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Abstract 

Uncertainty Contributions to Species Specific Isotope Dilation Analysis 

Robert Cloagh 

Mercury speciabon in solid sample matrices has been investigated using high 
performance liquid chromatography (HPLC) coupled with mu]ticoilector sector field (MC-
SF) and quadrupole (Q) inductively coupled plasma mass spectrometry (ICP-MS) for 
species specific isotope dilution mass spectrometry (IDMS). ^TTg enriched 
methylmercurychloride has been synthesised and recovered in the solid fomi for use as a 
spike material. The stability of methylmercury during the IDMS procedure was 
investigated using *^Hg and ' ^ C labelled methylmercuiy isotopomers and ' H Nuclear 
Magnetic Resonance spectroscopy. IntermoIecuJar exchange of the methylmercury halide 
counter ion was observed, the halide counter ion order of preference was L>Br>Ci . No 
evidence was found for the decomposition, or formation, of methylmercury during 
equilibration with soil (NIST2710 SRM) or dogfish muscle (DORM-2 CRM), or during 
chromatographic separation. 

The extent of equilibration between the spike and the particulate bound 
mercury compounds was studied by temporal monitoring of the ^^*^g:'^Hg isotope 
amount ratio and determining the amount of Hg species in the liquid phase. For N1ST2710, 
complete equilibration was only achieved when concentrated HNO3 in combination with a 
microwave digestion was employed For E)ORM-2, complete equilibration was achieved 
when using 1:1 HjO.CHsOH v\v and 0.01 % 2-mercaptoethanol as the solvent, even though 
only 47% of the analyte was extracted into the liquid phase. 

The mass fraction of methylmercurychloride has been determined in E)ORM-2 and 
BCR464 lobster hepatopancreas CRM by two different procedures, single IDMS and 
approximate matching double IDMS. Mercury cold vapour generation of the HPLC 
column eluent allowed isotope amount ratios measurements by MC-SF-ICP-MS. For each 
CRM the mass fraction of methylmercury determined by the two IDMS methods was not 
statistically different, within the limits of uncertainty, from the certified values. An 
uncertainty budget for both IDMS procedures has been formulated to allow the 
performance of each method to be compared 

For single IDMS the major uncertainty contribution was derived from the 
within replicate uncertainty, u„.ithin The combined standard uncertainty of each replicate 
analysis was dominated by two components, the uncertainty associated with the natural 
isotonic abundance ^°*^g: ^ H g isotope amount ratio and the uncertainty associated v/ith 
the ^ H g enriched methylmercurychloride spike mass fraction. The between blend 
standard uncertainty, Ubctuem, was the major contribirtor to the expanded uncertainty for 
approximate matching double IDMS. The combined standard uncertainty for each 
individual replicate was dominated by the contribution from the standard uncertainty 
associated with the measured ^°*^Hg:'̂ ^Hg isotope amount ratios in the spiked sample and 
the mass bias calibration blend. 
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Chapter 1 Introduction 

1. Introduction 

1.1. Speciation Overview 

Speciation is now considered an established and mature field of anaJytical 

chemistry' and, depending on the method employed, has been defined variously aŝ : 

• the chemical form of the analyte that is ftinctionaJly important (e.g. ligands on an 

organometallic species or oxidation state). 

• the exact structural and chemical form of the analyte (e.g. NMR derived structure). 

• the nature of the chemical species as determined from an operational point of view, 

dependent on the method of sample preparation or analysis used (e.g. metals 

extractabie by acetic acid or other solvent). 

Fn order to encompass a single wider definition of speciation the defimtion can be framed 

in terms of the information which is required by the analyst, or to ask the question "What 

do r want to know about the analyte?". The answer poses several further questions: 

• how much analyte is present in total? • how much is available? 

• what is its chemical form/structure? • how is it distributed? 

• how stable is it? • how sure are we about all of the 

above? 

When considered in these terms, the definition of speciation includes not 

only the accurate determination of the concentration of individual chemical species but 

also their behaviour in biological and biogeochemical systems. The International Union of 

Pure and Applied Chemistry (lUPAC) have clarified speciation aŝ  

"....the specific form of a chemical element defined according to its molecular, 
complex, electronic or nuclear structure" 



leading to the identification and quantification of the different chemical and physical forms 

of an element existing in a sample*. Hence, speciation analysis can be considered to be the 

measurement of one or more individual chemical species in a sample. The chemical form 

of an element will determine its toxicity, stability and transport^, so this measurement is a 

very important factor in the wider defim'tion of speciation. 

The determination of specific chemical entities is long established, especially 

for non-metallic species, including NO3', NO2", NH4* and NH3, with the characterisation of 

metals having a shorter history^. Likewise the functionality of biologically important 

enzymes and co-factors often depends on the speciation of individually important trace 

metals. Various pollution and poisoning incidents have also highlighted the need for the 

determination of individual chemical species. 

The residents of Minamata Bay in Japan suffered acute and chronic 

methylmercury poisoning, with brziin damage to new-bom infants, as the result of a release 

of inorganic mercury into the bay and subsequent in siiu biomethylation to methylmercury 

which, due to its lipophillic naturê *̂ , bioaccumulated in fish, which formed the major part 

of the human diet A spill of tetraalkyi lead in the Mediterranean raised awareness of the 

importance of organolead compounds .̂ A population crash, combined with changes in 

shell shape and meat content, decimated the oyster farming industry o f Arcachon Bay in 

France and was traced to the use of tributyltin (TBT) as an anti-fouling agent on marine 

vesselŝ . Subsequently, a correlation was found between the levels of imposex observed in 

marine gastropods in South West England and the introduction of TBT to this region. The 

commercial value of the marine gastropods was also degraded due to shell shape distortion 

and thickem'ng, v^ich resulted in a lower meat content In contrast, inorganic tin is a 

relatively innocuous compound 

More recently, one of the driving forces for performing speciation studies has 

been the introduction of legislative requirements, regulating the permissible levels of both 
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total elemental concentrations and, in some cases, the concentration of specific species e.g. 

tributyltin in UK water quality legislation^, and methylmercury in fish for human 

consumption^. Speciation methods are now applied to a wide range of analytes, primarily 

for the determination of inorganic species and compounds of elements toxic^ to (AJ, Sb, 

As, Cd, Cr, Pb, Hg, Pt, Sn and the actinide series) and essential for life*° (V, Cr, Fe, Mn, 

Mo, Co, Ni, Cu, Zn, B, Si, Se, I , F, S, P), and include: 

• studies of biogeochemical cycles of chemical compounds 

• determination of toxicity and ecotoxicity of selected elements and compounds 

• quality control of food products and associated packaging 

• control of medicines and pharmaceuticed products 

• technological process control 

• research on the environmental impact of technological installations 

• occupational exposure studies 

• clinical analysis 

• metabolism, biotransformations and excretion 

1.2. Speciation in Practice 

There are a number of practical difficulties associated with speciation studies, 

mainly associated with the requirement to preserve the speciation of the analyte in any 

given sample throughout the analytical procedure. The main stages in the analytical 

procedure are: 

• sampling and storage; 

• sample preparation; 

• analysis; 

• quality assurance and traceability of results. 
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1.2.1. Sampling and Storage 

Sample collection, storage and preparation for analysis are ^ tors which can 

have a considerable impact on the accuracy and precision of the final results. The stability 

of the analyte must be considered with regard to sampling and storage (what are 

appropriate containers?), losses of volatile species (e.g. Se), extractability from the matrix, 

(e.g. sediments), without changing the composition and/or structure of the original analyte 

components, solubility and stability in various aqueous and non-aqueous solvents, light 

sensitivity which may cause changes in molecular structure over time, pH sensitivity (will 

the analyte be effected by acidic or basic solutions?), temperature, and degradation over 

time. 

The choice of sample container can be crucial to preserving sample integrity 

and should be carefiilly considered It should: 

• not contain any leachable compounds of tiie analyte. 

• be impermeable to the analyte. 

• reduce or prevent photochemical reactions or oxidation\reduction of the anaiyte. 

Factors which determine the speciation of an analyte in the environment also 

need to be considered during speciation studies. For example, redox conditions govern the 

oxidation state of Fe and Mn specieŝ . Fe(ir) and Mn(II)are both soluble in anoxic natural 

waters, but in oxygenated waters are present as the insoluble Fe(nT) and Mn(IV) forms. 

Furthermore, the pH of an aqueous sample may also have a controlling effect on acid-base 

equilibria and redox potential which may rule out the use of acidification to preserve 

sample integrity. The ionic strength of the solute, and one or more of the major ions 

contributing to ionic strength, may also affect the speciation of the desired analyte .̂ 



1.2^. Sample Preparation 

Once samples have been collected and suitably preserved the problem of 

extracting the analyte, while maintaining the integrity of the species, arises. For liquid 

samples, this should be relatively straightforward providing no changes occur during 

filtration or centrifugation and the sample can be analysed directly or after dilution. The 

choice of instrument for analyte detection may necessitate a preconcentration step, which 

can in itself give rise to experimental errors due to species transformation or loss of 

analyte^*. 

For solid samples, an extraction step with a suitable solvent is usually required 

For biological samples, toluene or methanol is regularly used, often in conjunction with 

ultrasonication to increase the efficiency and speed of the extraction. A soxhlet extraction 

may also be utilised although this is a longer process and may involve the loss of volatile 

analytes or speciation information due to the elevated temperatures involved'^. 

Soil or sediment samples present further difficulties; drying the sample, albeit 

at low temperatures in air may still result in the loss of and/or speciation changes to the 

analyte. Sieving the dried sample into separate fractions may also give inaccurate results as 

some elements are associated with a particular size fraction and the use of a 'conserved' 

element such as aluminium as an internal standard may therefore be needed to correct for 

these errors .̂ The analysis of anoxic sediments and soils presents further problems as care 

must be taken during drying and storage to ensure anoxic conditions remain. 

After a representative solid sample has been obtained various extraction 

protocols can be utiHsed In order to determine the 'bioavailable' fraction a mild extractant 

or complexing agent such as ethylenediaminetetraacetic acid (EDTA)'^ can be used. One 

of the many sequential extraction protocols based on the method of Tessier** may be 

employed to determine metals associated with the various soil/sediment fractions. 

Sequential extractions, however, can be unreliable due to readsorption effects. Bermond et 
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al.^^ reported that sequential extraction protocols cannot reliably estimate trace metal 

speciation in soils, and the same may be true for other related solid material such as 

sediments and suspended particulate material (SPM). 

Two fiirther problems arise from sequential extraction protocols. First, their 

muJti-step nature increases the risk of experimental errors, and second, the quantity of 

material required For example, up to Ig can be difficult to obtain for some types of sample 

matrix, including suspended particulate material (SPM) as SPM concentrations for 

productive surface waters'̂  are characteristically between 20 and 100 mg 1"'. 

1.23. Analysis 

There are a wide variety of separation and detection techniques available for 

use in speciation analysis, with the main requirements being"*: 

• sensitivity; 

• selectivity; 

• qualitative analysis; 

• quantitative analysis; 

A summary of the most commonly used techniques is presented in Table 1-1. 

In particular, the advent of hyphenated investigation techniques which couple powerful 

separation methods with sensitive detectors e.g, high performance liquid chromatography 

inductively coupled plasma mass spectrometry (HPLC-ICP-MS) and gas chromatography 

mass spectrometry (GC-MS) have allowed great advances in speciation studies in recent 

years. 



Table 1-1 Analytical techniques for speciation studies (adapted from Hill^ and Welz*^). 

Technique Comments Example Applications 

Gas chromatography GC has been used with various detectors 
which tend to be non-specific so peaks 
from interfering matrix constituents may 
give rise to confusion in peak 
identification. 

Separations of metalloporphyrins. 
Determination of organometallic 
compounds of Sn, As, Pb and Hg 

High Performance 
Liquid 
Chromatography 

The most popular detectors (UV-Vis) are 
rarely sensitive enough for speciation 
studies. 

Aluminium in water samples. 
Cr and V with spectrophotometric 
detectors. Determination of 
organomercury compounds in 
wastewater and sediments. 

Polarography/anodic/ 
cathodic stripping 
voltammetry 

Used to differentiate between oxidation 
states, for kinetic experiments to determine 
stability constants of complexed metals. 
Speciation in the presence of humic/folvic 
acids. 
Ship board monitoring applications. 

Speciation of a wide variety of 
minor constituents of natural 
waters. 
Determination of fluorides in the 
presence ofaluminium. 
Stability constants for complexes of 
Al, Cu, Fe, Mg, Mn, Pb, Zn in 
seawater. 

Nuclear Magnetic 
Resonance 

NMR can be used for a wide range of 
elements although the sensitivity is 
relatively poor ( c.a. 1 mg analyte 
required). 

Aluminium complexes with 
nucleosides. 
Food and beverage characterisation. 
Site specific fsotope fractionation 
Compound purity. 

Gas chromatography-
atomic spectrometry 

High Performance 
Liquid 
Chromatography-
atomic spectrometry 

Flow Injeaion-
atomic spectrometry 

Capillary zone 
elecirophoresis-
atomic spectrometry 

Hydride generation-
atomic spectrometry 

Gas chromatography 
MS MS 

HPLC Electrospray 
mass spearometry 

Heated transfer line usually required. 
Analytes need to be volatile or derivatised. 
Analytes may condense on cool spots 
causing sensitivity loss. 

Ease of coupling to spectrometry. 
High organic contait of some solvents 
may restrict the use of plasma based 
ionisation. 

Simple coupling, FI has been used with 
num^ous detection systems. 
Similar problems to HPLC-AS 

Hard to couple as the flow rates are 
generally incompatible. 

Simple coupling. Suitable only for species 
forming volatile derivatives during 
reduction. 

Allows the resolution of close molecular 
weight compounds by two dimensional 
mass spectrometry. 

Simple coupling. Detection of molecular 
and fragment ions 

Determination of organometallic 
compounds in waters, biota, flue 
gases and petroleum. 
Determination of metalloporphyrins 
in crude oils. 

Determination of organotin 
compounds in water, molluscs and 
sedimems. 
Speciarion of Sb, Se, and Hg. 
Determination of arsenic species. 

Determination of inorganic Se and 
Cr species in waters. 

Speciation of organolead 
compounds in natural waters. 

High sensitivity determination of 
As, Se, Sn, Bi, Te, Sb, Pb, and Hg 
species. 

Currently being developed for the 
identification of previously 
unresolvable compounds in oils. 

Structural elucidation and accurrate 
mass measuremems of organic and 
organo-meaallic species. 



1.2.4. Quality Assurance and Traceability 

Having determined the amount and nature of a particular analyte in a sample 

the end user also requires information regarding the accuracy and precision of the results 

before any subsequent decisions are taken. Sulphur, for example, is present in fossil fiiels 

and the maximum permitted mass fiaction for automotive fuels sold in Europe is regulated 

by the European Union. The 1993 limits for sulphur, of 500 ^g g"' and 2000 (ig g'' for 

petrol and diesel respectively, are to be reduced to 50 jig g \ for both fuels, by 2005'^. 

Suppliers of these ftiels therefore have to be sure that the sulphur mass fiaction is 

accurately determined, with a high degree of confidence, to ensure that sulphur removal 

costs are minimised and that regulatory limits are not breached. Quality assurance can be 

achieved by the inclusion of an appropriate reference material (RM) for the target analyte 

in the analytical procedure. With both the fiiel suppliers and regulatory authorities 

conducting sulphur determinations in fiiels it is also essential that the analytical results are 

traceable to the same measurement scale or reference point with a stated degree of 

confidence. 

Traceability is formally defined by the International Organisation for Standardisation 

(ISO)'^ as 

" The property of the result of a measurement or the value of a 
standard whereby it can be related to stated references, usually national or 
international standards, through an unbroken chain of comparisons, all 
having stated uncertainties." 

An example of the concept of traceability is the calibration of an analytical 

balance by reference masses, which are in turn calibrated, ultimately against national 

standard masses, the calibration of which can be traced to the primary reference kilogram. 

Thus, an unbroken chain of comparison is established between the laboratory measurement 

and a common reference point, ensuring the use of the same unit of measurement 
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Measurement consistency is therefore established and the intercomparison of 

analytical results, both from different laboratories and within the same laboratory*^ 

becomes possible. Having established a traceable chain of measurements, defined by E>e 

Bievre^^ as " a chain of successive comparisons (i.e. measurements) of one value to 

another value which ends in the value of the unit we have chosen to express the result of 

our measurement", to primary SI standards it is important to know how 'strong' the links 

in the traceability chain are. This is given by the uncertainty of each measurement̂ ,̂ which 

has been defined by Thompson '̂ as "the interval around the result of a measurement that 

contains the true value with high probability". Traceability and measurement uncertainty 

are thus intrinsically linked As traceability relies on the comparison of the measurement 

result with the value of the reference material the uncertainty of the traceable measurement 

result has two main components, the uncertainty of the measurement result and the 

uncertainty of the reference value to which it has been compared* .̂ 

The establishment of the traceabil ity of the result of the complete measurement 

procedure in analytical chemistry can be achieved by a combination of the following 
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steps 

• the use of traceable standards to calibrate measuring equipment 

• by using, or by comparison to the results of, a primary method 

• the use of a pure substance reference material (RM) 

• the use of an appropriate matrix matched certified reference material (CRM) 

• by using an accepted, closely defined procedure 



A primary method of measurement is currently defined as follows*^ 

"A primary method of measurement is a method having the higjiest 
metrologjcal qualities, whose operation is completely described and 
understood in terms of SI units and whose results are accepted without 
reference to a standard of the same quantity." 

Hence, it follows that conventional external calibration, in which the analyte 

amount content is extrapolated from an instrumental response curve generated by the 

measurement of a series of calibration standards, does not meet the requirements of a 

primary method Traceability for conventional external calibration can be achieved by 

direct comparison of measurement results between the primary method and the calibration 

method'̂ . 

A pure standard RM can also be used to demonstrate traceability provided the 

response difference of the measurement system for the RM and the sample is 

demonstrated. However, the correction for instrumental response difference and its 

associated uncertziinty may be unacceptably large, which is a particular problem in the case 

of the standard additions method or for spiking experiments'^. A matrix matched CRM, 

used to compare the measurement results of the unknown with the certified results, can 

reduce the uncertainty compared with the use of a pure substance RM*^. A ftirther 

advantage of a matrix matched CRM is that, provided the certified value is traceable to SI 

units, then these measurements provide traceability to SI units for the unknown amount of 

the target analyte in the sample'̂ . 

Isotope dilution mass spectrometry (IDMS) is regarded, by the Comite 

Consultatif Pour la Quantite de Matriere (CCQM), as having the potential to be a primary 

method of measurement*'. IDMS is also regarded as a definitive analytical technique 

because the precision and accuracy obtainable are unsurpassed by alternative analytical 

methodŝ .̂ IDMS relies on the measurement of isotope amount ratios, not interpolation 

from an external calibration curve, with the analyte amount content subsequently 
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calculated from a measurement equation which is completely described and traceable 

directiy to SI units. Furthermore, a complete uncertainty budget, which meets the highest 

metrological standardŝ ,̂ can be readily calculated for chemical determinations made by 

IDMS. 

13. Principles of Isotope Dilation Mass Spectrometry 

IDMS involves the modification of the natural isotopic composition of the 

target analyte, contained within a sample, by the addition of an accurately known amount 

of an isotopically enriched analogue, or spike, of the analyte, which acts as an internal 

standard. Subsequently, the resultant modified isotope amount ratio is measured by a 

suitable mass spectrometric technique. IDMS has a number of advantages over 

conventional external calibration techniques, provided that the following pre-requisites are 

met̂ :̂ 

• more than one, interference-free, stable isotope must be available for isotope ratio 

measurement; 

• an isotopicaJly enriched analogue, or spike, of the analyte must be available; 

• complete equilibration between the spike and sample must be achieved; 

• the mass fraction and isotopic abundances of the natural and enriched elements must be 

well characterised; 

• the spike and sample must be chemically stable. 

1.3.1. Derivation of IDMS Equations 

In IDMS two isotopes are chosen, the analyte isotope. A, and the enriched, or 

spike, isotope, B. In a sample of natural isotopic composition the most abundant isotope is 

usually chosen as the analyte isotope. A, whilst the spike isotope, B, is generally of very 

low abundance and is usually selected to be close in mass to the analyte isotope^ .̂ 

Conversely, for the isotopically modified spike solution, the analyte isotope. A, is usually 
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heavily depleted and the spike isotope, B , h i ^ y enriched The isotope amount ratio, RB, 

of die analyte to spike isotopes. A : B , in the sample/spike blend is given by Equation l - l . 

Throughout this work the subscript x is used to denote material of natural isotopic 

abundance and the subscript y used to denote isotopically modified material. 

Ay + A , 

By ny + B . -W, 

Equation 1-1 

where 

Ay = the isotope amount fraction of the analyte isotope. A , in the isotopically modified 

spike solution 

Ax = the isotope amount fraction of the analyte isotope. A, in the natural isotopic 

composition sample 

By = the isotope amount fraction of the spike isotope, B , in the isotopically modified spike 

solution 

Bx = the isotope amount fiaction of the spike isotope, B , in the natural isotopic 

composition sample 

/ly = the number of moles of the analyte in the isotopically modified spike solution 

= the number of moles of the analyte in the natural isotopic composition sample 

Equation 1-1 can be solved for n^, the amount in moles of analyte originally present in the 

unspiked sample, (Equation 1-2). 

( A ^ - R B - B ^ ) 
« x = ^ ( R B - B . - A J 

Equation 1-2 
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It is more usual to quote the analytical result as a mass fraction, thus Equation 1-3 is used 

for the EDMS calculation 

C „ = 

Equation 1-3 

where, in addition 

Cx = the mass fraction of the analyte in the sample 

Cy = the mass fraction of the analyte in the spike solution 

Wy = mass of spike 

Wx = mass of sample 

Mx = molar mass of element in the sample 

My = molar mass of element in the spike 

The isotope amount fraction, / can be calculated according to Equation 1-4. 

The ion signals for all isotopes of the analyte are measured using a suitable mass 

spectrometric technique. One isotope is chosen as a reference isotope, r, and the individual 

isotope amount ratios for all the isotopic ion signals including the reference:reference 

isotope amount ratio, >^'ch by definition is unity, calculated. For an element having / 

isotopes the atom fraction of isotope <y, is given by 

Equation 1-4 
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Where 

/iq == ion signal of isotope q 

r = ion signal of the reference isotope 

By using the terminology in Equation 1-1, where the subscript y denotes the enriched spike 

materia] and the subscript x denotes the natural isotopic abundance analyte in the sample, 

the isotope amount fractions can be expressed in the form of Equation 1-5. I f the spike 

isotope amount fraction By is used as the reference isotope then the isotope amount fraction 

of the analyte isotope in the spike, Aspike can be expressed as 

A , 

A -spike „ 

Equation 1-5 

Which can be simplified to 

Equation 1-6 

Where 

Ry = the isotope amount ratio of the analyte isotope to the spike isotope in the enriched 

spike material 

^ = the sum of the ratios of all isotopes to the reference isotope, which in this case is 

the spike isotope. 
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Similarly, the isotope amount fraction of the spike isotope, Bspike, in the enriched spike can 

be expressed as 

Equation 1-7 

and, with the isotope amount fraction of the spike isotope in the natural isotopic abundance 

sample taken as the reference isotope, B^ , the isotope amount fraction of the analyte 

isotope, Annturai, 11 the natural isotopic sample can be expressed as 

A . 

A, - ^ - ^ naturaJ 

Equation 1-8 

Where 

Rx = the isotope amount ratio of the analyte isotope to the spike isotope in the natural 

isotopic abundance sample 

^ = the sum of the ratios of the atom fraction of all isotopes to the atom fraction of the 

reference isotope, which in this case is the spike isotope in the natural isotopic abundance 

sample. 
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The isotope amount fraction of the spike isotope, Bmrniniu in the naturaJ isotopic abundance 

sample can be expressed as 

B - _ 1 
natural 

Equation 1-9 

Thus, the isotope amount ratio, RB , of the reference to spike isotopes, A : B , in the 

sample/spike blend, B , can also be written as 

R 
B ~ 1 1 

X 

ix 

Equation 1-10 

Which can be solved for n^, the number of moles of analyte present in the unspiked sample 

giving Equation 1-11. 

R . . - R . 2^ y 
«x = ^ 

Equation 1-11 

In this form of the EDMS equation the amount of substance can be directly replaced by an 

amount content (mol kg ') or mass fraction e.g. ng g o r any other appropriate unit 

provided the use of units remains constant throughout the equarionŝ '̂ . Thus Equation 1-11 

can be expressed in terms of a mass fraction 
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C =c ^ ^ L Z ^ A ^ 
" m / R B - R / l R i j , 

Equation 1-12 

where, in addition 

Cx = is the mass fraction of the analyte in the unspiked natural isotopic abundance sample 

nix = the mass of natural isotopic abundance sample 

Cy = the mass fraction of the isotopically modified spike material 

my = the mass of the isotopically modified spike material added to the natural isotopic 

abundance sample 

The advantage of Equation 1-12 is that the isotope amount fractions, in the sample and the 

spike, are not correlated", as they are in Equation 1-3. The latter case increases the 

complexity of the calculation of the measurement uncertainty of the analytical result but is 

not the case however for the ratio form (Equation 1-12) of the IDMS equation, thus 

simplifying measurement uncertainty calculations". 

1.3.2. IDMS Advantages and Disadvantages 

Incomplete analyte extraction can lead to low recovery when an external 

calibration standard is used to determine the analyte concentration. £n IDMS, however, 

problems associated with incomplete extraction are negated, provided equilibration 

between the sample and spike isotopomers is compiete'̂ '̂̂ '*. I f the spike is not fully 

equilibrated with the sample, a different extraction efficiency for the spike and sample will 

result, yielding bias in the measurement. For liquid samples, equilibration by gentle 

agitation should be sufficient. For solid samples complete equilibration may prove 

problematic because the analyte can be both adsorbed onto the surface and contained 

17 



within the lattice structure of the sample matrix, hence a destructive digestion may be 

required. 

IDMS also has the ability to overcome a wide variety of chemical and physical 

interferences because the eflFect of these interferences would be expected to have the same 

effect on both of the measured isotopes, and these effects are thus cancelled in the 

measured isotope amount ratio^ .̂ However, isobaric interferences, which often apply to 

only one isotope in the measured isotope amount ratio, e.g. *̂̂ Hg on °̂'*Pb, are not 

accounted for by IDMS. A further advantage of IDMS is that, assuming complete 

equilibration, losses of analyte are compensated for by losses of the spike in the same 

proportion because the measurand is an isotope amount ratio, rather than absolute analyte 

amountŝ **. This ensures an accurate determination of the target analyte, but should not be 

taken as an excuse for using poor experimental procedure. 

EDMS does have a number of drawbacks, which are mainly cost related. 

Isotopically enriched spike materials, which may not be available for the analyte of 

interest, must be purchased and, for high accuracy and precision, expensive mass 

spectrometric instrumentation is required, operated by an experienced and well trained 

analyst'̂ '*. 

1.3.3. Accuracy and Precision in IDMS 

In order to achieve the best accuracy and precision a number of factors must be 

taken into account, Sargent et a/.̂ '*, in a recently published guide, summarised the critical 

stages as follows: 

• sample preparation 

• selection of the most appropriate isotopic internal standard 

• characterisation of the isotopically enriched analogue 
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• addition of the isotopicaJiy enriched analogue 

• blank correction 

• instrumental analysis 

• calculation of the result 

• estimation of uncertainty 

with the important sources of error given as: 

• less than complete equilibration between the sample and spike will lead to significant 

systematic errors; 

• isobaric and polyatomic ion interferences; 

• isotopic discrimination e.g. isotopic fractionation, detector dead-time and mass bias 

during instrumental analysis. 

1.3.4. Total Elemental Applications of lDMS 

Isotope dilution as a quantitative technique for elemental analysis was first 

applied by Reynolds^^ in 1950 to determine the amounts of decay products, after neutron 

irradiation, of Cu^, Br^, Br*̂  and The advent of readily available user friendly 

instrumentation subsequently allowed elemental IDMS to be rapidly developed '̂*. During 

the I970's isotope dilution was introduced for the quantification of orgam'c analytes by gas 

chromatographic mass spectrometry (GC-MS) '̂*, with spike compounds labelled with 

either ^H, '̂ C or recent examples of v^ich include the determination of ethanol̂ ^ in 

two CRM's and cholesterol in human serum^ .̂ 

IDMS is ideally suited to analyte measurements in human serum as the 

complex sample matrix presents difficulties when external cah'bration is applied, due to 

factors such as different analyte ionisation efficiencies, unless the standards are closely 

matrix matched to the samples. There is a fiindamental difference between organic and 

inorganic EDMŜ **. In organic IDMS the sample contains negligible amounts of the 
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isotopically labelled analogue, with the spike containing negligible amounts of the natural 

abundance analyte. For inorganic IDMS however the spike isotope is often present in 

significant amounts in the sample and the reference isotope present, albeit in depleted 

amounts in the spike material̂ '*. 

Yoshinga and Morita^^ undertook a study to compare the accuracy and 

precision of three analytical methods, IDMS, standard additions and external calibration, 

with [CP-MS as the detector, for the determination of total Hg in National Institute for 

Environmental Studies (NIES) CRM No. 13 human hair. IDMS, standard additions and 

external calibration with Pt as an internal standard gave accurate results in good agreement 

with the certified value and its associated uncertainty. However, external calibration with 

Tl as an internal standard gave results significantiy lower than the certified value, which 

the authors attributed to the difference in the first ionisation potentials of Tl and Hg, 6.1 

and 10.4 eV respectively, thus highlighting the need for the careful selection of an 

appropriate internal standard. The precision of the IDMS and external calibration analyses, 

w = 5, was comparable, 1% RSD and better than the CRM uncertainty of 4.5% RSD. The 

precision for the standard additions analysis however was poor at 10% RSD, by its nature 

this method is also more time consuming, requiring 3 times the number of samples. 

The same authors also demonstrated the advantage of IDMS to overcome 

matrix effects during ICP-MS determinations of Hg in various sediment CRM's^^. 

Isobutylmethylketone (IBMK), which is fairiy soluble in aqueous solutions, was employed 

as a back extractant in the analytical procedure. The IBMK was therefore present, in 

varying proportions, in the samples presented for analysis, thus causing varying degrees of 

signal suppression, of up to 70%, of the Hg ion counts, giving rise to variable recoveries 

when either external calibration or standard additions was employed. In comparison, when 

using IDMS, the accuracy of the determinations of Hg in sediments was not affected by 

this varying signal suppression because the signals of the measured Hg isotopes were 
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affected to the same extent, and thus cancelled when the measured isotope amount ratio 

was calculated. 

For some elements spectral interferences from polyatomic ions, e.g. ^Ar'^O on 

^ e and '*^Ar'^0'H on ^̂ Fe, prevent accurate isotope amount ratio measurements by 

quadrupole ICP-MS. Sariego Muiliz e(. ai.^ applied EDMS to the determination of Fe, Cu 

and Zn in human serum using a multielement spike solution enriched in ^̂ Fe, ^̂ Cu and 

^^Zn. In order to overcome the spectral interferences, arising from polyatomic species 

formed from elements present in the sample matrix and ICP gases, a double focussing ICP-

MS was employed, operating at a resolution of 3000. The multi-element IDMS procedure 

was validated by the analysis of Fe, Cu and Zn in MIST SRM 1598, Inorganic Constituents 

in Bovine Serum, with good agreement between the found and certified values. 

In order to determine the correct isotope amount ratio by ICP-MS it is 

necessary to compensate for mass bias in the instrumentation. Quadrupole and sector field 

mass spectrometers and their associated ion optics do not transmit ions of different masses 

equally. This effect, known as mass bias, arises primarily from space-charge effects in the 

plasma interface and during ion transfer̂ * which results in lighter ions being more readily 

deflected from the ion beam whilst heavier ions are preferentially transported^ .̂ Thus, i f an 

elemental solution composed of two isotopes with an exactiy 1:1 molar ratio is analysed 

using ICP-MS, a 1:] isotope amount ratio will not necessarily be observed The magm'tude 

of the mass bias depends on isotope mass and the type of mass spectrometer used, but 

generally tends to be greatest at low mass and decreases with increasing masŝ .̂ Even very 

small mass-biases can have deleterious effects on the accuracy of isotope amount ratio 

determinations, so a correction must always be made, usually in one of two ways, 

bracketing or interpolation. 

A reference material, certified for the isotope amount ratio of the isotopic pair 

under study, i f available, can be used to determine the instrumental mass bias factor. The 
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isotope amount ratio of the CRM is measured immediately prior and post the sample 

analysis /.e. the sample is bracketed by the CRM. Subsequently the deviation of the 

measured isotope amount ratio fi-om the certified value can be used to calculate the 

instrumental mass bias factor for the isotope pair under study. This approach is limited by 

the paucity of isotope amount ratio CRMs available. 

It is also possible to use an alternative element, with an isotope pair of similar 

mass to the isotope under study, and which has a certified isotope amount ratio. The mass 

bias correction can be performed by interpolation using either a linear, power, or 

logarithmic equation. For example, the ^^^•}^^'Y\ ratio can be used to correct the mass bias 

of ^^^Pb?^Pb. The advantage of this approach is that the mass bias correction can be 

measured at the same time as the isotope amount ratio of interest by spiking the sample 

with the isotopically certified RM. 

A third approach is to prepare a calibration blend of a natural standard and die 

spike solution, which is matched to the spiked sample in both isotope amount ratio and ion 

signals to within 5% for both parameterŝ '*. The calibration blend is then used as a 

bracketing solution to measure the instrumental mass bias factor. The advantage of this 

approach, known as 'approximate signal matching IDMS', is that a 'double' IDMS 

equation can be formulated from which the mass fiaction of the spike solution, which is 

often relatively poorly characterised and hence significantly contributes to the 

measurement uncertainty^ ,̂ is removed and the effects of detector linearity and detector 

dead time mim'mised. 

Catterick ei al.^^ determined the concentration of Fe, Mg and Cd in three 

CRM's (soft water, hard water and VDA plastic) by EDMS using the approximate 

matching procedure for the isotope amount ratio and the ion signal strength. The analytical 

results were in very close agreement with the certified values, with uncertainty estimates 

(coverage factor, k, of 2) at the 95% confidence level of at least 50% lower than the stated 
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uncertainty for the reference materials (e.g. Cd in VDA plastic: determined value 40.6 ± 

0.6, certified value; 40.9 ± 1.2 |ig/g). Turner e( al?^ compared electrothermal vaporisation 

(ETV) ICP-MS using external calibration with ETV-ID-ICP-MS, using the approximate 

matching approach, for the determination of Se in water and serum CRM's. The 

uncertainties associated with determinations by the ETV-ID-ICP-MS method were a fector 

of 4 less then those associated with external calibration ETV-ICP-MS. Accuracy was 

sigm'ficantly greater by ETV-ID-ICP-MS, with the results in very close agreement with the 

certified values. 

1.4. IDMS for Speciation Studies 

Species specific IDMS, coupled with an elemental selective detector, has been 

undertaken for both inorganic species (e.g. iodine/iodate '̂* by LC-ICP-MS and CrIII/CrVI 

by HPLC-ICP-MS^^) and organometallic species (e.g. mono and dimethylmercury by GC-

ICP-MS IDMS has also been used to measure species that have been previously 

undetectable in environmental samples. Dimethylthallium (MeiTI"^ had previously only 

been measured in laboratory experiments with detection limits at the level of ng/mi, a 

factor of 1000 higher than levels expected in the environment* .̂ Open ocean seawater 

samples, collected from depths of between 10 and 4000 m from the Southern Atlantic, 

were spiked v '̂th the enriched dimethylthallium". The 203y|.2os^ isotope amount 

ratio was measured by positive thermal ionisation mass spectrometry, after 

preconcentration by an anion exchange resin, separation of inorganic TI species by methyl 

isobutyl ketone, and sample clean-up stages to improve ionisation efficiency. The Me2Tl^ 

detection limit was 0.4 pg/ml for a 500ml sample and 1.4 pg/ml for total TI for a 50 ml 

sample. There was a variation of between 3 and 8% for parallel sample determinations. It 

was found that betwreen 3-48% of the total thallium concentration was Me2Tl^ and, as this 

compound is not known as an anthropogenic substance, that production of Me2Tl* is the 

consequence of bioactivity. 
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The challenge for analysts employing QDMS for speciation studio is to achieve the 

same accuracy and precision inherent in the method when applied to total elemental 

determinations, provided the aforementioned requirements have been met (Section 1.3.3). 

In addition to these requirements for total elemental IDMS, fiirther prerequisites must be 

carefully addressed in order to obtain accurate and precise results^*: 

• isotopically enriched analogues, or isotopomers, of the target analyte(s) must be 

synthesised or purchased; 

• relatively mild extraction conditions are often necessary in order to maintain the 

integrity of the species, which may result in incomplete anaJyte extraction. This is not a 

problem, however, provided that complete equilibration of the spike and sample 

occurs; 

• it is essential that, during analyte extraction, equilibration, separation, and 

measurement of the isotope amount ratio, the sample and spike isotopomers are 

chemically inert Any analyte formation or decomposition, ligand exchange between 

the sample and spike isotopomers and/or spike decomposition will give biased results; 

• the chromatographic system, and its coupling to the mass spectrometer, must be 

optimised for robustness, analyte stability, instrumental stability and sensitivity; 

• data extraction from the resulting chromatograms. 

1.4.1. Spike Isotopomer Synthesis 

IDMS necessitates the purchase of isotopically enriched elements for production of 

the spike solution. For species-specific IDMS it is also necessary to incorporate the 

isotopically enriched element into the target species, which will involve synthesis and 

purification of the compound. Isotopically enriched elements are much more expensive 

than the natural isotopic abundance equivalent, ranging from dollars per mg to hundreds of 

dollars per mg, often with a minimum order value, which can further increase the cost of 

analysis. This increased expense means that the synthesis and purification procedures must 

be as efficient as possible. It is often not possible for large-scale synthesis and purification 

24 



procedures to be scaled down to the sub gram level without large losses of the expensive, 

isotopically enriched starting material. This requires novel synthetic procedures to be 

developed to accomplish this analytical requirement Sutton et al^^ have devised new 

synthetic routes for the small scale production of a suite of environmentally relevant 

organotin compounds {e.g. dibutyltin dichloride) with product yields of up to 90%. 

Schedlbauer and Heumann^^ synthesised Me2Tl^ from enriched elemental thallium 

using a two step synthesis which gave a yield of 25%. The stability of the MezTI"*" was 

evaluated and under optimum storage conditions (pH 2, 0 **C) the compound was found to 

be stable for 30 months. 

1.4.2. Analyte Stability 

It is well documented in the literature'*̂ '*'''*̂ '̂ '̂'*̂ '*̂ '**'̂ '̂'̂  that methylmercury is 

produced from inorganic Hg, and can decompose during sample preparation and GC 

separation, for determinations by MS and ICP-MS. Hintelmann et al^"^ observed 

metbylmercury formation during analysis by both GC and HPLC-ICP-MS. Butyl group 

transfer has also been observed during microwave extraction of butyltin species from two 

sediment CRM's, followed by separation and detection of butyl Tin species by species 

specific lEX-GC-ICP-MS^. Hill et al^^ observed species trzmsformations during the 

determination of organotin compounds by HPLC-ID-ICP-MS. These studies have shown 

that the target anaJyte is unstable during the measurement process. Nuclear magnetic 

resonance (NMR) spectroscopy is a non-destructive techm'que which allows samples to be 

taken at any stage of the measurement procedure and a definitive spectrum of NMR 

sensitive compounds present realised. Organometallic molecules contain at least two 

nuclei, ' H , and '^C, which are sensitive to and easily observable by NMR. Organometallic 

compounds enriched in '̂ C will give, due to coupling with ' H atoms, a spectral signal 

which reflects the enrichment factor compared to their natural isotopic abundance 
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isotopomers. These spectral differences, can be exploited to investigate the stability of the 

organometallic species during species specific isotope dilution mass spectrometry. 

1.43. Quality Control and Assurance 

The final consideration for speciation studies is that of quality control and quality 

assurancê * which can be achieved by the use of a certified reference material (CRM). 

However, they are of limited availability for speciation studies, making the selection of an 

appropriate CRM, which is matrix matched to the sample, difficult at times. A second 

method is to use spiking and recovery experiments to validate results of an analysis. 

Extraction efficiency can be evaluated by an acid digestion of a sub-sample followed by 

total elemental determination^. An appropriate extraction method is then chosen for use on 

a second sub sample followed by species specific analysis and the concentration of each 

species summed I f this summed concentration and tfie total concentration determined 

earlier are in close agreement the extraction efficiency can be considered to be 100%. I f the 

extraction efficiency is less than 100%, but reproducible with an RSD of = 5%, the method 

may be considered to be under control and valid I f the RSD is much higher e.g. extraction 

of 80% ± 20% then the method is not under control and will not produce accurate results .̂ 

1.4.4. Separation and Detection Techniqaes 

1.4.4.1. Choice of Separation Technique 

For speciation analysis a separation stage is usually required to isolate the target 

analyte fi-om other species of the same or different elements, present either in gaseous or 

liquid samples, or co-extracted with the target analyte fi-om the solid phase. Gas 

chromatography (GC) is ideally suited for volatile species, with a requirement to derivatise 

non-volatile inorganic and organometallic compounds into volatile compound^ which 

inherently changes the speciation of the analyte during the measurement process. For 

example, of the three oxidation states of mercury, Hg**, Hg* and Hg'^ only Hg° is volatile, 
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therefore non-volatile mercury species must be derivatised, usually by ethylation with 

sodiumtetraethylborate (NaBEt^), before separation by GC. Thus, the risk of undesirable 

reactions involving the sample and/or, in the case of species specific IDMS, the spike 

isotopomers is increased The derivatisation process can also sigm'ficantiy add to the time 

required for analysis. A fiirther problem using GC can be the coupling of a heated transfer 

line, which must be maintained at the column outlet temperature of up to 400 ^C, to the 

ICP-MS sample inlet system. Any 'cool spots' will lead to analyte condensation with a 

subsequent loss of accuracy. In addition, a metallic transfer line may act like an aerial and 

couple with the radio frequency used to maintain the plasma, which may cause plasma 

instability and possibly instrument failure^. It has also been reported that 

methylmercurychloride is corrosive to packed and capillary GC columns^ .̂ 

In comparison with separation by GC, high performance liquid chromatography 

(HPLC) does not require derivatisation of the analyte, v«th a plethora of chromatographic 

conditions available in the literature for the separation of mercury species, prior to 

detection by a wide range of spectroscopic detectors^ .̂ HPLC mobile phases however, 

often comprise a high percentage of organic modifier e:g. acetonitrile or methanol, which 

can cause a number of problems, such as plasma instability and carbon deposition in the 

interface region and on the tuning lenses, i f ICP-MS is coupled as the detection system. 

Nevertheless, these problems can be overcome by optimisation of the HPLC ICP-MS 

interface. 

1.4.4.2 Mass Spectrometric Detection 

Traditionally thermal iomsation mass spectrometry (TIMS) has been used for 

isotope ratio determinations^, however, unlike inductively coupled plasma mass 

spectrometry (ICP-MS), it is not suited for elements such as mercury, which have a h i ^ 

first ionisation potential^ .̂ ICP-MS also offers a greater sample throughput, is tolerant of 

complex sample matrices, utihses smaller sample sizes, can be easily coupled with various 
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separation techniques and does not suffer from time dependent mass bias effects^ .̂ The 

development of multicollector sector-field (MC-SF) ICP-MS instruments, enabling the 

simultaneous measurement of each isotopic signal^, has greatiy improved the accuracy 

and precision of isotope amount ratio determinations, c.a. 0.005% relative standard 

deviation of the mean '̂, compared to quadrupole ICP-MS instruments and is comparable 

to that obtainable with TIMS instrumentation^. 

1.5. Measurement Uncertainty 

Quevauviller^* and Quevauviller et al.^'^'^ describe two parameters that should 

be considered when reviewing analytical results: (a) accuracy ("absence of systematic 

errors") and (b) uncertainty (coefficient of variation or confidence interval) produced by 

random errors and random variations in the procedure. As the 'true' value of the amount of 

analyte in a sample cannot be known*^ the accuracy of an analytical procedure can only be 

assessed by inference from the results of separate analyses for the same analyte, using the 

same method, on certified reference materials. Whilst it is desirable to use matrix matched 

CRM's, in practice it is possible to use several reference materials of different matrix types 

to give a greater degree of certainty for the result of the unknown samples. Quevauviller^^ 

refers to "statistical control" as a viable means of ensuring that a high quality of laboratory 

results is maintained. This can be achieved by applying simple statistical analyses, such as 

t-tests and analysis of variance to ensure that methods are sufficiently reproducible. 

Typically, the standard deviation of a number of replicate analyses is calculated to give the 

range within which the stated result is likely to lie. 

A more holistic approach to the assessment of the accuracy and precision in 

chemicjil measurements is the use of an uncertainty budget. The estimation of the 

uncertainty associated with an analytical measurement allowrs improved intercomparison of 

analytical results '̂, and is a requirement for ISO accredited methodŝ .̂ Tlie uncertainty of a 

28 



measurement is very different to the error; where error is the result of a measurement 

minus the 'true' value of the measurand^^ (which we cannot know*^). 

The ISO Guide to the Expression of Uncertainty in Measurement̂ ^ has 

established general rules for evaluating and expressing uncertainty for a wide range of 

measurements and has subsequently been interpreted for analytical chemistry by 

Eurachem'̂ . The Eurachem guide sets out procedures for the evaluation of uncertainty in 

analytical chemistry. The main stages in the process are identified as: 

• specification - write down a clear statement of what is being measured, including 

the fijll expression used to calculate the result; 

• identify uncertainty sources - produce a list of all the sources of uncertainty 

associated with the method; 

• quantify uncertainty components - measure or estimate the magnitude of the 

uncertainty associated with each potential source of uncertainty identified; 

• calculate total uncertainty - combine the individual uncertainty components, 

following the appropriate rules, to give the combined standard uncertainty for 

the method; 

• apply the appropriate coverage factor to give the expanded uncertainty. 

With the major sources of uncertainty identified as 19 

• Sampling - where sampling forms part of the procedure, effects such as random 

variations between different samples and any bias in the sampling procedure 

need to be considered. 
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• Instrument bias - e.g., caJibration o f anaJyticaJ balances. 

• Reagent purity - e.g., the purity of reagents used to prepare calibration standards 

will contribute to the uncertainty in the concentration o f the standards. 

• Measurement conditions - e.g., volumetric glassware may be used at 

temperatures different from that at which it was calibrated 

• Sample effects - The recovery of an analyte from the sample matrix, or an 

instrument response, may be affected by other components in the matrix. When 

a spike is used to estimate recovery, the recovery o f the analyte from the sample 

may differ from the recovery of the spike, introducing an additional source o f 

uncertainty. 

• Computational effects - e.g., using an inappropriate calibration model. 

• Random effects - random effects contribute to the uncertainty associated with all 

stages of a procedure and should be included in the list as a matter of course. 

When all the uncertainties for a particular method have been identified, and 

combined using error propagation laws, an estimate o f the overall measurement uncertainty 

for the method is produced, allowing the analyst to determine i f the method is producing 

results fit for their purpose. A ftuther advantage o f the use o f a frill uncertainty budget is 

that it allows the analyst to identify the contributions o f each area o f the measurement 

procedure to the overall uncertainty, and hence attempt to minimise these uncertainties". 

For example, i f the blank correction in Ni analysis by ICP-MS contributes 83% of the 

overall uncertainty then major gains in reducing the measurement uncertainty can be 

obtained by improving the blank measurement 
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1.5.1 Evalaating Uncertainty 

The estimation of measurement uncertainties in [CP-MS analysis using a 

"cause-and-effect" approach^^' is a useful and easily applied method for calculating an 

uncertainty budget. Figure 1-1 presents a f low chart of the steps necessary to construct an 

uncertainty budget. The cause and effect diagram, sometimes known as an Ishikawa or 

"fishbone" diagram, is constructed to enable easy identification of uncertainty sources 

associated with the method. A cause and effect diagram for the determination of Ni by 

external calibration ICP-MS is presented in Figure 1-2. The purpose is to generate an 

estimate of overall uncertainty without a detailed quantification of all the components. The 

diagram typically contains a branched hierarchical structure reducing to a single outcome, 

in this case an analytical result. Elements within the structure may contain uncertainties 

from sources such as analyte recovery (including extractability), measuring devices (e.g. 

tolerances for: balances, pipettes, volumetrics, dilution errors), repeatability, calibration, 

temperature and internal standards errors, which are then combined using error propagation 

laws. 
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Figure 1-1 Uncertainty budget procedure flow chart 
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Figure 1-2 Cause and effect uncertainty diagram for the determination of Ni by ICP-MS. 
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A second approach is to use the equation used to calculate the analytical result 

as the model for the uncertainty budget. For example, when a standard solution is prepared, 

by dissolving a solid material in an appropriate solute, tfie final mass fraction, C, is 

calculated from 

Equation 1-13 

Where Mi is the mass of solid, P is the purity of the solid and M2 the diluent mass. Each of 

these terms will have an associated uncertainty e.g. the purity o f the starting material may 

be quoted as 99.98 ± 0.02% whilst the mass o f the solid and diluent have been measured 

to 0.0109 ± 0.0005 g and 15.2558 ± O.OOOlg respectively. The uncertainty on the final 

mass fraction will therefore have uncertainty contributions arising from each o f the 

components in Equation 1-13. 

The individual uncertainty contributions can be combined using the 

spreadsheet method first described by Kragten^, which assumes that the standard 

uncertainties of each measurement parameter are relatively small compared to that 

measurement parameter, and gives acceptable accuracy for practical purposes. The 

spreadsheet, which provides a simple method for the estimation and combination o f 

uncertainties, estimates the uncertainty each parameter contributes to the overall 

uncertainty for the analytical result Subsequentiy the individual uncertainty estimates are 

combined using error propagation laws to give a combined standard uncertainty for the 

measurand in question. 

