Faculty of Health: Medicine, Dentistry and Human Sciences

School of Health Professions

2023-04-29

The Care and Management of Children and Young People with Ataxia Telangiectasia Provided by Nurses and Allied Health Professionals: a Scoping Review

Khan, M

https://pearl.plymouth.ac.uk/handle/10026.1/20885

10.1007/s12311-023-01555-z The Cerebellum Springer Science and Business Media LLC

All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author.

Title: The Care and Management of Children and Young People with Ataxia Telangiectasia Provided by Nurses and Allied Health Professionals: a Scoping Review

Running title: Nursing and AHP management of A-T

Author list: Munira Khan¹, Elizabeth Cassidy², Tracey Parkin¹, Amanda Wallace¹, Bernie Carter³, Joanne Paton¹, Kathryn Donohue¹, Susan Mitchell¹, Gemma Quin¹, Nicola McNarry⁴, Helen Hartley⁵, Hannah Bailey⁶, William Whitehouse⁴, Rachel Medd⁷, Asma Zahidi¹, Miriam McMullan¹, and Lisa Bunn^{1*}.

Affiliations:

¹-Faculty of Health, University of Plymouth, <u>Plymouth</u>, UK

²-Freelance Academic, <u>London</u>, UK

³-Edge Hill University, <u>Ormskirk,</u> UK

⁴-National Paediatric Ataxia Telangiectasia Clinic, Nottingham Children<u></u>'s Hospital, Nottingham, UK

⁵-Alder Hey Children's NHS Foundation Trust, <u>Liverpool</u>, UK

⁶-Nottingham City Hospital, Nottingham, UK

⁷-Helston Health Centre, <u>Helston</u>, UK

^{*}Corresponding author <u>email</u>: lisa.bunn@plymouth.ac.uk

Target journal: *The Cerebellum* Word count (10,000 limit): 6,0635,942 Tables: 2

Figures: 1

References: 63

Supplementary material:

Supplement 1: A detailed overview of search terms incorporated in the review

Supplement 2: A list of all the databases that were searched

Abstract (250/250 words):

Ataxia telangiectasia (A-T) is a rare, multisystem progressive condition that typically presents in early childhood. In the absence of cure, people with A-T require coordinated multidisciplinary care to manage their complex array of needs and to minimize the disease burden. Although symptom management has proven benefits for this population, including improved quality of life and reduced complications, there is a need for guidance specific to the nursing and allied healthcare teams who provide care within the community. A scoping review, adopting the Joanna Briggs Institute methodology, was undertaken. It aimed to identify and map the available expertise from nursing and allied health-care and management of children and young people with A-T ≤ 18 years of age. A rigorous search strategy was employed which generated a total of 21,118 sources of evidence, of which 50 were selected for review following screening by experts. A range of interventions were identified that reported a positive impact on A-T-related impairments, together with quality of life, indicating that outcomes can be improved for this population. Most notable interventions specific to A-T include therapeutic exercise, inspiratory muscle training, and early nutritional assessment and intervention. Further research will be required to determine the full potential of the identified interventions, including translatability to the A-T setting for evidence related to other forms of ataxia. Large gaps exist in the nursing and allied health evidence-base, highlighting a need for robust research that includes children and young people with A-T and their families to better inform and optimize management strategies.

Key-words-(4-6 from Index Medicus): Ataxia telangiectasia_a; Cerebellar ataxia_a; Community health services_a; Child care_a; Rehabilitation_a; Multidisciplinary management

Introduction

Ataxia telangiectasia (A-T) is a rare genetic and progressive condition with prevalence estimates varying between 1 in 40,000 and 1 in 100,000 live births worldwide [1]. A-T primarily affects the neurological, immunological, and pulmonary systems, and typically first presents with cerebellar ataxia in early childhood. <u>The neurological decline increases with</u> <u>age [64] and Pprogression is-characterized by oculomotor, extrapyramidal, and peripheral</u> nervous system symptoms, and most children are wheelchair-dependent by adolescence [1, 2]. Difficulty coordinating chewing and swallowing is common among children and young people with A-T, resulting in a high rate of malnutrition [3].

Lung disease is a significant manifestation of A-T and the leading cause of morbidity and mortality in the population [4, 5]. This results from weakness and incoordination of respiratory muscles and fibrosis of lung tissue [6]. Immunological deficiencies also drive a high malignancy rate in this population, in particular leukaemia and lymphoma, and result in the death of approximately 22% of people with A-T [5, 7].

People with A-T have complex needs and, in the absence of cure, require coordinated multidisciplinary care [2]. Appropriate symptom management and rehabilitation can improve their quality of life (QoL) and reduce the likelihood of complications [8] and it is essential that people with A-T have access to high-quality, collaborative care to minimize the burden of disease [9].

However, awareness of A-T is low, both in the clinic and community, and current guidance on the management of children and young people with A-T is generally limited to diagnosis and medical interventions [10]. Despite the tendency for patient care to be managed in the community setting, little attention has been given to the guidance of nursing and allied health professionals (AHPs), or sought to understand the views of children and young people and their families [11]. There is, therefore, a need to raise awareness of A-T within community healthcare professions and to provide guidance specific to nursing and allied healthcare teams, to optimize the management of children and young people with A-T. To address this need, a scoping review was undertaken to systematically identify and map the type, scope, and content of an extensive range of sources to compile expertise from nursing and AHPs on the care and management of children and young people with A-T.

Materials and Methods

A scoping review was selected as the most appropriate and inclusive means by which to map and synthesize material from a vast and diverse array of sources, addressing objectives to-(1-) fully determine the extent of the current literature, (2)- summarize the findings exploring narratively both the generalizesability and translatability of evidence to A-T, and (3)- identify research gaps [12].

This scoping review was performed according to the Joanna Briggs Institute methodology for scoping reviews [13], with reference to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines [14]. A protocol was published on an open science framework in August 2020 (<u>https://osf.io/q7dba</u>) and conducted using coproduction by the research team (<u>https://osf.io/edzn3/</u>).

Research Question and Outcomes

The research question was defined as follows: "What guidance is available to inform the care and management of children and young people with A-T from the perspective of nursing and allied health professionals?"

Key outcomes identified and mapped within the scoping review were as follows:

- Primary outcomes: Activity, participation, and health-related QoL.
- Secondary outcomes: Impairment level measures related to neuromusculoskeletal performance, cardiovascular performance, lung function, nutritional status, swallow, and ocular motor function.

Search Strategy

A comprehensive search strategy was developed in collaboration with an information retrieval specialist and clinical-academic experts in the selected fields using key words and medical subject headings (MeSH). Search terms (Supplement 1) were tailored according to the profession, with broader terms utilized where limited specific evidence was expected (for example, 'ataxia' was used for professions where a higher number of records were anticipated vs 'nervous system diseases' for those with fewer anticipated sources). A threestep search strategy was then undertaken as follows: (1)- A search of PubMed and CINAHL electronic databases using the defined search criteria; (2)- due to the high volume of initial results, remaining databases (Supplement 2) (including clinical trial and review registers, guidelines and recommendations, research libraries, and open grey literature sources) were searched using only the keyword 'ataxia'; (3)- a manual search of the reference lists of all selected sources and consultation with A-Team experts from each discipline. Nurses and AHPs representing the following therapists were selected for inclusion in this study, as those most likely to be involved in the care of people with A-T: physiotherapists (neurological and respiratory physiotherapy specialists), occupational therapists (OT), speech and language therapists (SLT), dietitians, orthoptists, optometrists, orthotists, and podiatrists. No restrictions were applied to date, language, location, culture, care setting, delivery type, or type of evidence and both progressive and non-progressive types of ataxia in children were included.

Screening and Selection

All sources of evidence were collated onto a web-tool called Rayyan QCRI [15] and their titles and abstracts were independently screened by two review authors (MK and EC). Evidence was selected that included ataxia in their title, population of \leq 18 years of age with A-T or another ataxia impacting childhood. As there is limited evidence guiding the care and

management of A-T, other A-T--like conditions affecting childhood were included to ensure that all relevant knowledge with potential for translation to the A-T setting was captured. Care and management practices that focused on prevention, management or treatment of primary impairments, activity limitations, participation restrictions, or secondary health conditions, or interventions for health promotion, or provision of support and independence were considered. Surgical interventions were only included if nursing and/or any of the selected AHPs were significantly involved in pre- or post-surgical care.

Any material that did not meet the inclusion criteria, including any regarding medical, psychological, or pharmacological interventions, or evidence that did not consider management or intervention wereas excluded.

Full_-text screening was conducted by two independent reviewers (MK and the discipline experts from the A-Team collaborative: EC, TP, LB, KD, NM, GQ, BC, SM, JP, HB_a and RM). Reviewer discussion was conducted for sources of evidence where there was any doubt over inclusion, with a third review author (AW/LB) making the final decision where agreement was not reached.

Data Extraction

Information relating to the care and management of children and young people with A-T was extracted from the selected materials by the lead reviewer (MK) and verified by a second reviewer (discipline experts from the A-Team collaborative: EC, GQ, KD, TP, LB, BC, JP_a and NM). Data were reported in a pilot-tested data-charting table adapted from the Joanna Briggs Institute reviewer's manual [12] to record citation details, context, intervention details, key findings and results, and direct generalize ability or transferability to A-T.

Results

A total of 21,118 sources of evidence were identified from database and grey literature searches of material related to allied health-care of A-T or similar conditions. After duplicate removal, the title and abstracts of 16,847 sources of evidence were screened, and 467 were selected for full-text screening. Of these, 79 could not be sourced, and 388 were screened. A total of 341 were excluded for the following reasons: (a) adult focus; (b) provided generic overview only, no intervention/therapy recommended; (c) pharmacological intervention; (d) focus on measurement or assessment of ataxia, no intervention/therapy recommended; and (e) standalone transcranial magnetic stimulation (TMS) treatment or variations. The reference lists of the remaining 47 sources were screened and three further studies meeting the selection criteria were included. This resulted in a final selection of 50 sources of evidence (Fig.ure 1).

