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Abstract 

An Analysis of the Genetic Algorithm and Abstract Search Space Visualisation 

by 

RICHARD ALAN HARRIS 

The Genetic Algorithm (Holland, 1975) is a powerful search technique based upon the 

principles of Darwinian evolution. In its simplest form the GA consists of three main 

operators - crossover, mutation and selection. The principal theoretical treatment of 

the Genetic Algorithm (GA) is provided by the Schema Theorem and building block 

hypothesis (Holland, 1975). The building block hypothesis describes the GA search 

process as the combination, sampling and recombination of fragments of solutions 

known as building blocks. The crossover operator is responsible for the combination 

of building blocks, whilst the selection operator allocates increasing numbers of 

samples to good building blocks. Thus the GA constructs the optimal (or near-

optimal) solution from those fragments of solutions which are, in some sense, optimal. 

The first part of this thesis documents the development of a technique for the isolation 

of building blocks from the populations of the GA. This technique is shown to extract 

exactly those building blocks of interest - those which are sampled most regularly by 

the GA. These building blocks are used to empirically investigate the validity of the 

building block hypothesis. It is shown that good building blocks do not combine to 

form significantly better solution fragments than those resulting from the addition of 

randomly generated building blocks to good building blocks. This results casts some 

H I 



doubt onto the value of the building block hypothesis as an account of the GA search 

process (at least for the functions used during these experiments). 

The second part of this thesis describes an alternative account of the action of 

crossover. This account is an approximation of the geometric effect of crossover upon 

the population of samples maintained by the GA. It is shown that, for a simple 

function, this description of the crossover operator is sufficiently accurate to warrant 

further investigation. A pair of performance models for the GA upon this function are 

derived and shown to be accurate for a wide range of crossover schemes. Finally, the 

GA search process is described in terms of this account of the crossover operator and 

parallels are drawn with the search process of the simulated annealing algorithm 

(Kirkpatrick et al, 1983). 

The third and final part of this thesis describes a technique for the visualisation of high 

dimensional surfaces, such as are defined by functions of many parameters. This 

technique is compared to the statistical technique of projection pursuit regression 

(Friedman & Tukey, 1974) and is shown to compare favourably both in terms of 

computational expense and quantitative accuracy upon a wide range of test functions. 

A fundamental flaw of this technique is that it may produce poor visualisations when 

applied to functions vAih a small high fi-equency (or order) components. 
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1 Introduction 

Traditional optimisation techniques generally operate by using local information to 

generate an approximation to the line of steepest ascent (or descent in the case of 

minimisation). Taking a short step in this direction, these technique generate a new 

line of steepest ascent from the new local information. After a number of iterations the 

technique will reach a point from which it can ascend no longer and this point must 

therefore, by definition, be locally optimal (better than all of it's neighbouring points). 

Unfortunately, there is no possible way of determining whether or not there is a better 

point somewhere else or that the given point is in fact the best possible - the global 

optimum. These techniques are therefore often referred to as hill-climbing or local 

optimisation techniques, since they climb the peak upon which they are situated and 

guarantee only to identify local optima. 

The Genetic Algorithm (Holland, 1975) is an adaptive global search technique based 

upon the principles of Darwinian evolution. The Genetic Algorithm (GA) utilises a 

large number of points, all of which compete for representation in following iterations. 

A number of genetic operators are applied to these points, from which a new set of 

points are generated and in their turn must compete for representation in the same 

fashion. The description of the GA as a global optimisation technique, despite the fact 

that it is not possible in general to confirm the global optimality of any solution, stems 

from the search process of the GA. Unlike traditional optimisation techniques, the GA 

does not rely upon local information and does not follow a path of steepest ascent (or 

descent). As an optimisation technique the GA has enjoyed successful application in a 

wide range of domains, and is typically applied to those problems which defy 



traditional hill-climbing optimisation techniques. The relative success of the GA in 

such domains, together with the widely distributed based search process, are the 

justification for the description of the GA as a global optimisation technique. 

The principal theoretic description of the GA is provided by the Schema Theorem and 

building block hypothesis (Holland, 1975). The building block hypothesis accounts for 

the success of the GA in terms of fragments of solutions known as building blocks. 

These building blocks represent subtle underlying relationships between the parameters 

of the problem at hand. It is asserted by the building block hypothesis that the GA 

operates through the combination, sampling and recombination of such building 

blocks. Poor quality building blocks are rejected, good quality building blocks prosper 

and the GA constructs its ultimate solution from those building blocks which are 

themselves optimal or near optimal, 

1.1 The Genetic Algorithm as an Accountable Optimisation Technique 

One of the failings of optimisation techniques in general is that they operate as black 

boxes. The user applies a technique within a given domain and is rewarded with a set 

of parameters describing the solution generated by that technique. The identification 

of optimal, near optimal or locally optimal solutions to a given problem is clearly 

useful, although this information alone does not improve the users' understanding of 

the problem itself or of why the given solution is better than its neighbours. It would 

be of great advantage, therefore, if a technique were developed which in addition to 

the generation of such a solution to a problem would be capable of justifying the 

solution upon which it converged. Such an accountable optimisation technique would 



not only give the user viable solutions to the problems to which it was applied, but 

would also increase the understanding of such problems by providing much needed 

justification for the optimality of their solutions. 

1,1.1 Building Blocks as Justification for the Solutions Generated by the GA 

As has been noted, the building blocks predicted by the building block hypothesis 

represent relationships between the parameters of a problem. Given the building block 

hypothesis, those building blocks which prosper under the GA must be representative 

of relationships between parameters which describe good regions of the search space, 

or equivalently of relationships which are innately of high utility. 

In the construction of an accountable optimisation technique such relationships would 

clearly prove very useful. Given the solution upon which the GA finally converges, the 

identification of those good building blocks fi'om which it has been constructed would 

yield the relationships between the parameters of the solution which account for its' 

optimality or near optimality. These building blocks are therefore an ideal source of 

information fi^om which a justification of the generated solution may be constructed. 

The GA is perhaps unique amongst optimisation techniques in that the proposed 

mechanics of its' search process could yield a meaningful justification for the solution 

upon which it converges. 

The potential ramifications of the identification and subsequent analysis of those 

building blocks which are extensively exploited by the GA during the search process 



inspired the initial aim of this research project - namely the development of a technique 

for the extraction of these highly sampled building blocks. 

1.1.2 Building Blocks as a Rich Source of Information 

In addition to the use of building blocks for the justification of the solutions generated 

by the GA, those building blocks most regularly sampled by the GA during the search 

process could provide a rich additional source of information concerning the problems 

to which the GA is applied. The relationships between parameters described by the 

highly sampled building blocks are indicative of underlying traits of the problem 

domain, some of which may have been previously unknown to the user. 

This wealth of relational information could reveal a great deal about the nature of the 

search space. I f this resource were properly exploited, the GA would transcend the 

goal of an accountable optimisation technique and yield an algorithm which, in addition 

to providing a solution and a justification of that solution, could give the user a greater 

understanding of the relationships between the parameters of the system under 

examination. 

The latter phase of this research was founded upon the obvious benefits which would 

result from a system which was capable not only of identifying good solutions of a 

problem and justifying those solutions, but also of revealing possibly hitherto unknown 

properties of that problem. This second phase of the research was to be concerned 

with the effective dissemination of the information contained with the highly sampled 

building blocks - specifically with the development of a graphical visualisation 



technique which would present this information to the user in a clear and concise 

fashion. 

1.1.3 The Use of Building Blocks to Guide Genetic Search 

In addition to providing the user with additional information regarding the domain in 

which the GA is applied, the highly sampled building block identified by the extraction 

technique could be used to improve the convergence properties of the GA itself I f the 

GA were to utilise these building blocks for the construction of the solution upon 

which it converges, the early identification of potentially useful building blocks would 

allow their explicit propagation. Any ineflficiency displayed by the GA in the 

exploitation of high utility building blocks could possibly be avoided through the early 

identification and subsequent enforced sampling of such building blocks. 

A further research goal was therefore to develop a systematic methodology for the 

promotion of those building blocks which were, through on-line analysis, identified as 

potentially of high utility for the construction of an optimal or near optimal solution. 

The benefits of such an approach are clear - a potential reduction of the number of 

trials necessary for the convergence of the GA together with a potential improvement 

in the quality of the solution upon which the GA finally converges. 

1.1.4 The Failure of the Building Block as a Source oflnformation 

Having developed a technique for the on-line extraction and subsequent evaluation of 

highly sampled building blocks, the next research goal was to use these building blocks 

to empirically confirm the validity of the building block hypothesis. The experiments 



chosen for this analysis examined the effect of combining pairs of building blocks to 

construct new, larger, fragments of solutions. The utility of these newly constructed 

fragments was then compared to the utility of the building blocks from which they 

were constructed. I f the building block hypothesis were true, those fragments 

constructed from good building blocks would yield a significantly greater improvement 

in utility than those constructed from poor building blocks. In other words the 

building blocks would combine - good building blocks would combine to form good 

solution fragments which in turn would combine to form good solutions. The 

assumption that building blocks combine is implicit within the building block 

hypothesis. I f this were not so, poor quality building blocks would receive equal 

numbers of trials as good quality building blocks since when combined to form 

solutions there would no significant difference in the quality of that solution. 

As will be discussed in detail in chapter 3, the results of these experiments cast some 

doubt upon the validity, in general, of the building block hypothesis. It was shown that 

the building blocks sampled most regularly by the GA during function optimisation did 

not combine - that the fragments of solutions created through the combination of pairs 

of highly sampled building blocks did not yield a significantly greater improvement in 

utility than did the addition of randomly generated building blocks to those highly 

sampled building blocks. 

If there is doubt in the validity of the building block hypothesis, i f there is doubt that 

the GA utilises the most highly sampled building blocks to construct the solution upon 

which it settles, then there is doubt in the quality of the information contained within 



these highly sampled building blocks. The potential use of such building blocks for the 

justification of the solutions upon which the GA converges and as a rich information 

source for the user is compromised by this lack of confidence in the information they 

contain. 

1.2 The Divided Nature of This Research 

As has been stated, the initial aim of this research was to develop a technique for the 

extraction of those building blocks sampled most highly by the GA during the search 

process and to exploit these building blocks in the justification of the solutions upon 

which the GA converges and in the dissemination to the user of the information they 

contain. The success of the initial phase of this research unfortunately indicated that 

the proposed latter phases would not prove possible. 

Having shown that the building block hypothesis does not hold, in general, for the GA 

as a function optimiser, it was clearly desirable to develop an alternative account for 

the success of the GA in this role. A new research goal was therefore to identify the 

search mechanism utilised by the GA. With little confidence in the value of building 

blocks as a meaningfiji source of information, it was necessary that this mechanism 

should not rely upon the notion of building block. Furthermore, it was desired that this 

mechanism should also account for the success of many of the variants of the GA, for 

some of which the notion of building block is essentially meaningless. 

Of the latter phases of the proposed research project, it was recognised that the 

development of an abstract search space visualisation technique could proceed without 



the use of building blocks. Rather than developing a technique by which the 

information contained within the highly sampled building blocks could be presented 

meaningfully to the user, this phase of the research sought to develop a technique by 

which the essential nature of the search space could be identified and presented clearly 

to the user. To this end, this technique was to involve the meaningful graphical 

representation of the possibly high dimensional search space. 

1.3 A Brief Overview of this Thesis 

There follows a short description of the content of each of the following chapters of 

this thesis. The goals, methodology and results of the three phases of this research are 

described in brief 

1.3.1 Chapter 2, The Genetic Algorithm 

In its simplest form the GA consists of three major operations - those of crossover, 

mutation and selection. The crossover operator is often referred to as a recombination 

operator since it combines pairs of trial solutions to generate new trial solutions. The 

combination and recombination of building blocks described by the building block 

hypothesis relies upon the crossover operator and its effect upon the trial solutions of 

the population. The mutation operator results in small random changes to individual 

trial solutions, maintaining diversity in the population as a whole. The selection 

process ensures that the better solutions of the population are more likely to survive 

and prosper than the poorer solutions. The propagation of good building blocks is, by 

the building block hypothesis, a result of this operation. The crossover-selection cycle 



of the GA is therefore generally considered to be the most important feature of the GA 

search process. 

These operations are described in detail within this chapter along with many of their 

more popular variants. The nature of these operators is further illustrated through 

examples and pseudo-code. The theoretical foundations of the GA provided by the 

Schema Theorem and building block hypothesis are discussed. Finally, a number of 

practical applications of the GA are described - illustrating the power of the GA as an 

optimisation technique. 

1.3.2 Chapter 3, An Empirical Analysis of the Building Block Hypothesis 

This chapter documents the initial phase of the original research plan of this thesis - the 

development of a technique for the on-line extraction of highly sampled building 

blocks. This technique, utilising a clustering algorithm to improve computational 

efficiency, is shown to effectively identify only those building blocks which are most 

regularly sampled by the GA. A number of measures of the utility of a building block 

are proposed and the relationships between these measures examined. 

Upon completion of the building block extraction technique, the first research task was 

to use the building blocks identified during the application of the GA to a number of 

test functions to examine the validity of the building block hypothesis. As has been 

described above, this validation of the building block hypothesis was based upon an 

examination of the relative effect of combining pairs of high utility building blocks with 

both high utility building blocks and randomly generated building blocks. One of the 



proposed measures of utility is used to compare the relative improvement which results 

from these combinations. The results of these experiments show that combined pairs 

of high utility building blocks do not yield a significantly greater improvement in utility 

than that resulting from the combination of the high utility building blocks with the 

randomly generated building blocks. 

The results of the research documented in this chapter cast doubt onto the validity of 

the building block hypothesis, and, as has been noted, resulted in the necessity of a 

revised research plan. Without the justification of the building block hypothesis, the 

use of building blocks as a justification of the solutions generated by the GA or as a 

source of information regarding the problems to which the GA is applied was cleariy 

inappropriate. 

1.3.3 Chapter 4, An Alternative Description of the Action of Crossover 

The building block hypothesis suggests that the principal operators of the GA are those 

of crossover and selection, by which building blocks are combined, assigned samples 

according to their utility and subsequently recombined. The results of the previous 

chapter suggest that the building block hypothesis is not a sufficient account of the 

success of the GA as a function optimiser. 

The research presented in this chapter describes an alternative account of the 

mechanics of the crossover operator. This account is based upon the geometric effect 

of a wide range of crossover operators upon the trial solutions maintained by the GA. 