1.5^. Uncertainties for Isotope Amoant Ratio Analysis 

Sanz-Medel and co-workers^^'^ investigated sources of uncertainty for lead isotope 

amount ratio measurements by quadrupole, double focusing and multicollector ICP-MS 
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instruments. Thallium was used as an internal isotope amount ratio standard and the 

isotope amount ratio accuracy was evaluated using NTST 981 Common Lead Isotope 

standard reference material and an enriched ^^Pb spike. Mass bias correction was 

performed using an exponential model for all three instruments and equations for the 

evaluation o f the total combined uncertainty arising &om the correction for dead time and 

mass bias were developed. They observed^^ that, in correcting for mass bias, the 

uncertainty in the Tl ratio contributed the main source of uncertainty for the multicoilector 

instrument, but for the quadrupole and double focusing single collector instruments, the 

measured isotope amount ratio was the main source o f uncertainty. 

1-6. Aims and Objectives 

This study has been instigated as part of the Department of Trade and Industry 

National Measurement System Valid Analytical Measurement ( V A M ) programme. The 

aim o f this work was to investigate species specific isotope dilution mass spectrometry 

with regard to its accuracy and precision, thus attempting to answer the questions posed 

about speciation analysis at the beginning o f this chapter. 

Mercury was chosen as a suitable element for this investigation because: 

• it is an important element from an environmental and toxicologjcal point of view, 

• it forms inorganic and organometallic species for which there exist established methods 

of analysis; 

• it forms both volatile and non-volatile inorganic and organometallic species; 

• the redox behaviour of inorganic species is well characterised; 

• the ' ^ g nucleus, with a spin value of / = '/z, is suitable for NMR spectroscopy; 

• mercury has seven stable naturally occurring isotopes so is suitable for IDMS. 

34 



The objectives of this programme of study were to therefore develop techm'ques fo r 

• the synthesis and characterisation o f isotopically enriched mercury species; 

• momtoring the stability o f the sample and spike isotopomers throughout the IDMS 

procedure; 

• monitoring the extent of equilibration between the sample and spike isotopomers; 

• optimisation o f the coupling o f the separation method to the ICP-MS system with 

regard to analyte stability, separation, plasma stability, instrumental sensitivity and the 

accuracy and precision o f the measured isotope amount ratios; 

• the formulation of uncertainty budget for the determination of mercury species by 

HPLC-ICP-MS and subsequent minimisation o f the expanded uncertainty for the 

analytical result. 

Primarily, the investigation wil l establish the extent to which mercury species 

interact with suspended particulates in equilibration solutions. These interactions o f species 

with particulates may prevent accurate determination o f the "true" concentrations o f 

mercury species v«thin a particular sample. Spike equilibration and species extractability 

will be assessed and isotope amount ratio determinations performed using Multi Collector 

and quadrupole ICP-MS. The effects o f the different ICP-MS instrument configurations, 

and hence the accuracy and precision of the isotope amount ratio determinations, on the 

measurement uncertainty for IDMS wil l thus be calculated. Speciation studies will be 

conducted using HPLC-ICP-MS. Nuclear Magnetic Resonance spectroscopy wil l be 

employed to characterise the various species forms in order to verify their purity, stabih'ty 

and any frmctional group exchange effects. 
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Chapter 2 Isotopicaily Enriched Metbylmercury Synthesis and Nuclear 

Magnetic Resonance Spectroscopy Studies 

2. Introduction 

Validation of an analytical method establishes, by systematic laboratory 

studies, that the method is fit-for-purpose, i.e. its {performance characteristics are capable o f 

producing results in line with the needs o f the zmalytical problem^^. One o f the 

requirements of speciation analysis is that the chemical form of the analyte o f interest is 

not altered during the measurement procedure. Species specific IDMS, which necessitates 

the synthesis of an isotopically enriched analogue o f the target analyte, has the power, 

provided equilibration between the sample and spike is complete, to overcome incomplete 

analyte extraction and losses of the sample/spike blend. However, it is essential that the 

target analyte and spike material, in this case methylmercury, which is known to be 

unstable during conventional analytical procedures™, are stable during the IDMS 

procedure otherwise biased results would be obtained This chapter addresses the synthesis 

of isotopically enriched methylmercury, its characterisation using ' H nuclear magnetic 

resonance ( N M R ) spectroscopy, and N M R spectroscopy studies o f the stability o f 

methylmercury during IDMS equilibration and EIPLC separation. 

2.1. Nuclear Magnetic Resonance Spectroscopy 

Nuclear magnetic Resonance (NMR) spectroscopy is an isotope specific 

technique based on the principle that many nuclei have a magnetic moment, or a non-zero 

spin quantum number. Of these, isotopes having a ground state nuclear spin, I , o f 1̂  are the 

easiest to study. In a magnetic field, such nuclei have a lower energy when aligned with the 

field than when opposed to the field The energy difference between the aligned and 

opposed states corresponds to radio frequencies in the electromagnetic spectrum, hence the 

nuclei are able to absorb and re-emit radio waves. The precise resonance frequency o f the 
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individual nucleus is dependent on the effective magnetic field at that nucleus, and is 

affected by electron shielding, which is in turn dependent on the chemical environment 

This fi-equency dependence, measured as the chemical shift (5, ppm), makes NMR 

spectroscopy a powerful analytical tool. Since the value o f the chemical shift is 

proportional to the magnetic field strength the resonance firequency is ratioed to the 

spectrometer fiequency to normalise i t As such, chemical shifts measured using different 

spectrometers can be compared directly. 

NMR spectroscopy is primarily employed for the structural elucidation of 

organic molecules. The sample (typically 1 mg) is placed in a constant, homogenous 

magnetic field which induces individual nuclei within the molecule to align with or against 

the direction of the field. A pulse of radio fi-equency (RF) energies is applied, thereby 

effecting a change in the orientation of the NMR sensitive isotopes within the magnetic 

field Following this 'resonance' state the energised isotopes 'relax' back to their original 

orientation. It is these energy changes that are measured to give an NMR spectrum, which 

can then be enhanced by repeated cycles o f RF puJsing/relaxation to improve sensitivity. 

Data is acquired as a resonance fi-equency versus time spectrum, which is subsequently 

processed to a r^onance fi^uency versus amplitude spectrum by means o f a Fourier 

transform algorithm. 

The most common isotope studied by NMR spectroscopy is the proton (*H), as 

it the most receptive and abundant, followed by *^C. However there are over 20 isotopes in 

the periodic table having I = Vz and are thus relatively straightforward to study. An 

important feature o f NMR spectroscopy is that solvents employed should ideally not 

contain any o f the isotope under study. Thus, deuterated solvents are employed for use in 

'H NMR. The use o f deuterated solvents also allows the magnetic field around the sample 

to be built homogeneously, and, as deuterated solvents typically contain up to 0.1% ' h , 

provide a reference point fi-om the residual protonated solvent 
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A further feature of NMR spectroscopy is that other NMR active isotopes in 

the molecule(s) under study will also induce changes in the spectrum due to magnetic 

interactions, or coupling, between these isotopes and the isotope under study. The relative 

interwities of these signals, or satellites, to the main peaks reflect the isotopic composition 

of the coupling nuclei within the molecule. Sutton et ai.^^ took advantage of this aspect o f 

NMR spectroscopy to characterise a suite of isotopically enriched organotin compounds, 

synthesised for species specific IDMS, and determine previously unreported *̂ C chemical 

shifts and tin-carbon coupling constants. 

In the present study, monomethylmercury, CHsHg*, comprises four NMR 

sensitive nuclei, '^C, ^H, '^^g and ^^*Hg. O f the two NMR sensitive mercury isotopes 

' ^Hg has a nuclear spin quantum number of Vz and is thus readily measured whilst ^^'Hg, 

with a spin quantum number of 2/3 and an electric quadrupole moment, is difficult to study 

by NMR spectroscopy. Therefore, ' ^ H g was chosen as the spike isotope for both the 

species specific IDMS analyses and the stability studies by NMR spectroscopy. Due to the 

coupling of protons to ' ^ ^ g and *̂ C in the monomethylmercury molecule, enrichment in 

either o f these isotopes wi l l produce a spectrum that differs from the natural isotopic 

abundance molecule. NMR spectroscopy of organomercury compounds of natural isotopic 

abundance and analogues enriched in the NMR sensitive isotopes, *̂ C and '^Hg, therefore 

enables ligand rearrangement or formation/decomposition reactions to be observed, and the 

determination of which stage o f the IDMS procedure e.g. equilibration or column 

separation, necessary reaction conditions, etc, to be elucidated. Organomercury compounds 

are highly toxic to human health, therefore, strict handling protocols were followed during 

synthetic procedures, NMR spectroscopy studies and ICP-MS analysis. A copy o f the 

procedure for handling organomercury compounds is appended to this thesis. 
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2.L1. Metbylmercary Synthesis 

Two possible methods were considered for the synthesis o f * ^ g enriched 

methylmercury chloride for use as a spike material during species specific IDMS. The 

requirements for the synthetic method were: simplicity, in order to reduce the risk o f 

contamination from natural isotopic abundance Hg; high yield to minimise losses o f 

isotopically enriched Hg; the recovery of the final product as a solid; safety and rapidity. 

Snell e( a/.̂ ' prepared ' ^ g enriched methylmercurychloride using a two stage reaction 

(Equation 2-1 and Equation 2-2), to give an overall reaction efficiency o f 88%. 

'^HgCl2+2(CH3MgCl)-)^(CH3)2''^Hg + 2MgCl2 

Equation 2-1 

(CH3)2"^HgVHgCi2 ^2CH3'^HgCI 

Equation 2-2 

However, this synthesis has a number of drawbacks. Dimethylmercury is 

extremely toxic, so stringent safety procedures are required during the synthesis. The 

overall reaction time, including extraction and purification, was in excess o f 14 hours and 

the final product was dissolved in a toluene/tetrahydrofiiran solution requiring ftirther time 

for solvent evaporation. 

Rouleau and Block^ synthesised ^^^Hg methylmercurychloride by direct 

nonenzyraatic methylation, using methylcobalamin (C0C63H91N13O14P) as the methyl 

group donor, (Equation 2-3) where methylcobalamin is r e p r i n t e d by C0-CH3. 

Co - CH3 +'"'HgCI + H j O -> {H^OyZom^ + CH3 '^'HgCI 

Equation 2-3 

39 



Methylcobalamin is a Vitamin B12 co-enzyme that can be considered to be a 

cobalt(III) corrinoid complex contaim'ng a co-ordinated carbanion (CH3') which can be 

displaced under suitable reaction conditions by the electrophillic attack of Hg^* ions, 

forming an aquocobalamin complex and the monomethylmercuiy anion^, CHsHg*. The 

synthetic procedure described by Rouleau and Block^ is straightforward, can be completed 

in less than 4 hours, gives reaction efiRciencies of > 90% and is not known to produce 

dimethylmercury. The synthesised methylmercury was extracted from the aqueous phase 

via a benzene/hexane mixture with a back extraction into an aqueous disodium carbonate 

solution. However, this final extraction yields methylmercuryhydroxide as the final 

product. In this study methylmercurychloride was required for the species specific EDMS 

experiments, and a solid product was necessary for dissolution in deuterated solvents for 

the NMR spectroscopy stability studies. Hence the synthetic method of Rouleau and 

Block^^ was therefore modified to extract the *^^Hg enriched methylmercurychloride from 

the benzene/hexane extractant. 

2.2. Experimental 

2.2.1, Metbylmercury Recovery from Benzene/Hexane 

Experiments were conducted to assess the efficiency of, and time required for, 

the evaporation of the benzene/hexane extractant Three solutions of approximately 5 mg 

ml ' methylmercury chloride were prepared in 30 ml o f 50:50 v/v benzene:hexane (May 

and Baker, Dagenham, UK and BDH, Poole, UK respectively) and the solvent evaporated 

by passing a stream of gaseous N2 (Air Products, Walton-on-Thames, UK) over the 

beruene/hexane mixture. The recovered CH3HgCI was then dissolved in CD3OD and *H 

NMR spectra produced to characterise the solid product 
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2.2.2. Synthesis of "^Hg Enriched Metbylmercorychloride 

' ^ g enriched (65.74%) HgO was obtained from AEA Technologies (Harwell, 

UK). Methyl cobalamine was purchased from Sigma Aldrich (Gillingham, UK), benzene 

from May and Baker (Dagenham, UK) , hydrochloric acid (Aristar grade) and hexane from 

BDH (Poole, UK) and N2 (Air Products, Walton-on-Thames, UK). Al l distilled, deionised 

water (DDW) used in the synthesis was obtained from an 18 MQ cm * Elgastat Maxima 

system (Elga Ltd, High Wycombe, UK). A l l glassware used was first soaked for 24 hours 

in 10% Decon 90 (Decon Laboratories, Hove, UK) to remove organic carbon and 

subsequently in 10% HNO3 for 24 hours to protonate cation exchange sites followed by 

washing in DDW. 

Five separate syntheses were performed during this work, with the method as 

follows. The required mass of ' ^Hg enriched HgO was accurately weighed into a clean 

sterilin container, dissolved in 400 j i l o f concentrated HCI, diluted with 10 ml of DDW and 

transferred to a 50 ml stoppered glass conical flask to be used as the reaction vessel. The 

sterilin container was subsequentiy rinsed with two further 3 ml DDW aliquots which were 

then added to the reaction vessel. A mass of metiiylcobalamin, to give at least a 1:1 molar 

ratio of methylcobalamin to the ' ^ g enriched HgO (as Hg), was accurately weighed into 

a separate clean sterilin container and dissolved in 10 ml o f DDW. Following transfer o f 

this solution to the reaction vessel, this container was rinsed with two fiirther 3 ml aliquots 

of DDW which were added to the reaction vessel. The reaction vessel was protected from 

light sources because methylcobalamin is U V sensitive, and agitated by means of a 

magnetic stirrer for 1 hour. 

For the first three syntheses performed, the methylmercurychloride was 

extracted using 50:50 v/v benzene:hexane (10 ml). Following agitation (10 minutes), the 

benzene:hexane layer containing the methylmercurychloride was carefixlly removed by 

pipette to a second 50 ml glass conical flask. This extraction procedure was repeated twice 
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more, resulting in an extractant volume o f 30 ml. Aliquots of the ben2ene:hexane 

extractant were then transferred to a clean, preweighed 7 ml glass vial and the solvent 

evaporated under a stream o f N2, which was carefully regulated to minimise losses o f 

methylmercurychioride by volatilisation. For the final two syntheses, dichloromethane was 

used as the organic extractant in the same manner. The purity and isotopic composition of 

the ' ^ H g enriched methylmercurychloride was assessed by both NMR spectroscopy and 

HPLC-ICP-MS. 

2.23, Synthesis of '^C Enriched Methylmercuryiodide 

*̂ C labelled methylmercuryiodide was synthesised by a Grignard reaction 

using freshly prepared '''CH3MgI by Dr.P.Sutton of De Montford University. Al l reagents 

were supplied by Aldrich (Gillingham, Dorset, UK). I g of dry magnesium turnings was 

stirred magnetically, in a 250ml three necked round bottom flask attached to a reflux 

condenser, and under a nitrogen atmosphere for two hours to create a fresh reactive surface 

on the metal. Subsequently, 5 g of '^C labelled methyliodide, dissolved in dry double 

distilled diethyl ether (50 ml), was added to the Mg in the round bottomed flask. The 

solution was gentiy warmed and stirred until a characteristic steely grey, indicative o f the 

formation of the Grignard reagent, was observed The solution was stirred at room 

temperature for one hour and then heated at reflux for a further 45 minutes. The reaction 

products were allowed to cool and settie prior to the next stage o f the reaction. 

Mercury (11) chloride, 4.75 g, was dissolved in 75 ml o f diethyl ether in a three 

necked round bottomed flask attached to a reflux condenser. The solution was warmed to 

dissolve the HgCb and stirred under a nitrogen atmosphere. The freshly prepared 

'^CH3MgI was added dropwise under nitrogen pressure to the HgCU solution via a double 

ended steel needle connecting the two round bottom flasks, thus ensuring that no uru^eacted 

Mg was added to the HgCl2 solution, A further 25 ml of diethyl ether was added to the 
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Grignard flask as a wash solution and subsequently transferred to the HgCh solution via 

the steel needle. The resulting solution was refluxed for 12 hours to complete die reaction. 

Upon cooling, a crop of pale yellow crystals was precipitated in the bottom of the flask 

which were removed from the reaction mixture by filtration. Several large red crystals o f 

mercury (H) iodide were also produced during the reaction and these were removed from 

the pale yellow crystals and discarded. The pale yellow crystals were recrystallised from 

boiling alcohol to yield 3.94 g of '^C labelled methylmercuryiodide, wnth a melting point 

of l43°C(Lit 143°C). 

2.2.4. Nuclear Magnetic Resonance Studies 

All *H spectra were acquired at 270 MHz using a Jeol EX270 Fourier 

Transform NMR spectrometer. The signal from the residual protio methyl (CD2HOD) 

group, 5 3.3 ppm, in CD3OD was used to reference the ^H spectra, except for experiments 

using a solvent suppression technique when the spectra were referenced to the residual 

hydroxyl signal (CH3OH and HDO) at 5 4.8 ppm. Baseline ^H NMR spectra of 

methylmercurychloride, methylmercurybromide and methylmercuryiodide (all purchased 

from Sigma-Aldrich, Gillingham, UK), ' ^ ^ g enriched methylmercurychloride and '"̂ C 

enriched methylmercury iodide were d l obtained in CD3OD. For experiments to determine 

the halide preference of monomethylmercury, potassium halides, (CI, Br and I) were added 

to the standard solutions at twice the concentration of the mercury species present in the 

sample and the NMR spectra of the resulting solutions acquired. 

The standard mobile phase employed for the separation of mercury species by 

HPLC''*, and as the equilibration solvent^ '̂̂ ^, comprised 50:50 methanol:water v/v and 

0.01% 2-mercaptoethanol. However, this was not suitable for NMR studies due to the 

excessive proton signal from the methanol/water components. For experiments to 

determine the stability of mercury species during chromatographic separation a partially 

deuterated mobile phase comprising 50:50 D 2 0 : C H 3 0 D v/v and 0.01% 2-mercaptoethanol 
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was employed. A mixture o f ''CH3HgI and * ^ g enriched CHjHgCI (100 and 200 ^g g"* 

respectively as Hg) was injected (100 pJ) onto the HPLC column and the eluent collected 

in fiactions of 1.5 minutes duration after UV detection at 204 rmi. After preconcentration 

by gaseous N2 solvent evaporation, the fractions containing the monomethylmercury 

species, (1.5-3 minutes elution time) were analysed by ' H NMR spectroscopy. The partial 

deuteration of the HPLC mobile phase removed most of the signal arising from the H2O in 

the *H NMR spectrum but the baseline was distorted by the very strong signal from the 

methyl group of the CH3OD. To overcome this a solvent suppression technique was 

employed. The methyl group of the CH3OD (5 3.3 ppm) was pre-saturated for each 

transient acquisition, thus greatiy reducing this signal in the spectrum. 

The stability of methylmercury was investigated in the presence of two 

different particulate types. National Institute o f Science and Technology (MIST) 2710 

Montana Soil Certified Reference Material (SRM) was used to represent terrestrial 

material and DORM-2 dog fish muscle (National Research Council Canada (NRCC)) was 

employed as a biological sample. Approximately 0.5 g of the SRM was accurately weighed 

into a clean 7 ml glass vial to which was added 1 ml of ^^^Hg enriched HgO (3.96 mg ml * 

dissolved in I M KI/D2O) and 1ml of '^CHjHgl (6.9 mg ml"', dissolved in CD3OD, 0.02% 

2-mercaptoethanol). The resulting mixture was stirred magnetically at a constant 

temperature, 25** C for 24 hours, followed by filtration (Autovial 0.2^m PTFE membrane 

syringeless filters, Whatman, Maidstone, UK) and subsequent analysis by ' H NMR 

spectroscopy. 

23. Results and Discussion 

23A. Recovery of Methylmercary Chloride firom 50:50 vA BeozeDezHexane 

Methylmercurychloride was required as a solid product for this study. 

Experiments were conducted to assess the recovery efficiency o f methylmercury chloride 
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from a 50:50 v/v benzene:hexane mixture, which was employed as an extraction solvent 

during the synthesis of ' ^ g enriched methylmercurychloride. The results of these 

experiments are summarised in Table 2-1. After the first experiment, the N2 flow rate was 

reduced which resulted in an increased recovery of the dissolved methylmercury chloride. 

The chemical shift (0.91 ppm) and 'H- ' ^Hg coupling constant (211 Hz) confirmed that 

CHjHgCi was present No benzene or hexane signals were present in the spectrum. 

23^. Synthesis Yields 

The yields of methylmercurychloride varied from 44 to 62%, as Hg, of the 

starting material. The data, along with that from other workers using similar synthetic 

methods are presented in Table 2-2. The yields obtained for the five syntheses performed 

are lower than those obtained by Rouleau and Block^^ and Rodriguez Martin-Doimeadios 

ei alT' and comparable to those obtained by Demuth and Heumann^. The ratio o f 

methylcobalamin to the inorganic Hg (Table 2-2) vary with each synthesis and do not 

appear to correlate with the yields obtained The recovery experiments o f methylmercury 

chloride from 50:50 v/v benzene:hexane show that the low yields obtained are unlikely to 

78 

be due to product loss during solvent evaporation. Rodriguez Martin-Doimeadios el aL 

reported that optimal conditions for the same synthetic procedure, using 150 n g o f ^°^Hg, 

as 37°C for 1 hour in the dark at pH 5, buffered with 0.5 M acetic acid/sodium acetate, and 

an inorganic Hg:methyIcobalamin ratio of 2:1. Therefore, further investigations are 

necessary to determine i f these reaction conditions give yields greater than those already 

obtained when applied on a larger scale. 
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Table 2-1 Recoveries of methylmercurychloride after N2 blowdown. 

Initial Mass of 
CHjHgCI (mg) 

Mass ofCHjHgCl 
Recovered (mg) 

Blowdown Time 
(Minutes) 

Recovery 
(%) 

129.6 114.7 185 88.5 
140.8 137.2 255 97.4 
168.5 159.1 260 94.4 

Table 2-2 Methylmercurychloride yields by direct methylation with methylcobalamin. 

Inorganic Hg Mass Me[Co]:Hg Yield 
(mg) (Mole:Mole) (%) 

This Work 1̂* synthesis 10.1 1.01 44 
This Work 2°^ synthesis 20.6 1.82 49 
This Work 3"* synthesis 9.9 5.79 49 
This Work 4* synthesis 8.0 4.88 51 
This Work 5* synthesis 7.9 2.22 62 
Rouleau and Block^^ 1.0 3.72 90 
Rodriguez et al̂ ^ 0.01 9.41 88 
Demuth and Heumann'*̂  1.9 2.02 60 
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233, Characterisation of Methylmercary Isotopomers 

233.1. Nuclear Magnetic Resonance Studies 

A comparison of the chemical shifts and the coupling constants, "J, of 

methylmercury halides (natural isotopic abundance. Table 2-3) confirmed the identity of 

the ''^Hg enriched isotopomer as methylmercury chloride. The different chemical shifts 

exhibited by the individual monomethyimercuryhaJides (Table 2-3) shows the degree of 

electron shielding of the halide counter ion, I>Br>CI, on the protons in the molecules. 

Likewise, the shielding effect on the 'H-*^Hg coupling constant can also be observed 

for each individual methylmercuryhalide. '"'C labelled (>99%) methylmercuryiodide was 

positively characterised by ' H N M R spectroscopy using the same approach. The notation 

used for all ' H N M R spectra is shown in Table 2-4. The individual organomercury 

isotopomers (Table 2-4) have been numerically labelled as follows; natural abundance 

methylmercurychloride (/); ' ^ g enriched methylmercurychloride (//); ' ^ ^ g enriched 

methylmercuryiodide (Hi); natural abundance methylmercuryiodide (rv); and '̂ C labelled 

methylmercuryiodide (v). The '^Hg enrichment in isotopomer //, compared with 

isotopomer /, can be observed via the enhanced intensity of the *H-^*^g satellite signals, 

which arise from spin-spin coupling between the ' H and ' ^ ^ g nuclei, (Figure 2-1 A and 

B). Similarly, a comparison of the ' H N M R spectrum of isotopomer rv with that observed 

for isotopomer v, (Figure 2-2 A and B), demonstrates the extremely high (>99%) 

content of isotopomer v. Due to the almost complete *H-'''C coupling for isotopomer v, 

four 'H-*^Hg satellites now appear in the spectrum, two for each component of the *H-

'̂ C doublets. 
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Table 2-3 ' H N M R spectroscopy chemical shifts eind coupling constants for the 

organomercury compounds under study, all samples were dissolved in deuterated 

methanol, CD3OD. 

Methyl mercury ' H Chemical 'J 
^H-^^Hg Concentration Shift 

'J 
^H-^^Hg 

(mg ml"') (8, PPM) (Hz) (Hz) Inference 
CHjHgCI 3.2 0.91 138 211 
CHaHgBr 4.9 0.97 138 207 
CHjHgl 3.1 1.03 138 195 
' ^ ^ g enriched 3 0.91 138 211 
CHsHgCI 
"CHsHgl 2.4 1.03 138 195 
CHsHgCI + KBr 3 0.97 138 207 CHjHgBr 
CHsHgCI + KI 3 1.03 138 195 CHjHgl 
CHjHgBr + KCl 3 0.97 138 207 CHjHgBr 
CHsHgBr+KI 4 1.03 138 195 CHsHgl 
CHjHgl + KCl 3 1.03 138 195 CHaHgl 
C H 3 H K I + KBr 3 1.03 138 195 CHjHgl 
The superscript"! 
Potassium halides 

denotes the number of bonds along which the coupling occurs, 
were added at twice the methylmercury species concentration. 

Table 2-4 Notation employed for the methylmercury isotopomers and H NMR spectra. 

Compound Isotopomer Number ' H NMR Signal 
Proton ^H-»^^Hg »J 'H-'^C 

CHjHgCI a P 
*^^g enriched CHsHgCI / / a P 
'^Hg enriched CHjHgl / / / a P 
CH3HgI /v e Y 
'^CHjHgl V £ Y 
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1.8 1.6 1.4 1.2 1 0.8 

5 (PPM) 

0.6 0.4 0.2 

1.8 1.6 1.4 1.2 

5 (PPM) 

0.8 0.6 0.4 0.2 

Figure 2-1 NMR spectra of: A, natural isotopic abundance methylmercurychloride; B, 

enriched (66%) methylmercurychloride, for these isotopomers the ' H - ' ^ g satellites 

are denoted 3, The '^Hg enrichment, determined by MC-SF-ICP-MS (Chapter 3 Section 

3.5.3), is reflected in the increase in the relative sizes of the * ^ g signals. The chemical 

shifts and coupling constants are given in Table 2-3. 
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" H - " ^ g 

4" «t> 

1.8 1.6 1.4 1.2 1 0.8 0.6 

5 (PPM) 

0.4 0.2 

Y2'H-'^Hg 

yl *H-'^Hg 

5 (PPM) 

Figure 2-2 ' H N M R spectra of A , natural isotopic abundance methylmercuiyiodide; and 

B, '^C enriched (>99%) methylmercuryiodide, for these isotopomers the 'H- '^C satellites 

are denoted y with the 'H-'^Hg satellites are denoted <ti. The '^C enrichment is reflected in 

the increase in the relative sizes of the satellite signals. The chemical shifts and 

coupling constants are given in Table 2-3. 
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233.2. Mass Spectrometry Characterisation 

The synthesised product and natural isotopic abundance 

methylmercurychloride (Aldrich, Gillingham, UK) v^re analysed by HPLC-ICP-MS to 

determine the °̂**Hg:*^Hg isotope amount ratio and check for inorganic mercury species 

contained in the product A Waters 600E HPLC pump and a VG PQ3 ICP-MS instrument 

were coupled for the analysis. A summary of the chromatographic separation and the mass 

spectrometer operating conditions are shown in Table 2-5. NTST997 Thallium standard 

was added to the mobile phase at 50 ng/g for mass bias correction. The mass spectrometer 

was first tuned to "^n to check sensitivity followed by direct coupling of the HPLC 

column eluent to the nebuliser uptake and subsequently tuned to the Tl mobile phase 

internal standard The chromatograms obtained are shown in Figure 2-3. The measured and 

expected ^ * ^ g : ' ^ g isotope amount ratios are presented in Table 2-6. No inorganic 

mercury was detected in either of the samples and the mass bias corrected measured 

^°*Ylg:'^Hg isotope amount ratios concurred with the expected values. 
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Table 2-5 Operating conditions for HPLC-ICP-MS characterisation. 

HPLC Column 
Mobile Phase 

Flow Rate (ml/min) 
Injection Volume (MJ) 

HPLC Conditions 

HiChrom Kromasil 100 FC 18 Excel, 25 cm x 4.6 mm i.d. 
50:50 v/v Methanol:DDW, 0.01% 2-mercaptoethanol, 
50 ng/gNlST 997 Tl SRM 
0.9 
100 

ICP-MS Operating Conditions 

RF Forward Power (W) 1450 Plasma gas (1 min") 14 
Reflected Power (W) <10 Auxiliary gas (1 min ') 0.75 
Spray Chamber Cyclonic, cooled to 

S op 
Nebuliser gas (I min ') 0.52 

Torch —J \̂  
Fassel Quartz Dwell Time (ms) 10 

Sampler and Skimmer Ni Points per Peak 5 
Cones 

'^g,^«^Hg, Nebuliser Glass Expansion 1 Tons Monitored '^g,^«^Hg, 
ml/min Conikal 203y| 205-̂ 1 

Table 2-6 Measured and expected ^"*Hg:*^^g isotope amount ratios. 

Measured Expected 
^•^gi '^Hg Standard ^'^gi '^ 'Mg Standard 

Isotope Amount Uncertainty Isotope Uncertainty 
Ratio Amount Ratio 

Natural Isotopic 
Abundance CHaHgCI 1.351 0.023 1.369 0.012 
' ^ g Enriched 
CHsHgCl 0.268 0.031 0.2751 2.88 X 10-̂  
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Figure 2-3 Chromatograms obtained for: A, 240 ng injection of natural isotopic abundance 

methylmercurychloride; B, 350 ng injection of '^Hg enriched methylmercurychloride. 
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23.4. Methylmercory HaJides - Halide Exchange 

It is a pre-requisite for speciation studies that the chemical form of the target 

analyte is not altered during the analytical procedure. Therefore, experiments were 

designed to determine the stability of the methylmercury halide counter ion, in the 

presence of different inorganic halides. The *H NMR spectrum, Figure 2-4, observed for a 

solution containing both the natural isotopic abundance methyhnercurychloride and 

methylmercuryiodide isotopomers, / and /v respectively, exhibited a single methyl proton 

signal of 5 0.97 ppm, and 'H- '^Hg coupling constant of 203 Hz. In other words the ' H 

NMR spectrum of a mixture of isotopomers / and iv was an average of the ' H NMR spectra 

obtained for each of the individual isotopomers. From this it was deduced that the halide 

component of these two isotopomers, CI and I respectively, were exchanging with each 

other. Since no signal was observed in either a or a *^Hg NMR spectrum of the same 

solution, it was surmised that the rate of halide exchange was rapid and taking place at a 

rate comparable with the NMR data acquisition timescale. The rate constant, k, for the 

halide exchange was calculated as 72 s"* from Equation 2-4". 

it = 7iAv/V2 

Equation 2-4 

where k is the rate constant and Av is the difference between the chemical shift, measured 

in Hertz, of the two individual organomercury halides. 

The relative stability of the halide counter ion was determined by combining 

each compound with inorganic halides {e.g. KBr, KI), followed by comparison of the 

resulting ' H NMR spectra with those obtained from authentic compounds. Using this 

method, and with each halide in excess, the order of preference for methylmercury was I 

>Br >CI . Table 2-3 summarises the *H NMR spectroscopic data for various 
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methylmercury halides in the presence of inorganic halides. The speciation of 

methylmercury with regard to the halide counter ion, in the liquid phase during 

equilibration, chromatographic separation and subsequent detection by ICP-MS, is 

therefore dependent on the reagents employed 

6 0.97 ppm 

'K-'^Hg 203H2 

1.6 

6/ 

Figure 2-4 ' H N M R spectrum of '^CH^Hgl ( 1 4 mg/ml) and *^^g enriched CH^HgCI (9 

mg/ml) in CD3OD. The signal at 0.97 ppm and the ' H - * ^ g coupling constant of 203 

Hz are intermediate between those of the individual compounds present. 
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23.5. Methylmercary Halides - Methyl Group Exchange 

The possibility of methyl group exchange between CHsHgl molecules. 

Equation 2-5, was studied by mixing together labelled and ' ^ g labelled CHsHgCI 

compounds in the deuterated HPLC mobile phase. The ' ^ g labelled CHsHgCl was 

iodinated by the addition of KJ to the samples, so as both species were in the same 

chemical form, prior to analysis by ' H N M R . This prevented the intermediate spectra that 

arise from each species having a different halide component 

>3CH3HgI + C H 3 ' ^ g I ^ >3cH3»WHgI + CH3HgI 

Equation 2-5 

The distinct ' H NMR spectral patterns of the two isotopically labelled 

methylmercuryiodide isotopomers, /// and v, allowed the relative isotopic abundance of 

' ^ g for each compound to be calculated when both compounds were present in the same 

solution. For example (Figure 2-5), the *^Hg abundance in isotopomer /// was calculated 

by ratioing the peak areas of the two 'H- '^^g satellites (2P) with the total peak area (2(3 + 

a). This gave a '^Hg isotopic abundance for isotopomer Hi of 66%, as expected. 

Similarly, the '^Hg abundance in '^CHsHgl could be calculated from the same *H NMR 

spectrum by ratioing the peak areas for the four 'H- '^^g satellites (2<t)l + 2(j)2), with the 

total peak area (2<j)l + 2<t)2 + yl + y2). As such the ^^^g abundance for isotopomer v was 

calculated as 17%. 
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Figure 2-5 ' H NMR spectrum of ^^CHsHgl (4.8 mg/ml) and '̂ ^Hg enriched CHjHgl (2 

mg/ml) in CD3OD. The 'H- ' ^C doublet, marked yl and y2 arises from the '^CHjHgl; each 

of Yl and y2 has two associated ^H-'̂ ^Hg satellites, ^\ and ^2, The ' ^ ^ g enriched CH3HgI 

molecule gives three signals in the spectrum, the main proton signal, a, and two H 

satellites, marked p. Note A/?= A(t»i=A(|>2. 

l i t 199 Hg 
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I f methyl group exchange, between the methylmercuryiodide isotopomers, /// 

and V, as shown in Equation 2-5, had occurred, the change in the ' ^ g isotopic abundance 

in the respective molecules would alter the NMR spectral pattern obtained For example, i f 

'^CHs'^Hgl had been formed, an increase in the signal from the four *^g-*^C satellites, 

(t)l and (j)2 (Figure 2-5) and a decrease in the *^Hg-'H satellites, y* and (Figure 2-5) 

would have been observed. However, since the calculated ^^^g isotopic abundances, for 

the two leibelled compounds when combined, were the same as measured for the individual 

species, this experiment provided no evidence for CH3 exchange in the deuterated HPLC 

mobile phase. 

In order to verify (or otherwise) that this absence of exchange was also the case 

during chromatographic separation, further solutions were analysed prior to injection onto 

and post elution from the HPLC column. Figure 2-6 shows the ' H NMR spectrum obtained 

for a mixture of ***CH3HgI and CHs'^Hgl both prior to injection onto the HPLC column 

(Figure 2-6A), and for the fraction collected after eluting from the column (Figure 2-6B). 

The chemical shift of the methyl protons for the two compounds contained in the post 

column fraction was 0.75 ppm, compared with 1.03 ppm for the compounds prior to HPLC 

separation. Similarly the 'H-*^*^g coupling constant for each compound, 175 Hz, also 

changed from the pre-separation value of 195 Hz. This change was considered to be either 

due to the formation of a new monomethylmercury compound during HPLC separation, or 

to the effect of the change in solvent composition during evaporation by gaseous N2, which 

preferentially removes the methanolic component of the HPLC mobile phase resulting in 

an enriched aqueous solvent 

In order to distinguish between these two possibilities, a solution containing a 

mixture of '^CHsHgl and CHs'^Hgl, dissolved in the partially deuterated HPLC mobile 

phase, was subjected to solvent evaporation by gaseous N2 for 4 hours and subsequentiy 

analysed by ' H NMR spectroscopy (Figure 2-6 C). 
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Figure 2-6 NMR spectrum of *^CH3HgI (1 mg/ml) and *^^g enriched CHjHgCl (2 

mg/ml) in 50:50 D2O/CH3OD v/v, 0.01% 2-mercaptoethanol: A, prior to injection onto the 

HPLC column; B, the post-column eluent fraction containing the methyimercury species; 

and C. the pre injection mixture after solvent evaporation by gaseous N2. KJ was added to 

the samples prior to analysis by ^H NMR spectroscopy. 
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The chemical shift of the methyl protons and ' H - * ^ g coupling constant for 

each compound was 0.77 ppm and 178 Hz respectively, which confirmed that the changes 

in the parameters observed for the pre- and post-HPLC separation fi^actions were due to the 

change in solvent composition. In addition, the '^Hg isotopic abundance, for the two 

labelled isotopomers, /// and v, remained at 66% and 17% respectively after elution from 

the column, indicating that methyl group exchange between the two isotopomers did not 

occur during the HPLC procedure. 

23.6 Formation of Methyl mercury During Eqailibration 

Losses of the spike material before complete equilibration between the sample 

and spike during IDA will result in an underestimation of the amount of methylmercury 

present in the sample. For example, methyl group exchange from the '^Hg enriched 

methylmercury spike to inorganic Hg, which may also be present in the sample matrix 

(Equation 2-6) would reduce the amount of the enriched spike which is available for 

equilibration with the natural analyte. Similarly, the formation of natural isotopic 

abundance methylmercury (Equation 2-7), e.g. by bacterial methylation, will cause a 

reduction in the value of the referenceispike isotope amount ratio, which, when measured 

by HPLC-ICP-MS after equilibration, again results in an underestimation of the analyte. 

CHj'^gl + Hg[ ^ CH3Hgr + '^g2+ 

Equation 2-6 

Hgl + CHj^ ^ CH3HgI 

Equation 2-7 

A solution of the ^̂ C labelled isotopomer and * ^ g enriched Hgl (obtained by 

dissolving the * ^ g enriched HgO in I M KF) was used to investigate the reactions in 

Equation 2-6 and Equation 2-7. The ^H NMR spectra of this solution both before (Figure 
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2-7A) and after (Figure 2-7B), a period of equilibration with particulate matter in the form 

of NTST2710 SRM, a soil material, gave no evidence for the formation of methylmercury 

from the added * ^ g enriched inorganic Hg. I f any *^CH3*^gI had been formed an 

increase in the signal intensity of the four '^g-*^C satellites. Figure 2-7A and Figure 

2-7B, denoted ^\ and <t»2, would have been observed Similarly, the formation of 

CHs'^HgT, from methyl groups derived from the soil matrix and the inorganic '^Hg 

enriched Hgl, would have been reflected in an increase in the signal intensity for this 

compound. Figure 2-7A and Figure 2-7B, denoted a. 

The * ^ g isotopic abundance in the '^CHsHgl was 17%, vide supra, both prior 

to, and after equilibration with the SRM for 24 hours. Since the ' ^ g isotopic abundance 

of the analyte (^^CHsHgf) remained unaltered by ' ^ g enriched HgCI, in the absence or 

presence of the particulate material, no methyl group exchange between the individual Hg 

species took place under these conditions. No signal for ' ^ g enriched 

methylmercuryiodide was observed in either the pre- or post-equilibration spectra, 

indicating that the reaction in Equation 2-7 did not occur. 
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Figure 2-7 ' H N M R spectrum of: A *^CH3HgI and ' ^ H g enriched Hgl prior to 

equilibration with NIST2710 SRM and B '^CHjHgl and ' ^ H g enriched Hgl post 

equih'bration. The isotopic abundance of ' ^ g in the '^CHsHgl, calculated fi^om the signal 

peak areas remained at 17% for both samples. 
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A second experiment was performed using DORM-2, a dogfish muscle CRM. 

On this occasion, a suitable ' H N M R spectrum could not be obtained because co-extracted 

molecules from the sample matrix obscured the spectral region of interest (0.5-1.5 ppm). 

Figure 2-8. Similar interferences were observed in the '^C NMR spectrum, whereas the 

*^Hg NMR spectrum was unobtainable due to the low concentration of the sample. 

However, analysis of ' ^ H g enriched CHaHgCI using HPLC-FCP-MS has 

shown that this material does not decompose after equilibration with the DORM-2 CRM. 

A chromatogram obtained using a quadrupole TCP-MS instrument is presented in Figure 

2-9. The inset shows the co-extracted inorganic Hg from the IX)RM-2 C R M which had a 

^^Hg:'^Hg isotope amount ratio, of 1.367, compared to the lUPAC value for natural 

isotopic abundance Hg of 1.369^. From this ratio it can be deduced that the ' ^ H g 

enriched CHsHgCl spike material was stable during equilibration. I f the spike had 

decomposed the isotope amount ratio for inorganic Hg would have changed due to a 

contribution from the ' ^ ^ g enriched isotope. A different analytical technique is required, 

such as Fourier Transform Ion Cyclotron Resonance Mass Spectrometry, to establish 

whether any of the inorganic Hg present in the E)ORM-2 CRM was converted to 

methylmercury species during the equilibration process. 
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'^CHjHg^is lost 
in this region 

Figure 2-8 ' H N M R spectrum of ^^CHjHgT and ' ^ g enriched HgCI after equilibration 

with DORM-2 CRM. No signals were observed for the protons o f '^CHsHgl as coextracted 

molecules from the dogfish muscle CRM masked the spectral region of interest 
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Figure 2-9 HPLC-ICP-MS chromatogram of an equilibration sample with, inset, the co-

extracted inorganic Hg from DORM-2 with a natural abundance ^ * ^ g : * ^ g isotope 

amount ratio indicating that the ^ ^ g enriched spike material was stable during the time 

period of the experiment. 

65 



2.4. Conclusions 

' ^ g enriched methylmercurychloride has been successfully synthesised 

and extracted in the solid form using a simple and rapid procedure which does not involve 

the formation of dimethylmercuiy. No inorganic Hg has been detected in the product after 

analysis by NMR spectroscopy and HPLC-ICP-MS. However, synthesis yields have been 

lower than those reported by other workers. Recovery experiments indicate that the 

modification of the extraction method employed by other workers is not the cause o f lower 

synthesis yields. Two other factors may be the cause of the lower yields obtained, either 

the greater starting quantity o f HgO used in this work or the lower methylcobalamin to 

inorganic Hg ratio employed 

^H NMR spectroscopy has given evidence for intermolecular halide ion 

exchange between methylraercurychloride and methylmercuryiodide, and that the 

methylmercury halide counter ion is readily exchangeable with other halides present in 

solution. The halide order of preference for methylmercury, as determined by *H NMR 

spectroscopy, has been shown to be I >Br >C1 . Thus, the speciation of 

methylmercuryhalides present in the original sample will be altered with respect to the 

halide counter ion, dependent on the halide composition of the sample matrix and the 

reagents employed 

The stability of the ' ^ g enriched methylmercurychloride spike material with 

'^CHsHgl during HPLC separation has been assessed using ' H NMR spectroscopy. No 

evidence has been found for methyl group exchange between *̂ C labelled and ' ^ g 

enriched methylmercury iodide. Equation 2-5, during HPLC separation. However, these 

experiments have shown that the chemical shift, and the ' H - * ^ g coupling constant, o f 

methylmercuryhalides are dependent on the solvent composition. 
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The stability of methylmercuryiodide in the presence o f both inorganic ' ^ g 

enriched Hgl and a soil material was also determined by NMR spectroscopy. The 

transfer of tiie methyl group from the methylmercuryiodide to inorganic Hg, Equation 2-6, 

was not observed by NMR spectroscopy. From the same experiment, no evidence was 

found for the formation of methyl mercuryiodide, by the reaction o f added inorganic 

mercury and methyl groups contained in the soil matrix. Equation 2-7. The stability o f the 

spike material in the presence of a fish muscle tissue could not be determined by *H NMR 

spectroscopy due to co-extracted molecules giving signals which masked that from the 

methylmercury. However, the spike material was adjudged to be stable in the presence of 

DORM-2 by HPLC-ICP-MS. 
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Chapter 3 The Determination of Methylmercury by IDMS 

3. Introduction 

IDMS is capable of providing accurate and precise results providing the 

procedures detailed in Chapter 1 are followed, with the accuracy o f the IDMS result 

dependent on the accuracy of the isotope ratio measurements^^. In total analyte IDMS the 

required isotope amount ratio in the spiked sample solution is measured directly. For 

species specific IDMS a separation step is usually necessary, with a requirement to 

optimise the instrumental data acquisition parameters, and the subsequent isotope amount 

ratio calculation from the resulting chromatogram, to achieve best accuracy and precision. 

The zums of the work described in this Chapter were; 

i . to optimise the coupling of an HPLC system to the ICP-MS instrument; 

i i . to evaluate different methods o f data extraction from the chromatograms obtained; 

i i i . to determine the mass fraction of methylmercury in a CRM by species specific IDMS. 

3.1 Choice of Isotope Pair for IDMS 

Conventionally, the spike isotope is of low natural abundance '̂*, however, 

*^Hg enriched methylmercurychloride was synthesised for the stability studies described 

in Chapter 2 and this material was also used for the species specific IDMS studies. Al l the 

isotopes o f mercury have a number o f possible polyatomic interferences, from rare earth 

argjdes and tungsten and osmium oxides, when measured by ICP-MS. Three o f the 

remaining six mercury isotopes available for use as the reference isotope also suffer from 

potential isobaric interferences, on ' ^ g , '^Pt on ' ^ g and ^ ^ b on ^ H g , which 

are not resolvable with current ICP-MS instrumentation and were therefore discounted for 

use as the reference isotope. The reference isotope is usually the isotope of highest naturzd 
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abundance and chosen so it is close in mass to the spike isotope '̂*. Therefore, ^°*^g, which 

is the second most abundant mercury isotope, was chosen as the reference isotope. 

3.2 Equilibration Solvent 

rdeally, the equilibration solvent employed should be able to extract a large 

proportion o f the analyte from the sample matrix {i.e. particulate bound methylmercury), to 

give as high a mass fraction as possible for analysis, without compromising its speciation. 

A number o f different solvent systems have been employed to solubiiise methylmercury 

from particulate material, including: aqueous distillation"^; dilute FINOS'**; 

tetramethylammonium hydroxide*'; dilute HCI*^; methanolic KOH^^; toluene**; 

HN03/H202*^ enzymatic hydrolysis*^; and KBr-H2S04-CuSO/\ usually in conjunction 

with a microwave extraction. However, because complete equilibration rather than 

complete extraction is required for IDMS, and the use of the above extraction methods has 

been shown to promote methylmercury formation (Chapter 1, Section 1.4.2), a mild 

extraction system was required The FIPLC mobile phase, to be used in methylmercury 

measurements by FIPLC-ID-ICP-MS (50:50 methanol/water v/v, 0.01% 2-

mercaptoethanol), was therefore chosen as the equilibration solvent for experiments 

involving a particulate CRM. The use o f the HPLC mobile phase also has the advantage 

that no analyte would be lost with the solvent front during sample injection, thereby 

improving instrumental sensitivity. 

33 . The Uncertainty Budget Model 

The statement of an analytical result is not considered complete without 

knowledge of the associated measurement uncertainty*^, which gives an estimate o f the 

precision of the analytical method employed Each parameter in the equation used to 

calculate an analytical result has an associated uncertainty which contributes to the 

combined uncertainty of that result An uncertainty budget was therefore formulated for 

the measurement and calculation o f isotope amount ratios from the HPLC-ICP-MS 
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chromatograms which allowed the instrumental data acquisition parameters to be 

optimised 

33 .1 . Mass Bias CorrectioD 

In order to determine the correct isotope amount ratio i t is necessary to 

compensate for mass bias in the instrumentation. Quadrupole and sector field ICP-MS 

instruments and their associated ion optics do not transmit ions of different masses equally. 

The ion beam, formed after extraction from the ICP, contains ions of differing mass. Due 

to space charge effects arising in the plasma and the interface region^' lighter ions are 

preferentially lost from and heavier ions are preferentially retained in, the ion beam^. In 

other words, i f an elemental solution composed of two isotopes with an exactly 1:1 molar 

ratio is analysed using ICP-MS, a 1:1 isotope amount ratio will not necessarily be 

observed. This so-called mass bias depends on mass and the type of mass spectrometer 

used, but generally tends to be greatest at low mass and decreases with increasing mass^. 

Even very small mass-biases can have deleterious effects on the accuracy o f isotope 

amount ratio determinations, so a correction must always be made, either by bracketing the 

sample with a reference material, certified for the isotope pair under study, or by 

interpolation from the mass bias observed for an isotope pair of similar mass to the isotope 

pair under study. No isotopically certified Hg CRM was available therefore the mass bias 

of ^ ^ g : ' ^ H g isotope amount ratio was corrected for by interpolation o f the mass bias 

observed for the 205y|.203y| isotope amount ratio using the relationship, named as the 

Russell correction expression^^, shown in Equation 3-1, which corrects for mass bias on 

the basis of the absolute mass o f the isotope pairs. 
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Equation 3-1: The Russell correction expression used for mass bias correction 

Where cor is the corrected isotope amount ratio, mes is the measured isotope amount ratio, 

cer is the certified isotope amount ratio and R A M is the relative atomic mass. 

The advantage of this approach is that the mass bias correction can be 

performed by spiking the sample with a mass bias correction standard (i.e. Tl) and 

measuring this isotope amount ratio at the same time as the sample. For speciation analysis 

by HPLC-ID-rCP-MS, it is most convement to spike the mobile phase with the standard 

and monitor it continuously. 

3.3.2. The IDMS Model 

The ratio version of the IDMS equation. Equation 3-2, was chosen to calculate 

the mass fi^ction of methylmercury in National Research Council o f Canada (NRCC) 

DORM-2 dogfish muscle CRM, Cx-

C _ p y y 5_ _! 