Source Characteristics

Of the 50 selected sources of evidence, 42 were identified from PubMed and 8 came from CINAHL, Conference Proceedings Citation Index- Science (Web of Science), Cochrane Central Register of Controlled Trials, PROSPERO, and Google Scholar databases. A total of 35 were research studies (Table 1) and 15 were non-research material (Table 2, including reviews, book chapters, guidelines, and practice documents). Out of the 35 research studies, 31 were quantitative studies, 1 was a qualitative study, and 3 were mixed-_method studies. Publication dates ranged from 1968 to 2022 with the highest number of selected evidence being published in 2017 (n=7) followed by 2021 (n=6). There were no orientating references to or information about the context in which the non-research sources of evidence were situated. The country of origin of the selected research studies included the USA (n=9), Brazil (n=6), Germany (n=4), UK (n=2), Italy (n=2), the Netherlands (n=2), Turkey (n=2),

Republic of Korea (n=2), Egypt (n=1), Iran (n=1), Australia (n=1), Israel (n=1), and New Zealand (n=1). One study represented multiple regions.

Of the AHPs included in the search strategy, physiotherapy was most heavily represented within the 35 research studies (n=23), followed by dietetics (n=7), speech and language therapy (n=2), respiratory physiotherapy (n=1), occupational therapy (n=1), and podiatry (n=1). No research studies related to nursing or optometry were identified. The non-research sources were mostly related to multiple allied health and nursing professions (n=9), while six were focussed specifically on physiotherapy or occupational therapy.

Of the 35 selected research studies with known intervention setting, the most commonly reported settings were hospitals/clinics (n=6), rehabilitation centres (n=6), A-T clinics (n=5), home (n=4), and laboratory/clinic and home (n=5).

The selected 35 research-based sources included more than 600 participants (where reported, female n= 304 and male n= 273) with ataxia as a primary or secondary impairment. The most number of participants included in a study wereas 101 [44] and the least was one [16, 19, 21, 23, 24, 25, 28, 30, 53, 54, 60].) Where reported, the ages of children with ataxia ranged from 1.8 to 18 years (excluding the age of adult participants in mixed participant studies). Not all studies used functional descriptors to report severity of ataxia of their participants, but where reported, most participants were either wheelchair dependent or required assistance for mobility. Nineteen sources of evidence focused exclusively on children and young people with A-T (14 research and 5 non-research studies; reported age range in research studies was from 1.8-to_30 years). A-T_-specific research studies related to dietetic (n=7), physiotherapy (n=3), SLT management (n=2), respiratory physiotherapy (n=1), and OT management (n=1). A-T-specific non-research studies generally provided multidisciplinary recommendations and practice advice, although none included advice on ophthalmic management despite the ocular motor impairment associated with A-T. Other progressive and inherited ataxias (Tables 1

& and 2) affecting childhood were the focus of 14 sources of evidence, while 14 focused on ataxia as part of a non-progressive condition. Finally, three sources reported mixed groups of participants with non-progressive and progressive ataxias (including A-T).

The sources of evidence reported a diverse array of care and management approaches which are reviewed here under five main themes of exercise and function, respiratory, nutrition, swallow, and speech. While exercise and function was the most researched theme with a total of 39 sources of evidence reporting findings/guidance on improvement of physical and functional performance_a; the themes of respiratory and speech were least researched with only seven and six sources reporting evidence, respectively. Where reported, the duration of intervention ranged from one-1_day [22] to 125 weeks [20] and frequency ranged from one session per week [60] to three times daily [17]. The intensity ranged from 20 minutes-[18, 41] to 120 minutes per session (with 1–2–minutes break in between sessions) $[22]_{a;}$; the most frequently cited duration being 60 minutes (*n*=6).

Exercise and Function

Motor function decline is generally the first manifestation of A-T₅ that increases with age [64]. and tThis was the most heavily represented theme in our search, with 37 sources of evidence reporting the impact of exercise and therapy on improving strength, coordination, and/or motor ability, and two sources of evidence reporting strategies to improve occupational performance. Although 12 studies examined the impact of physiotherapy, both the interventions and outcome measures varied considerably between studies [16-23, 53, 54, 57, 58]. Despite the wide range of outcome measures used, none of these studies with multiple participants; focused on specifically evaluating age-dependent effects against treatment efficacy. An A-T-specific case report published in 1968 emphasized the importance of prescribing a therapeutic exercise program, in particular following transition to a wheelchair [16]. This report highlights the value of passive to resistive exercises for retaining strength and range of motion, along with the importance of gait training, active assistive exercise, and wheelchair activities, together with the need for adaptive aids to facilitate children and young people's independence. However, the author has discouraged the use of overly demanding home programs to avoid adding to parental frustration and guilt [16]. Another A-T-specific case report [53] explored the effects of a 3-month_long physical therapy program including balance and strengthening exercises and balance games on a 9-year-old child with A-T. The study reported significant improvements in body structures and functions and positive improvements in the level of activity and participation following the therapy. Of the other ten studies reporting physiotherapy interventions, long-term multidimensional and individualized training programs generally led to improvements in strength, balance and stability, and/or functional parameters, which were often statistically and/or clinically significant although based on small sample sizes [17-23, 54, 57, 58].

The wide range of study types and methodologies utilized precluded any inter-trial comparisons or definitive conclusions. However, it is noteworthy that 6-_months of intensive, goal-oriented functional rehabilitation intervals combined with vibration-assisted home training led to significantly improved motor function of children with ataxia [17]. Repeated practice of functional tasks led to improvement in balance and physical performance thereby improving overall motor function in children with cerebellar ataxia [54]. Reducing visual input during postural control [19], treadmill training in combination with transcranial direct current stimulation [18] or body weight support [23], standard physical therapy programs in combination with core stability program [58]_ and functional trunk training [57] were also

identified as physiotherapy interventions that may be worthy of further study in the A-T population.

Three case reports investigated the effect of assistive devices on gait performance, with mixed results [24, 25, 55]. Although robotic assisted gait training (RAGT) led to decreased gait speed of a 16-year-old boy with non-progressive but persistent ataxia due to traumatic brain injury, the authors postulate that this may have been due to improved gait symmetry, decreased variability_a and increased control achieved with a wearable robotic exoskeleton [24]. Conversely, RAGT in combination with conventional physical and occupational therapy led to improvements in postural control, functional mobility, and balance in children with ataxic cerebral palsy. Improvements observed after RAGT in areas of gross motor function that did not improve with conventional therapy alone support the potential benefits of overground RAGT on gross motor function in these children [55]. A conference proceeding from 2014 reported significant improvement from a dynamic movement orthosis suit and orthotic shoes in gait and stability for a 12-year-old girl with severe ataxia [25]. However, as these are case reports, the effectiveness of assistive devices for wider population remains uncertain and further research will be required to determine the potential benefit of such interventions for persons with A-T.

The benefits of tailored virtual reality and exergame-based coordinative training (including a combined approach with physiotherapy) were explored in six studies which mostly reported reduced ataxia symptomology following their respective intervention [26-30, 56], and in many cases this was considered to be clinically meaningful. Furthermore, the reported effects of immersive virtual reality and videogaming were considered to translate into daily living [26, 30]. Interestingly, two studies reported specific benefits of this approach on motivation

and goal attainment [26, 27]. One study also suggested that the degree of benefit was dependent on the amount of training, demonstrating the need for continuous and frequent training to optimize subsequent outcomes [26]. Another study that used exergames for upper body rehabilitation, reported improvement in hand dexterity of children with ataxia; the disease severity data, however, showed no significant change for participants [56]. Although A-T was only represented by three participants across all five studies [26, 30, 56], the positive outcomes following these interventions suggest they may warrant further study regarding their applicability to the management of children and young people with A-T.

The perspectives of parents and/or physiotherapists on the effects of physiotherapy were reported by three studies [37-39]. In an online survey of 96 physiotherapists [37] who treat children with ataxia, the most reported interventions were balance exercises (28%), task-specific training (23%), and proximal control activities (21%) and these were also ranked as the most effective types of treatment. Of the adjunct therapies reported, orthotics and walking/mobility aids (both 31%) were the most common and also ranked as the most effective. The common aims for physiotherapy treatment included improving coordination, balance, muscle strength, and educating the child/family regarding activity. The most used outcome measure was the Scale for the Assessment and Rating of Ataxia (SARA), followed by the Berg Balance Scale (BBS) and Gross Motor Function Measure (GMFM). However, no mention of any anticipated change in these measures or knowledge of minimal clinically important differences (MCID) related to physiotherapy intervention was provided by the respondents. This study provides a unique contribution to the understanding of good areas of practice, including multidisciplinary team rehabilitation and use of individualized treatment planning and standardized outcome measures from the perspective of physiotherapists [37].

In a study of parent perceptions of physiotherapy interventions for Friedreich ataxia, muscle strengthening and stretching were most reported, and the benefits of these were felt to increase as the child grew older. Despite this, parents generally perceived a home exercise program of muscle stretching to be challenging and burdensome, and reported adherence was low. Balance training was also commonly reported but only considered to be minimally helpful. Interestingly, hydrotherapy was the most recommended intervention by parents. Although parents reported a desire for more therapies, an array of barriers were identified to accessing services, both internal (including lack of time, understanding, or motivation) and external (including lack of access to professional services, lack of eligibility for services, and limited insurance coverage) [38]. Finally, a pilot study of parents who attended a training and support program in simple massage for use at home reported improved psychosocial well-being for both parents and children [39].

An occupational therapy intervention based on the Person-Environment-Occupation Model (PEO) was investigated on a child with A-T [60]. Based on the evaluation of the child description aspects of occupational performance including the person, occupations, and environment, an individualiszed plan was designed to promote occupational performance. Intervention focused on the activities of daily living (such as dressing/undressing, toileting, eating/feeding), play, leisure, and social participation. The authors reported a significant improvement in the child's occupational performance and his participation in daily routines, enhanced self-confidence, and communicative skills.

Thirteen non-research sources provide guidance on the use of physiotherapy and exercise within a multidisciplinary approach for the management of A-T/ataxia [1, 2, 5, 31-36, 40, 51, 52, 63]. Physiotherapy and exercise were recommended as vital for maintaining strength,

coordination and balance, prevention of joint contractures, reduction of fatigue, and to maintain a person's independence for as long as possible, with the use of appropriate aids and devices (such as ankle-foot orthotics and weighted gait-aid) to maintain or improve daily activity [1, 2, 5, 31-35, 63]. Postural management was emphasized as being critical in maintaining functional ability, sitting

and standing balance_a and respiratory function [5]. One systematic review identified a high number of interventions involving technology (video game or virtual reality) that have the benefits of being home-based which may facilitate beneficial outcomes [35].