Despite the fact that this geometric description of the crossover operator is an 
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approximation, it is shown that for a large number of crossover events it is a 

sufficiently accurate approximation to warrant further investigation. From this 

description, short and long term performance models of the crossover-selection cycle 

of the GA are constructed for a simple quadratic fijnction. The accuracy of these 

models is confirmed with experimental evidence and it is proposed that their accuracy 

supports the geometric description of crossover. 

Having confirmed the validity of this geometric description of crossover, an alternative 

account of the mechanics of the GA is based upon it and from this account parallels are 

drawn between the GA and simulated annealing - another, similarly successful, global 

optimisation technique. 

1.3.4 Chapter 5, Scientific Visualisation 

Scientific visualisation covers a wide range of techniques for the graphical 

representation of data, the principal aims of which are to communicate information 

effectively to the user. This chapter describes a number of techniques for the 

visualisation of data, from the simple graph to complex iconic scatter diagrams. 

Particular attention is paid to the difficulty in representing high dimensional surfaces, 

such as are generated by scalar valued fiinctions of many parameters. Examples of 

such functions are provided by parametric models of complex systems. The 

visualisation of the surfaces defined by such models can potentially provide a great deal 

of information concerning the systems under analysis, although there are few 

visualisation techniques capable of operating within this domain. 

11 



1.3.5 Chapter 6, A Technique for the Visualisation of High Dimensional Surfaces 

This chapter describes a technique for the visualisation of high dimensional surfaces. 

This technique takes the form of a non-linear multivariate regression of the data 

generated by functions of many parameters. The form of this regression is similar to 

that of the statistical technique of Projection Pursuit Regression (Huber, 1985), 

although the techniques differ fundamentally in their construction of the regression 

surface. The technique described within this chapter is compared with Projection 

Pursuit Regression upon a wide range of illustrative test fijnctions, an the relative 

merits of the two approaches are discussed. 

1.3.6 Chapter 7, Conclusions 

The final chapter of this thesis reiterates the conclusions of each of the above chapters. 

The research project as a whole is discussed and conclusions are drawn upon this 

research in the light of the original goals. 
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2 The Genetic Algorithm 

The Genetic Algorithm (GA) is a heuristic search technique based upon the principles 

of natural selection (Holland, 1975). This thesis will treat the GA wholly as a function 

optimisation technique, although there are many other applications - most notably in 

learning classifier systems (Goldberg, 1989). 

Traditional optimisation techniques are generally intended for local optimisation. 

Although they are guarantied to converge upon local optima (those points which are 

better than their neighbours), there is no satisfactory way of extending this property to 

global optima (those points which are better than any others). Thus for noisy or 

multimodal surfaces (with potentially many local optima), these techniques are unlikely 

to find satisfactory solutions. Some methods utilise gradient information to improve 

the convergence properties of the search process. When the first derivatives aren't 

available, they may be approximated with the first differences, although this results in 

greater computational expense. These techniques are likely to fail upon discontinuous 

surfaces, where derivatives do not exist at all points. 

The GA differs from these traditional techniques on a number of counts. Firstly, the 

GA operates upon a large number of samples simultaneously. The GA also utilises 

randomness during the search process. This does not, however, imply that the GA is a 

random search method. The combination of large samples and carefully used 

randomness results in an effective global optimisation technique, capable of dealing 

with those domains which cause the greatest problems for traditional optimisation 

techniques. 
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2.1 Terminology 

The terminology of the GA draws heavily from that of biological genetics. There 

follows a brief description of the most commonly used terms together with their 

equivalent mathematical terms. 

Chromosome : Trial, sample 

The chromosome consists of a series of concatenated (generally) binary numbers, each 

number representing a single parameter of the objective function. 

e.g. I i oo io ionoi -> (11002.10102,11012) = (12,10,13) 

The resulting set of integers may then be scaled to lie within a given set of bounds. 

The integers in the above example may be scaled onto the unit cube with a resolution 

of2-^. 

e.g. (12,10,13)-^2-^(12,10.13) = (0.7500,0.6250,0.8125) 

In order to increase the dimension or resolution of the parameter set, it is therefore 

necessary to increase the length of the chromosome. 

Gene: Element 

Each binary digit of the chromosome is knowoi as a gene. 

Allele: Value 
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The values taken by a given gene are known as the alleles of that gene. In the case of 

binary chromosomes, the genes have alleles 0 and 1. 

Locus: Locus 

The position of a gene within the chromosome is known as the locus of the gene. In 

general this is fixed and the gene may be define purely in terms of its locus. For 

example, the 0 allele is present in the gene at locus 3 of the above chromosome. 

Population : Sample set 

The current set of chromosomes is known as the population of the GA. 

Fitness : Objective 

The value of the objective fijnction applied to the parameter set associated with a 

chromosome is known as the fitness of that chromosome. The objective function is 

generally known as the fitness fijnction. 

e.g. Given the fitness function/(x) = |x|^, the fitness of the above chromosome is 

/ = 0.7500^ +0.6250^+0.8125^ = L6IO0 

Genotype: Binary representation 

The binary form of a particular chromosome is known as the genotype of the 

chromosome. 

Phenotype : Parameter set 
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The parameter set associated with a particular chromosome is known as the phenotype 

of the chromosome. 

2.2 The Simple Genetic Algorithm 

The structure of the simple GA (Goldberg, 1989) is shown in figure 2.1. There are 

five basic steps - initialisation, evaluation, selection, crossover and mutation. The 

iterative sequence of selection, crossover, mutation and evaluation is known as a 

generation. 

procedure g e n e t i c _ a l g o r i t h i n 
b e g i n 

gen := 0; 
i n i t i a i i s e Pgen/' 

e v a l u a t e Pgen/ 

w h i l e (not s t o p p i n g - c o n d i t i o n ) do 
be g i n 

s e l e c t 
Pgen+l f^Om Pgen' 

gen := gen+1; 

crossover Pgen; 

mL?tate Pgen; 

end 

end 

Figure 2.1 The structure of the simple GA 
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2.2.1 Initialisation 

The initialisation of the GA is usually achieved through random sampling, each gene of 

each chromosome within the population being assigned a randomly chosen allele. 

More sophisticated techniques involve seeding the initial population with previously or 

algorithmically determined chromosomes. 

2.2.2 Evaluation 

During the evaluation phase of the GA, each chromosome is decoded into a parameter 

set. The parameter set is passed to the fitness function, and its fitness is stored 

alongside the chromosome. Some more sophisticated evaluation techniques pre-

process the raw fitness of the chromosomes before moving on to the selection phase of 

the GA. 

2.2.3 Selection 

The most common method of selecting a new population from the current population 

is Roulette Wheel Selection (De Jong, 1975). The new population is created from 

randomly chosen members of the current population. For each chromosome in the 

new population the probability of selecting a particular chromosome from the current 

population is given by, 

Z / (A') 
XeP, 

17 



v/hQTQf(C) is the fitness of a chromosome C, and F, is the population at generation /. 

Figure 2.2 shows an algorithmic implementation of this technique. 

procedure r o u l e t t e _ w h e e l 

b e g i n 
sum := 0; 
f o r i := 0 t o pops i ze-1 do 
begin 

sum := sum + f i t n e s s ( C i ) ; 

end 

sum := random(0, sum); 

i := 0; 
w h i l e (sum >= 0 and i < p o p s i z e ) do 
be g i n 

sum := sum - f i t n e s s ( C i ) ; 

i := i+1; 
end 
i := i-1; 

r o u l e t t e wheel := C i ; 

end 

Figure 2.2 Roulette Wheel Selection algorithm 

This process may be compared with spinning a weighted roulette wheel for each 

member of the new population. The proportion of the wheel assigned to each 

chromosome in the current population is determined by that chromosomes contribution 

to the total fitness of the current population. 

Thus those chromosomes of above average fitness are likely to reproduce more 

successfully than those of below average fitness. This ensures that the population 
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tends to improve from one generation to the next. This technique cannot be used 

directly with fitness functions which return negative values. However, it is relative 

simple to ensure that this does not occur. 

2.2.4 Crossover 

Crossover is generally considered to be the principal operator of the GA. Crossover 

acts upon pairs of randomly chosen chromosomes, exchanging information between 

them. A random locus is then chosen, and for all subsequent genes the alleles of the 

chromosomes are exchanged. 

e.g. C, = 110010101101-> (0.7500,0.6500,0.8125) 

C2 = HOI 10010100-•(0.8125,03625,0.2500) 

e . i ^ Q =1100101-01101 
Spilt chromosomes at locus 7 

^ Q =1101100-10100 

„ . , q =1100101-10100 Exchange alleles 
^ Q =1101100-01101 

Ci = 110010110100 ^ (0.7500,0.6875,0.2500) 

C2 = 110110001101 ̂  (0.8125,03000,0.8125) 

These two new chromosomes then replace the parent chromosomes in the population. 

The proportion of the population selected for crossover is known as the crossover rate 

and is generally set at 60% (De Jong, 1975). 
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2.2.5 Mutation 

Mutation is the second operator of the GA. The mutation operator acts upon single 

chromosomes chosen at random from the population. A random locus is selected, and 

the allele value of the gene at that locus is altered. 

e.g. C = 1 lOOIOl 110100^ (0.7500,0.6875,OJ2500) 

Select locus 5 C = liOOioiiOlOO 

Mutate c = 110000 no 100 

Giving C = 1100001 lOlOO (0.7500,0.1875,02500) 

This new chromosome replaces its parent in the population. The proportion of the 

total number of genes in the population selected for mutation is known as the mutation 

rate and is generally inversely proportional to the population size (De Jong, 1975). 

2.2.6 The Stopping Condition 

A number of criteria may be used to halt the GA search process. For example, 

• The GA executes for a pre-set number of generations. 

• The maximum or average fitness of the population reaches a pre-set target. 

• The population converges (all chromosomes within the population are identical). 
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2.3 The Fundamental Theorem of Genetic Algorithms 

The behaviour of the GA is described by Holland's Schema Theorem, or Fundamental 

Theorem of Genetic Algorithms (Holland, 1975). The Schema Theorem describes 

how binary patterns known as schemata propagate from generation to generation. 

2.3.1 Schemata 

A schema (Holland. 1975) is a pattern defining a set of chromosomes. Schemata are 

defined over the ternary alphabet {0, 1. #}, where the # represents a wildcard which 

may match either a 0 or 1. 

e.g. The schema #100# matches the set {01000,01001, 11000, 11001} 

The order of a schema is defined as the number of Ts and O's in the pattern. The 

schema in the above example has order 3. This is formally written as 

o(H) = 3 

Thus the greater the order of a schema, the lesser the size of the set of chromosomes it 

defines. More accurately |{C:Cniatclies//}| = 2'"'^"\ where / is the length of the 

chromosome. (Henceforth, the set of chromosomes defined by a schema and the 

schema itself shall be treated as the same object when this is not ambiguous or 

misleading). 
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The defining length of a schema is defined as the distance between the first and last 

non wild character in the pattern. The schema in the above example has defining 

length 2, formally written as 

S{H) = 2 

The static fitness of a schema is defined as the mean fitness of the chromosomes within 

the set it defines. 

Z/(c) 

The dynamic fitness, or fitness, of a schema is defined as the mean fitness of the 

chromosomes in the current population which match it. 

Z/(c) 
f( t j \ _ CeHr^P, 

^^''^-\{C:C.Hr.P,}\ 

2.3.2 The Schema Theorem 

Any given chromosome must clearly be an instance of 2' schemata, since at each locus 

the chromosome may match a schema in one of two ways - either with the same binary 

digit or with a wild card. Each chromosome may be considered as being a 

representative of 2' schemata, and the behaviour of the GA may therefore be explained 

as sampling large numbers of increasingly fit schemata and utilising this information to 
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guide the search effort. Since there are 3' possible schemata of length /, and only 2' 

chromosomes, it may seem that the search for fit schemata is a more complex task than 

the search for fit chromosomes. However, it may be shown that within a population of 

// chromosomes, the GA usefully processes o(/;̂ ) schemata (Holland, 1975), a property 

known as the implicit parallelism of the GA. 

Schemata of high defining length are likely to be disrupted through the action of 

crossover, and those of high order through mutation. More accurately, for a schema H 

having m(H, t) copies of itself in generation r, the expected number of copies in 

generation /+! is bounded by 

( , , i H j ^ X ) ) ^ „ { H , t ) . ^ y p , ^ - p j , [ H ) 

where ft (H) is the dynamic fitness of H in generation t,f(Pt) is the mean fitness of the 

chromosomes in generation and pc and /?„, are crossover and mutation probabilities 

(Holland, 1975). This is the Fundamental Theorem of Genetic Algorithms. 

2.3.3 The Building Block Hypothesis 

Short, low order schemata of above average fitness may therefore be expected to 

receive exponentially increasing numbers of trials from generation to generation. Such 

short, low order schemata are known as building blocks and are flindamental to this 

account of the success of the GA. The building block hypothesis suggests that the 

behaviour of the GA may be explained as the combination, sampling and recombination 
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of highly fit building blocks - the GA progresses toward the globally optimal solution 

through the combination of those features of solutions which are in some sense 

optimal. 

2,4 Alternative GA Strategies 

Within the framework of the GA it is possible to construct a great many algorithms. 

There are a range of alternative techniques for crossover, mutation, selection and 

parameter representation, some of which are described below. 

2,4.1 The Chromosome 

There are numerous methods for encoding parameter sets as chromosomes, some of 

the most important of which are described here. 

Gray Coding 

One of the major drawbacks of a binary representation is the Hamming Cliff 

(Hamming, 1950). This refers to the large difference in the binary strings representing 

similar numbers. For example consider the following chromosomes 

Ci =011I->7 

Q = 1000-^8 

Although the change in the parameter is only one unit, it requires four separate 

changes in the chromosome to achieve it. In order to overcome this, Gray Coding may 

be employed (Hollstein, 1971) - a non-linear mapping of binary numbers employed in 
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the communications field to reduce transmission error. To increase or decrease the 

parameter by one unit, it is necessary to change only one bit of the binary 

representation, as illustrated in table 2.1. 

Decimal Binary Gray 

0 OOOO 0000 
1 0001 0001 
2 0010 0011 
3 0011 0010 
4 0100 0110 
5 0101 0111 
6 0110 0101 
7 0111 0100 
8 1000 1100 
9 1001 1101 

Table 2.1 Binary and Gray code of integers 0-9 

procedure g r a y _ t o _ b i n a r y 

b e g i n 
b i n a r y [ n - l ] = g r a y [ n - l ] ; 

f o r i := n-2 to 0 do 
begin 

b i n a r y l i ] = b i n a r y l i+1] e x c l u s i v e or g r a y [ i ] ; 

end 

end 
g r a y _ t o _ b i n a r y := b i n a r y ; 

Figure 2.3 Gray code to Binary conversion algorithm 
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e.g. To convert the four bit Gray coded number 1011 to binary. 

