation of their role in developing 
ti» contemporary landscape of Ü>e catchment 

INTRODUCnON 
The drainage cvolution of the river Systems of South-east Spain are controlied by difTerential 
tectonic t^lift, the undedying geology, base level changes (eitler related to changes in sea 
fcvel and/or geomoiphological controb such as ñvet c^>ture) and the climate (Harvey & 
Wells, 1987; Mather, 1991; Mather & Harvey, 1995; Stokes, 1997). These same £actors have 
also influenced the foimation and cvolution of the present-day landscape. One facet of the 
developoient of the landforms within the región is the extent to which landsliding has 
«»bilHited to the fotmation of the contemporary Imàscapc. This is now tìie subject of a 
research programme at tìie Univcràty of Plymouth (Hart, 1999; Hart & Grif&ths, 1999; 
Mafter et al., in press). 

A landslide investigation is being carrìed out in the catchment area of the Rio Aguas, in 
Almeria Province, Andalucía (Figure 1). The Rio Aguas Catchment covers an area of 
a«woximately 550km* and is centred on 37'08'N and 2''04'W (ncar to the village of Cariatiz. 
Öan Northeast of the town of Soibas). The area has a semi-and climate (receiving less than 
270nMn of rain per annum) and is also subject to regular seismic shocks (conunonly around 
lüchter magnitude 3, but historically up to 7). Previous woik on the landslides in the re^on 
^ looked at the effectivojcss of using digitai imagery (i.e. SPOT, Landsat Thematic Mi^per 
and Aiibome Thematic Mapper) in the mapping of landslides (Eyers et al., 1998). This work 

'•andslüleí in rescarch. theoty and practice, Thomas Tdford, Ixjndon, 2000. 
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particularly focused on the problems and limitations imposed by the spatial and spectral 
resolution of the images and how they can be overcome with the use of stretching, filtering 
and enhancement techniques. 

The investigation currently being undertaken involves an assessment of the hazard and risk 
posed by landsliding m the area, as well as an assessment of the role played by landsliding ia 
the development of the contemporary landscape and drainage network. The investigation has 
involved a detailed desk study which included an Aerial Photographic Interpretation (API) 
followed by field visits. The field visits enabled the collection of more detailed data and Üie 
"ground-truüüng" of the API. The data arc stored as a landslide inventoiy, compiled using the 
guidelines suggested by tiie UNESCO Woridng Party on the World Landslide Inventory 
which are summarised in the woik of Turner & Sdiuster (1996, and references therein). The 
database includes infonnation concerning the location of the landslides, their size, g e o m ^ , 
geology and geomotphology, the failure mechanisms involved, Uxor state, style, distribution 
and rate of movement, and tiie elements at risk û o m the landsliding. 

T H E S T U D Y A R E A 
The Rio Aguas drains the majority of the Sorbas Basin and the southern part of the Vera 
Basin (Figure I). These basins are part of the Internal Zone of the Betic Cordillera and were 
fotmed during the mid-Miocene Alpine Orogeny at the southern margin of the Iberian Cratoa 
(Weijeimars, 1991). The basins are bounded to the north and south by mountain ranges 
composed of Palaeozoic and Permo-Triassic basement The basin filk are a scries of NeogOK 
marls, limestones, sandstones and gypsum, which are capped by terrestrial conglomerates. 
The conglomerates rq)resait thé initiation of a fluvial drainage system across the basins 
duri i^ the Pliocene (Mather, 1991; Stokes. 1997). 

Continued, differential, regional uplift during the Quatemaiy led to a switch from net 
deposition to net erosion within the sedimentary basins. In the Soibas Basin, where uplift 
since the Late Pliocene has readied 160 m Ma"*, this drainage was a weakly convergent i 
network Üiaí drained die basin to the soutii t h r o u ^ a low between the Sierra Alhamilla and ; 
Sierra Cabrera C i C the Rambla de Los Feos) (Mather, 1991, 1993a, 1993b). In the V a a 
Basin a drainage system was developed that drained the northern flanks of the Sierra Cabrera 
(the Lower Aguas). As the Soibas Basin vras iq)lifted in relation to the Vera Basin, the Lower 
Aguas continued an aggressive, westwards, headward retreat exploiting the regional strike of 
tìie basin fill and the similariy orientated basin margin fault systems (Harvey & Wells, 1987). 
The result was the capture of southwards flovñng streams across the Sierra Alhamilla such as 
the Rambla de Los Feos approximately 100,000 years BP (Harvey et al., 1995). The river 
capture caused rejuvenation through much of the drainage system and a rapid increase in Ac 
rate of incision (Harvey et al., 1995) leading to the formation of relatively steep, if not ovcr-
steepcned, valley sides and canyon walls. 

The development of the contemporary drainage system in the Sorbas Basin has been throu^ 
a combination of alternating periods of incision and aggradation, recorded as a series of river 
terraces levels (Harvey, 1984; Harvey et al., 1995). The episodic nature of the incision and 
aggradation has been related to the variability of the (Quaternary climate - incision during the 
Quaternary interglacials, and aggradation and major sediment production during the 
Quaternary glacials (Amor & Florschütz, 1964; Harvey, 1990). 
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Figure 1. Simplifîed dcetchmap of the Almerîa region, showing major tectonic units, major 
fault Systems and the Rio Aguas catchment area. Modified from Mather & Harvey (1995). 

INITIAL RESULTS & DISCUSSION 
To date, over 205 landslides have bccn mapped, giving A e study area, a landslide dcnsity of 
apptoximately 0.37 landslides per km^. The landslides vary considerably in their size from 
tens of m'to several million m'. The majority of the landslides are rock falls. However, ti» 
larger landslides usually involve a combination of failure mechanisms, including rotational 
and non-totational slidw, debris flows and Sackung failures (Dikau et al., 1996). A n extract 
from the landslide database is given in Table 1. 

The landslides observed within the study area appear to demonstrate at least three différent 
stages of mass movement activity (Hart & GrifBths, 1999). Therc are the landslides that are 
presenUy active, thosc that occurred during the Quatemary development of the landscape and-
drainage network and those that appear to be pre-Quatemary in âge. Some of these relict 
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features are now being reactívated by road constructíon (Landslide Numbers 1 and ( 
study of the landslides around the town of Sorbas (located approximately 7-8 km upst 
uova, the river capture area) has shown that the majority of Quatemary landslides 
Landslide Numbers 8 and 9) are related to the rejuvenation and incisión of the drai 
network (Hart & Griñiths, 1999, fig 1.). The canyon system around Sorbas reac ia a dcp 
approximately 40-45 m and the canyon walls are generally near vertical. The sandstoo 
wfaich Sorbas is built is characterised by jointing and fractures related to the unloading o 
canyon walk (Hart & Griffiths, 1999). 

Table 1. Extract from the landslide database highli^ting the different types of landsli 
found in the study area, A c size of the landslides and their relative ages. 

No. Locatioa& 
GridRcL 

TypeofFailurc Geology Votame 
[10« « 3 

1 Marchalico Vínicas 
0585341074 

Rclíct (Quatemary) dcbris 
flow 

Gypsum overlying 
marls 

>6.0 

2 Marchalico Vínicas Non-rotatiooal tumed debris Gypstmt overlying >2.0 
0585141071 flow maris 

3 Los Perales 
0584941052 

Compound (listric) rock flow 
affecting at least 2 sides of a 
mountain ridgc. 

Steeply dipping 
limestone ovcriying 
marine maris 

>16.0 

4 Gypsum Escarpment 
0584741069 

Non-Rotational slide co a 
single, non-circular, listric, 
faìlure surface 

Gypsum overiying 
maris 

>10.0 

5 El Tesoro Non-Rotatiooal slide on a Gypsum overiying approx. 
0583741063 multistoned, noo-circular, 

listric, fallare surface with 
some rock falb & topples 

maris 

6 Sorbas road cutting 
0577741061 

Relict (Pre-Holocene / Post-
Messinian) debris flow 

Sattdstonc *• 

7 Sorbas 
0576941065 

Rockel Sandstone < 0.0003 

8 NWof Sorbas 
(Los Benéficos) 
0576941069 

Non-Rotational compound 
slide on a single, non-circular, 
listric, faìlure surface. 

Conglomerate, maris 
and sandstone. 

approx. 1 

9 SE of Sorbas 
(Maleguíca) 
0578041055 

Non-Rotattooal compound 
slide on a multistoned, non-
circular, listric, failure 
stirfacc, with some rock falb 

Gently dipping 
thickly bedded 
sandstone 
intetbedded with 
thin beds of 
laminated marb 

>5.0 

10 Eof Sorbas Translational movement Thinly bedded. >0.02 
(LaClauda) 
0579641053 

sliding on planar failure 
surface (géntly dipping 
lithotogical contact). 

weak, sandstone 
overiying gypsum. 

It b not possible to calculate the volume of material involved as no backscar can be seen, ai 
full extent of the dbplaced material cannot be measured. 

One of the main contributions landsliding makes to the development of the landscape w 
the study area is as a source of sediment for the drainage network. It is considered 
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landsliding accounts for a large (but not yet quantified) amount of the sediment that is 
(jansported into the fluvial system. It is also envisaged that this has been the case throughout 
Ac evolution of the drainage network, particularly during the periods of major sediment 
production during the Quaternary glacial intervals. A fluctuating Quaternary climate could 
have also influenced the type, state and style of landsliding within the area, which in turn 
would affect the amount of sediment being produced. 

Quateraary glacial intervals in the western Mediterranean region were characterised by a 
pronounced seasonality, with extremely cold and wet wintas. and summer drought (Macklin 
et d., 1995). This may account for the greater runoff and iclativcly high lake levels seen at 
this time (Harrison & Digerfeldt, 1993), as well as the wide^nead occurrence oí Artemisia 
stqq» indicating increased aridity and a growing season soil moisture deficit (Hunüey & 
Bids, 1993). The summer aridity would also account for the presence of wcU-developed 
calerete profiles in the Vera and Sorbas Basins (Mather, 1991; Mather & Harvey, 1995; 
Stokes, 1997). This pronounced seasonality would increase tiie mechanical weathering 
cxperimced in the region, and hence explain the increased sediment production. The winter 
precipitation would also lead to higlier pore water pressures, whidi would explain some of 
tìie landsliding that is seen wdthin the study area (some of the extremely large rotational and 
Don-Totational slides or debris flows). 

CONCLUSIONS 
Drainage evolution and the development of the contemporary, landscape is controlled by the 
underiying geology, differential tectonic uplift, base level changes (caused by changes in sea 
Icvd and/OT geomoiphological controls such as river capture), and tiie climate. As landsli<Ung 
is also caused by these same factors it is qiparent that landsliding plays as an important role 
in tìK development of the contemporary landscape. In the Rio Aguas catchment, the 
landdides contribute large amounts of sediment to the river system, and further research will 
enable these amounts to be quantified. 
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Mass movement features in the vicinity of the town of Sorbas, 
South-east Spain 

A.B.Hart&J.S.Griffiths 
Department ofGeologicalSdences, University of Plymouth, UK 

ABSTRACT: A landdide investígatíon has been undeitaken in the vicinity of Soihas, Almería Province, 
South-east S{aín. Using the guìdelincs suggested by the UNESCO Wotldag Party on the World Land-
sUdelnventory, an inventoiyof the inassmoveiiientswitlün the study area has been generated. Thearea 
has suSered a wide variety of mass ntovements, with a landslide densî  of approximalely 4.6 landslides 
pcrKm^ Tbesemassmovcmentsrangeinsizefiomafewtensofm'toafewniiUionm'. Thereisevi-
dence that the itiaior features taoi rdate to Pleistocene dimatic conditions veiy diffeieat to Ihc semi-aríd 
cUmate of the present day, Kfovements occurring at the present time appear to be on a smaller scale to 
tbose initiated eailier in the Pleistocene. The iiiajoríty of the niass moveinents are rode fidls, altbwigh 
theie aie also rock topples, rotatioiial stides and lateral spreads. 

1 INTRODUCnON 

A landslide investigation has been carried out around the market town of Sorbas, in Almeria 
Province, Andalucía (Fig. 1). The study arca is ceatred on latitude 37*'06'N and longjtude 
2°07'W and Covers approxiinately 5 km*. The investigation has involved tiie interpretation of 
aerial photĉ raphs foUowed by a field visit to tbe study area to ground trutfa tfae data. The infor-
matioa coUected has beea compUed into an inveatoiy followiog die guidelines suggested by tfae 
UNESCO Working Party on die World Landsüde Inventory (lAEG 1990. UNESCO WPAVLI 
1990,1993. 1994.1995). 

Sorbas, widi a pc^Iatioo of under 3.000, is tfae main town in a rural area. The kxal economy 
is heavily dependant on agriculture (piedominandy olives, almonds and citrus firuit). quarrying 
and. ìncreasingly. rural tourìsm. The town is split into two parts. widi tfae old town being buih on 
an island widiin an incised drainage system (Fig. 1). The newer pait of Sorbas is buUt on a level 
area to the west of die old town, on eidicr side of the main Abneria to Murcia road (die N-340). 

2 GEOLOGYANDGEOMORPHOLOGY 

Sorbas is situated towards tfae centre of the Sorbas Basin, wfaich is located wittùn die Internai 
Txsos of tfae Betic Cordillera (Weijetmars 1991). The basin is bounded to die nordi and south by 
mountain ranges composed of Palaeozoic and Permo-Triassic basement material. This includes 
mica scfaists, phyllites, qtiartzites and low-grade metamorphic carbonate rocks. The basin fili 
consists of a series of Neogene marls, limestones and sandstones, as well as a large diickness of 
Messinian gypsum. This is capped by a conglomerate formed under terrestrìal conditions at die 
end of tfae late Pliocene. The conglomerate represents tfae initiadon of the fluvial drainage system 
across tfae basin. 
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zzzz Drainage Roads * RockFalk 

ÁAAA. Laadslide Backscar 19 Landsiide Number 

Figure 1. Map diowing tbe kicatioa and distribution of the mass movement features around the town of 
SortMs. 

Duriog tfae Quatemary, continued difierential epeirogenic uplift of the r^on, led to a switch 
fiom net deposition to net erosión widiin the sedimentaiy basin. The result was the episodio inci
sión of tbe drainage system, witb die downcuttiî  being punctuated by periodìc aggradation, re-
sulting in a fluvial landscape dominated by a sequeace of river tenaces, refiecdng botfa dìmatic 
and tectonic cootrob (Harvey 1987, Madier & Harvey 1995). In die area around the town of 
Sorbas, tfae incisión has readied a depth of about 90 m. Thìs is witfain tfae canyon tfaat contains 
die active drainage system (the Rio Aguas), tfaat passes around tfae northera and eastem sides of 
tfae old town. The canyon diat passes around the western and southern sides of tfae old town has 
been abandoned since the formation of the D3 terrace between 20,00 and 10,000 years BP 
(Harvey & Wells, 1987, Harvey et al. 1995). The river terrace sequence preserved around Sor
bas nearly rqiresents a compire incisión hìstoiy for the area. A detailed descripdon of eadi of 
these levéis is found in Harvey et al. (1995). 
The geology of tfae study area comprises three Messinian units, with tfae regional dip of tfae bed-
ding being to the nortfa-nordi-west. These are : 
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* the Zorreras Member [youngest unit] - a rusty orange red, fine to medium grained sandstone 
capped by a conglomoate. Between the sandstone and conglomerate is a thin band of white 
sandstone. The sandstone is moderately weak, while the conglomerate is moderately strong. 
The conglomerate consists of polymict gravéis witfi some pebbles, wfaich are predominandy 
sub-roumied and clast supported. 

* die Sorbas Member - a white medium grained sandstone that is interbedded widi a dûnly 
laminated mari. The sandstone is thickly bedded and moderately sUong. The mail is mod
erately weak. The rode «mtaìns two joint sets that are (Clique to eacfa other and perpendicu
lar to the bedding piane. 

* the Yesares Member [oldest unit]- thickly bedded gypsum interbedded with thin laminatíons 
of mails. The size of the individuai crystais can vary firom approxìmately 1 to 12 cm. The 
strength of die rock b dqiendant on the size of the crystais as well as their state of weather-
ing, wfaìcfa can also vary considerably. 

3 RESULTS 

Figure 1 sbam die kxxition and distribudon of the laœlslides around Sorbas and Table I. pro
vides a summaiy of the information contained witfain the landslide inventory for the study area. 
This information shows that die area has a high landslide density of 4.6 landslides per Km^ 
(roughiy equal to the landslide density for die San Francisco Bay area and the average figure for 
die wbole of the USA (Brabb 1989)). Rock £dl is the most common feilure mechanìsm being en-
countered. Ifowever, the largest mass movement features seen in die area exhibit a combination 
of fiiilure medianisms, usually rotadonal sliding, non-rotadonâl sliding, rock Edi and rock topple. 
The size of the landslides varies gready firom a few tens of cubie metres to a few million cubie 
mètres. 

The largest mass movement in the study area is found in the outside of the Rio Aguas mcancfcir, 
to the soutti-east of Sorbas (Mass Movement Number 19). This extensive mass movement can be 
deariy seen on aerial photographs and witfa ATM data (Eyers et al. 1998). The landslide is pie-
dcHninandy affected by relational sliding giving rise to a series of back tilted bkidcs (Hart, in 
press). Most of these blödes are only a few tens of metres across. However, in die western sec
tion of the landslide, the rotating blocks have coUapsed giving rise to a number of major rock Ëills 
and topples. Tha shape and size of the displaced blocks are controUed by the discontinuity pat
tern of the rock mass. The sandstone contains two joint sets that are both perpendicular to the 
bedding planes and almost at 90° to each odier. There is also évidence to sudest that some parts 
of the mass movement are affected by &ulting. 

The constniction of the main road along the soud^m edge of the canyon has possibly reacti-
vated two rdict foatures (Mass Movement Numbers 21 and 22). As a resuit, the road cuttings in 
diese areas have been cut bade and large ditches put in altmg the edge of the road to trap debris. 
These two mass movements (and also Mass Movement Number 20) are diought to rtpresent 
fossil ddiris flows. They consist of randomly orientated blödes of the white Sorbas Member 
sandstone, ccmtained witfain a sandy gravel of the same material. The ásbns flow is found widiin 
relict Channels cut down into die Sorbas Member. 

Anodier Ëtctor diat seems to influence the stability of the canyon walls around parts of Sorbas 
is «nloading as a resuit of the incision of the canyons. The instability seen at Mass Movement 
Numbers 7, 8, 9, 11, 12 and 23 are ail characterised by large vertical fiactures that nm paralld 
to certain parts of the difffiice. All of these rock Êdls are within the white sandstone of d» Sor
bas Member and are tberefore also affected by die jointing and dip direction of the bedding. In 
the case of Mass Movonent Number 23, the unloading has also been influenced by the construc
tion of the main road. The result is that part of the clifffece roay be toppling out over the road. 
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Table 1. Pait of the landsLide inventory for the area around Sorbas. 
Mass 
Movement 
Number 

GridRef. Mecbanism Approxìmate 
Volume 

Angle 
of 
Reach 

Lithological unit in-
volved in landslide 

1 0576941065 Rock fall <500 24 Sorbas Member 

2 0577041065 RodefaU <500 30 Soibas Member 

3 0576941065 Rotational slide & 
rock fall 

< 500,000 18 Zorreras Member 

4 0577341071 Lateral Spread > 10,000 22 Zorreras Member 

5 0577641072 Rotational slide & 
rock&U 

< 500,000 27 Zorreras Member 

6 0577741071 Rotational slide & 
rockiaU 

< 500,000 39 Zorreras Mentber 

7 0577841067 Rock fall <100 40 Sorbas Member 

8 0577641066 RockfeU < 5,000 30 Sorbas Member 

9 0577741065 RodcfaU < 5,000 39 Soibas Member 

10 0577741064 Rodc&U < 5,000 22 Sorbas Member 

11 0577941067 RockfaU < 5,000 30 Soibas Member 

12 0577941065 Rock fall < 5.000 32 Soibas Member 

13 0578341067 RodrfeU < 1.000 59 Zorreras Member 

14 0578241068 Rode fall <100 59 Zorreras Member 

15 0578241069 Rode&U <500 56 Zorreras Member 

16 0578541063 RodtEall < 1.000,000 68 Zorreras Member 

17 0578241061 Rock&ll <100 45 Soibas Member 

18 0578241060 Rodtfall < 10,000 34 Soibas Member 

19 0578041055 Rotational Slide & 
lodtfall 

> 1,000,000 18 Sorbas Member 

20 0577941060 Rdict featnre *« ** Soibas Member 

21 0577741061 Reactivation of 
relict feature 

*• •* Soibas Member 

22 0577741061 Reactivation of 
relict feature 

** •* Soitjas Member 

23 0577641062 Rock Topple ** *• Sorbas Member 

* * It is Qot possible to woik out the volume of material involved as no backscar can be seen, and the ñill 
extent of Ihe displaced material caimot be calculated. 
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4 DISCUSSION 

There are two different aspects to this study. First, there is die question of how the diserved 
mass movements fit into the history of the landscape and drainage evolution of die area, and sec
ondly, what sort of risk are these mass movements posing to the local population. 