Hydrotherapy, and even horseback therapy, were also recommended for children and young people with ataxia, with the added benefits of being well-tolerated and fun for them [1, 36]. Aquatic physical therapy and stretches were suggested to prolong ambulation and reduce the number of falls in people with Friedreich's ataxia [63]. The importance of early referral and initiation of physiotherapy, and for continued therapy, was highlighted [5, 31, 33].

The impact of the global COVID-19 pandemic on people with ataxia was also examined in a recent study. The report highlighted the importance of telehealth and telemedicine platforms in facilitating access to healthcare while reducing face-to-face visits. The study reported that online physiotherapy and balance therapy tutorials may support people in remaining physically active and engaged, prevent decompensation, address anxiety, and prepare them for the resumption of their normal routine [40]. Another recent editorial [62] that provided low-tech, inexpensive, and patient-centred advice on ataxia management₇ highlighted the impact of using face masks during COVID-19. Compromised visual feedback caused by the face mask restricted the field of vision and the additional effort of breathing through face mask impaired balance and reduced gait speed. Using visors instead of face masks; and

avoiding varifocal lenses offer some straightforward solutions. Some other suggestions to reduce the potential for tripping and falling included avoiding long clothes and footwear, wearing bags close to the body, discarding loose rugs/mats, and using weighed cutlery and chunky pens, among others.

Respiratory

Respiratory disease is a common and serious problem associated with A-T and was the subject of an A-T-specific longitudinal study that evaluated the effect of 24 weeks of inspiratory muscle training (IMT) on 11 children with A-T [41]. The intervention led to significantly improved ventilatory pattern, lung capacity_a and respiratory muscle strength, alongside decreased respiratory rate. Significantly reduced dyspnoea and improved QoL (general health and vitality domains of the Short Form, SF-36) were also reported. The results suggest that IMT should be considered as an adjunct therapy to improve respiratory mechanics and QoL in children and young people with A-T [41]. This is supported by a case study of a child with A-T which emphasized the importance of postural drainage, coughing_a and breathing exercises [16].

Respiratory management guidance was also identified in five non-research sources of evidence, with the common recommendations of improving pulmonary function and reducing aspiration within a multidisciplinary approach [1, 2, 5, 31, 42]. Guidance is also provided on removing bronchial secretions [1] and on regular airway clearance, including techniques to augment cough and mucociliary clearance [42], with an emphasis on regular activities and breathing exercises in optimizsing respiratory function [5].

Nutrition

Malnourishment was common among participants in the six studies that examined the impact of nutritional interventions in people with A-T [3, 43-47]. In each report, the study population tended to be of relatively low weight and height for age, with *Z*-scores appearing to decline with age [44, 45]. The progressive decline in nutritional intake led to recommendations for proactive consideration to be given to early intervention, in particular to percutaneous endoscopic gastrostomy (PEG) insertion at the start of BMI-Z decline, or from age 8 years onwards, to prevent progressive growth failure [44]. The limited available data suggest that early PEG placement may lead to improved weight gain [3, 44-46]. The benefit associated with earlier use of PEG as opposed to using PEG at the advanced stages of disease; was highlighted in a longitudinal study of the A-T population from Israel [45].

The poor oral intake, diet quality_a and chronic fatigue experienced by people with A-T was described in a cross-sectional analysis that demonstrated the vulnerability of this population to issues influencing their nutritional status. The study further emphasizes the need for early nutritional intervention and ongoing nutrition support for families, including early discussions regarding tube feeding [3].

The identified non-research evidence in this theme also supports early nutritional intervention for people with A-T, including the management of pulmonary and nutritional complications of dysphagia, to improve clinical outcomes as well as positively impacting QoL [1, 2, 5, 31, 42]. Two sources of evidence also advocated for the involvement of a dietician to recommend dietary modifications [1, 5]. The importance of working closely with a dietician for dietary modification and dysphagia management is also highlighted to ensure optimal nutrition and hydration [5, 63]. A guidance document highlighted the importance of regular monitoring of weight and height to identify early signs of concerns and encouraged small frequent meals and snacks using nutrient-rich foods such as full-fat dairy products and food fortification [5]. A European consensus statement on the multidisciplinary respiratory management of A-T

also highlighted the nutrition- and swallow-related issues faced by this population, and the authors recommend assessment of the adequacy and safety of nutritional intake at least annually. They also recommend consideration of early PEG insertion for people with unsafe swallow or inadequate nutritional intake [42].

Finally, the issue of nutrition-related comorbidity was addressed by two research studies, one of which identified common metabolic disorders in people with A-T, specifically cardiovascular, diabetes_a and liver diseases, and a tendency for these to worsen with age. The authors recommended nutritional and pharmacological interventions accordingly [43]. Elevated cardiovascular risk factors in the A-T population and the impact of poor nutrition and an altered lipid profile on the risk of developing atherosclerosis and diabetes were identified. The authors presented recommendations for routine monitoring of biomarkers and nutritional guidance [47]. Another cross-sectional study [59] reinforced the importance of assessing the nutritional status of selenium in the A-T population as they reported a significant inverse association between selenium concentrations (observed below the reference value in nearly 40% of A-T participants) and oxidative stress biomarkers.

Swallow

Oropharyngeal dysphagia with concomitant aspiration was the primary assessment made in a relatively large (n=70) study. Oropharyngeal dysphagia was commonly reported, and the authors concluded that it may be progressive in people with A-T. Aspiration was found to significantly correlate with lower weight/height Z-scores in people who presented with aspiration (27%). Aspiration also occurred with a higher frequency in young adults (with mean age 16.9 years) when drinking thin liquids through a straw, suggesting that this common feeding method may actually increase the risk of aspiration [46]. The authors

suggest videofluoroscopy as a technique to identify swallow dysfunction in young adults with A-T and recommend interventions to change the feeding routine to decrease the risk of aspiration and provide adequate nutrition and hydration. Such interventions include the elimination of thin liquids, pacing to slow the rate of liquid intake, and use of a feeding tube [46]. Other research studies that addressed the issue of swallow dysfunction identified the need for children to have their food mashed or cut into bite-sized portions to ease chewing difficulties, for thin liquids to be thickened to ease swallowing, use of a straw or sipper cup to reduce spillage, and for mealtime assistance, particularly in the evening when the child may be tired and slow to feed [3, 48].

These studies are supported by non-research-based sources of evidence, whereby a variety of recommendations were identified to support people with ataxia who experience difficulty swallowing [1, 2, 33, 63]. In addition to the interventions described above, education in safer practice at mealtimes and muscle strengthening to specifically target swallow pathophysiology were also recommended, with compensatory head postures and an appropriate sitting position considered helpful to facilitate safer swallowing [1, 2, 33, 63]. Other recommendations included environment modifications, such as reducing distractions and promoting focus on the task of swallowing by eliminating talking during meals; and dietary modifications such as altering the diet to exclude or modify textures and consistencies identified to cause coughing or choking. These may include dry crumbly foods (e.g., biscuits, nuts), small, easily inhaled foods (e.g., steak, apple) [63]. A multidisciplinary approach to dysphagia management was also recommended, incorporating the SLT, dietician, and physiotherapist/occupational therapist [33, 36].

Speech

Speech was addressed by a research study of eight children with A-T [48] which sought to determine deficits and assets in cognitive and speech-language functioning. The results revealed dysarthria in all participants and moderately-to-severely affected speech in most participants, with language functioning considered to be a strength. The authors emphasized the need for a valid assessment of cognitive and speech language functioning of the A-T population from an early age as a pre-requisite for providing appropriate support concerning the school environment._-The authors suggested that children and their parents might be reassured that, although A-T is a severe neurodegenerative disorder, acquired intellectual and language skills are relatively well preserved [48]. However, expressive verbal and non-verbal language is significantly impaired in classical A-T in majority of children at school age [5]. Although more recent evidence on A-T suggests a cognitive decline with age affecting executive function, motor language function, spatial skills, affect, and social cognition [65, 66, 67], formal neurocognitive testing is hindered by motor and communication deficits [64, 65].

Another observational study investigated the characteristics and severity of dysarthria in children and adults with A-T [61]. The primary advice to improve speech included positioning the individual in a stable sitting position, attention to breath control and speaking at the beginning of an exhalation, and slowing down the rate of speech to improve speech intelligibility. The role of the SLT in facilitating communication skills and working jointly with a multidisciplinary team was also highlighted in three non-research-based sources of evidence [1, 33, 63]. These recommend that comprehensive assessment of a person's communication should take into account the impact of communication difficulties on daily living, and that alternative and augmentative means of communication should be considered [33, 63]. The importance of improving the underlying physiological support, managing communication environment, education on vocal hygiene and general vocal health, and the

interventions to improve the performance of listeners was also highlighted in a set of guidelines for the management of speech changes in FRDA [63].

Discussion

This is the first review undertaken to identify and map the literature regarding the care and management of children and young people with A-T by nurses and allied_health professionals. In identifying and distilling the current literature, we have attempted to begin to address the knowledge gap surrounding the care of this population with the aim of providing an insight into current management practices and informing future research. We identified a total of 50 sources of evidence that matched our search criteria from 21,118 search results. Three were RCTs, but the majority were case studies/reports and single case experimental designs (n=13), while within the 15 non-research sources, the majority were guidelines (n=4) and reviews (n=3). Physiotherapy interventions targeting impairments or activity limitations were most frequently identified (n=23/35 studies) with a diverse array of treatment types, intensity, frequency, and duration represented in both clinical and homebased settings.

Of particular note within the exercise-based research studies were six papers that examined the impact of technology. Although only three children with A-T were included within these studies [26-30, 56], the overall improvements observed in balance and ataxia highlight the potential for technology as a home-based rehabilitation strategy, reducing exposure to infections within acute healthcare settings and limiting travel-related fatigue. Hydrotherapy was also commonly recommended for A-T, including in combination with other exercises, and was the most frequent intervention recommended by parents for children with Friedreich ataxia. Although no A-T-specific research data were identified with regard to hydrotherapy, water is considered to reduce the effects of ataxia, making it easier to undertake physical exercise [1, 17, 20, 36, 38], and warrants investigation in the A-T setting. Overall, all the studies that tested the effectiveness of interventions reported at least one positive outcome for the study population. However, despite change in scores, MCID were

largely not specified or reported upon, and sample size calculations were unreported, ultimately interpreted as statistically underpowered studies with limited generaliszability to the A-T or wider ataxia populations. However, even though the study limitations presently preclude the direct generalization of results to the A-T population, these interventions may be worthy of future rigorously designed studies.