IV 

Equation 3-2 The ratio version of the IDMS equation 

Where, 

Cx = concentration o f the analyte in the sample 
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Cy = concentration o f the anaJyte in the spike solution 

ms = mass of spike 

mx = mass of sample 

h = moisture content correction fector 

Ry = reference:spike isotope amount ratio in the spike 

Rx = reference:spike isotope amount ratio in the sample 

S R = sum of the isotope amount ratios of isotope / to the spike isotope in the sample 
i 

X R = sum of the isotope amount ratios of isotope / to the spike isotope in the spike 

R B = reference:spike isotope amount ratio in the sample after spiking. 

For this work ^°^Hg was chosen as the reference isotope and * ^ g as the spike isotope. 

It is assumed that the reference:spike isotope amount ratio in the sample after 

spiking, R B (Equation 3-2), is corrected for mass bias effects. Each parameter in the 

Russell correction expression, used to correct for mass bias effects on the measured 

20Oj^g.i99j^g isotope amount ratio, has an associated uncertainty, which contributes to the 

overall uncertainty for the IDMS procedure. In order to include these uncertainties in the 

uncertainty budget for the determination o f methylmercury in DORM-2 CRM Equation 

3-1 and Equation 3-2 were combined, to give Equation 3-3, the notation is the same as that 

used for Equation 3-1 and Equation 3-2. 
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Equation 3-3 The ratio IDMS equation incorporating the Russell mass bias correction expression. 

The standard uncertainty of each parameter in Equation 3-3 may be comprised 

of a number of different uncertainties. An Ishikawa diagram. Figure 3-1, was drawn up to 

ensure that all the individual sources of uncertainty contributing to each term in Equation 

3-3 were identified and incorporated into the uncertainty budget model. The uncertainty 

budget was calculated following the guidelines set out by Eurachem/Citac'^. 
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Figure 3-1 Ishikawa uncertainty diagram for the determination of mercury species by 

IDMS. 
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3.3.3. Combin ing Standard Uncertainties 

Individual uncertainties associated with each parameter in Equation 3-3 were 

combined, after conversion to a standard uncertainty, using the spreadsheet method first 

described by Kragten^, which assumes that the standard uncertainties o f each 

measurement parameter are relatively small compared to that measurement parameter, and 

gives acceptable accuracy for practical purposes. The spreadsheet, which provides a simple 

method for the estimation and combination of uncertainties, estimates the contribution of 

each standard uncertainty to the overall uncertainty for the analytical result. The individual 

uncertainty estimates are subsequently combined using error propagation laws. Worked 

examples of the estimation of measurement uncertainty are given in the Eurachem/Citac*^ 

and the principles described therein were followed when constructing the spreadsheet used 

in this work. Each spreadsheet constructed during this work was separately validated by 

manual calculation. Proprietary computer software packages are also available for the 

estimation of measurement uncertainty e,g. GUM workbench™ from Metrodata GMBH, 

Germany, however, it was decided to avoid a 'black box' approach to the calculations and 

use first principles in order to fully understand the reasoning and methodologies employed. 

3.3.4. Reverse IDMS of the Spike Material 

The * ^ g enriched CHsHgCI spike material was not synthesised in quantities 

sufficient to determine its purity or to weigh with sufficient accuracy using a four figure 

balance. The spike material was therefore characterised by reverse isotope dilution 

analysis. In this procedure the spike material is isotopically diluted with a standard of 

natural isotopic abundance and the mass fi^ction of the spike solution calculated according 

to Equation 3-4. The measured ^ ° * ^ g : ' ^ g isotope amount ratio was corrected for mass 

bias effects by the addition of NIST997 Tl as an internal standard and Equation 3-1 was 

combined with Equation 3-4 for the calculations but has been omitted here for clarity. It is 

possible to combine Equation 3-2 and Equation 3-4 to give a 'double' isotope dilution 
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equation'^'^'* which eliminates the spike mass fraction, Cy, which is often relatively poorly 

characterised In this study however, two separate spike solutions were prepared, each 

analysed using a different ICP-MS instrument This allowed a comparison to be made o f 

the different uncertainty contributions arising from the use of the different instruments for 

the spike characterisation 

Equation 3-4 The reverse IDMS equation 

Where, 

- concentration o f the analyte in the spike solution 

Cz = concentration of the natural isotopic abundance standard 

m̂r ~ mass of natural isotopic abundance standard 

my = mass of spike 

Rz = reference.spike isotope amount ratio in the natural isotopic abundance standard 

Ry = reference:spike isotope amount ratio in the spike 

S R iz = isotope amount ratio of isotope / to tiie spike isotope in the natural isotopic 
i 

abundance standard 

Z R iy = isotope amount ratio of isotope / to the spike isotope in the spike 
i 

RBS = reference:spike isotope amount ratio in the spike and natural standard blend, 

corrected for mass bias effects in the manner shown in Equation 3-1. 
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3.4. Experimental 

3.4.1 Separation and Analysis of Mercury Compounds by HPLC-ICP-MS 

Two ICP-MS instruments were employed for the detection o f mercury species 

following separation by HPLC, a VG Plasmaquad 3 quadrupole (Q) ICP-MS and a VG 

Axiom multicoilector (MC) sector field (SF) ICP-MS (both Thermo Elemental, Winsford, 

UK). The coupling of the HPLC system and the data acquisition parameters for each 

instrument for the measurement o f isotope amount ratios was optimised by analysing 

gravimetrically prepared solutions, o f known isotopic composition, o f inorganic and 

organomercury compounds with a range of ^ ° ^ g : ' ^ H g isotope amount ratios. The HPLC 

conditions follow those of Harrington et al?^ and are summarised in Table 3-1 along with 

the optimal operating conditions for each ICP-MS instrument used in this study. NTST 997 

Thallium SRM was added to the mobile phase at 50 ng g'* and continuously monitored 

during separations for the purposes of mass bias correction. 

A number of problems can arise when coupling HPLC to ICP-MS, two o f 

which are the incompatibility of the HPLC flow rate {c.a. 1 ml/minute) with that required 

for high efficiency sample nebulisation, and the deleterious effects on the plasma o f a 

mobile phase with a high proportion of organic solvent To overcome these potential 

problems the HPLC system was not directiy coupled to the nebuliser sample uptake tube 

but a low dead volume splitter was used. This allowed the nebuJiser to operate at its natural 

uptake rate, as determined by the nebuliser argon gas flow, and the system to be optimised 

for maximum sensitivity and optimum peak shape without compromising the HPLC 

conditions. A low flow nebuliser (0.2 ml/min Micromist, Glass Expansion, Vevey, CH) 

was employed in conjunction with 0.18 mm 0 Teflon uptake tubing. The uptake rate o f 

this system was 50 pJ/minute, thereby ensuring highly efficient nebuJisation and, in 

conjunction with a coupled spray chamber system (cyclonic and bead impact. Glass 

Expansion, Vevey, CH) cooled to - 5^C, reduced the organic loading in the plasma. 
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Table 3-1 Operating conditions for HPLC-ICP-MS characterisation. 

H P L C Conditions 

HPLC Column HiChrom Kromasil 100 FC 18 Excel, 25 cm x 4.6 mm i.d. 
Mobile Phase 50:50 v/v Methanol:DDW, 0.01% 2-mercaptoethanol, 50 

ng/gNIST 997 Tl SRM 
Flow Rate (ml/min) 0.9 
Injection Volume (nQ 100 

V G PQ3 ICP-MS Operating Conditions 

RF Forward Power 1450 Plasma gas (1 min"*) 14 
(W) 
Reflected Power < 5 Auxiliary gas (1 min' ' ) 0.75 
(W) 
Spray Chamber Cyclonic, cooled to -5 Nebuliser gas (1 min" ' ) 0.52 

Torch Fassel Quartz Dwell Time (ms) 10 
Sampler and Ni Points per Peak 5 
Skimmer Cones 

'^^Hg,^^Hg, Nebuliser Glass Expansion 0.2 Ions Monitored '^^Hg,^^Hg, 
ml/min Micromist 2 0 3 j | 205y| 

V G Axiom MC-SF-ICP-MS Operating Conditions 
RF Forward Power 1400 Plasma gas (1 min"^) 14 
(W) 

' ) Reflected Power < 10 Auxiliary gas (1 min" ' ) 0.85 
(W) 
Spray Chamber Coupled cyclonic and Nebuliser gas (1 min~ ' ) 0.72 

bead impact, cooled to 

Torch Fassel Quartz fitted Dwell Time (ms) 25 
with a Pt shield 

Sampler and Ni Points per Peak 1 
Skimmer Cones 

^ ^ H g ^ H g , Nebuliser Glass Expansion 0.2 Ions Monitored ^ ^ H g ^ H g , 
ml/min Micromist 203-̂ 1 205^1 
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3.4.2. Characterisation of the ''^Hg Enriched CHjHgCI 

The mass fraction of the ' ^ H g enriched CHsHgCl was determined by reverse 

ID-MS with the spike isotopic composition modified by the addition o f a well 

characterised natural standard (methylraercury chloride standard, Alfa Aesar, Ward Hi l l , 

MA, USA). Two different methyimercurychloride spike solutions were prepared, one for 

analysis by Q-ICP-MS (9 g ' as Hg), and the second for analysis by MC-SF-ICP-MS 

( I I jJ^g g'' as Hg) . In each case an iterative procedure was employed "̂** to dilute the spike 

with the natural standard to give an ^°*^Hg:*^g isotope amount ratio o f close to unity to 

minimise errors from sources such as mass bias and detector dead t ime", thus reducing the 

measurement uncertainty. 

3.43. Equilibration of ''^Hg Enriched Metbylmercury and DORIVI-2 C R M 

Equilibration solutions of tiie HPLC mobile phase, 50:50 H20:CH30H v/v and 

0.01% 2-mercaptoethanoi, were prepared using HPLC grade methanol (BDH, Poole, LJK), 

distilled deionised water (Elgastat Maxima, Elga Ltd, High Wycombe, UK) and 2-

mercaptoedianol (BDH, Poole, UK). The moisture content of the IX)ElM-2 CRM was 

determined, by drying separate subsamples to a constant mass at 105 C, to give the 

moisture correction factor, h (Equation 3-2). Approximately 3g of the DORM-2 CRM was 

accurately weighed and the amount o f methylmercury present, after accounting for 

moisture content, calculated from the certified value. The mass of spike solution added was 

chosen so that the ^ ° ^ g : ' ^ H g isotope amount ratio would be close to unity, provided 

complete equilibration between the sample and spike occurred. Subsequently, the spike 

solution was added to 25g o f the equilibration solution, contained in a clean 50 ml glass 

conical flask. This solution was agitated throughout the timespan o f the equilibration 

experiment by a magnetic stirrer and maintained at a temperature o f 25**C by means o f an 

electrically heated hotplate. 
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The DORM-2 CRM was subsequently added to the equilibration solution and 1 

ml samples withdrawn at intervals up to 3000 minutes. The sampling frequency was 

approximately every two minutes for the first 20 minutes of the experiment followed by a 

reduced sampling rate of 5 minute intervals until I hour had elapsed, with less frequent 

sampling thereafter. Each sample aliquot was pipetted into a filter (Autovial 0.2Mjn PTFE 

membrane syringeless filters, Whatman, Maidstone, UK), diluted prior to filtration with 3 

ml of fresh equilibration solvent, filtered, and stored in a clean 25 ml sterilin container at 

until analysis by HPLC-ICP-MS. Samples obtained from the equilibration experiments 

were analysed using Q-ICP-MS under the same instrumental conditions as those for the 

reverse IDMS of the spike solution. 

3.5. Results and Discussion 

3.5.1 Calculating Isotope Amount Ratios 

In order to perform species specific FD-MS it is necessary to measure isotope 

amount ratios of two transient signals resulting from the chromatographic separation prior 

to rCP-MS detection. Two problems may arise, namely compound fractionation on the 

column and spectral skew resulting from too slow mass spectral scanning. It is unlikely 

that any on column fractionation would occur with the compounds under study because the 

difference in molar mass between the analyte and spike wras too small (though this may not 

be the case i f gas chromatography was used), fn this case data acquisition parameters were 

optimised to eliminate spectral skew. 

Two different approaches were assessed to determine the accuracy and 

precision of calculated isotope amount ratios from the muJti-isotope chromatograms 

obtained by HPLC-ICP-MS, namely peak integration and a pseudo-steady-state approach. 

For peak integration the relevant peaks for the isotope pair of interest, ^°*^g and ' ^ g , o f a 

particular species in the chromatogram were integrated to obtain the baseline-subtracted 
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peak integrals and the isotope amount ratio for that specie calculated using these integrals. 

The advantage of this approach is that the effects o f spectral skew, are minimised, 

however, precision can be degraded because the precision inherent in rapid sampling o f the 

isotopic pair is lost The second approach assumed that the chromatogram was an 

undulating, or pseudo-steady-state, signal. The results o f this approach are shown in Figure 

3-2, where co-incident pairs of data points from the two isotope ion signals (i.e. ^°*^g and 

'^Hg) were ratioed over the course of the chromatogram. 

Fn order to achieve the best predsion and accuracy, only data-points on the 

apices of the peaks (PQ3 n=9. Axiom n=5), for each isotope of a particular specie in the 

chromatogram, were chosen and baseline signal subtracted The isotope amount ratios 

were calculated using each pair of corresponding data-points from the two peaks and 

subsequently corrected for mass bias efifects. The advantage of this approach is that the 

inherent precision is maintained and it is possible to obtain an estimate o f precision from a 

single peak, however, erroneous isotope amount ratios wil l result i f spectral skew is not 

minimised Both of the above methods for data extraction were evaluated and the pseudo-

steady-state approach resulted in measured, mass bias corrected, isotope amount ratios 

which were closer to the theoretical values of the gravimetrically prepared mercury 

solutions, and exhibited a greater degree of precision then those obtained by peak 

integration (Table 3-2). 
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Figure 3-2 fsotope amount ratios measured using the pseudo steady state approach. The 

isotope amount ratio is calculated by ratioing the ion signals for coincident pairs o f data 

points over the peak maximum. 
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Table 3-2 Figures of merit for HPLC-ICP-MS optimisation using the pseudo-steady-state 

approach for the calculation of the isotope amount ratios. 

Isotope Amount Ratio 
Relative Standard 

Uncertainty 
V G PQ3 
Gravimetric Ratio 
Pseudo-steady-state measured ratio 
Peak integration measured ratio 

Gravimetric Ratio 
Pseudo-steady-state measured ratio 
Peak integration measured ratio 

V G Axiom Multicollector 
Gravimetric Ratio 
Pseudo-steady-state measured ratio 
Peak integration measured ratio 

Gravimetric Ratio 
Pseudo-steady-state measured ratio 
Peak integration measured ratio 

1.369 ±0 .029 
1.371 ±0 .064 
1.355 ±0.075 

0.2751 ±0.00002 
0.2758 ±0 .0057 
0.2674 ±0 .008 

1.369 ±0 .029 
1.369±0.00051 

1.359±0.013 

0.2751 ±0.00002 
0.2755 ± 0.00057 
0.2661 ±0.0015 

0.89 % 
4.67% 
5.5 % 

0.01 % 
2.1 % 
3.0 % 

0.89% 
0.037 % 
0.92 % 

0.01 % 
0.21 % 
0.56% 
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3.5.2. Comparison of Scanning and Simaltaneous Detection 

Variability of the measured isotope amount ratios during a chromatographic 

run are illustrated in Figure 3-3 for both the quadnipole scanning (Figure 3-3A) and the 

Axiom simultaneous muJticolIector instrument (Figure 3-3B). The Quadrupole instrument 

resulted in poorer precision dunng peak elution, due to the requirement to measure 

transient signals for four isotopes with a dwell time of 10 milliseconds. There is also 

evidence o f spectral skew, (Figure 3-3A) because the measured ^ ° ^ g : ' ^ g isotope 

amount fell at the start of the methylmercury peak elution, and was stable only at the peak 

apex. When using the multicollector instrument the ^ ^ H g : ' ^ g isotope amount ratio, 

calculated from background signals using Faraday detectors, was highly variable prior to 

the MeHg peak elution as the Hg concentration in the mobile phase was not high enough to 

result in a measurable signal. As the peak eluted, and the signal strength rose rapidly, the 

isotope amount ratio precision rapidly improved to a minimum at the peak maximum. The 

greater precision of the measured 205^1.203^1 jg^^Qp^ amount ratio obtained using the 

multicollector, as opposed to that obtained using the quadrupole instrument, can also be 

clearly observed 

The precision o f the mercury and thallium isotope amount ratios was 

comparable, 1.2% and 0.86% relative standard uncertainty respectively, when the 

quadrupole scaiming instrument was employed. However, for the multicollector instrument 

the mercury isotope amount ratio was measured with improved predsion compared with 

that obtained for the thallium isotope amount ratio, typically 0.07 and 0.24% relative 

standard uncertainty respectively. This was due to the poorer sensitivity o f the Faraday cup 

detectors and the relatively low mass fraction o f Tl in the mobile phase, 50 ng g*', 

compared to the methylmercury mass fraction, 1 l ^ g g ', injected onto the column. 
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Figure 3-3 The measured ^°^Hg:'^Hg and 205j, .203^, - ^ ^ ^ ^ ^ amount ratios and ^*^Hg 

signal monitored during reverse ID-MS of the spike solutions. A, PQ3 quadrupole 

instrument in peak jumping mode, dwell time 10ms, 100^1 injection of a 900 ng/g 

CHsHgCl solution; B; Axiom multicollector instrument, 25 ms dwell time, 100 | i l injection 

of a 1 iMg/g CHsHgCl solution. 
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The memory effect, which is a common problem in mercury analysis, is also 

well illustrated. Figure 3-3B, when using the muJticolIector instrument As the MeHg 

signal strength declined after peak elution the isotope amount ratio became more variable 

than during, but less so than before the peak elution. However, this was not the case when 

using the electron multiplier detector of the quadrupole scanning instrument. Figure 3-3A, 

as the amount of mercury contained within the HPLC mobile phase was sufiBcient to 

provide relatively stable ion counts. To counteract this memory effect 0.6M HBr in a 50% 

methanol solution was aspirated for 3 minutes between each sample acquisition which 

reduced the blank counts to those prior to the sample run. 

3.5.3 Characterisation of the Spike 

Before IDMS analysis of a sample could be perfomned it was necessary to 

determine the mass fraction of CHjHgCl in the ' ^ g enriched spike as accurately and 

precisely as possible. Reverse IDMS was performed for the spike characterisation, and full 

uncertainty budgets calculated, using both the simultaneous multicollector and the 

scanning quadrupole instruments. The spike mass fraction was calculated using Equation 

3^ , the results are shown in Table 3-3. No methylmercury was detected in the blank 

solutions and therefore a blank correction was not included in Equation 3-4. TTie raw 

counts for each mercury isotope in the methylmercury peak were, however, baseline 

subtracted to account for inorganic Hg present in the ICP argon gas and the solutions used 

for the spike make up. The standard uncertainty of the measured ^^'^gi^^Hg isotope 

amount ratio entered into Equation 3-4 included the uncertainty contribution from the 

baseline correction which contributed less than 0.1%. The relative standard uncertainty of 

the spike solution characterised using the Axiom instrument was 0.70%, which was nearly 

an order of magnitude less than that obtained for the spike solution mass fraction using the 

scanning instrument, 4.1%. Individual contributions to the total standard uncertainty are 

shown in Figure 3-4. 
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Table 3-3 The mass fraction of ' ^ g enriched CHsHgCi spike determined by reverse 

isotope dilution HPLC-ICP-MS. 

Standard 
Mass Fraction Uncertainty Relative Standard 

Instrument (Hfi f i - ' ,K=1) Uncertainty 
VG PQ3 Q-ICP-MS 8.96 {n = 5) ±0 .37 4.1 % 
VG Axiom 
MC-SF-ICP-MS 

11.06 (/2 = 3) ±0 .08 0.70 % 

iRiz \ 

Measured 
205T,.203^, 

Measured 

0.4 

0.3 

^ Q-ICP-MS 

• MC-ICP-MS 

T 

20 40 60 80 

Contribution to total uncertainty (%) 

100 

Figure 3-4 Contributions to the total standard uncertainty of the mass fraction of ' ^Hg 

enriched CHsHgCI determined by reverse IDMS. 
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For the PQ3 quadrupole instrument the major uncertainty contributions arose 

from two parameters, the natural isotopic abundance ^ ° * ^ g : ' ^ g isotope amount ratio, Rz, 

and the measured ^°^g:*^Hg isotope amount ratio, RBS , which contributed 61 and 31 

percent respectively. In comparison, when using the Axiom multicollector instrument, Rz 

contributed 97% of the standard uncertainty and the measured ^ ^ g : * ^ H g isotope amount 

ratio, RBS , only contributed 0.3% of the combined standard uncertainty for the spike mass 

fi^ction. The reduction in the contribution of the measured isotope amount ratios 

200pjg.i99j^g and 2O5j | .203j | increased measurement precision obtainable 

with the Axiom multicollector instrument (Table 3-4). 

The relative isotopic abundances of mercury, as given by lUPAC , have 

relatively large associated uncertainties compared to some elements, hence the large 

relative standard uncertainties for Rz and ZRiz (Table 3-4), which were calculated from the 

lUPAC data No purity or isotopic abundance uncertainty data was supplied with the ' ^ H g 

enriched HgO, hence the isotopic composition of the spike material was determined using 

the Axiom MC-SF-ICP-MS prior to the synthesis of the spike material using the 

procedures of Briche^. The lUPAC, AEAT and measured isotopic abundance data is 

shown in Table 3-5. The improved precision values obtained by this analysis resulted in 

the associated uncertainties o f Ry and ZRiy (Table 3-4) providing a minimal contribution to 

the standard uncertainty for the spike mass fraction. 
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Table 3-4 Measured isotope amount ratios and uncertainty contributions to the mass 

fraction determination of the ' ^ g enriched CHsHgCI spike by reverse HPLC-ED-MS. 

Relative 
Standard 

Uncertainty 

Contribution to spike 
mass fraction standard 

uncertainty 
m 

Qaadrupole 
HPLC-ID-ICP-MS 
RBC 0.9900 0.58 31 
Measured 205y,-203^ 2.4276 0.51 6 
Rz 1.3693 0.89 61 
IR iz 5.9277 0.44 1 
Ry 0.2751 0.01 2.9E-06 
IR iy 1.5155 0.009 1.4E-04 

Axiom Multicollector 
HPLC-ID-ICP-MS 
RBC 1.0029 0.045 0.3 
Measured 205x1.203-^, 2.4243 0.10 0.4 
Rz 1.3693 0.89 97 
IR iz 5.9277 0.44 2 
Ry 0.2751 0.01 2.9E-06 
IR iy 1.5155 0.009 1.4E-04 

Table 3-5 The isotopic abundance and uncertainty data for natural abundance Hg and the 

stated and measured AEAT ' ^ H g enriched HgO. 

AEAT ' ^ H g enriched HgO 
rUPAC Data Axiom 

Mercury Data Standard supplied MC-SF-ICP-MS Standard 
Isotope Atom % Uncertainty Atom % Atom % Uncertainty 

196 0.15 O.Ol O.l O.IO 0.001 
198 9.97 0.12 3.08 2.93 0.0014 
199 16.87 0.13 65.74 65.98 0.010 
200 23.1 0.11 18.18 18.15 0.0016 
201 13.18 0.05 3.95 3.96 0.0019 
202 29.86 0.15 7.31 7.43 0.0047 
204 6.87 0.09 1.65 1.44 0.0012 
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3^.4 Analysis of Reference Material 

The isotope amount ratios in the samples were determined using the PQ3 

instrument preceded by a HPLC separation. Figure 3-5 shows a typical chromatogram 

obtained It was not possible to measure the isotope amount ratios using the Axiom 

multicollector instrument as the ion signal strength was not high enough to be measured by 

the faraday cup multicollector array with sufficient accuracy and precision. 

Two speciation analyses were performed, one using the spike material 

characterised by the PQ3 quadrupole ICP-MS and the second using the spike characterised 

with the Axiom multicollector instrument The major contributions to the uncertainty 

budget for each analysis are derived from the precision values o f the measured ^°*^Hg:'̂ ^Hg 

and 205jj .203^1 igQ^Qpg amount ratios. The raw counts of the mercury isotopes were 

baseline corrected as described in the spike characterisation. Figure 3-6 shows the major 

contributions to the uncertainty budget for each analysis and the data is shown in Table 

3-6. For the speciation analysis conducted using the spike material characterised by the 

quadrupole instrument the major uncertainty component was derived from the uncertainty 

associated with the measured ^°*^g:'^Hg isotope amount ratio, 63%. Three other factors, 

the measured 205^1.203^1 jg^t^pe amount ratio, (10%), the calculated natural abundance 

200pjg.i99p^g isotope amount ratio, R ,̂ (10%), and the spike mass fraction, Cy, (16%), also 

contributed significantly to the standard uncertainty. The improved spike characterisation 

by the multicollector instrument resulted in a smaller uncertainty contribution from Cy, 

(8%), to the standard uncertainty when this material was used, with the uncertainty 

contribution from R., rising to 24%. 
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Figure 3-5 HPLC-Q-ICP-MS chromatogram of an equilibration sample. 
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Figure 3-6 Contributions of individual standard uncertainties to the total combined 

expanded uncertainty for the determination of CH3Hg"̂  in DORM-2 C R M by species 

specific IDMS. Each uncertainty budget was dominated by the precision of the measured 

isotope amount ratios. The contribution from the spike uncertainty was significantly larger 

when it was characterised by quadrupole HPLC-ICP-MS. 
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Table 3-6 Contributions to uncertainty for a single sample from each equilibration 

experiment. 

Relative Contribution to 
Standard methylmercury mass 

Uncertainty fraction in DORM-2 
(%) standard uncertainty 

(%) 
Spike Characterised by 

quadrupole HPLC-ICP-MS 
Measured ^ " ^ g i ' ^ H g 1.0021 1.9 63 
Measured ^°^T1:̂ °^TI 2.3656 1.6 10 
Rx 1.369 0.9 10 
C Y ( ^ g g " ' ) 8.96 4.0 16 

Spike Characterised by 
multicollector HPLC-ICP-MS 

Measured '"^g: '^ ' 'Hg 1.0115 1.1 52 
Measured 205yi.203^ 2.3654 1.3 16 
Rx 1.369 0.9 24 
C Y (UfiS"') 11.1 1.9 8 
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The mass fraction of methylmercury in DORM-2 was caJculated using 

Equation 3-3 and the standard uncertainty estimated, the results are shown in Table 3-7. No 

methylmercury was detected in the blank solutions and a blank correction was not 

therefore included in Equation 3-3. The mass fraction of methylmercury in DORM-2 using 

the spike characterised using quadrupole HPLC-ICP-MS was 4.45 | ig g ' with a standard 

combined uncertainty of 0.45 jag g'V For the experiment conducted using the spike 

characterised by multicoliector HPLC-ICP-MS the mass fraction o f methylmercury in 

DORM-2 was 4.25 j ig g ' with a standard uncertainty of 0.24 jig g'*. 

A standard uncertainty, z/, corresponds to one standard deviation, which, for a 

normal distribution, includes approximately 68% of the values. To provide an uncertainty 

estimate which can be expected to cover approximately 95% of the normally distributed 

values u is expanded by a coverage factor, k. As the major contribution to each standard 

uncertainty was derived from the precision of the measured isotope amount ratios, n = 10 

for each replicate, the degrees o f freedom was considered large enough to use a coverage 

factor of k =2, which approximates to the 95% confidence interval. Consequentiy the 

standard uncertainty for each determination of methylmercury in IX)RM-2 by species 

specific HPLC-ID-rCP-MS was expanded to give die final results in Table 3-7. 
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Table 3-7 The methyl mercury mass fraction in E>ORM-2 C R M determined by species 

specific HPLC-ID-ICP-MS. 

Determination 

DORM-2 
Methylmercury 

Mass Fraction (ng/g) 

Relative 
Expanded 

Uncertainty 
Spike Characterised by quadrupole ICP-MS 4.45 ± 0.90^ 
Spike Characterised by muJticolIector ICP-MS 4.25 ± 0.47* 
DORM-2 Certified Value 4.47 ± 0.32 

20% 
11% 
7% 

* the reported uncertainty is an expanded uncertainty calculated using a coverage factor 
of 2 which gives a level of confidence of approximately 95% 

95 



3.6. Conclusions 

The analytical procedure required a separation step, by HPLC, prior to the 

detection o f the mercury species by ICP-MS. The couph'ng o f the HPLC system to the ICP-

MS instrument was optimised to ensure highly efficient sample nebuJisation and minimise 

the effect of the HPLC mobile phase, 50% methanol, on plasma stability. Instrumental data 

acquisition parameters were optimised using gravimetrically prepared solutions o f natural 

and ' ^ g enriched abundance methylmercurychloride. Two methods of data extraction for 

the calculation of isotope amount ratios from the resulting chromatograms, peak 

integration and a pseudo-steady-state approach, have been evaluated. The pseudo-steady-

state approach gave results of greater accuracy and precision than the peak integration 

approach, and, as precision values can be obtained from a single sample injection onto the 

EIPLC column, considerably reduces the sample volume and time required for analysis. 

The determination of methylmercury in a fish muscle certified reference 

material, DORM-2, was performed by species specific IDMS and quantitative recovery in 

good agreement with the certified value was obtained. An uncertainty budget has been 

calculated for the analytical procedure, allowing the relative uncertainty contributions for 

each parameter in the measurement equation to be quantified and, their relative 

contributions to the final expanded uncertainty determined. 

Two rCP-MS instruments were employed in this study for the measurement of 

both transient and simultaneous ion signals for the calculation o f isotope amount ratios. 

Species specific HPLC IDMS by the Axiom multicollector instrument resulted in an lower 

relative expanded uncertainty due to tiie greater precision and accuracy obtainable with this 

instrument compared with a quadrupole ICP-MS. The major contributions to the expanded 

uncertainty using the multicollector instrument are from the uncertainties associated with 

the natural isotopic abundances of Hg, therefore, in order to significantly reduce the 

uncertainty fiirther an improvement in the isotopic characterisation o f Hg in the sample is 
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required prior to species speciiic ID. This wil l add considerable time to the analysis, with 

the possible need to resolve or account for interferences e.g, ^^Pb on ^ ^ g . A number of 

elements have a relatively poor isotopic cbaractensation and, i f ID is to become more 

widely used, a programme is necessary to improve the lUPAC data The advent of modem 

multicoilector ICP-MS instrumentation should allow this improvement For the scanning 

quadrupole instrument the measured isotope amount ratios contributed >65% of the 

expanded uncertainty. As it is unlikely that the isotope amount ratio precision can be 

significantly improved the expanded uncertainty for quadrupole HPLC IDMS 

determinations vAW remain relatively large. 
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C H A P T E R 4 Equilibration 

4. Introduction 

Equilibration between the natural isotopic abundance analyte contained within 

the sample and the isotopically modified spike solution is the key experimental stage in 

IDMS^'*. I f this equilibration is incomplete the advantages of IDMS over analyses 

performed by conventional external calibration are lost and biased results occur. The 

determination of methylmercury in DORM-2 CRM by species specific IDMS gave results 

in good agreement with the certified value and equilibration could therefore have been 

adjudged to be complete. In order to investigate the effects of incomplete sample/spike 

equihbration a second sample matrix, NTST2710 Montana soil SRM was chosen to 

represent a terrestrial material, where the partitioning of mercury species may be diiferent 

to those in IX)RM-2. 

4.1. Monitoring Equilibration 

The extent o f equilibration between the target analyte in the sample and the 

isotopically enriched spike solution can be deduced by monitoring the reference:spike 

isotope amount ratio in the extractant solution with time. At the moment o f addition o f the 

particulate material to the extractant/spike solution the contribution to the ^^Hg: ' ^ g 

ratio, chosen as the reference and spike isotopes respectively, in the liquid phase wil l be 

solely fi-om the spike solution. As equilibration between the ' ^ g enriched spike, and the 

natural isotopic abundance mercury proceeds this ratio will change as natural isotopic 

abundance Hg is released from, and enriched spike Hg is adsorbed onto the particulate 

material until, at equilibrium, the ^ ° ^ g : ' ^ g ratio in the liquid or solid phases is constant. 

I f the mass fi-actions of analyte in the sample and spike are known the ^ ° ^ g : * ^ g ratio at 

complete equilibration can be calculated, allowing a comparison to be made with the 
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measured ^ ^ g : ' ^ H g ratio at equilibrium. At time t=0, the overall ^°*^Hg:*^g ratio can 

be described by Equation 4-1 where the following subscripts and superscripts apply. 

e = ' ^ g enriched spike Hg 

n = natural isotopic abundance Hg 

1 = liquid phase 

s = solid phase 

t = 0 the time of spiking before any adsorption or desorption has occurred 

tcqb = time t when sample/spike equilibration is complete 

ns 

Equation 4-1 

which reduces to Equation 4-2 by removing the components with a value of zero at time 

t^O giving 

200 jL/̂ r=0 200 r/- /̂=0 , 200 //_./=0 

^gs+i ^get + "gns 

Equation 4-2 

At time tcqb 

200Hg.^ ^(2ooHg.^_2ooHgg,b)^aooHg.=o_2ooHg^.) 

-Hg:- ("^Hg^-'-Hgr) - K ' " H g : ^ ' - - H g r ) 

Equation 4-3 
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The amount of each isotope in solution at time t can be described in terms o f the amount of 

spike Hg adsorbed onto, or the amount of natural Hg desorbed fi-om, the particulate 

material 

200 Tj^teqb 200 Tj^t =0 200 Tj^teqb 

Equation 4-4 

200 TT^teqb 2 0 0 z j i = 0 200rj^teah 

Equation 4-5 

199 Tj^teqb _199 r r /=0 199 ij^teqb 

Equation 4-6 

199 Tj^teqb _199 7 t _ / = 0 199 rr^teqb 

Equation 4-7 

substituting Equation 4-4, Equation 4-5, Equation 4-6 and Equation 4-7 into Equation 4-3 

gives 

200 TT^t-O 200 Tj^teqb , 200 rj^teqb 

Equation 4-8 

combining the RHS to the raeasurand gives 

200 7T^i=0 200 zj^teqb 

199 r r „ / = 0 \99 jT„teqb 

Equation 4-9 
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and combining with Equation 4-2 gives 

ns 

ns 

Equation 4-10 

Allowing the calculation of the theoretical ^*^g : ' ^^g isotope amount ratio in solution, 

provided equilibration between the sample and spike isotopomers is complete. 

4.2. Adsorption and Desorption 

The isotope amount ratio in solution (R), at any time during the equilibration of 

enriched and natural abundance isotopomers of an analjrte is given by Equation 4-11. 

Furthermore the total number of moles o f the anaiyte in solution (/i), at any time is the sum 

of the number of moles of both isotopomers in solution (Equation 4-12). Hence, combimng 

Equation 4-11 and Equation 4-12 to give Equation 4-13, with rearrangement to Equation 

4-14, and determining R and n, allows the extent of desorption and adsorption of the 

natural isotopic abundance particulate bound analyte and the spike analyte respectively. 

^ ^ A y.riy + A 

B yMy + B 

Equation 4-11 

where 

Ay = the abundance of isotope A in the spike 

Ax = the abundance o f isotope A in the sample 

By = the abundance of isotope B in the spike 

B , = the abundance of isotope A in the sample 
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n = riy + rij^ .'.riy = n- riy^ 

Equation 4-12 

where 

// = the total number of moles of analyte riy ~ the total number o f moles of spike 

analyte 

rix = the total number of moles of sample analyte 

substituting Equation 4-12 in to Equation 4-11 gives 

B ^ ( / 7 - / 7 . ) + B^.A7^ 

Equation 4-13 

and rearranging gives 

( R B ^ - A J + CA^-RB^,) 

Equation 4-14 

4.3. Experimental 

The extent of equilibration between the IDMS spike solution and the natural 

isotopic abundance analyte was determined for two certified reference materials. National 

Institute of Science and Technology (NIST) 2710 Montana Soil Certified Reference 

Material (SRM) was used to represent terrestrial material and DORM-2 dog fish muscle 

(NRCC) was employed as a biological sample. The experimental procedures for 

experiments involving DORM-2 CRM have been described in Chapter 3. NIST 2710, 

purchased from LGC (Teddington, UK), is certified for total Hg, 32.6 ng g"'. For the total 

Hg IDMS determination (NTST2710 SRM) a ' ^ g enriched Hĝ "̂  spike solution was 
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prepared from ' ^ H g enriched (65.98 atom % ) HgO (AEA Technology, Harwell, UK). 3.4 

mg of the enriched material was dissolved in \00\ig o f concentrated HNO3 (Aristar Grade, 

BDH, Poole, UK) and diluted with 18 M Q cm"*, distilled, deionised water (DDW, Elgastat 

Maxima system Elga Ltd, High Wycombe, UK) to give a nominal mass fraction of 600 ̂ ig 

g * in 2% HNO3. 

4J.1. Characterisation of the ''^Hg enriched inorganic Hg spike 

The stock '^Hg enriched inorganic Hg spike solution was diluted with 2% 

HNO3 to approximately 600 ng g"', and the accurate mass fraction of the diluted spike 

solution determined by reverse EDMS by Dr. J.Truscott Alfa Aesar Specpz/re ICP standard 

solution (Johnson Matthey, Royston, UK) was diluted to 170 ng g * Hg in 2% HNO3 and 

used as the natural standard for the isotopic dilution o f the spike solution. When the 

measured isotope amount ratio is close to unity, systematic errors, from sources such as 

mass bias and detector dead time, are minimised, thereby reducing the measurement 

uncertainty^'. An iterative procedure was therefore employed, to produce blends of the 

' ^ H g enriched inorganic Hg spike solution and the natural standard with a reference:spike 

isotope amount ratio (^°**Hg:'^Hg) of close to unity. The procedure followed was 

developed during a study by the High Accuracy Analysis by Mass Spectrometry 

(HAAMS) sub committee of the Analytical Methods Committee of the Royal Society of 

Chemistry. 

A blend o f the spike material and the natural standard was produced and the 

reference:spike isotope amount ratio measured and used to calculate the mass fraction o f 

the spike material. Subsequentiy the calculated spike mass fraction is used, in conjunction 

with the known natural standard mass fraction, to calculate the amounts o f each material 

required to produce a new solution having a reference:spike isotope amount ratio o f close 

to unity. TTie reference;spike isotope amount ratio in this second solution is subsequentiy 
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measured. Mass bias correction on this second measured reference:spike isotope amount 

ratio is performed by bracketing the sample with the first solution prepared and applying a 

correction factor from the calculated and measured reference:spike isotope amount ratio in 

the bracket blend. This procedure is repeated, i.e. natural standard/spike solution 2 

becomes the mass bias correction blend for natural standard/spike solution 3, until the 

measured reference:spike isotope amount ratio and the ion counts of each isotope are 

matched to within 5%. Subsequentiy the mass fraction of the spike is calculated from the 

matched solutions using Equation 4-15. The ^ * ^ g : ' ^ g isotope pair was chosen as the 

reference:spike isotope amount ratio and measured using a VG Axiom MC-SF-ICP-MS 

instrument (Thermo Elemental, Winsford, UK), the optimal operating conditions are 

shown in Table 4-1. Hydrobromic acid, 0.6M, (Aldrich, Gillingham, UK) was used as a 

wash solution during all ICP-MS analyses to counteract the memory effects of mercury. 

^ ^ " ^ V / ' P » ^ M B X D Z R i z 
^ ( R B s X - ^ ) - R y . 

^ M B 

Equation 4-15 Tlie reverse EDMS equation 

Where, 

Cy = concentration of the analyte in the spike solution 

Cz = concentration o f the natural isotopic abundance standard 

m^ = mass of sample 

my = mass of spike 

Rz = reference:spike isotope amount ratio in the natural isotopic abundance standard 

Ry = referencerspike isotope amount ratio in the spike 

S R 
i 

abundance standard 

iz = isotope amount ratio of isotope / to the spike isotope in the natural isotopic 
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Z R iv = iy = isotope amount ratio of isotope / to the spike isotope in the spike 

RMB the calculated reference:spike isotope amount ratio in the mass bias calibration 

blend 

R'MB - the measured reference:spike isotope amount ratio in the mass bias calibration 

blend 

RBC reference:spike isotope amount ratio in the spike and natural standard blend 

^^Hg was chosen as the reference isotope and ' ^Hg as the spike isotope 
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Table 4-1ICP-MS and HPLC operating conditions. 

H P L C Conditions 

HPLC Column 
Mobile Phase 

Flow Rate (ml/min) 
Injection Volume ( j i l ) 

HiChrom Kromasil 100 FC 18 Excel, 25 cm x 4.6 mm i.d. 
50:50 v/v Methanol:DDW, 0.01% 2-mercaptoethanol, 50 ng/g 
NIST 997 TI SRM 
0.9 
100 

V G Axiom MC-SF-ICP-IVf S Operating Conditions 
RF Forward Power (W) 
Reflected Power (W) 
Spray Chamber 

Torch 

Sampler and Skimmer 
Cones 
Nebuliser 
Ions Monitored 

1400 
<10 
Coupled cyclonic and bead 
impact, cooled to -5 °C 
Fassel Quartz fitted with a 
Pt shield 
Ni 

Plasma gas (1 min" ) 
Auxiliary gas (1 min'*) 
Nebuliser gas (I min"*) 

Dwell Time (s) 

Points per Peak 

14 
0.85 
0.72 

10 

Glass ExDimsion 0.2 ml/min Micromist, natural aspiration 
198 Hg, ' ^ R , ^°°H8, ^"'HR. ̂ o^Hg. ^ ^ T l . ^'^Hg. 
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4.3.2. Cbaractensation of the '^Hg Enriched CHsHgCI 

The experimental procedure, and instrumental operating conditions, for the 

characterisation of the ' ^ g crunched CHsHgCl spike material was described in Chapter 3 

Section 3.4.2. 

433. Equilibration of ''^Hg Enriched Inorganic Hg and NIST2710 S R M 

The moisture content o f the NIST2710 SRM v ^ determined by drying 

o 

separate subsamples to a constant mass at 105 C. Approximately 2g o f the NIST2710 

SRM was accurately weighed and the amount of Hg present, corrected for moisture 

content, was calculated from the certified value. The stock *^^Hg enriched inorganic Hg 

spike solution was diluted to 55 | ig g"' with 2% HNO3. Approximately I g of this diluted 

spike solution was added to 40 ml of the equilibration solution, 50:50 CH3OH/DDW v/v 

0.01% 2-mercaptoethanol, contained in a clean 50 ml glass conical flask. The NIST2710 

SRM was subsequently added to the equilibration solution and 1 ml samples withdrawn at 

intervals up to-3000 minutes. The sampling frequency was approximately every two 

minutes for the first 25 minutes of the experiment then at 5-10 minute intervals until 1 hour 

had elapsed, with less frequent sampling thereafrer. The equilibration solution was agitated 

throughout by a magnetic stirrer, and maintained at a temperature of 25**C by means of an 

electrically heated hotplate. Each sample aliquot was pipetted into a filter (Autovial 0.2pni 

PTFE membrane syringeless filters, Whatman, Maidstone, UK), diluted prior to filtration 

with 8 ml of fresh equilibration solvent, filtered, and stored in a clean 25 ml sterilin 

container at 4°C until analysis by MC-SF-ICP-MS (Axiom, Thermo Elemental, Winsford, 

UK). The instrumental operating conditions are given in Table 4-1. Hydrobromic acid, 

0.6M, (Aldrich, Gillingham, UK) was used as a wash solution to counter memory effects, 

and Thallium (NIST911 SRM, LGC, Teddington, UK) added to the samples as an internal 

standard at approximately 300 ng/g to correct for mass bias and instrumental drift. 
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Subsequent to the initial equilibration experiments a full factorial experiment 

was designed, with two factors at two levels, namely 20 and 80% methanol and 0.005 and 

0.02% 2-mercaptoethanol. The szime ' ^ ^ g enriched spike solution was used and the 

experimental procedure followed that described above. The ^ ° ^ H g : ' ^ g and 205y|.203y| 

isotope amount ratios in the samples taken was measured by Q-ICP-MS (PQ3, Thermo 

Elemental, Winsford, UK). 

4.3.4. Equilibration of "^Hg Enriched Metbylmercury and DORM-2 

The experimental procedure, and instrumental operating conditions, for the 

equilibration of the ' ^ H g enriched CHsHgCI spike material methylmercury and DORM-2 

was described in Chapter 3 Section 3.4.3. 

43.5 Conventional External Calibration 

For the equilibration experiments involving N1ST2710, the total Hg in solution 

for each sample, was measured by external calibration at the same time as the isotope 

amount ratio determinations. In order to obtain a useful calibration it was necessary to sum 

the signals obtained for all Hg isotopes (i.e. 198, 199, 200, 201, 202, 204), because the 

isotope amount fractions of the samples and calibration standards were different. Hence, 

the total Hg instrumental response was calculated, and the Hg mass fraction in solution 

interpolated from the calibration curve. The isotopic abundance of is the same in 

both the calibration standards and the samples, however, it has an isotopic amount fraction 

of only 0.1%, so it could not be used as the calibration isotope, and was omitted from the 

experiment because there were only nine faraday detectors available on the Axiom MC-

SF-ICP-MS and it was necessary to monitor in order to correct for interferences from 

^^Pb on *̂*̂ Hg. °̂̂ T1 was used as an internal standard to correct for instrumental dr i f t 

The total methylmercury amount fraction in the equilibration samples taken 

during the experiments involving DORM-2 CRM, described in Chapter 3 Section 3.4.3., 
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was calculated in a similar fashion, but with HPLC coupled to the E^3 instrument The 

methylmercurychloride peak in each chromatogram for the isotopes ^^Hg to ^ ' ^ g was 

baseline subtracted, integrated, and the integrals summed to give the total 

methylmercurychloride instrumental response. The signal for ̂ ^Hg was again corrected for 

by monitoring ^°^b. This analysis was performed separately from the isotope amount ratio 

determinations as the requirement to monitor nine isotopic signals resulted in spectral skew 

of the resulting chromatograms. NIST 911 Thallium SRM was added to the HPLC mobile 

phase as an internal standard at approximately 50 ng/g to correct for instrumental drift. 

43.6 Microwave Digests 

Microwave digestions were performed on NTST2710 using two different 

digestants, concentrated HNO3 and 50:50 methanol :DDW (v;v) with 0.01% 2-

mercaptoethanol. Approximately 150 mg of NIST 2710 was accurately weighed directly 

into a Teflon bomb and 4 ml o f digestant added The mass o f Hg added via the MIST 2710 

reference material was calculated and an equivalent mass o f Hg added via the *^Hg 

enriched spike solution. The bomb lids were tightened and each digestion left to equilibrate 

for 24 hrs prior to microwaving at 650W for 2 minutes using a domestic microwave oven. 

The digests were filtered (Autovial 0.2^m PTFE membrane syringeless filters) and the 

filtered extract diluted to approximately 25g with either DDW or 50:50 methanol:DDW 

(v:v) 0.01% 2-mercaptoethanol solution, depending on the original digestant, and stored at 

4° C until analysis by the Axiom MC-SF-ICP-MS. 

4.4. Results and Discossion 

4.4.1 Equilibration of Reference Materials with the '^Hg Enriched Spikes 

The extent of equilibration between the spike and the natural isotopic 

abundance particulate bound Hg species was determined by a comparison o f the theoretical 

^°°Hg:^^Hg isotope amount ratio at complete equilibration and the measured isotope 

amount ratio in solution. The theoretical ^ ^ g : * ^ H g isotope amount ratio, and its 
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associated expanded uncertainty was calculated for each experiment from the mass^ and 

mercury mass fractions of the starting materials, and the isotope amount fractions shown in 

Table 3-5 using Equation 4-10. It is important to note that the Hg originating from the solid 

phase (i.e. the particles of the CRM in solution) would have a natural isotopic composition 

but the Hg added to the liquid phase was of modified isotopic composition (i.e. the *^Hg 

enriched spike). 

4.4.1.1. Equilibration Between '^Hg Enriched Inorganic Hg and MS'nTIO 

The extent of equilibration, between the natural abundance particulate bound 

inorganic Hg (NTST2710) and the '^Hg enriched inorganic Hg spike, was determined in 

the equilibration solution, from the measured ^°*^Hg:'^g isotope amount ratio, corrected 

for mass bias using Equation 3-1. 

The ^°*^g:'^Hg isotope amount ratio in the liquid phase over rime is shown in 

Figure 4-1. Equih'bration initially proceeded at a rapid rate up to 100 minutes, with the 

system reaching an equilibrium at approximately 300 minutes. Complete equilibration, 

between the ' ^ g enriched inorganic Hg spike and the particulate bound natural isotopic 

abundance Hg, was not achieved because the ^^Hg:'^Hg isotope amount ratio in the 

equilibration did not attain the theoretical ^'^^gi'^Hg isotope amount ratio (Figure 4-1). 

The mass fraction of Hg in NTST2710, calculated by IDMS from the ^ " ^ g : ' ^ g isotope 

amount ratio in the final sample taken during this equilibration experiment (3000 minutes), 

was 21.5 ± 2.7|ig g ' (expanded uncertainty, A = 2). As complete equilibration between the 

sample and the spike did not occur the mass fraction of t ig in NTST2710, determined by 

rOMS, underestimated the certified value of 32.6 ± 1.8 ^g g"' by 34%. 
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Figure 4-1 Change in ^°*^Hg:'̂ Hg isotope amount ratio in solution for the equilibration 

with NrST27I0 over time, solid curve, with 50:50 methanol/water v/v, 0.01% 2-

mercaptoethanol as the equilibration solvent The solid line is the theoretical ^ ^ g : ' ^ g 

isotope amount ratio at complete equilibration, with the dashed lines representing the upper 

and lower limits of the expanded uncertainty, calculated using a coverage factor, k, of 2, 

which gives a level of confidence of approximately 95%. 
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4.4.1.2 The Effect of Solvent Composition on Equilibration 

In order to study the effect of the solvent composition, on the extent of 

equilibration between the ' ^ ^ g enriched spike and NTST2710, a ftill factorial experiment 

was designed, with the proportions of methanol and 2-mercaptoethanol employed as the 

equihbration solvent shown in Table 4-2. In each case equilibration between the * ^ g 

enriched spike and NTST2710 was again incomplete, following a similar pattern to that 

shown in Figure 4-1, in comparison with the theoretical ^°^g:*^Hg isotope amount ratio 

in solution. This incomplete equilibration again resulted in an underestimation of the mass 

fraction of Hg in NTST2710, with the results shown in Table 4-2. A Students t-test was 

used to compare the results obtained from the full factorial experiment with the mass 

fraction of Hg in NTST2710 obtained when 50:50 methanol/water v/v, 0.01% 2-

mercaptoethanol was used as the equilibration solvent Fn each case the results were not 

statistically different i.e. the variation in the solvent composition did not improve the 

extent of equilibration between the '^Hg enriched spike and the particulate bound Hg. 