The mass movement features observed in the study area can be seen to represent (m a very 
broad sense) at least duee different stages of mass movement activity. These are the mass 
movements that occurred at some point in the geological past, die mass movements that have oc
curred during the Quaternary as the river canyons were being fonned, and the present day mass 
movement activity. The presoit day mass movements are probably the resuk of a combination of 
fiictors including the climate, seismic activity, unloading of the canyon walls due to the incisicm 
and construction activity. Examples of these mass movements have already been given. 

The larger, and more complex mass movements, aldiou^ still active today, are diou^ to 
have initiated under different climatic conditions. Due to dieir location on the outside of die me
anders in the incised drainage system, it is possible to link dieir formation to the incision of die 
drainage and therefore, possibly, to the formation of the mer terraces. Analysis of die river ter
race dqiosits in the area have suggested that the climate during the Pleistocene, in this part of 
Spain, was drier and colder (Amor & Florschutz 1964, Harvey et al. 1995) especially in die gla
cial phases (Rdideabuig & Sabelberg 1973, Sabelberg 1977, Harvey & Wells 1987). During die 
Pleistocene the climatic and associated glacio-eustatic fluctuations (Sierra et al. 1999) have con
trolled the hydrography of die Sorbas Basin and od^ areas of South-east Spain. During the last 
glacial maximum (18,000 years BP) Soudi-east Spain possibly had a near-tundra enviromnent 
(Mclntyre et aL 1976, fig. 18) and may well have been arid (Brigg 1995). However, during the 
major Pleistocene inter-glacial intervals die climate may have been more temperate and, possibly, 
wetter. T l ^ major rotatitml landslides may well have initiated during diese climatic fluctuations 
(Harvey & Wells 1987) whai groundwater levels were hig^. More recent modifications of 
these landslides are on a analler scale (rock fidls and topples) and more appropriate to an area 
with a semi-arid climate that receives only 260 mm of rain a year. 

The risk posed by d ŝe landslides to those who Uve and/or work widiin the aieai varies consid
erably. All of die larger features occur in areas where, at present, diey will have minimum effect 
cm the population, whereas die smaller features are often in the populated parts of die study area. 
For example, there are die relict features above the main road (Mass Movement Numbers 21 and 
22) or the rock &Ils bdow residential and business areas (Mass Movement Numbers 9, 10, and 
12). There are also features like Mass Movement Number 17 which is located immediately 
above and adjacent to a private property, but also underneath part of the foundatitm of the old 
road bridge into Soibas. Therefore, althou^ one of die smallest mass movement features in die 
area, its very location makes the feature one of the most dangerous. 

This risk is likely to increase. In the last ten years, the area has been opened up considerably. 
This has been the result of the upgrading of the road network and the construction of new roads 
such as the E-15 motorway. At the same time, the px̂ ulation of die area (and particulariy 
armmd Soifoas) has been expanding. As develqiment of die area proceeds, and new roads and 
buildings are constructed, it is probable diat the current mass movements will start to have a 
greato- affect on die local community, as well as die possible initiation of further mass move
ments. 

5 SUMMARY 

The area in the vicinity of Sorbas, Soudi-east Spain, has been shown to have a landslide den
sity of approximately 4.6 landslides per km*. This figure is h i^ and cannot be ignored, particu
lariy as Sorbas, a stiate^c location within the region, is undergoing development and expansion. 
The landslicb inventory will therefore prove to be a necessary reference for those involved in sudi 
developments. 
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This study is part of a wider project investigating the mass movement activity throughout the 
Rio Aguas catchment area. The data contained within the landslide inventory will be used to 
carry out a risk assessn^t of the landslide haiard affecting the area. The mvestigation will also 
iavolve an assessment of the role played by mass movement activity in the development of the 
présent day drainage system and landscape (Hart et al, in prep.). 
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(9) An Introduction to the Landslides of the Sorbas Basin. 
ANDREWHART 

Department ofGeological Sciences & Plymouth Environmental Research Cerare, University cf 
Plymouth, Drake Circus, Plymouth, Devon, PL4 8AA. UK. 

INTRODUCTION 
The landscapc and drainagc paüem of the present day Sorbas Basin is the rcsult of its tectonic histray, 
tìie cominued differcntial tectonic uplift, the underlying gcology and the climate (Harvcy & Wells, 
1987; Mather. 1991; Mather & Harvey, 1995). Tbese same factors bave also influcnccd the fcrmation 
and devdqnnent of the numerous landslides that are scen within the re^oa One facct of the 
developmenl of the landforms within the Sorbas Basin is the extent to which landslidiî  has 
contributed to the fcrmation of the contenqxrary landscape. 

This issue is being considered as part of a researcfa prqect that has invoived the conqnlation of a 
landslide inventory of ali of the landslides aifecting the Sorbas Basin. These data are being used to 
investigate die extent of landsli<fing, tte causes and mecfaanisms invcrfvcd, and the lisk posed by 
landsliding to tbose who Uve and/or work within the area. The investigation has combined an aerial 
pbotograî c interpretation and extensive desk study with data cdlected from the field (Le 
geomoq)hdo^cal mapping and discontinuity surveys). Some of the landsUdes visited on tìiis field 
trip bave also becn studied by Eyers et al. (1998) using ATM data. Thcir work focused on how the 
spcctral differences within ATM data can be used to identify areas affected by landsUde activity. 

The aim of this half day fidd trip is to sftidy some of these landslides and the factors that led to their 
formation and devdopment, ti» mechanisms invoived, the risk that these featurcs pose, as weU as their 
rdc in the devdopment of the present day landscape. The locatìons for this trip, as well as some of 
die landsUde features that wiU be seen, are ^ w n in Figure 1. Ali of these locatìons can be readicd by 
car or minil)us, and some of tfacm can be reacfaed on fooL A nmnber of the sites are in 
environmentaUy sensitive areas that f«m part of die Sobas Gypsum Karst Natural Park, therefore 
care must be taken when visiting these sites. 

Directìoru to Stop I. 
From die top of die driveway to Una head towards Soriias alcmg the AL-104 and then die N-340. The 
first stop is a pull-in just past the cemetery and shop (Venta La Viuda), Ofqiosite die road junction with 
die Lulxin road. Irom bere it is a short walk to die tcf) of the hilL The landsUde at Maleguìca is 
situated on die 0{̂ K)site side of the Rio Aguas. 

Stop 1: Malegoica LandsUde (GR 05784 41055) 
[view point from hilltop opposite landsUde = GR 05785 41058] 
From the top of diis hill, the Rio Aguas valley can be seen in the cast and the town of Sorbas in die 
west (Figure 2). To the south die Rio Aguas has cut a wide canyon that readies a depth of about 50-60 
m bdow the main plateau smface. The landsUde is located along the southern wall of the river 
canyon. Part of the canyon floor immediatdy bdow die hiU, is being used to grow dtnis firuit 

Tlñs fairly cxtaisive landsUde can be dearly scen on aerial plKXograpfas and witìi ATM data (Eyers et 
al., 1998). The landsUde can be divided into three parts (Figure 2.). There is an area of disturbed but 
vcgetated ground to the Icft, a feirly rocky (and probably more active) secüon to the righi, and a 
centrai section ^tiìàch forms a süghüy disturbed, vegetated siepe down into the canyon The more 
active section is pickcd out by die prcsence of two cliff faces, which are almost perpendicular to each 
odicr (Le. trending NW-SE arri NE-SW) and die substantial accumulaüon of ddiris at the foot of tìiese 
diiTs. 

AH three of these areas can be (fistinguished on the aerial photographs. 
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Figure 1. Simplified map showing the area around the town of Sorbas, some of the landslide features 
of the area and the field trip locations. 



Al the eastern end of the canyon there is a diff face of laminated and massivcly bedded Messinian 
gypsum, which is interbedded with finely laminated maris (the Yesares Member). This is overlain by 
a light coloured limestone and sandstone, both Irom the Sorbas Member. Tte rock is well jointed in 
two directions, which are roughly at 60* to cadi other. This is clearly seen in the rock face. The 
jmnting is almost perpendicular to the bcdding surface, which Ui this arca (fips to the north and 
therefore out of the cliff face into the canyon. It is Üiis combination of the discontinuity patem and 
the bedcfing surface daylighting in the cliff face, that has given rise to the landsliding in this area. 

The landslide is añected by a number of différent failure mechanisms, with the prédominant failure 
mechanism changing as the landslide bas evolved. Geomorphological mapping has indicated that the 
eastem section of the landslide is prettominantly affccted by rotational sliding, shown ijp by the 
présence <rf 3 to 4 bendies of back tilted blocks, whidi are progressivcly more dcgraded furtier down 
slope. Some of thèse bencfaes are now being utilised for agriculture 

The central section of the landslide complex has also been affected by rotational slicfing. However, 
ÜMS bas then been complicatcd by a component ai overriding by the "younger" blocks 0-e those 
immediatcly betow the backscar) over the blocks that make up tiie middle part of Uns section of the 
landslide complex. The resuit is that tbe top surfaces of the blocks in tt» area inunediately bcneath tte 
badocar are dther back-tilted, fĉ ward tilted or near borizontaL This can be picked out by tbe 
orientation of tiw joints in the hcavily jointed, NE-SW trending cliff face. 

Back tilted blocks can also be found in the apparently more active, western section of the landslide. 
This would indícate Üiat this section of tte landslide has also beai afifccted by rotatkaial sliding. 
However, siiKe the fonnadon oí thèse badc tilted blocks there has been a diange in the faihire 
n^dianism to rock fall and topple. This is controUcd by tbe discontinuity pattem within the rock 
mass, with the beddii^ plane dî^ing ncsüiwards out of tlic hillside in conjuoction with two joint sets 
obli(pie to cach other aiîd perpendicular to the bedcfing. This <£scontinuity pattem is also responsible 
for Û)& sbapes of the slipped blocks in Üie other two sections of the landslide. Despite the switcfa in 
failure medianism, large blocks are still being formed bdiind the présent badsscar of this section of 
the landslide, the backscars of whidi are paialld to tbe main badcscar. The largest of thèse blocks is 
approximatdy 200 m long, readtes a maximum wi(fth of aboot 40-50 m and bas possibly moved up to 
about 2 m both vertically and horizontally. TWs Hock is also broken vp into several smaller blocks 
by a netwtrk of mudi snüller fractures, again ail of which foUow tbe discontinuity pattem of the rock 
mass. It is the break up of the larger blocks into thèse smaller imits, that is giving rise to the rock falls 
andto(̂ Ies. 

Transfer to Stop 2. 
This locality is reacbed by driving along the N-340 towards Murda. and thcn tuming right into the 
gypsum tpiairy entcance at the cross-roads with the road to Cariatiz and the road to the gypsum quarry, 
the Cjypsum Karst Natural Park and La Hcrrcria(KiIoindrePost 505). The road into the quarry bears 
offtottieleft, while die tradctol^ Herreiiais oh the right, jttstbefore the quarry entrance. Tbisisan 
unmetalled, gypsum topped track that foUows the soutbem cdge of the gypsum quaiiy. Once past the 
quarry, tbe trad: bears off to die r i ^ and goes across the gypsum plateau to die edge oS die gypsum 
cscarpment and the abandoned village of Marchalico Vínicas. 

Stop 2: Marchalico ViiUcas (GR 05854 41074) 
From the top of dK gypsum escarpment diere is a dear view of the Rio Aguas valley which opens out 
into the soudiera part rrf the Vera Basia The Mediterranean coast at Mojácar and the badland type 
tqxigrafifay that make up this area are usuaüy visible cm a dear day. The skyline is dominated by tl^: 
Sierra Cata-era whidi itms from the coast inland and acts as the southem border to the Vera Basia A 
number of landsiides aflect some of thèse slopes, partícularly in the arca near to the villages of La 
Hudga and La Herrería. Immediately bdow the gypsum escarpment is the abandoned village of 
Mardtalico Vínicas (Figure 3). This village was probably abandoned during the 1950's and 1960's, 
when there was a migradon from the rural parts of Spain to the larger towns and cides. 
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Figure 2. Slmplíflecl geomorphologicat map of the area around the Landslide at Maleguica, 
1 Km soulh of the town of Sorbas. (Location 1 ) 



The gedogy of the iaiuJslide area comprìses laminated and massively bedded Messinian gypsum 
interbedded with findy laminated marls (the Yesares Membcr) underlain by the marls of the Abad 
Member. 

The most recent landslidc forms a fairly prominent feature on the landscape that can easily be 
identified in aerial photogrs^ and A T M images (Eyers et al., 1998), as well as on die ground. The 
volume of debris and the size of some of the boulders that are involved is substanlial. The faìlure 
seems to bave initiated in the arca around the idllage, possibly due to the presence of a spring located 
within the village at the base of the gypsum. In the head arca the landslide is confined by the pre-
existing topogrs^^, but fìntfaer down slqie it becomes confined to topogra{diic lows. Thelowerpart 
of the landslide forms a daxìs flow that extcnds almost down to die mottrway (a (fistance of about 2-
2.5 km.). However, tte analysis of A T M data and getHnorphological mapping has revealed the 
presence of a relict debris flow, consisting mainly af marls with very large gypsum boulders 
mcorpcrated witìiin iL This debris flow is parallcl to die more recent debris flow and cxtends ainwst 
down totte Rio Aguas (a «fistance ofapproximatclythreekilometres). The runout for this relict flow 
has been modified by erosión and agricultural terracing. and has recendy been cut by the consnuctìon 
of die motorway and die road down to La Herrería. The road cut on tì» La Herrería road allows a 
good oppcstumty to study die internai structure of the detois flow. 

There appeais to he a oondiination of failure mechaiúsms at work within this area. The gypsum 
contains numerous disscdotion featurcs v^cfa has created Uocks within the gypsum near to the eàge 
oftheescarpmenL Tbese fall by either toppling or fading. Ttere is also evidence for some degree of 
rotatìonal sli(£ng within the top part of the marls, widi parts of tte gypsum escaipment forming 
sligfady back tihed blocks, but at a lower levd to the rcst of the gypsum gatean (Figure 3). This is 
possibly an "in-between phasc" before complete failure within die naris leading to the formadon of a 
sliding and then flowing (Miris mass. 

Transfer to Stop 3. 
Fran die abandoned village drive down the unn^taUed, gypsum tqiped trade and join the motorway, 
heacfing towards Almeria*. As you travd along the motorway diere is die gypsum escarpment on the 
r i ^ the cdge crf the Siena Cabrera (consisting of the Azagador Member in this arca) to the left and 
numerous laiidslide features on both sides of the road. At die point where the road takes a fairly shaip 
tum to the left die road crosses the Rio Aguas on an devatcd secdon and then climbs up out of the 
canyon dirough the Aguas/Feos wind gap. This was foniKd duiing the late PIcistocciK when the Rio 
Aguas/Feos drafaiage syston was captured by the headward retreat oí the lowa Aguas (Harvey and 
Wdls, 1987). 

Tum off̂  the motorway at die nert junction (sign-posted Sorbas & Peñas Negras), tum righi and go 
nndemeadi die motorway. Just after tìte motorway junction on die otìier side of die bridge, there is a 
junction on the left wìdi a metalled track sign-posted as going to Los Perales. This tradc runs 
alongside tte motorway back towards die wind gap. At tte point wtere tte tradt starts to drop down 
into die Los Perales vaUey, there is a levd area on tte righi váúch can te used as a puU-in. 

* After heavy rains this tradc may bearne guUyed. If this is the case retrace the main road toward 
Sorbas, and take the tum off for Los Molinos, onthel^ before Sorbas town. FoUow this road to the 
motorway intersection, pass under the motorway and take the tarmac minor road to Los Perales on 
the kft Foìlow this to stop 3 (see Figure 4), pulì in on the left just before the road begins to drop 
significanily irao the Aguas volley* 

128 



Figure 3. SlmplKIed geomorphological map of the area around the abandoned vlllago of 
Marchallco Vlfilcas. on the edge of the Gypsum Escarpment. (Location 2) 
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Stop 3: Los Perales Area (GR 05839 41051) 
The geology of the Los Perales area consists of Messinian gypsum to the north, fonmng the gypsum 
escarpment, underlain by marls of the Abad Member. This is underlain by the Azagador Member and 
the marine marls of tìie Chazas Formation The regional dip of the units within this area is to the 
nortfa/nodb-west The Rio Aguas has cut a subsequent drainage channel roughly along the contact 
between the marls of the Chozas Formation and the limestone of the Azagador Member. This was 
formed as the lower Aguas cut back towards the Rio Aguas/Feos drainage system 

Tbc combination of rock type and regional dip has led to die formation of numerous landslide features 
al<Mig bodi sides of tins part of the valley (Rgurc 4). To the north is the gypsum escarpment In a 
number of places diis has been aflected by rock falls and topples caused by the gypsum bdng undercut 
by the marls. There has also been a non-rotadonal slide along one 200 m section of the escarpment, 
nordi oí Cortijo de Lentiscar (GR 05845 41065), witìi die height difference bttwecn the top of O K 
escarpment and die top surface of the slid block being aĵ oximately SO m 

One particular area (rf instability widiin the valley itsdf, is die steep, soudi facing scarp slope located 
above the entrance to die village, just as the track crosses die river bed (GR 05843 41057). The base 
of the slope is the Chozas Formation maris, while the limestone forms a diff at the top of the slope. 
This combination has meant that in some places, die limestone has been undercut, often resulting in 
rock falls and tecles. In otter parts of tte scarp stope, blocks of tte limestone have slifqied 
downskipe, possibly on shear surfaces within tte marls. Tte sectirm oí scarp slope just upstream of 
where die trade crosses d»e river bed, last failed in December 1998. Some of tte pe<̂ Ie liráig widiin 
tte valley reported seeing several blocks of tte hmestone start to slide, then tORile as they broke up, 
and dien fall down into tte river bed telow. No seismic shocks had been felt (^or to die landslide, but 
there had been several sharp frosts during tte week tefore 

Tte southern slopes oí tte valley are affected by a combination of rotational and non-rotational 
movement, forming a azeable landslide complex. Agam, this is due to tte combination of tte 
limestone overlying die marls, dipping northwards mto tte valley. Most of die landslide morphdogy 
is masked by a rcasonaUy (tense vegmtion cover, although it is possible to pick out tte larger slipped 
blocks. 

Between die western end of this landslide conqilex and tte Aguaŝ Fcos wind gap there is a ridge that 
has been formed by tte faxasion of die Rio Aguas, as it passes dirough a series of very tight meanders. 
These meanders are now incised into a very narrow limestone (AzagadcH- Member) canyon. Tte ridge 
(Grid Reference 05837 41053) is comKBed of botìi tte limestone and the underling marine maris of 
tte Chozas Framaticm. There have been very large rock fads and tof̂ Ies on both sides of tte ridge, 
widi tte largest faihircs being found oa the nortiiem ade. Tte ridge is also tfissectcd by a scries of 
very large tension cracks. It is thought diat diese tension cracks indicate die lateral spreatfing (double-
skJed conqiound sag^ng. (Hutchinson. 1988)) of die ridge, as die limestone moves down-dip over die 
top of die marls. 

Transfer to Stop 4. 
Drive back towards tte motorway juiKrtion. and follow tte AL-104 towards Sorbas. Tte next stop is a 
lay-by on tte right hand side of tte readjust as tte road goes sharply around to tte left and down into 
tte Los Molinos (El Rio de Aguas) valley. 

Stop 4: Eastern end <tf the Los MoUnos Area (GR 05831 41046) 
Frran tte lay-by there is a good view through tte Los MoUnos valley area to tte west and Rio 
Aguas/Foes Wind Gap and die Sierra Cabrera to die east. To tte north there is die gypsum plateau 
widi tte Sierra Filabres iti die distance. Tte seccMid of tte large gypsum quarries of the area is also 
quite dearly visible. Bdow the lay-by, tte Rio Aguas flows throu^i a very tight series of meanders 
over which tte motorway passes on an elevated section. 
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Figure 4. S.r.pllfled geomorpho;oglcal -aM «he -̂̂ ^^^^^^ "^'^'^ 
as well 88 parte of the Gypsum Escarpment (Locatlons 3.4 & 6) 
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In this area the Rio Aguas has cut a gcarge through the Messinian gypsum (Yesares Member), the marls 
of ttie Abad Member, the sandstones and limestone of tiie Azagadcr Member and the marine marls of 
the Chozas Fonnation. The dip of the units within tins area is to the nortWncHlh-west. The gorge was 
cut by the combmation of continued uplift and rapid antecedent incision after the capture of the Rio 
Aguas/Feos by the lower Rio Aguas. 

Numerous landslide features can be seen affecting this area (Figure 4). There are rock failures along 
most of the gypsum escarpmoit in a similar fashion to the landsliding seen at Marchalico Vínicas. In 
the area between this lay-by and the motorway to the cast is a (&p slope rotational landslide (often 
refored to as the Carrasco Landslide) that occurs on the outside of a sharp meander in the Rio Aguas. 
This is found within the linnstone of the Azagador Member and Xht marls of tte Chozas Fomation. 
The slip surface occurs either within the marls or along the unconformable contact between the two 
units. 