It is noteworthy that, within the limited evidence identified, discrepancies exist between the perspectives of physiotherapists and parents regarding the value of interventions, emphasizing the importance of gathering multiple viewpoints [37, 38]. We did not identify any studies that examined the perspective of the children or young people themselves regarding their health and well-being which presents a significant gap in the field. Although this is not uncommon [49], opportunities should be provided for children and young people to contribute their views about their healthcare and to steer research towards topics that are relevant to them and their everyday lives [50].

Finally, a common theme of the research- and non-research-based evidence relating to nutrition and dietetic interventions was for the early consideration of proactive PEG placement to prevent malnutrition [5, 44, 45]. The importance of early intervention was emphasized, with placement at advanced stages associated with poorer outcomes [1, 2, 5, 8, 31, 42]. As with each of the presented themes, management in this respect was recommended as part of a multidisciplinary team.

The methodology of this scoping review is limited by the capacity to only apply full comprehensive search strategies to 2 of the 13 databases, due to the high number of results obtained from the original search of PubMed and CINAHL. Our inability to source 79 clinical trial results from clinical trial database and conference proceedings registrations, despite our attempts to contact the corresponding authors, represents another major limitation

and we cannot rule out that relevant evidence may have been missed due to lack of reporting or publication bias.

This scoping review identified only a small number of research studies relating to the care and management of children and young people with A-T and indeed the wider populations of paediatric ataxia. The majority of these studies focused on physiotherapy and exercise-related interventions and no studies related to the care and management provided by nurses. A limited number of randomized controlled trials (n=3) highlights a considerable research gap in the field of A-T and paediatric ataxias. It could be argued that by the nature of A-T being a rare condition, RCTs are challenging to implement, and cohort studies may be viewed more favourably. However, guidance provided by less rigorous methods and even non-research sources of evidence still highlights gaps in knowledge available to guide nursing and AHP practices. Appropriately designed future studies are needed to provide reliable evidence on the effectiveness of interventions used in current practice.

Whilste the scoping review of the literature gives an overview of some aspects of multidisciplinary interventions, there are still many questions on what professionals would make the best team around the person with A-T, what criteria should trigger input from the different professions, and whether there are other groups (e.g., music or art therapists) not represented in the literature who could have an impact on the QoL of the A-T population. In summary, A-T is a complex multisystem condition and identifying a core set of standardized outcomes will be key to informing and advancing future practice and research. A multidisciplinary approach which includes children and young people with A-T and their parents will be necessary to ensure that all relevant outcomes are identified and prioritized.

Current research on A-T is limited. A-T research should be encouraged, and international, multi-centre collaborations will be required.

Conclusion

This scoping review provides the first comprehensive exploration of management approaches implemented by nurses and AHPs working with children and young people with A-T and other forms of childhood ataxia. A range of interventions were identified that are reported to positively impact ataxia-related impairments, activity, or participation levels, together with QoL measures. These findings are important when considering care and management strategies as they suggest there is the potential to improve outcomes for children and young people with A-T, or with similar conditions. Although limited, some of the evidence included within this review was specific to A-T and may, therefore, hold direct relevance to our research question; most notably, therapeutic exercise, including coordinative training, IMT, and early nutritional intervention. However, this review makes evidence-guided rather than evidence-based recommendations for practice given the lack of rigorous research focused on children and young people with A-T. Further research will be required to fully determine the potential for non-A-T focussed evidence-based practice to successfully translate into the A-T population.

This scoping review has identified large gaps in the nursing and AHP evidence-base which indicate an urgent need for more robust research that include children and young people with A-T and their families. Whilste fully powered studies may be challenging given the rarity of the condition, rigorous study design and transparent open-access reporting of anonymous trial data should be strongly considered by researchers to facilitate future systematic reviews with meta-analyses or meta-syntheses. Presently, a dearth of highly rigorous research in A-T appears insufficient to warrant systematic review but other research methods (such as Delphi

consensus involving international experts in the field of A-T) may be considered in the interim to guide contemporary practice.

Supplementary Information

Supplement 1: A detailed overview of search terms incorporated in the review Supplement 2: A list of all the databases that were searched

Acknowledgements

We thank Action for A-T for their funding and support during the design, undertaking, synthesis₄ and analysis of this comprehensive scoping review.

We thank all the clinical-_academics engaged in designing the search strategy, screening, and reviewing the literature listed in the Open Science Framework page for the A-Team Collaborative (https://osf.io/edzn3/). We especially thank the family representatives of the A-Team collaborative and those family members and family support workers who undertook patient and public involvement and engagement activities associated with this project. We extend our thanks to the A-T Society, especially the family support workers and patient advocates who also engaged with steering the design of this project and onward projects co-produced by the A-Team collaborative.

Author Contribution

<u>Study conceptualization: The A-Team Collaborative (https://osf.io/edzn3/). Study design:</u>
<u>M.K., L.B., E.C., T.P., and A.W. Reviewing: M.K., E.C., T.P., L.B., K.D., N.M., G.Q., B.C.,</u>
<u>S.M., J.P., H.B., R.M., and A.W. Data extraction: M.K. and verified by E.C., G.Q., K.D.,</u>

T.P., L.B., B.C., J.P., and N.M. Analysis and interpretation: M.K. and E.C. Manuscript preparation: L.B. and M.K. Manuscript review: all authors.

Funding

This project was funded in full by Action for A-T, Registered charity: 1145303.

Availability of Data and Materials

All data generated or analyzed during this study are included in this published article or available as supplementary files.

Declarations

Ethical Approval:

Not applicable

Competing Interests:

The scoping review lead, Munira Khan, received a PhD studentship from Action for A-T to support the undertaking of this project. The authors declare that they have no competing interests.

Authors' Contributions: Study conceptualisation: The A-Team Collaborative (https://osf.io/edzn3/); Study design: M.K., L.B., E.C., T.P. and A.W.; Reviewing: M.K., E.C., T.P., L.B., K.D., N.M., G.Q., B.C., S.M., J.P., H.B., R.M. and A.W.; Data extraction: M.K. and verified by E.C., G.Q., K.D., T.P., L.B., B.C., J.P. and N.M.; Analysis and interpretation: M.K. and E.C.; Manuscript preparation: L.B. and M.K.; Manuscript review: All authors Funding: This project was funded in full by Action for A-T, Registered charity: 1145303.

Availability of Data and Materials: All data generated or analysed during this

study are included in this published articled or available as supplementary files

References-list

- Rothblum-Oviatt, C., et al., Ataxia telangiectasia: a review. Orphanet J Rare Dis, 2016. 11(1): p. 159.
- van Os, N.J.H., et al., Ataxia-telangiectasia: recommendations for multidisciplinary treatment. Dev Med Child Neurol, 2017. 59(7): p. 680-689.
- Ross, L.J., et al., Nutritional status of patients with ataxia-telangiectasia: a case for early and ongoing nutrition support and intervention. J Paediatr Child Health, 2015. 51(8): p. 802-7.
- McGrath-Morrow, S.A., et al., Evaluation and management of pulmonary disease in ataxia-telangiectasia. Pediatr Pulmonol, 2010. 45(9): p. 847-59.
- Taylor, M., et al. Ataxia-telangiectasia in children. Guidance on diagnosis and clinical care. 2014.
- Schroeder, S.A., et al., Interstitial lung disease in patients with ataxia-telangiectasia.
 Pediatr Pulmonol, 2005. 39(6): p. 537-43.
- Reiman, A., et al., Lymphoid tumours and breast cancer in ataxia telangiectasia; substantial protective effect of residual A-TM kinase activity against childhood tumours. Br J Cancer, 2011. 105(4): p. 586-91.
- 8. Perlman, S.L., et al., Ataxia-telangiectasia. Handb Clin Neurol, 2012. 103: p. 307-32.
- 9. Care, D.o.H.a.S. The UK Rare Diseases Framework. 2021.
- von der Lippe, C., P.S. Diesen, and K.B. Feragen, Living with a rare disorder: a systematic review of the qualitative literature. Mol Genet Genomic Med, 2017. 5(6):
 p. 758-773.
- Capra, S., Ataxia telangiectasia: a syndrome deserving attention and study. Dev Med Child Neurol, 2016. 58(10): p. 999-1000.

- Arksey, H. and L. O'Malley, Scoping studies: towards a methodological framework. International Journal of Social Research Methodology, 2005. 8(1): p. 19-32.
- Peters, M., et al., Chapter 11: scoping reviews (2020 version) In: Aromataris E, Munn Z (Editors). JBI Manual for Evidence Synthesis, 2020.
- 14. Tricco, A.C., et al., PRISMA extension for scoping reviews (PRISMA-ScR): checklist and explanation. Ann Intern Med, 2018. 169(7): p. 467-473.
- 15. Ouzzani, M., et al., Rayyan-a web and mobile app for systematic reviews. Syst Rev, 2016. 5(1): p. 210.
- 16. Arledge, R., Ataxia-telangiectasia. Physical therapy, 1968. 48(10): p. 1089-1093.
- Martakis, K., et al., Motor function improvement in children with ataxia receiving interval rehabilitation, including vibration-assisted hometraining: a retrospective study. Klin Padiatr, 2019. 231(6): p. 304-312.
- Grecco, L.A., et al., Cerebellar transcranial direct current stimulation in children with ataxic cerebral palsy: a sham-controlled, crossover, pilot study. Dev Neurorehabil, 2017. 20(3): p. 142-148.
- 19. Mulligan, H., et al., Physiotherapy treatment for a child with non-progressive congenital ataxia. New Zealand Journal of Physiotherapy, 1999. 27(3): p. 34-41.
- 20. Sartor-Glittenberg, C. and L. Brickner, A multidimensional physical therapy program for individuals with cerebellar ataxia secondary to traumatic brain injury: a case series. Physiother Theory Pract, 2014. 30(2): p. 138-48.
- Harris-Love, M.O., et al., Rehabilitation management of Friedreich ataxia: lower extremity force-control variability and gait performance. Neurorehabil Neural Repair, 2004. 18(2): p. 117-24.
- 22. Clopton, N., et al., Effects of axial weight loading on gait for subjects with cerebellar ataxia: preliminary findings. Neurology report, 2003. 27(1): p. 15-21.