Gray code 

Current Binary 

Giving 

1101 

1-

Most significant bit is the same. 

Gray code 1101 

Current Binary 1--

Giving 1 0 — 

Exclusive or bit 2 of the Gray code 

with bit 3 of the binary. 

Gray code 1101 

Current Binary 10-

Giving 100-

Exclusive or bit 1 of the Gray code 

with bit 2 of the binary. 

Gray code 1101 

Current Binary 100 

Giving 1001 

Exclusive or bit 0 of the Gray code 

withbh 1 of the binary. 

Real Coded GAs 

It is not necessary to restrict chromosomes to binary alphabets. One commonly used 

representation is real coding in which the binary genes are replaced with real numbers. 

e.g. C = (0.7501,0.6249,0.8125) 
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This technique has two main advantages - the parameter set may include any point (up 

to machine precision) and there are no Hamming cliffs. The Schema Theorem does 

not account for the success of real coded GAs since there are effectively an infinite 

number of alleles for each gene. 

Real coded GAs have enjoyed a degree of success in application to real world 

problems. In particular L . Davis (1991) suggests that using the same coding method 

as is used by classical optimisation techniques already employed within a given domain 

allows the GA to be easily hybridised with these techniques. A simple form of 

hybridisation includes classical optimisation techniques as additional operators within 

the GA. This can dramatically improve the convergence properties of the GA upon the 

problem at hand (Davis, 1991). 

The Structured GA 

The structured GA (Dasgupta & McGregor, 1991) relies upon redundancy within the 

chromosome to improve search in difficult domains. The chromosomes represent a 

tree structure from which the parameter set is generated. High level genes may act as 

switches, activating or deactivating lower level genes. These lower level genes may 

also act as switches for still lower level genes. The activated genes at all levels 

determine the parameter set. Since the deactivated genes are reproduced along with 

the active genes population diversity is maintained and rapid change in the direction of 

the search effort is possible. 
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an a,2 321 322 331 332 

3 m 3112 

Figure 2.4 A simple structured chromosome 

The chromosome in figure 2.4, for example, could be simply encoded as 

C = (a , , i72 ,^3 .« i i ,« i2-«2 i»^22 .^3 i .«32 .^m. '^ i i2 ) - Thc thrcc first level genes (01,^2.^3) 

determine which of the second level genes are active and contribute toward the final 

parameter set. Similarly, the second level gene an determines which of the third level 

genes are active. The high level genes may determine the form of the solution, whilst 

the low level genes represent parameters consistent with the chosen form. 

2.4.2 Initialisation 

For heavily constrained optimisation problems, random sampling is highly unlikely to 

yield feasible solutions. In cases such as this it is often desirable to seed the initial 

population with previously determined feasible solutions. Population seeding does 

have drawbacks however, since the initial population may be dominated by a small 

number of comparatively fit chromosomes. 
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2.4.3 Evaluation 

One of the principal problems in fitness evaluation is that of maintaining selection 

pressure - the difference in fitness between the best and worst members of the 

population. For example, consider the fitness fijnction/and chromosome C, 

/ ( C ) = 0.95 /{P,) = 0A75 

Under roulette wheel selection C would be expected to receive -^^ = 2 oflfspring. 
0.475 

However, if the function/is transformed to / ' where 

/ • ( C ) = / ( C ) + 100 

the fitness of the chromosome and population are transformed to 

/ ' ( C ) =100.95 / • ( / ; ) = 100.475 

The expected number of ofifspring of C under roulette wheel selection is now 

100 95 
—'•— ss 1, although there is no qualitative difference between the two versions of the 
100.475 

function. Clearly, for a robust optimisation technique, this is not a desirable property. 

Fortunately, there are a number of ways to combat this effect. 
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Windowing 

The first and simplest technique is windowing (Grefenstette, 1991). This technique 

involves finding the worst member of the population and subtracting its fitness fi-om 

the fitness of each chromosome. The worst member of the population therefore has 

fitness 0, with no chance of selection. This is not necessarily a positive feature, and so 

a minimum fitness threshold may be defined, to which all chromosomes of lower 

fitness are set. Windowing is the basic fitness transformation employed by GENESIS 

(Grefenstette, 1984). 

Linear Normalisation 

The second technique is linear normalisation (Davis. 1991). This involves ordering the 

population according to fitness and choosing a maximum fitness and fitness decrement. 

The best member of the population is assigned the maximum fitness, the next best the 

maximum fitness less one decrement, and so on. Again, a minimum threshold may be 

set to allow poor chromosomes some chance of reproduction. 

Linear Scaling 

A fijrther technique is linear scaling (Goldberg, 1989). Firstly the desired ratio 

between the best and average fitnesses is chosen (equivalent to the desired number of 

offspring of the best chromosome). The fitness of the population is then scaled by 

subject to the constraint r{Pt)=f(Pt) • 
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The constants a and b are easily calculated from the scaling factor and the best, worst 

and average fitnesses of the population. Under some circumstances, the resulting 

fitness of the worst chromosome may fall below 0 and, since the minimum fitness must 

always be 0, a new scaling factor must be chosen - generally the maximum scaling 

factor possible while maintaining positive fitness for all chromosomes. 

2.4.4 Selection 

There are several alternatives to roulette wheel selection, some of which are described 

here. 

Elitism 

Elitism (De Jong, 1975) guarantees that the best member of the population always 

survives. Before crossover, mutation and selection, a copy of the best member of the 

population is made. If this chromosome does not survive and is not improved upon, 

the copy replaces the worst (or a randomly selected) member of the next generation. 

Although not a selection technique in itself, elitism is oflen combined with a selection 

technique in order to guarantee that the best fitness of the population does not 

degrade. 

Tournament Selection 

Tournament selection (Brindle, 1981) involves choosing some predetermined number 

of chromosomes from the population at random, and placing the best of these in the 
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next population. This process is repeated until the next population is filled. In general, 

two competitors are used and this is known as a binary tournament. 

Stochastic Remainder Selection 

Stochastic remainder selection (Booker, 1982) is a variant of roulette wheel selection 

which guarantees that a chromosome will receive at least the integer part of its 

expected number of oflfspring. The expected number of offspring under roulette wheel 

selection is calculated, and a number of copies equal to the integer part of this are 

placed in the next generation. The remaining fractional parts are then used with 

roulette wheel selection to fill the remaining places in the new population. 

Steady State Reproduction 

Steady state reproduction (Whitley, 1989) is a significant departure fi-om the standard 

GA approach. The standard generation of selection, crossover and mutation is 

replaced and a pair of chromosomes are chosen from the population crossed over, 

mutated if some probability condition is met, and put back into the population - often 

replacing the worst chromosomes. Figure 2.5 illustrates the basic structure of the 

steady state GA. 

2.4,5 Crossover 

There exist a number of alternatives to the crossover operator, some of which are 

detailed below. 
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procedure s t e a d y _ s t a t e _ g a 
b egin 

gen := 0; 
i n i t i a l i s e P, gen' 

e v a l u a t e P^en; 

w h i l e (not s t o p p i n g - c o n d i t i o n ) do 
b e g i n 

i := random(0, p o p s i z e - l ) ; 
j := random(0, p o p s i z e - l ) ; 

copy i ' t h member of population to Co; 
copy j ' t h member of population to C i ; 

c r o s s o v e r Co and Ci; 

i f (random!0, 1) < = Pm) then mutate C q ; 

i f (random(0, 1) < = Pm) then mutate Ci; 

copy Co to worst member of population; 

copy Ci to second worst member of population; 

end 
end 

Figure 2.5 The structure of the steady state GA 

Two Point Crossover 

Two point crossover (Cavicchio, 1970) is, as the name suggests, a variant of crossover 

which utilises two crossover points. In this form of crossover all genes between the 

crossover points exchange allele values. This gives a more flexible exchange of 

information between the chromosomes. This can be generalised to // point crossover 

(De Jong, 1975) where // crossover points are chosen with genes being retained after 
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even and exchanged after odd numbered crossover points (considering the start of the 

chromosome to be the O'th crossover point). 

e.g. C, = 110010101101-» (0.7500,0.6500,0.8125) 

Q = U01110010I00->(0.8125,0i625,O.2500) 

split Chromosomes at loci 3, 7. 9 >̂ = n o - o i O l - O l - l o i 
Q = 110-1100-10-100 

Exchange alleles C, =110-1100-01-100 

Q = 110-0101-10-101 

. q = 110110001100 ^ (0.8125,03000,0.7500) 

C2 = 1 lOOlOllOlOl ^ (0.7500,0.6875,0.3125) 

Uniform Crossover 

Uniform crossover (Syswerda, 1989) extends this notion still further. For each gene, 

the chromosomes retain or swap their allele values with equal probability. Uniform 

crossover is the limit of // point crossover as n 00. 

There exist a number of crossover techniques dedicated to real coded GAs. These 

techniques seek to bring the rich exchange of information possible with binary 

crossover to the real coded algorithms. 

Average Crossover 

Average crossover (Davis, 1991) is much like the standard binary form of crossover, 

except that at the crossover sites the parameters are averaged. This approximates the 
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effect of binary crossover when the crossover point lies within the region of the 

chromosome associated with a given parameter. 

e.g. C, = (0.8125,03000,0.7500) 

Q =(0.7500,0.6875,0.3125) 

Crossover at locus 2 =(0.8.25.039375.03125) 
Q =(0.7500.059375,0.7500) 

Arithmetic Crossover 

Arithmetic crossover (Michalewicz, 1993) bears little relationship to binary crossover, 

being a weighted averaging of the chromosomes. 

C; - • a C , + { l - a ) C 2 
C 2 ^ a C , + ( l - a ) C i 

Where a is a constant (randomly chosen) parameter of the crossover operator. 

e.g. C, = (0.8125,03000,0.7500) 

Q =(07500,0.6875,03125) 

Crossover with a - 0.6 

C; = 0.6 • (0.8125,03000,0.7500) + 0.4 (0.7500,0.6875,0.3125) 

Cj = 0.6 • (0.7500,0.6875,0.3125) + 0.4 • (0.8125,03000,0.7500) 
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. C, =(0.7875,03750,0^750) 

Q =(0.7750,0.6125,0.4875) 

2.4.6 Mutation 

It is not possible to apply the binary mutation technique to real coded GAs. Therefore, 

mutation techniques have been developed which act upon real valued chromosomes. 

Real Mutation 

Real mutation (Davis, 1989) replaces the mutated gene with a randomly chosen value 

within the relevant bounds. Unlike binary mutation, no similarity remains between the 

parameter associated with the new gene and that of its parent. 

Creep Mutation 

Creep mutation (Davis, 1989) involves adding (or subtracting) a randomly chosen 

number. To preserve similarity with the parent, the random number may be chosen 

from a distribution which favours small numbers, such as the normal distribution. 

2.5 Applications of the GA 

The GA has been applied to problems from many domains, from machine learning to 

turbine design. A short description of some applications to design optimisation follow. 

2.5.1 De Jong's Test Suite 

Although not strictly an application of the GA, De Jong's suite of test functions has 

provided the basic testing ground for comparative analysis of the GA. De Jong sought 
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to find a GA which was robust over a wide range of problem domains (De Jong, 

1975). The suite of test function,/i to / j were chosen to encompass a variety of 

features such as continuity and discontinuity, smoothness and noise, and so forth. 

Function Limits Chromosome Dimension 

Length (bits) 

1=1 

/ , W = I00(x?-x,)'+(l-xl)= 

1 = 1 

30 

1=0 

-5.12 5 X <5.12 

-2.048 ^ X < 2.048 

-5.12 ^;r,. <5.12 

1.28^ X < 1.28 

-65336^JT; <65.536 
25 

0.002+ £ 

30 

24 

50 

240 

34 

2 

5 

30 

Table 2.2 De Jong's test suite 

The results of this study showed that a GA with a crossover rate of 60% and a 

mutation rate of 0.1% for a population of 100 chromosomes was the most robust over 

the test suite. The use of elitism was shown to improve general performance, although 

led to a degradation in one case (function/s ). This was attributed to elitism improving 

local search at the expense of global search. 
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Recently doubts have been raised as to the validity of this test suite for comparative 

analysis - GAs developed to perform well upon the test suite may be optimised for 

these functions alone, and thus are not robust. However, there exist no other 

satisfactory methods for analysing the performance of the GA and test frmctions, both 

De Jong's and others, provide the principal benchmark. 

2.5.2 Two-Phase Supersonic Flow Nozzle Design 

Klockgether and Schwfel (1970) applied Rechenberg*s Evolution Strategy (ES) to the 

optimisation of a two-phase supersonic flow nozzle. The E S is a similar technique to 

the GA, although in its earlier forms it did not include crossover. The E S was applied 

by hand, using approximately 300 conically bored sections which could be placed 

together upon a test rig to form a flow nozzle which could then be empirically 

evaluated. 

The resulting solution was a significant improvement upon former designs - an 

innovative solution consisting of two separate chambers. 

2.5.3 Gas Pipeline Optimisation 

Goldberg (1983) applied the GA to the optimisation of two gas pipeline models, a 10-

compressor, 10-pipe steady state model and a single pipe transient control model 

(Wong & Larson, 1968). 

In the steady state problem, the GA was used to minimise the power consumption of 

the pipeline, subject to pressure constraints, by changing the squared pressure 
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difference across each compressor. In order to promote solutions lying within the 

constraints, Goldberg utilised a penalty function approach. If a solution violated the 

constraints, the fitness value of that solution would be penalised by the square of the 

deviation from the constraint. This was scaled so that it represented a significant fall in 

fitness. The GA achieved a result near to the optimum found with dynamic 

programming (Wong & Larson, 1968). 

For the transient control problem, the GA was used to minimise the energy of 

compression, subject to pressure constraints, by adjusting the time dependant input 

flow. The constraints were handled in the same fashion as for the former problem. 

The input flow was discretised into 15 values and assumed to be linear between those 

values. Here also, the GA achieved near optimal results. 

2.5.4 Pneumatic Water Engine Design 

Parmee (1990) applied the GA to the optimisation of the pneumatic water engine 

(PWE), a renewable energy device for use in rivers. The PWE uses the upstream head 

to drive columns of water up and down in two cylindrical chambers, with the resulting 

air flow driving a turbine. In order to find the optimum chamber design the GA was 

applied to a mathematical model of the system. The chamber cross section was 

represented at 18 points, assuming linearity between these points. The solution 

discovered by the GA improved upon a uniform chamber by a significant 7.5% gain in 

average power output. 
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2.5.5 Structural Optimisation 

Jenkins (1991) applied the GA to the minimisation of volume of an 18 bar cantilever 

truss, given a required load. The truss was described in terms of the co-ordinates of its 

nodes, and Goldberg's (1989) simple GA was used to minimise its volume. 