The most active part of the landslide, is probably the area immediately bdow tte lay-by. This section 
of the landslide has retreated ñirther upslqie than the rest of the landslide and is bounded by a more 
defined backscar. This backscar has a fairly distinctive, square shape. The aerial photographs for the 
area, diow quite clearly how the shape of this landslide has tiecn controlled by the major 
discontinuities of the area, which trend roughly NW-SE and NE-SW. There are also some fairly 
sizeable tension cracks running parallel with each of the sides of this square area, although these are 
mainly ccmceotrated along die western flank of flie landslicfe. The rdative activity of this western 
flank of the landslide could be because of the agricuttural terraces that are located to the west of the 
landsUde These terraces could allow water to coUea within the hillside and then migrate towards the 
landslide area. 

Transfer to Stop 5. 
Craiünue driving towards Sorbas along the AL-I04 throu^ the viUage of Los MOUIKK (El Rk) de 
Aguas). On the northern side of the valley various landslides can be seen affecting the gypsum 
escarpment The road leaves the valley at the western end by crossing over the gypsum escarpment 
(Figure 4). Shorüy after reaching tte tq> of the gypsum escarpment fliere is a cross-roads. The road 
on the left goes to one of the gypsum quarries m tte area and the abandoned village of HudL Turning 
off to the right, there is an unmetaUed track and a lay-by cut mto the gypsum. It is tten a short climb 
up to the pr(»ninent conglomerate hiU on the edge of the escarpn^nt, following the footpath. 

Stop 5: Western end of the Los MoUnos Area (GR 05818 41055) 
This tdlltop is a popular viewpoint It provides a good view down on to Los MoUiKis and along this 
stretdi (rf the Rio Aguas. Furúier to ttie east there is the Sierra Cabrera, -while slightiy to the 
Northeast, there is the southern edge of the gypsum plateau across to the Marcfaalico Vifficas area. To 
the south, there is a view along the gypsum escarpment towards tte gypsum quarry and the E-W 
trencfing limestone ridge, while to the west tiiere is a good view towards Sorbas and the more central 
parts of die Sorijas Basm. with tiie Sierra de Los Filabrcs to the uOTth and Northwest 

The gypsum escarpn^ in this area has been affected by varitus landslides. To the south, in the area 
adjacent to the gypsum quarry, there has been a very large rock fall, which could be related to the 
tpiarry activity. There has also lieen gypsum rock falls m the area just south of where the road comes 
up from Los Molinos. Opposite Los Molinos, there have been a number of landslides along the 
gypsum escarpment. The largest failures seem to have invdved the gypsum and underiying marls 
undergoing a small degree of rotational sUding. In some places die gypsum seems to have been 
undercut by die marls restating in tqpple failures and falls. Rccemly, some blocks of gypsum that had 
previously toppled over, have slid down die marl slqies into die Rio Aguas. The ft^esh backscars can 
be seen opposite die lower end of the village. 

TWs viewpoint also allows a good oblique view into the Carrasco Landshde. Even with the vegetation 
cover, the tension cracks on tte western flank of the landslide are clearly visible. The shape of these 
tension cracks give a good indication of how the western flank is retreating across towards die 
terraces, as well as back towards the road. 

132 



REFERENCES 
EYERS. R. MOORE, J .McM. ,HERVÁS,J .&Ln j ,J .G . (1998) Integratcd use of Landsaí T M and 

SPOT pancfaromatic imagery for landslide m ^ i n g : case histories from Scutfaeast Spain. far 
Maund, J.G. & Eddlcstcaí, M. (Eds) Geohazards in Engineering Geology, Cìeological Society, 
London, Engineering Cîeology Special Publications, 15,133-140. 

HARVEY, AJM. & WELLS, S.G. (1987) Re^wnse of (Juateinary fluvial Systems to differenlial 
epeirogenic vpüfl : Aguas and Feos river Systems. Geology, 15,689-693. 

HUTCHINSON. J.N. (1988) General Report : Morphological and geotcdœical paramcters of 
landsUdes in rdation to geology and hy<frogeology. In : C.Bonnard (Ed.) Landslides, Proceedings of 
the 5th International Symposium on Landsüdes, Balkema. Rotterdam, Í , 3-35. 

MATHER, A E . (1991) Lau Caenozpic drainage évolution of the Sorbas Basin. Southeast Spain. 
PhD tbesis, Uiûvcrsity of Liverpool 

MATHER, A E . & HARVEY, A M (1995) CotäicAs on drainage évolution in the Sorbas Basin, 
Soudicast Spain. In : Lewin. J., Maddin, M.G. & Woodward, J.C. (eds) MedUerranean Quatemary 
River Environments, 65-76. 

Notes 

133 



Appendix B 

Appendix B - The Landslide Inventory 

This is a copy of the landslide inventory that forms the basis of this research project. The 

data is held in a Microsoft Access Database, but has been printed out using Microsoft Excel. 
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201 1 5 591941132 37,09,35 1,57,55 Rambla Serena Tributary 1 (North sida) 0 0 250 200 50 
202 1 5 591941132 37,09,35 1,57,55 Rambla Serena Trlbutary 2 (South side) 250 200 50 
203 1 6 591741124 37,09,12 1,58,05 Rio Jauto canyon East-side 1 0 0 200 140 60 
204 1 6 591641125 37,09,25 1,58,05 Rio Jauto Canyon East-side 2 0 0 230 150 80 
205 1 6 591441132 37,09,35 1,58,15 Rio Jauto Canyon East-side 3 0 0 250 150 100 
206 1 6 591241134 37,09,45 1,58,25 Rio Jauto Canyon East-side 4 0 0 300 160 140 
207 1 6 590741136 37,09,50 1,58,45 Rio Jauto Canyon East-side 5 0 0 350 180 170 
208 1 6 591941125 37,09,15 1,58,10 Rio Jauto Canyon West-side 1 0 0 200 140 60 
209 1 6 591441130 37,09,33 1,58,15 Rio Jauto Canyon West-side 2 0 0 250 150 100 
210 1 6 591041134 37,09,40 1,58,30 Rio Jauto Canyon West-side 3 0 0 270 170 100 
211 1 3 590541135 37,09,45 1,58,55 Rio Jauto Canyon West-side 4 0 0 350 190 160 
212 4 2 589541145 37,10,10 1,59,30 Cortijo Barranco Baeza 8 1 9 2 13 1 350 220 130 
213 1 3 590341144 37,10,00 1,59,00 Cortijo Molino del Seco 13 1 350 200 150 
214 2 3 589941135 37,09,48 1,59,05 Cortijo La Carabinera 1 0 0 350 210 140 
215 2 3 589541135 37,09,50 1,59,25 Cortijo La Carabinera 2 0 0 250 210 40 
216 4 10 588441144 37,10,12 2,00,15 Cerro Cabrero 1 (west facing) 0 0 450 250 200 
217 3 10 588441144 37,10,15 2,00,10 Cerro Cabrero 2 (northeast facing) 0 0 450 350 100 
218 3 10 588441144 37,10,10 2,00,10 Cerro Cabrero 3 (southeast facing) 0 0 450 350 100 
219 2 3 588541155 37,10,20 2,00,10 Barranco de la Parda/Loma del Cerro Cat 0 0 400 370 30 
220 1 1 588441136 37,09,43 2,00,23 Pago de Los Trances 1 0 0 300 230 70 
221 2 6 587641130 37,09,35 2,00,50 Pago de Los Trances 2 9 1 9 2 300 380 20 
222 4 6 588541137 37,09,55 2,00,50 Pago de Los Trances 3 9 4 13 4 400 250 150 
223 4 2 587741144 37,10,15 2,00,50 Barranco de Alberico 0 0 400 300 100 
224 1 2 590741127 37,09,20 1,59,45 Loma del Tallo 1 0 0 300 250 50 
225 1 2 590641127 37,09,20 1,59,47 Loma del Tallo 2 0 0 300 260 40 
226 1 2 590541127 37,09,20 1,59,50 Lome del Tallo 3 0 0 300 270 30 
227 1 1 589441159 37,11,08 1,59,35 Los Pinos 1 1 2 2 2 5 2 550 450 100 
228 2 6 589741153 37,10,45 1,59,25 Los Pinos 2 13 5 450 400 50 
229 2 6 589941153 37,10,45 1,59,18 Los Pinos 3 (Cerro de la Cruz) 0 0 450 400 50 
230 2 5 590041152 37,10,40 1,59,10 La Serena 1 13 2 450 380 70 
231 2 5 590041148 37,10,35 1,59,10 La Serena 2 0 0 400 360 40 
232 1 10 588041165 37,11,25 2,00,30 Fuente El Albarieo 2 (west facing) 0 0 750 650 100 
233 2 1 588541164 37,11,20 2,00,15 Fuente El Albarieo 1 (south facing) 0 0 750 680 70 
234 1 4 590041161 37,11,12 1,59,10 Cortijo del Hambre (Near Sedar) 12 2 550 450 100 
235 2 4 589841174 37,11,50 1,59,20 Cerro de las Angustias (Slopes above Be( 12 2 600 
236 2 10 590041182 37,12,20 1,59,10 Cerro del Silencio (N of Sedar) 0 0 550 510 40 
237 1 4 589941174 37,11,50 1,59,15 Pago de la Carrasquica (near Sedar) 12 2 600 500 100 
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238 2 4 592341153 37,10,45 1,57,40 La Gamberra (Rambla de las Nonas 2) 0 0 290 220 70 
239 2 4 592641147 37,10,25 1,57,25 Rambla Trinchera 1 (south facing) 12 2 250 220 30 
240 2 4 592541145 37,10,20 1,57,25 Rambla Trinchera 2 (north facing) 12 2 270 210 60 
241 2 4 592641148 37,10,30 1,57,25 Rambla de las Norias 1 0 0 250 220 30 
301 1 5 591341105 37,08,10 1,58,20 Cortijada Las Flores 13 1 25 1 160 110 50 
302 1 12 592241115 37,08,40 1,57,42 Alfalx / Under the N-340 road bridge 12 1 12 2 120 110 10 
303 2 11 594941114 37,08,35 1,55,52 Rio Aguas canyon (Los Caparroses) 1 0 0 80 60 20 
304 2 11 594841115 37,08,35 1,55,52 Rio Aguas canyon (Los Caparroses) 2 0 0 80 60 20 
305 2 11 594941115 37,08,35 1,55,52 Rio Aguas canyon (Los Caparroses) 3 12 1 80 60 20 
401 12 574541085 37,07,10 2,09,40 Las Rellanas Pintas 13 1 470 460 10 
402 12 575641083 37,07,02 2,09,00 Cortijada de Cinta Blanca 13 1 470 450 20 
403 12 575541066 37,06,08 2,09,03 Cortijo Alto meander 1 9 1 13 2 460 420 40 
404 12 575541066 37,06,08 2,08,55 Cortijo Alto meander 2 9 1 13 2 460 420 40 
405 9 576441067 37,06,12 2,08,23 Rbla Chopas & Rbla Cinta Blanca 0 0 430 400 30 
406 9 574641058 37,05,48 2,09,35 Rbla del Chopas Switchback 1 (N of oíd ri 0 0 450 440 10 
407 9 574941052 37,05,25 2,09,35 Rbla del Chopas Switchback 2 (large fallu 480 440 40 
408 12 574641053 37,05,30 2,09,32 Rbla del Chopas Switchback 3 0 0 450 445 5 
409 12 574741054 37,05,32 2,09,30 Rbla del Chopas Switchback 4 0 0 450 445 5 
410 12 574841055 37,05,35 2,09,34 Rbla del Chopas Switchback 5 0 0 450 445 5 
411 12 574741055 37,05,35 2,09,35 Rbla del Chopas Switchback 6 0 0 450 445 5 
412 9 574741058 37,05,40 2,09,34 Rbla del Chopas Switchback 7 (opposite ( 0 0 460 430 30 
413 12 575341055 37,05,32 2,09,12 El Pilarico 0 0 430 425 5 
414 12 575641059 37,05,48 2,08,58 Los Pilaricos 0 0 440 430 10 
415 12 575941063 37,05,56 2,08,45 La Boquera 0 0 420 417 3 
416 12 576441058 37,05,40 2,08,26 Pozanco 0 0 470 410 60 
417 12 575041047 37,05,8 2,09,22 Barranco Chacho 0 0 450 445 5 
418 11 576441055 37,05,30 2,08,28 Canadá de Miguel Campo 0 0 490 430 60 
419 12 576641053 37,05,23 2,08,14 Barranco del Mocatan/Mocatal 0 0 450 430 20 
501 12 576941065 37,06,05 2,08,01 Bird's foot locality 1 26 2 420 400 20 
502 12 577141065 37,06,05 2,07,58 BIrd's Foot Locality 2 26 2 400 390 10 
503 9 576941069 37,06,20 2,08,00 Los Benéficos 9 1 440 400 50 
504 9 577341071 37,06,25 2,07,50 NE of Los Benéficos 9 2 430 410 20 
505 9 577641072 37,06,28 2,07,36 Sorbas Quarry 13 2 410 385 25 
506 9 577741071 37,06,22 2,07,32 Sorbas Playing Fleid (opposite) 0 0 430 380 40 
507 9 577841067 37,06,8 2,07,32 Sorbas Canyon (N of dodgy ferrace) 0 0 380 370 10 
508 12 577741066 37,06,05 2,07,35 Dodgy Terrece (Jose's house) 1 1 400 360 40 
509 9 577741065 37,06,04 2,07,35 Sorbas Ist Aid 1 2 1 12| 1 400 360 40 
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510 g 577641066 37,06,05 2,07,34 Sorbas Ist Aid 2 (opposite) 0 0 380 360 20 
511 12 577841064 37,06,00 2,07,28 Behind Ihe new pottery Museum 2 2 400 395 5 3 
512 1 577741064 37,06,02 2,07,23 Sorbas Theatre 1 1 2 1 9 2 400 380 20 
513 9 577941065 37,06,04 2,07,22 N comer of Sorbas 1 1 400 360 40 
514 9 577941066 37,06,07 2,07,22 N of Sorbas N córner 0 0 400 360 40 
515 g 578541063 37,06,00 2,06,55 Alferería 0 0 400 350 50 
516 9 578141062 37,05,55 2,07,12 Sorbas (Oíd Square) 1 1 1 2 400 380 20 
517 12 578241060 37,06,47 2,07,14 Sorbas (Chachos) 13 4 380 340 40 
518 12 578241061 37,05,51 2,07,10 E end of Sorbas Oíd Bridge 1 2 12 3 15 4 350 345 3 
519 12 578141061 37,05,52 2,07,16 W end of Sorbas Oíd Bridge 1 1 12 2 390 370 20 
520 11 577841063 37,05,55 2,07,25 Sorbas (Behind Fatima's Bar) 1 1 2 1 9 2 400 370 30 2 
521 12 577741061 37,05,52 2,07,25 Sorbas road cutting 1 (Relict Feafure) 12 2 
522 12 577741061 37,05,52, 2,07,25 Sorbas road cutting 1 (Reactivated) 12 2 390 380 10 
523 12 577741061 37,05,52 2,07,25 Sorbas road cutting 2 (Relict Feature) 12 2 
524 12 577741061 37,05,25 2,07,25 Sorbas road cutting 2 (Reactivated) 12 2 390 380 10 
525 12 577641062 37,05,55 2,07,35 Sorbas road cutting 3 12 2 400 390 10 
526 12 577941060 37,05,50 2,07,23 Opposite Fatima's (Relict Feature) 13 4 9 2 400 385 15 
527 9 578041055 37,05,31 2,07,08 Maleguica 9 2 400 350 50 
528 12 578741054 37,05,35 2,06,44 Gypsum outcrop rocl<fall 1 26 2 370 340 30 
529 12 578841054 37,05,35 2,06,45 Gypsum outcrop rockfall 2 26 2 370 340 30 
530 12 578941054 37,05,35 2,06,46 Gypsum outcrop rockfall 3 26 2 370 340 30 
531 9 578941054 37,05,28 2,06,41 Cortijo de Paco el Americano 5 2 400 350 50 
532 12 579041062 37,06,52 2,06,40 Gully system opposite Sorbas Cemetry 1 12 1 480 470 10 
533 12 579041062 37,06,52 2,06,40 Gully system opposite Sorbas Cemetry 2 12 1 490 480 10 
601 12 578341067 37,06,08 2,07,08 Cortijo de Porras / Sorbas construction ya 0 0 400 370 30 
602 12 578241068 37,06,13 2,07,11 Cortijo de Porras (SE Facing 1) 1 1 390 370 20 
603 12 578241069 37,06,18 2,07,11 Cortijo de Porras (SE Facing 2) 13 2 390 370 20 
604 12 578541069 37,06,18 2,06,58 Cortijo de Porras (N Facing 1) 0 0 395 370 25 
605 12 578641069 37,06,18 2,06,59 Cortijo de Porras (N Facing 2) 0 0 400 370 30 
606 9 578741072 37,06,25 2,06,52 Entrance to "Zoca Gully" (S - under the ro 12 1 420 370 50 
607 12 578541073 37,06,30 2,07,00 Entrance to "Zoca Gully" (N) 1 3 9 4 400 380 20 
608 12 578741073 37,06,30 2,06,52 "Zoca Gully" 1 (NW Facing) 9 1 420 400 20 
609 12 578641074 37,06,32 2,06,55 "Zoca Gully" 2 (W Facing) 9 1 420 390 30 
610 12 578541074 37,06,32 2,06,57 "Zoca Gully" 3 (E Facing) 9 1 410 380 30 
611 9 578141071 37,06,22 2,07,16 Zoca 1 2 13 4 9 2 430 400 30 
612 9 578041075 37,06,35 2,07,25 Rambla Sorbas (W-Side) 9 4 13 4 440 400 40 
613 9 578541073 37,06,30 2,07,05 Rambla Sorbas (E-Side) 1 4 9 4 13 2 400 380 20 
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614 12 577841078 37,06,45 2,07,24 Cortijo El janari ^ R O C K Toppie; 1 3 9 2 400 390 10 
615 12 577741077 37,06,45 2,07,30 Opposite Cortijo El Jahari 13 2 
616 12 578241080 37,06,52 2,07,18 Cortijo Tejica 9 1 420 390 30 
617 9 578441084 37,07,04 2,07,05 El Tieso 9 1 13 1 13 2 440 400 40 
618 9 578441088 37,07,00 2,07,00 Mayordomo 13 2 450 410 40 
619 12 576741093 37,07,35 2,08,10 Gochar 9 1 13 2 430 420 10 
620 12 5764110 37,08,00 2,08,20 Rambla de Gochar canyon (W-SIde) 9 2 13 2 
621 12 5764110 37,08,00 2,08,20 Rambla de Gochar canyon (E-SIde) 9 22 13 2 
622 12 576241106 37,08,20 2,08,38 Rambla de Gochar canyon - Terrapin Poo 9 1 28 2 450 430 20 
623 12 576241106 37,08,20 2,08,38 Rambla de Gochar canyon - Terrapin Poo 9 1 28 2 450 430 20 
624 12 576241106 37,08,20 2,08,38 Rambla de Gochar canyon - Terrapin Poe 9 1 28 2 450 430 20 
625 11 576141110 37,08,31 2,08,37 Rambla de Gochar / M.tial de los Charcorl 0 0 460 455 5 
626 11 575841111 37,08,32 2,08,48 Rambla de Gochar / M.tial de los Charcor] 0 0 470 460 10 
627 12 575141108 37,08,25 2,09,17 "Pepe" section 1 0 0 485 480 5 1 
628 11 575341108 37,08,25 2,09,02 "Pepe" section 2 470 440 30 
629 12 577141097 37,07,50 2,07,58 Cortijo Entrada de Mora 0 0 440 430 10 
630 12 577041101 37,08,05 2,07,58 Cortijo de Zamora (opposite) 1 2 9 2 9 1 470 430 40 
631 12 577341104 37,08,10 2,07,45 Cortijo de Cavila (E) 13 1 480 430 50 
632 12 577141107 37,08,12 2,07,55 Cortijo de Cavila (N facing) 5 1 450 430 20 
633 12 577241130 37,08,20 2,07,42 Moras (S) (Ctjo Los Quicios) 13 2 470 440 30 
634 12 577341110 37,08,35 2,07,50 Moras (N) 2 13 1 5 1 460 445 10 
635 12 577441110 37,08,30 2,07,40 Moras (N) 1 0 0 460 450 10 
636 12 578141124 37,09,15 2,07,15 Rbla de La Mora 1 (limestone canyon) 0 0 520 500 20 
637 12 578141124 37,09,15 2,07,15 Rbla de La Mora 2 (Ist canyon) 0 0 520 500 20 
639 12 578341126 37,09,20 2,07,06 Rbla de La Mora 3 9 1 520 500 20 
640 12 578241128 37,09,28 2,07,09 Rbla de La Mora 4 0 0 540 510 30 
641 12 578241130 37,09,32 2,07,03 Rbla de La Mora 5 0 0 550 515 35 
642 12 578241131 37,09,36 2,07,05 Rbla de La Mora 6 0 0 550 520 30 
643 12 578341132 37,09,41 2,07,05 Rbla de La Mora 7 0 0 540 530 10 
644 12 578841136 37,09,52 2,06,45 El Fonte 1 1 1 350 525 5 
645 12 578741138 37,10,00 2,06,00 El Fonte 2 0 0 525 520 5 
646 12 579341140 37,10,04 2,06,26 La Mela 1 9 2 13 2 560 555 5 
647 12 579341140 37,10,04 2,06,26 La Mela 2 9 2 13 2 560 555 5 
648 12 579341140 37,10,04 2,06,26 La Mela 3 9 2 13 2 560 555 5 
701 2 580541125 37,09,20 2,05,35 Cerro Pelado 9 2 550 530 20 
702 10 579741123 37,09,08 2,06,08 Rbla de Los Castaños (N of canyon) 1 9 4 570 550 30 
703 10 579641124 37,09,12 2,06,11 Rbla de Los Castaños (N of canyon) 2 9 4 550 540 10 
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704 1 7 579641120 37,09,00 2,06,15 Rbla de Los Castaños canyon (W-Side, e 13 1 540 490 50 
705 1 7 579641120 37,09,00 2,06,10 Rbla de Los Castaños canyon (E-Side, w( 0 0 540 500 40 
706 1 11 579841118 37,08,48 2,06,02 Rbla de Los Castaños (S of canyon) 1 0 0 530 500 30 
707 1 12 580341116 37,08,52 2,05,45 Rbla de Los Castaños (N of Hill 487) 2 9 2 500 450 50 
708 1 12 580141113 37,08,36 2,05,50 Knoll W of Carlatiz (Hill 487) 1 9 2 480 440 40 
709 1 12 580341113 37,08,39 2,05,45 Knoll W of Cariatiz (Hill 487) 2 9 2 470 440 30 
710 1 12 579841113 37,08,30 2,06,04 Carlatiz (Relict Feature 1) 9 2 13 1 500 450 50 
711 1 12 580041112 37,08,34 2,06,00 Cariatiz (Relict Feature 2) 9 2 13 1 500 450 50 
712 1 12 580141112 37,08,33 2,05,52 Carlatiz (Relict Feature 3) 9 4 13 4 500 
713 1 11 580341111 37,08,32 2,05,47 Cariatiz (Relict Feature 4) 9 4 13 4 500 
714 1 11 580541111 37,08,31 2,05,38 Cariatiz (Relict Feature 5) 9 1 13 1 500 
715 1 7 581041122 37,09,05- 2,05,15 LImestone Escarpment behind Carlatiz, L 1 2 9 2 16 1 520 450 70 
716 1 7 581541125 37,09,20 2,04,50 Limestone Escarpment - Barranco del Ch 9 2 9 4 530 450 80 
717 1 12 582041122 37,09,10 2,04,36 Barranco del Chive (W-Side) 1 9 1 13 2 420 400 20 
718 1 12 581941123 37,09,10 2,04,40 Barranco del Chive (W-Side) 2 9 1 9 2 13 2 440 410 30 
719 2 5 581741130 37,09,35 2,04,45 La Rambla del Chive 1 9 2 480 450 30 
720 2 5 581541130 37,09,38 2,04,50 La Ramble del Chive 2 9 2 500 470 30 
721 1 11 582241126 37,09,18 2,04,29 Los Perez (Just to the north of the settlen: 7 3 8 3 450 410 40 
722 1 7 582541128 37,09,25 2,04,15 LImestone Escarpment - Barranco del Ch 9 2 9 4 550 500 50 
723 1 7 582541124 37,09,10 2,04,10 Limestone Escarpment above Los Martín* 9 4 9 2 550 450 100 
724 4 5 582741116 37,08,50 2,04,00 Los Martínez - Los Ramírez 9 4 9 2 425 400 25 
725 4 5 583741124 37,09,12 2,03,30 Cortijo de La Piedra 1 9 2 450 380 70 
726 4 5 584041123 37,09,05 2,03,15 Cortijo de La Piedra 2 9 2 450 370 80 
727 1 6 583841132 37,09,38 2,03,25 Cerro de La Piera 0 0 560 380 180 
728 2 5 585541123 37,09,05 2,02,10 Cerro de Solano 1 0 0 400 350 50 
729 4 5 585741125 37,09,10 2,02,05 Cerro de Solano 2 0 0 400 350 50 
730 4 5 585741126 37,09,12 2,02,00 Cerro de Solano 3 0 0 400 350 50 
731 4 5 586141128 37,09,20 2,01,48 Lomas de los Castaños 1 0 0 360 300 50 
732 4 5 585941129 37,09,28 2,01,25 Lomas de los Castaños 2 0 0 350 310 40 
733 4 2 582541143 37,10,12 2,05,12 Piedra Amarilla (near El Chive) 13 4 550 470 80 
734 4 2 584941152 37,10,42 2,02,40 Barranco de Cerrada 0 0 600 450 150 
735 4 2 585941142 37,10,10 2,01,55 Loma del Jaral 1 0 0 
736 4 2 585941142 37,10,10 2,01,55 Loma del Jaral 2 0 0 
801 1 7 575441021 37,03,42 2,09,00 Fuente El Taray 1 27 2 670 580 90 
802 1 7 575541020 37,03,38 2,08,55 Fuente El Taray 2 27 2 680 560 120 
803 1 7 576041019 37,03,35 2,08,40 Fuente El Taray 3 27 2 680 600 100 
804 1 7 576641019 37,03,38 2,08,15 Risco de Sánchez 27 2 670 600 70 
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805 12 576741030 37,04,12 2,08,10 (Cortijo) Los Contreras 1 27 2 520 500 20 
806 12 576741031 37,04,14 2,08,10 (Cortijo) Los Contreras 2 27 2 510 500 10 
807 12 576841031 37,04,14 2,08,05 (Cortijo) Los Contreras 3 27 2 510 500 10 
808 12 576841032 37,04,18 2,08,08 (Cortijo) Los Contreras 4 27 2 530 500 30 
809 12 576741032 37,04,16 2,08,12 (Cortijo) Los Contreras 5 27 2 510 500 10 
810 12 576941042 37,04,50 2,08,5 Mocatan Relict Landsiide 13 4 520 
811 9 577341041 37,04,45 2,07,47 Cerro de Juan Contreras - Beo de Los Co 0 0 465 450 15 
812 9 577241039 37,04,40 2,07,50 Beo de Los Contreras 2 0 0 480 450 30 
813 9 577941042 37,04,50 2,07,20 Beo de Los Contreras 3 0 0 450 420 30 
814 9 578141045 37,04,57 2,07,12 Beo de Los Contreras 4 0 0 450 410 40 
815 9 578241041 37,04,46 2,07,07 Beo de Las Alpargateras 1 0 0 450 420 30 
816 9 578341043 37,04,55 2,07,02 Beo de Las Alpargateras 2 0 0 450 410 40 
817 9 578441045 37,05,00 2,07,02 Beo de Infierno 1 0 0 450 400 50 
818 9 578541046 37,05,02 2,07,00 Beo de Infierno 2 0 0 450 400 50 
819 9 578641047 37,05,04 2,06,54 Beo de Infierno 3 0 0 450 400 50 
820 9 578641049 37,05,10 2,06,55 Beo de Infierno 4 0 0 450 400 50 
821 9 578941050 37,05,15 2,06,40 Beo de Infierno 5 0 0 400 390 10 
822 9 578741048 37,05,08 2,06,44 Beo de Infierno 6 0 0 420 380 40 
823 11 579341049 37,05,10 2,06,00 Beo de Infierno 7 0 0 400 
901 9 579641053 37,05,22 2,06,05 La Clauda 5 2 420 360 60 
902 9 580141060 37,05,45 2,05,52 Casa Linda 1 1 1 330 320 10 
903 9 580141059 37,05,45 2,05,55 Casa Linda 2 1 3 350 320 30 
904 g 579941059 37,05,44 2,06,02 Casa Linda 3 / Lorna Sola 9 1 340 320 20 
905 12 580641063 37,06,56 2,05,34 LIndy's Landslide 1 0 0 340 310 30 
906 12 580841057 37,05,35 2,05,32 Urrà (under the road bridge) 12 1 340 330 10 
907 12 580841059 37,05,40 2,05,27 Urrà Estate 1 0 0 2 
908 9 581341065 37,06,00 2,05,06 Urrà / Cortijo Los Indalecios g 2 360 310 50 
909 9 581541066 37,06,08 2,04,51 Cortijo Los Indalecios 9 2 370 320 50 
910 12 581641069 37,06,15 2,04,55 Rio Aguas / Cortijo Los Indalecios 0 0 310 300 10 
911 12 581341073 37,06,28 2,05,06 Rio Aguas / Venta de la Tenda 0 0 310 305 5 
912 12 581541081 37,06,54 2,05,00 Road Cutting on the old N-340 13 2 350 340 10 
913 12 581141081 37,06,55 2,05,15 Rambla del Marchallco 1 (near to road) 0 0 390 380 10 
914 12 580941086 37,07,10 2,05,20 Rambla del Marchallco 2 (Small rockfall) 0 0 400 390 10 
915 9 580841090 37,07,20 2,05,25 Rambla del Marchallco 3 (East Facing) g 1 9 2 400 360 40 
916 9 580541091 37,07,25 2,05,35 Rambla del Marchallco 4 (North Facing) 9 1 13 4 400 380 20 
917 9 580541092 37,07,30 2,05,35 Rambla del Marchallco 5 (South Facing) 0 0 410 370 40 
918 12 579941071 37,06,22 2,06,01 Beo del Aguaron 0 0 340 330 10 
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919 9 579041077 37.06,40 2.06.40 Casa del Aguanco (NE Facing) 7 5 27 2 9 1 440 360 80 150 
920 9 579241080 37,06,55 2,06,30 Casa del Aguanco (W Facing) 27 4 9 1 7 3 420 380 40 
921 9 579541077 37,06,40 2,06,20 Beco East of Casa del Aguaron 9 1 430 370 60 
922 12 579541068 37,06,14 2,06,20 Hill 419 (W Facing) 27 2 410 400 10 
923 12 579541069 37,06,18 2,06,20 Hill 419 (NW Facing) 0 0 400 390 10 
924 12 579641070 37,06,20 2,06,24 Hill 419 (NE Facing) 0 0 400 390 10 
925 12 579641069 37,06,14 2,06,14 Hill 419 (SE Facing) 0 0 410 390 20 
926 12 579541065 37,06,02 2,06,20 Cortijo Boqueras Gully 1 (SE Facing) 9 1 370 340 30 
927 12 579341065 37,06,03 2,06,26 Cortijo Boqueras Gully 2 (NW Facing) 9 1 370 350 20 
928 12 579341067 37,06,08 2,06,28 Cortijo Boqueras Gully 3 (SW Facing) 9 1 380 350 30 
929 12 579141073 37,06,25 2,06,32 Alto de Zorreras 6 1 g 2 8 3 430 390 40 
930 12 579441061 37,05,50 2,06,25 Old N340 / Junta del Andalucía Shed 0 0 360 330 30 