- Cernak, K., et al., Locomotor training using body-weight support on a treadmill in conjunction with ongoing physical therapy in a child with severe cerebellar ataxia.
 Phys Ther, 2008. 88(1): p. 88-97.
- Anderl, E. and H.J. Trammell, Facilitating walking recovery with use of a wearable robotic exoskeleton in an individual with traumatic brain injury and ataxia: a case study, in International Symposium on Wearable Robotics and Rehabilitation. 2017. p. 1-2.
- 25. Hon, A. and M. Armento, Dynamic movement orthosis suit promotes a near normal gait in a significantly ataxic pediatric patient: a case report. American Journal of Physical Medicine & Rehabilitation, 2014: p. a80.
- 26. Schatton, C., et al., Individualized exergame training improves postural control in advanced degenerative spinocerebellar ataxia: a rater-blinded, intra-individually controlled trial. Parkinsonism Relat Disord, 2017. 39: p. 80-84.
- Ilg, W., et al., Video game-based coordinative training improves ataxia in children with degenerative ataxia. Neurology, 2012. 79(20): p. 2056-60.
- da Silva, R. and C. Iwabe-Marchese, Using virtual reality for motor rehabilitation in a child with ataxic cerebral palsy: case report. Fisioterapia e Pesquisa, 2015. 22(1): p. 97-102.
- 29. Peri, E., et al., Motor improvement in adolescents affected by ataxia secondary to acquired brain injury: a pilot study. Biomed Res Int, 2019. 2019: p. 8967138.
- Synofzik, M., et al., Videogame-based coordinative training can improve advanced, multisystemic early-onset ataxia. J Neurol, 2013. 260(10): p. 2656-8.
- Gatti, R. and S. Perlman, Ataxia-telangiectasia, in GeneReviews((R)), M.P. Adam, et al., Editors. 1993: Seattle (WA).

- Woodward S, Waterhouse C, editors. Oxford handbook of neuroscience nursing.
 Oxford University Press; 2021 Jan 14.
- 33. Bates, C., et al. Management of the ataxias towards best clinical practice. 2016.
- 34. Maring, J.R. and E. Croarkin, Presentation and progression of Friedreich ataxia and implications for physical therapist examination. Phys Ther, 2007. 87(12): p. 1687-96.
- 35. Hartley, H., et al., Exercise and physical therapy interventions for children with ataxia: a systematic review. Cerebellum, 2019. 18(5): p. 951-968.
- Tallaksen, C., Arvelige ataksier [Hereditary ataxias]. Tidsskr Nor Laegeforen, 2008.
 128(17): p. 1977-1980.
- Hartley, H., et al., E-Survey of current international physiotherapy practice for children with ataxia following surgical resection of posterior fossa tumour. J Rehabil Med Clin Commun, 2019. 2: p. 1000020.
- 38. Maring, J., et al., Perceived effectiveness and barriers to physical therapy services for families and children with Friedreich ataxia. Pediatr Phys Ther, 2013. 25(3): p. 305-13.
- Barlow, J.H., L.A. Cullen-Powell, and H. Williams, The training & support programme for parents of children with ataxia: a pilot study. Psychol Health Med, 2007. 12(1): p. 64-9.
- 40. Manto, M., et al., Management of patients with cerebellar ataxia during the COVID-19 pandemic: current concerns and future implications. Cerebellum, 2020. 19(4): p. 562-568.
- 41. Felix, E., A.C. Gimenes, and B.T. Costa-Carvalho, Effects of inspiratory muscle training on lung volumes, respiratory muscle strength, and quality of life in patients with ataxia telangiectasia. Pediatr Pulmonol, 2014. 49(3): p. 238-44.

- 42. Bhatt, J.M., et al., ERS statement on the multidisciplinary respiratory management of ataxia telangiectasia. Eur Respir Rev, 2015. 24(138): p. 565-81.
- 43. Paulino, T.L., et al., Is age a risk factor for liver disease and metabolic alterations in ataxia Telangiectasia patients? Orphanet J Rare Dis, 2017. 12(1): p. 136.
- 44. Stewart, E., et al., Growth and nutrition in children with ataxia telangiectasia. Arch Dis Child, 2016. 101(12): p. 1137-1141.
- 45. Krauthammer, A., et al., Long-term nutritional and gastrointestinal aspects in patients with ataxia telangiectasia. Nutrition, 2018. 46: p. 48-52.
- 46. Lefton-Greif, M.A., et al., Oropharyngeal dysphagia and aspiration in patients with ataxia-telangiectasia. J Pediatr, 2000. 136(2): p. 225-31.
- 47. Andrade, I.G.A., et al., Risk of atherosclerosis in patients with ataxia telangiectasia.Ann Nutr Metab, 2015. 66(4): p. 196-201.
- 48. Vinck, A., et al., Cognitive and speech-language performance in children with ataxia telangiectasia. Dev Neurorehabil, 2011. 14(5): p. 315-22.
- 49. Larsson, I., et al., Children and young people¹/₂'s participation in developing interventions in health and well-being: a scoping review. BMC Health Serv Res, 2018. 18(1): p. 507.
- 50. Clarke, S., A <u>""child"</u> rights perspective": the <u>""right"</u> of children and young people to participate in health care research. Issues Compr Pediatr Nurs, 2015. 38(3):
 p. 161-80.
- Meneses, V., et al., Supporting a youth with cerebellar ataxia into adolescence. J Dev Behav Pediatr, 2017. 38(3): p. 240-242.
- 52. de Silva, R., et al., Guidelines on the diagnosis and management of the progressive ataxias. Orphanet J Rare Dis, 2019. 14(1): p. 51.

- 53. Unes, S., et al., Effectiveness of physical therapy on ataxia-telangiectasia: a case report. Pediatric Physical Therapy, 2021. 33(3): p. E103-7.
- 54. Lee, Y.S., Oh, D.W. One□year follow□up of problem□based task training for a child presenting cerebellar ataxia after brainstem glioma surgery: a single□subject experimental study. Physiotherapy Research International, 2021. 26(3): p. e1908.
- 55. Yoo, M., et al. The effects of over-ground robot-assisted gait training for children with ataxic cerebral palsy: a case report. Sensors, 2021. 21(23): p. 7875.
- Romano, A., et al. Upper body physical rehabilitation for children with ataxia through IMU-based exergame. Journal of Clinical Medicine, 2022. 11(4): p. 1065.
- 57. Yigit, S., et al. Effectiveness of functional trunk training on trunk control and upper limb functions in patients with autosomal recessive hereditary ataxia.
 NeuroRehabilitation, 2022. (Preprint): p. 1-0.
- 58. Elshafey, M.A., et al. Effects of a core stability exercise program on balance and coordination in children with cerebellar ataxic cerebral palsy. Journal of musculoskeletal & neuronal interactions, 2022. 22(2): p. 172-8.
- 59. Andrade, I.G., et al. Selenium levels and glutathione peroxidase activity in patients with ataxia-telangiectasia: association with oxidative stress and lipid status biomarkers. Orphanet Journal of Rare Diseases, 2021. 16(1): p. 1-0.
- Joveini, G., et al. Effectiveness of person-environment-occupation model on a pediatric neurodegenerative disease: a case report of a child with ataxia-telangiectasia.
 Occupational therapy in health care, 2022. 28: p. 1-2.
- 61. Veenhuis, S.J., et al. Dysarthria in children and adults with ataxia telangiectasia.Developmental Medicine & Child Neurology, 2021. 63(4): p. 450-6.
- de Silva, R.N. Ataxia management: low-tech approaches. Practical Neurology, 2021.
 21(6): p. 466-7.

- Corben, L.A., et al. Consensus clinical management guidelines for Friedreich ataxia.
 Orphanet journal of rare diseases, 2014. 9(1): p. 1-2.
- 64. Petley, E., et al. The natural history of ataxia-telangiectasia (A-T): a systematic review. PLoS ONE, 2022. 17(3): e0264177.
- <u>Levy, A., Lang, A.E. Ataxia Itelangiectasia: a review of movement disorders,</u>
 <u>clinical features, and genotype correlations. Movement Disorders, 2018. 33(8): p.</u>
 <u>1238-47.</u>
- <u>66.</u> Tiet, M.Y., et al. 038 Cerebellar cognitive affective syndrome in ataxiatelangiectasia patients. Journal of Neurology, Neurosurgery & Psychiatry, 2022. 93:
 <u>e2.</u>
- 67. Hoche, F., et al. The cerebellar cognitive affective syndrome in ataxia-telangiectasia. Cerebellum, 2019. 18: p. 225–244.

S.	Author	Type of	Population(Condition(s)	Allied health/	Themes	Intervention/	<u>Reported k</u>ey findings
no.	(year),	evidence	s)/		nursing		study assessment	
	country	source	population		profession		Training	
	[citation]		size				parameters (e.g.	
							intensity,	
							frequency,	
							duration)	
1	Joveini et	Case	CYP; <i>n</i> =1	A-T	Occupational	Exercise	Occupational therapy	<u>Reported</u> sSignificant
	al. (2022)	report			therapy	and	intervention focusing	improvement in
	Iran [60]					function	on ADLs (such as	child's occupational
							dressing/undressing,	performance and his
							toileting,	participation in daily
							eating/feeding), play,	routines, enhanced
							leisure and social	self-confidence and
							participation (once a	communicative skills

Table 1- Characteristics of selected research-based sources of evidence

							week for 10 weeks)	
2	Unes et al.	Case	CYP, <i>n</i> =1	A-T	Physiotherapy	Exercise	Balance and	<u>Reported s</u>Significant
	(2021)	report				and	strengthening	improvements in body
	Turkey [53]					function	exercises, and	structures and
							balance games (3	functions and positive
							days/week for 3	improvements in the
							months)	level of activity and
								participation following
								the therapy
3	Synofzik et	Rater-	CYP, <i>n</i> =1	A-T	Physiotherapy	Exercise	Sequentially	Videogame-based
	al. (2013)	blinded				and	structured 12-week	coordinative training
	Germany	intra-				function	videogame-based	may benefit people
	[30]	individual					coordinative training	with A-T, with effects
		control					program	translating into daily

		study					(Nintendo Wii®)	living.
								SARA score decreased
								4.4 points by end of
								training period (most
								pronounced for posture
								and gait), and improved
								sitting and stance
4	Arledge	Descriptiv	CYP, <i>n</i> =1	A-T	Physiotherapy	Exercise	Case evaluation	Highlights the
	(1968)	e case				and	highlighting the role	importance of a
	USA [16]	report				function	of PT	prescribed therapeutic
								exercise program,
						Respirator		including passive to
						у		resistive exercises,
								along with the use of
								adaptive materials.
								Importance of postural

								draining, coughing and
								breathing exercises
5	Romano et	RCT	CYP, <i>n</i> =18	Progressive	Physiotherapy	Exercise	Exergame-based	Hand dexterity of
	al. (2022)			and non-		and	exercise training (8	participants improved
	Italy [56]			progressive		function	exercise sessions	in the intervention
				ataxia			done 5 times/week	group, and worsened in
				(including			for 12 weeks)	control group; no
				A-T)				reported significant
								change in SARA score
								observed for IG but
								significant increment in
								score observed for CG
6	Yigit et al.	RCT	CYP, <i>n</i> =20	Autosomal	Physiotherapy	Exercise	Functional trunk	Proposed training
	(2022)			recessive		and	training and trunk	provided
	Turkey [57]			hereditary		function	stabilization training	improvements in
				ataxia			(3 days/week of 8-	trunk control and