In a similar study. Schwefel (1989) used the E S to attain a volume within 6% of the 

theoretical minimum. The GA slightly outperformed this, realising a volume within 5% 

of the minimum. 

2.5.6 Digital Filter Design 

Wade et al (1994) applied the GA to the design of linear phase FIR digital filters. By 

cascading simple filters, known as primitives, it is possible to build filters which 

conform to medium order frequency response specifications. A structured G A was 

applied to the problem of designing filters to fulfil frequency specification such as a 

relaxed version of the CCIR601-1 for digital television. The use of primitive filters, 

utilising only simple shift and add operations, yielded both a reduction in chip size and 

an increase in clock rate over traditionally designed filters. 

Classical techniques are not practical for designing such filters, since computation time 

rises exponentially with the complexity of the required design. The structured GA was 

capable of working within this domain, generating near optimal solutions within the 

frequency constraints. 
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2.6 Simulated Annealing 

The process of annealing in metallurgy involves the carefijl cooling of a substance to 

minimise the energy in the crystal lattice as it solidifies. To obtain the lowest energy 

state, and thus the most stable structure, it is necessary to start at a very high 

temperature and cool very slowly. 

Simulated annealing (Kirkpatrick et al, 1983) abstracts this process to optimisation. If 

we consider a solution to be a state of the system, we can minimise the energy 

(objective function) through carefijl cooling. 

The structure of the simulated annealing algorithm is shown in figure 2.6. The process 

begins with a random set of parameters - the initial state of the system. The initial 

temperature Co and transition length LQ are chosen. At each step of the algorithm a 

random perturbation of the current solution is made. If this is an improvement over 

the current solution, it is automatically accepted and replaces the current solution. If it 

is not an improvement, it may be accepted under a probability condition known as the 

Metropolis criterion, as follows 

P{x <- x') = e 

where x' is the current solution, x' the perturbed solution and c, the current 

temperature. Thus at high temperatures it is likely that a poor solution will replace a 

good solution, and at low temperatures unlikely. Finally, new values for c, and L, are 
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chosen. The method by which this choice is made is known as the cooling schedule 

and affects the performance of the algorithm significantly. 

procedure s i m u l a t e d _ a n n e a l i n g 
b e g i n 

i n i t i a l i s e x, L Q , C Q ; 

t := 0; 

w h i l e (not s t o p p i n g - c o n d i t i o n ) do 
begin 

f o r 1 := 0 to Lt do 
b e g i n 

x' := random perturbation of x 

e l s e i f m e t r o p o l i s ( f ( x ) , f ( x ' ) , C t ) then x := x'; 
end 

t := t+1; 

c a l c u l a t e C c from C t - i ; 
c a l c u l a t e Lt from L t - i ; 

end 
end 

procedure m e t r o p o l i s ( f : s c a l a r , f ' : s c a l a r , c : s c a l a r ) 
b e g i n 

i f (exp( ( f - f )/ct) > random(0, 1)) then m e t r o p o l i s := t r u e ; 
e l s e m e t r o p o l i s := falser-

end 

Figure 2.6 The structure of the simulated annealing algorithm 

The behaviour of the simulated annealing algorithm has much in common with the GA. 

Both techniques perform well upon those domains which cause the greatest difficulty 
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for traditional optimisation methods. The ability of simulated annealing to degrade and 

thus pursue alternative optima gives it similar characteristics to the GA. 
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3 An Empirical Analysis of the Building Block Hypothesis 

Much of the theoretical framework of the GA is based upon the Schema Theorem and 

building block hypothesis. The building block hypothesis proposes that the GA 

operates through the combination, selection and recombination of building blocks. It is 

suggested that good building blocks combine to form fit chromosomes, enabling them 

to propagate under selection. There have, however, been relatively few studies of this 

hypothesis. 

procedure b i t _ c l i i n b i n g _ a l g o r i t h i n 
b e g i n 

Generate initial string C [ l e n g t h ] ; 
f l a g := t r u e ; 

w h i l e ( f l a g ) do 
be g i n 

f l i p _ l i s t := Permutation ( 1 , l e n g t h ) ; 
oldC := C; 

f o r i:=0 to le n g t h - 1 do 
be g i n 

newC := C; 
j = f l i p _ l i s t [ i ) ; 
newC[j) = 1 - n e w C [ j ] ; 

i f (f(newC) > f ( C ) ) then C := newC, 
end 

f l a g := f ( C ) > f ( o l d C ) ; 
end 

end 

Figure 3.1 The structure of the Bit-Climbing Algorithm 
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The Bit-Climbing algorithm (Davis, 1991b) is a simple hill climbing technique utilising 

binary strings. The algorithm flips each bit of the string in random order. After each 

bit is flipped the resulting string is compared to its predecessor, if it represents an 

improvement it replaces the original string, otherwise it is rejected. If, after all of the 

bits in the string have been tested, there is no improvement the algorithm halts, 

otherwise a new order of bits is generated and the process continues. The structure of 

the algorithm is illustrated in flgure 3.1. 

Davis observed that Bit-Climbing algorithm significantly outperformed the G A upon 

the ftjnctions in De Jong's test suite. From these resuhs it was concluded that the 

functions in the test suite were not sufficiently difficult to require the power of high 

order building block combination and therefore warrant the use of the GA. Modified 

versions of the test fimctions were shown to present greater difficulty for the Bit-

Climbing algorithm, and it was proposed that these ftinctions required the combination 

of higher order building blocks for their solution. 

The Royal Road fitness fijnctions (Forrest & Mitchell, 1992) were proposed as a test 

of the building block hypothesis. The ftinction is evaluated by comparing the binary 

string to a number of predetermined schemata, each of which has an associated reward. 

The fitness of the string is equal to the sum of the rewards of each of the building 

blocks it matches. Thus, the royal road fiinctions promote the survival of these 

building blocks. These ftinctions were principally used to examine the propagation of 

building blocks in the populations of the GA. However, the GA was compared to a 

selection of hill-climbing algorithms upon these ftinctions and it was found that a 
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variant of the Bit-Climbing algorithm, which picked a random bit to flip at each stage, 

outperformed the GA. 

Both of these studies suggest that the manipulation of building blocks is not a 

necessary feature of the GA during function optimisation. However, as a test of the 

building block hypothesis, the evidence generated by these experiments is somewhat 

circumstantial. This chapter will investigate the validity of the building block 

hypothesis by examining directly the effect of combining pairs of good building blocks. 

A technique for the isolation of such building blocks is described, enabling the building 

block hypothesis to be tested empirically. This technique utilises cluster analysis to 

reveal similarities between chromosomes. 

3.1 Cluster Analysis 

Clusters are loosely defined as sets of data which are in some sense similar to each 

other. A clustering of a set of data divides the data into a number of clusters, where 

the members of each cluster are similar to other members of the same cluster and 

dissimilar to members of other clusters. A cluster analysis algorithm, or clustering 

algorithm, generates such a set of clusters. This set of clusters forms a partition of the 

data, in which each datum belongs to one, and only one, cluster. Figure 3.2 illustrates 

such a clustering, each datum being marked with a number to illustrate which cluster it 

is a member of 
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Figure 3.2 An example of a set of clusters 

Clustering algorithms may be used for a number of purposed, from classification to 

data reduction. There are many techniques for clustering data, all of which rely upon 

some similarity measure (or conversely, and equivalently, distance measure) to 

determine whether or not a pair of data should belong to the same cluster. For 

example, for the clusters in figure 3.2, Euclidean distance is used as a similarity 

measure. 

Clustering algorithms are designed to highlight the natural clusters present within a 

given set of data. If no such clusters are present, the results of the algorithm are likely 

to be misleading. Furthermore, many clustering algorithms have a predisposition to 

globular, or roughly spherical, clusters. Once again, misleading results are likely if the 

data contain non-globular clusters. Figure 3.3 illustrates the difference between these 

two types of cluster. 
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Figure 3.3 Globular and non-globular clusters 

One of the great difficulties in the generation of a set of clusters is that there is no 

rigorous definition of cluster. Many techniques seek to minimise the difference 

between members of the same cluster whilst simultaneously maximising the difiference 

between members of different clusters. In fact, this approach provides the only 

measure of the quality of a particular clustering - the ratio of the distance between 

members of the same cluster and the distance between members of different clusters. 

The smaller the value of this ratio, the better the quality of the clustering. Obviously, 

such a measure is likely to favour globular clusters. 

3.1.1 The Shared Near Neighbours Algorithm 

The shared Near Neighbours algorithm (Jarvis & Patrick, 1973) utilises a measure of 

similarity based upon the number of nearest neighbours common to a pair of data. 

Specifically, the pair of data are clustered together if and only if they share kt (the 

threshold value) of their k nearest neighbours and are themselves members of each 
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others k nearest neighbours. 

procedure s h a r e d _ n e a r e s t _ n e i g h b o u r s 

begin 
for i : = 0 to n - 1 do 
begin 

for j : = 0 to ;c do 
begin 

N [ i ] [ j ] : = j'th nearest neighbour of datum i; 

end 

l a b e l _ t a b l e [ i ] : = i ; 

end 

for i : = 0 to n - 1 do 
begin 

for j : = i + 1 to n - 1 do 
l^egin 

A : = {a:a^k,3b^ks.l.N(i][aJ = Ntj][b]}; 

c o n d _ l : = 3 1 , m S k s . t . N [ i ] [ 1 ] = j A N [ j ] [m] = i ; 

cond_2 : = A ^ k ^ ; 

i f ( c o n d _ l and cond_2) then 
begin 

for 1 : = i to n - 1 do 
begin 

l a b e l _ t a b l e [ j ] = l a b e l _ t a b l e [ i ] ; 

end 
end 

end 
end 

end 

Figure 3,4 The structure of the Shared Nearest Neighbours algorithm 

49 



The structure of the Shared Nearest Neighbours algorithm is illustrated in figure 3.4. 

Note that A denotes the cardinal number (number of elements) of a set A. 

This technique has a number of advantages. Firstly, it is capable of generating non-

globular clusters i f the data is so distributed. Few techniques are capable of generating 

such clusters, and as noted above, can therefore yield misleading results. Furthermore, 

the similarity measure scales itself to the data. For example, i f the data is spread out, 

the ^, nearest neighbours of a datum will occupy a large region of the space. 

Conversely, i f the data is densely distributed, the kt nearest neighbours will occupy a 

relatively small region of the space. I f the data is sparse in some regions and dense in 

others, the similarity measure will effectively perform a local scaling of the data 

surrounding each datum being tested. Many algorithms rely upon a global distance 

measure, with the result that sparse data are often split into many clusters i f the data is 

densely distributed elsewhere. This is not a desirable feature and complex scaling 

algorithms are often employed to avoid this. The automatic scaling provided by the 

nearest neighbours similarity measure neatly solves this problem. 

When applied to the populations of the GA, Hamming Distance is used to construct 

the distance matrix. This provides a good measure of the similarity between a pair of 

binary chromosomes. 

3.1.2 A Worked Example of the Shared Near Neighbours Algorithm 

Consider the following set of chromosomes. 
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11001000 

10001011 

00100011 

01110000 

00001010 

6: 

7: 

8: 

9: 

10: 

01000101 

10001011 

01110110 

10100100 

10101101 

Hamming distance is used to constmct a distance matrix for these chromosomes. 

From this, choosing A=4, A:/=3, the neighbour table is constructed. Table 3.1 shows the 

neighbour table for this set of chromosomes. 

/ / ' t i l nearest neighbour 

0^ (datum) 1"̂  4"̂  

1 2 5 7 4 

2 7 4 1 2 

3 2 5 7 3 

4 8 1 3 6 

5 2 7 1 3 

6 1 3 4 8 

7 2 5 1 3 

8 4 3 6 9 

9 10 1 3 4 

10 9 2 7 1 

Table 3.1 The neighbour table 

The final step is to initialise the label table L. 

L 1 2 3 4 5 6 7 8 9 10 
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For the sake of brevity, only those steps which directly effect the label table will be 

taken. 

Datum 1 and datum / within k nearest neighbours of each other; {2, 4, 5, 7} 

Datum 1 and datum / share kt of k nearest neighbours: {2, 3, 5, 7,10} 

Cluster with datum 1: {2, 5, 7} 

Update label table: 

L 1 1 3 4 1 6 1 8 9 10 

Datum 2 and datum / within k nearest neighbours of each other: {3, 5, 7} 

Datum 2 and datum / share kt of k nearest neighbours: {3, 5, 7, 10} 

Cluster with datum 2: {3, 5, 7} 

Update label table: 

L 1 1 1 4 1 6 1 8 9 10 

Datum 4 and datum / within k nearest neighbours of each other: {6, 8} 

Datum 4 and datum / share k, of k nearest neighbours: {6, 8} 

Cluster with datum 4: {6, 8} 

Update label table: 

L 1 1 1 4 1 4 1 4 9 10 

Datum 9 and datum ; widiin k nearest neighbours of each other: {10} 

Datum 9 and datum / share ki of k nearest neighbours: {10} 

Cluster with datum 9: {10} 
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Update label table: 

L 1 1 I 4 1 4 1 4 9 9 

The algorithm has thus generated a partition of three clusters 

{ { 1 , 2 , 3, 5, 7}, {4, 6 ,8} , {9, 10}} 

{ 1 . 2 , 3, 5 ,7} 

11001000 

10001011 

00100011 

00001010 

10001011 

{ 4 . 6 , 8 } 

01110000 

01000101 

01110110 

{9, 10} 

10100100 

10101101 

3.2 Building Block Extraction 

The empirical analysis of the building block hypothesis requires the identification and 

extraction of the relevant building blocks, namely those which are of high utility, from 

the populations of the GA. Those building blocks which are o f above average utility 

should, by the Schema Theorem, be sampled more regularly than those which are not. 

Therefore, the simplest and perhaps most accurate measure of the utility of a building 

block is the number of times it is sampled by the GA. The extraction of building 

blocks from the populations of the GA is therefore restricted to those which are 

sampled most regularly by the GA. 

Given a cluster of chromosomes K y , let the schema H^^ be the unique schema of 

highest order which matches each and every member of the cluster. This schema may 

be defined by 
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fa i f V C € K . , q / ] = a 
/ / , [i] = \ ^ 

# otherwise 

where is the7'th cluster and C represents a chromosome. 