1001 12 581941068 37,06,05 2,04,45 El Nacimiento 1 (S Facing) 0 0 320 300 20 
1002 12 581941063 37,05,53 2,04,40 El Nacimiento 2 (NE Facing) 9 1 350 300 50 
1003 12 582241064 37,05,55 2,04,32 El Nacimiento 3 (W Facing) 0 0 350 300 50 
1004 9 582141060 37,05,40 2,04,35 Los Molinos Canyon (W-Side, East facing 0 0 350 300 50 
1005 9 582241061 37,05,50 2,04,30 Los Molinos Canyon (E-Side, west facing] 0 0 350 300 50 
1012 12 581941056 37,05,32 2,04,41 Inspiration Polnf (Eagles Nest) 12 2 420 350 70 
1013 9 582241056 37,05,32 2,04,30 Los Molinos Campground 7 1 310 290 20 
1014 9 582041054 37,05,28 2,04,30 Los Molinos Relict Landslide 1 4 12 4 400 340 60 
1015 12 581941052 37,04,15 2,04,45 Inspiration Point South (situated south of 0 0 400 340 60 
1016 9 581241045 37,05,04 2,05,00 Penon Diaz 8 1 450 350 100 
1017 6 581541034 37,04,15 2,05,00 Las Majadas Viejas / Barranco los Barran 8 1 550 400 150 
1018 10 5824104 37,05,10 2,04,25 Barranco Los Madroneros 27 2 27 2 400 380 20 
1020 5 582041038 37,04,33 2,04,38 Loma de Jacinto/B.de Tocino 27 2 27 2 400 380 20 
1021 12 582941055 37,05,28 2,04,00 Gypsum Escarpment (above Carrasco) 27 2 7 2 350 320 30 
1022 12 583041051 37,05,18 2,04,00 Carrasco (Limestone Escarpment) (South 27 2 7 2 300 270 30 
1023 12 582741052 37,05,15 2,04,08 Carrasco (Limestone Escarpment) (North 12 1 300 260 40 
1024 9 5834105 37,05,11 2,03,55 Cerro Moletas (South of Carrasco) (aka 'T 12 1 350 200 150 
1026 9 583041053 37,05,35 2,04,00 El Tesoro (West-side 1 ) 7 2 360 260 100 
1027 9 583141059 37,05,42 2,03,55 El Tesoro (West-side 2) 7 2 350 300 50 
1028 9 583141061 37,05,50 2,03,50 El Tesoro (West-side 3) 7 2 360 250 110 
1029 9 583441063 37,05,55 2,03,40 El Tesoro (NW) 7 2 350 300 50 
1030 9 583741063 37,05,50 2,03,30 El Tesoro (NE) 7 2 350 250 100 
1031 9 584041062 37,05,52 2,03,18 Gypsum Escarpment (Above Los Perales 11 2 370 280 90 
1032 9 584341065 37,06,04 2,03,08 Gypsum Escarpment (Above Los Perales 11 2 370 270 100 
1033 9 584541066 37,06,06 2,02,55 Gypsum Escarpment Rotafional Failure (/ 11 2 380 270 110 
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1034 9 585041069 37.06.15 2.02,38 Gypsum Escarpment (S of Marchallco Vir 11 2 380 250 130 
1035 8 584341057 37,05,35 2,03,07 Los Perales 1 (Jackies Rockfall) 13 2 300 220 80 
1036 8 584641060 37,05,45 2,02,52 Los Perales - Cortijo de Lentiscar canyon 0 0 250 210 40 
1037 8 584941061 37,05,48 2,02,42 Los Perales - Cortijo de Lentiscar canyon 0 0 250 210 40 
1038 9 583841053 37,05,22 2,03,27 Tensión Crack Ridge Landslide Complex 5 2 11 2 10 2 360 220 140 500 
1039 9 585041055 37,05,25 2,02,40 Cuesta Del Honor Landslide Complex 9 4 13 4 1 5 450 200 250 
1040 1 585741055 37,05,30 2,02,05 Corrai de la Molata 0 0 450 250 100 
1041 12 585141071 37,06,20 2,02,35 Marchallco Vínicas 1 (Larga obvious featu 7 3 9 4 11 2 380 200 180 
1042 12 585341074 37,06,30 2,02,25 Marchallco Vínicas 2 ("Relict" Feature) 11 4 7 3 13 4 370 190 180 
1043 7 585241088 37,07,15 2,02,20 Cerro Alto del Yesar 0 0 350 300 50 
1044 4 586341103 37,08,05 2,01,40 Cerro dei Majon (South Facing) 0 0 350 250 100 
1045 6 586041105 37,08,10 2,01,55 Cerro del Majon (NE Facing) 9 2 350 270 80 
1046 6 585541107 37,08,15 2,02,15 Cerro del Majon (North Facing) 9 2 380 300 80 
1047 6 585141109 37,08,22 2,02,30 Los Castanos/Cerro del Majon 9 2 400 310 90 
1048 6 585841098 37,07,50 2,02,00 Cerro del Mojon South 0 0 410 350 60 
1101 7 586541064 37,05,50 2,01,35 La Parrica 9 2 450 200 250 
1102 12 586841073 37,06,25 2,01,20 La Herrería 0 0 200 180 20 
1103 12 587141076 37,06,35 2,01,10 La Herrería / La Huelga cemetry 0 0 200 180 20 
1104 7 587841076 37,06,38 2,00,40 Barranco La Huelga 0 0 300 250 50 
1106 4 1 589341084 37,07,02 1,59,48 Los Quemadillos 1 (Beco de los QuemadI 0 0 300 250 50 
1107 4 1 589341084 37,07,05 1,59,42 Los Quemadillos 2 (Beco de ios QuemadI 0 0 300 250 50 
1108 4 1 589741089 37,07,10 1,59,25 Los Quemadillos 4 (unamed Beco - east f 0 0 260 200 60 
1109 4 1 589741089 37,07,15 1,59,22 Los Quemadillos 4 (unamed Beco - west f 0 0 250 200 50 
Il io 4 4 591941100 37,07,55 1,57,55 El Águila 1 (east facing) 9 3 190 150 40 
1111 4 4 592141100 37,07,50 1,57,50 El Águila 2 (west facing) 9 3 190 140 50 
1112 4 4 592641105 37,08,10 1,57,35 Lorna de la Señora 1 (northwest facing) - 9 4 5 4 200 150 50 
1113 4 4 59341102 37,08,00 1,57,00 Loma de la Señora 2 (southeast facing) 0 0 200 100 100 
1114 1 4 594441107 37,08,20 1,56,15 Cortijo Nuevo del Aire (Cortijo Grande airf 13 1 29 1 140 90 50 
1115 1 11 596041112 37,08,30 1,55,10 Cortijo de la Iruena 13 1 120 90 30 
1116 3 4 590241055 37,05,25 1,59,00 Alto del Muerto 1 (N Facing) 0 0 690 550 140 
1117 1 11 590441054 37,05,20 1,58,55 Alto del Muerto 2 (S Facing) 0 0 650 550 100 
1118 1 11 590741064 37,05,55 1,58,47 Beco del Muerto 0 0 420 390 30 
1119 3 4 591741055 37,05,35 1,58,06 Cerro de la Fuente del Puerto 1 (west faci 0 0 550 450 100 
1120 3 4 591941055 37,05,35 1,57,56 Cerro de la Fuente del Puerto 2 (east faci 0 0 550 400 150 
1121 3 4 592341062 37,05,50 1,57,45 Cerro de la Fuente del Puerto 3 (southwe: 0 0 500 400 100 
1122 3 4 593841065 37,06,00 1,56,43 La Carrasca 0 0 550 3500 200 
1123 3 4 593341078 37,06,50 1,56,15- Loma del Colorado 1 13 2 350 250 100 
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1124 3 4 594541085 37,07,00 1,56,40 Lorna del Colorado 2 13 2 400 350 150 
1125 3 4 595141073 37,06,22 1,55,40 Barranco del Tremecin 1 (west side of Bc 0 0 500 300 200 
1126 3 4 595141073 37,06,20 1,55,40 Barranco del Tremecin 2 (east side of Bcc 12 4 500 400 100 
1127 3 4 595841066 37,06,00 1,55,25 Cerro de los Peralicos 1 (higher) 0 0 700 600 100 
1128 3 4 595841075 37,06,02 1,55,20 Cerro de los Peralicos 2 (lower) 1 2 13 2 500 300 200 
1129 3 4 596241076 37,06,30 1,55,05 Cortijo Cabrera 1 ("La Molata" on the map 1 1 1 3 13 A 450 350 100 
1130 3 4 596541086 37,07,05 1,54,55 Cortijo Cabrera 2 (Cerro de la Pillea) 1 2 3 2 13 2 400 250 150 
1131 3 4 597541073 37,06,20 1,54,15 Cerro de los Ericos 1 0 0 700 600 100 
1132 3 4 598241075 37,06,30 1,53,40 Barranco de Mofar 1 (northeast facing) (e 0 0 650 450 200 
1133 3 4 598541080 37,06,40 1,53,30 Barranco de Mofar 2 (southwest facing) (v 0 0 600 450 150 
1134 3 4 598541083 37,06,52 1,53,30 Barranco de Mofar 3 (north facing) (west c 0 0 600 400 200 
1135 3 4 599541085 37,07,05 1,52,50 Cerro de Cucar - Risco del Moro 13 2 700 500 200 
1136 3 4 598541088 37,07,10 1,53,25 Majada de las Palomas 1 (southwest facir 0 0 450 300 150 
1137 3 4 598541090 37,07,15 1,53,15 Majada de las Palomas 2 (north facing) 0 0 450 350 100 
1138 3 4 598841099 37,07,46 1,53,00 Cerro de Judio 0 0 350 250 100 
1139 3 11 599741108 37,08,18 1,52,40 Cerro de los Caballones 13 1 300 250 50 
1140 3 11 600141111 37,08,25 1,52,12 Cerro de Juancho 13 1 160 140 20 
1141 1 11 588241059 37,05,40 2,00,35 Collado de la Limera 0 550 400 150 
1142 1 11 588941056 37,05,30 2,00,00 Rambla de la Parrica 13 2 550 400 150 
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50 50 50 65,462.94 1 45 102 104 4 3 
75 50 75 98,194,41 1 45 102 104 4 3 