				(including			week rehabilitation	upper limb functions.
				A-T)			programme)	
7	Barlow et	Mixed	Parents,	Friedreich	Physiotherapy	Exercise	Impact of TSP for	TSP in massage skills
	al. (2007)	method	<i>n</i> =24	ataxia and		and	parents (eight one1-	for use at home had
	UK [39]	pilot study		A-T		function	hour-long weekly	reported psychosocial
							sessions)	benefits for parents
								and children, including
								significant
								improvements reported
								in parental anxiety
								(P=0.011), depression
								(P=0.046), perceived
								stress (P=0.020) ,
								general self-efficacy
								(P=0.010) , life
								satisfaction (P=0.045)

								and parental health
								status_post participation
								in the programme.
								(P=0.020) Parents
								reported improvements
								in children's
								mobility, sleep patterns,
								energy and activity
								levels, relaxation, and
								happiness.
8	Elshafey et	RCT	CYP; <i>n</i> =36	Cerebellar	Physiotherapy	Exercise	Core stability	Statistically
	al. (2022)			ataxic CP		and	exercise program	significant reduction
	Egypt [58]					function	alongside physical	observedreported in
							therapy program	the severity of ataxia
							(physiotherapy 3	and improvement in
							times weekly,	balance, with stronger

							intervention group	effects
							received additional	reported observed for
							core stability training	IG. Core stability
							for 30 min utes)	training improved
								strength and endurance
								of muscles, trunk
								control, corrective
								postural control
								mechanisms, and ability
								to use the vestibular,
								somatosensory, and
								visual systems to
								maintain balance and
								stability
9	Lee et al.	Single□su	CYP; <i>n</i> =1	Cerebellar	Physiotherapy	Exercise	Problem-based task	Repeated practice of
	(2021)	bject		ataxia		and	training consisting of	functional tasks led to

	Republic of	experiment				function	four walking tasks- a	improvement in
	Korea [54]	al study					10□step walk and	balance and physical
							return, walking while	performance thereby
							carrying an object,	improving overall
							walking between	motor function in
							parallel lines, and	children with cerebellar
							kicking a ball (10	ataxia
							mins/task, 8 sessions	
							each in baseline and	
							intervention phase	
							followed by one-1-	
							year follow-up. Total	
							duration of	
							intervention phase	
							not reported)	
10	Yoo et al.	Case	CYP; <i>n</i> =2	Ataxic CP	Physiotherapy	Exercise	Over-ground robot	Improvements

	(2021)	Report				and	assisted gait training	reported in postural
	Republic of					function	(Angel Legs M20)	control, functional
	Korea [55]						alongside	mobility, and balance
							conventional	in children with ataxic
							physical and	CP. Improvements
							occupational therapy	observed after RAGT in
							(5 sessions/week for	areas of gross motor
							one-1_month)	function that did not
								improve with
								conventional therapy
								alone
11	Maring et	Descriptiv	Parents;	Friedreich	Physiotherapy	Exercise	Semi-structured	67% of children
	al. (2013)	e mixed	<i>n</i> =30	ataxia		and	interviews of parents	received PT
	USA [38]	method				function	of children with FA	intervention, most
		study					to understand	commonly muscle
							perceived	strengthening and

			effectiveness and	stretching (considered
			barriers to PT	increasingly useful as
				the child gets older),
				following by balance
				training (minimally
				helpful).
				Hydrotherapy was the
				most frequently
				recommended
				intervention by
				parents.
				Muscle stretching HEP
				considered challenging
				and burdensome (9%
				reported consistent
				use).

								External barriers: lack
								of expert providers
								Internal barriers:
								Limited time and
								energy, lack of
								awareness and
								children's preference
12	Harris-Love	Case	CYP; <i>n</i> =1	Friedreich	Physiotherapy	Exercise	"Enablement-	Minimal changes
	et al. (2004)	report		ataxia		and	disablement"	reported in nine-hole
	USA [21]					function	process: long-term	peg test, single limb
							task-oriented	stance time and manual
							bimanual reaching	muscle testing.
							activities, functional	69.4% decrease in gait
							strengthening, and	speed (42.9% on
							gait training using a	subsequent use of U-
							walker with tension-	step walking stabilizer).

							controlled wheels	43.7% increase in
							and reverse-braking	force variability.
							(12 months)	Reduced fall rate
								(from 10 to 3 per
								month)
13	Grecco et	Double-	CYP; <i>n</i> =6	Ataxic	Physiotherapy	Exercise	Treadmill training	Treadmill training led
	al. (2017)	blind,		cerebral		and	plus anodal tDCS or	to improvements in
	Brazil [18]	sham-		palsy		function	sham tDCS (10	functional balance and
		controlled,					sessions over 2	performance of
		crossover,					weeks)	mobility activities.
		pilot study						However, these effects
								were only maintained
								for onel-month post-
								treatment when
								combined with tDCS

14	da Silva and	Prospectiv	CYP; <i>n</i> =1	Ataxic	Physiotherapy	Exercise	Virtual reality and	Virtual reality may be
	Iwabe-	е,		cerebral		and	video game	beneficial when used
	Marchese	longitudina		palsy		function	(Nintendo Wii®)	in combination with
	(2015)	l and					balance training (40	kinesiotherapy.
	Brazil [28]	descriptive					sessions over 4	Improved motor
		case study					months) alongside	function (average
							kinesiotherapy	GMFM-66 increased
								from 71.69 to 77.46)
								and balance (BBS
								increased from 48 to
								53).
								No improvement was
								reported in
								gait parameters
15	Clopton et	Single-	CYP and	Cerebellar	Physiotherapy	Exercise	Axial weight loading	Effect of axial weight
	al. (2003)	subject	adults; <i>n</i> =5	ataxia		and	(10% of body	loading was

	USA [22]	design	(4/5 CYP)			function	weight) in four	inconsistent, with gait
							different conditions	worsening more often
							(reported in one	than improving
							session)	
16	Cernak et	Case	CYP; <i>n</i> =1	Cerebellar	Physiotherapy	Exercise	Intensive locomotor	Locomotor training
	al. (2008)	report		ataxia		and	training with a BWS	with BWS on a
	USA [23]			following		function	system on treadmill	treadmill in
				posterior			and ground for 5	combination with
				fossa			days/week for 4	overground gait
				haemorrhage			weeks (clinic)	training may improve
							followed by 4	ambulatory function.
							months of BWS	Significant functional
							(home)	gains:
								Gillette functional
								walking score improved
								from 2 to 6

								WeeFIM transfers and
								mobility subscale
								improved from 3_to 6
								and 2 to 5, respectively.
								The number of
								unassisted steps
								improved from none to
								all after 6 months
17	Peri et al.	Longitudin	CYP; <i>n</i> =11	Ataxia	Physiotherapy	Exercise	Tailored exergame	Combined IVR and
	(2019)	al before		secondary to		and	training using	physiotherapy
	Italy [29]	and after		ABI		function	GRAIL, an IVR	training may be an
		pilot study					integrated with a	effective approach for
							treadmill and motion	ataxic gait
							capture system (20	rehabilitation.
							sessions in one 1	Ataxia (walking
							month), plus	endurance and balance)

							physiotherapy	reported to be
								significantly reduced
								after training:
								SARA: 10.5 to 8.5
								(P=0.012).
								GMFM-88: 97.0 to 98.0
								(P=0.004)
								BBS: 53.0 to 54.0
								(P=0.016).
								Reduced gait variability
								reported
18	Anderl and	Case study	CYP; <i>n</i> =1	Ataxia	Physiotherapy	Exercise	Robotic-assisted gait	Robotic assisted gait
	Trammell			secondary to		and	training for 4	training reduced gait
	(2017) USA			TBI		function	consecutive days	speed over 4 days
	[24]						plus traditional gait	which was retained 7
							and balance training	days post intervention

								(0.18 m/s slower than
								baseline), possibly due
								to improved step-time
								symmetry and control.
								No change in SARA
								score
19	Sartor-	Retrospecti	CYP and	Severe	Physiotherapy	Exercise	Long-term	Long-term
	Glittenberg	ve case	adults; <i>n</i> =3	cerebellar		and	multidimensional	multidimensional
	and	series	(data	ataxia		function	treatment program of	physical therapy is
	Brickner		extracted/	secondary to			individual and group	beneficial for people
	(2014)		reported for	TBI			therapy sessions to	with ataxia.
	USA [20]		1/3 CYP)				minimize ataxia and	Improved strength and
	[]						improve mobility,	body function.
							including balance,	Balance improved 19
							pool, rock, and	points (BBS 4 to 23)
							multitasking	Improved performance

							climbing sessions	and with recommendations to ambulate with use of walker
20	Mulligan et	Within-	CYP; <i>n</i> =1	Non-	Physiotherapy	Exercise	Comparison of two	Reducing visual input
	al. (1999)	subject		progressive		and	physiotherapy	during postural
	New	study		congenital		function	approaches	control exercises may
	Zealand			ataxia			(functional tasks with	be an effective
	[19]						reduced visual input	approach.
							vs traditional trunk	Greater improvements
							stability exercises)	in functional measures
								were reported following
								treatment with reduced
								visual input vs stability
								exercises; benefits were

								maintained to a greater
								extent with this
								approach
21	Schatton et	Rater-	CYP and	Spinocerebel	Physiotherapy	Exercise	12 weeks of	Individualized
	al. (2017)	blinded,	adults; <i>n</i> =10	lar ataxia		and	coordinative home-	training may be
	Germany	intra-	(6/10 CYP)			function	based exergame	beneficial in
	[26]	individual					training (Nintendo	progressive ataxia,
		control					Wii® and Microsoft	with effects
		study					Xbox Kinect®) for	translating into daily
							trunk and postural	living.
							control,	Meaningful 2.5
							individualized	reduction of SARA
							according to baseline	score was reported;
							scores	(P<0.01), which
								positively correlated on
								the amount of training