Hg, and other metals, are co-precipitated with Fe and Mn oxyhydroxides in 

aquatic systems and subsequentiy trapped within this precipitate layer as further 

precipitation occurs '̂. NTST2710 SRM was prepared from soil, that was collected from 

land that is periodically flooded, with waters from settiing ponds which contain high levels 

of Mn. It is thus likely that several different Fe and Mn oxyhydroxide layers had bm'lt up 

on the particles, rendering some of the particulate Hg unavailable for equilibration with the 

spike Hg dissolved in a mild solvent, i.e. methanol/water, 2-mercaptoethanol, causing the 

underestimation of Hg in NrST2710. 
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Table 4-2 The proportions of methanol and 2-mercaptoethanoI used as equilibration 

solvents for the IDMS of Hg in NIST2710. 

Methanol Volume 
(%) 

2-MercaptoethanoI 
Volume 

(%) 

Mass Fraction of Hg in 
NIST2710 by LDMS 

1 50 0.01 21.5 ±2.7 
2 20 0.005 20.9 ± 2.6 
3 20 0.02 23.4 ± 2.9 
4 80 0.005 23.4 ±2.9 
5 80 0.02 26.1 ±3.3 
* The reported uncertainty is the expanded uncertainty, calculated using a coverage factor 
(k) of 2 which gives a level of confidence of approximately 95%. 
Samples 2-5 are for full factorial experiment when the solvent composition was varied. 
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4.4.13. roMS Microwave Digestions of IVIST2710 

Two EDMS microwave digestions, one with concentrated HNO3 and the second 

using 50:50 methanoI:DDW (v:v) 0.01% 2-mercaptoethanol were also performed on die 

NTST2710 SRM. The NTST2710 SRM was completely solubilised by the concentrated 

HNO3 microwave digestion, and the Hg mass fraction, as determined by IDMS, of 31.7 ± 

4.0 ng g"' {k = 2) was in good agreement with the NTST2710 certified value of 32.6 ± 1.8 

fig g"V In contrast, the microwave digestion using 50:50 methanol:DDW (v:v) 0.01% 2-

mercaptoethanoi did not completely dissolve the NTST2710SRM, and the Hg mass fraction 

was calculated to be 23.6 ± 3.0 jig g'' {k = 2), comparable to that obtained, within the 

limits of uncertainty, by the time resolved isotope dilution equilibration analysis. 

[t was deduced, that when 50:50 methanoliDDW (v:v) 0.01% 2-

mercaptoethanol was employed as the solvent, the ' ^ g enriched spike was equilibrated 

only with surface bound Hg, e.g. Hg bound to sulphur containing groups of the 

fiilvic/humic acid layer of the particles. However, the complete solubilisation of NIST2710 

via an HNO3 microwave digestion, which oxidised both the soil particle coatings and the 

soil matrix, allowed complete equilibration between the *^Hg enriched spike and the 

particulate bound Hg, resulting in a successful determination of Hg in NTST27I0 by IDMS 

in comparison with the certified value. 
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Figure 4-2 The mass fraction of Hg in N1ST27I0 obtained from three different isotope 

dilution analysis methods. The solid horizontal line is the certified mass fraction of Hg in 

N1ST2710, with dashed lines showing the upper and lower limits (95% confidence 

interval). The uncertainties for the three experimental results are the expanded uncertainty 

{k = 2) 
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4.4.14. Equilibration Between Enriched Metbylmercnrychloride and DORM-2 

The extent of equilibration, between the natural abundance particulate 

bound Methylmercuiy (DORM-2) and the '^Hg enriched methylmercury spike, was 

determined in the equilibration solution, fi-om the measured ^*^g:*^g isotope amount 

ratio, corrected for mass bias using Equation 3-1. The rate of equilibration for DORM-2, 

shown in Figure 4-3, proceeded at an initial rapid rate. Complete equilibration, within the 

limits of uncertainty, was attained within 6 minutes from the start of the experiment The 

mass fraction of methylmercury in DORM-2, determined by species specific HPLC-ID-Q-

ICP-MS fi-om the ^^Hg:'^Hg isotope amount ratio in the final sample taken at 1500 

minutes, was 4.25 ± 0.47 jig g ' {k = 2), in good agreement with the certified value of 4.47 

±0.32 ng g''. 
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Figure 4-3 Change in °̂*^Hg:*^Hg isotope amount ratio in solution for the equilibration 

with DORM-2 over time, solid curve, with 50:50 methanol/water v/v, 0.01% 2-

mercaptoethanol as the equilibration solvent The solid honzontal line is the theoretical 
200t Hg: Hg isotope amount ratio at complete equilibration, with the dashed lines 

representing the upper and lower limits of the expanded uncertainty (k = 2). 
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4.4.2 Adsorption and Desorption of Mercury Species from Particulates 

4.4.2.1. IVIST2710 

The extent of desorption of Hg from the particulate phase (i.e. the natural 

abundance Hg arising from the NIST2710 SRM) and the adsorption from solution onto the 

particulate phase {i.e. adsorption of the '^Hg enriched inorganic spike Hg) is shown in 

Figure 4-4. As can be seen 24% of the Hg from NTST2710 was desorbed from the particles 

after only 3 minutes (Figure 4-4B), with no significant change, within the limits of 

uncertainty until 1100 minutes. Thereafter, the amount of natural isotopic abundance Hg in 

solution increased to 37% at the end of the experiment (3000 minutes), which yielded a 

mass fi^ction of Hg in NTST2710 of 12.1 ± 2.3 ^ig g"', as determined by external 

calibration. Thus, the certified value of Hg in NTST2710 was underestimated by 63% with 

a relative expanded uncertainty of 19%. A coverage factor (k) of 4.3 (obtained /-tables) 

was used to expand the standard uncertainty, as only 2 degrees of freedom were available 

from the four point calibration curve^ .̂ 

The adsorption curve for the '^Hg enriched Hg^^ spike (Figure 4-4A), showed 

an initial rapid adsorption, with 38% remaining in solution {i.e. 62% adsorbed onto the 

NTST2710 particles) during the first 11 minutes. Thereafter the amount of spike in solution 

remained constant until 1100 minute had elapsed, whereupon a net desorption of the spike 

occurred, with 58% in solution at 3000 minutes. The net desorption of both the natural 

isotopic abundance and the spike Hg from 1100 minutes could have been due to oxidation, 

by the equilibration solvent, of the binding site substrate on the NTST2710 particles. 
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Figure 4-4 The amount of; A , ' ^ ^ g enriched spike Hg remaining in solution; B, of 

particulate bound natural isotopic Hg desorbed during the IDMS determination of Hg in 

NTST2710. Uncertainty bars are the expanded uncertainty {k = 4.3). 
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4.4.2^ DORM-2 

The extent of adsorption of the spike and natural methylmercury is shown in 

Figure 4-5. 47% of the methylmercury in the DORM-2 CRM was desorbed within 6 

minutes of the start of the experiment (Figure 4-5B), with the amount in solution remaining 

relatively constant for the remainder of the experiment Likewise, 65% of the 

methylmercurychloride spike had been adsorbed onto the particles of E)ORM-2 after 6 

minutes (Figure 4-5A), and this amount remained relatively constant for the duration of the 

experiment 

The mass fraction of methylmercury in the IX)RM-2 CRM, as determined by 

external calibration from the final sample taken at 1500 minutes, was 2.10 ± 0.5 ^g g*', an 

underestimation of 53% compared with the certified value. By comparison the mass 

fraction determined by IDMS for the final sample was 4.25 ± 0.47 ng g * (k = 2), certified 

value of 4.47 ± 0.32 ^g g"' (k = 4.3). So, although only 53% of the methylmercury in 

IX)RM-2 had been brought into solution by the action of the equilibration solvent, 

complete equilibration had been achieved. This is an important advantage of EDMS 

compared with external calibration, namely that 100% extraction of the analyte from the 

sample matrix is not necessary, merely 100% equilibration between the solid and liquid 

phases is required 
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Figure 4-5 The amount of; A , ' ^ g enriched methylmercurychloride remaining in solution; 

B, of particulate bound natural isotopic methylmercurychloride desorbed during the EDMS 

determination of methylmercury in DORM-2. Uncertainty bars are the expanded 

uncertainty {k = 4.3). 
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4.43 Contribotions to Uncertainty 

4.4J.1 Measured Isotope Amount Ratios 

The standard uncertainty of the mass bias corrected ^°**Hg:'^g isotope 

amount ratio was calculated by combining the uncertainty of each parameter in Equation 

3-1. For the determination of inorganic Hg in NIST27I 0 by IDMS two different types of 

ICP-MS instrument, a multicoilector and a quadrupole were used The typical precision of 

the measured isotope amount ratios for both instruments and the major contributions to the 

measurement uncertainty is shown in Table 4-3. For the Axiom multicollector instrument, 

which measures the ion signal of each isotope simultaneously, the relative standard 

uncertainty for the mass bias corrected ^°*^g:^^Hg isotope amount ratio was typically 

0.03%, with the major contributions to this figure derived from the measured ^ ° ^ g : ' ^ g 

isotope amount ratio (43%), the measured 205y|.203yj ^^^^^^ amount ratio (39%) and the 

NIST997 certified ^ ^ ^ - ^ ^ ^ isotope amount ratio (18%). 

When the PQ3 quadrupole instrument was used the standard uncertainty of the 

mass bias corrected ^°^g: '^Hg isotope amount ratio was typically 0.13%, a factor of four 

to five poorer than for the multicollector instrument In this case the major contributions 

were derived from the measured ^°*^Hg:'^g isotope amount ratio (72%), the measured 

2O5y|.203y| jgQjQpg amount ratio (27%), with a relatively smaller contribution from the 

NIST997 certified ^ ^ ^ - ^ ^ ^ isotope amount ratio (1%). The sequential nature of the ion 

current detection of the quadrupole mass spectrometer is susceptible to small fluctuations 

in the ion signal, caused by variations in the nebulisation efficiency, analyte transport and 

plasma stability of the sample introduction and ionisation system, thereby reducing the 

measurement precision. 
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Table 4-3 Relative standard uncertainties, and the relative uncertainty contributions, of 

isotope amount ratio measurements by HPLC-(?-ICP-MS, MC-ICP-MS and Q-ICP-MS. 

Relative 
Standard 

Uncertainty 

Contribution to mass bias 
corrected ^ ^ g : *^Hg isotope 

amount ratio standard 
uncertainty 

Axiom MC-ICP-MS 
Measured "'"Hgi'^Hg 
Measured^"'Tl:'°'TI 
N1ST997 certified 2 « 5 j , . 2 0 3 ^ , 

Mass Bias Corrected ^""Hgi'^Hg 

0.02 
0.03 
0.02 
0.03 

43 
39 
18 

Quad ni pole ICP-MS 
Measured "~Hg:''"Hg 
Measured ^O'TI-^O'T\ 
N1ST997 certified 205ji.203^, 

Mass Bias Corrected ^"^Hgi'̂ ^Hg 

0.11 
0.13 
0.02 
0.13 

72 
27 

1 

HPLC Qnadrupolc ICP-MS 
Measured "^g : " "Hg 
Measured ^"^Tlî o^T! 
NIST997 certified ^ O S J I - M S J , 

Mass Bias Corrected ̂ °°Hfi:'^Hg 

1.0 
1.0 

0.02 
1.2 

80 
20 
0 

123 



For the determination of methylmercury in DORM-2 HPLC was coupled with 

a quadrupole ICP-MS instrument because the Faraday collectors on the MC-SF-ICP-MS 

were not sensitive enough. For these measurements the relative standard uncertainty of the 

mass bias corrected ^°°Hg:*^Hg isotope amount ratio was typically 1.2%. In this case the 

measured isotope amount ratios, ^°*^g:'^Hg and ^^^T\:^^^T\, contributed 80 and 20% 

respectively to the combined standard uncertainty, as shown in Table 4-3. The further 

decrease in precision was due not only to the sequential nature of the instrument, but also 

the fact that transient signals, resulting from HPLC sample introduction, were being 

monitored. The best accuracy and precision is obtained when continuous ion signals are 

measured for several minutes^ ,̂ however, the use of the pseudo steady state approach for 

the calculation of isotope amount ratios minimised the effects of transient signal 

measurements. 

4.43.2 Isotope Dilation Analysis 

The combined standard uncertainty (z/) of the final analytical result is 

comprised of contributions from the individual standard uncertainties of the parameters in 

Equation 3-3, combined using the spreadsheet method of Kragten^. The combined 

standard uncertainty is then multiplied by a coverage factor {k\ the value of which depends 

upon the available degrees of freedom, to obtain the expanded uncertainty (U)y which 

approximates to the 95% confidence interval. The contribution of the individual parameters 

in Equation 3-3 can also be expressed in terms of their relative contribution to the 

expanded uncertainty as shown in Table 4-4 and Table 4-5, for NTST2710 and DORM-2 

respectively. 
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Table 4-4 The mass fiaction and expanded uncertainty for the determination of Hg in 

N1ST2710 by IDMS and external calibration. 

NIST2710 Total Hg 
Analytical method 

Hgmass 
flection 
C t̂gg"') 

Expanded 
Uncertainty 

Relative contributions 
to the expanded uncertainty 

absolute relative 
(%) 

Time resolved IDMS 21.5 ±2.7^ 13 95 4 

HNO3 tDMS 
microwave digest 31.7 ±4.0^ 13 95 5 

HPLC mobile phase 
IDMS microwave 23.6 ±3 .0" 13 95 5 
digest 

External calibration 12.1 ±2.3* 19 100 

Certified value 32.6 ± 1.8 6 
The reported uncertainty is the expanded uncertainty, calculated using a coverage factor 
(k) of either; a,k=2, or h, k =4.3, which gives a level of confidence of approximately 
95%. 

Table 4-5 The mass Section and expanded uncertainty for the determination of 

methylmercury in DORM-2 by IDMS and external calibration. 

DORM-2 
methylmercury 
analytical 
method 

Methyl mercury 
mass fraction Expanded 

Uncertainty 

Relative contributions to the 
expanded uncertainty 

absolute relative 

Time resolved 
IDMS 

External 
calibration 

4.25 

2.10 

±0 .47" 11 12 35 43 

± 0.5 » 24 100 

Certified value 4.47 ±0.32 7.1 
The reported uncertainty is the expanded uncertainty, calculated using a coverage factor 
(A) of either; a,k = 2, or h, k =4.3, which gives a level of confidence of approximately 
95%. 
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For the analysis of N1ST2710 the uncertainty budget was dominated, in aJI 

cases, by the uncertainty associated with the mass fraction of the ' ^ ^ g enriched inorganic 

Hg spike solution (Cy) which contributed 95% of the combined uncertainty. The 

2oo^gj99pjg isotope amount ratio of natural abundance mercury (R^) contributed 4%, with 

the other variables in Equation 3-3 contributing less than 1%. The relative contributions to 

the expanded uncertainty of the mass fraction of methylmercury in E>0RM-2, determined 

by IDMS, are shown in Table 4-5. The major contributions arose from the measured 

200j^g.i99pjg isotope amount ratio (43%) and the theoretical ^°*^g: '^Hg isotope amount 

ratio (Rx. 35%), derived from the uncertainty associated with the natural isotopic 

abundance of mercury^. Lesser contributions arose from the spike mass fraction (Cy, 

12%), the measured isotope amount ratio used for mass bias correction (9%), 

and ZRix (1%) with the other parameters in Equation 3-3 contributing less than 1%. 

Mercury is a relatively poorly characterised element, with relatively large uncertainties 

associated with its isotopic composition, hence, i f the precision and accuracy of the 

measurement of isotope amount ratios is further improved these uncertainties v^'il start to 

dominate the expanded uncertainty for the measurement o f mercury species by IDMS. 

It is interesting to compare the uncertainty contribution o f the spike (Cy) to the 

expanded uncertainty of the analyte mass fraction, U(Cx), determined in E>0RM-2 and 

NTST2710. In the latter case the relative contribution was much greater than the former 

(95% c.f. 12%) even though the standard uncertainty of the mass fraction of each spike 

solution was similar (55.3 ± 3.4 ng g"' c.f. 11.1 ± 0.21 ^g g *). The reason for this is that 

the ^°^Hg:^^Hg and 205yj.203y| ^^^^^^ amount ratios for the IDMS analysis of Hg m 

NIST2710 were measured more precisely than those for the analysis o f CHsHgCl in 

DORM-2, thereby resulting in smaller standard uncertainties, so their relative contribution 

to the expanded uncertainty fell to less than 0.03%, with a consequent increase in the 

relative contribution of the spike. 
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4A33 External Calibration 

An uncertainty budget was also formulated for the determination of Hg in 

NIST2710 and methylmercury in DORM-2 by external calibration, and the expanded 

uncertainty for each analysis calculated (Table 4-4 and Table 4-5 respectively). For both o f 

these analyses the uncertainty budget was dominated (100% after rounding) by the 

standard deviation of the mercury mass fraction predicted from the weighted regression 

calibration curve (Xpred). In other words, the standard uncertainty o f the regression fit 

dominated the final expanded uncertainty. For the total Hg mass fraction in NTST27I0 the 

relative expanded uncertainty was lower for the EDMS determinations (13%) than that for 

the external calibration (19%). Similarly, the IDMS determination of methylmercury in 

DORM-2 again resulted in a lower relative expanded uncertainty (11%), compared with 

that obtained by external calibration (24%). 

4^ Conclusions 

The mass flection of Hg and methylmercury has been determined, by both total 

and species specific isotope dilution analysis, in two certified reference materials, 

NIST2710 and DORM-2 respectively. For the analysis o f total Hg in NIST2710, complete 

equih*bration between the sample Hg and the added spike was only achieved when a 

microwave digestion was performed, with concentrated HNO3 as the solvent For this 

determination the found value of 31.7 g"' was in good agreement with the certified 

value of 32,6 ng g '. When 50:50 methano!:DDW (v:v) 0.01% 2-mercaptoethanoI was used 

as the extraction solvent incomplete equilibration, and hence an underestimate o f the 

certified value, resulted Only 37% of tiie available Hg was extracted from NIST2710 

using this solvent No significant difference, in the extent of equilibration between the 

sample Hg and the added spike, was observed when the methanol and 2-mercaptoethaol 

proportions in the equilibration solvent were varied. 
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In the case of species specific IDMS for methylmercury in DORM-2, when 

50:50 methanol:DDW (v:v) 0.01% 2-mercaptoethanoI was used as the extraction solvent 

complete equih'bration was achieved, even though only 47% o f the available 

methylmercury was extracted into solution, and the mass flection o f methylmercury (4.25 

g"*) was in good agreement with the certified value (4.47 ng g"'), illustrating that 

complete equilibration, rather than complete extraction, is required to yield accurate results 

using IDMS. In comparison, analysis by external calibration yielded analyte recoveries of 

approximately half that achieved by IDMS, reflecting the poor extraction of the analytes 

into solution. The expanded uncertainty was calculated for each analytical method, and 

improved precision was obtained using IDMS compared to external calibration. 

Two separate methods o f mass bias correction, bracketing and interpolation, 

were also employed for the characterisation o f the spike materials. The bracketing method 

gave a relative standard uncertainty for the spike mass fi^ction o f 6.2% as opposed to 1.9% 

when an internal standard was employed. Despite only a small difference in these standard 

uncertainties the uncertainty budget for the total Hg mass fi^ction determinations was 

dominated by the spike mass fiaction uncertainty whilst for species specific EDMS other 

parameters in the IDMS equation contributed significantiy with a marked reduction in the 

spike contribution. 
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Chapter 5 Comparison of Single and Double n)MS Using Cold Vapour 
Sample Introduction 

5. Introduction 

Complete equHibration between the particulate bound methylmercury and the 

enriched methylmercurychloride spike was achieved for DORM-2 C R M (Chapter 3). 

However, insufHcient methylmercury mercury was present to be measured using the 

Axiom multicollector ICP-MS. Therefore a scanning ICP-MS was employed, which 

resulted in the uncertainty budget for a single sample being dominated by the standard 

uncertainty of the measured isotope amount ratios. In order improve the precision o f the 

isotope amount ratios by utilising the muJticollector ICP-MS, and hence reduce the 

measurement uncertainty, an improvement in either sample introduction efficiency or 

instrumental sensitivity was required. 

Cold vapour (CV) generation, in which inorganic Hĝ "̂  is reduced to elemental 

Hg° vapour, has been coupled with atomic absorption spectrometry to determine total 

mercury^^'^'^^ and, when preceded by HPLC separation, mercury species*^'^'". Two 

reducing agents have commonly been employed, SnCb and NaBRi, and the elemental Hg 

vapour is subsequently purged from the liquid phase by the use of a carrier gas, such as 

argon, via a gas/liquid separator. The advantage of CV generation over conventional 

pneumatic nebulisation is a significant increase in the mercury signal due to an 

improvement of the analyte transport efficiency to the ionisation source^. 

CV generation has also been coupled with ICP-MS for the determination o f 

total mercury^**^*^*'̂ '. SnCh was used as the reductant because the use of NaBHj produces 

H2 gas, which can have deleterious effects on the plasma. Organomercury compounds are 

not reduced to I-fg° by SnCh without an oxidation step to produce Hg^\ prior to reduction 

to Hg°. Two common oxidants are acidified potassium permanganate or acidified 

bromide/bromate, however, acidified potassium permanganate suffers from two main 
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drawbacks. Firstiy, when mixed with SnCU, the permanganate is reduced to MnOi, which 

has a tendency to block the tubing. In addition, there are normally very high blank va lu^ 

associated with this reagent, which leads to poor limits of detection. 

A gas/liquid separator can lead to band broadening of chromatographic peaks 

due to a dilution effect. Zhang and Combs'^^ used a Scott type, double pass spray chamber 

as the gas liquid separator for the determination o f Ge, As, Sn, Sb, Te, and Bi by hydride 

generation ICP-MS. To achieve this, a Meinhard nebuliser was modified so that the 

hydride generation outlet tube replaced the inner concentric tube, this allowed the volatile 

hydrides to be transported to the plasma by the argon nebuliser gas and the liquid reagents 

to be removed via the waste port. Wan et al.^ used a similar approach for the speciation o f 

mercury compounds by ion chromatography CV-ICP-MS. 

Tyler et al.^^^ used the spray chamber as both the reaction vessel and the 

gas/liquid separator. The sample was conventionally nebulised while the hydride reagents 

entered via a separate tube through the waste port bung. The nebuliser created an aerosol 

with 98% going to the drain where the hydride generation took place. Pergantis and 

Anderson'^ also used the spray chamber as the gas liquid separator, and in this case the 

sample and the hydride generation reagents were mixed via a t-piece prior to entry into the 

spray chamber, again through a separate hole in the waste port bung. The volatile hydrides 

were transported to the plasma by the action o f the nebuliser gas, which entered 

conventionally along with an internal standard, with the other reagents removed via the 

drain tubing. 

The best isotope amount ratio measurement precision is normally achieved by 

using long dwell times and continuous sample monitoring. For the acquisition of data fi-om 

scanning ICP-MS instruments coupled v^nth HPLC the dwell time is a compromise 

between the shortest time possible, to minimise spectral skew and compensate for short-

term fluctuations in the ion signal, and the longest time possible, to allow sufficient counts 
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to be measured to achieve the best precision. The advantage o f a multicollector instrument 

is that the ion signals of each isotope are measured simultaneously, thereby negating the 

effects o f fluctuations in the ion beam caused by sample introduction and the ionisation 

system. Thus, the analyst has greater fi-eedom to choose the optimal dwell time, for best 

accuracy and precision, of the ion amount ratio. 

The spike material used in IDMS is often relatively poorly characterised, 

particularly for species specific IDMS, and can be a major contributor to the measurement 

uncertainty during conventional IDMS^^. Henrion'^^ has proposed an exact matching 

procedure to remove the spike solution mass fi^ction from the final IDMS measurement 

equation. In this procedure the mass bias correction factor is calculated by bracketing the 

sample/spike blend wnth a solution of a standard/spike blend having a known isotope 

amount ratio. The analyte mass fraction for single IDMS, v^'th bracketing mass bias 

correction can be calculated according to Equation 5-1. 

C = C 
R v - { X R B ^ 

( R ^ 

^ BC J 

Equation 5-1 

where 

Qt = is the mass fraction o f the analyte in the unspiked natural isotopic abundance sample 

mx = the mass of natural isotopic abundance sample 

Cy = the mass fraction of the isotopically modified spike material 

my = the mass of the isotopically modified spike material added to the natural isotopic 

abundance sample 

Ry = the isotope amount ratio o f the analyte isotope to the spike isotope in the enriched 

spike material 
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Rx = the isotope amount ratio of the analyte isotope to the spike isotope in die natural 

isotopic abundance sample 

RT = is the gravimetric referencerspike isotope amount ratio in the natural standard/spike 

mass bias cahbration blend 

RBC = is the measured referencerspike isotope amount ratio in the natural standard/spike 

mass bias calibration blend 

R B = is the reference:spike isotope amount ratio in the sample/spike blend 

= the sum of the ratios of all isotopes to the reference isotope, which in this case is 

the spike isotope. 

^Ri^ = the sum of the ratios o f the atom fraction of all isotopes to the atom flection o f the 
/' 

reference isotope, which in this case is the spike isotope in the natural isotopic abundance 

sample. 

h = moisture content correction factor 

The mass firaction of the spike material used to prepare the standard/spike 

blend used for mass bias correction is described by Equation 5-2 

C - C -^^^ 

^ X R B C 
Z R 

Equation 5-2 

where 

Cy = the mass fraction of the isotopically modified spike material used to prepare the 

natural standard/spike mass bias calibration blend 

Cz = the mass fraction of the natural standard used to prepare the natural standard/spike 

mass bias calibration blend 
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mz = the mass of the natural standard used to prepare the natural standard/spike mass bias 

calibration blend 

myc - the mass o f the isotopically modifred spike material used to prepare the natural 

standard/spike mass bias calibration blend 

Ry ^ the isotope amount ratio o f the analyte isotope to the spike isotope in the enriched 

spike material 

Rz = the isotope amount ratio of the analyte isotope to the spike isotope in the natural 

isotopic abundance sample 

R T = is the gravimetric reference:spike isotope amount ratio in the natural standard/spike 

mass bias bracketing blend 

RBC = is the measured referenceispike isotope amount ratio in the natural standard/spike 

mass bias bracketing blend 

^ R j Y = the sum of the ratios o f all isotopes to the reference isotope, which in this case is 
i 

the spike isotope. 

^ Ri2 = the sum of the ratios of the atom fraction of all isotopes to the atom fraction of the 

i 

reference isotope, which in this case is the spike isotope in the natural isotopic abundance 

sample. 

Combining Equation 5-1 and Equation 5-2 gives Equation 5-3 

R 
x R BC - R 

m 
x R 

m YC R x R BC 
Z R i z ni R 

^ ^ BC 
x R - R 

Z R , 

Equation 5-3 

For elements which do not vary in isotopic composition Rx is equal to Rz and ^ R i x is 

equal to ^ R ^ . Equation 5-3 can be simplified to Equation 5-4, the final equation from 

which the spike mass fraction, C Y , has been ehminated 
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C = C " ' Y " ' Z ' ^ R B C ) R T - R Z fa 
mx myc 

- ^ 5 ^ X R B - R 
R Y - R T 

Equation 5-4 

Henrion used an iterative procedure to exactly match the spike/sample and 

natural standard/spike blends in terms of both isotope amount ratio and ion counts, in order 

to minimise uncertainty contributions from systematic errors, such as mass bias, detector 

linearity and dead time, in the final IDMS run. However, the exact matching procedure can 

be time consuming depending on the number of iterations required to produce exactiy 

matched solutions. Catterick et al^^ demonstrated that matching the solutions to within 

5%, in terms of isotope amount ratio and ion counts retained many o f the benefits o f 

Henrion's procedure but significantly reduced the time for the analysis. 

Single IDMS, which includes the spike mass fraction in the measurement 

equation, has been employed so far in this work, with mass bias correction by an internal 

standard. The aims of the work described in this Chapter were; 

• to determine the optimal dwell time for the multicollector instrument. 

• to improve sensitivity by the introduction o f a cold vapour generation system between 

the HPLC separation stage and the mass spectrometer. 

• to compare single IDMS, with mass bias correction by an internal standard, with the 

approximate matching double EDMS technique. 

5.1 Experimental 

5.1.] multicollector Optimisation 

In order to determine the optimal dwell time for the Faraday cup multicollector 

array o f the VG Axiom ICP-MS during transient signal acquisition a 30 ng g"' (as Hg) 

solution o f natural isotopic abundance methylmercury (Alfa Aesar Standard) was prepared 
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in the HPLC mobile phase (50:50 MeOH:DDW, 0.01% 2-mercaptoetfianol). Four different 

dwell times were evaluated, 50, 100, 250 and 500 ms. Three different injection loop 

volumes, 100, 200 and 500 pJ, were used to determine the minimum absolute amount o f 

MeHg that could be injected to give accurate and precise isotope amount ratio 

determinations. The chromatographic set up is described in Chapter 3 Section 3.4.1., with 

tiie HPLC and typical ICP-MS conditions are shown in Table 5-1. NIST997 Tl SRM was 

added to the mobile phase, 50 ng g ', and continuously monitored for the purposes o f mass 

bias correction. To determine the repeatability o f isotope ratio measurements by HPLC-

MC-ICP-MS a solution of methylmercurychloride, 30 ng g"' as Hg, was injected onto the 

column, using a 500 (il sample loop volume. Eight injections were made for two different 

dwell times, 250 and 500 ms. 
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Table 5-1 Typical HPLC-ICP-MS operating conditions. 

H P L C Conditions 

HPLC Column 
Mobile Phase 

Flow Rate (ml/min) 

HiChrom Kromasil 100 F C l 8 Excel, 25 cm x4.6 mm i.d. 
50:50 v/v Methanol:DDW, 0.01% 2-mercaptoethanol, 50 
ng/gNIST997 Tl SRM 
1,0 Injection Volume (nl) 100, 200, 500 

V G Axiom MC-SF-ICP-MS Operating Conditions 

RF Forward Power 1450 Plasma gas (1 min ') 14 
(W) 
Reflected Power < 10 Auxiliary gas (! min ' ) 0.85 
(W) 
Spray Chamber Coupled cyclonic and bead Nebuliser gas (1 min ' ) 0.72 

impact, cooled to -5 *̂C 
Torch Fassel Quartz fitted with a Ehvell Time (ms) 50, 100, 

Pt shield 250, 500 
Nebuliser Glass Expansion 0.2 Sampler and Skimmer Ni 

ml/min Micromist Cones 
Ions Monitored »^«Hr, ' ^ H f i , ^ ^ f t , ^ ° ' H g , ^°^Hfi,^°^TI, ^°^Hft, ̂ n i , ̂ ° ^b 
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5.1.2 Cold Vapour Optimisation 

To improve the amount of mercury transported to the plasma, and hence 

instrumental sensitivity a cold vapour generation system was coupled between the HPLC 

column eluent and the VG Axiom MC-ICP-MS. A solution o f acidified bromide/bromate 

(Convol, BDH, Poole, UK) 0.0167 M with respect to bromide, 5% HCI (BDH, Poole, UK), 

was introduced into the HPLC eluent post-column via a low dead-volume splitter. 

Subsequently, the combined reagents passed through a 3 m Teflon reaction coil of 0.3 mm 

0 , to allow sufficient time for the oxidisation of organomercury species to Hg^" .̂ Due to the 

high back-pressure resulting from the reaction coil an HPLC pump (Dionex Analytical 

Pump, APM-1), with non-metallic pump heads, was used to introduce the acidified 

bromide/bromate solution. 

Tin n chloride (Sigma Aldrich, Gillingham, UK), 2% m/v SnCh in 5% v/v 

HCI, was combined with the reaction coil eluent, via a second low dead-volume splitter 

and a peristaltic pump, to reduce the Hĝ "̂  to elemental Hg°. The SnCh solution was 

sparged with He gas for 30 minutes prior to use, to remove dissolved elemental mercury. A 

further 1 m length of 0.3 mm 0 Teflon tubing was used to introduce the resulting mixture 

into the ICP-MS spray chamber via a hole drilled into the waste port bung. Figure 5-1 

shows a schematic diagram o f tiie HPLC-CV system. The HPLC and typical ICP-MS 

conditions are shown in Table 5-1. 
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Peristaltic Pump 
2% SnCl2 

5% HCI 

2.0 ml/min 

HPLC Pump 2 
0.01 M Bromide/Bromate 

5% HCI 

0.5 ml/min 

HPLC Pump 1 
50:50 C H j O R D D W 

0.01% 2-mercaptoethano] 

1.0 ml/min 

3 m length, 0.3 mm 0 i.d 

teflon reation coil 

Rheodyne 

Injection Valve 

HiChrom Kromasil 100 FC 18 Excel 
25 cm X 4.6 mm i.d. 

Nebuliser gas 

N1ST997 Tl CRM 

> To plasma 

Cyclonic spray chamber 

Drain tube 

Figure 5-1 Schematic diagram of the HPLC cold vapour generation MC-ICP-MS set up. 
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In order to determine the optimal flow rates of the oxidant and reductant 

solutions natural isotopic abundance methylmercurychloride was blended with *^Hg 

enriched methylmercurychloride to give solution having a ^°*^g:*^Hg isotope amount 

ratio of close to unity. The mass fraction o f this blend was approximately 1 j ig g \ and 

100(il injections were made. The HPLC flow rate was kept constant at 1.0 ml min"' while 

the flow rates of the Bf/BrO^ oxidant and SnCl2 reductant were iterativeiy varied until an 

optimum combination was found which gave the maximum ^^Hg ion signal. The starting 

point for the optimisation of the oxidant and reductant flow rates was 2.5 ml min"* for each 

reagent'^. Subsequently, using the optimal oxidant and reductant flow rates, the 

reproducibility of the HPLC-CV-MC-ICP-MS was determined by 10 separate injections of 

a methylmercurychloride solution, 30 ng g"̂  as Hg, with a ^ ^ g : ' ^ g isotope amount ratio 

o f close toum ty. 

5.13 Equilibration of Spike and CRM^s 

5.13.] Reverse IDMS of Spike 

The mass fi^ction of the *^Hg enriched CHsHgCI was determined by reverse 

ED-MS with the spike isotopic composition modified by the addition of a well 

characterised natural standard (methylmercury chloride standard, Al fa Aesar, Ward Hi l l , 

MA, USA). For this characterisation HPLC was coupled to die VG Axiom MC-ICP-MS as 

described in Chapter Three Section 3.41. The HPLC and typical ICP-MS operating 

conditions are shown in Table 5-1. The Faraday cup dwell time was set to 500 ms. The 

natural standard, 0.93 ^ig g"' as Hg, and the spike solution, nominally 4 \xg g*' as Hg, were 

blended to give a ^^'*^g:'^Hg isotope amount ratio of close to unity to minimise errors 

from sources such as mass bias^^, thus reducing the measurement uncertainty. The 

20Opjg.i99j^g isotope amount ratio was measured in four separate blends. The total 
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methylmercury mass fraction of the spike/natural standard blend was approximately 1 

g"', as Hg, with an injection volume o f 100 j i l . 

5.13.2 Eqailibration Experiments 

Equilibration solutions o f tiie HPLC mobile phase, 50:50 H20:CH30H v/v 

and 0.01% 2-mercaptoethanol, were prepared using HPLC grade methanol (BDH, Poole, 

QK), distilled deionised water (Elgastat Maxima, Elga Ltd, High Wycombe, UK) and 2-

mercaptoethanol (BDH, Poole, LTK). Four different CRM's were employed in this study, 

DORM-2 Dogfish muscle, TORT-2 Lobster hepatopancreas (both NRC, Canada), BCR 

464 Tuna fish and BCR 580 estuarine sediment (both Community Bureau o f Reference 

(BCR, Belgium). The moisture content of each CRM was determined by drying separate 

o 
subsamples to a constant mass at 105 C for 24 hours. 

The partitioning between the liquid and solid phases, for the equilibration 

experiments involving DORM-2 and KrST27IO CRM's, o f the ' ^ g enriched 

methylmercury spike solution and the particulate bound natural abundance methylmercury, 

was calculated in Chapter 4, Section 4.4.2. An assumption was made that this partitioning 

would be similar for these experiments. The approximate amount o f each CRM, corrected 

for moisture content, the equilibration solution volume to be used, and the spike mass 

Section to be added, was calculated using the previously measured solid/liquid partition 

coefiBcients. Hence, at the end o f the equilibration period enough methylmercury would be 

in the liquid phase to allow the measurement o f isotope amount ratios by HPLC-MC-FCP-

MS. The actual mass o f CRM and ' ' ^ g enriched methylmercury spike solution, and 

equilibration solution volumes are shown in (Table 5-2), each equilibration experiment was 

carried out in triplicate. 
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Table 5-2 The CRM and " ' H g enriched methylmercury spike masses. 

Moisture Corrected Masses 
Replicate I 

DORM-2 
Spike mass / g 
CRM mass/g 

Solution volume 
/ml 

Standard 
Uncertainty 

Standard 
Uncertainty 

Standard 
Uncertainty 

0.9140 
0.5089 

6.0 

4.22E-05 
9.06E-05 

0.7345 
0.4039 

6.0 

4.22E-05 
8.8E-05 

1.0945 
0.4755 

6.0 

4.22E-05 
8.97E-05 

TORT-2 

Spike mass / g 
CRM mass / g 

Solution volume 
/mJ 

Replicate I 
0.2504 
2.9247 

5.3 

7.38E-05 
0.000223 

2 
0.2937 
4.5626 

5.3 

7.38E-05 
0.000331 

3 
0.2179 
3.2101 

5.3 

7.38E-05 
0.000241 

BCR 464 

Spike mass / g 
CRM mass / g 

Solution volume 
/ml 

Replicate I 
1.74 

0.8038 
6.7 

6.99E-05 0.8761 
6.97E-05 0.4075 

6.0 

4.22E-05 
5.02E-05 

3 
0.9469 
0.4566 

6.0 

4.22E-05 
5.22E-05 

BCR580 

Spike mass / g 
CRM mass / g 

Solution volume 
/ml 

Replicate 1 
1.1134 
3.5288 

6.1 

4.22E-05 
0.000262 

2 
1.0916 
3.4641 

6.0 

4.22E-05 
0.000257 

3 
1.0907 
3.4425 

6.0 

4.22E-05 
0.000256 

141 



The amount of each CRM and enriched methylmercury spike, to give a 

200j^g.i99p^g isotope amount ratio of close to unity at complete equih'bration, was 

caJculated Subsequently, the appropriate volume of equih'bration solution, the required 

mass of ' ^ g enriched methylmercury spike and the preweighed CRM were added, in that 

order, to a clean glass conical flask o f an appropriate volume. The conical flask was 

stoppered, protected from light, maintained at a temperature o f 25**C by means o f an 

electrically heated hotplate, and agitated by a magnetic stirrer for 24 hrs. A t the end o f this 

time period the samples were filtered (Autovial 0.2^m F I FE membrane syringeless filters, 

Whatman, Maidstone, UK) into clean SteriJin containers, and the supernatant stored at 4 °C 

until analysis by HPLC-MC-ICP-MS and HPLC-CV-MC-ICP-MS. 

5A33 Measarement of Isotope Amount Ratios 

Two approaches for mass bias correction of the measured ^°**Hg:'^Hg isotope 

amount ratios were used These were the simultaneous measurement o f an internal 

standard, and bracketing with a methylmercury solution closely matched to the samples in 

terms of both ion counts and the ^ '̂̂ ^Hgi^^Hg isotope amount ratio. 

5.1.3J.1. Internal Standard Mass Bias Correction for Single IDMS 

Mass bias during single IDMS runs was accounted for by the use of an internal 

standard. The spray chamber was used as the gas/liquid separator during analyses by 

HPLC-CV-MC-iCP-MS. This allowed a solution of NIST997 Tl SRM, 50 ng g^ in 2% 

HNO3, to be nebulised in the conventional fashion and the ^°^TI and ^°^T1 isotopes to be 

continuously monitored. 

5.133^ Bracketing Mass Bias Correction for Doable IDMS 

For the bracketing method o f mass bias correction blends of a natural 

methylmercurychloride standard (Alfa Aesar, Ward Hi l l , M A , U S A ) and the spike 
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solution used for the equilibration experiments were prepared In order to closely match the 

^°*^g:'^Hg isotope annount ratio in the bracketing blend with the samples, natural standard 

methylmercurychloride solutions were prepared which closely matched the certified 

methyl mercury mass fraction of each CRM. Subsequentiy, for each replicate o f each CRM, 

a natural standard/spike mass bias blend was prepared This was achieved by combining 

the appropriate natural standard methylmercurychloride solution with the ^^Hg enriched 

methylmercurychloride spike solution, the masses o f each of these solutions closely 

matched those of the CRM and spike used in each replicate equilibration experiment, i.e. 

for DORM-2 replicate 1, 0.5109 g o f a natural methyimercurychloride standard of 4.48 |xg 

g* was blended with 0.9174 g of the ' ^ g enriched methylmercurychloride spike solution. 

These mass bias blends were further diluted in order to match the ion counts of the mass 

bias blends with those of the samples. 

5.2 Results and Discussion 

5.2.] MDlticollector Optimisation 

For HPLC-ICP-MS the intensity o f the ion signal is dependent on the amount 

o f analyte injected onto the HPLC column, provided transport efficiency to the ICP-MS 

ion counting device remains constant In order to determine the minimum amount o f 

analyte required for accurate and precise isotope ratio measurements using HPLC coupled 

with the VG Axiom MC-ICP-MS, a solution of natural isotopic abundance 

methyimercurychloride, 30 ng/g as Hg, was prepared and injected onto the HPLC column 

using three different sample loop volumes o f 100, 200 and 500 ji l - Four injections were 

made using each sample loop and the dwell time varied from 50ms through 100 and 250 

ms to 500 ms. Increasing the amount o f methylmercurychloride injected onto the column, 

by increasing the sample loop volume, resulted in peak broadening. The peak area doubled 

as the injection volume doubled whilst the ion signal at the chromatographic peak 
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maximum increased by 50% for the 200 jxl sample loop and 150% for the 500 loop 

compared with the peak height for a 100 sample injection. 

The ^ ^ g : * ^ H g isotope amount ratio was calculated from each resulting 

chromatogram, using the pseudo-steady-state-approach, from a peak top width o f seven 

seconds giving a variable number of corresponding data points dependent on the dwell 

time interval used (50 ms w = 141; 100 ms w = 71; 250 ms n = 29; 500 msn= 14). The 

standard uncertainty of each measured ^*^Hg:*^Hg isotope amount ratio was calculated as 

the standard deviation of the mean, i.e. the standard deviation divided by the square root of 

the number of data points of each measurement. Subsequently, the ^°**Hg:*^^g isotope 

amount ratio was corrected for mass bias effects using the Russell correction expression*^, 

Equation 3-1, and the associated combined expanded uncertainty calculated. For eill 

measurements the expanded uncertainty for the mass bias corrected ^ ° ^ g : ' ^ H g isotope 

amount ratios was dominated by the contribution from the measured ^ ° * ^ g : ' ^ g isotope 

amount ratio, > 99% relative. 

To determine whether the mass bias corrected ^°^Hg:*^g isotope amount ratio 

for each individual injection agreed with the lUPAC value a Students t test was performed 

using Equation 5-5, which includes the expanded uncertainties for both the measured and 

rUPAC values. 

1 - r 
U ( r ) 

Equation 5-5 

where 

r is the measured ^°*^g:'^Hg isotope amount ratio divided by the FUPAC value for the 

200j^g.i99p^g isotope amount ratio and U(r) is the combined expanded uncertainty, * = 2, o f 

r. 
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For each injection the measured ^ * ^ g : ' ^ g isotope amount ratio was not 

statistically different from the rUPAC value. However, the expanded uncertainty o f 

individual injections was dependent on the loop volume, hence the absolute amount o f 

methylmercurychloride, injected onto the column. The effect o f dwell time on the accuracy 

and precision of the measured ^ ^ g : ' ^ H g isotope amount ratio is shown in Figure 5-2, 

Figure 5-3 and Figure 5-4 for 100 jjJ, 200 |jJ and 500 ^il loops respectively. 

TTie poorest precision. Figure 5-2, was obtained when a 100|xl injection loop 

was used, with a mean relative expanded uncertainty, U(rm), of 2.5%. When the 200 

injection volume. Figure 5-3, was used, U(rm) fell to 0.9%. The most precise results. Figure 

5-4, with the least variation in the combined expanded uncertainty, were obtained when a 

500 |jJ sample loop was used U(rni) 0.5%. 

The variation in the dwell time interval, 50, 100, 250 or 500 ms, had little 

effect on the precision of each measurement for each sample loop volume used. This was 

because the number of data points acquired, from a seven second measurement acquisition 

period, increases as the dwell time decreases. Thus, the estimate of the standard deviation 

of the mean reduces because it is somewhat dependent on the number of data points. 
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Figure 5-2 The ^*^g;' '^Hg isotope amount ratios calculated by the pseudo-steady-state 

approach from a lOOpJ injection of methylmercurychloride, 30 ng g * as Hg, the error bars 

represent the expanded uncertainty {k = 2). The solid horizontal line is the fUPAC value, 

with the dashed lines representing the upper and lower limits of the expanded uncertainty 

(^ = 2). 

146 



? o 

1.4 

1.39 

1.38 

1.37 

1.35 

1.34 

1.33 

1.32 

1.31 

1.3 

n = 141 n =71 n =29 n = 14 

50 100 250 500 

Dwell time/ ms 

Figure 5-3 The ^^Hg;'^^Hg isotope amount ratios calculated by the pseudo-steady-state 

approach from a 200jjJ injection of methylmercurychloride, 30 ng g"' as Hg, the error bars 

represent the expanded uncertainty (k = 2). The solid horizontal line is the lUPAC value, 

with the dashed lines representing the upper and lower limits of the expanded uncertainty 
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Shorter dwell times presented a problem in the transfer o f data from the 

instrument control computer to a second computer for processing. The data files were 

exported as comma separated value (CSV) files in two columns, time and ion counts and, 

as the dwell time was decreased, the number o f time slices increased for a given 

chromatographic separation time. Nine ion signals were monitored on the Faraday 

multicollector array and, i f the dwell time was too short, or the acquisition period too long, 

it was not possible to open the CSV file completely in Microsoft Excel, resulting in a loss 

o f data. One advantage o f simultaneous ion signal detection by multicollector [CP-MS is 

that spectral skew will only arise from isotopic fractionation during chromatographic 

separation and/or sample introduction. Tlierefore, dwell times longer than the 10 ms 

required for the scanning ICP-MS could be used. 

To determine the repeatability o f isotope ratio measurements made by HPLC-

MC-ICP-MS two different dwell times, of 250 and 500 ms were selected, and eight 

separate analyses were made for each dwell time, using a 500 jxl sample loop volume, 

charged with a 30 ng g"' (as Hg) methylmercurychloride solution. Each mass bias corrected 

^^*^g:'^Hg isotope amount ratio, obtained from the resulting chromatograms, and 

calculated using the pseudo-steady-state approach, was compared with the lUPAC value 

using Equation 5-5. No statistical difference was found for each ratio. Similarly, the 

repeatability of the mass bias corrected ^*^g: '^Hg, given by the relative standard 

deviation, RSD (n = 8), was comparable for each dwell time, 0.41% RSD and 0.43% RSD 

for 250 and 500 ms respectively. These values compare favourably with that obtained by 

Wahlen and Wolff-Briche'^^, who report a standard uncertainty range for repeat isotope 

ratio measurements, calculated from peak areas, by HPLC-fCP-MS of 0.3-1.4% relative. 

However, the individual standard uncertainty of the mass bias corrected ^ ° ^ g : ' ^ g 

isotope amount ratio for each replicate was significantly lower for the 500 ms dwell time, 

typically 0.22% relative, than tiiat obtained for the 250 ms dwell time, typically 0.43% 

relative. Therefore, 500 ms was selected as the optimal dwell time for best accuracy, 
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precision and data handling, for the measurement of transient HPLC ion signals by MC-

ICP-MS. 

5.2.2 Cold Vapour System Optimisation 

In order to achieve sufficient sensitivity to allow isotope amount ratios to be 

measured by the Faraday cup multicollector array, a cold vapour generation system was 

coupled between the HPLC column eluent and the cyclonic spray chamber. The outlet tube 

of the CV system was directiy introduced into the spray chamber to allow the mercury 

vapour generated to be transported to the plasma along with the nebuliser gas flow. 

Initially, the CV inlet tube was placed vertically into the spray chamber so that 

the end of the tube rested just below the junction o f the glass waste outlet and the angled 

side of the chamber. This arrangement resulted in a highly variable signal for the 

conventionally nebulised Tl solution, shown in Figure 5-5A, such that the 205y|.203y| 

isotope amount ratio was typically 2.2 as opposed to a usual measured value o f 2.42. f t was 

postulated that, due to the cyclonic action o f the nebuliser gas through the spray chamber, 

the cold vapour generation reagents, SnClz and Br7Br03, were being entrained in the 

nebulised Tl solution resulting in matrix effect which effected a change in the instrumental 

mass bias, Subsequentiy, the CV generation inlet tube was bent into a U shape as shown in 

Figure 5-1, and Figure 5-5B shows a chromatogram produced using this arrangement In 

this case the measured 205^1.203^1 jg^^Qpg amount ratio was typically 2.42 and there was 

much less variability in the Tl signal t h o u ^ it was still quite noisy. 
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Figure 5-5 The measured, by HPLC-CV-MC-ICP-MS, ^ ^ g : ' ^ H g and ^ ^ r ^ o ' j i i^^tope 

amount ratios and ' ^ H g signal monitored for a lOO^I injection of methylmercury chloride, 

lug g*' as Hg. A, with the CV generation inlet tube unbent; B, with the CV generation inlet 

tube formed into a ' U ' shape. 
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The supposition that the CV generation reagents were being transported to the 

plasma was borne out by an increase in signal intensities. It is well known that a high 

matrix concentration causes space charge eflFects in the ion beam resulting in signal 

suppression and possible mass bias effects'^*. The signal intensity for the isotope rose 

from 10 Mcps with a straight CV inlet tube, to 40 Mcps when the CV inlet tube was bent 

into a U shape. Similarly, for a 100 | i l injection o f methylmercury chloride ( I ^g g* as Hg) 

the signal intensity for the ^°^Hg isotope rose from 4.6 Mcps to 18.6 Mcps at the peak 

maximum. The optimal flow rates for the BrV BrO^ oxidant and the SnCl2 reductant were 

0.5 ml minute"' and 2.0 ml minute ' respectively. 