350 50 350 549,888.67 1.2 50 102 1103 1002 1102 4 3 4 6 7 8 11 14 21 25 
250 50 250 523,703.50 1.6 58 102 1103 1002 1102 4 3 4 6 7 8 11 14 21 25 
400 60 400 1,256,888.39 1.66 59 102 1103 1002 1102 4 3 4 6 7 8 11 14 21 25 
350 250 350 6,415,367.82 0.56 29 102 1103 1002 1102 4 3 4 6 7 8 11 14 21 25 
250 200 250 4,451,479.71 0.85 40 102 1103 1002 1102 4 3 4 6 7 8 11 14 21 25 
250 50 250 392,777.62 1.2 50 102 1103 1002 1102 4 3 4 6 7 8 11 14 21 25 
700 50 700 1,832,962.23 2 63 102 1103 1002 1102 4 3 4 6 7 8 11 14 21 25 
250 60 250 785,555.24 1.66 59 102 1103 1002 1102 4 3 4 6 7 8 11 14 21 25 
500 250 500 10,474,069.91 0.64 33 102 1103 1002 1102 4 3 4 6 7 8 11 14 21 25 
100 200 100 1,361,629.09 0.65 33 102 1103 1002 1102 4 3 4 6 7 8 11 14 21 25 
750 170 750 10,015,829.35 0.88 41 102 1103 1002 1102 4 3 4 6 7 8 11 14 21 25 
200 150 200 2,199,554.68 0.93 43 102 1103 1002 1102 4 3 4 6 7 8 11 14 21 25 
150 40 150 125,688.84 1 45 102 1103 1002 1102 4 3 4 6 7 8 11 14 21 25 
200 400 200 8,379,255.93 0.5 27 102 1103 1002 1102 4 3 4 6 7 8 11 14 21 25 
200 200 200 2,094,813.98 0.5 27 102 1103 1002 1102 4 3 4 6 7 8 11 14 21 25 
200 200 200 2,094,813.98 0.5 27 102 1103 1002 1102 4 3 4 6 7 8 11 14 21 25 
150 20 150 47,133.31 1.5 56 102 1103 1002 1102 4 3 4 6 7 8 11 14 21 25 
200 100 20 733,184.89 0.7 35 102 1103 1002 1102 3 3 6 7 8 11 14 21 29 
200 50 200 104,740.70 0.4 22 102 1102 1002 1102 4 3 6 7 8 11 14 21 29 
700 150 700 8,248,330.05 1 45 400 500 4 3 
200 100 200 1,047,406.99 1 45 400 500 4 3 4 6 7 8 11 14 21 25 
25 10 25 6,546.29 5 79 102 1103 1002 1102 4 3 4 6 7 8 11 14 21 25 
20 10 20 4,189.63 4 76 102 1103 1002 1102 4 3 4 6 7 8 11 14 21 25 
20 10 20 3,142.22 3 72 102 1103 1002 1102 4 3 4 6 7 8 11 14 21 25 

500 350 500 9,164,811.17 0.29 16 102 1103 1002 1102 4 3 6 7 8 11 25 29 
100 30 100 78,555.52 1.66 59 102 1102 1002 1102 4 3 4 6 7 8 11 14 21 25 
20 30 20 15,711.10 1.66 59 102 1102 1002 1102 4 3 4 6 7 8 11 14 21 25 
20 30 20 21,995.55 2.33 67 102 1102 1002 1102 4 3 4 6 7 8 11 14 21 25 
50 30 50 31,422.21 1.33 53 102 1102 1002 1102 4 3 4 6 7 8 11 14 21 25 
50 200 50 523,703.50 0.5 26 102 1102 1103 1002 4 3 4 6 7 8 11 14 21 25 

102 1102 1103 1002 4 3 4 6 7 8 11 14 21 25 
100 100 100 523,703.50 1 45 102 203 4 3 4 6 7 8 11 14 21 25 

102 1102 1103 203 4 3 4 6 7 8 11 21 25 29 
10 102 4 5 6 8 11 18 21 25 29 

450 200 450 4,713,331.46 0.5 27 102 402 1101 1102 1002 4 3 4 6 11 21 25 31 37 40 
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200 180 102 1103 1002 1102 4 3 4 6 7 8 11 14 21 25 
100 50 100 78,555.52 0.6 31 102 1103 1002 1102 4 3 4 6 7 8 11 14 21 25 
200 100 200 628,444.19 0.6 31 102 1103 1002 1102 4 3 4 6 7 8 11 14 21 25 
150 50 140 117,833.29 0.6 31 102 1103 1002 1102 4 3 4 6 7 8 11 14 21 25 
100 100 100 261,851.75 0.5 26 104 1 3 
10 4 10 2 209.48 2.5 57 102 4 3 6 7 8 11 14 21 25 29 
10 102 104 4 3 6 7 8 11 14 21 25 
15 102 104 4 3 6 7 8 11 14 21 25 
10 102 104 4 3 6 7 8 11 14 21 25 40 
5 5 5 2 130.93 2 63 102 4 3 2 7 8 14 21 30 
8 3 10 8 251.38 2 63 102 4 3 2 7 8 14 21 30 

125 50 125 30 130,925.87 0.8 39 401 4 3 2 4 6 7 8 9 10 14 
100 40 100 30 83,792.56 1 45 401 4 3 2 4 6 7 8 9 10 14 
200 10 200 20 31,422.21 3 72 403 102 4 3 2 4 6 7 8 9 10 14 

5 5 20 8 130.93 2 63 104 4 3 6 7 8 10 11 14 18 21 
400 30 400 30 251,377.68 1.33 53 402 104 4 3 6 7 8 9 10 11 14 18 

5 5 5 1 65.46 1 45 104 4 5 6 7 10 11 14 18 21 25 
5 5 5 1 65.46 1 45 104 4 5 6 7 10 11 14 18 21 25 
5 5 5 1 65.46 1 45 104 4 5 6 7 10 11 14 18 21 25 
5 2 5 1 26.19 2.5 68 104 4 5 6 7 10 11 14 18 21 25 

150 20 150 20 47,133.31 1.5 56 401 4 3 6 7 8 9 11 14 18 21 
5 5 5 5 65.46 1 45 104 4 3 6 7 8 11 14 21 25 29 
5 5 5 5 130.93 2 63 101 4 3 6 7 8 11 14 21 25 29 
3 2 4 2 9.43 1.5 56 102 202 4 3 6 7 8 11 14 21 25 29 

100 50 100 40 157,111.05 1.2 50 403 4 3 6 7 8 11 14 21 25 29 
5 12 5 2 157.11 0.4166 23 102 104 4 3 6 7 8 10 14 21 25 29 

100 50 100 40 157,111.05 1.2 50 403 4 3 6 7 8 11 14 21 25 29 
10 5 10 5 523.70 4 76 102 4 3 6 7 8 9 10 14 21 30 
10 9 15 2 942.67 2.22 24 101 102 203 4 3 5 4 7 8 11 14 21 29 
10 5 10 5 261.85 2 63 102 203 4 3 5 4 7 8 11 14 21 29 

600 150 600 40 2,356,665.73 0.33 18 403 406 102 203 1000 1100 4 3 5 2 6 7 8 9 10 11 14 
70 50 70 15 36,659.24 0.4 22 401 4 3 5 2 6 7 8 9 10 11 14 

150 20 150 20 39,277.76 1.25 51 402 104 203 4 3 5 2 6 7 8 9 10 11 14 
150 25 150 25 78,555.52 1.6 58 402 104 203 4 3 5 2 6 7 8 9 10 11 14 

5 6 5 2 157.11 1.66 59 101 102 4 3 1 6 7 8 11 14 21 25 29 
10 15 10 5 3,142.22 2.66 69 101 102 1 3 1 6 7 8 11 14 21 25 29 
75 15 70 6 23,566.66 2.66 69 101 102 1 3 1 6 7 8 11 14 21 25 29 
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50 15 50 5 7,855.55 1.33 53 101 102 1 3 6 7 8 11 14 21 25 29 
5 3 5 3 39.28 1.66 59 102 4 5 6 7 8 11 21 25 29 31 

20 50 20 3 10,474.07 0.4 22 101 102 202 4 3 6 7 8 11 14 21 25 29 
25 40 15 4 20,948.14 1 45 101 102 201 202 4 3 6 7 8 11 14 21 25 29 
20 35 15 3 14,663.70 1.14 49 101 102 201 202 4 3 6 7 8 11 12 21 25 29 

700 30 700 45 549,888.67 1.66 59 402 1102 1103 1105 1002 102 4 3 2 3 6 9 11 14 18 
50 10 50 5,237.03 2 63 401 1102 1002 4 3 8 9 10 18 21 25 31 
50 60 50 3 62,844.42 0.66 34 101 102 201 202 4 3 6 7 8 11 12 21 25 29 

5 2 4 1 15.71 1.5 56 102 3 3 6 7 8 11 12 21 25 29 
10 10 10 1 1,047.41 2 63 102 103 1 2 6 7 8 11 21 29 31 32 
10 20 10 3,142.22 1.5 56 101 102 202 1 3 6 7 8 11 14 21 25 29 

400 702 7 
20 104 1102 1103 1 3 4 17 21 25 29 31 40 

400 702 7 
30 104 1102 1103 1 3 4 17 21 25 29 31 40 
10 10 104 201 1102 1103 1 3 6 7 8 11 17 21 25 29 

903 7 
800 150 800 45 3,142,220.97 0.06 18 102 203 400 600 800 4 2 6 7 8 11 14 21 25 29 

5 10 3 6 80 101 4 3 4 6 8 9 14 21 25 29 
3 8 3 10 84 101 4 3 4 6 8 9 14 21 25 29 
3 5 3 10 84 101 4 3 4 6 8 9 14 21 25 29 

50 75 50 20 98,194.41 0.66 34 401 4 3 6 7 8 9 10 11 17 21 
10 20 10 8 1,047.41 0.5 27 102 104 1002 1102 1103 4 3 6 7 8 11 21 25 40 
6 5 6 8 157.11 2 63 102 104 1002 1102 1103 4 3 6 7 8 11 21 25 40 

75 10 75 20 11,783.33 3 72 104 4 3 6 7 8 10 11 18 21 25 
5 10 10 4 523.70 2 63 104 1001 1002 1101 1102 3 3 6 7 8 9 10 11 14 18 

50 10 50 10 5,237.03 2 63 104 401 1001 1002 1101 1102 3 3 6 7 8 9 10 14 14 18 
30 30 20 10 11,783.33 0.833 40 104 401 1001 1002 1101 1102 3 3 5 6 7 8 9 10 14 14 18 
60 30 50 15 28,279.99 1 45 104 401 1001 1002 1101 1102 3 3 5 6 7 8 9 10 14 14 18 
30 30 30 20 23,566.66 1.666 59 401 101 1001 1002 1101 1102 3 3 5 6 7 8 9 10 14 18 31 
70 50 75 10 36,659.24 0.4 22 402 1001 1002 1101 1102 600 3 3 5 6 7 8 9 10 14 18 21 
80 30 100 10 25,137.77 0.666 34 402 1001 1002 1101 1102 600 3 3 5 6 7 8 9 10 14 18 21 
80 80 80 10 100,551.07 0.375 21 401 600 1001 1002 1101 1102 3 3 5 6 7 8 9 10 14 18 21 

160 30 160 10 75,413.30 1 45 402 1001 1002 1101 1102 600 3 3 1 6 7 8 9 10 14 18 21 
100 50 100 10 78,555.52 2 63 104 402 1001 1002 1101 1102 3 3 1 6 7 8 9 10 14 18 21 
600 75 600 20 942,666.29 0.533 28 104 402 1001 1002 1101 1102 3 3 1 6 7 8 9 10 14 18 21 
500 50 500 10 261,851.75 0.4 22 104 402 1001 1002 1101 1102 3 3 1 6 7 8 9 10 14 18 21 
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15 10 15 4 785.56 1 45 203 204 1001 1002 1101 1102 3 3 6 7 8 9 10 18 21 25 
5 4 6 2 104 1001 1002 1101 1102 3 3 6 7 8 9 10 14 14 18 

20 15 20 10 4,713.33 2 63 104 401 1001 1002 1101 1102 3 3 11 14 18 21 25 29 
125 50 120 20 130,925.87 0.8 39 104 401 1001 1002 1101 1102 3 3 11 14 18 21 25 29 30 
200 20 200 20 83,792.56 2 63 104 401 1001 1002 1101 1102 3 3 11 14 18 21 25 29 30 

5 10 5 3 261.85 1 45 104 1002 1102 3 3 11 14 21 25 29 30 
100 1001 1002 1101 1102 3 3 10 21 25 29 30 
100 1001 1002 1101 1102 3 3 10 21 25 29 30 

100 25 100 5 26,185.17 0.8 39 100 1001 1002 1101 1102 3 3 10 21 25 29 30 
100 25 100 5 26,185.17 0.8 39 100 1001 1002 1101 1102 3 3 10 21 25 29 30 
10 6 10 15 628.44 3.3 73 102 104 203 204 1 5 10 21 25 29 30 
4 3 4 2 31.42 1.66 59 104 4 3 6 7 8 9 10 21 
5 4 5 2 104.74 2.5 68 104 4 3 6 7 8 9 10 21 
1 1 1 2 2.62 5 79 102 3 5 7 8 14 21 25 29 

102 1002 1101 1102 1 5 6 7 8 9 10 14 18 21 
5 5 5 3 130.93 2 63 102 104 1001 1002 1101 1102 4 3 6 7 8 9 10 14 18 21 

125 20 125 20 52,370.35 2 63 402 104 1001 1002 1101 1102 4 3 6 7 8 9 11 14 21 25 
100 20 100 30 52,370.35 2.5 68 402 102 1001 1002 1101 1102 4 5 6 7 8 9 14 21 25 29 
50 10 50 20 5,237.03 2 63 402 1001 1002 1101 1102 4 3 6 7 8 9 10 14 21 25 
15 10 15 10 2,356.67 3 72 402 1001 1002 1101 1102 4 5 6 7 8 9 10 14 21 25 

100 20 100 2 10,474.07 0.5 27 501 4 1 6 7 8 11 14 17 21 25 
25 5 25 5 654.63 2 63 104 1001 1002 1101 1102 4 3 6 7 8 11 21 25 29 30 

100 10 100 15 10,474.07 2 63 102 104 203 4 3 6 7 8 14 21 25 29 
100 10 100 15 10,474.07 2 63 102 104 203 4 3 6 7 8 14 21 25 29 
40 10 40 4 4,189.63 2 63 102 104 203 204 4 3 6 7 8 14 21 25 29 
10 5 10 2 785.56 6 80 102 104 203 204 4 3 6 7 8 14 21 25 29 
5 3 5 1 274.94 10 84 102 104 203 204 4 3 6 7 8 14 21 25 29 
5 3 5 1 235.67 10 84 102 104 4 3 6 7 8 14 21 25 29 

10 5 10 1 261.85 2 63 501 102 103 4 3 6 7 8 14 21 25 29 
4 5 5 4 52.37 1 45 104 401 1001 1002 1101 1102 4 3 6 7 8 9 10 14 18 21 
5 4 5 4 52.37 2.5 68 101 1001 1002 1101 1102 4 3 6 7 8 9 10 14 18 21 
5 2 5 3 26.19 2.5 68 102 104 203 4 5 6 7 8 11 21 25 29 
5 2 5 3 26.19 2.5 68 102 104 203 4 5 6 7 8 11 21 25 29 
5 2 5 3 26.19 2.5 68 102 104 203 4 5 6 7 8 11 21 25 29 

20 1 45 102 1101 1103 1002 4 3 6 7 8 10 11 14 21 25 
50 30 50 23,566.66 1 45 102 104 4 3 6 7 8 18 21 25 29 

102 104 4 3 6 7 8 18 21 25 29 
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750 75 750 30 1,472,916.08 0,666 34 102 104 203 4 3 1 6 7 8 14 18 21 25 29 
500 75 500 20 785,555.24 0.533 28 102 104 203 4 3 1 6 7 8 14 18 21 25 29 

102 104 203 4 3 1 6 7 8 18 21 25 29 
250 100 200 10 654,629.37 0.5 27 102 104 401 4 2 5 6 7 8 18 21 25 29 30 
50 25 50 15 26,185.17 1.6 58 104 102 401 4 3 1 6 7 8 11 14 21 25 29 

100 25 100 10 39,277.76 1.2 50 104 102 401 4 3 1 6 7 8 11 14 21 25 29 
150 100 40 0.33 18 400 7 6 7 8 9 10 11 14 18 
150 100 30 0.33 18 400 7 6 7 8 9 10 11 14 18 

400 7 6 7 8 9 10 11 14 18 
400 7 6 7 8 9 10 14 18 
400 7 6 7 8 9 10 11 14 18 

1250 250 1000 11,456,013.96 0.28 16 102 104 203 204 4 3 6 7 8 9 10 11 18 21 
700 250 700 7,331,848.93 0.32 18 102 104 203 204 4 3 6 7 8 g 10 11 18 21 
60 30 50 10 18,853.33 0.666 34 401 4 3 6 7 8 9 10 11 14 18 

150 150 10 5 353,499.86 0.2 11 401 4 3 6 7 8 9 10 11 14 18 
80 50 80 62,844.42 0.6 31 401 4 3 6 7 8 g 10 11 14 18 

100 60 100 94,266.63 0.5 26 401 4 3 6 7 8 9 10 11 14 18 
100 70 100 15 146,636.98 0.571 30 401 4 3 6 7 8 9 10 11 14 18 
750 100 750 10 1,963,888.11 0.5 27 102 104 203 204 4 2 6 7 8 9 10 11 18 21 
500 350 500 15 9,164,811.17 0.286 16 402 102 104 203 204 4 3 6 7 8 9 10 11 18 21 
40 75 40 39,277.76 0.33 18 500 400 4 3 7 8 11 21 25 29 

200 100 200 733,184.89 0.7 35 504 7 7 8 11 21 25 2g 
100 200 100 837,925.59 0.4 22 504 7 7 8 11 21 25 2g 
200 150 200 2,827,998.87 1.2 50 102 1103 1002 102 4 3 7 8 11 21 25 2g 
75 50 75 98,194.41 1 45 504 4 3 7 8 11 21 25 2g 
25 40 25 26,185.17 2 63 500 4 3 7 8 11 21 25 2g 
25 40 25 26,185.17 2 63 500 4 3 7 8 11 21 25 29 

200 60 200 314,222.10 0.83 40 504 4 3 7 8 11 21 25 2g 
100 20 100 41,896.28 2 63 504 4 3 7 8 11 21 25 29 
100 40 100 167,585.12 2 63 500 100 7 
200 100 150 1,571,110.49 1.5 56 102 1101 1102 1002 500 4 3 

102 1101 1102 1002 500 4 3 
102 1101 1102 1002 500 4 3 

100 200 50 2 942,666.29 0.45 24 102 4 3 7 8 9 10 11 18 21 25 
120 350 40 2 2,639,465.62 0.34 19 102 4 3 7 8 9 10 11 18 21 25 
500 250 500 1 6,546,293.69 0.4 22 102 4 3 7 8 9 10 11 18 21 25 
200 180 200 1 1,319,732.81 0.39 21 102 4 3 7 8 g 10 11 18 21 25 
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'State ì [iStyle ,11/1.1 

1, ution • 
pause Cause Cause " 

Cause càuse bause 
•M6 

Cause Càuse 

10 5 10 5 523.70 4 76 102 4 3 6 7 8 9 10 14 21 
5 5 5 2 130.93 2 63 102 4 3 6 7 8 9 10 14 21 

10 5 10 2 261.85 2 63 102 4 3 6 7 8 9 10 14 21 
10 5 10 5 785.56 6 81 102 4 3 6 7 8 9 10 14 21 
20 5 20 2 523.70 2 63 102 4 3 6 7 8 9 10 14 21 

7 
100 50 100 39,277.76 0.3 17 401 4 3 7 8 9 10 14 18 21 30 
150 50 150 117,833.29 0.6 31 401 4 3 7 8 9 10 14 18 21 30 
50 20 50 15,711.10 1.5 56 102 4 3 7 8 9 10 14 18 21 30 

100 25 50 52,370.35 1.6 58 401 102 1001 1002 1101 1102 4 3 7 8 9 10 14 18 21 30 
150 50 150 117,833.29 0.6 31 401 102 1001 1002 1101 1102 4 3 7 8 9 10 14 18 21 30 
100 40 100 83,792.56 1 45 401 102 1001 1002 1101 1102 4 3 7 8 9 10 14 18 21 30 
50 30 40 39,277.76 1.666 59 401 102 1001 1002 1101 1102 4 3 7 8 9 10 14 18 21 29 
50 40 50 52,370.35 1.25 51 401 102 1001 1002 1101 1102 4 3 7 8 9 10 14 18 21 29 
70 60 70 109,977.73 0.833 40 401 102 1001 1002 1101 1101 4 3 7 8 9 10 14 18 21 29 

250 70 250 458,240.56 0.714 36 102 1001 1002 1101 1102 4 3 7 8 9 10 14 18 21 29 
20 10 20 1,047.41 1 45 102 1001 1002 1101 1102 4 3 7 8 9 10 14 18 21 29 

100 50 100 104,740.70 0.8 39 401 102 1001 1002 1101 1102 4 3 7 8 9 10 14 18 21 29 
102 7 8 9 10 14 18 21 29 

150 150 150 10 706,999.72 0.4 22 501 4 2 5 7 9 10 11 18 21 25 
30 15 30 7 2,356.67 0.666 34 401 1002 1102 4 3 5 6 7 8 9 10 11 14 21 

150 40 150 20 94,266.63 0.75 37 401 1002 1102 4 3 5 6 7 8 9 10 11 14 21 
25 20 25 10 5,237.03 1 45 401 1002 1102 4 3 5 6 7 8 9 10 11 14 21 

100 20 100 4 31,422.21 1.5 56 104 400 1002 1102 4 3 1 10 11 14 21 
20 5 10 6 523.70 2 63 104 400 1005 1 3 5 7 8 9 10 11 14 18 21 
0 2 5 1 0.00 1 45 104 4 5 1 2 4 18 21 30 

100 75 100 10 196,388.81 0.666 34 402 504 4 2 1 7 8 9 10 11 21 25 
180 75 150 40 353,499.86 0.66 34 402 504 3 2 1 7 8 9 10 11 21 25 

8 5 10 1 209.48 2 63 102 104 4 3 1 6 7 8 10 11 14 21 
20 10 25 4 523.70 0.5 27 104 1001 1002 1101 1102 1 3 1 3 6 7 21 8 10 11 14 
15 4 15 1 314.22 2.5 68 104 1001 1002 1101 1102 4 3 1 3 6 7 8 9 10 18 21 
15 12 10 2 942.67 0.833 40 100 1002 1101 1102 1001 4 3 1 6 7 8 10 11 14 21 25 
5 5 6 130.93 2 63 100 1002 1101 1102 1001 4 3 1 4 6 7 8 10 11 14 21 

150 60 150 20 188,533.26 0.666 34 401 1001 1002 1101 1102 4 3 5 4 6 7 8 9 10 11 14 
300 60 250 10 188,533.26 0.333 18 402 1001 1002 1101 1102 4 3 5 4 6 7 8 9 10 11 14 
90 60 100 20 113,119.95 0.666 34 402 1001 1002 1101 1102 4 3 5 4 6 7 8 9 10 11 14 
15 12 15 2 942.67 0.833 40 104 1001 1002 1101 1102 4 3 1 6 7 8 10 14 21 25 29 
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RS 
't Width' 

Rtinoütf 
iiDistanci 
i>'(ni)l. 