For example, consider the clusters of chromosomes from the above worked example of 

the Shared Nearest Neighbours algorithm. 

{ 1 , 2 , 3 , 5 . 7 } { 4 , 6 , 8 } { 9 , 1 0 } 

11001000 OllIOOOO 10100100 

10001011 01000101 lOlOUOl 

OOlOOOU 01110110 

00001010 

10001011 

Tracing down a column of chromosomes reveals which genes hold a single allele value 

throughout a cluster, and those which do not. In the first case, the schema associated 

with the cluster in question takes the same value and in the second it takes a wildcard. 

The schemata associated with these clusters are therefore. 

{ 1 , 2 , 3 , 5 , 7 } { 4 , 6 , 8 } {9 ,10} 

mmnom oimmu \o\onm 

This technique therefore enables the extraction of the more commonly sampled 

schemata from the populations of the GA with relatively little computational expense. 

These schemata may then be further processed to extract fi-om them the low defining 
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length building blocks which are of particular interest. To this end let <S>{Hj,j) be the 

set of schemata defined by, 

e { H J j ) = {H':H'^H,H' a schema,//'[/c] =#V/c 

This set therefore contains the schemata, non-wild only between genes / and 7, 

implicitly represented by the schema H. For example, consider the schema 1010#10#, 

0aOlO#lO# 0 2U|'̂ '**********'̂ ^****^****'™********'**°'**********' 

From this set, any schemata which do not fit the definition of a building block are then 

discarded. The set then contains all of the building blocks implicit in the original 

schema. All that remains is to find a suitable definition of building block. The building 

block hypothesis defines a building block as a schema of low defining length and order. 

This is somewhat vague and so throughout this study a building block is defined as 

having a defining length of between 8% and 10% of the overall length of the 

chromosome and an order of at least 90% of the defining length (equating to between 

7.2% and 10% of the number of bits in the chromosome, depending upon the defining 

length of the building block in question). 

For example, let ni ino^ be the minimum order acceptable for a building block of 

defining length 5. For each schema H and each defining length 6, iterate through the 

loci /, constructing the set of schemata e(H,ij + S), discarding those schemata of 
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orders less than niinoj. Figure 3.5 illustrates the building block extraction process, 

where / is the length of the chromosome and H^^ is the schema associated with cluster 

K/. 

procedure b u i l d i n g _ b l o c k _ e x t r a c t i o n 

begin 
g e n e r a t e c l u s t e r s K; of generation Pt ; 

n : = nujnber of c l u s t e r s ; 

for i : = 0 to n - 1 do 
begin 

for 5 : = minS to max5 do 
begin 

for j : = 0 to 1-5 do 
begin 

0 := e ( H ^ ^ , j , j + ^y) ; 

for k : = 0 to G - 1 do 
begin 

i f (o(Gk) ^ minoa) then s t o r e Gt; 

end 
end 

end 
end 

end 

Figure 3.5 The structure of the building block extraction technique 

It is not necessary to use the schemata associated with clusters of chromosomes to 

extract building blocks from the populations o f the GA. The building block extraction 

technique can alternatively be applied directly to the chromosomes in each population 
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of the GA. This guarantees that all of the building blocks present in the population are 

isolated. However, there are a great many such building blocks present in each 

population of the GA and therefore the extraction technique becomes excessively 

computationally expensive. The number of building blocks per chromosome is given 

by. 

ma\S S+\ 

S=m\n5 o=minog 

since for each defining length S there are l-S distinct positions for the building block 

and for each position, defining length S and order o of the building block there are 

"̂ Ĉo combinations of wild and non-wild characters. The use of clustering reduces the 

computational expense whilst enabling the extraction of those building blocks of 

apparent highest utility from each population o f the GA. Table 3 .2 compares the mean 

number of samples made by the GA during a single run of building blocks extracted 

using the chromosomes and the schemata associated with the clusters of chromosomes. 

The test function / A is omitted since the chromosome length is too large to permit the 

extraction of building blocks directly from the chromosomes. Although the experiment 

was performed upon the building blocks extracted during a single run of the GA, the 

sheer number of these building blocks ensures that the results are statistically 

meaningful. 
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Mean number of samples of building blocks 

Function Extracted with Extracted without Not extracted with 

clustering clustering clustering 

fx 14.6 8.7 5.8 

f i 14.7 11.3 7.9 

h 9.1 3.6 2.1 

U - - -

fs 14.1 7.4 4.7 

Table 3.2 A comparison of the number of samples of extracted building blocks 

The parameters for the Shared Nearest Neighbours clustering algorithm for this 

experiment were A=6, Ar=4 and only those clusters with at least 3 members were 

considered for the building block extraction process. Cleariy the mean number of 

samples made by the GA of those building blocks extracted with the use o f clustering 

far exceeds the mean number of samples of those building blocks not extracted due to 

the use of clustering. I f the number of samples of a building block is accepted as a 

good measure of utility, then the use of clustering is of clear benefit. 

The building block extraction technique does rely to some extent upon which 

clustering algorithm is used. As has been discussed, the partitions generated by 

clustering algorithms can vary widely, and it is difficult to justify the use of one 

clustering algorithm over another. The convergence of the population will counteract 

the arbitrary nature of the clustering algorithm to some extent, although it must be 

noted that all results depend, to some degree, upon the selection of the Shared Nearest 

Neighbours clustering algorithm. 
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3.3 Building Block Analysis 

Once extracted, the building blocks may be subjected to a number of experiments in 

order to test the validity of the building block hypothesis. Throughout the following 

experiments, the above definition of building block is used ( 0 . 08 /^^^0 . I / . o^0 .9<5) . As 

above, the Shared Nearest Neighbours algorithm is applied with parameters k=6 and 

k(=A and onJy those clusters with at least 3 members are considered for building block 

extraction. 

The GA was applied to inverted versions of the functions in the De Jong test suite. It 

proved necessary to reduce the chromosome length for the function due to the vast 

number of building blocks extracted from the original 240 bit long chromosome. An 

altemative version of the function f \ , was therefore defined with a chromosome 

length of 80 bits mapping to 10 parameters. 

Function Limils Chromosome Dimension 

Length (bits) 

/ ^ ^^.4 - U 8 ^ x , <1.28 80 10 

1=0 

Of each unique building block discovered during the runs of the GA upon the test 

functions, a number of measures were made. Namely, 

• The total number of trials made by the GA of the building block. 

• The mean fitness of these trials. 
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• The number of unique trials made by the GA of the building block. 

• The mean fitness of these unique trials. 

• The mean fitness of a random sample of the building block. 

The first measure, as asserted above, provides an indication of the utility of a building 

block to the GA. Hereafter, this measure shall therefore be referred to as the utility of 

the building block. The final measure, given a large enough sample of chromosomes, 

serves as an approximation to the static fitness of the building block (the mean fitness 

of every chromosome which matches the building block). Hereafter this measure shall 

therefore be referred to as the static fitness of the building block, and will be calculated 

with a random sample of 1000 chromosomes. 

3.3.1 Linear Regression Analysis of Building Blocks 

The static fitness of a building block provides an indication of the intrinsic fitness of 

that building block. I f the building block represents a feature of the domain which is 

universally beneficial, the static fitness will be high. Conversely, i f the building block 

represents a feature which is universally undesirable, the static fitness will be low. In 

general, however, the populations of the GA will not be spread uniformly about the 

search space. A regularly sampled building block may therefore be of only local utility 

with a correspondingly low static fitness. It is therefore of interest to examine the 

relationship between the static fitness and the utility of a building block, both to 

determine the suitability of static fitness as a utility measure and the extent to which the 

GA exploits this intrinsic fitness. 
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For each of the test functions three runs of the GA were performed, each to 50 

generations, and the extracted building blocks collated. The relationship between the 

static fitness of the building blocks and their utility was examined with a linear 

regression. A regression of the static fitness against the utility of the building blocks 

was used to generate a linear model of the data, y = ax+b, v/herey is the static fitness 

and X the utility of the building blocks. The gradient, a, of this linear model shows the 

strength of the relationship between these measures. Table 3.3 summarises the results 

of this analysis. 

Function a b Pearson's r 

0.0012 52.72 0.16 

0.0573 3393.8 0.12 

/ } 0.0043 27.44 0.36 

0.0012 120.96 0.06 

/ 5 0.0071 25.6 0.35 

Table 3.3 Results of linear regression of static fitness against utility. 

The value of Pearson's r for each of the experiments may be used to test the 

significance of the relationship predicted by the linear regression. For each of the test 

functions, the gradient a is significantly different from zero at at least the 0.1 level. 

This indicates that there is a definite relationship between the static fitness and the 

utility of the building blocks although, since the gradient is so small, this relationship is 

likely to be weak. 
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These results suggest that, for the test functions, static fitness may be used as a 

measure of the utility of a building block, although not a particulariy good one. 

Furthermore, i f the GA has exploited the static fitness of a building block then it must 

be highly sensitive to that fitness. It is likely, therefore, that static fitness has not 

played a role in the selection and propagation of building blocks. 

3.3.2 Combinatorial Analysis of Building Blocks 

The above results show that there is a definite, albeit weak, relationship between the 

utility and static fitness of a building block. This relationship may be exploited to 

enable the comparison of building blocks, some of which may not have been sampled 

by the GA during the optimisation process. Although static fitness is not a particularly 

good measure of utility, there is no other which may be used under these 

circumstances. For this reason, static fitness is used to examine the effect of combining 

pairs of high utility building blocks upon each of the test fiinctions. 

Upon each of the test fiinctions, the GA was run for 50 generations and the 100 

building blocks of highest utility were isolated. Each o f these building blocks was 

combined with every other, except for those which were competing (whose associated 

sets of chromosomes were mutually exclusive). The static fitness of each resulting 

schema was calculated and the difference between this fitness and the greater static 

fitness of the pair of constituent building blocks was used as a measure of the 

effectiveness of that particular combination. As a control experiment, each of the 100 

high utility building blocks was similarly combined with 100 randomly generated 

building blocks and the static fitness gain measured in the same fashion. For each of 
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the test functions, the collated results o f three runs of the GA are illustrated as 

histograms in figures 3.6 to 3.10. The solid lines show the results for the combination 

of high utility building blocks and the dashed lines those of the control experiments for 

each of the test functions. 
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Figure 3.10 Combinatorial analysis on/s 

The distribution of fitness gain for the combined pairs of high utility building blocks 

does not differ greatly, in general, from that of the combination of high utility and 

random building blocks. The greatest differences in the distributions occur for the test 

fijnctions/s and fU, although in the latter case the control experiment appears to yield 

a greater expected fitness gain. Except for the test ftmction /s, the distributions also 

appear to be fairly evenly distributed about zero. 

Clearly, for the test ftmctions at least, the combination of pairs of high utility building 

blocks does not yield a significantly different gain in fitness than that resulting from the 

addition of randomly generated building blocks to such high utility building blocks. It 

seems unlikely, therefore, that during the optimisation of the test ftinctions the GA 

efficiently exploits these high utility building blocks. 
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3,4 Conclusions 

The static building block hypothesis is an interpretation of the building block 

hypothesis in which high fitness is taken to mean high static fitness. This hypothesis 

maintains that the GA operates through the exploitation of building blocks o f high 

static fitness, and is generally dismissed as an oversimplification of the building block 

hypothesis. However, the linear regression of the static fitness and utility of building 

blocks shows that these measures are related. The static building block hypothesis and 

the building block hypothesis must themselves therefore be similarly related. 

The results of the combinatorial analysis of building blocks clearly shows that for the 

functions in the test suite, high utility building blocks do not combine to form fit 

schemata (any more than does the addition of random building blocks). This study 

therefore demonstrates that the GA cannot, in general, operate through the 

combination, selection and recombination of building blocks as predicted by the static 

building block hypothesis. The relationship between the static fitness of a building 

block and its utility indicates that this result may be generalised to the more general 

interpretation of the building block hypothesis. 

The building block hypothesis implicitly assumes that the fitness of a chromosome is 

determined by the fitnesses of those building blocks fi-om which it is constructed. The 

dynamic fitness of a building block is defined, by the Schema Theorem, in terms of the 

fitnesses of those chromosomes which match it in the current generation. The 

argument that the fitness of a chromosome depends upon the fitnesses of the building 

blocks it contains would therefore appear to be circular. By the building block 
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hypothesis, the fitness of the chromosome is determined by the fitnesses of the building 

blocks which match it, which are themselves determined, at least in part, by the fitness 

of the chromosome itself It seems unlikely, therefore, that these building blocks 

contain any useful information. 

As an extreme example, consider a highly fit chromosome in a relatively unfit 

population. The building block hypothesis implies that this chromosome is fitter 

because the building blocks contained within it are themselves fit. However, since the 

rest of the population is relatively unfit, the fitnesses of these building blocks are 

almost entirely dependant upon this chromosome. Clearly, in this case the building 

block hypothesis merely asserts that the chromosome is fit because the chromosome is 

fit. 

I f a greater number of fit chromosomes are extant in the population, a similar result 

follows. A building block which is present within the fitter chromosomes is itself 

considered fit. Asserting that these chromosomes are amongst the fittest of the 

population because they contain this fit building block is equivalent to stating that this 

set of chromosomes is fit because this set of chromosomes is fit. 

3,5 Further Work 

This study has shown that the GA does not exploit building blocks during the 

optimisation of the fiinctions in the test suite. It would be of advantage to apply this 

analysis to a wider class of test fiinctions, enabling a more confident generalisation of 

the conclusions of this study. For example, the Royal Road fiinctions are intended to 
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encourage the exploitation of building blocks and would therefore provide an 

interesting domain in which to apply this analysis. 
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4 An Alternative Description of the Action of Crossover 

The evidence presented in the previous chapter suggests that the GA does not utilise 

building blocks during function optimisation (at least for the functions in the test suite). 

An alternative account of the success of the GA is therefore required. 

Much of the research into the behaviour of the GA has centred upon the transition 

from the chromosomes in the current population to the chromosomes in subsequent 

populations. One such approach is Markov chain analysis (Davis & Principe, 1993) 

which examines the probability of transition from any given state (population of 

chromosomes) to any other. Markov chain analysis has proved a very powerful 

technique for the description of the simulated annealing algorithm. Unfortunately, the 

GA typically has a very large state space (all possible populations), and although this 

analysis can provide a rigorous description of the GA, it is difficult to draw definite 

conclusions about its expected behaviour. An alternative approach is to study the 

expected transition from one population to the next upon a particular class of functions 

(Vose & Wright, 1994). Although such an approach yields more concrete results than 

those of the Markov chain analysis, these do not include the prediction of the 

performance of the GA. 