The repeatability of the ^ ^ H g : ' ^ g isotope amount ratio, measured by HPLC-

CV-MC-FCP-MS was determined by 10 separate injections of a methylmercurychloride 

solution (30 ng g"' as Hg) with a ^ ^ H g : ' ^ g isotope amount ratio of close to unity. Figure 

5-6 shows the results o f these injections. The repeatability, given by the standard deviation, 

o f the mass bias corrected ^ ° ^ g : ' ^ H g isotope amount ratio o f these injections, was 0.45% 

relative. The typical relative standard uncertainty of the individual mass bias corrected 

200p^g.i99j^g isotope amount ratios was 0.22% relative. 
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Figure 5-6 The ^^Hg:'^^Hg isotope amount ratios, calculated by the pseudo-steady-state 

approach, from a 500pJ injection of a blend of natural isotopic abundance and '^^Hg 

enriched methylmercurychloride, 30 ng g * as Hg. The error bars represent the expanded 

uncertainty {k = 2). The solid horizontal line is the value calculated from the masses and 

mass fractions o f the individual solutions used to prepare the blend, with the dashed lines 

representing the upper and lower limits of the expanded uncertainty {k = 2). 
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5.23 Reverse IDMS of the '^Hg Enriched Metbylmercurychloride Spike 

The mass fraction of the ' ^ g enriched methylmercurychloride spike solution 

was detenmined by HPLC-MC-fCP-IDMS. Four different blends o f a natural isotopic 

abundance methylmercurychloride solution and the spike solution were produced with a 

200j^g.i99j^g isotope amount ratio of close to umty. The spike mass fraction was calculated 

using Equation 3-4, and the results are shown in Table 5-3. No methylmercury was 

detected in the blank solutions and therefore a blank correction was not included in 

Equation 3-4. The raw counts for each mercury isotope in the methylmercury peak were, 

however, baseline subtracted to account for inorganic Hg present in the ICP argon gas and 

the reagents used. The standard uncertainty of the measured ^ ^ g : ' ^ ^ g isotope amount 

ratio included the uncertainty contribution from the baseline correction, which contributed 

less than 0.1%. 

The mean mass fraction of the ' ^ g enriched methylmercurychloride spike 

solution, v/as 3.74 ^g g'' as Hg. In order to estimate the standard uncertainty of the spike 

mass fraction two separate factors were combined, the between blend and the within blend 

standard uncertainties. The standard deviation of the mean, SDm (0.063 jig g"') was 

considered to give an estimate o f the 'between' blend uncertainty^^, accounting for 

variations due to the chromatographic separation. The mean o f the standard uncertainty o f 

each replicate (0.126 j ig g ' ) , was used as the estimate o f the within blend uncertainty^^, 

accounting for the uncertainty of each variable in Equation 3-4 for each replicate. 
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Table 5-3 The mass fraction of the * ^ g enriched methylmercurychloride spike solution. 

Relative Contributions to the Standard 
Uncertainty 

(%) 
Replicate Methylmercury Standard RSu Rz ERiz Cz Hlg:"-«Hg 

chloride mass Uncertainty (%) isotope isotope 
fi^ction, as Hg (Mg g"') amount amount 

ratio ratio 
1 3.9244 0.128 3.25 97 1.8 0.25 0.24 0.05 
2 3.6506 0.125 3.42 97 0.0 0.23 0.54 0.08 
3 3.7053 0.125 3.38 98 1.7 0.23 0.12 0.11 
4 3.6698 0.125 3.40 97 1.6 0.23 0.46 0.09 

Mean 3.7375 0.14 3.76 
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The between blend, Ubetv.ecn, and within blend, u^ihin, standard uncertainties 

were then combined, by calculating the square root of the simi o f the squares of U b e m ^ and 

Uv-ithin, giving a final standard uncertainty for the spike methylmercurychloride mass 

fraction of 0.14(ig g"' (as Hg). The major contribution to this uncertainty arose from the 

within blend component, 80%, with the between blend standard uncertainty contributing 

20%. TTie within blend combined standard uncertainty for each of the four analyses was 

dominated by the uncertainty associated with the natural isotopic abundance ^°*^g:*^Hg 

isotope amount ratio, Rz, greater than 97%. Thus, the standard uncertainties associated 

with the natural isotopic abundances of^^Hg and *^Hg, as given by lUPAC^ from which 

Rz was calculated, provides the major contribution to the standard uncertainty of the spike 

mass fraction as determined by HPLC-MC-ICP-IDMS. Subsequentiy the spike solution 

was diluted to 0.313 ± 0.012 | ig g"* (as Hg) for use in the species specific IDMS of 

methylmercury in the certified reference materials. 

5.2.4 Analysis of Certified Reference IVf aterials 

Four certified reference materials, DORM-2, BCR464, TORT-2 and BCR580 

were equilibrated for 24 hours with a ' ^ g enriched methylmercurychloride spike. 

However, the mass fraction of methylmercury in TORT-2 (0.152 jig g"') and BCR580 

(0.073 ^g g'*) was too low to yield a measurable signal by HPLC-CV-MC-ICP-MS. For 

the TORT-2 Lobster hepatopancreas and BCR580 estuarine sediment CRM's the 

concentration of material in solution was approximately 0.6 g mV\ Methylmercury is 

highly lipophiIlic*°^ and also has a high affinity for humic/fulvic coatings o f sediments and 

soils"**, with a sedimentrwater partition coefficient as high as 10 .̂ Thus, for the 

experiments involving these two CRM's, not enou^ methylmercury was extracted into 

solution to be detected using the Faraday cups of the ICP-MS, due to the inability o f the 

solvent to counteract the high affinity o f methylmercury for the solid phase. Therefore, for 

particulate material with a low methylmercury mass fraction a destructive digestion step is 
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required i f isotope amount ratio measurements are to be made using faraday cup 

multicollector ICP-MS. 

For the equilibration of the * ^ g enriched methylmercurychloride spike with 

IX)RM-2 and BCR464 sufficient methylmercury was extracted into the liquid phase for 

the ^°*^g:'^Hg isotope amount ratio to be measured by HPLC-CV-MC-ICP-MS. Two 

separate IDMS strategies were employed to determine the mass fraction o f methylmercury 

in each CRM. The first was single IDMS, in which instrumental mass bias was corrected 

for by the use of an internal standard, >aST997 Tl SRM (50 ng g"'), which was 

continuously nebulised in conventional fashion. The second was double IDMS, which 

eliminates the spike mass fraction from the final measurement equation. In the latter case a 

calibration blend was used to correct for mass bias using the bracketing technique. The 

^^Hg: '^Hg isotope amount ratios in all samples were calculated using the pseudo-steady-

state approach. 

Equation 3-3 was used to calculate methylmercury mass fractions determined 

by single IDMS, whereas for the double IDMS calculations Equation 5-4 was used. Al l 

uncertainties were estimated using the spreadsheet method o f Kragten^, with the 

appropriate IDMS equation used as the model for these calculations. No methylmercury 

was detected in the blank solutions so a blank correction was not included in either o f the 

IDMS equations. The raw counts for each mercury isotope in the methylmercury peak 

were baseline subtracted to account for inorganic Hg present in the ICP argon gas, the 

equilibration solution, the HPLC mobile phase and the cold vapour generation reagents. 

The standard uncertainty of the measured ^ " ^ g i ' ^ g isotope amount ratio included the 

uncertainty contribution from the baseline correction, which contributed less than 0.1% 

relative. 

Three replicate analyses were carried out for both DORM-2 and BCR464 

CRM's by two separate procedures, single IDMS and approximate matching double 
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IDMS, and the mean methylmercury mass fraction calculated for each CRM with each 

method- The results of the individual replicates and mean values for each CRM by both 

IDMS procedures are shown in Table 5-4. The mean methylmercury mass fraction, as Hg, 

determined by single IDMS in DORM-2 was 4.24 ± 0.43 | ig g"\ with a found value for the 

double IDMS procedure of 4.29 ± 0 . 1 7 j ig g '. For BCR464 the mass fraction of 

methylmercury was found to be 4.99 ± 0.50 | ig g"' by single IDMS and 5.18 ± 0.23 ^g g"' 

by double EDMS. The uncertainties quoted for the analytical results are the expanded 

uncertainty, U, calculated by combining the between blend (ubcuvcen) and within blend 

(Uwiihin) standard uncertainties, as described in Section 5.2.3, and multiplying by a coverage 

factor, of 2, which approximates to the 95% confidence interval. 

For the analysis of both reference materials the expanded uncertainty, shown in 

Table 5-4, of the mean found methylmercury mass fraction was significantly smaller, by 

approximately 60%, for double IDMS when compared with single IDMS. The estimation 

of the expanded uncertainty, for the mean methylmercury mass fi^ction found in the two 

CRM's, allowed the results to be compared with the certified values using Equation 5-5. 

There was no statistical difference at the 95% confidence level between the found values 

for both IDMS procedures and the certified methylmercury mass fractions (as Hg), 4.47 ± 

0.32 ng g ' for DORM-2 and 5.12 ± 0.16 ^g g ' for BCR464. For single IDMS, the 

contribution of Uwithin to the expanded uncertainty was much greater than that of Ubcmccn 

(0,17 c./ 0.044 g ' for DORM-2 and 0.21 c.f. 0.045 \xg g ' for BCR464. In comparison, 

for double IDMS, the situation was reversed with Ubetu^ contributing more than Uttiihin 

(0.078 c.f. 0.04 ^g g* for DORM-2 and 0.110 c.f. 0.04 ^g g"' for BCR464). 
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Table 5-4 The methylmercury mass fraction determined in DOElM-2 and BCR464 CRM's 

by species specific single and double IDMS. 

Relative 
Relative Contribution to the 

Methylmercury Expanded Expanded Expanded 
mass fraction Ubemeen Uwihin Uncertainty Uncertainty Uncertainty 

CRM (nfi/g) (UR g-') (ng g-̂ ) (Ufi/g) (%) l % i 

DORM-2 
Single 
IDMS 
Double 
IDMS 
Certified 
Value 

Ubetween Uwilhin 

4.24 0.044 0.17 0.43 10.1 4 96 

4.29 0.078 0.04 0.17 4.0 83 17 

4.47 0.32 7.2 

B C R 464 
Single 
IDMS 
Double 
EDMS 
Certified 
Value 

4.99 0.045 0.21 0.50 lO.l 3 97 

5.18 0.110 0.04 0.23 4.5 89 11 

5.12 0.16 3.1 
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In addition, the combined standard uncertainty of each individual replicate 

analysis by double IDMS, shown in Table 5-5, was significandy lower than those obtained 

by the single EDMS procedure (Table 5-5), typically less than 1% relative compared with 

4% relative respectively, which markedly reduced the contribution o f û vithin to the 

expanded uncertainty of the found methyl mercury mass fractions in DORM-2 and 

BCR464 when compared to single IDMS. 

However, the variation between replicate analyses, shown in Table 5-5 as the 

relative standard deviation of the mean, was greater for the double EDMS procedure, 

typically 2%, than for single IDMS, typically 1%, which, combined with the reduction in 

Uwihin, increased the relative contribution of Ubet̂ ^̂ :en to the expanded uncertainty. Mass bias 

correction for double IDMS is performed using the bracketing technique, where a mean of 

two measured isotope amount ratios is calculated It has been shown (Section 5.2.2) that 

the repeatability of ^°*^Hg:'^Hg isotope amount ratio measurements in a standard solution 

by HPLC-CV-MC-ICP-MS was 0.45% relative standard deviation. Thus, it was 

conjectured that the increase in Ubei«xcn for the double IDMS method was caused by the 

effects o f the chromatographic system. 
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Table 5-5 The methylmercury mass fraction determined in replicate samples o f DORM-2 

and BCR464 CRM's by species specific single and double IDMS. 

Methylmercury mass Standard Relative Standard 
fraction Uncertainty Uncertainty 

CRM Replicate (Mg/g) % 

DORM-2 
Single rOMS 1 4.17 0.21 4.1 

2 4.32 0.22 4.3 
3 4.23 0.20 3.8 

Mean 4.24 
SDn, 0.044 
Relative SDm (%) 1.0 

Double IDMS 1 4.14 0.04 0.9 
2 4.40 0.03 0.6 
3 4.33 0.04 1.0 

Mean 4.29 
SDn, 0.08 
Relative SD^ (%) 1.8 

BCR 464 
Single IDMS 1 5.08 0.25 4.1 

2 4.96 0.25 4.2 
3 4.93 0.24 4.1 

Mean 4.99 
SDn, 0.045 
Relative SD^ (%) 0.9 

Double IDMS 1 5.25 0.05 0.9 
2 4.97 0.03 0.6 
3 5.33 0.04 0.7 

Mean 5.18 
SDn, O.Il 
Relative SD^ (%) 2.1 
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Contributions to Uncertainty 

5.2.5.1 Single IDMS 

The major relative contributions to the combined standard uncertainty for the 

species specific single IDMS determination o f methylmercury by HPLC-CV-MC-ICP-MS, 

o f each replicate analysis of both the DORM-2 and BCR464 CRM's, are shown in Table 

5-6. In each case the uncertainty budget was dominated by the standard uncertainty 

associated with two variables in Equation 3-3. The natural isotopic abundance ^ ^ g : ' ^ H g 

isotope amount ratio (Rx) calculated from lUPAC data^ (1.369 ± 0.012) which typically 

contributed 58% relative and the standard uncertainty of the * ^ g enriched 

methylmercurychloride spike mass fi^ction (Cy, 0.313 ± 0.012 jig g"' as Hg) was 40% 

relative. The ^°**Hg:'^Hg isotope amount ratios for each replicate, measured with a 

precision of 0.17% or better (relative standard uncertainty), contributed a maximum of 

1.7% to the combined standard uncertainty, with other parameters in Equation 3-3 

contributing 1% or less to the combined standard uncertainty. 

For the single JDMS determinations of methylmercury in DORM-2 described 

in Chapter 3, isotope amount ratio measurements were made by HPLC-Q-ICP-MS, and, 

with a typical standard uncertainty of 1% relative, were the major contribution to the 

standard uncertainty, with lesser contributions from Cy and Rx. The improved precision 

obtained when isotope amount ratios were measured using the Faraday cup multicollector 

array of the VG Axiom instrument, markedly reduced the relative contribution of the 

measured isotope amount ratios to the standard uncertainty of each replicate. Hence the 

uncertainty contributions of Rx and Cy increased. 
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Table 5-6 Relative uncertainty contributions to the standard uncertainty o f the 

methylmercury mass fraction determined in DORM-2 and BCR464 CRM's by species 

specific single IDMS. 

Relative Contributions to the Standard 
Uncertainty of the mass fraction o f methylmercury 

1%} 
Measured 

^ ^ g : ' ^ H g Isotope 
Sample Replicate Rx Cy Amount Ratio ZRix 
DORM-2 1 58 40 1.3 0.8 

2 54 45 0.2 0.7 
3 64 33 1.7 0.9 

BCR464 1 58 40 1.6 0.8 
2 56 43 0.4 0.7 
3 59 40 0.5 0.9 

The relative contributions to the standard uncertainty may not totai 100 due to rounding 
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The uncertainty associated with the mass fraction of the spike solution (Cy) 

was dominated by Rz (Section 5.2.3), which was equal to Rx- The relative uncertainty 

contribution of Cy was typically 40%, so the combined standard uncertainty for each 

replicate analysis of the CRM's is consequently dominated by Rx- Hence, when mercury 

isotope amount ratios are measured using a Faraday cup multicollector array, in order to 

significantly reduce the combined standard uncertainty o f each replicate analysis the 

isotopic abundance of mercury in both the samples and the natural standard used for the 

reverse IDMS of the spike solution must be determined, with greater precision than the 

existing lUPAC data can provide. 

5.2^^ Double IDMS 

The major contributions to the combined standard uncertainty for the 

determination of methylmercury in DORM-2 and BCR 4 6 4 , using the double IDMS 

procedure, are shown in Table 5-7. The largest contributions resulted from the uncertainty 

associated with the measured ^°*^g:'^Hg isotope amount ratios in the sample/spike blend, 

RB, and the mass bias calibration blend, RBC- However, the relative contribution which 

each parameter made to the combined standard uncertainty was highly variable, and 

dependent on the precision with which each ^°**Hg:*^g isotope amount ratio was 

measured, shown in Table 5-8. For all analyses, except that for IX)RM-2 replicate three, 

the ^°**Hg:*^Hg isotope amount ratio was measured with greater precision in the 

sample/spike blend than in the calibration blend, which resulted in the greater contributions 

to the measurement uncertainty from the calibration blend standard uncertainty. 
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Table 5-7 Relative uncertainty contributions to the standard uncertainty of the 

methylmercury mass Abaction determined in DORM-2 and BCR464 CRM*s by species 

specific approximate matching double IDMS. 

Relative Contributions to the Standard Uncertainty of the mass fi^ction 
of methylmercury 

(%) 

Measured Mean Measured Calculated 
^ « ^ g : ' ^ g isotope ^°*^g:^^Hg isotope 

amount ratio in amount ratio in isotope amount 
spike/sample blend, mass bias blend. ratio in mass bias 

Sample RB RBC Cz blend, RT RX 

DORM-2 1 37 47 3 8 4 
2 14 74 7 3 2 
3 38 34 3 16 8 

BCR464 1 43 54 3 0 0 
2 30 52 8 7 3 
3 29 47 6 12 6 

* The relative contributions to the standard uncertainty may not totaJ 100 due to rounding 

Table 5-8 Isotope amount ratios measured by HPLC-CV-MC-ICP-MS for the species 

specific determination of methylmercury in DORM-2 and BCR464 by approximate 

matching double IDMS. 

Measured 
' « ^ g : ' ^ H g Mean Degree of 

Isotope Relative Measured Relative matching 
Amount Standard ^ ° ^ g : ' ^ H g Standard between 
Ratio, Uncertainty in mass bias Uncertainty RBC and RB 

Sample RB (%) blend, RBC (%) (%) 

DORM-2 1 0.993 0.14 1.0159 0.16 2.3 
2 1.040 0.05 1.0480 0.12 0.76 
3 0.941 0.17 0.9824 0.16 4.4 

BCR464 1 1.005 0.15 1.0090 0.18 0.40 
2 1.021 0.08 1.0328 0.10 1.1 
3 1.013 0.08 0.9941 0.11 1.9 
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The standard uncertainty associated with three other parameters in Equation 

5-4; the natural standard mass fraction used to prepare the mass bias calibration blend, Cx, 

the calculated ^°^g:*^Hg isotope amount ratio in the mass bias calibration blend, R j , and 

the natural isotopic abundance ^ ° ^ g : ' ^ H g isotope amount ratio, Rx, also gave significant 

contributions to the combined standard uncertainty for each replicate (Table 5-7). The 

relative uncertainty contribution o f these parameters varied with each replicate, but 

decreased as the degree o f matching between the ^°*^g:*^Hg isotope amount ratio in the 

mass bias calibration blend and the sample/spike blend, expressed as the absolute value o f 

RBC:RQ in percent, increased. 

5.3 Conclusions 

A cold vapour generation system was coupled with HPLC and ICP-MS 

which improved sample transport to the ICP by up to 20 fold. The resultant increase in the 

ion signal allowed the measurement o f mercury isotope amount ratios by HPLC-MC-ICP-

MS. The use of multicollector HPLC-ICP-MS improved the precision o f mercury isotope 

amount ratio measurements by at least a factor of ten, when compared with quadrupole 

HPLC-ICP-MS, due to the improved signal stability and the use o f longer dwell times o f 

500 and 10 ms respectively. 

The mass fraction of methylmercurychloride has been determined in two 

CRM's, DORM-2 and BCR464, by two different procedures, single IDMS and 

approximate matching double IDMS, v^th the isotope amount ratios measured using 

HPLC-CV-MC-ICP-MS. The mass fractions determined by the two methods were not 

statistically different, within the limits of uncertainty, from the certified values. However, 

the major contributions to the expanded uncertainty for each IDMS procedure arose from 

different sources. 
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For the single IDMS procedure the major uncertainty contribution was derived 

from the within replicate uncertainty, u^i±in- The combined standard uncertainty of each 

replicate analysis was dominated by two components, the uncertainty associated with the 

natural isotopic abundance ^°*^g:*^Hg isotope amount ratio and the uncertainty associated 

with the ' ^ g enriched methylmercurychloride spike mass fraction, which was determined 

by reverse single EDMS. The combined standard uncertainty of the spike mass fraction was 

also dominated by the uncertainty o f the natural isotopic abundance ^ ^ g : ' ^ g isotope 

amount ratio. The improvement in the precision o f the m ^ u r e d isotope amount ratios 

obtained by HPLC-CV-MC-ICP-MS compared with quadrupoie ICP-MS, markedly 

reduced this contribution to the combined standard uncertainty of each replicate. 

Therefore, the use of HPLC-CV-MC-ICP-MS significantly reduced the expanded 

uncertainty, and, in order to further reduce the measurement uncertainty associated with 

single IDMS the natural isotopic abundance ^^g: '^^Hg isotope amount ratio in the 

samples and natural standard must be determined, significantly increasing the complexity 

o f the procedure. 

In the case o f the analyses by approximate matching double IDMS the between 

blend standard uncertainty, Ubet̂ sccn, was the major contributor to the expanded uncertainty. 

The combined standard uncertainty for each individual replicate was dominated by the 

contribution from the standard uncertainty associated with the measured ^ ° * ^ g : * ^ g 

isotope amount ratios in the spiked sample and the mass bias calibration blend. Therefore, 

the combined standard uncertainty of each replicate analysis can be reduced fiirther by 

improving the ^ ^ g : * ^ H g isotope amount ratio measurement precision. 

Three other factors, namely the mass fraction o f the methylmercurychloride 

natural standard, the calculated ^"^Hg:'^Hg isotope amount ratio in the mass bias 

calibration blend and the ^°*^g:'^Hg isotope amount ratio of natural isotopic abundance, 

also provided lesser contributions. The contributions from these parameters tended to a 
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minimum as the degree of matching o f the ^ ° ^ H g : ' ^ g isotope amount ratio in the 

sample/spike and mass bias calibration blend increased The expanded uncertainty o f the 

methylmercury mass fraction in each of the CRM's was reduced by approximately half for 

approximate matching double IDMS when compared with single IDMS, due to the lower 

contribution of u^ îihiD. Thus showing the power o f the approximate matching double EDMS 

procedure to minimise the uncertainty for an individual analysis. 
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Chapter 6 Conclusions and Suggestions for Future Work 

6. Conclusions and Suggestions for Future Work 

6.1 Conclusions 

The aim of this work was to investigate the sources of uncertainty in ID-ICP-

MS for speciation analysis. An uncertainty budget was formulated for all analyses, which 

allowed the measurement process to be systematically studied, and different analytical 

procedures to be compared, enriched methylmercurychloride was synthesised, by 

direct non-enzymatic methylation with methylcobalamin as the methyl group donor, and 

extracted in the solid form for use as a spike material for species specific IDMS. 

The stability of methylmercury during the IDMS procedure was investigated 

using ' H N M R spectroscopy and solutions o f ' ' ^ g enriched methylmercurychloride, ^̂ C 

labelled methyimercuryiodide and ' ^ ^ g enriched inorganic mercury. The chemical shift, 

and the 'H- '^Hg coupling constant, o f methylmercuryhalides were found to be dependent 

on the solvent composition. Intermolecular exchange of the methylmercury halide counter 

ion was observed, with an order of preference o f I >Br >CI , which required samples to 

be iodinated prior to *H NMR spectroscopy data acquisition. Hence, the chemical form of 

methylmercury measured by HPLC-ICP-MS is dependent on the halogen content o f the 

sample matrix and analytical reagents. 

No evidence was found for: methyl group exchange between *'C labelled and 

' ^Hg enriched methyimercuryiodide during HPLC separation; methyl group transfer 

between methyimercuryiodide and inorganic Hg in the presence of a soil material; or the 

formation of methyimercuryiodide from inorganic mercury and methyl groups contained in 

the soil matrix. The stability of ' ^ g enriched methyimercuryiodide in the presence of a 

fish muscle tissue could not be determined by *H NMR spectroscopy due to co-extracted 
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molecules giving signals which masked that from the methylmercuryiodide. However, the 

spike material was adjudged to be stable in the presence o f DORM-2, a fish muscle CRM 

by HPLC-ICP-MS. 

Coupling between HPLC and ICP-MS was optimised, using a low uptake 

naturally aspirated nebuliser, to reduce the effects o f the high organic content o f the mobile 

phase (50% methanol) on the plasma and to give the most stable ion signal. A pseudo-

steady-state approach was used to calculate isotope eunount ratios from the resulting 

chromatograms. This method of data extraction proved to be more accurate and precise 

than conventional peak integration, with the added advantage that an instrumental 

precision estimate was obtained from a single injection, thereby reducing the analytical 

time and the amount of sample required. 

Two ICP-MS instruments were used for isotope amount ratio measurements, a 

quadrupole instrument capable of sequential signal monitoring, and a multicollector 

instrument, which monitored up to nine ion signals simultaneously. The optimal dwell time 

for sequential monitoring of transient ion signals was 10 ms. Spectral skew, which resulted 

in erroneous isotope amount ratio measurements, was observed when dwell times of a 

longer duration were used, whereas shorter dwell times resulted in decreasing accuracy and 

precision. In comparison, for the multicollector instrument the best accuracy and precision 

was obtained when a dwell time of 500 ms was used. Isotope amount ratios were measured 

with a typical standard uncertainty of 1 to 2% relative by quadrupole HPLC-ICP-MS. The 

use of multicollector HPLC-ICP-MS resulted in a significant improvement to the standard 

uncertainty of the measured ^ ° ^ g : ' ^ H g isotope amount ratios, which ranged from 0,02 to 

0.2% relative, dependent on the intensity of the ion signal. 

The extent o f equilibration between the sample and the spike was determined 

in a series o f experiments involving a soil SRM, NTST27I0. A time resolved equilibration 

experiment, v̂ nth the HPLC mobile phase as the solvent, resulted in an underestimation of 
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the certified Hg mass fraction by 34% i.e. complete equilibration was not achieved. 

During this experiment 37% of the natural isotopic abundance Hg was desorbed and 42% 

o f the ' ^ g enriched spike was adsorbed onto the NTST2710 particles. Complete 

equilibration was only achieved when the soil material was completely solubilised via an 

HNO3 microwave digestion, rendering all of the Hg contained in the SRM available for 

equilibration with the ' ^Hg enriched spike solution. The found mass fraction o f mercury in 

NIST27I0 was in good agreement, within the limits o f uncertainty, with the certified value 

using this method. These experiments indicated that the mercury in NIST2710 was 

contained both within the soil matrix and adsorbed onto the particle surfaces. 

A second set of time resolved equilibration experiments were carried out using 

DORM-2 and ' ^ H g enriched methylmercurychloride. Complete equilibration was 

achieved, with the HPLC mobile phase as the solvent, despite the desorption of only 47% 

of the methylmercury in E>ORM-2 and the adsorption o f 65% of the ' ^Hg enriched 

methylmercurychloride spike onto the particles. The mass fraction o f methylmercury in 

DORM-2, determined by single IDMS, was 4.25 ± 0.47 ng g"' (k = 2), in good agreement, 

within the limits o f uncertainty, with the certified value o f 4.47 ± 0.32 yig g V The mass 

fraction of methylmercury in DORM-2 as determined by external calibration from the 

same sample was 2.10 ± 0.5 j ig g ' {k = 4.3), an underestimation o f 53% compared with the 

certified value. 

These experiments emphasised an important advantage o f IDMS over 

conventional external calibration, namely that complete equilibration between the sample 

and spike, rather than 100% extraction o f the analyte into the liquid phase, was required for 

accurate results. However, for the determination o f total Hg in a soil matrix a harsh 

destructive digestion was required in order to achieve complete equilibration. The extent o f 

equilibration was determined by partitioning o f the analyte and spike between the solid 

sample matrix and the equilibration solvent 
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The formulation of an uncertainty budget for single EDMS and external 

calibration allowed the performance o f both methods to be compared, the relative 

expanded uncertainty, when isotope amount ratios were measured by Q-ICP-MS, for single 

IDMS (11%) was less tfian half diat for external calibration (24%). For single IDMS the 

major contribution arose from the measured ^ ^ g : ^ ^ H g isotope amount ratio (52%), v âth 

lesser contributions from the measured ^^^-^^j] isotope amount ratio (16%), the natural 

isotopic abundance ^°**Hg:*^Hg isotope amount ratio (24%) and the spike mass fraction, 

(8%). The uncertainty budget for external calibration was dominated by the standard 

uncertainty of the calibration curve regression f i t (> 99%). 

For the time resolved equilibration with IX)RM-2 insufficient methylmercury 

was brought into solution to be measured by a Faraday cup multicollector array. To allow 

isotope amount ratio measurements by multicollector fCP-MS a cold vapour generation 

system was coupled between the HPLC and TCP-MS, with the spray chamber acting as the 

gas/liquid separator. Sample transport to the ICP was improved by up to 20 fold using this 

system. Subsequentiy, the mass fraction of methylmercury was determined in two CRM's, 

DORM-2 and BCR464, by two different procedures, single IDMS and approximate 

matching double IDMS. 

The increase in the ion signal achieved by the introduction o f the cold vapour 

generation system allowed the measurement of mercury isotope amount ratios in the 

samples from these experiments by multicollector HPLC-tCP-MS. Both IDMS procedure 

exhibited comparable accuracy. The found mass fractions for both single and double IDMS 

of methylmercury in each CRM were not statistically diflferent, within the limits o f 

uncertainty, from the certified values. However, for double EDMS the expanded 

uncertainty of the found methylmercury mass fraction in each o f the CRM's was reduced 

by approximately half when compared with single IDMS. This was due to the improved 
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standard uncertainty for each replicate analysis by double IDMS, 1% relative or less, 

compared with single EDMS, 4% relative. 

For single IDMS the uncertainty budget for each individual repb'cate was 

dominated, 98% relative, by the standard uncertainty of the natural ^ ° * ^ g : * ^ g isotope 

amount ratio. Throughout this work the natural isotopic composition of mercury, as given 

by lUPAC^, contributed significantly to the expanded uncertainty of each analysis by 

single and reverse IDMS, particularly when isotope amount ratios were measured with a 

high degree of precision using multicollector ICP-MS. To reduce this uncertainty 

contribution the isotopic composition of mercury in the samples and standards must be 

measured, which wouJd significantly increase the complexity of the analytical procedure 

and may only be beneficial i f multicollector instrumentation i f employed. 

In the case of double IDMS the major uncertainty contribution for each 

replicate, 72 to 97% relative, arose from the standard uncertainty o f the measured 

^ ° ^ g : ' ^ H g isotope amount ratio in the samples and mass bias correction blend. It is 

unlikely, due to the optimisation of the HPLC-ICP-MS coupling, and the data extraction 

method used, that a further reduction in the measurement precision o f isotope amount 

ratios resulting from transient ion signals by multicollector ICP-MS could be achieved with 

currendy available instrumentation. Therefore, the measurement uncertainty in a single 

sample by species specific double EDMS, which is highly dependent on the uncertainty 

associated with the measured isotope amount ratios, is unlikely to be significantiy 

improved. 

6.2 Suggestions for Future Work 

IsotopicalJy enriched isotopomers of the target analyte, required for species 

specific IDMS, are not commercially available and not all analytical laboratories have the 

facilities or knowledge base to synthesise these compounds. I f species specific IDMS is to 

become a routine method of analysis, rather than the preserve o f research and National 
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Measurement institutions as at present, the commerciaJ production of isotopically enriched 

compounds in the solid form is required This would also have the advantage o f reducing 

the uncertainty associated with the spike mass fraction, which is typically a factor of fifty 

smaller for solutions prepared from a solid of known purity compared with a mass fraction 

determined by reverse E D M S ^ , enabling single E D M S , which is less complex than double 

E D M S , to be more widely used 

A wide variety of reagents and digestion procedures have previously been used 

to extract methylmercury from biological and sediment samples. However, a systematic 

study of the effect of these procedures on the stability of methylmercury has not been 

carried out The stability of methylmercury during equilibration and separation by HPLC 

was determined by ' H N M R sp)ectroscopy using isotopically enriched isotopomers of 

methylmercuryhalides. CJsing the same approach, the stability o f methylmercury and other 

organometallic species having NMR active isotopes, such as organotin species, which have 

been shown to undergo rearrangement reactions during sample preparation for GC-ID-ICP-

MS^, could be determined. 

[nsufficient methylmercury was brought into solution for two CRM's, TORT-2 

and BCR580, certified for 152 and 70 ng g"* of methylmercury respectively, to allow 

isotope amount ratios to be measured by faraday cup muiticoIJector TCP-MS. For these two 

materials, and real environmental samples which are likely to contain even less 

methylmercury unless arising from polluted sites, a number of different approaches, 

namely preconcentration, enhanced extraction and choice o f instrument, can be taken to 

enable ion signals to be measured simultaneously by ICP-MS. 

Analyte preconcentration prior to injection onto the HPLC column has 

previously been used for mercury species in water samples and soil and sediment extracts. 

Corns'^' fitted a C|8 guard column into the sample loop o f the HPLC injection valve. As 

the aqueous sample was drawn through the sample loop mercury species were retained on 
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the guard colunui causing a preconcentration effect Subsequentiy the valve was switched 

to the inject position and the retained species eluted from the guard column by the mobile 

phase and separated on the analytical column. 

Micro-columns packed with sulphydryl cotton have also previously been used 

as a preconcentration media for organomercury species*'̂ . Water samples were passed 

through the micro-column where the organomercury was retained Following this 

preconcentration the retained species were desorbed using an acidic solution, which was 

neutralised before injection onto the HPLC column. For conventional external calibration, 

preconcentration procedures using soh'd media can be unrehable due to incomplete analyte 

extraction"^. However, this is negated in IDMS as analyte losses in equilibrated samples 

are accounted for by the action of the spike as an internal standard. 

Enhanced extraction techniques e.g. accelerated solvent extraction or 

microwave digestion, have been used to increase the amount of analyte brought into 

solution from solid sample matrices. However, a harsh destructive digestion may alter 

species information in the sample matrix and so would not be appropriate. Nevertheless, as 

it is not necessary to bring all of the anaJyte into solution for accurate results by EDMS, 

relatively gentle reagents, e.g. dilute HNOs"^, or procedures, such as very low power 

microwave digestion"\ may be suitable provided that it is shown that no analyte 

degradation occurs. 

Faraday cup detectors are inherently less sensitive than secondary electron 

multiplier (SEM) ion counters due to a high background signal from electronic noise. A 

high resolution ICP-MS instrument (Neptune, Thermo Electron, Bremen, Germany) fitted 

with multiple SEM's has recently been introduced, enabhng the simultaneous 

measurement of ion signals in samples at the sub ng g"' level. The use of this type o f 

instrumentation may enable the measurement o f isotope amount ratios, in samples with a 

low analyte mass fraction, with comparable accuracy and precision to that obtained with 
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the VG Axiom used in this study. For samples with a low level of methybnercury a 

scamiing [CP-MS couJd also be used, however, the subsequent decrease in the isotope 

amount ratio measurement precision available would increase the uncertainty in the 

analysis. 

Each of the three strategies presented to allow mercury isotope amount ratios in 

samples of a low analyte mass fraction to be measured by multicollector ICP-MS has its 

merits. Preconcentration of the analyte in the sample is the simplest to perform. However, 

the sample volumes from the 24 hour equilibration with TORT-2 and BCR580 were 4 ml 

or less after filtration, giving a small preconcentration factor which may not be suflBcient to 

give a large enough increase in the ion signal. The use o f a ICP-MS equipped with multiple 

SEM's is not an option open to many as the Neptune instrument costs in excess of 

£500,000. 

Fncreasing the amount of raethylmercury in solution by an enhanced extraction 

procedure is the preferred option, provided analyte stability is determined, as simple 

chemical and/or physical digestion procedures are readily available to most analysts. For 

species that are trapped within the sample matrix, rather than bound to surface layers, 

complete equilibration, and hence accurate results by IDMS, was difficult to achieve with a 

mild solvent Therefore, this approach would also have the advantage of rendering more of 

the analyte available for equilibration with the spike, by partially destroying the sample 

matrix, thus increasing the likelihood of complete equih'bration. 

Finally, there has recentiy been a debate in the literature as to whether the 

isotopic composition of mercury varies in nature"^'"^''^^'*^^ however, because a f i i l l 

uncertainty budget has not been formulated for the data sets firm conclusions cannot be 

drawn There are a number of other elements (L i , B, S. Ca, T i , Cr, Zn, Ge, Se, Zr, Mo, Ru, 

Pd, Cd, Sn, Te, Ba, Nd, Pt and Pb) in the lUPAC data which also have relatively large 

uncertainties associated with the isotopic amount fractions. Therefore, the limit on 
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reducing the measurement uncertainty for determinations of these elements by IDMS is 

likely to come from the natural isotopic abundance data. A programme, which must 

include full uncertainty statements, to improve the lUPAC isotopic amount fraction data 

and resolve the debate over possible variance of mercury is required The advent of 

multicollector ICP-MS instrumentation, which are capable o f the measurement o f isotope 

amount ratios with a high degree o f accuracy and precision, should enable this to be 

achieved. 
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Appendix 



Procedure for handling organomercury compounds 

Project Title: Factors affecting the accuracy and precision of isotope dilution analysis 

ICPMS for speciation studies. 

Researcher: Robert Clough 

Project Managers: Dr H.Evans 

Dr S.Beit 

Experimental Procedure 

Al l work with mercury compounds i.e. transfer of solid and liquid compounds to sealed 

weighing bottles, pipetting etc, wil l be conducted in a dedicated fume cupboard (DB 607) which 

contains spill trays and a sink. When handling solids and stock solutions (>I00 ppm) of 

organomercury compounds work must be conducted in the presence of another person. 

A l l work is to be conducted using double hand protection (rubber and special plastic gloves 

available from DB 514, I . Doidge). Standard laboratory safety procedures must be rigidly adhered 

to. Stock compounds are to be kept in the dedicated mercury poisons locker (DB607). Dilute and 

stock compounds (around 10 ppm) are to be kept in sealed vials in the dedicated fume cupboard 

DB607, volatile dilute solutions are to be kept in the fridge in DB607. 

A l l glassware and vessels used for stock solutions must stay in the dedicated fume cupboard 

(DB607) and be clearly labelled. Mercury disposal bottles must also be kept in the dedicated fume 

cupboard. Transport of all organomercury solids and solutions for analysis e.g. by NMR, ICPMS, 

must be carried out in labelled, sealed containers within a watertight sealed outer container. 

Help from technicians or project managers must be obtained in any case of doubt. 

Signed 

R. Clough 

Dr H.Evans 

Dr M . Foulkes 
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I . I N T R O D U C T I O N 

Speciation is a growing feature of atialytical chemistry and, 
depending on the method employed, has been defined variously as: 

• The chemical form of the analyle that is functionally important 
(e.g., ligands on an organometallic species or oxidation state). 

• The exact structural and chemical form of the analyte (e.g., 
nuclear magnetic resonance derived structure). 

• The nature of the chemical species as determined from an 
operational point of view, dependent on the method of sample 
preparation or analysis used (e.g., metals extractable by acetic 
acid or other solvent). 

In order to encompass a single wider definition of speciation the 
definition can be framed in terms of the information which is required 
by the analyst, or to ask the question "What do I want to know about 
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the analyte?". The answer poses several further questions: 

• How much analyte is present in total? 
• How much is available? 
• What is its chemical form/structure? 
• How is it distributed? 
• How stable is it? 
• How sure are we about all of the above? 

When considered in these terms, the definition of speciation includes 
not only the accurate determination of the concentration of individual 
chemical species but also their behaviour in biological and biogeochemical 
systems. The International Union of Pure and Applied Chemistry 
( l U P A Q have clarified specialion as . . the specific form of a chemical 
element defined according to its molecular, complex, electronic or nuclear 
structure"''^ leading to the identification and quantification of the 
diflferent chemical and physical forms of an element existing in a 
sample.̂ '̂ Hence, speciation analysis can be considered to be the 
measurement of one or more individual chemical species in a sample. 
The chemical form of an element will determine its toxicity, stability 
and transport, so this measurement is a very important factor in the 
wider definition of speciation. 

n. OVERVIEW OF SPECIATION 

The determination of distinct chemical species, as opposed to total 
elemental concentrations, is of growing importance in many fields. The 
bioavailability, toxicity and reactivity of trace metals and organometallic 
compounds in aquatic, sediment, soil, effluent and flue gas samples is 
determined by the relative proportions of the species present, rather 
than the total concentration of the target element.'̂ ^ The determination 
of specific chemical entities is long established, especially for non-metallic 
species including. N O J , N O J , N H j , and NH3, with the characterisation 
of metals having a shorter history.*^* Likewise the functionahty of 
biologically important enzymes and co-factors often depends on the 
speciation of individually important trace metals. 

The awareness of the need for speciation techniques has gradually 
arisen as various pollution and poisoning incidents have been 
investigated. The residents of Minamata Bay in Japan suffered acute 
and chronic mercury poisoning, with brain damage to new-bom infants, 
as a result of a release of inorganic mercury into the bay, followed by 
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biomethylation to methylmercury and its subsequent bioaccumulation in 
fish, due to its lipophillic nature.'̂ *̂ ' A spill of tetraalkyl lead in the 
Mediterranean raised awareness of the importance of organolead 
compounds.̂ '*̂  A population crash, combined with changes in shell 
shape and meal content, decimated the oyster farming industry of 
Arcachon Bay in France and was traced 10 the use of tribulyllin (TBT) 
as an anli-fouling agent.'''̂  Subsequently a correlation was found between 
the levels of imposex observed in gastropods in SW England and the 
introduction of TBT to this region. In contrast, inorganic tin is a relatively 
innocuous compound. 

More recently, one of the driving forces for performing speciation 
studies has been the introduction of legislative requirements, regulating 
the permissible levels of both total elemental concentrations and, in some 
cases, the concentration of specific species e.g., tributyltin in U K water 
quality legislation,'"*̂  and methylmercury in fish for human 
consumption.'̂ ^ 

Specialion methods are now applied to a wide range of analyles, 
primarily for the determination of Al, Sb, As, Cd, Or, I, Pb, P, Hg, Pt, 
Se, Sn and the actinide serie,'̂ ' and include: 

• Studies of biogeochemical cycles of chemical compounds. 
• Determination of toxicity and ecoioxicily of selected elements. 
• Quality control of food products and associated packaging. 
• Control of medicines and pharmaceutical products. 
• Technological process control. 
• Research on the environmental impact of technological 

installations. 
• Occupational exposure studies. 
• Clinical analysis. 

FH. SPECIATION IN PRACTICE 

There are a number of practical difficulties associated with speciation 
studies, mainly associated with the requirement to preserve the speciation 
of the analyte in any given sample throughout the analytical procedure. 
The main stages in the analytical procedure are: 

• Sampling and storage. 
• Sample preparation. 
• Analysis. 
• Quality assurance of results. 
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A. Sampling and Storage 

Sample colleciion, storage and preparation for analysis are factors 
which can have a considerable impact on the accuracy and precision of 
the final results. The stability of the analyte must be considered with regard 
to sampling and storage (what are appropriate containers?), losses of 
volatile species (e.g., organo-mercury), extractability (from particles, e.g., 
sediments, without changing the composition and/or structure of the 
original analyte components), solubility (stability in various aqueous 
and non-aqueous solvents), light sensitivity (may cause changes in 
molecular structure over time), pH sensitivity (will the analyie be effected 
by acidic or basic solutions?), temperature, and degradation over time. 

The choice of sample container can be crucial to preserving sample 
integrity and should be carefully considered. It should: 

• Not contain any leachable compounds of the analyte. 
• Be impermeable to the analyte. 
• Reduce or prevent photochemical reactions or oxidation/ 

reduction of the analyte. 

Factors which determine the speciation of an analyte in the 
environment need to be considered during speciation studies. For 
example, redox conditions govern the oxidation state of Fe and Mn 
species.'̂  Fe(II) and Mn(II) are both soluble in anoxic natural waters, 
but in oxygenated waters are present as the insoluble Fe(IlI) and Mn(rV) 
forms. Furthermore, the pH of an aqueous sample may also have a 
controlling effect on acid-base equilibria and redox potential which may 
rule out the use of acidification to preserve sample integrity. The ionic 
strength of the solute, and one or more of the major ions contributing to 
ionic strength, may also affect the speciation of the desired analyte.'^' 

B. Sample Preparation 

Once samples have been collected and suitably preserved the problem 
of extracting the analyie, while maintaining the integrity of the species, 
arises. For liquid samples, this should be relatively straightforward 
providing no changes occur during filtration or centrifugation and the 
sample can be analysed directly or after dilution. The choice of 
instnmient for analyte detection may necessitate a preconcentration 
step, which can in itself give rise to experimental errors due to species 
transformation or loss of analyte.'̂ ^ 
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For solid samples, an extraction step with a suitable solvent is 
usually required. For biological samples, toluene or methanol is regularly 
used, often in conjunction with an ultrasonic bath to increase the 
efficiency and speed of the extraction. A soxhlet extraction may also be 
utilised although this is a longer process and may involve the loss of 
volatile analytes or speciation information due to the elevated 
temperatures involved.'^^ 

Soil or sediment samples present further difficulties;''*' drying the 
sample, albeit at low temperatures in air may still result in the loss of 
and/or speciation changes to the analyte. Sieving the dried sample into 
separate fractions may also give inaccurate results as some elements are 
associated with a particular size fraction and the use of a "conserved" 
element such as aluminium as an internal standard may therefore 
be needed to correct for these errors.'"*' The analysis of anoxic sediments 
and soils presents further problems as care must be taken during drying 
and storage to ensure anoxic conditions remain. 

After a representative solid sample has been obtained various 
extraction protocols can be utilised. In order to determine the 
bioavailable fraction a mild extractant or complexing agent such as 
ethylenediaminetetraacetic acid (EDTA)'^' can be used. One of the 
many sequential extraction protocols based on the method of Tessier''®' 
may be employed to determine metals associated with the various soil/ 
sediment fractions. Sequential extractions can also be unreliable due to 
readsorption effects. Bermond et al . '" ' reported that sequential extraction 
protocols cannot reliably estimate trace metal speciation in soils, and the 
same may be true for other related solid material such as sediments and 
suspended paniculate material (SPM). 

Two further problems arise from sequential extraction protocols. 
First, their multi-step nature increases the risk of experimental errors, 
and second, the quantity of material required. For example, up to 
1 g can be difficult to obtain for some types of sample matrix, including 
suspended particulate material (SPM) where SPM concentrations for pro­
ductive surface waters''^' are characteristically between 20 and 100 mg L " ' . 

C. Analysis 

There are a wide variety of separation and detection techniques 
available for use in speciation analysis, with the main requirements being* '̂: 

• Sensitivity. 
• Selectivity. 
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• Quantitative analysis. 
• Qualitative analysis. 

A summary of the most commonly used techniques is presented in 
Table I . In particular, the advent of hyphenated investigation 
techniques which couple powerful separation methods with sensitive 
detectors e.g., high performance liquid chromatography inductively 
coupled plasma mass spectrometry (HPLC-ICP-MS) have allowed 
great advances in speciation studies in recent years. 

D. Quality Assurance 

The final consideration for speciation studies is that of quality 
control and quality assurance''̂ ^ which can be achieved using certified 
reference materials (CRMs). However, these are of limited availability 
for speciation studies, making the selection of an appropriate matrix 
matched CRM difficult. A second method is to use spiking and recovery 
experiments to validate the results. 

Extraction efficiency can be evaluated by an acid digestion of a sub-
sample followed by a total element determination.*"' An appropriate 
extraction method is then chosen for use on a second sub-sample, 
followed by species specific analysis, and the concentration of each 
species summed. I f this summed concentration and the total 
concentration are in close agreement the extraction efficiency can be 
considered to be 100%. An extraction efficiency which is less than 
100% but reproducible with an RSD of ^ 5 % may be considered to 
be under control and valid. If the RSD is much higher (e.g., extraction 
of 80 ± 2 0 % ) then the method is not under control and will not produce 
accurate resulu.*"' 

rV. ISOTOPE DILUTION ANALYSIS FOR 
SPECUTION STUDIES 

A. Basic Theory 

Isotope dilution analysis (IDA) has recently been apphed to inorganic 
mass spectrometry after many years of use in organic analysis. It is regarded 
as a definitive technique because the precision and accuracy obtainable 



Table I. Analytical techniques for speciation studies (adapted from Hill'*' and Welz''"''). 

Technique 

Gas chromatography 

High performance 
liquid chromatography 

Polarography/anodic/cathodic 
stripping voltammetry 

Comments Example applications 

G C has been used with various detectors 
which tend to be non-specific so peaks 
from interfering matrix constituents 
may give rise to confusion in p&ik 
identification. 

The most popular detectors (UV-Vis) 
are rarely sensitive enough for 
speciation studies. 

Used to differentiate between 
oxidation states, for kinetic 
experiments to determine 
stability consUints of complcxed 
metals. Speciation in the presence 
of humic/fulvic acids. 
Ship board monitoring applications. 

Separations of metalloporphyrins. 
Determination of organomctallic 

compounds of Sn, As, Pb end Hg. 