(Width' 
1, 

AZ 
Height"! 1 Volume (m'̂ 3) 

' ' m m ' 
1'H/,Ün 

Í 

Angle iOf^ 
!j Reach r 

•!(tân,hl/L)if 

1, i , ^ 

.J-ype 

« 9 Bfii 

«Type 
i» 1 1 

'ìType 
a i ill 
Type 

. 6 ' « 
( i l, ^ 
.State 
'i ' * 

style) ,Dlbtrlb 
'•utIon, 

pause 

Il'i 1 

Cause 
, ,2 
í t« « 

Cause 

h f¡ 
Icause Cause 

Ti 

Cause 
'6 , 

Cause 
r'7 

' il 
Cause 

500 200 500 50 4,189,627.96 0.4 22 402 403 1001 1002 1101 1102 4 3 5 6 7 8 g 10 11 14 18 
250 70 250 30 366,592.45 0.571 30 402 403 1001 1002 1101 1102 2 3 5 6 7 8 g 10 11 14 18 
250 125 250 40 981,944.05 0.48 26 402 403 1001 1002 1101 1102 2 3 5 6 7 8 9 10 14 18 21 

15 12 15 4 942.67 0.833 40 401 4 3 7 7 8 9 10 18 21 30 
15 20 15 2 1,571.11 0.5 27 401 4 3 7 7 8 9 10 18 21 30 
20 25 20 2 2,618.52 0.4 22 401 4 3 7 7 8 9 10 18 21 30 
15 30 10 1 4,713.33 0.666 34 101 1102 1103 1105 4 3 1 7 10 14 17 18 20 21 25 
25 30 25 4 11,783.33 1 45 102 104 203 204 1000 1100 2 3 5 6 7 8 9 10 11 18 21 
20 20 25 4 4,189.63 1 45 102 104 203 204 1000 1100 2 3 5 6 7 8 g 10 11 18 21 
30 45 30 4 21,209.99 0.666 34 102 104 203 204 1000 1100 2 3 5 6 7 8 g 10 11 18 21 

5 50 8 1 5,237.03 0.8 39 104 4 3 1 6 7 8 g 10 11 18 21 
25 50 25 5 19,638.88 0.6 31 104 400 1001 1002 1101 1102 2 3 5 6 7 8 g 10 11 14 20 
75 25 75 15 19,638.88 0.8 39 104 4 3 5 6 7 8 9 10 11 14 18 
20 40 25 30 20,948.14 1.25 51 104 203 4 3 1 6 7 8 g 10 11 14 18 
10 30 10 20 7,855.55 1.666 59 102 104 203 4 3 1 6 7 8 9 10 11 14 18 

500 75 500 10 981,944.05 0.666 34 903 203 104 401 4 3 1 6 7 8 9 10 11 14 18 
750 100 750 40 1,963,888.11 0.5 27 903 203 104 402 904 4 3 1 6 7 8 g 10 11 14 18 
60 100 50 20 219,955.47 0.7 35 903 104 204 4 2 1 6 7 8 g 10 11 18 21 
10 15 10 18 1,571.11 1.33 53 401 4 5 5 9 10 11 14 18 21 25 30 

100 350 60 20 1,099,777.34 0.171 10 702 7 
75 100 50 5 235,666.57 0.6 31 903 104 203 4 2 1 6 7 8 g 10 11 18 21 

600 100 600 5 3,142,220.97 1 45 903 104 203 402 4 2 1 6 7 8 g 10 11 18 21 
1250 600 1250 58,916,643.23 0.25 14 903 104 203 402 4 3 1 6 7 8 g 10 11 18 21 

20 30 20 6,284.44 0.66 34 102 104 4 3 1 6 7 8 10 11 14 18 21 
30 30 30 9,426.66 0.66 34 102 104 4 3 1 6 7 8 10 11 14 18 21 
10 20 8 1 3,142.22 1.5 56 104 102 4 3 1 7 8 9 10 11 18 21 25 
15 10 10 20 2,356.67 3 72 102 104 203 4 5 1 6 7 8 10 14 21 25 2g 

150 15 150 10 47,133.31 2.66 69 102 104 203 4 5 1 6 7 8 10 14 21 25 2g 
250 250 250 100 4,909,720.27 0.6 31 102 203 403 504 3 2 5 6 7 8 g 10 11 14 18 
100 200 70 10 1,047,406.99 0.5 27 903 104 203 102 4 3 1 7 8 9 10 11 18 21 25 
100 150 70 10 392,777.62 0.333 18 903 104 203 102 4 3 1 7 8 9 10 11 18 21 25 
100 250 50 50 1,440,184.61 0.44 24 903 402 203 104 102 4 3 5 6 7 8 g 10 11 18 21 
500 200 500 20 2,618,517.48 0.25 14 903 402 203 104 102 4 2 5 6 7 8 9 10 11 18 21 
400 500 500 50 10,474,069.91 0.2 11 903 402 203 104 102 4 2 5 6 7 8 9 10 11 14 18 
200 150 75 10 1,413,999.44 0.6 31 903 204 104 4 2 1 6 7 8 g 10 11 18 21 
300 300 100 10 4,713,331.46 0.333 18 903 204 104 4 2 1 6 7 8 g 10 11 18 21 
300 250 300 80 4,320,553.84 0.44 24 903 401 104 203 4 2 5 6 7 8 g 10 11 18 21 
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RS 
,Width 

RÜnOUt 
Dis'tañc 

, e(rTi)f 

AZ 
''Heigrtt } H,/ L 

Î Angloof 
¡sReach'^ 
5tanH/Lf r 

'Type 
' 2 / ?T 

¡<\ 

ÍType 

i" 'i'ii. 
,S''tate. 
' • 

í 
'Style 
A 

'Distrib, 
ution) 

iSause Cause 

i 
Cause 
?'.,3^ 1 

Cause 
1 i 
Cause 
, 5]\ 

V 
Cause Cause Cause 

^̂ 8 

i 300 300 200 20 6,127,330.90 0.433 23 903 402 203 104 4 2 6 7 8 9 10 11 18 21 
25 20 30 2 20,948.14 4 76 104 1103 1105 4 2 6 7 8 9 10 11 14 18 
10 5 10 4 1,047.41 8 83 104 203 102 4 3 6 7 8 11 14 21 25 29 
12 5 12 4 1,256.89 8 83 104 203 102 4 3 6 7 8 11 14 25 29 

400 500 400 75 14,663,697.87 805 903 901 403 104 203 1 3 6 7 8 9 10 11 14 18 
750 2000 200 0.333 18 403 303 102 1 3 7 8 9 10 11 14 18 21 

300 500 300 75 7,855,552.43 0.2 11 403 303 102 4 3 7 8 9 10 11 14 18 21 
200 800 100 50 15,082,660.67 0.225 13 903 403 702 203 102 4 2 6 8 9 10 11 14 18 21 
200 900 100 50 16,967,993.25 0.2 11 903 403 702 203 102 4 2 6 8 9 10 11 14 18 21 

903 402 203 104 4 2 6 8 9 10 11 14 18 21 
150 450 75 10 3,534,998.59 0.22 12 903 402 203 104 4 2 6 8 9 10 11 14 18 21 
500 125 500 2,618,517.48 0.64 33 903 402 203 104 4 2 6 8 9 10 11 14 18 21 
200 250 150 2,094,813.98 0.32 18 903 402 203 104 4 2 6 8 9 10 11 14 18 21 
125 300 120 1,767,499.30 0.3 17 903 402 203 104 4 2 6 8 9 10 11 14 18 21 
350 500 350 5,498,886.70 0.12 7 903 402 203 104 4 3 6 8 9 10 11 14 18 21 
400 500 400 26,185,174.77 0.5 26 402 203 102 4 2 6 7 8 9 10 14 18 21 
20 10 20 5 2,094.81 2 63 102 4 3 6 7 8 10 14 21 
20 10 20 5 2,094.81 2 63 102 4 3 6 7 8 10 14 21 

300 20 350 15 157,111.05 2.5 68 102 203 401 4 2 4 5 6 7 8 11 14 18 
100 90 102 4 3 6 7 8 9 10 11 14 21 
100 90 102 4 3 6 7 8 9 10 11 14 21 
150 140 102 4 3 6 7 8 9 10 11 14 21 
60 50 102 4 3 6 7 8 9 10 11 14 21 

102 4 3 6 7 8 9 10 11 14 18 
102 4 3 6 7 8 9 10 11 14 18 

250 250 402 540 4 3 6 7 8 9 10 11 14 18 
2000 2000 102 4 3 6 7 8 9 10 11 14 18 
1000 1000 102 4 3 6 7 8 9 10 11 14 18 

50 15 50 2 11,783.33 2 63 401 1001 1002 1101 1102 4 3 6 7 8 9 10 11 14 21 
250 0.56 29 102 1101 1103 1002 1105 4 3 4 6 7 8 9 10 11 21 

150 200 150 1,571,110.49 1 45 102 1101 1103 1002 1105 4 3 4 6 7 8 9 10 11 21 
150 150 150 353,499.86 0.2 11 102 1101 1103 1002 1105 4 3 4 6 7 8 9 10 11 21 

200 0.5 27 102 1101 1103 1002 1105 4 3 4 6 7 8 9 10 11 21 
100 1.5 56 102 1101 1103 1002 1105 4 3 4 6 7 8 9 10 11 21 
200 0.5 27 102 1101 1103 1002 1105 4 3 4 6 7 8 9 10 11 21 

200 600 200 12,568,883.89 0.33 18 102 1101 1103 1002 1105 4 3 4 6 7 8 9 10 11 21 
100 1 45 102 1101 1103 1002 1105 4 3 4 6 7 8 9 10 11 21 
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"Runoull 
iDistanc 

h AZ4 
iWidth"- «eight , Volumei(m13) i H /L J'VPe 'iTiype' 

/"4 !3 
1.1i'|i<!i 

•Typeí State ,.Style 

: 
i )i "i^á' 
iíDistrib̂ ' 
p i « it<-í 
h'ution 

Cause 
f\if i 
CaÜise Cause 

1^3'. 
!( l^'ljj 

pause Cause 

: 'tí 

bause 

.'Si 
Cause 

i 

Cause 

1200 300 28,279,988.75 0.5 27 102 1101 1103 1002 1105 4 3 4 6 7 8 9 10 11 21 
300 150 300 4,713,331.46 1.33 53 102 1101 1103 1002 1105 4 3 4 6 7 8 9 10 11 21 
400 200 400 4,189,627.96 2 63 102 1101 1103 1002 1105 4 3 4 6 7 8 9 10 11 21 

150 0.66 34 102 1101 1103 1002 1105 4 3 4 6 7 8 9 10 11 21 
700 400 700 29,327,395.74 0.5 27 102 1101 1103 1002 1105 4 3 4 6 7 8 9 10 11 21 
400 400 400 8,379,255.93 0.25 14 102 1101 1103 1002 1105 4 3 4 6 7 8 9 10 11 21 

200 0.75 37 102 1101 1103 1002 1105 4 3 4 6 7 8 9 10 11 21 
330 300 300 5,184,664.60 0.33 18 102 1101 1103 1002 1105 4 3 4 6 7 8 9 10 11 21 
750 350 750 27,494,433.51 0.57 30 102 1101 1103 1002 1105 4 3 4 6 7 8 9 10 11 21 
750 400 750 23,566,657.29 0.375 21 102 1101 1103 1002 1105 4 3 4 6 7 8 9 10 11 21 
400 400 400 16,758,511.85 0.5 27 102 1101 1103 1002 1105 4 3 4 6 7 8 9 10 11 21 

1250 250 1250 32,731,468.46 0.8 39 102 1101 1103 1002 1105 4 3 4 6 7 8 9 10 11 21 
90 400 100 2,827,998.87 0.375 21 102 1101 1103 1002 1105 4 3 4 6 7 8 9 10 11 21 

200 200 200 2,094,813.98 0,5 27 102 1101 1103 1002 1105 4 3 4 6 7 8 9 10 11 21 
150 100 150 785,555.24 1 45 102 1101 1103 1002 1105 4 3 4 6 7 8 9 10 11 21 
500 100 500 1,309,258.74 0.5 27 102 1101 1103 1002 1105 4 3 4 6 7 8 9 10 11 21 
400 50 400 209,481.40 0.4 22 102 1101 1103 1002 1105 4 3 4 6 7 8 9 10 21 
100 150 100 1,178,33Z86 1 45 102 1105 1103 4 3 4 6 7 8 9 10 11 21 
200 150 150 2,356,665.73 1 45 102 1102 1105 1103 4 3 4 6 7 8 9 10 11 21 
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Cause 

it !• itr 

Cause 
10 

>• 

Cause 

I'll'' 

( p 
Cause 

12 •lut 1 
f'1?î '-ff M M 

Aspect 
:¡ 

I-Sinìplé' 
^Profíl¿ 

'{A ' 
, nge P=ce, 

1 
Element 

T, 

i" t 

î 
iDralnagej 
ConÎIItloiis Named) 

; lUnitii 
Name (2) 

'iOther ' 
; Ònit t 

Name, (3) 

^ Upper,' 
iLithology 

""''Lower' i 
bthology 

{2)" 

' Other; 
Lithology 
ni'(3) 

0 0 5 6 6 2 4 9 3 4 3 10 11 
0 0 2 6 6 2 4 g 3 4 3 10 11 

29 0 0 6 6 6 2 4 g 2 4 3 10 10 
29 0 0 6 6 6 2 4 g 2 4 3 10 10 
29 0 0 6 6 6 2 4 g 2 4 3 10 10 
29 0 0 5 6 6 2 4 g 2 4 3 10 10 
29 0 0 5 6 6 2 4 g 2 4 3 10 10 
29 0 0 2 6 6 2 4 g 2 4 3 10 10 
29 0 0 2 6 6 2 4 9 2 4 3 10 10 
29 0 0 1 6 6 2 4 g 2 4 3 10 10 
29 0 0 1 6 6 2 4 g 2 4 3 10 10 
29 40 0 0 4 1 5 2 4 35 2 4 3 10 11 
29 0 0 5 6 6 2 4 18 2 4 3 10 10 
29 0 0 1 6 6 2 4 g 2 4 3 10 10 
29 0 0 5 6 6 2 4 g 2 4 3 10 10 
29 0 0 7 2 5 2 2 2 2 4 3 10 10 
29 0 0 2 2 5 2 2 2 2 4 3 10 10 
29 0 0 4 2 5 2 4 2 2 4 3 10 10 
29 0 0 6 6 6 2 4 18 2 4 3 10 10 

0 0 2 4 3 2 4 18 2 4 3 10 10 
0 0 1 6 6 2 4 24 2 4 3 10 10 
0 0 4 1 4 3 4 8 3 g 3 10 10 

29 0 0 2 4 3 2 4 8 2 4 3 10 11 
29 0 0 5 6 6 2 4 g 2 4 3 10 10 
29 0 0 1 6 6 2 4 g 2 4 3 10 10 
29 0 0 5 6 6 2 4 g 2 4 3 10 10 

0 0 5 1 5 2 2 2 2 4 3 10 10 
29 0 0 5 4 4 2 4 18 2 4 3 10 11 
29 0 0 6 4 4 2 4 18 2 4 3 10 11 
29 0 0 6 4 4 2 4 18 1 3 10 11 
29 0 0 1 4 4 2 4 35 2 4 3 10 11 
29 0 0 7 1 3 2 2 35 2 4 3 10 10 
29 0 0 5 1 4 2 2 2 2 4 3 10 10 
29 0 0 2 1 4 2 2 2 2 4 3 10 10 

0 0 3 1 5 2 2 35 3 4 3 10 10 
0 0 4 1 4 2 2 2 2 4 3 10 10 
0 0 3 7 5 2 2 2 2 4 5 10 10 
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Cause 
ti 91 1 
WV\ 

1 
Cause 

tí 

Cause Cause 

1? 

m 1 Mit 12 'Aspect 
lì' 

'Simple 
' Profile"̂  
'Il f̂ f'Pp'̂  

,Angle 
'^is" "«Iii 

iiSystem m 11 / 
il 

' " 

r . 
Element 

It |îf 
ihVeg 
»Cover 
,ä 

i Typelfli 
« f i ' 1 , 1 

''Drainagen 
Conditions 
1. t lì 1 

Uppenf 
1',Unlt!/̂  

i' Lower \ 
í ú n l t il 

Other 4 
CJnitŝ i 

,Name (3) 

.Uppe|" 
Lithology 
' ( D V 

Lower 
fLithológy 

¿(2) < 

Other 
'Lithology 

(3) 

29 0 0 3 6 5 2 4 18 2 4 3 10 10 
29 0 0 5 4 5 2 4 17 2 4 3 10 10 
29 0 0 2 2 5 2 4 9 1 3 10 10 
29 0 0 2 4 5 2 4 24 2 4 3 10 10 

0 0 6 6 5 3 4 18 1 1 3 8 
32 40 0 0 2 6 6 3 4 4 1 3 6d 8 

0 0 8 6 6 3 4 4 2 4 3 6d 8 
0 0 1 6 6 3 4 4 2 4 3 6d 8 
0 0 4 6 6 3 4 4 2 4 3 6d 8 
0 0 5 3 5 4 6 18 2 4 3 2 1 
0 0 6 6 6 4 6 18 2 4 3 2 1 

18 21 0 0 2 6 6 4 6 18 3 4 3 2 1 
18 21 0 0 2 6 6 4 6 18 3 9 3 2 1 
18 21 30 0 0 6 6 5 4 6 8 2 4 3 2 1 
25 29 30 0 0 7 6 5 3 3 18 2 4 3 2 1 
21 25 29 30 0 0 8 6 6 3 3 18 2 4 3 2 1 

0 0 5 5 1 3 3 17 2 4 3 2 1 
0 0 2 5 1 3 3 17 2 4 3 2 1 
0 0 6 5 1 3 3 18 2 4 3 2 1 
0 0 3 5 1 3 3 18 2 4 2 1 

25 29 30 0 0 4 1 4 3 3 18 2 4 3 2 1 
0 0 1 5 1 3 3 18 2 4 3 2 1 
0 0 7 1 3 3 5 18 3 4 3 2 1 
0 0 6 6 5 3 5 18 2 4 3 2 1 
0 0 1 6 5 4 5 18 3 4 3 2 1 
0 0 7 6 6 3 10 35 2 4 3 5a 5a 5 
0 0 4 6 3 4 10 10 2 4 3 2 1 
0 0 4 1 5 3 10 19 1 3 2 1 
0 0 5 6 6 3 3 3 1 4 3 5a 
0 0 7 5 5 3 3 28 2 4 3 5a 

18 21 25 30 0 0 3 5 7 3 3 18 3 9 3 4 2 1 7 
18 21 25 30 0 0 2 4 5 3 10 6 3 4 3 2 4 1 7 
18 21 25 30 0 0 6 6 6 3 3 18 2 4 3 2 4 1 7 
18 21 25 30 0 0 6 6 6 3 3 18 2 4 3 2 4 1 7 

0 0 6 6 6 3 3 4 1 3 5a 7 
32 40 0 0 3 6 6 3 3 4 1 5 1 5a 1 7 
32 40 0 0 2 6 6 3 3 18 1 3 5a 7 
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bau» 

íH 
Cause » Mit 1 iMIt 2 

-

m Simple„ 
''Prcifilêî , .Facet H 

if • f l'Ili 
im 
L Cover' 

5»: Drainage ' •̂ .LoweV̂  1̂ ' Otĥ er̂ , 
f̂ iumf.:/ 
NaV4(3) 

(liithology/ 
'M) 

Lower 
lithology 
'.-\(2) \ 

- Other '̂ 
:lithology{ 
• ,(3). 