This chapter will examine the geometric properties of the action of crossover and will 

thereby construct a predictive model of the crossover-selection cycle of the G A upon a 

simple function. This model is based upon the expected transition of the fitnesses of 

the chromosomes within the population rather than the chromosomes themselves. This 

approach simplifies the construction of the predictive model considerably. 
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This chapter will adopt the following notation conventions. 

NoUition Meaning 

Xi Chromosome. 

Xi Parameter set associated with A*,. 

A'; X Xj, Xj X X^ Offspri ng of chromosomes .V, and Ay under 

crossover. 

X x^.Xy X X, Parameter sets associated with offspring of 

cliromosomes Xi and Ay under crossover. 

4.1 The Geometric Action of Crossover 

The effect of the crossover operator upon the parameter sets associated with a pair of 

chromosomes closely resembles a crude rotation. The midpoint of the parameter set 

associated with the parent chromosomes is identical to that of the offspring 

chromosomes under a wide range of crossover operators. For example, consider the 

two following 8 bit chromosomes mapping to two dimensional space (4 bits per 

parameter) 

01101100-> (6,12) 

10110010-> (11,2) 

The unique pairs of offspring under one-point crossover and their associated parameter 

sets are therefore, 
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01101100-> (6,12) 

10110010^(11,2) 

01100010-^(612) 
10111100^(11,12) 

00110010 

11101100 

OllOIOlO 

10110100 

(3^) 
(14,12) 

(6,10) 

CM) 

01110010 

lOlOllOO 

OIlOlllO 

10110000 

(7.2) 
(10,12) 

(6,14) 

(".0) 

It is clear that the midpoints of all of the pairs of parameter sets are at (8.5, 7.0). 

Figure 4.1 illustrates this with the pairs of parameter sets being joined by lines (the 

parameter sets associated with the parent chromosomes are marked with arrow heads). 

The similarity between crossover and rotation is highlighted with a dotted circle. 

Figure 4.1 The geometric effect of crossover 

Clearly the geometric effect of crossover would be better approximated by a rectangle 

bounded by the parent chromosomes. However, this lacks the mathematical elegance 

of the rotational description and has therefore not been adopted. 

In fact, as the number of crossover points increase, the geometric effect of crossover is 

best approximated by a filled rectangle. To illustrate this, consider the uniform 
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crossover technique (which may be considered as the limit o f / / point crossover as n 

tends to infinity), and the parent chromosomes, 

01 lOllOO-> (0110,1100) ̂  (6,12) 

10110010-^(1011,0010)^(11,2) 

Since the offspring under uniform crossover are produced by retaining or swapping 

allele values between the parents with equal probability, the effect of crossover upon 

the above chromosomes is identical to the eflfect of crossover upon the following 

chromosomes. 

I1I111I0->(III1,1110)->(15,14) 

00100000 -> (0010,0000) (2,0) 

The offspring therefore lie within the rectangle bounded by the points (2,0) and 

(15,14). Not all points within this rectangle can be generated since some genes share 

the same allele value. For example the chromosome 11010001 cannot be an offspring 

of the parent chromosomes under uniform crossover (or indeed n point crossover). 

This similarity between crossover and a rotation and scaling about the midpoint of the 

parent parameter sets in the above example does not occur by chance. It is simple to 

prove that for an arbitrary pair of chromosomes, they and their offspring under one 

point crossover must have the same midpoint in binary space. From this it follows that 

under certain conditions the midpoints of the pairs of parameter sets must also be 

equal. 
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THEOREM 4.1: The midpohUs of two chromosomes X\ and X2 before and after one 

point crossover are identical. 

X \ =(.V, X A'2) + (.V2 ^ ^V,) ( 4 . 1 ) 

PROOF: Consider the chromosomes X\ andX2, 

Without loss of generality, assume that the crossover point lies between genes p and 

A', X A'2 =0\A*- -^P\y^2y ' >yi.^2 

A'zxA", =a2.*2»--»P2»9l»-»^I.^l 

(A',xA'2) + (-V2xA',) = ai+fl2,/»,+62,...,p,+P2,72+9i»--,>'2+>'b^2+^i • 

REMARK: This theorem applies equally to chromosomes defined over binary, n-ary 

and real alphabets since no assumption of alphabet has been made. 
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C O R O L L A R Y : The midpoints of a pair of chromosomes before and after n-point, 

uniform and average crossover are identical. 

C O R O L L A R Y : This theorem holds for chromosomes representing n-dimensional 

binary numbers. 

C O R O L L A R Y : Providing that the mapping from chromosome to parameter set is 

linear, this theorem holds for the parameter sets associated with the chromosomes. 

The simple mapping from chromosome to parameter is essentially a change of base and 

is therefore a linear mapping. However, Gray coding is an example of a non-linear 

mapping from the binary chromosome to the parameter space. The theorem does not 

therefore hold for crossover applied to Gray coded chromosomes. Henceforth, it is 

assumed that the mapping from chromosome to parameter set is linear. 

Since the midpoint of the parameter sets associated with both the parent and offspring 

chromosomes are equal, the action of crossover upon a pair o f chromosomes may be 

considered to be a rotation and scaling about the midpoint of their associated 

parameter sets. Using matrix notation. 

( 4 . 2 ) 
X2 X X | =S'R^X2-X^ + X 

where ^ is a scalar, R 'lsa rotation and x is the midpoint of the parent chromosomes. 
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Note that the values of s and R are dependant upon both the parent chromosomes and 

the crossover site(s). 

4.2 A Performance Model for the GA 

The construction of a performance model of the GA requires a further simplification to 

the rotational description of crossover. I t shall be assumed that the action of crossover 

is well approximated, on average, by a pure rotation (equivalently, that the mean and 

variance of s in equation 4.2 are approximately equal to 1 and 0 respectively for a large 

number of crossover events). Although this is a strong assumption, it will be shown 

that it is not an invalid one. 

Finally, the performance model will deal only with the crossover-selection cycle of the 

GA. The mutation operator is therefore omitted from the GA for the purposes of this 

study. 

This description of the crossover operator will be used to predict the performance o f 

the GA upon the simple function 

/ ( x ) = | x | ' . x € [ 0 . l ) ' (4 .3) 

4.2.1 The Average Effect of Crossover 

The first step in the construction of a predictive model for the GA is to calculate the 

expected effect of a crossover event upon the fitness of a pair of chromosomes. 
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Figure 4.2 The average geometric effect of crossover 

T H E O R E M 4.2: Given (he parent parameter sets Xi and X2, the expected fitnesses of 

the offspring parameter sets Ci and C2 are given by 

(4.4) 

PROOF: From figure 4,2, applying the cosine rule 

2 1 |2 I 2 1 I « 

( 4 . 5 ) 

Without loss of generality, choose |x, | s jxj |,|c, | |c21,- - j ^ ^ ^ y 
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-nil 

^ ^ ( , ) ^ ^ / ( ^ l ) + / ( ^ 2 ) , h + X 2 | | x , - X 2 | 

Similarly for (/(c 2 ) ) . • 

This resuh may be illustrated with the chromosomes used to demonstrate the rotational 

effect of crossover - namely 

AT, =01101100 
X2 =10110010 

The parameter sets associated with these chromosomes may be scaled onto the unit 

square by dividing by 2**. The fitness of the chromosomes is easily calculated from the 

parameter sets. 

A'. =01101100 ^(6,12) = (0.375,0.75) / (x , ) = h P =0.7031 

A'2 =10110010->-1(11,2) = (0.6875,0.125) / ( ' t 2 ) = h | ' =0.4883 

The fitnesses of all possible pairs of offspring under one point crossover are calculated 

in the same fashion. Table 4.1 catalogues the results, distinguishing between the 

greater and lesser fitnesses of each pair o f offspring. 

Finally, the expected fitnesses of the offspring may be calculated by theorem 4.2. 
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2 /T 
_ 0.7031 + 0.4883 [(l.0625.0.875)||(-0J 125A625)| 

2 ;r 
13764x0.6988 = 03957 + 

= 03957 + 0.3062=0.9019 

Similarly for C2 

( / (c j )) = 03957 - 0.3062 = 0:2895 

The expected fitnesses of the offspring given by theorem 4.2 agree well with the 

averages of the observed fitnesses of the offspring. Clearly for this example, the 

approximation of crossover as a pure rotation is justified. 

Crossover Location / ( c , ) - greater fitness / ( c j ) - lesser fitness 

1 1.3281 0.0508 
2 0.9531 0.2070 
3 0.9531 0.2070 
4 1.0352 0.1563 
5 0.5352 0.5313 
6 0.9063 0.4727 
7 0.7031 0.4883 
8 0.7031 0.4883 

Mean Fitness 0.8897 0.3252 

Table 4.1 The fitnesses of pairs of offspring chromosomes 
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To test the theorem more thoroughly, this experiment was performed with 10,000 

pairs of randomly generated 30 bit chromosomes (15 bits per parameter). The pairs of 

chromosomes were crossed over at each possible site, and the fitnesses of the resulting 

offspring were recorded. For each pair of chromosomes, the expected fitnesses of the 

offspring by theorem 4.2 were calculated. Finally, the error of the approximation for 

each pair of chromosomes was calculated. 

Table 4.2 compares the mean expected fitnesses and the mean observed fitnesses for 

these 10,000 chromosome pairs. The RMS. error between the expected and observed 

fitnesses of the offspring of the 10,000 chromosome pairs is also presented here. 

Offspring Mean Observed Fitness Mean Expected Fitness RMS. Error 

c\ - greater fitness 0.9011 0.9036 0.0599 
C2 - lesser fitness 0.4232 0.4205 0.0584 

Table 4.2 The mean expected and observed fitnesses of oflfspring 

The results of this experiment confirm that the rotational description of crossover is, at 

least on average, accurate. This description will therefore be confidently used to 

provide the basis for a predictive performance model of the crossover-selection cycle 

of the GA. 
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4.2.2 A First Model 

Having derived the average effect of crossover upon a pair of chromosomes, it is now 

necessary to combine this with the effect of roulette wheel selection upon the 

population. 

Before the construction of the model, it is necessary to introduce some additional 

notation. Namely 

For integer r, this is equivalent to the r ' th moment (about 0) of the fitnesses of the 

chromosomes in population (the population at generation / ) . However, this 

notation will be also be used for real values of r. 

L E M M A 4 . 1 : Under roulette wheel selection the expected mean fitness of population 

^ r 4 i , / / | ( ^ / + i ) is given by 

( . . f , . , ) ) - ^ (4.6) 

where P\ is the population immediately prior to selection in generation t. 
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PROOF; Under roulette wheel selection the expected mmiber of copies of x in 

generation t+\, (m(x,r + l)) is given by 

("'(̂ .' + 0) = ̂  (4.7) 

2 

xeP',' _ leP', _ / ^ 2 ( ^ ' f ) 

Clearly, it is therefore necessary to find the effect of crossover upon the squares of the 

fitnesses of a pair of chromosomes. This is achieved in a similar fashion to the proof of 

theorem 4.2. 

L E M M A 4.2: The expected squared fitnesses of the offspring parameter sets are given 

by 

4 ;r 8 (4.8) 

4 ;r * 8 

PROOF: Taking equation 4.5 and squaring both sides 
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Without loss of generality choose |x, | ^ [x^ |,|c, | ̂  1 - y ^ ?̂ ̂  y 

2 
jr/2 

J itl2 
-JT/2 

2 _ (/(^.)+/(^2)) ^ (/(X.)+/(X2))|.. ^X2||.. ^ |X. +X2p|x, 
;r 8 

Similarly for ( / (cj)^) • 

It will be shown later that all of the |xi±x2 terms cancel, except for the 

^^^^ — t e r m in equations 4.8. It is therefore necessary to determine the 

expected value of this term. 

LEMMA 4.3: 2^,{P,f-2^,(P,)^fyi,^^,\%^y^^\^^^^ 

PROOF: N,B. |a±b ^|a+b|,|a|b|sa-b 
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( | x , + . , f x , - . , r ) ^ ( ( x , + . , ) ( x , - x , ) ) ^ ) 

= (/(x,)^-2/(x,)/(:c,)+/(x,)^) 

( | „ . x , n x , - x . r ) . ( ( ( h | + h | ) ^ ) ' ) 

=(ix,i%4|x,i>,K6i''>n ' '2p+4|x,ix,r+|x,r) 

= {|x, |>4{|x, | ')( |x, |) + 6 ( |x , |^ ){ |x , |^ ) .4 ( |x , | ) {hr) . { |x . r ) 

Having taken the necessary preliminary steps, it is now possible to build the predictive 

model. 

THEOREM4.3: The expected mean fiiiiess ofpopulalioii P,+\,{M\{P,*\)) isboundedby 

PROOF: From theorem 4.2 and lemma 4,2 

((/(<^.))-(/(^2)))-{/(x.)-/(^.)) = 0 (4.10) 
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// is assumed that the population of the GA is sufficiently large for the average effect 

of crossover upon the fitness of the chromosomes to be well approximated by the 

^ff^ct of crossover upon the average fitness of the chromosomes. It is asserted that 

for sufficiently large populations, this is a good approximation. 