Aluminium in water samples. 
Cr and V with speclropholometric detector?. 
Determination of organomercury 

compounds in wastewater and 
sediments. 

Specintion of a wide variety of minor 
constituents of natural waters. 

Determination of fluorides 
in the presence of aluminium. 

Stability constants for complexes of Al, 
Cu, Fe, Mg, Mn, Pb, Zn in seawater. 

I 



Nuclear magnetic resonance 

Gas chromatography-atomic 
spectrometry 

High performance liquid 
chromatography-atomic 
spectrometry 

Row injection-atomic spectrometry 

Capillary zone 
electrophoresis-atomic spectrometry 

Hydride generation-atomic spectrometry 

NMR can be used for a wide range 
of elements although the sensitivity is 
relatively poor (ca. 1 mg analyte 
required). 

Heated transfer line usually required. 
Analytes need to be volatile or 

derivatised. Analytcs may condense on 
cool spots causing sensitivity loss. 

Ease of coupling to spectrometry. 
High organic content of some 

solvents may restrict the use of 
plasma based ionisation. 

Simple coupling, Fl has been used 
with numerous detection systems. 

Similar problems to HPLC-AS 
Hard to couple as the flow rates are 

generally incompatible 
Simple coupling. Suitable only for 

species forming volatile derivatives 
during reduction. 

Aluminium complexes with nucleosides. 
Food and beverage characterisation. 
Site specific isotope 

fractionation Compound purity. 
Determination of organometallic 

compounds in waters, biota, 
flue gases and petroleum. 

Determination of metalloporphyrins 
in crude oils. 

Determination of organotin compounds 
in water, molluscs and sediments. 

Speciation of Sb, Sc, und Hg. 
Determination of arsenic species. 
Determination of inorganic Se and Cr 

species in waters. 

Speciation of organolead compounds in natural 
waters 

High sensitivity determination of As, Se, Sn, Bi, 
Te, Sb, Pb, and Hg species. 

i 

s 

I 
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are unsurpassed by alternative analytical melhods.*'̂ ^ Isotope dilution 
analysis has the advantage that it can overcome problems associated 
with instnimental drift and matrix effects during mass spectrometric 
detection. Furthermore, isotope dilution analysis relies on the 
measurement of isotope ratios and not external calibration, so a complete 
uncertainty budget, which is traceable directly to S.I. units and therefore 
meets the highest metrologjcal standards, can be calculated. 

The IDA procedure involves the alteration of the natural isotopic 
abundance of an analyte in a sample by spiking with a standard of 
modified isolopic composition. A prerequisite for IDA is thai the target 
analyte should have more than one stable isotope, so, because this is the 
case for the majority of the elements, most of them can be investigated 
using this method. Two stable isotopes of the target analyte are chosen, 
which should ideally have a large difference in natural abundance. For 
best practice, the isotopically enriched analogue (the spike) should have 
the isotope of lowest natural abundance enriched to as high an abundance 
as possible (the spike isotope), with the lower abundance isotope heavily 
depleted (the reference isotope). The isotope amount ratio in the sample is 
measured, after spiking and equilibration, and entered into the isotope 
dilution equation (Eq. 1), along with other parameters. The concentration 
of the analyte in the sample can then be calculated. 

Equation 1. The isotope dilution analysis equation. 

where, 

C^=concentration of the analyte in the sample 
Q=concentration of the analyte in the spike solution 
H^j=mass of spike 
Wx=mzss of sample 
A/j^= molar mass of element in the sample 
A/j=moiar mass of element in the spike 
>4,= abundance of reference isotope in the spike 
£ j = abundance of spike isotope in the spike 

/ j x = abundance of reference isotope in the sample 
abundance of spike isotope in the sample 
reference and spike isotope amount ratio in the sample after 
spiking. 
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In order to achieve the best accuracy and precision and number of 
factors must be taken into account. Sargent et al.'*^ in a recently 
published guide, summarise the critical stages as follows: 

• Sample preparation. 
• Selection of the most appropriate isotopic internal standard. 
• Characterisation of the isotopically enriched analogue. 
• Addition of the isotopically enriched analogue. 
• Blank correction. 
• Instrumental analysis. 
• Calculation of the result. 
• Estimation of uncertainty. 

with the important sources of error given as: 

• Less than complete equilibration between the sample and spike 
will lead to significant systematic errors. 

• Isobaric and polyatomic ion interferences. 
• Isotopic discrimination e.g., isotopic fractionation, detector dead-

time and mass bias during instnunental analysis. 

B. Spiking Procedure 

I . Isotopically Enriched Standards 

Isotope dilution analysis (IDA) necessitates the purchase of 
isotopically enriched elements for production of the spike solution. For 
species-specific IDA it is also necessary to incorporate the isotopically 
enriched element into the target species, which will involve synthesis and 
purification of the compound. Isotopically enriched elements are much 
more expensive than the natural isotopic abundance equivalent, ranging 
from dollars per mg to hundreds of dollars per mg, often with a minimum 
order value, which can further increase the cost of analysis. 

This increased expense means that synthesis and purification 
procedures must be as eflficient as possible. It is often not possible for 
large-scale synthesis and purification procedures to be scaled down to the 
sub gram level without large losses of expensive, isotopically enriched 
starting material. This requires novel synthetic procedures to be 
developed to accomplish this analytical requirement. Sutton et al . ' '^ 
devised new synthetic routes for the small scale production of a siiite 



M A R C E L D E K K E R , b ic . • 270 M A D I S O N A V E N U E * N E W Y O R I C N Y 10016 

©2002 Marcel Dekker, Inc. All rights reserved. This material may not be used or repnxluced in any form without the express written pcnnission of MarocI Dekker. Incl 

12 Oongb et al. 

1J ^H-^^Hg= 105.4 Hz 

satellite 

B 
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I 

^H-^^-Hg 
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^H-^^Hg 
satellite 

Figure I. ' H NMR spectra of A; I mg/ml natural isotopic abundance CHaHgCl 
and B; I mg/mL '^Hg enriched CHjHgCl. The " ^ g enrichment can be clearly 
seen by the increase in the peak areas of the two peaks, which arise from spin-spin 
coupling between the ' H And '^Hg nuclei. Both compounds were dissolved in 
deuterated methanol, CD3OD, for spectral acquisition. 

of environmentally relevant organotin compounds (e.g., dibutyltin 
dichioride) with product yields of up to 90Vo. 

In our current research,'^^Hg enriched methylmercurychloride has 
been produced on a milligram scale using the direct nonenzymatic 
methylation of HgCl2 by reaction with the vitamin B12 co-enzyme methyl-
cobalamine according to the procedure of Rouleau and Block'*^ which 
gives yields of up to 90%. The product has been characterised by ' H , 
and ' ^ H g NMR spectroscopy which, as a non-destructive technique, 
allows for complete recovery of the isoiopically labelled compound. 
Figure I shows the *HNMR spectrum of natural isotopic abundance 
methyhnercury and its *^^g enriched analogue. The '^^Hg enrichment 
can be clearly observed by the increase in the peak areas of the two 
peaks which arise from the spin-spin coupling between the *H and 
" ' H g nuclei. 

The concentration of the spike solution can be determined by one 
of two methods. I f the purity of the isoiopically enriched analogue 
has been characterised with sufficient accuracy and minimal uncertainty, 
the concentration can be calculated simply from knowledge of the 
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masses of the compound and solvent employed. I f the purity of the 
spike material is not certain, then reverse isotope dilution analysis is 
employed. In this case, the enriched spike material is treated as the 
sample and the isotopic abundance modified by the addition of 
a known quantity of a natural isotopic abundance standard 
which acts as the spike material. In order to simplify the calculations, 
concentrations are initially calculated with respect to the metallic 
component only and not the concentration of the organometallic species 
itself. 

2. Reference: Spike Isotope Amount Ratio 

Error propagation plots can be used to calculate the optimum 
reference:spike isotope amount ratio for the minimisation of errors 
during the measurement of the isotope amount ratio. This ratio can be 
calculated for a particular isotope pair using Eq. 2, examples of which are 
shown in fig. 2. In practice, the isotope amount ratio should lie between 
1:4 and 4:1 to give reasonable counts for each isotope. 

Equation 2. Calculation of the optimum isotope amount ratio for the 
minimisation of error propagation where Ag is the abundance of reference isotope 
in the spike, B, is the abundance of spike isotope in the spike, is the abundance 
of reference isotope in the sample and is the abundance of spike isotope in the 
sample. 

In order to further reduce systematic errors (e.g., ion counting errors 
due to detector dead lime), it is better to fix the isotope amount ratio as 
close to unity as possible. In order to do this it is necessary to know the 
approximate concentration of the analyte in the sample prior to spiking. 
An exact 1:1 isotope amount ratio can be achieved by using an iterative 
matching procedure,''^''^' however, this can add considerable time to the 
method and is not always necessary. An approximate matching 
procedure has been developed and evaluated^*^ which confers many of 
the benefits of the exact matching procedure but is less time consuming. 
To avoid matrix effects and dilution of the sample, the spiking procedure 
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Figure 2. Error propagation plots for the '^Zni^Zn and ^̂ Se:"Se isotope 
amount ratios. These plots show the theoretical optimum spiking ratio needed 
to achieve the best precision for the ratio measurements. 

follows the convention that the spike should be added in a small volume 
of a relatively high concentration. 

C. Extraction and Equilibration 

Incomplete analyte extraction can lead to low recovery when an 
external calibration standard is used to determine the analyte 
concentration. Isotope dilution analysis relies solely on the 
measurement of isotope amount ratios, so problems associated with 
incomplete extraction are negated, provided that the spiked sample is 
extracted at the same efficiency as the analyte present in the sample.''^' 
I f the spike is not allowed to equilibrate fully with the sample, a 
different extraction efficiency for the spike will result, yielding errors in 
the measurement. 
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For liquid samples, equilibration by gentle agitation should be 
sufficient, but for solid samples, equilibration may prove problematic 
because the analyte can be both adsorbed onto the surface and 
contained within the lattice structure of the sample matrix. A further 
advantage of IDA is that, assuming equilibration occurs completely, 
losses of analyte are compensated for by losses of the spike in the 
same proportion. This ensures an accurate determination of the target 
analyte, but should not be taken as an excuse for using poor 
experimental procedure. 

D. Measurement of Isotope Amount Ratios 

Once the sample has been spiked, equilibrated, and the target analyte 
has been extracted the analysis can be performed. When speciation ana­
lysis is undertaken, a separation step such as high performance liquid 
chromatography (HPLC) precedes isotope dilution analysis by ICP-MS. 
For this, so-called species specific IDA, the resulting chromatogram will 
show peaks corresponding to the individual species, from which the iso­
tope abundance ratio data for each of the species must be extracted. 
A chromatogram showing the separation of natural isotopic abundance 
inorganic Hĝ "*" and methylmercurychloride is shown in Fig. 3. In order 
to estimate the isotope amount ratio correctly, a number of important 
considerations must be taken into account, as follows. 

2.E+06 B 

^E•06 

l.E+06 

i.E^oe " ° H B -

^ l.E+06 

6.E+05 A A 
2.E>05 

O . E ^ J 
100 200 
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300 400 

Figure 3. HPLC-ICP-MS Chromatogram of: A, inorganic mercury (2IOng) 
and; B. methylmercurychloride (900 ng), obtained by monitoring the 
"̂*Hg isotopes. 

199 Hg and 
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1. Mass Bias Correction 

In order to determine the correct isotope amount ratio it is necessary 
to compensate for mass bias in the instrumentation. Quadrupole and 
sector mass spectrometers and their associated ion optics do not transmit 
ions of different mass equally. In other words, i f an elemental solution 
composed of two isotopes with an exactly 1:1 molar ratio is analysed using 
ICP-MS, a 1:1 isotope amount ratio will not necessarily be observed. This 
so-called mass bias depends on mass and the type of mass spectrometer 
used, but generally tends to be greatest at low mass and decreases with 
increasing mass. Even very small mass-biases can have deleterious effects 
on the accuracy of isotope amount ratio determinations, so a correction 
must always be made, usually in one of two ways. 

/./. Bracketing 
I f an isolopic standard of known composition for the isotope pair 

under study is available, then a correction can be applied as shown in Eq. 3: 

C = ^ (3) 

where C is the mass bias correction factor, is the certified isotope 
amount ratio for the isotope pair and 

Rmcs is the measured isotope 
amount ratio for the isotope pair. 

In practice, the isotopic standard is analysed before and after the 
sample (i.e., the sample is bracketed) and the mean correction factor 
calculated for the bracketing pair is applied to the sample. 

1.2. Interpolation 
I t is also possible to use an alternative element, with an isotope pair of 

similar mass to the isotope under study, and which has a certified isotope 
amount ratio. The mass bias correction can be performed by interpolating 
(with increasing accuracy), using either a linear, power, or logarithmic 
equation. For example, the ^ 5 y | , 2 0 3 j j ^^^^^ ^^^^ correct the 
mass bias of ^°**Hg:'^Hg using the relationship shown in Eq. 3. 

'200 

^ " e / c c r ^ ^ ^ ^ ^ ^ ^ ^ ^ ( U , ( S ) . , „ ( M ^ ) ) 

Equation 3. The logarithmic law used for mass bias correction. 
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where cor is the corrected isotope amount ratio, mes is the measured 
isotope amount ratio, cer is the certified isotope amount ratio and 
RAM is the relative isotopic atomic mass. 

The advantage of this approach is that the mass bias correction can 
be performed by spiking the sample with a mass bias correction standard 
(i.e., Tl) and measuring this isotope amount ratio at the same time 
as the sample. For speciation analysis by HPLC-ICP-MS, it is most 
convenient to spike the mobile phase with the standard and monitor 
it continuously. 

2. Data Extraction 

There are two ways of extracting data from the multi-isotope 
chromatograms obtained. 

2.1. Peak Integration 
Peaks for each isotope of a particular specie in the chromatogram 

are integrated to obtain the baseline-subtracted peak integrals and 
the isotope amount ratio for that specie is calculated using these 
integrals. The advantage of this approach is that the effects of fractio­
nation and spectral skew. Fig. 4, are minimised, however, precision can 
be degraded because the precision inherent in rapid sampling of the 
isotopic pair is lost. 

2.2. Pseudo Steady-State 
The chromatogram can be treated as an undulating, or pseudo-

steady-sute, signal. Several data-points on the apices of the peaks 
(Fig. 5) for each isotope of a particular specie in the chromatogram 
can be chosen and baseline signal subtracted. The isotope amount 
ratios can then be calculated using each pair of corresponding data-
points from the two peaks and subsequently corrected for mass 
bias efiects. The advantage of this approach is that the inherent 
precision is maintained and it is possible to obtain an estimate of 
precision from a single peak, however, erroneous isotope amount 
ratios will result unless spectral skew is minimised. I f simultaneous 
monitoring of the isotopes is possible (e.g., using multicollector 
SF-ICP-MS) then this approach should yield both the best accuracy 
and precision. 
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Figure 4. An illustration of spectral skew. In the case of peak A. the isotopic 
signals are co-incident because the two isotopes were monitored and integrated 
over a time interval which was rapid enough to keep pace with the rapid rise and 
fall of the leading and tailing edges of the peak. In the case of peak B, isotopes 
were monitored over a longer interval, which was loo slow, and the isotopic 
signals are no longer co-incident (NB this is not the same as isotopic fractionation 
on the column). The effect has been exaggerated for illustrative purposes. 

E. Quality Assivance (QA) and Uncertainty 

Quevauviller et alJ'*"^"' describe two parameters that should be 
considered when reviewing analytical results: (a) accuracy ('̂ absence of 
systematic errors") and (b) uncertainty (coefficient of variation or 
confidence interval) produced by random errors and random variations 
in the procedure. I f the levels of uncertainty for a particular analysis were 
found to be too high, any results would be rendered useless. 
Quevauviller'''* refers to "statistical control'* as a viable means of 
ensuring that a high quality of laboratory results is maintained. This 
can be achieved by applying simple statistical analyses, such as r-tests 
and analysis of variance to ensure that methods are sufficiently 
reproducible. The level of accuracy can be determined by the application 
of commercially available certified reference materials (CRM). While, it is 
desirable to use CRM's with matching matrix constituents (to give 
validity to the found values), in practice it is possible to use several 
reference materials of different matrix types to give a greater degree of 
certainty for the result of the unknown samples. 
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Figure 5. Isotope amount ratios measured using the pseudo steady state 
approach. The isotope amount ratio is calculated by raiioing the ion signals for 
coincident pairs of data points over the peak maximum. 

The normal terms used in uncertainty measurement have been 
summarized'^' from the "Guide to the Expression of Uncertainty in 
Measurement'^^'" as follows: 

• The accuracy of measurement is the closeness of the agreement 
between the result of a measurement and a *true' value of the 
measurement. 

• Standard uncertainly is the uncertainly of the result of a 
measurement expressed as a standard deviation. 

• Coverage factor (k) is a nimierical factor used as a multiplier of 
the combined standard uncertainty in order to obtain an 
expanded uncertainty. 

1. Evaluating Uncertainty 

The estimation of the uncertainly associated with an analytical 
measurement is increasingly being recognised as an essential pan of the 
measurement process, allowing improved intercomparison of analytical 
resulls,'^^' and is a requirement for ISO accredited methodsP^ 
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Figure 6, Uncertainty budget procedure flow chart. 
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Figure 7. Simplified cause and effect diagram for the identification of sources of 
uncertainty in ID-MS. 

The estimation of measurement uncertainties in ICP-MS analysis using a 
"cause-and-effect" approach'^^'^*' is a useful and easily applied method 
for calculating an uncertainty budget. Figure 6 presents a flow chart of 
the steps necessary to construct an uncertainty budget. 

The cause and effect diagram is constructed to enable easy 
identification of uncertainty sources associated with the method. A 
simplified cause and effect diagram is presented in Fig. 7. The purpose 
is to generate an estimate of overall uncertainty without a detailed 
quantification of all the components. The diagram typically contains a 
branched hierarchical structure reducing to a single outcome, in this case 
an analytical result. Elements within the structure may contain 
uncertainties from sources such as analyte recovery (including 
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exlractabiliiy), measuring devices (e.g., tolerances for: balances, pipeiles, 
volumetrics, dilution errors), repeatability, calibration, temperature and 
internal standards errors. 

The uncertainly of a measurement is very different to the error; where 
error is the result of a measurement minus the true value of the 
measurand'^^ (which we cannot know), uncertainty has been more 
informally described^^' as "the interval around the result of a 
measurement that contains the true value with high probability'*. 

When all uncertainties for a particular method have been combined, 
it is possible to determine i f the level of uncertainty related to the whole 
procedure is within reasonable measurable levels. A further advantage of 
the use of a full uncertainty budget is that it allows the analyst to identify 
the contributions of each area of the measurement procedure to the 
overall uncertainly, and hence attempt to minimise these uncertainties. 
For example, if the precision of the measured isotope amount ratios 
contributes 83% of the overall uncertainty then major gains in reducing 
the measurement uncertainly can be obtained if the isotope amount 
ratios are measured with greater precision. 

/./. Uncertainties for Isotope Amount Ratio Analysis 
Information on possible sources of uncertainty for isotope amount 

ratio analysis can be found from observations made during other studies. 
Sanz-Medel and co-workers'̂ -̂ *** investigated sources of uncertainty for 
lead isotope amount ratio measurements by quadrupole, double focusing, 
and multicollector ICP-MS instruments. Thallium was used as an internal 
isotope amount ratio standard and the isotope amount ratio accuracy 
was evaluated using NIST 981 Common Lead Isotope standard reference 
material and an enriched ^ P b spike. Mass bias correction was 
performed using an exponential model for all three instruments and 
equations for the evaluation of the total combined uncertainly arising 
from the correction for dead time and mass bias were developed. They 
observed'̂ '* that, in correcting for mass bias, the uncertainty in the Tl 
ratio contributed the main source of uncertainty for the multicollector 
instriunent, but for the quadrupole and double focusing single collector 
instruments, the measured isotope amount ratio was the main source of 
uncertainty. 

High accuracy measurements from adapted ID-ICP-MS 
methodologies that utilised an iterative matching procedure have been 
successfully applied.'* '̂*^* Based on a conventional analysis, an 
approximate match of both the isotope amount ratio (1:1) and signal 
intensities (each within 5% relative), was made between a spiked reference 
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Standard and the spiked sample, providing a basis for calculations to be 
made by nomial IDMS, but retaining the benefits of the full matching 
procedure. Errors from sources such as mass bias, detector dead time 
and characterisation of the spike material are cancelled^**' thus reducing 
the measurement uncertainty. 

V. APPLICATIONS OF ISOTOPE 
DILUTION ANALYSIS 

Isotope dilution analysis for speciation studies has been applied to a 
wide variety of sample matrices (soils, sediments, natural and artificial 
waters, gases and reference materials) and target analyies (inorganic, 
organic, organometallic and complexes). The challenge for analysts 
employing ID for speciation studies is to achieve the accuracy and 
precision inherent in the method when applied to total elemental deter­
minations. Table 2 presents some examples retrieved from the literature. 
The detection limits and precision values presented in Table 2 highlight 
why ID analysis is the definitive and preferred method for trace/ultratrace 
determinations in conjunction with a variety of separation and sample 
introduction techniques of which there are many more than presented. 

A. Total Elemental Determinations 

Catterick et al.''^^ determined the concentration of Fe, Mg and Cd in 
three CRM*s (soft water, hard water and VDA plastic) by ID analysis 
using the approximate matching procedure for the isotope amount ratio 
and the ion signal strength. The analytical results were in very close 
agreement with the certified values, with uncertainty estimates (coverage 
factor, K, of 2) at the 95% confidence level of al least 50% lower than the 
stated uncertainty for the reference materials (e.g., Cd in VDA plastic: 
determined value 40.6 ±0 .6 , certified value; 40.9 ± 1.2 ng/g). Turner 
et al.*^ compared electrothermal vaporisation (ETV) ICP-MS using 
external calibration with ETV-ID-ICP-MS for the determination of 
Se in water and senmi CRM's. The uncertainties associated with 
determinations by the ETV-ID-ICP-MS method were a factor of four 
less than those associated with external calibration ETV-ICP-MS. 
Accuracy was significantly greater by ETV-ID-ICP-MS, with the results 
again in very close agreement with the certified values. Species specific 
isotope dilution analysis has been undertaken for both inorganic species 
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(e.g., iodine/iodale*^'' by LC-ICP-MS) and organometallic species 
(e.g., mono and dimelhylmercury by GC-ICP-MS'"^. Limits of detection 
for the two mercury species were 2 and 8pg (as Hg) respectively. 

B. Species Specific Isotope Dilution Analysis 

I . Accuracy and Precision 

Interferences from matrix effects can be overcome by the use of 
species specific ID analysis. Ebdon et alP^^ analysed an artificial 
rainwater sample for trimeihyllead chloride (TML, 42.75 ±4 .4 ng/mL 
determined by an interlaboratory comparison) by two methods; external 
calibration using TML calibranis and species specific I D analysis with 
^''Pb enriched T M L as the spike, separation and detection was by 
HPLC-ICP-MS. The external calibraUon HPLC-ICP-MS gave a result 
of l73±10ng/mL of T M L as lead. No errors in the calibration 
procedure could be found and no spectral interferences for lead were 
known. The sample also contained Ca at^^ l500ng/mL and Mg 
at ^ 525 ng/mL, with neither of the two metals interfering with the deter­
mination of lead. The authors surmised that an "enhandng"'^-'^ effect, 
observed for every analysis of the artificial rainwater by external 
calibration, was being caused by the sample matrix. Analysis by species 
specific ID-HPLC-ICP-MS gave a T M L concentration of 41 ±2ng /mL, 
in good agreement with the mean interlaboratory value. Because ID relies 
on the measurement of isotope amount ratios, rather than species 
concentrations, the matrix effects observed during external calibration 
measurements were negated. 

Isotope dilution analysis has also been used to measure species that 
have been previously undetectable in environmental samples. 
Dimethylthallium (Me2Tl'^ had previously only been measured in 
laboratory experiments with detection limits at the level of ng/mL, a 
factor of 1000 higher than levels expected in the environment.*^' 
Schedlbauer and Neumann synthesised Me2TI"*' from enriched 
elementary thallium using a two step synthesis which gave a yield of 
25%. The stability of the Me2TI'*' was evaluated and under optimum 
storage conditions (pH 2, 0°C) the compound was found to be stable 
for 30 months. 

Open ocean seawater samples, collected from depths of between 10 
and 4000 m from the Southern Atlantic, were spiked with the ^ ^ 1 
enriched dimethylthatlium. The 203y|.205j| jjQjQpg amount ratio was 
measured by positive thermal ionisation mass spectrometry, after 



Table 2. Applications of isotope dilution analysis for speciation studies. 

Analyte 

Trimclhyl and 
triethyl lead 

Cadmium 

Comments Detection limits/precision Reference 

Analysis of rainwater by 
reversed phase ion pairing 
chromatography. 

Environmental and biological 
reference materials analysed. 
Results were in close 
agreement with the certified 
values except for very 
low [Cdl. 

Trimcthyl !ead:3ng/mL 
Trielhyl lead: 14ng/mL 

Isotope amount 
ratio precision 
<0.1%. 

Sample precision 0.6-1.6%, 

[331 

[41] 

a. 
t 

Organotin species 

Selenium 

Organomercury 

Reversed phase column with 
ion pairing agent. CRM's. 

Water and serum samples. 
Electro thermal 

vaporisation ICP-MS. 

GC-ICP-MS 
Furnace atomisation 

plasma ionisation 
MS (FAPIMS). 

Natural gas condensate. 

Tetra methyl lead 
0.48 ng/mL 

Isotope amount ratios 
0.2-2.3% RSD. 

Sample precision 0.06-0.8. 

2-8 pg Hg. 
Precision 2% 

[42] 

(251 

(321 Q 



Chromium 

Iodine species 

Mercury 

Monomethy! mercury 

Anion exchange column 
ICP-MS. 

Artificial waters. 

HPLC-ICP-MS, water sam­
ples. 
Hair and reference samples 
Total determination 

ICP-MS. 

GC-ICP-MS in CRM's. 
Species transformation 

detection. 

Cr(ni) 0.21 ng/g. 
Cr(VI) 0.37 ng/g. 
Recovery 99.5-99.1%. 

Accuracy > 99.5% 
Precision < 1 % 

Isotope amount ratio 
precision 0.4%. 

Species transformation 

[43] 

131] 

[44] 

[45] 

LOD 2.5 pg Hg 
1 ng/g CH3Hg+ 

2+ per 

o 
n 

i 
§. o s 
? 
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preconceniration by an anion exchange resin, separation of inorganic Tl 
species by methyl isobutyl ketone, and sample clean-up stages to improve 
ionisation efficiency. The Me2Tl'^ detection limit was 0.4pg/mL for a 
500mL sample and 1.4pg/mL for total Tl for a 50 mL sample. There 
was a variation of between 3 and 8% for parallel sample determinations. 
It was found that between 3-48% of the total thallium concentration was 
Me2Tl'*' and, as this compoimd is not known as an anthropogenic 
substance, that production of Me2Tl''" is the consequence of bioactivity. 

2. Species Production and Decomposition During Measurement 

Isotope dilution analysis, by means of isotope amount ratio 
measurements of sample and spike solutions, can also be used to 
investigate species transformations. Such transformations will bias 
analytical results, and may occur at any point in the analytical procedure 
between sample spiking and isotope amount ratio measurement. One 
example of a specie transformation that may occur after spiking a 
sample with ' ^Hg enriched methylmercury is given in Eq.4. 

Hg^^ + C H r H g + ^ ' ^ H g + CHsHg^ 

Equation 4. Species transformation between methylmercury and inorganic 
mercury. 

Hill et al.''''^ observed species transformations during the deter­
mination of organotin compounds by HPLC-ID-ICP-MS. The 
chromatogram of the standards. Fig. 8, gives a ratio for '^Sn:*'*Sn as 
approximately 2.25 which reflects the natural abundance ratio of these 
two tin isotopes.̂ '̂ ^ Spiking with an appropriate amount of "*Sn 
enriched TBT, calculated after conventional HPLC-ICP-MS analysis of 
the sample, should give TBT signals for each isotope which reflects the 
degree of equilibration between the sample and spike. The other tin 
species detected should have the natural isotope amount ratio, because 
only enriched TBT was spiked into the sample. The chromatogram of the 
'**Sn enriched sample clearly indicates the presence of several 
unidentified peaks having a greatly enriched *̂̂ Sn signal along with the 
reduction in size of the tributyl and iriphenyl tin peaks. 

Stable isotope species specific ID can also be used to investigate the 
analytical process with regard to analyte stability. In this case, the sample 
is spiked with both an isotopicalty enriched analogue of the target analyte 
and an inorganic component of the analyte enriched in a different isotope. 



M A R C E L D E K K E R , I N C . • 270 M A D I S O N A V E N U E • N E W Y O R K , N Y 10016 

62002 Marcel Dekkcr. Inc. Ail rights reserved. This material may not be used or repioduced in any form without the express written permission of Marcel Dekker. Inc. 

Isotope Dilution for Speciation Studies 

Tributyl 

II 
Triphenyl Dibutyl 

127 

10a 

Di phenyl 

Standard 

'"Sn 

250.00 500.00 750.00- ' 1000.00 ' 1250.00 ' 1500.00 

Sample 

Figure 8. Organotin species transformation as indicated by H P L C - I D - I C P - M S . 

(From Hill el alJ'^^ 

Artefact formation during extraction, derivatisation and detection of 
methylmercury by GC-ICP-MS has been observed'^^^^ indicating that 
the methods are not imder control and bias in the results will arise. 

In order to investigate the processes involved, Lambertsson'et al.'"*** 
spiked sediment samples with CHa'^^Hg-^ and/or ^^'Hg^ (^^Hg was used 
as the reference isotope) to measure mercury methylation and 
demethylation during the measurement process. By monitoring the 
change in the ^*Hg:^^Hg isotope amount ratio of the methylmercury 
in the sample, and by calculating the amount of CH3^*Hg'*" present, the 
amount of inorganic mercury methylated in situ could be estimated. 
Similarly, the '^^Hg:^°*^g isotope amount ratio of inorganic mercury 
was determined. The amount of demethylated methylmercury was 
calculated from the difference in the concentrations between the added 
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CHa'^^Hg"^ and that determined in the sample after extraction, 
derivatization and detection. The detection limits for the methylation 
of the ^'^'Hg^ spike and the demethylauon of the added CHa'^^Hg"^ 
were 0.1 and 0.2 ng per gram of sediment respectively. 

3. Monitoring Equilibration 

The use of isotopically enriched elements and/or compounds enables 
the extent of adsorption/desorption of the enriched spike and natural 
isotopic abimdance analyte to be monitored. The need for complete 
equilibration during ID analysis was illustrated by Clough et al.^^ '̂ who 
spiked a sample of NIST 2710 Monuna soil CRM, certified for total Hg, 
with an equivalent amoimt of *^Hg enriched mercury. The equilibration 
solvent comprised 80:20 methanol-water v/v. The spike/parliculate/ 
solvent mixture was agitated and samples withdrawn over a timespan 
of 2-3000 min from the initial mixing. After filtration and dilution with 
fresh solvent the ^^Hg-.'^^Hg isotope amount ratio and the total H g 
concentration of each withdrawn aliquot were determined by ICP-MS. 
The extent of equilibration between the spike and sample was calculated 
for each aliquot and compared with the theoretical equilibrium 
^**°Hg;'^Hg isotope amount ratio calculated from the known masses of 
enriched and natural abundance mercury present in the starting materials 
(Fig- 9). 

The measured ^^^Hg^^Hg isotope amount ratio did not attain the 
theoretical value, indicating that the sample and spike equilibration was 
not complete. The system did however come to a related equilibrium 
point, since the ^°**Hg:*^Hg isotope amount ratio was unchanged for 
the final 2750min of the experiment. The final measured ^**°Hg:*'®Hg 
isotope amount ratio was corrected for mass bias using Eq. 3. The Hg 
mass fraction of the NIST2710 CRM of 27.6^g/g, calculated using Eq. 1, 
underestimated the certified value of 32.6 ng/g. The adsorption of the 
spike mercury and the desorption of the particulate mercury with time 
was calculated from the measured '̂̂ ^^Hgi^^Hg isotope amount ratio and 
the total mercury concentration in solution, Fig. 9 shows the adsorption 
and desorption for the first 100 min of the experiment. 

The amount of mercury desorbed from the NIST 2710 CRM at 
3000 min was estimated as 8.2 jig giving the NIST 2710 CRM mercury 
mass fraction as 2.7 ng/g. The different mercury mass fractions for the 
CRM obtained IDA and the amount of Hg released into solution 
highhght that, in IDA, it is important to ensure complete equilibration 
of the enriched spike and the sample rather than necessarily requiring 
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Figure 9. Extraction of inorganic Hg from a sediment certified reference 
material, which has been spiked with an isotopically enriched analogue, (a) 
Isotope amount ratio monitored in the liquid phase over the course of the 
extraction—note that the ratio does not reach the theoretical equilibrium 
value, indicating that some of the Hg is not easily exchangeable; (b) the extent 
of adsorption and desorption of Hg, originating from spike and sample, over 
the course of the extraction procedure. 
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complete extraction. The primary requirement for IDA with solid 
samples is that the analyte is sufficiently abundant in solution to be 
able to perform an accurate and precise isotope amount ratio measurement. 

V I . CONCLUSIONS 

Isotope dilution analysis can be usefully applied for speciation 
studies provided that: 

• Appropriate isotopically enriched analogue compounds are 
available, or can be easily synthesised and purified. 

• The spiking ratio is chosen so as to ensure the best accuracy and 
precision. 

• The spike and sample reach equilibrium 
• appropriate data acquisition and data treatment procedures are 

followed. 

Providing the above are accounted for, the technique of species 
specific ID-MS is capable of highly accurate and precise analyses and 
correction for matrix effects. In addition, species transformation during 
the sample preparation stage can often be detected, and the compounds 
can also be used for stable isotope studies. 
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'"''Hg-cnriched methylmercurychloride has been synthesised, purified, and characterised by ' H nuclear magnetic 
resonance spectroscopy (NMR) for use in species specific isotope dilution analysis ( I D A ) . The stability of 
methylmercury during the analytical procedure was investigated using ' * ^ g and '^C isotopically labelled 
methylmercury analogues and ' H N M R spectroscopy. The halide order of preference for methylmercury was 
found to be I > Br > CI. No evidence was found for the decomposition, or formation of meihylmercury 
during equilibration whh soil (NiST 2710) or dogfish musck; (DORM-2), or during the chromatographic 
separations. 

1. Introduction 
Elemental and molecular speciation by conventional external 
calibration are now well established analytical techniques. The 
introduction of legislative requirements, regulating the con­
centration o f specific species, e.g., tributyllin in U K water 
quality legislation* and methylmcrcury in fish for human 
consumption,^ is now one of the main driving forces for 
performing speciation studies, and therefore analytical results 
must be reported with a high degree of accuracy and precision. 
Isotope dilution analysis ( IDA) is regarded as a definitive 
analytical technique because:^ 

(i) it is directly traceable to SI units; 
(ii) the precision and accuracy obtainable are unsurpassed by 

aliemalive analytical methods;* 
(iii) it can account for analytc losses or incomplete 

extraction. 
In practice, IDA involves the attcration of the natural 

isotopic abundance of an analyte in a sample by spiking with a 
standard of modified isotopic composition and the subsequent 
measurement of isotope amount ratios in the spiked sample. 
This has a number of advantages over conventional external 
calibration techniques, provided that a number of prerequisites 
are met: 

(i) more than one, interference-free, stable isotope must be 
available for isotope ratio measurement; 

(ii) an isolopically enriched analogue of the analyte must be 
available; 

(iii) complete equilibration between the spike and sample 
must be achieved; 

(iv) the mass fraction concentration and isotopic abundances 
of the natural and enriched elements must be well charac­
terised; 

(v) isotopomers of the spike and sample must be chemically 
stable. 

In comparison to total element analysis, species-specific I D A 

tPresented at the 2003 European Winter Confereaoe on Plasma 
Spectrochemistry, Gamiisch-Partenkirchen, Germany, January 12-17, 
2003. 

is more challenging, and a number of factors must be carefully 
addressed in order to obtain accurate and precise results;^ 

(i) isotopically enriched analogues, or isotopomers, of the 
target analytc(s) must be synthesised or purchased; 

(ii) relatively mild extraction conditions are necessary in 
order to maintain the integrity of the species, which may result 
in incomplete analyte extraction. This is not a problem, 
however, provided that complete equilibration of the spike and 
sample occurs; 

(iii) it is essential that, during analyte extraction, equilibra­
tion, separation, and measurement of the isotope amount ratio, 
the sample and spike isotopomers are chemically inert. Any 
analyte formation or decomposition, ligand exchange between 
the sample and spike isotopomers and/or spike decomposition 
will give biased results. 

An example of the last point above is the formation of 
meihylmercury from inorganic Hg during sample preparation 
and separation for determinations by gas chromatography 
inductively coupled plasma mass specrometry (GC-ICP-MS).*^' 
For gas chromatographic separation the analyte must be 
presented in a volatile form. Of the three oxidation states of 
mercury, Hg°, Hg" and Hg" , only Hg° is volatile, therefore 
other mercury species must be derivatised, usually by 
ethylation wivh NaBEl4, before separation by GC, thus 
increasing the risk of undesirable reactions involving the 
sample and/or spike isolopomers. In comparison, high-
performance liquid chromatography (HPLC) docs not require 
derivatisation of the analyte, and can be used to separate 
mercury species prior to detection by a wide range of 
spectroscopic detectors.'" 

The aim of this work was to investigate uncertainty 
contributions to species-specific isotope dilution analysis. 
This paper addresses the synthesis o f isotopically enriched 
melhybnercury, and its characterisation using ' H nuclear 
magnetic resonance ( N M R ) spectroscopy. To that end, ' ^ g 
enriched methyhnercury chloride and enriched methyl­
mercury iodide have been synthesised and employed to 
investigate the stability of meihylmercury during equilibration 
and HPLC separation. Subseouent papers deal with uncer­
tainty contribution during I D A ' ' and the equilibration of spike 
and sample.'^ 
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2. Experimental 
2.1. Synlhesb of ' " H g enriched methybnerairy chloride 

The synthesis of methyhnercury chloride by direct non-
enzymatic methylalion, using methylcobalamin (Me(Co]) as 
the methyl CTOup donor, is based on the method of Rouleau 
and Block." Melhylcobalamine is a vitamin B12 co-enzyme 
and can be considered as a cobalt(ui) corrinoid complex 
comaioing a co-ordinated carbanion (CHj~) , which can be 
displaced under suitable reaction conditions by the eleciro-
philic attack of Hg^*^ ions, forming aquocobalamine and the 
monomethylmeicury anion (CH3Hg*).'^ The overall reaction 
scheme for the synthesis of the methylmercury chloride 
isotopomer is shown in eqn. 1 where cobalamine is represented 
by Co. The synthetic procedure described is straightforward 
and can be completed within a period of six hours. 

IC0ICH3 + Hg2* + C r + H2O ^ 
H j O f C o r + CHsHgCI ( I ) 

" ' H g enriched (65.74%) HgO was obtained from AEA 
Technologies (Harwell, Oxfordshire, UK) . Methyl cobalamine 
was purchased from Sigma-Aldrich (Gillingham, Dorset, U K ) , 
benzene from May and Baker (Dagenham, Essex, U K ) , 
hydrochloric acid (Aristar grade) and hexane from Merck 
Ltd. (Poole, Dorset, U K ) and N j from (Air Products, Walton-
on-Tharaes, Surrey, U K ) . Al l distilled, deionised water (DDW) 
used in the synthesis was obtained from an 18 M f t cm~' 
Elgastat Maxima system (Elga Ltd., High Wycombe, Buck­
inghamshire, UK) . A l l glassware used was first soaked for 24 h 
in 10% Decon 90 (Decon Laboratories, Hove, Sussex, U K ) , to 
remove organic carbon, and subsequently in 10% H N O j for 
24 h followed by washing in DDW. 

Approxhnately 20 mg of the "^Hg enriched HgO was 
accurately weighed into a clean sterilin container, dissolved in 
400 \j\ of concentrated HCl, diluted with 10 ml of DDW and 
transferred to a 50 ml stoppered glass conical flask as a reaction 
vessel. The sierilin container was subsequently rinsed with two 
further 3 ml DDW aliquots, which were then added to the 
reaction vessel. Approximately 100 mg of melhylcobalamine 
was accurately weighed into a separate clean sterilin container 
and dissolved in 10 ml of DDW. Following transfer of this 
solution to the reaction vessel, this container was rinsed with 
two further 3 ml aliquots of DDW, which were added to the 
reaction vessel. The reaction vessel was protected from light 
sources since methylcobalamine is UV sensitive, and agitated 
by means of a magnetic stirrer for 1 h. 

The methylmercury chloride was extracted using 50:50 v/v 
benzene-hexane (10 ml). Following agitation (10 min) the 
benzene-hexane layer containing the methy^mercury chloride 
was then carefully removed by pipette to a second 50 ml glass 
conical flask. This extraction procedure was repealed twice 
more, resuUing in an exlraclanl volume of 30 ml. AHquols of 
the benzene:hexane extractant were then transferred to a clean, 
preweighed 7 ml glass vial and the solvent evaporated under a 
stream of N2, which was carefully regulated to minimise losses 
of methylmercury chloride by volatilisation. After evaporation 
solid methylmercury chloride was obtained with a yield of 60% 
(as Hg). The purity and isotopic composition of the ^ ' 'Hg 
enriched melhylmercury chloride was assessed by both nuclear 
magnetic resonance ( N M R ) spectroscopy and HPLC-ICP-MS. 

2.2. Synthesb of '^C enriched methylmercury chloride 

'^C labelled melhylmercury iodide was synlhesised by a 
Grignard reaction using freshly prepared ' ^CHiMgl . A l l 
reagents were supplied by Aldrich (Gillingham, Dorset, U K ) . 
The Grignard reagent was prepared by agitating, via a 
magnetic stirrer for 2 h under a nitrogen atmosphere, 1 g of 
dry magnesium turnings in a 250 ml three necked round bottom 

flask attached to a reflux condenser, to create a fresh reactive 
surface on the metal. Subsequently 5 g of '^C labelled methyl 
iodide, dissolved in dry double distilled diethyl ether (50 ml), 
was added to the Mg In the round bottomed flask. The solution 
was gently warmed and stirred until a characteristic steely grey 
was observed, indicating the formation of the Grignard 
reagent. The solution was stirred at room temperature for 1 h 
and then heated at reflux for a further 45 min. The reaction 
products were allowed to cool and settle prior to the next 
reaction step. 

4.75 g of mercury(ii) chloride was dissolved in 75 ml of 
diethyl ether in a three necked round bottomed flask attched to 
a reflux condenser. The solution was warmed to dissolve the 
HgCI} and stirred under a nitrogen atmosphere. The freshly 
prepared '^CHsMgl was added dropwise under nitrogen 
pressure to the HgCl2 solution via a double ended steel 
needle connecting the two round bottomed flasks, thus 
ensuring that no unreacted M g was added to the HgCli 
solution. A further 25 ml of diethyl elher was added to the 
Grignard preparation flask as a wash solution and subse­
quently transferred to the HgCl2 solution via the steel needle. 
The resulting solution was refluxed for 12 h to complete the 
reaction. Upon cooling a crop of pale yellow crystals was 
precipitated in the bottom of the flask which were removed 
from the reaction mixture by filtration. Several large red 
crystals of mercury(u) iodide were also produced during the 
reaction and these were removed from the pale ycHow crystal 
and discarded. The pale yellow crystals were recrystallised from 
boiling alcohol to yield 3.94 g of '^C labelled methylmercury 
iodide, with a mehing point of 143 "C ( l i l . 143 "C). 

2.3. Nuclear magnetic resonance studies 

Al l * H specun were acquired at 270 MHz using a Jeol EX270 
MHz Fourier Transform N M R spectrometer. The signal from 
the residual proto melhyl (CH3) group, 5 3.3 ppm, m CD3OD 
was used to reference the ' H spectra, except for experiments 
using a solvent suppression technique, when the spectra were 
referenced to the residual hydroxyl signal (CH3OH and HDO) 
at 5 4.8 ppm. Baseline ' H N M R spectra of methylmercury 
chloride, methylmercury bromide and methylmercury iodide 
(all purchased from Sigma-Aldrich), ' ' ' H g enriched methyl­
mercury chloride and C enriched methyhnercury iodide were 
all obtained in (3D3OD. For experiments to determine the 
halide preference of mo nomethy I mercury, potassium halides 
(Cn. Br and 1) were added to the standard solutions at twice the 
concentration of the mercury species present in the sample. 

The standard mobile phase employed for the separation of 
mercury species by H P L C , ' ^ and as the equilibration 
solvent,"-'* comprised 50:50 methanol-water v/v and 0.01% 
2-mercaptoethanol. However, this was not suitable for N M R 
studies due to the excessive proton signal from the melhanol-
water components. For experiments to determine the stability 
of mercury species during chromatographic separation a 
partially deuterated mobile phase comprising 50:50 D2O-
CH3OD v/v and 0.01% 2-mercaptoelhanol was employed. A 
mixture o f ' ^CHjHgl and " ^ g enriched CHjHgCl (100 and 
200 Jig g~ ' , respectively, as Hg) was injected (100 jil) onto the 
H P I J C column and the eluent collected in fractions of 1.5 min 
duration after UV detection at 204 am. After preconcentration 
by gaseous N2 solvent evaporation, the fractions containing the 
monomelhylmercury species (1.5-3 min eluiion lime), were 
analysed by ' H N M R spectroscopy. The partial deuteration of 
the H P L C mobile phase removed most o f the signal arising 
from the H2O in the ' H N M R spectrum but the baseline was 
distorted by the very strong signal from the methyl group of the 
CH3OD. To overcome this a solvent suppression technique was 
employed. The methyl group o f the CH3OD (6 3.3 ppm) was 
pre-saturated for each transient acquisition, thus greatly 
reducing this signal in the spectrum. 
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Table 1 'H NMR spectroscopy chemical shifts and coupling constants for the organomcrcury compounds under study: all samples weredissolved in 
dcuterated methanol, CD3OD 

Methylmeirury H chemicaJ 
'J *H-"C7Hz" ' H - " ^ g / H z " concentration/mg ml~' shift (5) (ppm) 'J *H-"C7Hz" ' H - " ^ g / H z " Inference 

CHiHgO 3.2 0.91 138 211 
CHjHgBr 4.9 0.97 138 207 
C H ^ g l 3.1 1.03 138 195 
'^'Hg enriched CH^HgO 3 0.91 138 211 
'^CHjHg/ 2.4 1.03 138 195 
CHjHga + KBr 3 0.97 138 207 CHiHgOr 
CHjHgQ + K.I 3 1.03 138 195 CHjHgl 
CHjHgBr + K O 3 0.97 138 207 CHjHgBr 
CHjHgBr + K l 4 1.03 138 195 CH3Hgl 
CHjHgl + K G 3 1.03 138 195 CH>Hgl 
CHjHgl + KBr 3 1.03 138 195 CHiHgl 
The superscript 'J denotes the number of bonds along which the coupling occurs. Potassium halides were added at twice the methylmercury 
species concentration. 

The stability of methylmercury was investigated in the 
presence of two difTerent particle types. National Institute o f 
Science and Technology (NIST) 2710 Montana Soil Certified 
Reference Material (CRM) was used to represent geological 
material and DORM-2 Dogfish Muscle (National Research 
Council Canada-NCR) was employed as a biological sample. 
Approximately 0.5 g of the C R M was accurately weighed into a 
clean 7 ml glass vial to which was added I ml of " ' H g enriched 
HgO (3.96 mg m l " ' dissolved in i M KJ-D^O) and 1 ml 
of '^CHiHgl (6.9 mg m l " ' , dissolved in CD3OD, 0.02% 
2-mercapioethanol). The resiJting mixture was stirred magne­
tically at a constant temperature, 25 "C for 24 h, followed by 
filtration (Autovial 0.2 pm PTFE membrane syringcless filters, 
Whatman, Maidstone, U K ) and subsequent analysis by * H 
NMR spectroscopy. 

3. Results and discussion 
3.1. CharacterisatioD of metbylmercury isotopomers 

A comparison of the chemical shifts and the coupling 
constants, "J, of methylmcrcury halides (natural isotopic 
abundance, Table I) confirmed the identity of the ' ' ^ g 
enriched isotopomer as methylmercury chloride. '^C labelled 
(>99%) methylmercury iodide was positively characterised by 
' H N M R spectroscopy using the same approach. The notation 
used for all ' H N M R spectra is shown in TaWe2. The 
individual organomercury isotopomers (Table 2) have been 
numerically labelled as follows; natural abundance melhylmer-
cury chloride (0, "*Hg enriched melhylmercury chloride {it), 
' ^ g enriched methylmercury iodide (iit), natural abundance 
methyhnercury iodide (iv) and '^C labelled melhylmercury 
iodide (v). The ' ' ' H g enrichment in isotopomer ii compared 
with isotopomcr /can be observed via the enhanced intensity o f 
the ' H - Hg satellite signals, which arise from spin-spin 
coupling between the ' H and ' ' ' H g nuclei, (Fig. 1 A and B). 
Similariy, a comparison of the ' H N M R spectrum of 
isolopomer iV with that observed for isotopomer v, (Fig. 1 C 

Table 2 Notation employed for the melhylmercury isotopomer and ' H 
NMR spectra 

and D) , demonstrates the extremely high (>99%) '^C content 
of isolopomer v. Due to the almost complete 'H-'*'CcoupHng 
four ' H - ^ ' H g satellites now appear in the spectrum, two for 
each of the ' H - " C doublets. 