								(P=0.04) and was
								driven by posture and
								gait subscores
								(P=0.005).
								Improvements reported
								in posture (P<0.01) ,
								gait (P=0.005), and
								higher-than-expected
								goal attainment in daily
								living
22	Hartley et	Cross-	PT; <i>n</i> =96	Ataxia	Physiotherapy	Exercise	E-survey of PT to	Most commonly
	al. (2019)	sectional		following		and	determine	reported
	Multiple	mixed		surgical		function	international	interventions: balance
	countries	method		resection of			physiotherapy	exercises (97%), gait
	[37]	study		posterior			practice	re-education (95%),
				fossa				proximal control

	tumours		(93%); with balance
			exercises (28%), task-
			specific training (23%)
			and proximal control
			activities (21%) used
			most often and ranked
			as the most effective.
			Most commonly used
			adjuncts to therapy:
			mobility aids (31%) and
			orthotics (31%), and
			ranked as the most
			effective, followed by
			treadmill training.
			Access to virtual
			training facilities was

								reported by 57% of
								respondents, which was
								most commonly in
								children with posterior
								fossa tumours (73%).
								Key challenges
								reported: lack of
								resources, lack of
								evidence, impact of
								adjuvant oncology
								treatment and
								psychosocial
23	Martakis et	Retrospecti	CYP; <i>n</i> =45	Progressive	Physiotherapy	Exercise	Intensive, goal-	Intensive training,
	al. (2019)	ve study		and non-		and	oriented functional	including vibration-
	Germany			progressive		function	rehabilitation	assisted therapy,
	[17]			ataxia			intervals, combined	significantly improves

			with vibration-	motor function of
			assisted home	people with ataxia.
			training for 6 months	Significant
				improvement in motor
				function was reported:
				Median GMFM-66
				improved by 2.4 (non-
				progressive) and 2.9
				(progressive) points.
				1-MWT improved
				significantly in the non-
				progressive group.
				Improvements were
				preserved in people
				with progressive ataxia
				and could be further

								developed in people
								with non-progressive
								ataxia
24	Hon and	Case	CYP; <i>n</i> =1	Ataxia,	Podiatry	Exercise	DMO suit	DMO suit and
	Armento	report		cerebral		and		sneakers led to
	(2014) USA			atrophy and		function		significant
	[25]			hypopituitari				improvement in gait,
				sm				with bilateral heel-
								strike and no near falls
25	Ilg et al.	Rater-	CYP; <i>n</i> =10	Progressive	Physiotherapy	Exercise	8-week coordinative	Intensive coordination
	(2012)	blinded	(7/10 CYP)	spinocerebell		and	videogame-based	training with video
	Germany[prospectiv		ar ataxia		function	training (Microsoft	games improved
	27]	e cohort					Xbox Kinect)	motor performance in
		study						participants with
								progressive cerebellar
								degeneration.

			Ataxia symptoms
			reported to have
			significantly decreased
			SARA: P=0.0078;
			predominantly
			impacted by improved
			posture (P=0.0003)
			which correlated with
			training intensity-
			Dynamic gait index:
			P=0.04
			aAlongside
			improvements in gait
			and goal-directed leg
			placement.
			Participants reported

								the training as highly
								enjoyable and
								motivational
26	Felix et al.	Longitudin	CYP; <i>n</i> =11	A-T	Respiratory	Respirator	IMT, 5	IMT may be an
	(2014)	al before			physiotherapy	у	sessions/week for 24	effective adjunct
	Brazil [41]	and after					weeks	therapy for people
		study						with A-T.
								IMT led to improved
								ventilatory pattern (V _I ;
								[P=0.015]; respiratory
								rate [P=0.018]), lung
								volume (Vc [P=0.002],
								and respiratory muscle
								strength (MIP
								[P<0.001]; MEP
								[P=0.001]) .

								<u>S</u> significant
								improvements in QoL
								(general health
								[P=0.009] and vitality
								[P=0.014] domains of
								SF-36) and reduced
								dyspnoea (P=0.022)
								were also reported.
27	Andrade et	Cross-	CYP and	A-T	Dietetics	Nutrition	Assessment of	Significant, inverse,
	al. (2021)	sectional	adults; <i>n</i> =22				selenium levels and	and independent
	Brazil [59]	controlled					relate them to	association reported
		study					oxidative stress and	between selenium
							lipid status	concentrations and
							biomarkers in people	oxidative stress
							with A-T	biomarkers. Presence
								of selenium was

								below the reference
								value in nearly 40% and
								low Glutathione
								peroxidase (GPx)
								activity in the
								participants
28	Krauthamm	Retrospecti	CYP; <i>n</i> =53	A-T	Dietetics	Nutrition	Assessment of long-	Progressive growth
	er et al.	ve chart					term nutritional and	failure and low
	(2018)	review					gastrointestinal	nutritional intake was
	Israel[45]						aspects	observed with age;
								most prominently in
								people with cough and
								choking at mealtime.
								Proactive insertion of
								a PEG should be
								considered once BMI-

				Z begins to decrease.
				BMI-Z was inversely
				correlated with age
				(P<0.004), declining
				below minimal BMI
				percentiles after age 4
				(boys) and 7 (girls).
				Relative calorific intake
				reduced with age
				(P<0.002) and
				correlated with BMI-Z
				(₽<0.05) .
				PEG in 12 people were
				associated with
				improved BMI-Z
				(P<0.05)

29	Paulino et	Cross-	CYP and	A-T	Dietetics	Nutrition	Study evaluated	Metabolic disorders
	al. (2017)	sectional	adults; <i>n</i> =18				metabolic alterations	are observed in
	Brazil [43]	control	(12 aged 5-				and liver	adolescent population
		study	± 15 years, 6				involvement	with A-T and tend to
			aged 1625					worsen with age.
			years; this is					Nutritional
			a mixed					intervention and
			sample of					pharmacological
			ages. Data					intervention may be
			from					beneficial.
			participants					Malnutrition: 33.3% vs
			<18 is not					5.9% in control group
			identifiable)					Metabolic alterations
								were common:
								Glucose metabolism
								alterations: 54.6%

								Hepatic steatosis:
								64.7%
								AST:ALT ratio >1:
								58.8%
								Dyslipidemia: 55.5%
								Insulin sum
								concentrations
								correlated positively
								with ALT-(P<0.004)
								and age-(P=0.002)
30	Stewart et	Prospectiv	СҮР;	A-T	Dietetics	Nutrition	Study evaluated	There is a decline in
	al. (2016)	e study,	<i>n</i> =101				growth over time,	growth over time.
	UK [44]	including					including an	PEG should be
		nested case					evaluation of 14	considered from age 8
		control					children with a PEG	onwards.
		study						35% of participants

								were recorded as
								underweight and 73%
								as short stature growth
								on ≥ 1 occasion.
								Weight, height and
								BMI Z-scores declined
								over time, most
								obviously after 8 years
								of age.
								There was a trend for
								improved weight in the
								12 children with a PEG
								who had available data
31	Ross et al.	Cross-	CYP; <i>n</i> =13	A-T	Dietetics	Nutrition	Assessment of	Malnourishment is
	(2015)	sectional	(1/13 adult)			Swallow	nutritional status	common in people
	Australia	analysis						with A-T. There is a

[3]				need for early
				nutritional
				intervention.
				77% participants had
				short stature and 54%
				were underweight.
				Significant malnutrition
				was reported for 69%
				and this was observed
				to significantly increase
				with age (P<0.001).
				The majority of the
				participants (62%) had
				a poor diet,
				characterized by high
				fat and sugar. Key

								barriers to nutrition
								were chronic tiredness
								and the need for
								mealtime assistance
32	Andrade et	Cross-	CYP and	A-T	Dietetics	Nutrition	Assessment of	Lipid biomarker and
	al. (2015)	sectional	adults; <i>n</i> =13				nutritional status,	vitamin E profiles
	Brazil[47]	study	(age range				plasma concentration	require routine
			424 years;				of vitamin E and	monitoring of
			average age				markers of	cardiovascular
			14.6. This is				cardiovascular risk	biomarkers and
			a mixed					nutritional guidance.
			sample of					30.8% of participants
			ages. Data					were malnourished and
			from					23.1% had stunted
			participants					growth. Median lean
			<18 is not					body mass index was

			identifiable)					significantly lower in
								the A-T vs control
								group (P=0.003) .
								TG, CT, LDL-c, and
								non-HDL cholesterol
								concentrations were
								significantly higher and
								HDL-c concentrations
								were significantly lower
								vs healthy controls <u>, as</u>
								reported.
								Vitamin E: total lipid
								ratio was lower in
								people with A-T vs
								controls-
33	Lefton-	Observatio	CYP; <i>n</i> =70	A-T	Dietetics	Nutrition	Assessment of	Oropharyngeal

Greif et al.	nal, cross-		Swallow	oropharyngeal	dysphagia is common
(2000) USA	sectional			dysphagia with	and appears to be
[46]	study			concomitant	progressive in people
				aspiration	with A-T.
					Weight and height were
					abnormally low at all
					ages. Participants who
					aspirated were reported
					to had have
					significantly lower
					mean weight (P<0.002)
					and weight/height
					(P < 0.001)-z-scores than
					those who did not
					aspirate.
					14 (27%) participants

								exhibited aspiration (10
								exhibited silent
								aspiration); those who
								aspirated were reported
								to be significantly older
								than those who did not
								aspirate (P=0.01)
34	Veenhuis et	Prospectiv	CYP and	A-T	Speech and	Speech	Paediatric Radboud	Primary advice to
	al. (2021)	e	adults; <i>n</i> =22		language		Dysarthria	improve speech
	Netherlands	observatio	(15/22		therapy		Assessment (p-RDA)	included positioning
	[61]	nal cohort	CYP)				was used to evaluate	the individual in a
		study					dysarthria	stable sitting position,
								attention to breath
								control and speaking
								at the beginning of an
								exhalation, and

								slowing down the rate
								of speech to improve
								speech intelligibility
35	Vinck et al.	Observatio	CYP; <i>n</i> =8	A-T	Speech and	Speech	Evaluation of	Decline in cognitive
	(2011)	nal case			language	Swallow	cognitive and	and language
	Netherlands	series			therapy		speech-language	functioning appears to
	[48]						function in relation	level-off;
							to (oculo)motor	neuropsychological
							function	and language
								assessment should
								take A-T co <mark>mple</mark> xities
								into account.
								All except the youngest
								participants had
								intellectual impairment
								(mild-to-

				moderate/severe).
				Cognitive deficits in
				attention, (non)verbal
				memory and verbal
				fluency were reported,
				alongside dysarthria
				and weak oral-motor
				performance. Chewing
				and swallowing ability
				appeared to decline
				with age. Language did
				not appear to
				deteriorate with age.