Hence from equations 4,10 and 4.11, it is trivial to show that 

from the proof of lemma 4.3 

(4.12) 

(4.13) 

From lemma 4.1 

from equations 4.12 and 4.13 

Finally, from lemma 4.3 and equation 4.14 
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Simplifying yields 

To test this theorem, the GA was repeatedly applied to the function / (x ) = |x|^, with a 

variety of crossover schemes and rates. Throughout the experiment, the mutation 

operator was omitted from the GA, reflecting its omission from the model under 

examination. Given a sufficiently large population and number of trials, the means of 

the fitness measures //o5,//, ,/i ,j and/i2 at each generation were assumed to accurately 

approximate their expected values. Therefore, a GA with a population size of 128 and 

a chromosome length of 30 (15 bits per parameter) was applied 256 times to the 

flinction/for each of the crossover schemes and rates. The theorem was then applied 

to these data at each generation in order to predict the upper and lower bounds upon 

the expected mean fitnesses of the following generation. Figures 4.3 - 4.11 illustrate 

the results of this experiment - the dashed lines show the predicted bounds, and the 

solid lines the average mean fitness of the population. 
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10 20 30 40 50 

Generation 
0 10 20 30 40 SO 

Generation 

Figure 4.3 1 point crossover, = 0.4 Figure 4.4 2 point crossover, pc = 0.4 

10 20 30 40 50 

Generation 
10 20 30 40 SO 

Generation 

Figure 4.5 Uniform crossover, pc = 0.4 Figure 4.6 1 point crossover, pc = 0.6 

0 10 20 30 40 50 
Generation 

Figure 4.7 2 point crossover, pc = 0.6 
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1.5 

0.5 

20 30 

Generation 
10 20 30 

General ion 
40 50 

Figure 4.8 Uniform crossover, = 0.6 Figure 4.9 1 point crossover, = 0.8 

10 20 30 40 so 
Generation Generation 

Figure 4.10 2 point crossover, pc = 0.8 Figure 4.11 Uniform crossover, pc = 0.8 

Although it is not clear from the graphs, the lower predicted bound occasionally 

exceeds the average of the mean fitnesses of the population during the latter 

generations of the experiments. The error is however very small, typically o f the order 

0.0004. It is likely that the error results from the assumptions made about the 

geometric nature of crossover for the purposes of the model (that crossover may be 

approximated by a pure rotation for example). Table 4.3 shows an extract of the raw 
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data from the experiment with 2 point crossover and a crossover rate of 0.6. The error 

is calculated by subtracting the predicted lower bound from the observed average mean 

fitness of the population at each generation. When this value is negative, the lower 

bound is in error, having exceeded the observed correct value. 

Generation Predicted Lower Average Mean Fiuiess Error 

Bound of Population 

20 1.804314 1.803810 -0.000504 
21 1.811279 1.810554 -0.000725 
22 1.817560 1.817681 0.000121 
23 1.824244 1.823644 -0.0006 
24 1.829776 1.828595 -0.001181 
25 1.834352 1.834245 -0.000107 
26 1.839537 1.840134 0.000597 
27 1.844952 1.844977 0.000025 
28 1.849516 1.849229 -0.000287 
29 1.853590 1.853821 0.000231 
30 1.857854 1.858160 0.000306 
31 1.861979 1.862340 0.000361 
32 1.8660U8 1.865078 -0.00093 
33 1.868640 1.869059 0.000419 
34 1.872371 1.872002 -0.000369 
35 1.875194 1.875473 0.000279 

Table 4.3 An example of the error of the lower bound (2 point crossover, pc = 0.6) 

During this portion of the experiment, half of the predicted values for the lower bound 

exceeded the observed value for the mean fitness of the population. Since the 

magnitude of the error is typically very small, it may be said that the error is qualitative 

rather than quantitative - the predicted lower bound is a fair approximation to a lower 

bound. In order to avoid this error, it is necessary that the geometric model of 
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crossover be improved. An obvious starting point would be to use a rectangle 

bounded by the parent chromosomes rather than a rotation (as noted above). 

In fact, the magnitude of the difference between the lower bound and the average mean 

fitness of the population is small at every generation (whether positive or negative). 

The predicted lower bound therefore provides a good prediction of the expected mean 

fitness of the population. 

4.2.3 An Extended Model 

A major failing of the model described by theorem 4.3 is that it is only capable of 

predicting the expected bounds of the mean fitness of the population one generation in 

advance. It is desirable that a model be constructed which is capable of predicting the 

bounds of the performance of the GA upon the function / (x )= x|^,x ^ number 

of generations in advance. 

The next stage of this research therefore, was to construct such a model. The 

inaccuracy of the upper bound of theorem 4.3 together with the presence o f the //q^ 

and / i , ^ terms prompted the omission of an upper bound from the extended model. 

Before the construction of the extended model it is, as for the first model, necessary to 

take some preliminary steps. 
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L E M M A 4.4: Given a symmetric polynomial of two parameters 

p{x,y) = ^3' .^) = jloiX'y''-' (4.15) 
1=0 

where =flAr_i then the expected value of p[m2x(x,y),mx\(x,y)) for independent 

samples x,yofa population P is given by 

(p(max(x,y), mn{x,y))) = Z^ /Z^ / t ^ ) / ' ^ - / (^) (4-16) 
1=0 

PROOF: Trivially 

max[x,yY min(x,j')'' +ma\(x,;')* min(x,3')'' =x°y^ +x*>''' 

max(x,j')'' min(jc,;^)'' =x°y'* 

It follows that 

{p{max{x,y),mm{x,y))) = i^a, max(x,y)' min(x,y)^ ' j 

\i=0 / /oO ' 

Finally, since x andy are independent samples of P 

(4.17) 

= {p{x,y)) (4-18) 
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{ ' • / ) - ( ' • ) ( / > 
^Ma{P)Mb(^) by definition (4.19) 

and there/ore 

{p{mx\{x,y),Tmn{x,y))) = '£a,/i,{P)/iN.i{P) 
i=0 

L E M M A 4.5: Given the parent parameter sets X\ and jc^ the expected sum of the n-th 

powers of the fitnesses of the offspring parameter sets Ci andcz is given by 

(/(c,r+/(c.r)-(/(c.r)+(/(':.r) 

2 /=o j=\ 

, 1-1 - , • , (4.20) 

where [x] is the integer part of x. 

PROOF: From equation 4.5 (Odefinedby figure 4,2) 

Therefore 
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(/{^l)") + (/(c2)") = ( ( ^ + 5 C 0 S ( ? ) " ) + ((.I-BC0S^?)") 

X "C^A^-'B* cos' e^l^t "C,vl"-'(-B)' cos' 0^ 

from the binomial expansion 
[nf2] 

= {2 S "Cz^^""^'B^' coŝ ' 0) smce teniis wiUi odd i cancel 
1=0 

(n/2i 
= 2 2^ "C2,/l"-2'B^7cos '̂M since^.Baregiv<3i (4.21) 

1=0 

As in the proof of theorem 4.2, without loss of generality choose 

Thus 

(cos'"i9) = - Jcos'"6'd(9 
JZll 

cos"^^ Os'ine 

m 

nil 

- f f / 2 

nil 
+ — j c o s ' - ^ ^ d ^ 

^ 

m •nil 

^ -nil 
smce CO \ 1) 

for evOT /w 

for odd m 
(4.22) 

And so 

2 ; 
(4.23) 
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Finally, from equations 4.21 and 4.23 

{/(c>)") + (/(c:)") = 2 ? " Q n ^ . l - ' B -
1=0 

(4.24) 

Substitute A and B back into the equation and the result follows. • 

These results provide the basis for the construction of the extended model. Before 

progressing however, it is necessary to calculate the expected moments of fitness of 

the first, randomly generated population. 

L E M M A 4.6: Given a random sample P of the function /(x) =|x|\x e[0,l)^, then the 

expected k'th moment offitness of the sample is given by 

(4.25) 

PROOF: Given that \ = {x^,x^) 

GO 
11 it 

0 0/=o 
i l 

k ^ 2/+1 
Z kf^ ^ 2k-2i •*! 
/=0 2/+1 

dXr 
Jo 
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o/=o - ^ ' ^ i 

k y. 2k-2i 
to ' 2^ -2 / + l 2/ + 1 
k 

/=0 2^ - 2/ + 1 2/ +1 

To test this lemma, the first 51 moments of fitness were calculated for a number of 

randomly generated populations. The averages of each o f these moments were then 

compared to the expected values predicted by the lemma. As above, a GA with a 

population size of 128 and a chromosome length of 30 (15 bits per parameter) was 

applied 256 times to the function / The results of this experiment are given in table 

4.4. 

k 

0 1.000000 1.000000 

1 0.662790 0.666667 

2 0.617940 0.622222 

3 0.681418 0.685714 

4 0.839071 0.843175 

5 1.120159 1.123617 

10 9.496082 9.463041 

20 2.48x10^ 2.50 X 10̂  

30 1.12x10^ 1.16x 10̂  

40 6.36x10^ 6.71x10* 

50 4.15x10" 4.42 X 10" 

Table 4.4 The average and expected moments o f the first population 
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Cleariy, the value of the expected moment of fitness predicted by lemma 4.4 grows 

progressively less accurate as the order of the moment increases. This may, in part, be 

due to rounding error, although it is more likely to be a result of the limited (finite) size 

of the population and length of the chromosome. Figure 4.12 shows the proportional 

error of the first 51 expected moments of fitness. 
MP) 

! 

10 20 30 40 SO 

k 

Figure 4.12 The proportional error of the expected moments of fitness. (MP)) 

MP) 

Having now taken the necessary preliminary steps, it is possible to derive the extended 

performance model of the GA. 

94 



THEOREM 4.4: Tlie expected k'th moment offitness of population /'(+,,(/it (/',+,)) is 

bounded below by 

(4.26) 

PROOF: Following the proof of lemma 4.1 it is trivial to show that the expected k'th 

moment of fitness of the population P,^^ is given by 

(4.27) 

where P\ is the population of generation t immediately prior to selection. 

Once again, it is asserted that for a large population, the average effect of crossover 

upon the fitness of the population is well approximated by the effect of crossover upon 

the average fitness of the population. 

Hence trivially 

{M.A'^.))=M..ip,h^{{/(or ^A-^r)-(A-r' (4.28) 

From lemma 4,5 equation 4.28 yields 
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- f ( / ( . , )*^ '^ / ( . , r ) 

(4.29) 

Furthermore, since xj and %2 are independent samples of P, 

(4.30) 

and from the proof of lemma 4.3 

(4.31) 

Combining equations 4.29, 4.30 and 4.31 

{^UP'.))H^~Pc)t^UP,) 

/=0 ja\ 

Now consider the symmetric polynomial 

V u=0 /Vv=0 / 
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Note that the cf terms occur when 

r = k + \-li-u-\-2i -v = k-\-\-u-v 

Hiese terms are therefore given by 

where w+v = t + l - r 
U G [ 0 , ^ + 1-2/] 

V G [ 0 , 2 ; ] 

However, p is symmetric and so (he final db^^^'"^ coefficient equals the c^^^'^V 

coefficient. 

L V J t + I-2j>. 2i 

where u G[O.A: + 1 - 2 / ] 

V G [ 0 , 2 ; ] 

The d terms therefore summate to 
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where u e[0,^ + l - 2 / ] 
r - i / G [ 0 , 2 / ] 

or, equivaleutly 

mm(Ar+I-2jV) 

5=max(r-2/,0) 

Therefore 

ft+lmiii(A:+l-2j>) 

= ! I (-1)^-' **'-^C,^C,_,«^6*^'- (4.33) 
r=Oj=miw{r-2/,0) 

From lemwa 4.4, given that a and b are the fitnesses of independent samples of Ft 

t+imin(t+I-2i\r) 

r=0f=mox(r-2i,0) 

Finally, substituting equation 4,34 into equation 4.32 with o = /(x,)^^> = / ( x 2 ) yields 

2 (.0 J-l 2; r-0x=ni«(r-2i.0) 
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Rearranging and subsiituting this and equation 4.12 into equation 4.27 yields the 

desired result. • 

In order to test this theorem, the first 51 expected moments of the fitness, calculated 

by lemma 4.6, were used to iteratively calculate the expected lower bound upon the 

mean fitness of the first 50 generations. The expected mean fitness of each generation 

was approximated by applying the GA repeatedly to the function, f{x) = \\f ,x e[0 , l)^. 

As with the testing of theorem 4.3, the GA in question had a population size o f 128, a 

chromosome length of 30 bits and was applied 256 times to the function/, for each of 

the crossover schemes and rates. The results of this experiment are illustrated 

graphically in figures 4.13 - 4.21. The dashed lines represent the predicted lower 

bound, the solid line the approximated expected mean fitness o f each generation of the 

GA. 

10 20 30 40 

Generation 
50 

1.5 

I 
0.5 

10 20 30 40 50 

Generation 

Figure 4.13 1 point crossover, = 0.4 Figure 4.14 2 point crossover,/?c = 0.4 
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10 20 30 40 50 

Generation 
10 20 30 40 SO 

Generation 

Figure 4.15 Uniform crossover, pc = 0.4 Figure 4.16 1 point crossover, pc = 0.6 

0 10 20 30 40 50 

Generation 

Figure 4.17 2 point crossover,/?c = 0.6 
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Generation 

10 20 30 40 
Generation 

SO 

Figure 4.18 Uniform crossover, pc = 0.6 Figure 4.19 1 point crossover, pc = 0.8 

10 20 30 40 SO 
Generation 

10 20 30 40 50 
Generation 

Figure 4.20 2 point crossover, pc = 0.8 Figure 4.21 Uniform crossover, pc = 0.8 

Clearly the lower bound predicted by the extended model is far less accurate than that 

predicted by the simple model. This is not surprising, since the extended model 

predicts the performance of the G A a great deal further in advance. 

Much of the difference between the predictive model and the expected mean fitness of 

the population at each generation is accounted for by cumulative error. Figure 4.22 

illustrates this by comparing the gradients of the two curves for 2 point crossover with 
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a crossover rate of 0.6 (q.v. figure 4.16). As before, the dashed line represents the 

gradient of the predicted lower bound and the solid line that o f the expected mean 

fitness. The remaining error is likely to be the result of the growing discrepancy 

between the predicted and observed moments o f fitness and, as before, the inaccuracy 

of the geometric description of crossover. 

10 20 30 40 
Generation 

Figure 4.22 A comparison of gradient (2 point crossover, pc = 0.6) 

4.3 Conclusions 

Although this analysis does not provide a rigorous description of the dynamics of the 

GA, it does achieve a good description o f the performance of the GA for the specific 

function /(x) = |x | \x e[0 , l) , both in the short term and in the long term. Interesting 

results in themselves, the predictive models also provide validation of the assumption 

that crossover can be described as a rotation in the parameter space. It is interesting to 

note that this description does not rely upon the notions of schema or building block, 

and unlike schema or building block based descriptions is valid for a wide range of 

chromosomal representations. 
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Furthermore, i f crossover is held to act as a rotation in the parameter space, it is 

possible to draw parallels between the operation of the GA and that of simulated 

annealing. The technique of simulated annealing, as described in Chapter 2, operates 

by making a progressively smaller series of random perturbations to the current 

parameter set. At each step, the newly generated parameter set is accepted or rejected 

under a progressively more strict probabilistic criterion, the Metropolis criterion. In 

comparison, the GA begins with a diverse population of randomly generated parameter 

sets (defined by the chromosomes of the initial population). The effect of crossover 

upon these diverse parameter sets is to make large scale changes which are then 

selected or rejected by some fitness based selection technique (for example. Roulette 

Wheel Selection). As the population begins to converge upon the fitter regions of the 

search space, the pareuneter sets become more clustered, and so the efifect of crossover 

upon pairs of parameter sets is less marked. Furthermore, the fitness of the population 

as a whole rises, and so poor solutions are far more likely to be rejected. The GA may 

therefore be described as initially performing a coarse search, allowing large scale 

changes to the population and allowing poor solutions to survive. As the generations 

advance, the search becomes progressively less coarse and the chance o f survival for 

poor solutions reduces. The parallels between this behaviour and that of simulated 

annealing are clear, and go some way to describing the observed similarity in the 

behaviour of the two techniques. 