Compound 
Isotopomer 
number 

'H NMR signal 

Compound 
Isotopomer 
number Proton 'H-"*Hg 'J 'H-'^C 

CHjHga i a. 
"^g enriched i i a 

CHjHgO 
'"Hg enriched Hi (t P 

CHjHgl 
CHjHgf iv c 
•'CHjHgl V c 

3.2. Melhybnercury balides—haUde exchange 

The observed ' H N M R spectrum of a solution containing both 
the " ' H g and '^C labelled melhylmercury isotopomers 
exhibited a single methyl proton signal intermediate between 
that of the individual compounds. From this it was deduced 
that the halide component, C I " and 1*, respectively, was 
readily exchangeable wiih other halides. The relative stability 
of the halide counter ion was determined by combining each 
compound with inorganic halides {e.g., KBr , KJ), followed by 
comparison of the resulting ' H N M R spectroscopy data with 
that obtained from authentic compounds. Using this method, 
and with each halide in excess, the order o f preference for 
methylmercury was I > Br > CI. Table 1 summarises the ' H 
N M R spectroscopy data for various methylmercury halides in 
the presence o f inorganic halides. The speciation of methyl­
mercury, in the liquid phase during equilibration, chromato­
graphic separation and subsequent detection by ICP-MS is 
ihcrefoTC dependent on the reagents employed. 

3.3. Metbytmercury halides—methyl group exchange 

Ligand exchange between C H j H g l molecules, eqn. 2, was 
studied by mixing together '^C labelled and ' " H g labelled 
CHjHgCl compounds in the deuleraied HPLC mobile phase. 
The ''Hig labelled C H j H g Q was iodinated, so that both 
species were in the same chemical form, by the addition of K I 
to the samples prior to analysis by ' H N M R . This prevented 
the intermediate spectra that arise from each species having a 
different halide component. 

'^CH^Hgl + CHi ' ^ 'Mgl ^ ' ^ C H j ^ ^ H g l + C H j H g l (2) 

The distinct ' H N M R spectral patterns of the two 
isotopicaily labelled methylmercury iodide isotopomers, i i i 
and V, allowed the rebtive isotopic abundance of ' ^ H g for 
each compound to be calculated when both compounds were 
present in the same solution. For example (Fig. 2), the '""Hg 
abundance in isotopomer v was calculated by raiioing the peak 
areas of the two ' H - ' ^ g sateUites (Fig. 2, 2p) with the total 
peak area (23 + a)- This gave a ' " H g isotopic abundance for 
isotopomer uV of 66%, as expected. Similarly, the ' " H g 
abundance In " C H ^ H g l could be calculated from the same *H 
N M R spectrum by ratioing the peak areas for the four 
'H- '^^Hg satellites (2<>1 + 2^2), with the total peak area 
(2<>1 + 2<{>2 + y i + Y2). A S such the " ^ g abundance for 
isolopomer v was calculated as 17%. Since the calculated " ' H g 
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Fig. I ' H N M R Spectra of: A, natural isotopic abundanoe mcthylmercury chloride; B, ' " ^ g enriched (66%) methylmerctiry chloride (for these 
isotopomers the H-'^^Hg satellites are denoted p); C, natura] isotopic abundance methylmercufy iodide; and D. '^C enriched (>99%) 
methylmercury iodide (for these isotopomere the 'H-'^C satellites are denoted f with the 'H- ' ^Hg satellites are denoted <{>). The ' "Hg and '^C 
enrichment is reflected in the increase in the relative siTes of the " ^ g and '^C satellite signals, respectively. The chemical shifts and coupling 
constants are given in Table I . 

isotopic abundance, for the two labelled compounds when 
combined, was exactly as per the individual species, this 
experiment provided no evidence for simple CH3 exchange in 
the deutcraled HPLC mobile phase. 

In order to verify (or otherwise) that this absence of exchange 
was also the case during chromatographic separation, further 
solutions were analysed prior (o injection onto, and post elution 
from, the HPLC column. Fig. 3 shows the ' H NMR spectrum 
obtained for a mixture of '^CHsHgl and CHa'^'^Hgl, both prior 
to injection onlo the HPLC column (Fig. 3A), and for the 

ng.2 'H NMR spectrum of "CH^HgI (4.8 mg ml"') and " ' H g 
enriched CHiHgl (2 mg m l " ) m C D 3 O D . The ' H - ' ^ C doublet, 
marked ifl and yl, arises from the '^CHiHgl: each of these doublets 
has two associated ' H - ' ^ H g satellites marked <>I and <>2, respecthely. 
The ' " ^ g enriched CHjHgl molecule gives three signals in the 
spectrum, the main proton signal, cx, and ru'o 'H-'^'Mg satellites, 
marked 

fraction collected after eluling from the column (Fig. 3B). The 
chemical shift of the methyl protons for the two compoimds 
contained in the post column fraction was 0.75 ppm, compared 
with 1.03 ppm for the compounds prior to HPLC separation. 
Similarly the ' H - ' ^ g coupling constant for each compound, 
175 Hz, also changed from the pre-separation value of 195 Hz. 
This change was considered to beeitherdue to the formation of a 
new monomethylmercury compound during HPLC separation, 
or due to the effect of the change in solvent composition during 
evaporation by gaseous N j , which preferenlially removes the 
methanolic component of the HPLC mobile phase, resulting in 
an enriched aqueous solvent 

In order to test the second h j^ thes is a second solution of a 
mixture of ' ^CHjHgl and CHj '^^Hgl , dissolved in the partially 
deuterated HPLC mobile phase, was subjected to solvent 
evaporation by gaseous N2 for 4 h and subsequently analysed 
by ' H N M R spectroscopy (Fig. 3C). The chemical shift of the 
methyl protons and ' H - " * H g coupling constant for each 
compound was 0.77 ppm and 178 Hz, respectively, which 
confirmed that the changes in the parameters observed for the 
pre- and post-HPLC separation fractions were due 10 the 
change in solvent composition. I n addition, the " ^ g isotopic 
abundance, for the two labelled isolopomcrs iViand v, remained 
at 66% and 17%, respectively, after elution from the column, 
indicating that methyl group exchange between the two 
isotopomers did not occur during the HPLC procedure. 

3.4. Formation of metbylmercury during equilibration 

Losses of the spike material before complete equilibration 
between the sample and spike during I D A will result in an 
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ng.3 'H NMR spccmun of '^CHjHgl (I mg ml"') and ' ' 'Hg 
enriched CHjHgQ (2 mg ml"') in 50:50 D1O-CH3OD v/v, 0.01% 
2-mercaptoethanol: A, prior to injection onto the HPLC column; B, the 
post-column eluent fraction containing the methylmercury species; and 
C, ihc prc-injection mixture after solvent evaporation by gaseous N2. 
Spectrum B was acquired with the sample stationary in the spectro­
meter, hence the broadening of the signals. 

underestimation of the amount of methylmercury present in 
the sample. Methyl group exchange from the " " ^ g enriched 
meihyhncrcury spike to inorganic Hg, which may also be 
present in the sample matrix (eqn. 3) reduces the amount of the 
enriched spike which is available for equilibration with the 
natural analyte. Similarly, the formation o f natural isotopic 
abundance melhylmercury (eqn. 4) will reduce numerically the 
refcrence:spike isotope amount ratio, which, when measured by 
HPLC-ICP-MS after equilibration, again results in an under­
estimation of the analyte. 

CH3' '"HgI + H g ' * CH3HgI + " ^ g ' " ^ (3) 

Hgl + CHj-^ + C H j H g l (4) 

A solution of the '^C labelled isolopomer and '^^genriched 
Hgl (obtained by dissolving the ' " ^ g enriched HgO in I M 
Kl) was used to investigate the reactions in eqn. 3 and eqn. 4. 
The ' H N M R spectra of this solution both before (Fig. 4A) and 
after (Fig. 4B) a period of equilibration with particulate matter 
in the form of NIST27IO CRM, a soil material, gave no 
evidence for methyl group exchange. The " ' H g isotopic 
abundance in the '^CHjHgl was 17%, see above, both prror to, 
and after, equilibration with the CRM for 24 h. Since the '""Hg 
isotopic abtmdance of the analyte ('^CHsHgl) remained 

rig.4 'H NMR spectrum of A, "CHjHgl and " ^ g enriched HgO 
prior to equilibration with NIST2710 CRM, and B. '^CH.xHgl and 
^'^S enriched HgO post equilibration. The isotopic abundance of 
' " H g in the "CHjHgl , calculated from the signal peak areas, remained 
at 17% for both samples. 

unaltered by "*Hg enriched HgCI, in the absence or presence 
of the particulate material, no methyl group exchange between 
the individual Hg species took place under these conditions. No 
signal for "*Hg enriched methyl mercury iodide was observed 
in either the pre- or post-equilibration spectra, indicating that 
the reaction in eqn. 4 did not occur. 

A second experiment was performed using DORM-2, a dogfish 
muscle C R M . On this occasion a suitable *H N M R spectrum 
could not be obtained because co-extracted molecules from the 
sample matrix obscured the spectral region of interest (0.5-
1.5 ppm). Similar interferences were observed in the '^C NMR 
spectrum, whereas the ' ^ g N M R spectrum was unobtainable 
due to the low concentration of the sample. However, analysis of 
"*Hg enriched CH^Hga using HPLC-ICP-MS has shown that 
this material does not decompose after equilibration with the 
DORM-2 CRM. A chromatogram obtained using a quadrupole 
ICP-MS instrument is presented in Fig. 5, the instrumental and 
chromatographic conditions having been published elsewhere." 
The inset shows the co-extracted inorganic Hg from the DORM-2 
C R M , which had a " ^ g : " * H g isotope amount ratio of 1.367, 
compared with the lUPAC value for natural isotopic abundance 
Hg of 1.369.'* From this ratio it can be deduced thai the " ^ g 
enriched C H j H g Q spike material was stable during equihbration. 
I f the spike had decomposed the isotope amount ratio for 
inorganic Hg would have changed due to a contribution from the 
'**Hg enrrched isotope. A different analytical technique is 
required to establish whether any of the inorganic Hg present 
in the DORM-2 C R M was converted to melhybnercury species 
during the equib'bration process. 

4. Conclusions 

" ' H g enriched methylmercury chloride has been synthesised 
for use as an isotoprcally labelled spike material during species 
specific IDMS analysis for methylmercury. *H NMR spectro­
scopy has shown that the speciation of methylmercury will be 
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Fig. 5 HPLC-ICP-MS chromatogram of an equilibration sample with, inset, the co-cxtniaed inorganic Hg from [X)RM-2 with a natural 
abundance ̂ °°Hg:'"Hg isotope amount ratio, indicating that the ̂ ' ^ g enriched spike ce material was stable during the time period of the experiment. 

altered with respect (o the halide counter ion depending on the 
halide composition of the sample matrix and the reagents 
employed. The stability of the spike material during HPLC 
separation and equilibration with a soil C R M has been assessed 
using ' H N M R : no evidence has been found for the breakdown 
or formation of methylmercury. The stability of the spike 
material in the presence of a fish muscle tissue could not be 
determined by N M R due to co-extracted molecules giving 
signals which masked that from the methybnercury. The spike 
material was adjudged to be stable in the presence of D O R M - 2 
by HPLC-ICP-MS. 
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w w w . r t c . o r g / j u s 

Species-Specific isotope dilution Qoalysis G^^A) has been used to determine the moss fraction of methybnercury in a 
fish muscle certified reference material, IX)RM-2. Two spike solutions were prepared and their mass fractions 
determined by coupling high-performance liquid diromatography (HPLX:) with both quadrupole (Q) and 
muhicollcctor (MC) inductively coupled plasma mass spectrometry (ICP-MS) and uncertainly budgets calculated. 
For the Q-ICP-MS determination the relative standard uncertainty of the spike was 4.1%. The major uncertainty 
contribution (62%) arose from the uncertainties associated with the relative isotopic abundances of Hg isotopes as 
given by lUPAC. The measured isotope amount ratios ( ^ g : " * H g and ^ ^ H : ^ " ^ ) contributed 37% of the 
combined uncertainly. For the multicoUcctor instrument the relative standard uncertainty of the spike solution 
mass fraction was 0.7%. In this case the uncertainty budget was dominated by the Hg isotopic uncertainties, with a 
contribution of 99%. The uncertainty contributions from the measured isotope amount ratios were reduced to 
0.7% of the total when using MC-ICP-MS. The two spike solutions were separately used to determine the mass 
fraction o f meihylmercury in DORM-2 CRM by species-specific JDA, using HPLC coupled with quadrupoJe ICP-
MS. The values found were 4.45 ± 0.90 ng g" ' and 4.25 ± 0.47 pg g" ' using spikes characterised by Q- and MC-
ICP-MS, respectively (the uncertainties quoted are the expanded uncertainty, k = 2), compared with a certified 
value of 4.47 ± 0.32. The major uncertainty contribution for each determination was f rom the measured isotope 
amount ratios (70%) with lesser contributions from the uncertainties associated with the natural isotopic 
abundance of Hg and the spike mass fraction. 

1. Introduction 

The estimation of the uncertainty associated with an analytical 
measurement is increasingly being recognised as an essential part 
of the measurement process, allowing improved intercomparison 
of analytical results,' and is a requirement for ISO accredited 
methods.^ Isotope dilution analysis ( IDA) , which is regarded as a 
definitive analytical technique' because the precision and 
accuracy obtainable are unsurpassed by alternative analytical 
methods,* allows the estimation of a measurement uncertainty 
which is related directly to SI units, and therefore meets the 
highest metrological standards.^ The calculation of an uncer­
tainty budget also aids the development of an analytical method 
by allowing the analyst to identify which areas of the 
measurement process provide the major contributions to the 
ovQ-all measurement uncertainty and therefore focus on these 
areas in order to minimise the uncertainty estimate. 

The measurement of isotope amount ratios during JDA, as 
opposed to single isotopic signals during conventional external 
calibration, also confers a number of advantages provided 
equilibration is complete: 

(i) total extraction of the analyte from the sample matrix is 
not required;* 

(ii) losses of the analyie are compensated for by losses o f the 
spike in the same proportion; 

(iii) as the spike material acts as an internal standard, 
problems associated with instrumental drift and matrix effects 
during mass spectrometric detection can also be overcome.^ 

tPrcscDied at the 2003 European Winter Conference on Plasma 
Spectrodiemistry, Garmisch-Partenkirehen, Germany, January 12-17, 
2003. 

Traditionally, thermal ionisation mass spectrometry (TIMS) 
has been used for isotope ratio determinations: however, unlike 
inductively coupled plasma mass spectrometry (ICP-MS), it is 
not suited to elements such as mercury, which have a high first 
ionisalion potential. ICP-MS also offers greater sample 
throughput, is tolerant of complex sample matrices, utilises 
smaller sample sizes, can be easily coupled with various 
separation techniques, and docs not suffer f rom time-dependent 
mass fractionation effects.'* The development of multicollector 
sector-field (MC-SF) ICP-MS instruments, enabling the simul­
taneous measurement of each isotopic signal,^ has greatly 
improved the accuracy and precision of isotope amount ratio 
determinations (ca. 0.005% relative standard error"^ compared 
with quadrupole ICP-MS instruments and is comparable to that 
obtainable with TIMS instrumentation. 

The aim of this work was to develop a method for species-
spedfic I D A analysis for methylmercury and. by the use of an 
uncertainly budget, determine the factors which affect the 
accuracy and precision of the method. Species specific I D A 
necessitates the synthesis o f isotopically labelled analogues, or 
isolopomers, of the target analyle. For this work, '^Hgenriched 
methylmercury chloride has been produced and characterised by 
nuclear magnetic resonance spectroscopy ( N M R ) . ' ' Methylmer­
cury formatioa from inorganic Hg has been observed during 
separation and analysis by gas chromatography.'^'* The 
stability o f methylmercury during equilibration and subsequent 
separation by high-performance liquid chromatography 
(HPLQ^*" and an account of the procedures required to 
produce accurate and precise results by spedes specific I D A -
HPLC-ICP-MS'* has been previously reported by us. In this 
work the mercury spedes were separated by high-performance 
liquid chromatography (HPLC) coupled to inductively coupled 

DOI : 10.1039/b305454n J. Anal. At. Spectrom., 2003. 18, 1039-1046 

This journal is © The Royal Society of Chemistry 2003 

1039 



plasma mass spectrometry (ICP-MS) using both scanning 
quadrupole and simuJtaneous multicollector instruments. 

2. Theory 

1.1- The uncertiunt>- budget mode! 

The formulation and calculation of an uncertainty budget for an 
analytical measurement requires that all sources of uncertainty 
associated with the analytical procedure are identified and 
incorporated into the model used for the calculation of the 
expanded uncertainty of the analytical result In this case the 
basis for the uncertainty model was the I D equation used to 
calculate the analyte mass fraction, eqn. 1. IDMS equations are 
available which use relative isotopic abundances:'^ however, the 
uncertainty calculation is subsequently more complex as the 
isotopic abundances are correlated.^ Isotope amount ratios are 
used, as opposed to relative isotopic abundances, in eqn. 1, which 
simplified the uncertainty calculation by eliminating the relative 
isolopic abundance correlation. 

C, = Cy _ i (1) 

where = concentration of the analyte in the sample, Cy = 
concentration of the analyte in the spike solution, my = mass 
of spike, /n^ = mass of sample, h = moisture content 
correction factor, Ry = refercncerspike isotope amount ratio in 
the spike, R^ ~ reference:spike isotope amount ratio in the 
sample, f = isotope amount ratio of isotope i to the spike 
isotope in the sample. | ^iy = isotope amount ratio of isotope i 
to the spike isotope in the spike and RB - reference:spike 
isotope amount ratio in the sample after spiking. 

For this work ^ ' ' ^ g was chosen as the reference isotope and 
'""Hg as the spike isotope. 

2.1.1. Mass bias correction. In order to determine the correct 
isotope amount ratio it is necessary to compensate for mass bias 
in the instrumentation. Quadrupole and sector field mass 
spectrometers and their associated ion optics do not transmit 
ions of different masses equally. In other words, i f an elemental 
solution composed of two isotopes with an exactly 1:1 molar 
ratio is analysed using ICP-MS, a 1:1 isotope amount ratio will 
not necessarily be observed. This so-called mass bias depends on 
mass and the type of mass spectrometer used, but generally tends 
to be greatest at low mass and decreases with increasing mass. 
Even very small mass-biases can have deleterious effects on the 
accuracy of isotope amount ratio determinations, so a correction 
must always be made, either by bracketing the sample with a 
reference material, certified for the isotope pair under study, or by 
interpolation from the mass bias observed for an isotope pair of 
similar mass to the isotope pair under study. No isotopically 
certified Hg CRM was available, therefore the mass bias of 
™*Hg:''''Hg isotope amount ratio was corrected for by 
interpolation of the mass bias observed for the ^°*TI:^*n 
isotope amount ratio using the relationship, named as the Russell 
correction expression,'^ shown in eqn. 2, which corrects for mass 
bias on the basis of the absolute mass of the isotope pairs. 

(2) 

where cor is the corrected isotope amount ratio, mes is the 
measured isotope amount ratio, cer is the certified isotope 
amount ratio and R A M is the relative atomic mass. 

The advantage o f this approach is that the mass bias 
correction can be performed by spiking the sample with a mass 
bias correction standard (ie., Tl) and measuring this isotope 
amount ratio at the same time as the sample. For speciation 
analysis by HPLC-ICP-MS, it is most convenient to spike the 
mobile phase with the standard and monitor it continuously. 

2.2. Uncertainty budget model incorporating mass bias 
correction 

The I D equation, eqn. 1. assumes that the measured isotope 
amount ratio has been corrected for mass bias effects arising 
from the mass spectrometer. Each parameter in the model used 
for mass bias correction wil l have an uncertainty associated 
with it which contributes to the overall uncertainty for the I D 
procedure. The method chosen for mass bias correction o f the 
measured isotope amount ratios must therefore be included in 
the model used to calculate the analytical result i f the 
uncertainty contributions arising from mass bias correction 
are to be included in the fmal uncertainty estimate. Eqn. I and 
eqn. 2 were therefore combined to give the model for the 
calculation o f the mass fraction of methylmercury in the 
DORM-2-CRM, eqn. 3: the notation is the same as that used 
for eqns. I and 2. 

/ 

(3) 

R. 

ZRu 

2.3. Reverse IDMS of the spike material 

The "*Hg enriched CHjHgCl spike material was not 
synthesised in quantities sufTicient to determine its purity or 
to weigh with sufficient accuracy using a four figure balance. 
The spike material was therefore characterised by reverse 
isotope dilution analysis. In this procedure the spike material is 
isotopically diluted with a standard of natural isolopic 
abundance and ihc mass fraction of the spike solution 
calcuhted according to eqn. 4. The measured ^"*Hg:"'Hg 
isotope amount ratio was corrected for mass bias effects by the 
addition of NIST 997 T l as an internal standard and eqn. 2 was 
combined with eqn. 4 for the calculations but has been omitted 
here for clarity. It is possible to combine eqn. 1 and eqn. 4 to 
give a 'double* isotope dilution equation^* which eliminates 
the spike mass fraction, Cy, which is often relatively poorly 
characterised. In this study, however, two separate spike 
solutions were prepared, each analysed using a different ICP-
MS instrument. This allowed a comparison to be made of the 
different uncertainty contributions arising from the use of the 
different instruments for the spike characterisau'on. 

RBC (4) 

where Cy = concentration of the aoalyte io the spike solution, 
Cj = concentration of the natural isotopic abundance 
standard, = mass of natural isotopic abundance standard. 
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my = mass of spike, = referencerspike isotope amount ratio 
in the natural isotopic abundance standard, Ry = reference: 
spike isotope amount ratio in the spike, f R^ = isotope 
amount ratio of isotope i to the spike isotope in the natural 
tsotopic abimdance standard, f Riy = isotope amount ratio of 
isotope i to the spike isotope in the spike and RRC = 
referenceispike isotope amount ratio in the spike and natural 
standard blend, corrected for mass bias effects in the manner 
shown in eqn. 3. 

2.4. Combining standard uncertainties 

The uncertainly budget was calculated following the guidelines 
set out by Eurachem/CrTAC.'^ Individual uncertainties 
associated with each parameter in eqn. 3 were combined, 
after conversion to a standard uncertainty, using the spread­
sheet method first described by Kragten,'^ which assumes that 
the standard uncertainties of each measurement parameter are 
relatively small compared with that measurement parameter, 
and gives acceptable accuracy for practical purposes. The 
spreadsheet, which provides a snnple method for the estimation 
and combination of imcertainties. estimates the uncertainty 
each parameter contributes to the overall uncertainty for the 
analytical result. The individual uncertainty estimates are 
subsequently combined using error propagation laws: worked 
examples of the estimation of measurement uncertainty are 
given in the Eurachem/CTTAC Guide" and the principles 
described therein were followed when constructing the 
spreadsheet used in this work. 

3. Experimental 

3.1. Separation and analysis of mercury compounds by HPLC-
ICP-MS 

Two ICP-MS instruments were employed for the detection of 
mercury species following separation by HPLC, a VG 
Plasmaquad 3 quadrupole (Q) ICP-MS and a VG Axiom 
muJticolIeclor (MC) sector field (SF) ICP-MS (both Thermo 
Elemental, Winsford, U K ) . The coupling of the HPLC system 
and the data acquisition parameters for each instrument for the 
measurement of isoto(>e amount ratios was optimised by 
analysing gravimeirically prepared solutions, of known iso­
topic composition, of inorganic and organomercury com­
pounds with a range o f ^"Hg: '**Hg isotope amount ratios. The 
HPLC conditions follow those of Harrington et a/." and are 

summarised in Table 1, along with the optimal operating 
conditions for each ICP-MS instrument used in this study. 
NIST 997 Thallium C R M was added to the mobile phase at 
50 ng g~ ' and continuously monitored during separations for 
the purposes o f mass bias correction. 

A number o f problems can arise when coupling HPLC to 
ICP-MS, two of which are the incompatibility of the HPLC 
flow rate (co. 1 ml min~ ' ) with that required for high efTiciency 
sample nebulisation, and the deleterious efTects on the plasma 
of a high organic content mobile phase. To overcome these 
potential problems the HPLC system was not directly coupled 
to the nebuliser sample uptake tube but a low dead volume 
splitter was used. This allowed the nebuliser to operate at its 
natural uptake rate, as determined by the nebuliser argon gas 
flow, and the system to be optimised for maximum sensitivity 
and optimum peak shape without compromising the HPLC 
conditions. A low flow nebuliser (0.2 ml min" Micromist, 
Glass Expansion, Vevey, Switzerland) was employed in 
conjimction with 0.18 mm diameter TeOon uptake tubing. 
The uptake rate of this system was 50 ^1 m i n " ' , thereby 
ensuring highly efficient nebulisation and, in conjimction with a 
coupled spray chamber system (cyclonic and bead impact. 
Glass Expansion, Vevey, Switzerland) cooled to - 5 'C , 
reducing the organic loading in the plasma. 

3.1.1. Characterisation of (be " ^ g enriched C H j H g a . The 
mass fraction o f the '''^Hg enriched CHjHgCl was determined 
by reverse ID-MS with the spike isotopic composition modified 
by the addition of a weU characterised natural standard 
(mclhylmercury chloride standard, Alfa Aesar, Ward H i l l , 
M A , USA). Two difTerent methylmercury chloride spike 
solutions were prepared, one for analysis by Q-ICP-MS 
(9 ^ig g~ ' as Hg), and the second for analysis by MC-SF-
ICP-MS (11 HE g~' as Hg). In each case an iterative procedure 
was employed to dilute the spike with the natural standard to 
g^ve a ^ ^ g i ' ^ ^ g isotope amount ratio o f close to unity to 
minimise errors f rom sources such as mass bias and, for 
analysis by Q-ICP-MS, detector dead time, '° thus reducing the 
measurement imcertainty. 

3.2. Equilibration of ' " H g enriched methybnercury and 
DORM-2 C R M 

Equilibration solutions, 50:50 H^O-CHjOH v/v and 0.01% 
2-mercaptoethanol, the HPLC mobile phase, were prepared 
using HPLC grade methanol (Merck Ltd., Poole, Dorset, U K ) , 

Table 1 Operating conditions for HPLC-ICP-MS characterisation 

HPLC conditions 

HPLC column 
Mobile phase 
Flow rate/ml min"' 
Injection volume/vil 

HiChrom Kromasil 100 FC 18 Excel, 25 cm x 4.6 mm id 
50:50 v/v methanoI-DDW, 0.01% 2-mcrcaptoethanol, 50 ng g"' NIST 997 TI CRM 
0.9 
100 

VG P03 ICP-MS operoting conditions 

RF forward power/W 1450 Plasma gas/1 min"' 14 
Reflected power/W =̂ 5 Auxiliary gas/1 min"' 0.75 
Spray chamber C>'clonic, cooled to -5 "C Ncbuliscr gasfl min"' 0.52 
Torch Fassel quartz Duell lirae/ms 10 
Sampler and skimmer cones Ni Points per peak 5 
Nebuliser Glass Expansion 0.2 ml min"' Micromisi Ions monitored 

VC Axiom MC-SF-ICP-MS operating conditions 

RF forward powerfW 1400 Plasma gas/1 min"' 14 
Reflected pou-er/W <10 Auxiliary gas/1 min"^ 0.85 
Spray chamber Coupled cyclonic and bead impact, cooled to -5 'C Nebuliser gas/1 min~* 0.72 
Torch Fassel quaru fitted with a Pt shield Du'ell time/ms 25 
Sampler and skimmer cones Ni Points per peak 1 
Nebuliser Glass Expansion 0.2 ml min~* Micromist Ions monitored 
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Fig. 1 Isotope amount ratios measured using the pseudo-sleady-state 
approach. The isotope amount ratio is calculated by ratioing the ion 
signals for coincident pairs of data points over the peak maximum. 

distilled deioniscd water (Elgastat Maxima, Elga Ltd., High 
Wycombe, UK) and 2-mercaptoethanol (Merck Ltd.). The 
moisture content of the DORM-2 CRM was determined, by 
drying separate subsamples to a constant mass at 105 *C» to 
give the moisture correction factor, h (eqn. 1). Approximately 
3 g of the DORM-2 CRM was accurately weighed and the 
amount of methylmercury present, after accounting for 
moisture content, calculated from the certified value. The 
mass of spike solution added was chosen so that the 
^'"Hgr'^'Hg isotope amount ratio would be close to unity, 
provided that complete equilibration between the sample and 
spike occurred. Subsequently, the spike solution was added to 
25 g of the equilibration solution contained in a clean 50 ml 
glass conical flask. This solution was agitated throughout the 
timespan o f the equilibration experiment by a magnetic stirrer 
and maintained at a temperature of 25 ' C by means of an 
electrically heated hotplate. The DORM-2 CRM was subse­
quently added to the equilibration solution and 1 ml samples 
withdrawn at intervals up to 3000 min. The sampling frequency 
was approxnnately every 2 min for the first 20 min of the 
experiment followed by a reduced sampling rate of 5 min 
intervals until 1 h had elapsed, with less frequent sampling 
thereafter. Each sample aliquot was pipetted into a filter 
(Autovial 0.2 jim PTFE membrane syringeless filters, Whatman, 
Maidstone. Kent, UK), diluted prior to filtration with 3 mJ 
of fresh equilibration solvent, filtered, and stored in a clean 
25 ml sterilin container at 4 *C until analysis by HPLC-ICP-
MS. Samples obtained from the equilibration experiments were 
analysed using Q-ICP-MS under the same instrumental 
conditions as those for the reverse ID-MS of the spike solution. 

4. Results and discussion 

4.1. Calculating isotope amount ratios 

In order to perform species specific ID-MS it is necessary to 
measure isotope amount ratios of two transient signals 

resulting from the chromatographic separation prior to ICP-
MS detection. Two problems may arise, namely compound 
fractionation on the column and spectral skew resulting from 
too slow mass spearal scanning. I t is unlikely that any on 
column fractionation would occur with the compounds under 
study because the difference in molar mass between the analyte 
and spike was too small (though this may not be the case i f gas 
chromatography was used). In this case data acquisition 
parameters were optimised to eliminate spectral skew. 

Two different approaches were assessed to determine the 
accuracy and precision of calculated isotope amount ratios 
from the multi-isotope chromatograms obtained by HPLC-
ICP-MS, namely peak integration and a pseudo-steady-state 
approach. For peak integration the relevant peaks for the 
isotope pair of interest, ^ H g and ' ' ' H g , o f a particular specie 
in the chromatogram were integrated to obtain the baseline-
subtracted peak integrals and the isotope amount ratio for that 
specie calculated using these integrals. The advantage o f this 
approach is that the effects of spectral skew are rainhnised: 
however, precision can be degraded because the precision 
inherent in rapid sampling of the isolopic pair is lost. The 
second approach assumed that the chromatogram was an 
undulating, or pseudo-steady-siate, signal. The results of this 
approach are shown in Fig. I , where co-incident pairs of data 
points from the two isotope ion signals (Le. ^"*Hg and ' '^Hg) 
were ratioed over the course of the chromatogram. 

In order to achieve the best precision and accuracy, only 
data-points on the apices of the peaks (PQ3 n = 9, Axiom n = 
5) for each isotope o f a particular specie in the chromatogram, 
were chosen and the baseline signal subtracted. The isotope 
amount ratios were calculated using each pair of corresponding 
data-points f rom the two peaks and subsequently corrected for 
mass bias cITccts. The advantage o f this approach is that the 
inherent precision is maintained and it is possible to obtain an 
esthnate of precision from a single peak: however, erroneous 
isotope amount ratios will result i f spectral skew is not 
minimised. Both of the above methods for data extraction were 
evaluated and the pseudo-steady-stale approach resulted in 
measured, mass bias corrected, isotope amount ratios which 
were closer to the theoretical values of the gravimetrically 
prepared mercury solutions, and exhibited a greater degree of 
precision then those obtained by peak integration (Table 2). 

4.2. Comparison of scanning and simultaneous detection 

Variability of the measured isotope amount ratios during a 
chromatographic run are illustrated in Fig. 2 for both the 
quadrupole scaiming (Fig. 2A) and the Axiom simultaneous 
multicollector instrument (Fig. 2B). The quadrupole instru­
ment resulted in poorer precision during peak elution, due to 
the requirement to measure transient signals for four isotopes 
with a dwell time of 10 ms. There is also evidence o f spectral 
skew, (Fig. 2A) because the measured ^°**Hg: ' ^g isotope 
amount ratio fell at the start of the methylmercury peak 
elution, and was stable only at the peak apex. When using the 
multicollector instrument the ^°**Hg:"^g isotope amount 
ratio, calculated from background signals using Faraday 

Tabk 2 Figures of merit for HPLC-ICP-MS optimisation usmg the pseudo-steady-state approach for the calculation of the isotope amount ratios 

Gravimetric ratio 
Pseudo-steady-state 
measured ratio 

RelatK'e standard 
uncertainly 

VCPQ3 
2 ° * n ; ^ (n = 9) 
^^Hgi'^^Hg (n = 9) 
*°Hg-."*Hg(n = 9) 
VG Axiom MuhicoUecior 
» ' * n : = ^ (n = 5) 
"**Hg:"^g (n = 5) 
«»H8:"*Hg in = 5) 

2.387 ± 0.001 
1.369 ± 0.029 

0.2751 ± O.O0002 

2.387 ± 0.001 
1.369 ± 0.029 

0.2751 ± 0.00002 

2.407 + 0.012 
1.371 ± 0.064 

0.2758 ± 0.0057 

1395 ± 0.0036 
1.369 ± 0.00051 

0.2755 ± 0.00057 

0.50% 
4.67% 
2.1% 

0.15% 
0.037% 
0.21% 
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Fig. 2 The measured ^ ° ^ g : ' ' ^ g and ^ ° ' T 1 : " ' ^ isoiope amount ratios 
and '°°Hg signal monitored during reverse ID-MS of the spike 
solutions. A, PQ3 quadrupole instrument in peak jumping mode, dwell 
lime 10 ms, 100 ^1 injection of a 900 ng g"' CHjHgQ solution; B; 
Axiom muJtioollector instrument, 25 ms dwell time, 100 ^ l injection of 
an n Jig g"' CHjHgQ aoluiion. 

detectors, was highly variable prior to the MeHg peak elution 
as (he Hg concentration in the mobile phase was not high 
enough to result in a measurable signal. As the peak eluted, and 
the signal strength rose rapidly, the isotope amount ratio 
precision rapidly improved to a minimum at the peak 
maximum. The greater precision of the measured ^ ^ . ^ 
isotope amount ratio obtained using the multicollector can also 
be clearly observed. The memory effect, which is a common 
problem in mercury analysis, is also well illustrated. As the 
MeHg signal strength declined after peak clution the isotope 
amount ratio became more variable than during, but less so 
than before, the peak elution. To counteract this memory effect 
0.6 M HBr in a 50% methanol solution was aspirated for 3 min 
between each sample acquisition, which reduced the blank 
counts to those prior to the sample run. 

4.3. Characterisation of the spike 

Before IDMS analysis of a sample could be performed it was 
necessary to determine the mass fraction of CH^HgQ in the 
' ^ ^ g enriched spike as accurately and precisely as possible. 
Reverse IDMS was performed for the spike characterisation, 

Table 3 The mass fraction of " ^ g enriched CHiHgO spike 
determined by reverse isotope dilution HPLC-ICP-MS 

Instrument 

Mass 
fraction/ 
Mfig"' 

Standard 
uncertainty/ 
Mgg"'./^ = 1) 

Relative 
standard 
uncertainty 

VG PQ3 8.96 (n = 5) ±0.37 4.1% 
0-lCP-MS 

VQ Axiom 11.06 in = 3) ±0.08 0.70% 
MC-SF-ICP-MS 

• O-ICP-MS 

• MC-(CP-MS 
0.4 

20 40 GO 80 
Contribution to total uncertainty (%) 

100 

Fig. 3 Contributions to the total standard uncenamty of the mass 
fraction of ' " H g enriched CH3Hga determined by reverse IDMS. 

and ful l uncertainty budgets calculated, using both the 
simultaneous multicollector and the scanning quadrupole 
instruments. The spike mass fraction was calculated using 
eqn. 4, the results being shown in Table 3. No methylmercury 
was detected in the blank solutions and therefore a blank 
correction was not included in eqn. 4. The raw counts for each 
mercury isotope in the methyltnercury peak were, however, 
baseline subtracted to account for inorganic Hg present in the 
ICP argon gas and the solutions used for the spike make up. 
The standard uncertainly of the measured ^ H g r ' ^ H g isoiope 
amount ratio entered into eqn. 4 included the uncertainty 
contribution from the baseline correction which contributed 
less than 0.1%. The relative standard uncertainty of the spike 
solution characterised using the Axiom instrument was 0.70%, 
which was an order of magnitude less than that obtained for 
(he spike solution mass fraction using the scanning instrument, 
4.1%. Individual contributions to the total standard uncer­
tainty are shown in Fig. 3. 

For the PQ3 quadrupole instrument the major uncertainty 
contributions arose from two parameters, the natural isotopic 
abundance ^"^Hgt'^Hg isotope amount ratio, R^, and the 
measured ^ " H g i ' ^ g isotope amount ratio, RBC* which 
contributed 61 and 31 per cent., respectively. By comparison, 
when using the Axiom multicollector instrument, R^ con­
tributed 97% of the standard uncertainty and the measured 
^ H g : ' ^ g isotope amount ratio, R^c* only contributed 0.3% 
of the combined standard uncertainty for the spike mass 
fraction. The reduction in the contribution of the measured 
isotope amount ratios ^ " ^ g : " ^ g and " * * T 1 : ^ ^ was due to 
the increased measurement precision obtainable with the 
Axiom multicollector instrument (Table 4). The relative 

Tflhle4 Measured isoiope amount ratios ond uncertainty contribu­
tions to the mass fraaion determination of the ' "Hg enriched 
CHjHgQ spike by reverse HPLC-ID-MS 

Relative Contribution 
standard to spike mass 
uncertainty fraction standard 
(%) uncertainly (%) 

Quadrupole HPLC-ICP-MS 
0.9900 0.58 31 

Measured ™ = T 1 : ^ 2.4276 0.51 6 
R. 1.3693 0.89 61 
ZRi, 5.9277 0.44 1 
Rf 0.2751 0.01 2.9 E-06 
ZRi, 1.5155 0.009 1.4 E-04 
Axiom multicollcctor HPLC-ICP-MS 

1.0O29 0.045 0.3 
Measured ^ i ^ ' T l 2.4243 0.10 0.4 
R. 1.3693 0.89 97 
ZRir 5.9277 0.44 2 
Ry 0.2751 0.01 2 .9E^ 
ZRiy 1.5155 0.009 1.4E-04 
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Toble 5 The isotopic abundance and uncertaiaty data for natural abundance Hg and the stated and measured AEAT ' ' ' ^ g enriched HgO 

AEAT " ^ g tairiched HgO 

Isotope 
lUPAC data 
(atom %) 

Standard 
uncertainty 

Data supplied 
(atom %) 

Axiom MC-SF-ICP-MS 
(atom %) 

Standard 
uncertainty 

196 0.15 0.01 O.I 0.10 0.001 
198 9.97 0.12 3.08 2.93 0.0014 
199 16.87 0.13 65.74 65.98 0.010 
200 23.1 o.n 18.13 18.15 0.0016 
201 13.18 0.05 3.95 3.96 0.0019 
202 29.86 0.15 7.31 7.43 0.0047 
204 6.87 0.09 1.65 1.44 0.0012 

isolopic abundances of mercury, as given by l U P A C , ^ have 
relatively large associated uncertainties compared with some 
elements, hence the large relative standard uncertainties for 
and l.Rij (Table 4), which were calculated from the lUPAC 
data. No purity or isolopic abundance uncertainty data were 
supplied with the " ' H g enriched HgO, hence the isolopic 
composition of the spike material was determined using the 
Axiom MC-SF-ICP-MS prior to the synthesis o f the spike 
material.^' The TUPAC, A E A T and measured isotopic 
abundance data is shown in Table 5. The improved precision 
values obtained by this analysis resulted in the associated 
uncertainties of and ZRiy (Table 4) providing a minimal 
contribution to the standard uncertainty for the spike mass 
fraction. 

4.4. Analysis of reference material 

The isotope amount ratios in the samples were determined 
using the PQ3 instrument preceded by a HPLC separation (see 
Fig. 4). It was not possible to measure the isotope amount 
ratios using the Axiom multicollector instrument as the signal 
strength was not high enough to be measured by the Faraday 
cup multicollector array with sufficient accuracy and predsion. 

Two spedation analyses were performed, one using the spike 
material characterised by the PQ3 quadrupole ICP-MS and the 
second using the spike characterised with the Axiom multi-
collector instrument. The major contributions to the uncer­
tainty budget for each analysis are derived from the precision 
values of the measured ^ g : " ^ H g and ^ " ' T l : ^ ^ isotope 
amount ratios. The raw counts of the mercury isotopes were 
baseline corrected, as described in the spike characterisation. 
Fig. 5 shows the major contributions to the uncertainty budget 

SfrikD dBbmiknJ by <M3>-MS 

S(*9 ( M B r n k w l br UC4CP-

Fig. 5 Contributions of individual standard uncertainties to the total 
combined expanded uncertainty for the determination of CHjHg* in 
DORM-2 CRM by species specific IDMS. Each uncertainty budget 
u-as dominated by the piedsion of the measured isotope amount ratios. 
The contribution from the spike uncertainty was significantly larger 
when it was characterised by quadrupole HPLC-ICP-MS. 

for each analysis and the data is shown In Table 6. For the 
specialion analysis conducted using the spike material 
characterised by the quadrupole instrument the major 
uncertainty component was derived f rom the uncertainty 
assodated with the measured ^Hg:'***Hg isotope amount 
ratio, 63%. Three other factors, the measured ^ * T l : ^ * r i 
isotope amount ratio (10%), the calculated natural abtmdance 
^"^Hgi'^'Hg isotope amount ratio, /?, (I0%)« and the spike 
mass fraction, Cy (16%), also contributed significantly to the 
standard uncertainty. The improved spike characterisation by 
the muIticoUeclor instrument resulted in a smaller uncertainty 
conlribution from Cy (8%), to the standard uncertainty when 

1.367 
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Fig. 4 HPLC-ICP-MS chromatogram of an equilibration sample with, inset, the co-extnicted inorganic Hg from DORM-2 with a natural 
abundance ™*Hg:'"Hg isotope amount ratio, indicating that the ' ^ g enr ; enriched spike material was stable during the lime period of the experiment. 
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Table 6 Contributions to imcertainiy for a single sample from each 
equilibration experiment 

Contribution to 
Relative methylmercury 
standard mass fraction in 
uncertainty DORM-2 standard 
(%) uncertainty (%) 

Spike characterised by quadrupole HPLC-ICP-MS 
Measured 1.0021 1.9 63 

^ 8 : ' " H g 
Measured 2.3656 1.6 10 

^ 1.369 0.9 10 
C/Mgg"' 8.96 4.0 16 
Spike characterised by multicollertor HPLC-ICP-MS 
Measured 1.0115 1.1 52 

^ g : " " H g 
Measured 2.3654 1.3 16 

^ 1.369 0.9 24 
C>/Mgg-' l l . l 1.9 8 

Table 7 The methylmercury mass fraction in EK)RM-2 CRM 
determined by spedcs-specific HPLC-1D-ICP-MS 

DORM-2 Relati\'e 
methylmercury expanded 

Determination mass fraaion/^g g uncertainty 

Spike characterised by 4.45 ± 0.90" 20% 
quadnipole ICP-MS 

Spike characterised by 4.25 ± 0.47" 11% 
muliicollector ICP-MS 

DORM-2 Certified Value 4.47 ± 0.32 7% 
The reported uncertainty is an expanded uncertainty calculated 
using a coverage factor of 2 which gives o level of confidence of 
approximately 95%L 

this material was used, with the uncertainty contribution from 
Rj, rising to 24%. 

The mass fraction o f methylmercury in DORM-2 was 
calculated using eqn. 3 and the standard uncertainty estimated: 
the results are shown in Table 7. No methylmercury was 
detected in the blank solutions and a blank correction was not 
therefore included in eqn. 3. The mass fraction of methylmer­
cury in DORM-2 using the spike characterised using quadru­
pole H PLC-ICP-MS was 4.45 ng g " ' with a standard combined 
uncertainty of 0.45 Mg 6~' • For the experiment conducted using 
the spike characterised by multicoHector HPLC-ICP-MS the 
mass fraction of methylmercury in DORM-2 was 4.25 ng g~' 
with a standard uncertainty of 0.24 jig g~ ' . 

A standard uncertainty, u, corresponds lo one standard 
deviation, which, for a normal distribution, includes approxi­
mately 68% of the values. To provide an uncertainty estimate 
which can be expected to cover approximately 95% of the 
normally distributed values u is expanded by a coverage factor, 
k. As the major contribution to each standard uncertainty was 
derived from (he predsion of the measured isotope amotmt 
ratios, n = 10 for each replicate, the degrees of freedom was 
considered large enough to use a coverage factor of A: = 2, 
which approximates to the 95Vo confidence interval. Conse­
quently the standard uncertainty for each determination of 
methylmercury in DOR M-2 by species-specific HPLC-ID-ICP-
MS was expanded to give the final results in Table 7. 

5. Conclusions 

Tlie analytical procedure required a separation step, by HPLC, 
prior to the detection of the mercury species by ICP-MS. The 
coupling o f the HPLC system to the ICP-MS instrument was 
optimised to ensure highly efficient sample nebulisation and 

minimise the effect of the HPLC mobile phase, 50% methanol, 
on plasma stability. Instrumental data acquisition parameters 
were optimised using gravimetrically prepared solutions of 
natimil and ' " H g enriched abundance methylmercury chlor­
ide. Two methods o f data extraction for the calculation of 
isotope amount ratios from the resulting chromatograms, peak 
integration and a pseudo-steady-state approach, have been 
evaluated. The pseudo-steady-state approach gave results of 
greater accuracy and predsion than the peak integration 
approach and, as precision values can be obtained from a single 
sample injection onto the HPLC column, considerably reduces 
the sample volume and time required for analysis. 

The determination of methylmercury in a fish muscle 
certified reference material, DORM-2, was performed by 
species-spedfic IDMS and quantitative recovery in good 
agreement with the certified value was obtained. An uncer­
tainty budget has been calculated for the analytical procedure, 
allowing the relative uncertainty contributions for each 
parameter in the measurement equation to be quantified and 
their relative contributions to the final expanded uncertainty 
determined. 

Two ICP-MS instruments were employed in this study for 
the measurement o f both transient and simultaneous ion 
signals for the calculation of isotope amount ratios. Species-
specific HPLC-ID-MS by the Axiom multicollector instrument 
resulted in a lower relative expanded uncertainty due to the 
greater predsion and accuracy obtainable with this instrument 
compared with a quadrupole ICP-MS. The major contribu­
tions to the expanded uncertainty using the multicollector 
instrument are from the imcertainties assodated with the 
natural isotopic abundances of Hg, therefore, in order to 
significantly reduce the uncertainty further, an improvement in 
the isotopic characterisation of Hg in the sample is required 
prior to spedes-spedfic I D . This will add considerable time to 
the analysis, with the possible need lo resolve or account for 
interferences, e.g., ™ P b on ^ H g . A number of elements have 
a relatively poor isotopic characterisation and, i f I D is to 
become more widely used, a programme is required to improve 
the lUPAC data. The advent of modem multicollector JCP-
MS instrumentation should allow this improvement. For the 
scanning quadrupole instrimient the measured isotope amount 
ratios contributed > 65% of the expanded uncertainty. As it is 
unlikely that the isotope amount ratio precision can be 
significantly improved the expanded uncertainty for quadru­
pole HPLC IDMS determinations will remain relatively large. 

Acknowledgements 

This study was jointly supported by LGC, under contract lo 
the Department of Trade and Industry, as part of the Valid 
/Vnalytical Measurement ( V A M ) prograimne, and the Uni­
versity of Plymouth. 

References 
1 V. J. Barwick, S. L. R. Ellison and B. Fairman, AnaL Chim. Acta, 

1999. 394, 281. 
2 J. Turner, S. Hill. E. H. Evans. B. Fairaian and C. WolfT Briche, 

/ AnaL At. Spectrom., 2000, 15, 743. 
3 Guidelines for Achieving High Accuracy in Isotope Dilution Mass 

Spectrometry (IDMS), eds. M. Sargent, R. Harte and 
C. Harrington, Royal Sodety of Chemistry, Cambridge, UK, 
2002. 

4 S. Hill, L. Pitts and A. Fisher, Trends AnaL Chem., 2000, 19. 120 
5 C. Wolff Briche, C. Harrington, T. Cattcrick and B. Fairman, 

AnaL Chim. Acta, 2001, 437, 1-10. 
6 R. Qough, S. Belt, E. H. Evans, B. Fairman and T. Caiierick, 

ArmL Chim. Acta, in the press. 
7 I . Platzner, Modern Isotope Ratio Mass Spectrometry, J. Wiley and 

Sons, Chichester, 1997. 
8 J. S. Becker and H.-J. Dietze. Fre.'senm.t' J. AnaL Chem., 2000, 368, 

23. 

/ AnaL At. Specirom., 2003, 18, 1039-1046 1045 



9 A. Wolder. Modern Isotope Ratio Mass Spectrometry, ed. 17 
1. Plaizner. J. Wiley and Sons, Chichester, 1997. 

10 T. Caiterick, B. Fairman and C. Harrington. J. Anal At. 18 
Specirvm., 1998. 13. 1009. 19 

11 R. aough, S. T. Belt, E. H. Evans, P. Sunon, B. Kairmao and 
T. Cancrick. / AnaL At Spectrom., 2003. 18, (DOI: 10.1039/ 20 
b302880c). 

12 P. Quevauviller and M. Horvat, AnaL Chcm., 1999, 71. 155A. 
13 N. Bloom, J. Colman and L. Barber, Fresenhis' J. AnaL Ckem., 21 

1997, 358. 371. 
14 H. Hintdmann, Chemosphere, 1999. 39, 1093. 
15 R. Qough, S. Belt, E. H. Evans, B. Fainnan and T. Catierick, 

AppL Spectrosa Rev., 2003. 38. 101. 
16 C. Ingle, B. Sharp, M. Horstwood, R. Parrish and D. J. Lewis, 

J. AnaL At. Spectront, 2003, 18, 219. 

Quantifying Uncertainty in Arwiytical Measwemeru, eds. S. Ellison. 
M. Rosslein and A. Williams. Eurachem/aTAC, 2000. 
J. Kragien. Analy.it, 1994, 119. 2161-2166. 
C. F. Harrington. J. Romeril and T. Cotterick, Rapid Corrumai. 
Mass Spectrom., 1998. 12, 991. 
M. Zadnik. S. Specht and F. Begcmaon in Isolopic Composition of 
the Elements.pTtpax€A by K. Rosman and P. Taylor. I UP AC. 
Oxford. 
C. Briche, Isotopic Measurement Procedures for a Cali­
brated Isotopic Composition and Atomic Weight of a Natural 
PlaUnum Isotopic Reference Material, unpublished PhD Thesis. 
Universitdt Antwwpen and Univereitaire Instelling Antwerpen. 
1998. 