IMWT, 1-minute timed walk test; *ABI*, acquired brain injury; *A-T*, ataxia telangiectasia; *BBS*, Berg Balance Scale also known as the Functional Balance Scale; *BMI*, body mass index; *BWS*, body weight support; *CT*, total cholesterol; *CYP*, children and young people; *DMO*, dynamic

movement orthosis; *GMFF-66*, gross motor function measure-66; *GRAIL*, gait teal-time analysis interactive lab; *HEP*, home exercise program; *IMT*, inspiratory muscle training; *IVR*, immersive virtual reality; *MEP*, maximal expiratory pressure; *MIP*, maximal inspiratory pressure; *PEG*, percutaneous endoscopic gastrostomy; *PT*, physiotherapists; *QoL*, quality of life; *SARA*, scale for the assessment and rating of ataxia; *SF-36*, 36-item short form survey of quality of life; *TBI*, traumatic brain injury; *tDCS*, transcranial direct current stimulation; *TG*, triglycerides; *TSP*, training and support program; *V_c*, vital capacity; *V_t*, tidal volume

	Author	Types of	Population(s)	Condition(s)	Themes	Key points
	(year),	evidence source				
	[citation]					
1	van Os et al.	Narrative	Not age	A-T	Exercise	Recommendations for multidisciplinary
	(2017) [2]	guidelines	specific		and	treatment:
					function	Motor dysfunction should be treated with a
					Respiratory	multidisciplinary approach consisting of
					Mutrition	intensive support from a rehabilitation

Table 2- Characteristics of selected non-research-based sources of evidence

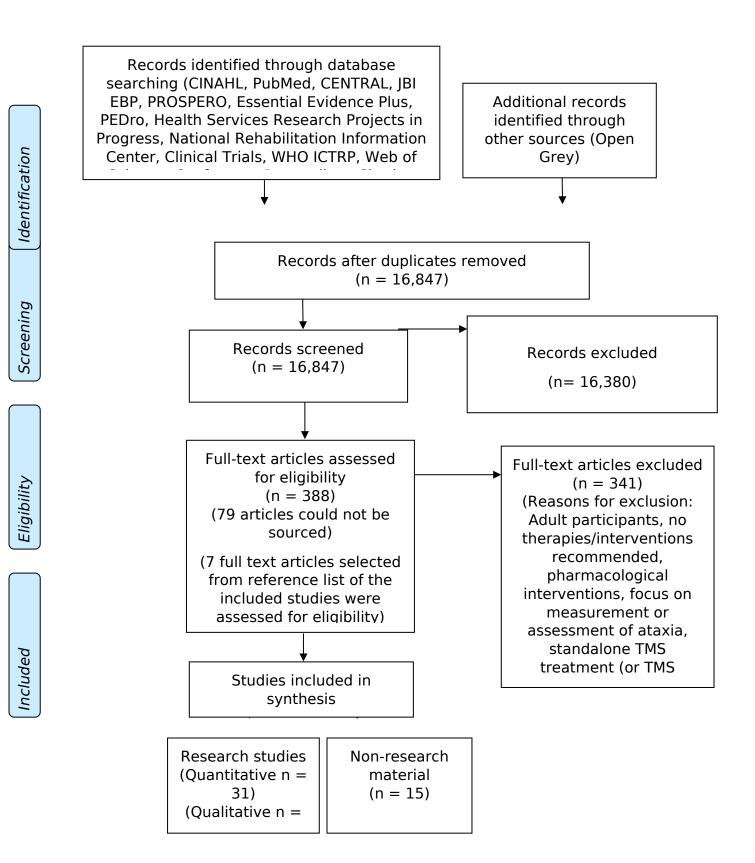
					Swallow	physician and AHPs
						Pulmonary management should include
						proactive monitoring and early intervention of
						pulmonary disease
						Nutritional and swallowing issues should be
						addressed early to promote growth, with
						interventions focusing on increasing oral
						intake/diet quality and preventing aspiration
2	Gatti and	Review	Not age	A-T	Exercise	Recommendations for multidisciplinary
	Perlman		specific		and	treatment:
	(2016) [31]				Function	Motor dysfunction management should
					Respiratory	involve supportive therapy, including early
					Nutrition	with continued physical therapy
					Mutrition	
					Mutrition	with continued physical therapy

						pulmonary function, swallowing and nutritionNutritional issues may benefit from early intervention
3	Rothblum-	Overview	Not age	A-T	Exercise	Motor dysfunction management should be
	Oviatt et al.		specific		and	multidisciplinary management (physical,
	(2016) [1]				function	occupational and speech therapies, alongside
					Respiratory	exercise) and may help maintain function but
					Nutrition	should not be used to the point of fatigue and
					Swallow	should not interfere with activities of daily
					Speech	life.
						Pulmonary issues should be managed with
						early intervention of respiratory symptoms.
						Annual pulmonary function testing should be
						performed in all children from 6 years of age
						Nutritional and swallow issues may be
						addressed through education of safe practice

						and dietary modifications, with feeding tube
						recommended in appropriate circumstances
4	Bhatt et al.	Review and	Not age	A-T	E Respiratory	Statement on the multidisciplinary respiratory
	(2015) [42]	practice	specific		Mutrition	management of A-T, based on aggressive
		document				proactive monitoring and treatment of the various
						aspects of lung disease, including respiratory
						surveillance, regular assessment of lung function
						regular airway clearance, and input from speech
						and language therapist to address feeding issues
5	Taylor et al.	Guidance	СҮР	A-T	Exercise	Guidance to professionals on the diagnosis and
	(2014) [5]	document			and	treatment of children with A-T. Main focus is on
					function	clinical care, but offers some guidance on
					Respiratory	therapeutic care and management
					Mutrition	
6	De Silva	Editorial	Not age	Ataxia	• Exercise	Advice on low-tech, inexpensive, and patient-
			specific		and	centred ataxia approaches for ataxia management.

	(2021) [62]				function	This included advice on resolving issues with gait
						and balance resulting from the use of face masks
						during COVID-19 pandemic; and reducing the
						potential for tripping and falling by attending to
						clothing and footwear, and making environmental
						adjustments
7	Hartley et al.	Systematic	СҮР	Ataxia	Exercise	Promising results were reported from 11 studies
	(2019) [35]	review			and	(21 children with ataxia), but these were of low
					function	methodological quality and no firm conclusions
						were drawn regarding exercise and physical
						therapy
8	Woodford and	Book chapter	Not age	Ataxia and	Exercise	Handbook providing nursing guidance on the
	Waterhouse		specific	Friedreich	and	management of people with ataxia and Friedreich
	(2021) [32]			ataxia	function	ataxia, with recommendations highlighting the
						need for multidisciplinary care

9	Maring and	Article	Not age	Friedreich	Exercise	Review highlighting the role of PT in
	Croarkin		specific	ataxia	and	implementing rehabilitation therapies focusing on
	(2007) [34]				function	strategies to maintain or improve participation in
						all contexts for as long as possible, as well as
						educating people with Friedreich ataxia and their
						families about the condition, potential therapeutic
						interventions, and realistic expectations regarding
						those interventions.
10	Manto et al.	Practice	Not age	Cerebellar	Exercise	COVID-19 Cerebellum Task Force consensus
	(2020)[40]	document	specific	ataxia	and	guidance on the management of cerebellar ataxia
					function	during the COVID-19 pandemic: Telehealth and
						telemedicine platforms are important to
						facilitating access to healthcare. Online
						physiotherapy and balance therapy tutorials help
						people remain physically active and engaged


11	Meneses et al.	Case	СҮР	Cerebellar	🖆 Exercise	Case report highlights the need for a holistic and
	(2017)[51]	recommendations		ataxia	and	structured assessment of needs, alongside long-
					function	term collaborations between clinicians and the
						family to facilitate shareddecisionmaking, with
						interventions adapting as needed
12	Tallaksen	Overview	Not age	Hereditary	Exercise	This review of hereditary ataxia highlights the
	(2008) [36]		specific	ataxia	and	importance of appropriate and collaborative
					function	management for providing symptom relief and
					Swallow	improvement of the prognosis
13	de Silva et al.	Guidelines	Not age	Progressive	Exercise	Guidelines on the management of progressive
	(2019) [52]		specific	ataxia	and	ataxia emphasize the critical role of AHPs, in
					function	particular physiotherapy, occupational therapy
					Speech	and speech and language therapy
					Swallow	
14	Bates et al.	Guidelines	Not age	Progressive	Exercise	These guidelines on management of progressive
			specific	ataxia	and	ataxia recommend that those affected should have

	(2016)[33]					function	access to referral to a full range of therapies
					gamas.	Swallow	including speech and language therapy,
					anna Thur	Speech	physiotherapy and occupational therapy
15	Corben et al.	Guidelines	Not age	Friedreich	anan Mutu	Exercise	The multidisciplinary guidelines emphasiszed
	(2014) [63]		specific	ataxia		and	the importance of physical therapy and
						function	exercise in improving balance, strength,
					anna an	Speech	flexibility and motor performance; and use of
					gamas.	Swallow	appropriate aids and devices to maintain or
							improve daily activity level
							Multidisciplinary advice on management of
							speech changes and swallowing difficulties in
							FRDA was given. Supplementary feeding
							techniques were also recommended to
							increase nutritional intake

A-T, ataxia telangiectasia; *CYP*, children and young people ≤ 18 years; *Adults*, people > 18 years

Fig_ure 1- PRISMA flow diagram of the search results

Electronic Supplementary Material

Supplement 1: A detailed overview of search terms incorporated in the review

Supplement 2: A list of all the databases searched