32 40 0 0 6 6 6 3 3 21 2 4 3 5a 7 
32 35 38 40 7 0 7 6 6 3 3 4 1 1 5 5a 5a 7 6 
32 40 7 0 1 6 6 3 3 4 2 6 5 5a 7 
32 40 0 0 1 6 6 3 3 21 2 4 3 5a 7 
32 40 0 0 5 6 6 3 3 21 2 4 3 5a 7 
21 25 30 0 0 7 6 6 3 3 18 2 4 3 4a 2 1 7 
32 36 38 40 7 3 6 5 3 3 4 4 5a 7 5 

7 0 7 6 6 3 3 4 3 5a 7 
32 40 7 0 7 6 6 3 3 4 4 5a 7 
38 40 7 0 3 5 6 3 3 4 5 5a 7 
32 40 7 0 4 12 6 3 3 4 3 5a 7 

7 8 3 3 28 2 4 5 5a 7 
7 8 7 5 3 3 33 2 4 5 5a 7 
7 1 3 3 28 2 4 5 5a 7 
7 1 7 5 3 3 33 2 4 5 5a 7 

31 40 7 2 9 6 3 3 33 2 4 5 5a 7 
0 0 7 3 3 9 2 4 3 5a 7 
0 0 2 1 7 3 3 22 3 9 3 5a 5b 7 2 
0 0 7 6 6 3 3 4 1 3 5b 2 5 
0 0 7 6 6 3 3 4 1 3 5b 2 5 
0 0 7 6 6 3 3 4 1 3 5b 2 5 

25 29 0 0 2 6 6 4 5 2 2 4 3 5a 5b 7 2 
0 0 3 6 5 3 10 10 3 4 3 5a 7 
0 0 5 6 5 3 10 10 3 4 3 5a 7 

29 0 0 8 6 6 3 3 18 2 4 3 4 2 5 1 
21 25 29 0 0 3 6 5 3 3 18 2 9 3 4 2 5 1 
21 25 29 31 0 0 4 6 6 3 3 18 2 9 3 4 2 5 1 
25 30 37 0 0 1 4 5 3 3 18 2 9 3 4 4 2 5 7 1 
25 30 37 0 0 1 4 5 3 3 18 2 9 3 4 4 2 5 7 1 
25 29 30 40 0 0 1 4 6 3 10 10 3 9 3 4 4 5 7 
25 29 30 34 0 0 6 4 6 3 10 10 3 9 3 4 4 5 7 
25 29 30 34 0 0 8 1 4 3 10 10 2 4 3 4 4 5 7 
25 29 30 34 0 0 7 1 4 3 10 10 2 4 3 4 4 5 7 
25 29 30 34 0 0 3 1 4 3 10 10 2 4 3 4 4 5 7 
25 29 30 31 7 0 4 6 6 3 3 24 1 5 4 2 5 1 
25 29 30 34 0 0 2 6 6 3 3 9 2 9 3 4 2 5 1 
25 29 30 34 0 0 6 5 7 3 3 9 2 9 3 4 2 5 1 
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Cause 
* 9 

Cause 
,0 

Cause Cause 

m 
1 1 

'm 1 
1 

iMIt 2 ll i 
^Aspect : 

'Simple 
'Profile 

'1 I M » ' 

System II >acet 
' '•'à ,i 
Element 

¿•1 
( ' f 1 1 

'4eq"̂  fVeg 
'Typeij. Conditions 'fi,;iynitVi| 

Name (1) 

li-fLòwer 
' Unit , 
Name 1(2) 

'Others 

NafTié'(3) 

j; Upper 
fUhology 
h M1)J 

;,Lower 
Lithology 

f Other " 
ILithology: 
. (3) 

29 30 0 0 6 6 6 3 3 9 2 9 3 2 4 1 5 
21 25 29 30 0 0 3 6 6 3 3 9 1 3 4 4 5 1 

0 0 1 6 6 3 3 18 2 4 3 2 
0 0 7 6 6 3 3 18 2 4 3 2 
0 0 7 6 6 3 3 18 2 4 3 2 
0 0 1 6 6 3 3 18 2 4 3 2 
0 0 3 6 6 3 3 9 2 9 3 2 
0 0 7 6 6 3 3 9 2 9 3 2 
0 0 3 6 6 3 3 9 2 4 3 2 
0 0 7 6 6 3 3 9 2 4 3 2 
0 0 3 6 6 3 3 9 2 4 3 2 
0 0 7 4 3 3 10 10 2 4 3 6d 8 
0 0 7 4 3 3 10 10 2 4 3 6d 8 
0 0 8 5 5 3 6 18 1 3 6d 8 

29 30 0 0 8 6 6 3 6 18 1 3 6d 1 
29 30 0 0 4 1 7 3 3 23 2 4 3 2 1 
29 30 34 0 0 3 6 6 3 4 18 2 9 3 2 1 
30 32 40 0 0 7 6 6 3 4 18 2 9 3 2 1 
29 30 34 0 0 1 5 3 3 4 18 4 9 3 1 2 1 1 
29 30 34 0 0 8 6 6 3 4 18 3 9 3 2 1 
29 0 0 4 5 3 3 4 6 1 3 2 2 1 7 

0 0 8 5 5 3 3 17 1 3 2 2 1 7 
0 0 4 6 6 3 4 4 1 3 6b 8 
0 0 4 6 6 3 4 4 1 3 6b 8 
0 0 7 6 5 3 4 7 2 4 3 6b 8 
0 0 2 6 5 3 4 7 2 4 3 6b 8 
0 0 7 6 6 3 4 19 2 4 3 6b 8 
0 0 4 3 4 3 4 6 2 4 3 6b 8 
0 0 4 3 3 3 4 6 2 4 3 6b 8 

25 29 30 0 0 7 6 6 4 6 8 3 4 3 6d 1 
25 29 30 0 0 4 3 5 4 6 18 3 4 3 6d 1 

0 0 7 5 4 4 6 4 2 4 3 6d 8 
0 0 7 5 4 4 6 4 2 4 3 6d 8 
0 0 7 5 4 4 6 4 2 4 3 6d 8 

29 0 0 9 6 5 3 4 3 2 4 3 6d 8 
0 0 8 5 7 3 4 8 3 9 3 6b 8 
0 0 8 5 7 3 3 8 3 9 3 6b 8 
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Cause • 
Cause 
'I lOi' 

Cause 
11 

l|(ijí ,t¡ 
Cause " •Mit ih1i ,Mit 2 m 

Simple 
• .!? . . 

>mhi 
'̂ ystem l'-'fjLtl ÊIemê t 

''l'Ili f 
'Type, 

li.̂  »II 
.Drainage 
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»'0'í-i»ir 1 
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Name'(2) 
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ifUnitC 

Namei(3) 

'Upper', 
Lithology 

Lower̂  
lílthology 

Other 
Lithology 
i' (3) , 

0 0 3 6 7 3 3 4 2 4 3 6b 8 
0 0 7 6 7 3 3 4 2 4 3 6b 8 
0 0 5 5 7 3 3 8 3 4 3 6b 8 
0 0 5 4 1 3 3 18 2 4 3 6b 6c 8 5 

30 0 0 1 6 5 3 3 18 2 4 3 6b 6c 8 5 
0 0 1 6 5 3 3 18 2 4 3 6b 6c 8 5 

21 25 29 30 0 0 2 3 3 8 3 9 3 2 4 
21 25 29 30 0 0 1 3 3 8 3 9 3 2 4 
21 25 29 30 0 0 1 3 3 8 3 9 3 2 4 
21 25 29 0 0 2 3 3 8 3 9 3 2 4 
21 25 29 0 0 1 3 3 8 3 9 3 2 4 
25 29 30 0 0 9 1 3 3 4 3 9 3 6b 6c 8 5 
25 29 30 0 0 7 1 3 3 8 3 9 3 6b 6c 8 5 
21 25 29 30 0 0 1 1 4 3 3 18 2 4 3 6b 6c 8 5 
21 25 29 30 0 0 7 1 4 3 3 18 2 4 3 6b 6c 8 5 
21 25 29 0 0 2 4 3 3 3 24 2 4 3 6b 6c 8 5 
21 25 29 0 0 1 4 3 3 3 24 2 4 3 6b 6c 8 5 
21 25 29 0 0 7 1 4 3 3 18 3 9 3 6b 6c 8 5 
25 29 30 0 0 2 6 5 3 3 18 2 4 3 6b 6c 8 5 
25 29 0 0 6 5 4 3 3 6 3 4 3 6b 6c 8 5 

0 0 4 4 3 4 6 8 3 6 5 6b 8 5 10 
0 0 2 4 4 3 2 8 3 4 3 10 11 
0 0 2 4 4 3 2 8 3 4 3 10 11 
0 0 3 6 5 2 2 35 2 4 3 10 11 
0 0 7 6 5 4 4 8 2 4 3 10 11 
0 0 1 3 5 4 4 8 2 4 3 10 11 
0 0 1 3 5 4 4 8 2 4 3 10 11 
0 0 8 3 5 4 4 8 2 4 3 10 11 
0 0 6 3 5 4 4 8 2 4 3 10 11 
0 0 5 4 4 2 2 18 2 4 3 10 11 
0 0 5 1 4 2 4 18 2 4 3 10 11 
0 0 5 4 4 2 4 8 2 4 3 10 11 
0 0 5 4 4 2 4 8 2 4 3 10 11 

29 0 0 1 4 2 4 2 6 3 9 3 6b 8 
29 0 0 1 4 2 4 2 6 3 9 3 6b 0 8 0 
29 0 0 1 4 2 4 2 6 3 9 3 6b 0 8 0 
29 0 0 1 4 2 4 2| 6 3 9 3 6b 0 8 0 

Appendix-B_Landslide_lnventory_OO.xls Page 23 



m Vi. 
Cause Cause 

'̂10̂ ^ 
Cause 
M ^ 
Wi if 

• 

Cause 
1 12 

M,t1 
l i II 

Îk fAspecti ?Simp(e¡! 
1, Profile im 'Faceti 

lì 
(Element VCover 

í 

víType 
f 

• 

fijOraínage. 
'conditions 
7«, f fcr íHl 

>|Jper; 

Name'(1) 

I', n i 111 
flower ' 
ilUnlt,^ 
(Name (2) 

í Other 
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Name (3) 

il 'lappec""' 
Lithology 
; -, 

ì, Lower'' 
rLlthology 
' /(2)' 

¡ Other 
ÍLithology-

(3) 
0 0 8 5 3 10 19 2 4 3 5a 7 
0 0 4 5 3 10 20 2 4 3 5a 7 
0 0 8 5 3 10 19 2 4 3 5a 7 
0 0 2 5 3 10 20 2 4 3 5a 7 
0 0 6 5 3 10 19 2 4 3 5a 7 
0 0 7 3 10 10 2 4 3 2 1 
0 0 4 4 3 3 4 20 2 4 3 2 2 1 6 
0 0 8 4 3 3 4 20 2 4 3 2 2 1 6 
0 0 8 4 3 3 4 22 2 4 3 5a 5a 4 7 
0 0 8 4 3 3 4 22 2 4 3 5a 5a 4 7 
0 0 8 4 3 3 4 22 2 4 3 5a 5a 4 7 
0 0 8 4 3 3 4 22 2 4 3 5a 5a 4 7 

30 0 0 8 6 5 3 4 22 2 4 3 5a 5a 4 7 
30 0 0 8 6 5 3 4 4 2 4 3 5a 5a 7 4 
30 0 0 8 6 5 3 4 4 2 4 3 5a 5a 7 4 
30 0 0 5 6 5 3 4 20 2 4 3 5a 5a 7 4 
30 0 0 1 6 5 3 4 22 2 4 3 5b 2 
30 0 0 5 6 5 3 4 20 2 4 3 5a 7 4 

0 0 0 6 6 3 4 4 1 3 5b 2 
0 0 8 5 3 4 5 6 3 4 3 5a 5b 7 2 

25 30 34 0 0 7 5 7 4 5 18 3 4 3 5a 7 
25 30 0 0 8 5 7 4 5 18 3 4 3 5a 7 
25 30 0 0 1 6 6 4 5 18 3 4 3 5a 7 

0 0 • 7 6 6 4 5 18 2 4 3 1 5a 1 7 
25 32 40 0 0 7 6 6 3 3 10 2 4 3 5b 2 

0 0 1 6 5 4 3 10 3 4 3 1 7 
0 0 1 2 4 4 5 28 3 4 3 5a 7 
0 0 8 6 6 4 5 28 3 4 3 5a 7 
0 0 2 3 5 4 5 25 1 3 5a 4 

17 21 23 0 0 7 6 6 4 5 18 2 4 3 1 5a 1 4 
29 31 40 0 0 7 7 6 3 3 33 1 5 5a 7 

0 0 2 6 6 3 5 18 1 3 5a 4 
25 0 0 4 6 5 3 10 18 1 3 5a 7 4 
18 21 30 0 0 3 1 5 3 3 18 3 4 3 2 1 
18 21 30 0 0 1 1 5 3 3 24 3 4 3 2 1 
18 21 30 0 0 5 1 5 3 3 18 2 4 3 4 5 
30 0 0 6 6 5 3 3 18 2 4 3 2 1 
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21 25 30 0 0 2 1 6 3 3 18 3 4 3 2 4a 1 6 
21 25 30 0 0 6 1 6 3 3 18 3 g 3 2 4a 1 6 
25 29 30 0 0 4 6 6 3 3 18 3 4 3 4a 4a 5 6 

0 0 7 4 4 4 5 8 3 g 3 4a 4a 6 7 
0 0 8 3 4 4 5 8 3 g 3 1 4a 1 5 
0 0 2 3 4 4 5 8 3 g 3 1 4a 1 5 

29 37 0 0 4 5 4 4 5 10 3 4 3 1 4a 1 5 
25 29 0 0 4 6 6 4 10 10 3 4 3 5a 5a 7 5 
25 29 0 0 8 6 6 4 10 10 3 4 3 5a 5a 7 5 
25 29 0 0 6 6 6 4 10 10 3 4 3 5a 5a 7 5 
25 29 30 37 0 0 6 6 6 4 3 10 1 3 1 4a 4a 1 6 7 
21 25 37 39 0 0 4 7 5 4 4 8 1 1 2 5a 1 1 7 
21 25 0 0 5 6 5 3 3 18 2 4 3 1 1 
21 25 0 0 2 6 5 3 3 4 2 4 3 5b 6c 2 5 
21 25 0 0 7 6 6 3 3 4 2 4 3 5b 6c 2 5 
21 25 30 0 0 3 6 6 3 3 4 2 4 3 5b 6c 2 5 
21 25 30 0 0 6 6 6 3 3 3 2 4 3 5b 6c 2 5 
25 30 31 0 0 3 6 6 3 3 3 2 4 3 1 5b 6c 1 2 5 
34 36 0 0 8 6 6 3 3 10 2 4 3 1 5 

0 0 3 3 3 9 2 9 3 5b 6c 2 5 
25 30 40 0 0 5 6 6 3 3 3 2 4 3 5b 6c 2 5 
25 30 40 0 0 3 6 6 3 3 3 2 4 3 5b 6c 2 5 
25 30 40 0 0 2 6 6 3 3 3 2 4 3 5b 6c 2 5 
40 0 0 1 5 6 3 4 10 2 4 3 6d 7 8 5 
40 0 0 1 5 6 3 3 10 2 4 3 6d 7 8 5 
29 30 0 0 5 1 5 3 3 3 2 4 3 1 6c 1 5 

0 0 5 6 6 3 3 3 1 3 6d 8 
0 0 2 5 6 3 3 4 1 3 6d 8 

21 25 29 34 0 0 8 1 2 3 3 22 3 4 3 6d 7 8 5 
29 30 34 0 0 3 1 5 3 3 3 2 4 3 5b 6c 2 5 
29 30 34 0 0 3 1 5 3 3 3 2 4 3 5b 6c 2 5 
25 29 30 0 0 4 1 6 3 3 3 2 4 3 5b 6c 2 5 
25 29 30 0 0 4 1 6 3 3 3 2 4 3 5b 6c 2 5 
21 25 29 30 0 0 6 1 7 3 3 3 2 4 3 5b 6c 2 5 
25 29 30 0 0 4 6 6 3 3 3 2 4 3 5b 6c 2 5 
25 29 30 0 0 4 6 6 3 3 3 2 4 3 5b 6c 2 5 
25 29 30 0 0 4 6 6 3 3 5 2 4 3 5b 6c 2 5 
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25 29 30 0 0 5 1 7 3 3 3 2 4 3 5b 6c 2 5 
21 25 29 30 0 0 5 6 6 3 3 3 2 4 3 6d 7 8 5 

0 0 4 6 6 3 3 4 2 4 3 6d 8 
0 0 5 6 6 3 3 4 2 4 3 6d 8 

21 25 29 30 0 0 9 1 7 3 3 21 3 9 3 6d 7 8 5 
25 30 37 0 0 8 1 7 3 3 6 4 9 3 6d 7 8 5 
25 30 37 0 0 2 1 4 3 3 8 4 9 3 6d 7 8 5 
25 29 30 0 0 3 1 7 1 6 3 2 4 3 5b 6c 2 5 
25 29 30 0 0 3 1 7 1 6 3 2 4 6 5b 6c 2 5 
25 29 30 0 0 2 1 4 1 6 3 2 4 3 5b 6c 2 5 
25 29 30 0 0 5 12 4 1 6 3 2 4 3 5b 6c 2 5 
25 29 30 0 0 2 12 4 1 6 3 2 4 3 5b 6c 2 5 
25 29 30 0 0 1 12 4 1 6 3 2 4 3 5b 6c 2 5 
25 29 30 0 0 3 12 4 1 6 3 2 4 3 5b 6c 2 5 
25 29 30 0 0 3 6 6 1 6 3 2 4 3 5b 6c 2 5 
25 29 0 0 8 1 4 3 2 6 3 4 3 6d 8 

0 0 2 6 5 3 3 22 2 4 3 6d 8 
0 0 6 6 5 3 3 22 2 4 3 6d 8 

21 25 29 0 0 6 1 5 3 4 9 2 4 3 8 18 
25 29 0 0 3 4 4 2 4 18 2 4 3 9 18 
25 29 0 0 7 4 4 2 4 17 2 4 3 9 18 
25 29 0 0 3 4 4 2 4 18 2 4 3 9 18 
25 29 0 0 7 4 4 2 4 17 2 4 3 9 18 
21 25 29 0 0 3 6 6 3 4 9 3 4 3 6d 8 
21 25 29 0 0 7 6 6 3 4 9 3 4 3 6d 8 
21 0 0 8 1 2 3 6 22 3 9 5 6d 8 
21 25 29 0 0 4 6 5 3 4 3 3 4 3 6d 8 
21 25 29 0 0 6 6 5 3 4 9 3 4 3 6d 8 
25 29 0 0 6 6 5 3 4 20 2 4 3 6d 8 
25 29 0 0 1 2 3 2 2 2 2 4 3 9 18 
25 29 0 0 4 2 3 2 2 2 2 4 3 9 18 
25 29 0 0 3 2 3 2 4 2 2 4 3 9 18 
25 29 0 0 7 2 3 2 2 2 2 4 3 9 18 
25 29 0 0 3 2 3 2 2 2 2 4 3 9 18 
25 29 0 0 6 2 3 2 2 2 2 4 3 9 18 
25 29 0 0 1 2 3 2 2 35 2 4 3 9 18 
25 29 0 0 7 2 3 2 2 2 2 4 3 8 18 
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25 29 0 0 1 2 3 2 2 2 2 4 3 8 18 
25 29 0 0 1 2 3 2 4 35 2 4 3 9 18 
25 29 0 0 7 2 3 2 4 35 2 4 3 9 18 
25 29 0 0 9 2 3 2 2 2 2 4 3 9 18 
25 29 0 0 1 2 3 2 2 35 2 4 3 9 18 
25 29 0 0 8 2 3 2 2 2 2 4 5 9 18 
25 29 0 0 9 2 3 2 2 2 2 4 5 9 18 
25 29 0 0 2 2 3 2 2 35 2 4 3 9 18 
25 29 0 0 2 2 3 2 4 35 2 4 3 9 18 
25 29 0 0 7 2 3 2 4 2 2 4 3 9 18 
25 29 0 0 1 2 3 2 4 2 2 4 3 9 18 
25 29 0 0 8 2 3 2 2 2 2 4 3 9 18 
25 29 0 0 6 2 3 2 2 2 2 4 3 9 18 
25 29 0 0 1 2 3 2 2 2 2 4 3 9 18 
25 29 0 0 7 2 3 2 2 2 2 4 3 9 18 
25 29 0 0 4 2 3 2 2 3 2 4 3 6d 8 
25 29 0 0 4 2 3 2 2 3 2 4 3 6d 8 
25 29 0 0 5 2 3 2 2 2 2 4 3 9 18 
25 29 0 0 7 1 3 2 2 35 2 4 3 9 18 
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Appendix C 

Appendix C - Landslide Inventory Ratings 

The following tables contain the numerical codes that were used in the Landslide 

Inventory developed by this research project. They are discussed in Chapter 3. 