1046 / AnaL At. Spectrom., 2003, 18, 1039-1046 



Available online at \AAvw.sciencedirect.com 

S C I E N C E D I R E C T * 

ELSEVIER Analylica Chimica Acta 500 (2003) 155-170 

ANAUmCA 
CHimCA 
ACTA 

www.clsevicr.coni/locale/aca 

Investigation of equilibration and uncertainty contributions for the 
determination of inorganic mercury and methylmercury by isotope 

dilution inductively coupled plasma mass spectrometry 

Robert Clough^, Simon T. Bell^, E . Hywel Evans^'*, Ben Fairman*', Tim Catterick*^ 
" Plymouth Envmmmenial Research Centre. School of Envimntnenial Sciences. 

University of Plymouth. Drake Circus. Plymouth. Devon PIA 8AA. UK 
" LGC. Queens Road. Teddington. Middlesex TWIl OLY. UK 

Received 31 March 2003; received in revised form 19 June 2003; accepied 24 June 2003 

Abstract 

The mass fractions of Hg and methylmercury. in two certified reference materials, NIST2710 and DORM-2. have been 
determined by total and species-specific isotope dilution analysis (IDA), respectively, and uncertainty budgets for each analysis 
calculated. The mass fraction of Hg in NIST27I0 was determined by ID using mullicolleclor sector field inductively coupled 
plasma mass spectrometry (MC-SF-ICP-MS) whilst the mass fraction of melhylmercury in DORM-2 was determined using 
HPLC coupled with quadrupole ICP-MS. 

The extent of equilibration between the spike and the particulate bound mercury compounds was studied temporally by 
monitoring the ^'^Hg;'^Hg isotope amount ratio and by determining the total amount of Hg in the liquid phase. For the 
NIST27I0 complete equilibration was only achieved when concentrated HNO.i in combination with a microwave digestion 
was employed, and good agreement between the found (31.7 ± 4.0p.gg~', expanded uncertainty k = 2) and certified 
(32.6± 1.8 jjLgg"') values was obtained. For DORM-2 complete equilibration of melhylmercury between the liquid and solid 
phases was achieved when using 50:50 HoOiCHjOH (v/v) and 0.01 % 2-mercaploethanol as the solvent. Even though only 50% 
of iheanalyie was extracted into the liquid phase, complete equilibration was achieved, hence, the found methylmercury mass 
fraction (4.25±0.47 M-g g"' • expanded uncertainty k = 2) was in good agreement with the certified value (4.47±0.32 p.g g~'). 
© 2003 Elsevier B.V. All rights reserved. 
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1. In t i ioduct ion 

Isoiope diluiion analysis (IDA), which has recently 
been applied to inorganic mass spectrometry after 
many years of use in organic analysis, is regarded as 
a definitive analytical technique as the precision and 
accuracy obtainable arc unsurpassed by alternative 
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analytical methods [ I ] . The challenge for analysis 
employing ID for spectation studies is lo achieve the 
accuracy and precision inherent in the method when 
applied to total elemental determinations. I D A which 
has been applied to a wide variety of sample matrices 
(soils [2], sediments [3], natural [4,5] and artificial 
waters [6], gases [7] and reference materials (8)) and 
target analytes (inorganic, organic, organometallic 
and complexes), comprises the modificaiion of the 
natural isotopic abundance of an analyte in a sample 
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by spiking with a standard of modified isotopic com­
position and known mass fraction. Two isotopes 
are selected as the reference and spike isotopes, re­
spectively, and the resulting isotope amount ratio 
of the reference:spike isotopes after spiking is mea­
sured using a suitable mass speclromelric technique 
(9). Inductively coupled plasma mass spectroine-
try (ICP-MS), both quadrupole (Q) and mullicol-
lector (MC), which is tolerant of complex sample 
matrices, utilises small sample sizes, is easily cou­
pled with various separation techniques and d(x?s 
not suffer from lime dependent mass bias effects 
(101, has been previously used for both isotope 
amount ratio and conventional external calibraticHi 
measurements. 

Incomplete analyte extraction can lead to low re­
covery when an external calibration standard is used 
lo determine the analyte concentration. IDA relies 
solely on the measurement of isotope amount ratios, 
so problems associated with incomplete extraction 
are negated, provided that the spiked sample is ex­
tracted at the same efficiency as the analyte present 
in the sample (1). The key stage, therefore, in the 
IDA procedure is the equilibration of the isotopically 
mcxlified spike and the analyie contained within the 
sample. Provided equilibration is complete the spike 
material acts as the 'ideal' internal standard, because 
only isotope amount ratios are measured and no ex­
ternal calibration is necessary, and analyte losses are 
compensated for by losses of the spike in the same 
proportion, thereby ensuring an accurate determi­
nation of the target analyte. The role of the spike 
material as an internal standard also negates problems 
associated with instrumental drift and matrix effects 
during mass spectromeiric detection 110). I f the spike 
is not allowed lo equilibrate fully with the sample, a 
ditferenl extraction efficiency for the spike wil l re­
sult, yielding errors in the measurement. For liquid 
samples, equilibration by gentle agitation should be 
sufficient, but for solid samples, equilibration may 
prove problematic because the analyte can be bi>ch 
adsorbed onto the surface and contained within the 
lattice structure of the sample matrix. 

Species-specific IDA [11] requires that isotopically 
enriched analogues, or isotopomers, of the target ana­
lyte are synlhesised. Synthesis and characterisation of 
'*^Hg enriched melhylmercurychloride, using nuclear 
magnetic resonance spectroscopy and HPLC-ICP-MS 

has previously been reported by Clough et al. (12). For 
organometallic species, in order to simplify the cal­
culations, the analyte mass f raction, as determined by 
IDA, is calculated with respect to the metallic com­
ponent of the species. In this paper we evaluated two 
methods of data extraction for the calculation of iso­
tope amount ratios from the chromatograms obtained, 
namely peak integration and a pseudo-steady-state ap­
proach (13). 

Every analytical measurement, upon which impor­
tant decision are often made, has an associated un­
certainty, resulting from errors arising in the various 
stages of sampling and analysis, which characterises 
the range of values within which the 'true' value 
is asserted to lie (14). The estimation of the uncer­
tainly ass(x:ialed with an analytical measurement is 
increasingly being recognised as an essential part of 
the measurement pr(x;ess (15), because it facilitates 
improved intercomparison of analytical results, and 
is a requirement for ISO accredited methods (16). In 
order to estimate the uncertainty associated with an 
analytical measurement a clear statement of the mea-
surand, and the quantities used to derive it. is required 
117). IDA allows the estimation of a measurement 
uncertainty which meets the highest metrological 
standards |18| because it is derived through a mea­
surement equation which is described in terms of SI 
units. The formulation of an uncertainty budget can 
be used as a method development tool, allowing the 
analyst to identify which areas of the measurement 
prcKcss provide the major contributions to the overall 
measurement uncertainty, making it possible to focus 
on these areas in order to improve the accuracy and 
precision of the analytical result. It also allows an an­
alytical method to be monitored in order to delemiine 
i f the methcxi is under control. 

This paper describes the determination of total Hg 
and methylmercury in two certified reference materi­
als. NLST2710 and DORM-2, respectively, by IDA. A 
method for monitoring the extent of equilibration be­
tween the natural isotopic abundance sample and the 
isotopically mcxlificd spike material has been devel­
oped, and the extent of the adsorption and desorption 
of the spike and analyte contained within the sam­
ple, and hence the degree of extraction of the natural 
isotopic abundance analyte has also been calculated. 
An uncertainty budget was constructed for both the 
IDA and conventional external calibration analyses to 
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allow the results of the iwo different methods to be 
compared. 

2. Theory 

2.1. The IDA uncertainty budget model 

The formulation and calculation of an uncerlainty 
budget for an analytical measurement requires that 
all sources of uncertainly associated with the analyii-

molar ratio is analysed using ICP-MS, a 1:1 isoiope 
amount ratio will not necessarily be observed. Even 
very small mass biases can have deleterious effects on 
the accuracy of isotope amount ratio delerminations, 
so a correction must always be made. For this work, as 
no mercury isoiope amount ratio CRM was available, 
mass bias was corrected by the use of a Tl internal stan­
dard, and interpolation of the measured 2O5-j^.203'[^l 
isotope amount ratio, using the Russell correction ex­
pression [20], shown in Eq. (2.2) (the Russell law used 
for mass bias correction): 

200 (200Hg/iv^Hg) 1991 

'^*^S/cor ((205j|/2037|)^^/(205j|/203xi)ppr)0ri(RAM2'*''Hg/RAM'"Hg)/ln(RAM2('5Tl/RAM2''3Tl)) 
(2.2) 

cal procedure are identified and incorporated into the 
model used for the calculation of the expanded un­
certainty of the analytical result. In this case the ba­
sis for the uncertainty model was the IDA equation 
used to calculate the analyte mass fraction (Eq. (2.1)). 
IDA equations are available which use relative iso­
topic abundances [19J, however, the uncertainty cal­
culation is subsequently more complex as the isotopic 
abundances are correlated (18], hence isotope amount 
ratios are used in Eq. (2.1) (the isoiope dilution equa­
tion), in preference to relative isotopic abundances: 

niy Ry — /?B 52, /?(x 
C , = C 

mx/i /?B - /?x Eif^iy 
(2.1) 

where Cx is the concentration of the analyle in the 
sample, Cy the concentration ofthe analyte in the spike 
solution, nty the mass of spike, the mass of sam­
ple, // the moisture content correction factor, Ry the 
referenceispike isotope amount ratio in the spike, R^ 
the reference:spike isotope amount ratio in the sam­
ple, Yli^ix the isotope amount ratio of isotope / to 
the spike isotope in the sample, Y.i^iy isotope 
amount ratio of isoiope / to the spike isoiope in the 
spike, and RQ the referenceispike isotope amount ratio 
in the sample after spiking. 

For this work ^^Hg was chosen as the reference 
isotope and ' ^ H g as the spike isoiope. 

2. /. /. Mass bias correction 
Quadrupole and sector field mass spectrometers and 

their associated ion optics do not transmit ions of dif­
ferent masses equally, therefore, i f an elemental so­
lution composed of two isotopes with an exactly 1:1 

where cor is the corrected isoiope amount ratio, mes 
the measured isoiope amount ratio, cer the certified 
isotope amount ratio and RAM the relative isolopic 
atomic mass. 

2./.2. The IDA uncertainty budget model 
incorporating mass bias correction 

The value for each parameter in the isoiope dilu­
tion equation, Eq. (2.1), obtained either by an analyt­
ical measurement or a mathematical calculation, has 
an associated standard uncertainty. In order to ensure 
that all sources of uncertainly were included in the un­
certainty budget model, a cause and effect approach 
[15J was taken. The cause and effect diagram, shown 
in Fig. 1, consists of a branched hierarchical structure 
reducing to a single outcome, in this case the mass 
fraction ofthe mercury species as determined by IDA, 
Cx- Each main branch of the cause and effect diagram 
is a parameter in Eq. (2.1), which allowed the factors 
which contribute to the standard uncerlainty^of that pa­
rameter to be identified, quantified, combined and sub­
sequently included in the uncertainty budget model. 

The IDA equation (Eq. (2.1)) assumes that ihe mea­
sured isoiope amount ratio in the sample ( % ) has been 
corrected for mass bias effects arising from the mass 
spectrometer. For ihe ^ H g : ' ^ H g isotope amount ra­
tio determined in each sample, mass bias was corrected 
for, using the Russell law (Eq. (2.2)), by monitoring 
the 2051-1.203^1 isoiope amount ratio ofthe added inter­
nal standard. Each parameter in the Russell law has an 
associated uncertainty, which contributes to the over­
all uncertainty for the IDA procedure. Eqs. (2.1) and 
(2.2) were therefore combined to give Eq. ( 2 3 ) (the ID 
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Rg. I . Cause and effect uncenainty diagram for the determination of mercury species by IDA. 

equation incorporating the mass bias correction term), 
the model for the calculation of the mass fraction o f 
mercury in the CRM by IDA, the notation is the sanie 
as that used for Eqs. (2.1) and (2.2). The uncertainty 
budget was calculated following the guidelines set out 
by Eurachem/Citac [17]. Individual uncertainties as­
sociated with each parameter in Eq. (2.3) were com­
bined, after conversion to a standard uncertainty, us­
ing the spreadsheet method first described by Kragten 
[21 J: 

external calibration curve. Most software packages 
use an unweighted regression to derive the equation 
that describes the data from a calibration series. This 
method docs not take into account the variation in 
the instrumental response for each of the calibration 
standards [22], thus underestimating the uncertainty 
associated with the calculation of the mass fraction 
of the analyte contained in a sample. A weighted 
regression equation, however, includes the standard 

( ( 2 « > H g / ' ^ H g ) , e s / ( ( 2 ° 5 T I / 2 0 3 T I ) , e s / 
(205y|^203j])^^j(In(RAM^Hg/RAM""Hg)/ ln(RAM205TI/RAM20-^Tl)) 

' m . / i ((2«»Hg/'99Hg)„,es/((2°^TI/203TI)n,es/ E / ^ /y 
(205j|y203-p|j^^)(ln(RAM2a>Hg/RAM'^Hg)/(RAM2f '5Tl /RAM20 'TI))) _ 

(2.3) 

2.2. External calibration uncertainty model 

An uncertainty budget was also formulated for the 
determination of Hg species by interpolation from an 

deviation of the instrumental response for the cali­
bration standards, and was therefore employed, cal­
culated according to Miller and Miller [22], for the 
calculation of mass fractions determined using an 
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external calibranl. In addition, the standard uncertainty 
associated with correction for instrumental drift, using 
an internal standard, was also included in the calcu­
lations. The uncertainly associated with the predicted 
value of the analyte (.rpred). from the weighted lin­
ear regression equation, was subsequently calculated 
and multiplied by a coverage factor to give the ex­
panded uncertainly for Ihe predicted mass fraction in 
solution. 

3. Experimental 

The exieni of equilibration between the IDA spike 
solution and the natural isoiopic abundance analyte 
was determined for two certified reference materials. 
National Institute of Science and Technology (NIST) 
2710 Montana Soil Certified Reference Material 
(CRM) was used to represent terrestrial material and 
DORM-2 dog fish muscle (National Research Council 
Canada-NCR) was employed as a biological sample. 
NIST2710 is certified for total Hg, 32.6jjLgg~', and 
DORM-2 for methylmcrcury, 4.47 M-gg"', both refer­
ence materials were purchased from LGC (Tedding-
lon, UK). Two spike solutions were prepared from 
'^^Hg enriched (65.98 atom%) HgO (AEA Technol­
ogy, Harwell, UK). For the total Hg IDA determi­
nation (NIST27I0 CRM) a ' ^ H g enriched Hg2+ 
spike solution was prepared, 3.4 mg of the enriched 
material was dissolved in lOOjig of concentrated 
HNO3 (Aristar Grade, BDH, Poole, UK) and diluted 
with ISMJ^cm"' , distilled, deionised water (DDW, 
Elgasiat Maxima System Elga, High Wycombe, 
UK) to give a nominal mass fraction of 600M,gg~' 
in 2% HNO3. 

For the species-specific meihylmercury IDA 
(DORM-2 CRM) '^^Hg enriched melhylmercurychlo-
ride was synthesised from the AEA Technology ' ^ H g 
enriched HgO and characterised by ' H nuclear mag­
netic resonance spectroscopy [12]. Approximately 
4 mg of the ' ^ H g enriched meihylmercurychlo-
ride spike material was dissolved in 0.9g of HPLC 
grade methanol (BDH, Poole, UK) and subsequently 
diluted with 50:50 H20:CH30H (v/v) and 0.01% 
2-mercaptoethanol (BDH, Poole, UK) to give a nom­
inal mass fraction of 350jjLgg~' as Hg. This solution 
was further diluted with 50:50 H20:CH30H (v/v) 
and 0.01% 2-mercapioeihanol to give a slock ' ^ H g 

enriched meihylmercurychloride spike solution of 
approximately l O j i g g " ' as Hg. The two spike so­
lutions were characterised by reverse IDA because 
no purity data was supplied with the ' ^ H g enriched 
HgO. In this case the '^^Hg enriched spike solutions 
were treated as the sample and the isotopic composi­
tion modified by the addition of a well characterised 
natural standard and the ^**°Hg:'^Hg isotope amount 
ratio measured by ICP-MS. Hydrobromic acid, 0.6 M 
(Aldrich, Gillingham, UK) was used as a wash so­
lution during all ICP-MS analyses to counteract the 
memory effects of mercury. 

3.1. Characterisation of the ^^^Hg enriched 
inorganic Hg spike 

The stock ' ^ H g enriched inorganic Hg spike so­
lution was diluted with 2% HNO3 to approximately 
600ngg~' , and the accurate mass fraction of the di­
luted spike solution determined by reverse IDA mass 
spectrometry. Alfa Aesar Specpitre ICP standard solu­
tion (Johnson Maithey, Roysion, UK) was diluted to 
I70ngg" ' Hg in 2% HNO3 and used as the natural 
standard for the isotopic dilution of the spike solution. 
When the measured isotope amount ratio is close to 
uniiy, systematic errors, from sources such as mass 
bias and detector dead time, are minimised, thereby 
reducing the measurement uncertainly [19). An itera­
tive procedure [9] was therefore employed, to produce 
blends of the ' ^ H g enriched inorganic Hg spike so­
lution and the natural standard with a reference:spike 
isotope amount ratio (^^Hg-.^^'^Hg) of close lo unity. 
The ^ ^ H g r ' ^ H g isotope amouni ratio (in the blend 
/fee) was subsequently measured using an Axiom 
MC-SF-ICP-MS instrument (Thermo Elemental, 
Winsford, UK), and the Hg mass fraction o f the spike 
solution calculated using Eq. (3.1) (the reverse IDMS 
equation). Operating conditions are shown in Table 1: 

n/z /?z - /?BC Hi^iy 
Cy=C, 

f^BC-fiy Ei^i 
(3.1) 

where Cy is the concentration of the analyte in the 
spike solution, Cz ihe concentration of the natural 
isotopic abundance standard, the mass o f sample, 
my the mass of spike, /f^ the reference:spike isotope 
amount ratio in the natural tsotopic abundance stan­
dard, Ry the reference:spike isotope amouni ratio in 
the spike. Ei^iy isotope amount ratio of isotope 
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Table I 
ICP-MS and HPLC operaling conditions 

VG axiom MC-SF-ICP-MS operating conditions \ - l UAIUlll t>t \ . . -^I -IVrl -1(1 

RF foward power (W) 
Reflected power (W) 
Spray chamber 

Torch 

Sampler and skimmer cones 
Plasma gas (Imin~') 
Auxiliary gas (Imin" ') 
Nebuliser gas (Imin" ') 
Dwell time (s) 
Poinis per peak 
Nebuliscr 

Ions monitored 

1400 
<I0 
Coupled cyclonic and bead 
impact, cooled lo -5=C 
Fassel quanz fitted with a Pt 
shield 
Ni 
14 
0.85 
0.72 
10 
I 
Glass expansion 0.2ml/min 
micromist. natural aspiration 
"«Hg. ' '"Hg, 2"0Hg. 2»iHg, 

Tl, ^'**Hg, 2WTI Pb 

VG PQ3 ICP-MS operating conditions 
RF forward power (W) 
Reflected power (W) 
Spray chamber 
Torch 
Sampler and skimmer cones 
Plasma gas (Imin" ') 
Auxiliary gas (lmin~') 
Nebuliser gas (Imin" ') 
Dwell time (ms) 
Points per peak 
Ncbuliser 

Ions monitored 
IDA 
External calibration 

HPLC conditions 
HPLC column 

Mobile phase 

Flow rate (ml/mi n) 
Injection volume (p.1) 

1450 
<5 
Cyclonic, cooled to -5 ''C 
Fassel quartz 
Ni 
14 
0.75 
0.52 
10 
5 
Glass expansion 0.2ml/min 
micromisl. natural aspiration 

'Hg. 2«)Hg. «'^TI. 205 Tl 
Hg. ' ^Hg. ^ 'Hg . ^ ' H g 
Hg. 203TI.2«Hg. 2»TI 2 Pb 

HiChrom Kromasil 100 FC 
18 Excel. 25cmx4.6mm i.d. 
50:50 (v/v) methanol:DDW, 
0.01% 2-mercaptoeihanol. 
50ng/g NIST997 Tl CRM 
0.9 
100 

I to the Spike isotope in the natural isotopic abun­
dance standard, Yli^iz ihe isotope amount ratio o f 
isoiope / to the spike isotope in the spike, and RBC 
the reference:spike isotope amount ratio in the spike 
and natural standard blend, corrected for mass bias 
effects. 

200 
199 

Hg was chosen as the reference isotope and 
Hg as the spike isotope. 

3.2. Characterisation of the ^^^Hg enriched 
CHiHgCl spike 

The methylmercurychloridc spike was charac­
terised by reverse IDA using a natural isotopic abun­
dance meihylmercury chloride standard (Alfa Aesar, 
Ward Hi l l , MA, USA) diluted to M j i g g " ' in 50:50 
H20:CH30H (v/v) and 0.01% 2-mercaptocthanol. 
For this analysis, solutions of the spike and natu­
ral standard were prepared to give a ^ ^ H g . ' ^ H g 
isotope amount ratio of close to unity. In order lo 
measure the reference:spike isoiope amount ratio 
of the methylmercury spike/natural standard blends, 
HPLC was coupled with the multicollector Axiom 
instrument, the HPLC conditions follow those of 
Harrington et al. [231 and are shown in Table I . 
N1ST997 thallium CRM was added lo the mobile 
phase al 50ngg~' and continuously monilored dur­
ing separations for the purposes of mass bias correc­
tion (Eq. (2.2)). The HPLC system was not directly 
coupled to the nebuliser sample uptake lube but a 
low dead volume splitter was used. This allowed 
the nebuliser to operate at its natural uptake rate, 
as determined by the nebuliser argon gas flow, and 
the system to be optimised for maximum sensitivity 
and optimum peak shape without compromising the 
HPLC conditions. A low flow nebuliser (0.2 ml/min 
Micromist, Glass Expansion, Vevey, CH) was em­
ployed in conjunciion with 00.18 mm Teflon uptake 
tubing. The uptake rate of this system was 50\i.\/m\n, 
thereby ensuring highly efficient nebulisalion and, in 
conjunction with a coupled spray chamber system 
(cyclonic and bead impact. Glass Expansion, Vevey, 
CH) cooled to —5*^0, reduced the organic loading in 
the plasma. The methylmercury mass fraction in the 
stock spike solution used to produce the spike/natural 
standard blends was calculated using Eq. (3.1). 

3.3. Equilibration of ^^Hg enriched inorganic Hg 
andNIST2710CRM 

The moisture content of the N1ST27I0 CRM was 
determined, by drying separate subsamples to a con­
stant mass at lOS'^C, to give the moisture correc­
tion factor, h (Eq. (2.1)). Approximately 2g of the 
NIST27I0 CRM was accurately weighed and the 
amount of Hg present, corrected for moisture content, 
calculated from the cenified value. The stock ' ^ H g 
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enriched inorganic Hg spike solution was diluted to 
55 M-8g~' w ' l h 2% HNO3. Approximately I g o f this 
diluted spike solution was added to 40 m l o f the equi l i ­
bration solution, 50:50 H 2 0 : C H 3 0 H (v /v) and 0 . 0 1 % 
2-mcrcaptoethanol, contained in a clean 5 0 m l glass 
conical flask. The N I S T 2 7 I 0 C R M was subsequently 
added to the equilibration solution and 1 ml samples 
withdrawn at intervals up to 3000 min. The sampling 
frequency was approximately every 2 m i n for the first 
25min o f the experiment then at 5 - l O m i n intervals 
until 1 h had elapsed, wi th less frequent sampling 
thereafter. The equilibration solution was agitated 
throughout by a magnetic stirrer, and maintained at 
a temperature o f 25 ° C by means o f an electrically 
heated hotplate. Each sample aliquot was pipetted 
into a filter (Autovia l 0.2 p.m PTFE membrane sy-
ringeless fitters, Whatman, Maidstone, U K ) , diluted 
prior to filtration wi th 8 ml o f fresh equilibration 
solvent, filtered, and stored in a clean 25 ml sterilin 
container at 4 ° C unti l analysis by MC-SF- ICP-MS. 
The instrumental operating conditions are given in 
Table 1. Hydrobromic acid (0.6 M ; Ald r i ch , G i l l i n g -
ham, U K ) was used as a wash solution to counter 
memory effects, and thal l ium (NIST911 C R M ; L G C , 
Teddington, U K ) added to the samples as an inter­
nal standard at approximately 300ng/g to correct for 
mass bias and instrumental d r i f t . 

3.4. Equilihration of ^^Hg enriched methylmercury 
and DORM-2 CRM 

This procedure fol lowed that described fo r inor­
ganic Hg, but with the fo l lowing alterations to the 
method. Approximately 3 g o f the D O R M - 2 C R M was 
accurately weighed and the amount o f melhylmer-
cury present, corrected fo r moisture content, calcu­
lated f rom the certified value. The mass o f spike 
solution added was chosen so that the ^ ^ H g : ' ^ H g 
isotope amount ratio would be close to unity, pro­
vided complete equilibration between the sample and 
spike occurred. The equilibration solution volume 
was reduced to 30 m l , the experimental timespan to 
1500 min and samples were diluted to a volume o f 
4 ml prior to filtration. Samples obtained f r o m the 
D O R M - 2 equilibration experiments were analysed 
using HPLC-Q-ICP-MS, wi th the opt imum operating 
conditions shown in Table 1. NIST911 thal l ium C R M 
was added to the H P L C mobile phase as an internal 

standard at approximately 50ng/g to correci for mass 
bias. 

3.5. Conventional external calibration 

For the equil ibration experiment invo lv ing NIST-
2710, the total Hg in solution for each sample, was 
measured by external calibration at the same t ime as 
the isotope amount ratio determination. In order to ob­
tain a useful calibration it was necessary t o sum the 
signals obtained for all Hg isotopes (i.e. 198, 199, 
200, 2 0 1 , 202 and 204). because the isotopic abun­
dances o f the samples and calibration standards were 
different . Hence, the total Hg instrumental response 
was calculated, and the Hg mass fraction i n solution 
interpolated f r o m the calibration curve. T h e isotopic 
abundance o f ' ^^Hg is the same in both the ca l ibra t ion 
standards and the samples, however, it has an isotopic 
abundance o f only 0.1 % , so it could not be used as the 
calibration isotope, and was omitted f rom ihe experi­
ment because there were only nine detectors available 
on the A x i o m MC-SF- ICP-MS and it was necessary 
to monitor ^'^^Pb in order to correct for interferences 
f rom 204pb on ^ ^ H g . 2031-1 was used as a n internal 
standard to correct fo r instrumental d r i f t . 

The methylmercury content in the equi l ibra­
tion samples taken during the experiment invo lv ing 
D O R M - 2 C R M was calculated in a s imi lar fashion, 
but wi th H P L C coupled to the PQ3 instrument. The 
methylmercurychloride peak in each chromatogram 
for the isotopes '^^Hg to ^ ^ H g was baseline sub­
tracted, integrated, and the integrals summed to give 
the total methylmercurychloride instrumental re­
sponse. The signal fo r ^ ^ H g was again corrected fo r 
by moni tor ing ^^Pb . This analysis was per formed 
separately f r o m the isotope amount ratio determi­
nations as the requirement to monitor nine isotopic 
signals resulted in spectral skew o f the resulting chro-
matograms. NIST911 thal l ium C R M was added to 
the H P L C mobile phase as an internal standard at ap­
proximately 50ng/g to correct for instrumental d r i f t . 

3.6. Microwave digests 

Microwave digestions were performed on N I S T 2 7 1 0 
using t w o different digestants, concentrated HNO3 and 
50:50 melhanol :DDW (v /v) wi th 0 . 0 1 % 2-mercapto-
ethanol. Approximate ly I 5 0 m g o f NIST2710 was 
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accurately weighed directly into a Teflon bomb a n d 
4 m l o f digestanl added. The mass o f Hg added v i a 
the N I S T 2 7 1 0 reference material was calculated and 
an equivalent mass o f Hg added via the ' ^ H g e n ­
riched spike solution. The bomb lids were t ightened 
and each digestion left to equilibrate for 24 h p r i o r 
to microwaving at 650 W for 2 m i n using a domestic 
microwave oven. The digests were filtered ( A u t o v i a l 
0.2 p,m PTFE membrane syringeless filters) and the 
filtered extract di luted to approximately 25 g wi th e i ­
ther D D W or 50:50 meihanol :DDW (v /v) and 0 . 0 1 % 
2-mcrcaptoethanol solution, depending on the o r i g i ­
nal digcstant, and stored at 4 ° C until analysis by the 
A x i o m MC-SF- ICP-MS. 

4. Results and discussion 

4,1. Equilibration of reference materials with the 
^^Hg enriched spikes 

lUPAC data [24] was used fo r the relative isotopic 
abundances o f natural H g . N o uncertainty data was 
supplied wi th the ' ^^Hg enriched HgO, therefore the 
isotopic abundances o f this material were measured 
by MC-SF-ICP-MS, and the subsequent uncertain­
ties associated wi th these measurements calculated 
[12] . The isotopic abundances used, for the natural 
and ' ^ H g enriched mercury, are shown in Table 2. 
It is important to note that the Hg originating f r o m 
the solid phase (i.e. the particles o f the C R M in so­
lution) would have a natural isotopic composition 
but the Hg added to the l iquid phase was o f mod­
if ied isotopic composit ion (i.e. the ' ^ H g enriched 
spike). The expanded uncertainty {k = 2) for the 
theoretical equi l ibr ium ratio fo r each experiment was 
calculated using the standard uncertainties o f the 
masses, concentrations, and isolopic abundances o f 
both the reference material and ' ^ H g enriched spike 
solution, Eq. (4.1) was used as the model for these 
calculations. 

The extent o f equilibration between the spike a n d 
the natural isotopic abundance particulate bound H o 
species was determined by a comparison o f the theo­
retical ^ ^ H g : ' ^ ^ H g isotope amount ratio at complete 
equi l ibrat ion and the measured isotope amount ra­
t io in solution. The theoretical ^ ^ H g i ' ^ H g isotope 
amount ratio was calculated for each experiment f r o m 
the masses and mercury mass fractions o f the start ing 
materials using Eq. (4.1) where I is the l i qu id phase, 
s the sol id phase, e the ' ^ H g enriched spike, n the 
natural abundance mercury, eqm the equi l ibr ium and 
/ the t ime: 

200u '=eqm 'Hg 200 
e 

r=0 _L 2 0 0 u „ / = 0 

/=0 
I 

199 Hg'=o 
(4 .1 ) 

4.1.1. Equilibration between ^^Hg enriched 
inorganic Hg and NfST27IO 

The extent o f equil ibration, between the nat­
ural abundance particulate bound inorganic H g 
( N I S T 2 7 I 0 ) and the ' ^^Hg enriched inorganic Hg 
spike, was determined in the equilibration solution, 
f r o m the measured ^ ™ H g : ' ^ H g isotope amount ra­
tio, corrected fo r mass bias using Eq. (2.2). The 
200j^g.i99}^g isotope amount ratio in the l iquid phase 
over time is shown in Fig . 2. Equilibration ini t ial ly 
proceeded at a rapid rate up to 100 min , wi th the 
system reaching an equi l ibr ium at approximately 
3 0 0 m i n . Complete equil ibration, between the ' ^ H g 
enriched inorganic Hg spike and the particulate bound 

Toble 2 
The isotopic abundance and uncenoiniy daia for natural abundance Hg and ihe A E A Technology " 'Hg enriched HgO 

Isotope NalumI abundance Hg AEAT "''Hg enriched HgO Isotope 

lUPAC data [24] (aiom%) Standard uncertainty Axiom MC-SF-ICP-MS (atom%) Standard uncertainty [12] 

196 0.15 0.01 0.15 0.001 
198 9.97 0.12 2.93 0.0014 
199 16.87 0.13 65.98 0.010 
200 23.1 0.11 18.15 0.0016 
201 13.18 0.05 3.96 0.0019 
202 29.86 0.15 7.43 0.0047 
204 6.87 0.09 1.44 0.0012 
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natural isoiopic abundance Hg, was not achieved be­
cause the ^ H g i ' ^ H g isotope amount ratio in ihe 
equilibration d id not attain the theoretical 2°**Hg: '^Hg 
isotope amount ratio (Fig. 2). The mass fraction 
of Hg in NIST2710, calculated by I D A f r o m the 
2001 Hg: '^^Hg isotope amount ratio in the final sample 
taken during the equilibration experiment (3000 min) , 
was 21.5 ± 2.7 j i g g ~ ' (expanded uncertainty, k = 2). 
Complete equilibration between the sample and the 
spike d id not occur so the mass fraction o f Hg in 
NIST27I0 , determined by I D A , underestimated the 
certified value o f 32.6 ± I . S j i g g " ' by 34%. 

Hg, and other metals, are coprecipitaied wi th Fe 
and M n oxyhydroxides in aquatic systems and subse­
quently trapped wi th in this precipitate layer as further 
precipitation occurs [25] . NIST27IO C R M was pre­
pared f rom soi l , that was collected f r o m land that is 
periodically flooded, wi th waters f r o m settling ponds 
which contain high levels o f M n . It is thus l ikely that 
several different Fe and M n oxyhydroxide layers had 
built up on the particles, rendering some o f the partic­
ulate Hg unavailable for equilibration wi th the spike 
Hg dissolved in a mi ld solvent, causing the underes­
timation o f Hg in N I S T 2 7 I 0 . 

T w o I D A microwave digestions, one w i t h con­
centrated HNO3 and the second using 50:50 
methanol :DDW (v /v) and 0 . 0 1 % 2-mercaptoethanol 
were also performed on the N I S T 2 7 I 0 C R M . The 
N I S T 2 7 I 0 C R M was completely solubilised by 
the concentrated HNO3 microwave digestion, and 
the H g mass fraction, as determined b y I D A , o f 
31.7 ih 4 .0M.gg~ ' (k = 2) was in good agreement 
wi th the N I S T 2 7 I 0 certified value. In contrast, the 
microwave digestion using 50:50 methanol :DDW 
(v/v) and 0 . 0 1 % 2-mercaptoethanol did not com­
pletely dissolve the N I S T 2 7 I 0 C R M , and the H g 
mass fract ion was calculated to be 23.6 i 3.0 j t g g ~ ' 
(k = 2), comparable to that obtained, w i t h i n the 
l imits o f uncertainty, by the t ime resolved iso­
tope di lu t ion equilibration analysis. I t was deduced 
that, when 50:50 methanol :DDW (v/v) and 0 . 0 1 % 
2-mercaptoethanol was employed as the solvent, the 
' ^ H g enriched spike was equilibrated on ly w i t h 
surface bound Hg, e.g. Hg bound to sulphur con­
taining groups o f the fulvic /humic acid layer o f the 
particles. The results o f the three d i f ferent I D A de­
terminations o f Hg in N I S T 2 7 I 0 C R M are shown in 
Fig. 3. 
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4.1.2. Equilibration between ^^^Hg enriched 
niethylmercurychloride and DORM-2 

Equil ibrat ion between the '^^Hg enriched meihylmer-
curychloriiJe spike and Ihe natural isotopic abundance 

methylmercury in D O R M - 2 was monitored in the 
same fashion as that used for the soil C R M . The rate 
o f equilibration for D O R M - 2 , shown in Fig . 4, pro­
ceeded at an ini t ia l rapid rale. Complete equilibration, 
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of the expanded uncertainty {k - 2). 
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within the l imits o f uncertainty, was attained wi th in 
6 m i n f r o m ihe start o f the experiment. The mass 
fraction o f methylmercury in D O R M - 2 , determined 
by species-specific HPLC- IDA-Q- ICP-MS f r o m the 
^**^Hg:'^^Hg isotope amount ratio in the final sam­
ple taken at 1500 min , was 4.25 ± 0.47 p - g g " ' (A: = 
2), in good agreement wi th the certified value o f 
4.47 ± 0 . 3 2 J i g g - ' . 

4.2. Adsorption and desorption 

The isotope amount ratio in solution at any 
time during the equilibration o f enriched and natu­
ral abundance isotopomers o f an analyie is given by 
Eq. (4.2). Furthermore the total number o f moles o f 
the analytc in solution (n), at any l ime is the sum o f 
the number o f moles o f both isotopomers in solution 
(Eq. (4.3)). Hence, combining Eqs. (4.2) and (4.3) to 
give Eq. (4.4), with rearrangement to Eq. (4.5), and de­
termining R and / i , allows the extent o f desorption and 
adsorption o f the natural isotopic abundance particu­
late bound analyte and the spike analyie, respectively: 

R = ^y"y + ^^"^ (4.2) 

where Ay is the abundance o f isotope A in the spike, 
Ax the abundance o f isotope A in the sample, By the 
abundance o f isotope B in the spike, and B^ the abun­
dance o f isotope A in the sample 

/ I = / I y - f (4.3) 

where n is the total number o f moles o f analyte, /ly 
the total number o f moles o f spike analyte, and «x ihe 
total number o f moles o f sample analyte. Substituting 
Eq. (4.3) into Eq. (4.2) gives 

Ay(n - n x ) + i4xMx 
R = 

By(n - n x ) + Bx"x 

and rearranging gives 
RB, 

/ix = n {RBx - Ax) -\- (Ay - RBy) 

(4.4) 

(4.5) 

4.2. i. NIST27I0 
The extent o f desorption o f Hg f rom the partic­

ulate phase (i.e. the natural abundance Hg arising 
f rom the NIST2710 C R M ) and the adsorption f r o m 
solution onto the particulate phase (i.e. adsorption 
o f the spike Hg) is shown in Fig. 5. As can be 
seen 24% of the Hg f rom NIST2710 was desorbed 

f r o m the particles after only 3 m i n (Fig. 5 B ) , w i th 
no significant change, wi th in the l imits o f uncer­
tainty unti l l l O O m i n . Thereafter, the amount o f 
natural isoiopic abundance Hg in solution increased 
to 37% at the end o f the experiment (3000 min) , 
which yielded a mass fraction o f H g in N I S T 2 7 I 0 
o f 12.1 i t 2.3 M-gg~'» as determined by external cal­
ibration. The certified value o f Hg in N1ST2710 was 
underestimated by 63% wi th a relative expanded 
uncertainty o f 19%. A coverage factor (A:) o f 4.3 (ob­
tained f r o m /-tables) was used to expand the standard 
uncertainty, as only two degrees o f f reedom were 
available f r o m the four point calibration curve [22] . 
The adsorption curve for the ' ^ H g enriched Hg^+ 
spike (Fig. 5 A ) , showed an ini t ia l rapid adsorption, 
wi th 38% remaining in solution (i.e. 6 2 % adsorbed 
onto the NIST2710 particles) during the f i rs t 11 min . 
Thereafter the amount o f spike in solution remained 
constant unti l 1100 min had elapsed, whereupon a net 
desorption o f the spike occurred, w i t h 5 8 % in solution 
at 3000 min . The net desorption o f both ihe natural 
isotopic abundance and the spike H g f r o m 1100 min 
was attributed to oxidation, by the equil ibrat ion sol­
vent, o f the binding site substrate on the N1ST27I0 
particles. 

4.2.2. DORM-2 
The extent o f adsorption o f the spike and natural 

methylmercury is shown in Fig. 6. Forty eight per­
cent o f the methylmercury in the D O R M - 2 C R M was 
desorbed wi th in 6 min o f the start o f the experiment 
(Fig. 6B) , w i th the amount in solution remaining rel­
atively constant fo r the remainder o f the experiment. 
Likewise. 65% o f the methylmercurychloride spike 
had been adsorbed onto the particles o f D O R M - 2 after 
6 min (Fig. 6B) , and this amount remained relatively 
constant for the duration o f the experimenL The mass 
fraction o f methylmercury in the D O R M - 2 - C R M , as 
determined by external calibration f r o m the final sam­
ple taken at 1500 min , was 2 . 1 0 ± 0 . 5 j i g g " ' , an under­
estimation o f 53% compared wi th the cer t i f ied value. 
By comparison the mass fraction determined by I D A 
for the final sample was 4.25 ± 0.47 M-gg~' = 2) , 
certified value o f 4.47 ± 0.32 p . g g - ' {k = 4.3). So, 
although only 53% of the melhylmercury i n D O R M - 2 
had been brought into solution by the action o f the 
equilibration solvent, complete equil ibrat ion had been 
achieved, demonstrating that complete extraction o f 
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the analyte is not necessary for accurate results b y 
I D A . 

4.3. Contributions to uncertainty 

4.3.1. Isotope dilution analysis 
The standard uncertainty o f the mass bias corrected 

^ ^ H g : ' ^ H g isotope amount ratio was calculated 

by combining the uncertainty o f each parameter in 
Eq. (2.2). For the determination o f inorganic H g 
in N I S T 2 7 I 0 a mult icollector ICP-MS instrument, 
which measures the ion signal o f each isotope s imul­
taneously, was used. The relative standard uncertainly 
for the mass bias corrected ^OOHgri^Hg isotope 
amount ratio was typical ly 0.03%, w i t h the major 
contributions to this figure derived f r o m the measured 
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200Hg. i99^g isotope amount ratio (43%) . the mea­
sured 205Tj.203y| \^QXopc amount ratio (39%) and the 
NIST997 certified 2051-1.203^1 \^QXQ^ amount ratio 
(18%). 

For the determination o f methylmercury in 
D O R M - 2 , HPLC was coupled wi th a quadrupole 
ICP-MS instrument because the Faraday collectors 

on the MC-SF- ICP-MS were not sensitive enough. 
For these measurements the relative standard uncer­
tainty o f the mass bias corrected ^^\\%}^Hg isotope 
amount ratio was typically 1.2%. In this case the 
measured isotope amount ratios, ^^ '^ 'Hgr '^Hg and 
205^1 ;203y|^ Contributed 80 and 20%, respectively, 
to the combined standard uncertainty. The higher 
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Table 3 
The mass fraciion and expanded uncenainiy for the determinaiion of Hg in N1ST27IO by IDA and external calibraiion* 

Relative coniribuiions lo the 
expanded uncertainty (%) 

NIST27I0 loial Hg analytical method Hg mass fraciion 
( » J L g g - ' ) 

Expanded uncertainty 

Absolute Relative (%) 

Time resolved IDA 
HNO3 IDA microwave digest 
H P L C mobile phase IDA 

microwave digest 
External calibration 
Certified value 

21.5 
31.7 
23.6 

±2 .7 (It = 2) 
±4 .0 ik = 2) 
±3 .0 {k = 2) 

13 
13 
13 

95 
95 
95 

100 I2.I ± 2 . 3 ( * = 4 . 3 ) 19 
32.6 ±1 .8 6 

='The reported uncertainty is the expanded uncertainly, calculated using a coverage factor (k) which gives a level of confidence of 
approximately 959EJ. 

standard uncertainty observed using H P L C - Q - I C P - M S 
was due to the sequential nature o f the instrument, so 
isotope amount ratio determinations were susceptible 
to fluctuations in the ion signal caused by the sam­
ple introduction system, and the fact that transient 
signals, resulting f r o m H P L C sample introduction, 
were being monitored. The best accuracy and pre­
cision is obtained when continuous ion signals ore 
measured for several minutes [ 9 ] ; however, the use 
o f the pseudo-sleady-stale approach 111-13] for the 
calculation o f isotope amount ratios minimised the 
effects o f transient signal measuremenLs. 

The combined standard uncertainty («) o f the final 
analytical result is comprised o f contributions f r o m 
the individual standard uncertainties o f the parameters 
in Eq. (2.3), combined as shown in Fig . 1. The com­
bined standard uncertainty is then mul t ip l ied by a cov­
erage factor (A), the value o f which depends upon the 
available degrees o f freedom, to obtain the expanded 
uncertainty which approximates to the 95% con­
fidence interval. The contribution o f the individual 
parameters in Eq. (2.3) can also be expressed in terms 

o f their relative contribution to the expanded uncer­
tainly as shown in Tables 3 and 4 , for NIST2710 and 
D O R M - 2 , respectively. For the analysis o f NIST2710 
the uncertainty budget was dominated, in all cases, by 
the uncertainty associated wi th the mass fraction o f 
the ' ^^Hg enriched inorganic Hg spike solution (Cy) 
which contributed 95% o f the combined uncertainty. 
The ' ' " "Hg: ' ^ H g isotope amount ratio o f natural abun­
dance mercury (/?x) contributed 4%, wi th the other 
parameters in Eq. (2.3) contributing less than 1%. 

The relative contributions to the expanded un­
certainty o f the mass fraci ion o f meihylmercury in 
D O R M - 2 , determined by I D A , are shown in Table 4. 
The major contributions arose f r o m the measured 
200Hg-.i99^g isotope amount ratio (43%) and the the­
oretical ' * ^ H g : ' ^ ^ H g isotope amount ratio (/?x, 35%), 
derived f r o m ihe uncertainty associated wi th the 
natural isotopic abundance o f mercury [24 ] . Lesser 
contributions arose f rom the spike mass fraction 
(Cy, 12%), the measured 2 0 5 j , . 2 0 3 j | isotope amount 
ratio used for mass bias correction (9%) , and X! ^(x 
(1%) . Mercury is a relatively pooriy characterised 

Table 4 

DORM-2 methylmercury 
analytical method 

Methyl mercury mass 
fraction (jjugg"') 

Expanded uncertainly Relati\-e contributions to the 
expanded uncertainly (%) 

DORM-2 methylmercury 
analytical method 

Methyl mercury mass 
fraction (jjugg"') 

Absolute Relative (%) 

Time resolved IDA 4.25 ±0 .47 (t = 2) I I 12 35 43 9 
External colibniiion 2.10 ± 0 . 5 (k = 4.3) 24 100 
Certified value 4.47 ±0 .32 7.1 

approximately 95%. 
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element, with relatively large uncertainties associated 
wi th its isotopic composition, hence, i f the precision 
and accuracy o f the measurement o f isotope amount 
ratios is further improved these uncertainties w i l l 
start to dominate the expanded uncertainty for the 
measurement o f mercury species by I D A . 

It is interesting to compare the relative uncertainty 
contribution o f the spike (Cy) to the expanded uncer­
tainty o f the analyte mass fraction (Cx) determined in 
D O R M - 2 and NIST27I0 . In the latter case the rel­
ative contribution was much greater than the former 
(95%, cf. 12%) even though the standard uncertainty 
o f the mass fraction o f each spike solution was sim­
ilar (55.3 ± 3.4 j i g g " ' , cf. 11.1 ± 0 . 2 1 j i g g - ' ) . The 
reason for this is that the measured ^ * * H g : ' ^ H g and 
205^1.203jj isotope amount ratios were determined us­
ing the MC-SF-ICP-MS instrument in the final I D A of 
NIST27I0 , thereby resulting in extremely small stan­
dard uncertainties for these parameters, so their rel­
ative contribution to the expanded uncertainty fe l l to 
less than 0.03%, with a consequent increase in the rel­
ative contribution o f Cy. 

4.3.2. External calibration 
An uncertainty budget was also formulated for the 

determination o f Hg in NIST2710 and meihyImercury 
in DORM-2 by external calibration, and the expanded 
uncertainty fo r each analysis calculated (Tables 3 
and 4, respectively). For both these analyses the uncer­
tainly budget was dominated (100% after rounding) 
by the standard deviation o f the mercury mass fraction 
predicted f rom the weighted regression calibration 
curve (.Vpred)- other words, the standard uncertainty 
o f the regression fit dominated the final expanded un­
certainty. For the total Hg mass fraction in N I S T 2 7 I 0 
the relative expanded uncertainty was lower for the 
I D A determinations (13%) than that for the external 
calibration (19%), Similarly, the I D A determination 
o f methylmercury in D O R M - 2 again resulted in a 
lower relative expanded uncertainly (11%), compared 
with that obtained by external calibration (24%). 

5. Conclusions 

The mass fraction o f Hg and methylmercury has 
been determined, by both total and species-specific 
IDA, in two certified reference materials, N I S T 2 7 I 0 

and D O R M - 2 , respectively. For the analysis o f total 
Hg in N I S T 2 7 I 0 , complete equilibration between the 
sample H g and the added spike was only achieved 
when a microwave digestion was performed, w i t h con­
centrated HNO3 as the solvent. For this determination 
the found value o f 31.7 j t g g ~ ' was in good agreement 
wi th the cert if ied value o f 32.6 j i g g " ' . When 50:50 
methanol : D D W (v /v) and 0 . 0 1 % 2-mercaptoethanol 
was used as the extraction solvent incomplete equi­
libration and hence an underestimate o f the certified 
value, resulted. Only 37% o f the available H g was ex­
tracted f r o m N I S T 2 7 I 0 using this solvent. 

In the case o f species-specific I D A for methylmer­
cury in D O R M - 2 , when 50:50 me thanokDDW (v /v) 
and 0 . 0 1 % 2-mercaptoethanol was used as the ex­
traction solvent complete equilibration was achieved, 
even though only 5 3 % o f the available methylmercury 
was extracted into solution, and the mass f rac t ion o f 
methylmercury (4.25 M-gg" ' ) was in good agreement 
wi th the cert if ied value (4.47 p . g g ~ ' ) , i l lustrating that 
complete equil ibrat ion, rather than complete extrac­
tion, is required for to yield accurate results using I D A . 

In comparison analysis by externa! cal ibrat ion 
yielded analyte recoveries o f approximately half that 
achieved by I D A , reflecting the poor extraction o f 
the analytes into solution. The expanded uncertainty 
was calculated fo r each analytical method, and i m ­
proved precision was obtained using IDA compared 
to external calibration. 
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