1 



Appendix C 

Copy of Table 3.4: The different types of data contained in the landslide inventory 

database. 

Category Data that were collected 

Location 
The geographica! location of the landslide including the grid reference and the 

longitude and latitude co-ordinates of the centre of the landslide. 

Certainty of 

Identification 

The data source used (i.e. field mapping and/or API) and the certainty of 

identification of the landslide. 

Land use 

The land use of the area in which the landslide has occurred and the relative 

Position of the landslide to the land use. Any remedial measures that have been 

undertaken were also recorded. 

Elevation The elevation of the crown and toe area of the landslide. 

Geometry 
The height, width and length of the backscar and debris accumulation, as well as 

the area covered by the landslide and the volume of the debris accumulation. 

Angle of Reach The angle of reach of the landslide, measured from the crown to the toe. 

Landslide 

Mechanisms 

Up to six landslide mechanisms were recorded for each landslide, using the 

definitions described by Gruden (1991), Dikau et al. (1996) and Turner & Schuster 

(1996) and outlined in Section 3.4.2 

Landslide 

Activity 

The State, style, distribution and rate of the landslide, based on the definitions of 

the WP^1(1990 , 1993, 1994, 1995). 

Landslide Age Relative age of the landslide based on a project-derived scheme. 

Causative 

Factors 

Up to ten factors attributed to either Controlling or actually triggering the landslide, 

per landslide using the WP/WLI definitions (WPAVLl, 1990, 1993, 1994, 1995). 

Slope 

Morphology 
The aspect, profile and angle of the slope on which the landslide has occurred. 

Geomorphology 
The Land System, Land Facet and Land Element in which the landslide has 

occurred, as described in Section 3.2.3. 

Geology 

The geology of the slopes in which the landslide has occurred. Additional 

Information conceming the geotechnical properties of both the rock material and 

rock masses involved in the landslide are contained within a second database. 

Vegetation 
The type and density of the Vegetation covering the slopes on which the landslide 

has occurred. 

Drainage The type of drainage within and around the landslide. 

References Any published or unpublished material referring to the landslide. 

Other 

Information 

Any other relevant Information. 
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Appendix C 

Table C. l : Classification for the identification certainty and data source for each of 

the mapped landslides and the landslide inventory codes. 

Code Identification Certainty 

1 Backscar and deposit clearly identifiable 

2 Back scar only (Deposit has been removed) 

3 Deposit only (Backscar has been removed) 

4 Presence of either backscar and/or the deposit are uncertain (i.e., an 

eroded (relict) featvire that is covered with vegetation, shadowing effects 

on the aerial photographs or erosión) 

5 Debatable identification 

Code Data Source Code Data Source 

1 Black & White API only (no 

field validation) 

7 B & W API with detailed field 

validation 

2 Colour API only (no field 

validation) 

8 Colour API with detailed field 

validation 

3 Both sets of aerial photographs 

only (no field validation) 

9 Both sets of API with detailed 

field validation 

4 B & W API with limited field 

validation 

10 Very limited field mapping 

(i.e., observed at distance) 

5 Colour API with limited field 

validation 

11 Limited field mapping only 

6 Both sets of API with limited 

field validation 

12 Detailed field mapping only 
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Appendix C 

Table C.2: Land use classification and landslide inventory codes 

Land Use Land Use Land Use 

1 Private/residential 

buildings 

11 Motorway 21 Buried storage 

structiires 

2 Public buildings 

(schools, shops) 

12 Major road 22 Above ground 

storage structures 

3 Recreational buildings 13 Minor road / dirt track / 

access road 

23 Buried water 

pipelines 

4 Public access areas 

(sports fields) 

14 Railway lines 24 Canals 

5 Farm buildings 15 Bridges 25 Reservoirs 

6 Industrial buildings 16 Electricity pylons 26 Sites of Scientific 

Interest 

7 Disused/abandoned 

buildings 

17 Buried electrical cables 27 Abandoned Fields / 

terraces 

8 Mine workings / quarries 18 Telephone pylons 28 Municipal Sites 

9 Fields for crops / terraces 19 Buried telephone cables 29 Airport Runway 

10 Fields for cattle 20 Buried gas pipelines j 30 
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Appendix C 

Table C.3: Landslide Failure Mechanisms 

Mechanism Code Descrìption 

100 

Rock Fall 

101 Rock Fall with detachment from a planar failure surface. 

100 

Rock Fall 

102 Rock Fall with detachment from a wedge-shaped failure surface. 100 

Rock Fall 103 Rock Fall with detachment from a stepped failure surface. 

100 

Rock Fall 

104 Rock Fall with detachment from a vertical failure surface. 

200 

Rock Topple 

201 Rock Topple with detachment from a single pre-existing discontinuity. 

200 

Rock Topple 

202 Rock Topple with detachment from a single tension failure surface. 200 

Rock Topple 203 Rock Topple with detachment from multiple pre-existing discontinuities. 

200 

Rock Topple 

204 Rock Topple with detachment from muUiple tension failure surfaces. 

300 

Rotational 

(Sliding) 

301 Rotational movement (sliding) on a single, circular failure surface. 300 

Rotational 

(Sliding) 

302 Rotational movement (sliding) on a successive, circular failure surface. 

300 

Rotational 

(Sliding) 303 Rotational movement (sliding) on a multiple, circular failure surface. 

400 

Non-rotational 

401 
Non-Rotational Compound movement (sliding) on a single, non-circular, 

listric, failure surface. 

400 

Non-rotational 

402 
Non-Rotational Compound movement (sliding) on a progressive, non-

circular, listric, failure surface. 

400 

Non-rotational 

403 
Non-Rotational Compound movement (sliding) on a multi-storied, non-

circular, listric, failure surface. 400 

Non-rotational 
404 

Non-Rotational Compound movement (sliding) on a single, non-circular, 

bi-planar, failure surface. 

400 

Non-rotational 

405 
Non-Rotational Compound (sliding) on a progressive, non-circular, bi-

planar, failure surface. 

400 

Non-rotational 

406 
Non-Rotational Compound (sliding) on a multi-storied, non-circular, bi-

planar, failure surface. 

500 

Translational 

(Sliding) 

501 Translational Movement (sliding) on a planar failure surface. 
500 

Translational 

(Sliding) 

502 Translational Movement (sliding) on a stepped failure surface. 
500 

Translational 

(Sliding) 
503 Translational Movement (sliding) on a wedge-shaped failure surface. 

500 

Translational 

(Sliding) 
504 Translational Movement (sliding) on a non-rotational failure surface. 

600 

Lateral 

Spreading 

601 
Lateral Spreading of ductile or soft material that deforms in a layer beneath 

hard rock. 
600 

Lateral 

Spreading 

602 
Lateral Spreading of ductile or soft material that deforms in a weak 

unstratified layer. 

600 

Lateral 

Spreading 

603 
Lateral Spreading of ductile or soft material that deforms in a coUapsible 

structure. 
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Mechanism Code Description 

700 

Débris 

Movement 

701 Débris Movement by flow on a natural unconfined slope. 700 

Débris 

Movement 

702 Débris Movement by flow on a natural channelised slope. 

700 

Débris 

Movement 703 Débris Movement by flow on a complex unconfmed slope. 

700 

Débris 

Movement 

704 Débris Movement by flow on a complex channelised slope. 

800 

Rock Flow 

(Sackung, 

Sagging) 

801 
Rotational ROCK FLOW (sagging, Sackung) affecting a single side of a 

mountain 

800 

Rock Flow 

(Sackung, 

Sagging) 

802 
Compound (listric) ROCK FLOW (sagging, Sackung) affecting a single 

side of a mountain 

800 

Rock Flow 

(Sackung, 

Sagging) 

803 
Compound (bi-planar) ROCK FLOW (sagging, Sackung) affecting a 

single side of a mountain 800 

Rock Flow 

(Sackung, 

Sagging) 

804 
Rotational ROCK FLOW (sagging, Sackung) affecting more than one side 

of a mountain 

800 

Rock Flow 

(Sackung, 

Sagging) 
805 

Compound (listric) ROCK FLOW (sagging, Sackung) affecting more than 

one side of a mountain 

800 

Rock Flow 

(Sackung, 

Sagging) 

806 
Compound (bi-planar) ROCK FLOW (sagging, Sackung) affecting more 

than one side of a mountain 

800 

Rock Flow 

(Sackung, 

Sagging) 

807 
ROCK FLOW (sagging, Sackung) movement on a stepped discontinuity 

that may involve toppling. 

900 

Other Types 

of Movement 

901 Rock Avalanche 900 

Other Types 

of Movement 

902 Creep 

900 

Other Types 

of Movement 903 Cambering 

1000 

Semi-

Continuous 

Rock Slope 

Détérioration 

1001 Grain Ravelling 

1000 

Semi-

Continuous 

Rock Slope 

Détérioration 

1002 Stone Ravelling 1000 

Semi-

Continuous 

Rock Slope 

Détérioration 

1003 Block Ravelling 

1000 

Semi-

Continuous 

Rock Slope 

Détérioration 

1004 Flaking 

1000 

Semi-

Continuous 

Rock Slope 

Détérioration 
1005 Wash Erosion 

1000 

Semi-

Continuous 

Rock Slope 

Détérioration 1006 Solution or Karstification 

1000 

Semi-

Continuous 

Rock Slope 

Détérioration 

1007 Flexural Toppling 

1100 

Sporadic 

Détérioration 

1101 Grain Fall 

1100 

Sporadic 

Détérioration 

1102 Stone Fall 
1100 

Sporadic 

Détérioration 

1103 Block Fall 
1100 

Sporadic 

Détérioration 
1104 Contour Scaling 

1100 

Sporadic 

Détérioration 
1105 Slab Fall 

1100 

Sporadic 

Détérioration 

1106 Slab Topple 

6 



Appendix C 

Table C.4: Landslide Activity définitions and codes used in the Landslide Inventory 

State of Landslide Activity - WP/WLI (1993) 

Code Title Définition 

1 Active a landslide that is currently moving 

2 Re-activated 
a landslide that is active again after being inactive for a period of 

time 

3 Suspended 
a landslide that has moved within the last annual cycle of seasons, 

but is not moving at présent 

4 Dormant 
a landslide that has not moved for more than one annuai cycle of 

seasons, but where the causes of movement apparently remain 

5 
> 

Abandoned 
a landslide that has not moved for more than one annual cycle of 

seasons because the causes of movement are no longer présent 

6 
o 
es 

_C Stabilised 
a landslide where remédiai measures prevent further movements 

from occurring 

7 Relict 
a landslide which has clearly developed under geomorphological 

and climatic conditions différent from those experienced at présent 

Inactive = a landslide that has not moved for more than one annual cycle of seasons. 

Style of Landslide Activity - WPAVLI (1993) 

Code Title Définition 

1 Complex 
A landslide exhibiting at least 2 types of movements, in which the 

types are in séquence 

2 Composite 
A landslide exhibiting at least 2 différent types of movement, ail of 

occur in différent areas of the displaced mass 

3 Multiple 

A landslide exhibiting repeated development of the same type of 

movement along the same rupture surface and involving the same 

displaced material 

4 Successive 

a landslide exhibiting movement which is identical to earlier 

movements, but in contrast to a multiple movement does not share 

displaced material or a rupture surface with it 

5 Single 
A landslide exhibiting a single movement of displaced material 

often as an unbroken block 
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Distribution of Landslide Activity - WP/WLI (1993) 

Code Title Définition 

1 Retrogressing 
The rupture surface is extending in the direction opposite to the 

movement of the displaced material 

2 Advancing 
The rupture surface is extending in the direction of movement of 

the displaced material 

3 Widening The rupture surface is extending at one or both latéral margins 

4 Confined 
Those landslides which have a scarp but no rupture surface visible 

in the foot of the displaced material 

5 Enlarging The rupture surface is enlarging in 2 or more directions 

6 Diminishing A landslide where the displaced material is decreasing in volume 

7 Moving 
A landslide where the displaced material continues to move but 

whose rupture surface shows no visible changes 
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Table C.5: Two schemes for the Estimated Ages of Landslide Activity based on 

geomorphological mapping. 

Code Descnption 

1 Unknown 

2 

Ongoing since before the Rio Aguas/Rambla Feos River Capture Therefore 

between the Gochar erosión surface and the Present (i.e., during the incisión of the 

drainage network) 

3 
Before the Rio Aguas/Rambla Feos River Capture. Therefore between the Gochar 

erosión surface/Terrace A and the Terrace C 

4 
Ongoing since the Rio Aguas/Rambla Feos River Capture up to Present. Therefore 

between Terrace C and the Present river level 

5 Since the Rio Aguas/Rambla Feos River Capture but before terrace E 

6 Since Terrace D 

7 Modem landslide activity 

A Unknown 

B Before river capture 

C After river capture 

D Recent 
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Appendix C 

Tabie C.6: Landslide Causes based on WP/WLI (1994). 

1 plastic weak material 11 tectonic uplift 

2 sensitive material 12 volcanic uplift 

3 coUapsible material 13 glacial rebound 

4 weathered material 14 fluvial érosion of the slope toe 

5 sheared material 15 wave érosion of the slope toe 

6 jointed or fissured material 
Û 

16 glacial érosion of the slope toe 

o 
7 adversely orientated mass o 17 érosion of the lateral margins 

a u n 
discontinuities (including bedding, i 

u schistosity, cleavage) w 
"Ho o 

•& 
o 

"3 
Ü 

8 adversely orientated mass "ô 
JS 

18 subterranean érosion (solution. •& 
o 

"3 
Ü 

discontinuities (including faults. 
a . 
u o piping) 

unconformities, flexural shears. 

a . 
u o 

sedimentary contacts) 

9 contrast in permeability and its 

effects on ground water 

19 déposition loading the slope crest 

10 contrasts in stiffness (stiff, dense 

material over plastic) 

20 végétation removal (by érosion, 

forest fire, drought) 

21 intense, short period, rainfall 31 excavation of the slope or at its toe 

22 rapid melt of deep snow 32 loading of the slope or at its crest 

23 prolonged high precipitation 33 drawdown (of réservoirs) 

24 rapid drawdown following floods, 

high tides or breaching of naturai 

dams 

34 irrigation 

25 earthquake 35 defective maintenance of drainage 
e 
o S 

system 

26 volcanic eruption u a 36 water leakage from services (water 

co 

e 
es 
S 

supplies sewers, storm-water drains) 
>̂  .fi 

UH 
27 breaching óf crater lakes 

M 

3 

K 
37 végétation cover removal 

(deforestation) 

28 thawing of permafrost 38 mining and quarrying (open pits or 

underground galleries) 

29 freeze and thaw weathering 39 création of dumps of very loose 

waste 

30 shrink and swell weathering of 

expansive soils 

40 artificial vibration (including traffic, 

pile driving, heavy machinery) 
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Appendix C 

Table C.7: Slope Aspect 

Code Aspect Code Aspect Code Aspect Code Aspect 

1 N 3 E 5 S 7 W 

2 N E 4 SE 6 SW 8 N W 

9 = more than one slope aspect direction 

Table C.8: Slope Profile 

Code Slope Profile Code Slope Profile 

1 Complex 6 Cl i f f (escarpment) 

2 Convex 7 Cut slope 

3 Straight 8 Simple embankment 

4 Concave 9 Benched embankment 

5 Benched 10 

Table C.9: Slope Angle 

Code Angle Code Angle Code Angle 

1 0 ° - 15° 3 31° -45° 5 61° -75° 

2 16° -30° 4 46° - 60° 6 76° - 90° 
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Appendix C 

Table C.IO: The Land System, Land Facet and Land Elément classification scheme 

and the landslide inventory codes. 

Code Land System Code Land System 
1 Gypsum Plateau & Karst área 2 Mountain slopes in basement material Gypsum Plateau & Karst área 

incised by canyons and river channels 
3 Mountain slopes in basement 4 Hill areas incised by canyons and 

material with guUies gullies 
5 Hill áreas with river valley side 6 Badlands 

slopes 
7 Level Terrain 
Code Land Facet Code Land Facet 
1 Plateau área 2 Hill / Mountain area 
3 Incised river channel / canyon 4 Incised river channel / canyon without 

bounded by river terraces any river terraces 
5 Open River valley bounded by river 6 Open River valley bounded by slopes 

terraces formed by the dissection of the 
drainage system 

7 Terraces 8 Level terrain (Interfluve area) 
9 Badlands 10 Gully System 
11 Barranco (narrow, incised drainage 

channel) 
Code Land Element Code Land Element 
1 Plateau área 2 crest or ridge area 
3 Scarp-slope escarpment / cliff face / 4 dip-slope escarpment / cliff face / 

canyon wall canyon wall 
5 Scarp-slope tfansportational mid- 6 dip-slope transportational mid-slope 

slope 
7 Slope perpendicular to dip direction 8 valley side slope 
9 Canyon side wall 10 gully side wall 
11 Scarp-slope gully side/wall 12 dip-slope gully side / wall 
13 Gully floor 14 Colluvial footslope / talus 
15 active river channel or canyon 16 abandoned river channel or canyon 
17 inside of an active meander 18 outside of an active meander 
19 Scarp slope on the inside of an 20 Scarp slope on the outside of an active 

active meander meander 
21 Dip-slope on the inside of an active 22 Dip-slope on the outside of an active 

meander meander 
23 inside of an abandoned meander 24 outside of an abandoned meander 
25 Scarp slope on the inside of an 26 Scarp slope on the outside of an 

abandoned meander abandoned meander 
27 Dip-slope on the inside of an 28 Dip-slope on the outside of an 

abandoned meander abandoned meander 
29 Active river terrace surface 30 Active river terrace slope 
31 Abandoned river terrace surface 32 Abandoned river terrace slope 
33 man-made slope/road cutting 34 Artificial (agricultura!) terrace 
35 Mountain side slope 
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Appendix C 

Table C . l l : The Formation name and lithology classification scheme and the 

landsUde inventory codes. This is based on the geology of the study area as 

described in Chapter 2. 

Code Formation Name Code Formation Name 

1 Quatemary Deposits 6 Turre Fm 

2 Gochar Fm 6a Santiago Mb 

3 Cuevas Fm 6b Cantera Mb 

4 Cariatiz Fm 6c AbadMb 

4a Zorreras Mb 6d Azagador Mb 

4b Moras Mb 7 Chozas Fm 

5 Caños Fm 8 Umbria Fm / Mofar Fm 

5a Sorbas Mb 9 Higher Betic Units 

5b Yesares Mb 10 Nevado-Filabride Complex 

11 Nevado-Lubrin Unh 

Code Lithology Code Lithology 

1 Conglomérate 10 schist 

2 Gypsum 11 gneiss 

3 Clay 12 granite/granodiorite 

4 Shale 13 gabbro/dolerite 

5 Calcareous mudstone 14 basalt and other basic lava 

6 Siltstone/mudstone 15 ultra-basic rocks 

7 Sandstone 16 volcanic tuff and pyroclastic deposit 

8 Limestone 17 breccia 

9 Slate 18 
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Appendix C 

Table C.12: The Vegetation cover and type, and drainage conditions of the slope in 

which the landslide has occurred and the landslide inventory codes. 

Code Vegetation Cover Code Vegetation Cover 

1 No Vegetation 3 Moderate ly covered 

2 Sparsely covered 4 Densely covered 

Code Vegetation Type Code Vegetation Type 

1 Temporarily Barren (i.e., fire) 6 Olive grove 

2 Permanently harren 7 Deciduous woodland or forest 

3 Pasture 8 Coniferous woodland or forest 

4 Scrub (Bushes) 9 Combination 

5 Vineyard 10 Other (specify) 

Code Drainage Conditions Code Drainage Conditions 

1 Spring Line II 4 Artiflcial drainage 

2 Standing water 5 Combination of artificial and 

natural drainage 

3 Natural drainage 6 Close proximity to natural 

spring line 

Mitigation and/or Remediation 

None = 0 

Surface drainage = 1 

Gabions = 3 

Loading at landslide toe = 5 

Removal of material = 7 

Underground drainage = 2 

Rock bolts/anchors = 4 

Loading at landslide crown = 6 

Netting = 8 
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