Although the rotational description of crossover is almost certainly not an ideal 

account of the mechanics of the GA, it does show that it is possible to approach the 

problem of describing the GA fi-om an alternative perspective. 
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4.4 Further Work 

There are clearly a number of improvements to be made to the description of 

crossover, and to the predictive models. As has been noted, the distribution of 

offspring under crossover more closely resembles a rectangle than it does a circle, as 

illustrated in figure 4.23. It is likely that a model buih upon a rectangular distribution 

of offspring would yield a more accurate description of the performance of the GA. 

Some work has been undertaken in this direction, although no such model was 

constructed. One of the major problems with this description is that it becomes very 

difficult to describe the effect of crossover in terms of vector algebra. When using a 

rotational description of crossover such a description is natural, and it is not necessary 

to resort to a Cartesian description of the problem. This significantly reduces the 

difficulty in constructing the performance model of the GA. 

Figure 4.23 The geometric effect of crossover 

It would be of great use to apply the models to a more general class of fijnctions. For 

example, consider a performance model for the GA appHed to the quadratic function, 
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for arbitrary scalars a and c, and vector b. Such a function may be used to 

approximate small regions of a surface. I f the GA is applied to an arbitrary function, a 

model built for a quadratic function may still be applicable provided that the 

neighbourhood of each pair of chromosomes selected for crossover is well 

approximated by such a quadratic. It would then be possible to use the simple model as 

a predictive tool for a GA applied to any (locally quadratic) function optimisation 

problem during the latter stages of the optimisation process - once the population has 

converged sufficiently for the neighbourhood of each pair of chromosomes to be well 

approximated by such a quadratic. 

Figure 4.24 shows the lower bound of the simple predictive model, represented by the 

dashed line, and the expected mean fitness at each generation of the GA applied to 

function/s of De Jong's test suite, represented by the solid line (as before, the expected 

mean fitness of the populations of the GA was calculated by applying the GA 256 

times to the function, with a population size of 128 and a chromosome length of 30 

bits). The predicted lower bound clearly exceeds the expected mean fitness over most 

of the 50 generations. Nevertheless, the error is not so great as to render the 

predictive model completely useless, and at least illustrates that a model built for a 

wider class of quadratic functions may be of use in predicting the performance of the 

GA upon an arbitrary function. 
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Figure 4.24 The simple model applied to/s, (2 point crossover, pc = 0.6) 

I f the model is to be used as a predictive tool for the user of the GA rather than for the 

vindication of a particular account of the operation of the GA, it will prove necessary 

to include the mutation operator. This has not been attempted during this study, 

although it would appear to be a fairiy simple addition to the model. One possible 

difficulty could arise from the fact that mutation is generally applied to the binary 

chromosome rather than to the real parameter set. The effect o f binary mutation upon 

the parameter set is difficult to describe simply in terms o f the parameter set itself 

This study has not sought to provide a convergence theorem for the GA, despite the 

desirability of such a theorem. The extended model can be used to predict the 

convergence of a mutation free GA upon the function / (x) = |x|^, simply through 

examination of the second moment of fitness at each generation. However, the model 

only predicts the lower bound upon the expected moments o f fitness o f each 

106 



generation, and in its current form does not generalise well to a wide range of 

functions. It would be of interest, therefore, to investigate the possibility of using the 

geometric description of crossover to derive a general convergence theorem for the 

GA. 

On the practical side, the geometric description of binary crossover suggests the use of 

rotation as a crossover operator for real coded GAs. A preliminary investigation of 

such an operator revealed a significant improvement in performance over simple one-

point crossover for real coded GAs. However, before any conclusions may be drawn, 

a more detailed study is necessary, encompassing the many alternative approaches to 

crossover for the real coded GA (such as arithmetic crossover, for example). 

It was suggested above that the effect of crossover during the early generations of the 

GA is to perform a coarse grained search of the domain under examination. I f this is 

indeed the case, it would be of benefit to choose the initial population so as to promote 

maximal diversity. This suggests the use of quasi-random sequences to seed the initial 

population. Such sequences are often used for monte-cario techniques since they 

guarantee a near uniform distribution, unlike purely random numbers. 
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5 Scientific Visualisation 

The aim of scientific visualisation is to provide a clear and (at least qualitatively) 

accurate graphical representation of a system (Tufle, 1983, Eamshaw & Wiseman, 

1992). This system may be dynamic, as for computational fluid dynamics, or static, as 

for function representation. In all cases the richness and flexibility o f the visual field is 

exploited to provide greater insight into the system under consideration. 

The principles of scientific visualisation have been applied in many fields o f study, 

some of which are detailed below. 

Medicine 

The data gathered fi-om sophisticated medical techniques such as MRI are generally 

analysed through volumetric rendering (Drebin et al, 1988). MRI , in particular, results 

in a vast quantity of data describing the tissue density of a patient throughout the body. 

This data can be transformed into a three dimensional image (projected onto the plane) 

of the patients skeleton or brain for example. The image may be rotated or otherwise 

transformed to reveal its structure - a clear improvement over the rigidly two 

dimensional x-ray. This technique allows the rapid diagnosis of certain conditions 

without recourse to invasive surgery. 

Molecular Modelling 

Molecules may be modelled and graphically represented by the computer. These 

models may be manipulated and combined to give a great deal of insight into the 
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nature of the molecule. This process is a powerful tool for the chemist, simplifying the 

design process for new drugs. 

Computational Fluid Dynamics 

The field of computational fluid dynamics uses the computer to model the behaviour of 

fluids in motion. The complex behaviour of such fluids is difficult to understand 

without the use of visualisation, and many techniques have been developed for this 

field. 

This thesis will concentrate upon the visualisation of the high dimensional surfaces 

described by functions of many parameters. 

5.1 The Definition of Function 

Given two sets of objects^ and K, a function may be defined as a mapping from XtoY 

under which to each member of X a unique member of / is assigned. This is often 

written as f:X}-^r or y = f(x) where yeY.xeX and / i s the function. More 

rigorously, a fijnction/ may be defined as the set of order pairs where. 

f = {{x,y):xeX,y€Y} 

VxeX,3yeYs.t {x,y)ef 

{x,yo) efr^{x,y^)€f=> yQ=y^ 

Under this definition, y = f{x) is equivalent to {x,y) e / 
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The set X is known as the domain o f / and the set Y the codomain o f / Where 

y = f[x), X is known as the argument or parameter set o f / and y as the image of x 

under / o r objective. Similarly, the set /(-V) is known as the image of Asunder / and is 

defined by, 

f { X ) = {y^Y.3x^Xs.i.y^f[x)] 

For example the function f[x) = x'^ has the domain and codomain R. The image of R 

under/is [0,oo). The set of ordered pairs associated with this function is given by. 

/ = { (x , x2 )xeR) 

I f the domain and codomain of a function are both one dimensional, the function may 

be represented by a graph where the order pairs are plotted as points upon a pair of 

Cartesian axes. This is the simplest and most familiar form of function visualisation. 

Figure 5.1 A Graph of the fijnction g = {(o,0),(l,2),(2,l),(3,I),(4,0)} 
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It is important to distinguish between those fijnctions with a multidimensional domain 

and one dimensional codomain and those with a multidimensional codomain and one 

dimensional domain. Both classes o f functions may be described as being 

multidimensional, although the former are significantly more difficult to visualise than 

the latter. 

For example, consider the function f ( t ) = {t^-t}. This may be represented exactly by 

two graphs, one of the fijnction /o{t) = t and one of /,(/) = ! - / . In general, an // 

dimensional vector valued function of one parameter, / ( / ) = x(r), may be represented 

exactly by the /; fijnctions Xi{t). This is clearly not possible for a scalar valued function 

of many parameters. 

Figure 5.2 A vector valued function of time, / ( / ) = x(/) 
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It is sufficient to consider only those techniques for the visualisation of scalar valued 

functions of many parameters. When presented with a vector valued function, any 

such technique may be used by constructing a table of graphical representations, as 

above. 

5.2 The Limits of the Graph 

The graphical representation of a fijnction is generally constrained to lie in the plane 

(the printed page or the VDU) and cannot exceed three spatial dimensions and one 

temporal - the extent o f the physical universe as perceived by the human mind. 

Clearly, one dimension is always required for the objective, although in some cases this 

can be provided through the carefiji use o f colour or annotation. 

As the number of parameters increases, it becomes more and more difficult to use the 

simple graph to visualise a function. A description o f the problems inherent in this type 

of visualisation of such functions follows. 

5.2.1 Functions of One Parameter 

Functions o f a single parameter fit nicely onto the plane, there is one dimension 

available for the parameter and one for the objective. The graph is an extremely 

effective tool for the rapid communication of vast amounts of information concerning 

the relationship between the parameter and the objective. 
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5,2.2 Functions of Two Parameters 

There exist a number of techniques for constructing graphs of functions o f two 

parameters. Firstly, a physical model of the surface may be constructed. Existing in 

three spatial dimensions, this technique guarantees a perfect qualitative representation 

of the function. In general, however, it is undesirable to construct a physical model of 

a surface since it is a relatively expensive and time consuming process. 

Secondly, the surface may be projected onto the plane. This technique is attractive 

since the projection of solids onto the plain is a familiar process - the eye, for example, 

projects the three dimensional world onto the two dimensional retina. The human 

mind is capable of interpreting perspective cues to gain a great deal of information 

from this type of representation. However, the projection of the space onto the plane 

invariably leads to loss o f information (through occlusion or ambiguity, for example). 

Figure 5.3 The Projection of a 2D Function onto the Plane 

Finally, the function may be represented by curves of constant objective, also known as 

contours. The value of the objective for a given contour may be illustrated through 
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colour or annotation. This avoids the loss of information which may result from 

occlusion or ambiguity, although the contours must be chosen carefully so that 

important features are not missed. This technique is also appealing, having obvious 

parallels with geographic maps. 

Figure 5.4 A Contour Diagram of a 2D Function 

5.2.3 Functions of Three Parameters 

The visualisation of functions of three parameters presents a major problem. For 

example, consider a function which describes the temperature of a cube of metal at 

every point. Simply plotting the points in space with colour providing the objective is 

not satisfactory since the internal structure of the cube is concealed. 

Time may be used to provide an extra dimension for the visualisation o f such 

functions. Techniques for the visualisation of two dimensional surfaces may be 

animated as the third parameter varies. Although this does solve the problem, it can 

lead to confusion when the final parameter is not timelike. 
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Isosurfaces are the three dimensional equivalent of contours, resulting in surfaces 

rather than lines. Once again, internal structure can be obscured, although this can be 

obviated to some extent through animation or transparency. However, as before, the 

simplicity and comprehensibiiity of the graph may be compromised. 

5.2,4 Functions of Four or More Parameters 

The visualisation of fiinctions with more than three parameters cannot be achieved 

through the use of simple graphing techniques - there simply aren't enough dimensions 

available. The development of more sophisticated forms of graphical representation is 

therefore necessary. 

5.3 Visualisation Techniques 

There follows a brief description of a number of techniques for the visualisation of 

multidimensional surfaces and data. 

5.3.1 The Graph 

The use of the graph for the visualisation of one, two and to some extent three 

dimensional surfaces has already been described. Higher dimensional functions are 

often visualised by making graphs of one or two dimensional slices through the 

surface. This may be done by either fixing ail but one or two of the parameters at a 

constant value, or by forcing the (generally linear) dependence of the parameter set 

upon one or two temporary variables. 
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Unfortunately, this technique may result in ambiguity and severe loss of information. 

For example, when applied to the quadratic function /(xo,jr,) = xo -x, , this technique 

results in a pair of linear graphs. Such a result is clearly misleading and is therefore an 

extremely undesirable feature of this technique. Taking several slices through the 

surface may reduce the possibility of misrepresentation, although it can be difficult to 

combine the information from the many graphs. 

Figure 5.5 Slices through the 2D function /(XQ.X^) = XQ JC, 

5.3.2 Projection onto the Plane 

In a generalisation of the method used to project a two dimensional surface onto the 

plane, it is possible to project surfaces of any number of dimensions onto the plane. 

The familiar image of the hypercube is in fact a central projection of the four 

dimensional object onto the plane page. The problems arising from the projection of 

three dimensional objects onto the plane are exaggerated when projecting objects of 

more than three dimensions onto the plane. These problems are further aggravated by 

the inherent difficulty in interpreting high dimensional objects - the space they inhabit is 
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beyond human sensory experience. For example, the six cubic faces o f the hypercube 

are severely distorted by the four dimensional perspective and do not appear cubic at 

all. The results of this technique can be highly misleading and it does not therefore 

lend itself well to the visualisation o f high dimensional surfaces. 

Figure 5.6 The central projection of the hypercube 

5,3.3 The Graph of Graphs 

The graph of graphs (Tufle, 1983) is an elegant technique for the visualisation of four 

(and to a lesser extent, higher) dimensional surfaces. A set of outer axes determine the 

constant values taken by the first pair of parameters for a number of slices through the 

surface. The graphs of these slices are used as i f they were the points of a scatter plot. 

A desirable feature of this technique is that it requires only those skills which are 

required to read an ordinary graph. Unfortunately, it is difficult to trace relationships 

between parameters upon diflferent sets of axes, a feature which can compromise the 

usefulness of this technique. 
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^2 

Figures.? The graph of graphs 

Higher dimensional surfaces may be represented by increasing the number o f nested 

sets of axes. However, interpretation becomes difficult beyond two sets of axes and 

thus this technique is best applied to four dimensional surfaces. This is, nevertheless, a 

significant improvement over simpler visualisation techniques. 

5.3.4 ChernofT Faces 

Chemoff faces (Chernoff, 1973) are used to represent high dimensional scatter data. 

Each point is represented as a face, the shape and position of which is determined 

uniquely from the parameter set. The two most important parameters determine the 

position of the face on the graph. The remaining parameters determine features of the 

face, such as curvature of smile and radius of eyes. The reliance upon the facial 

recognition abilities of the viewer allows the quick and easy recognition of clusters and 
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outliers in very high dimensional data sets. Although it is not a technique applicable to 

the visualisation of high dimensional surfaces, it is a simple and effective tool for the 

interpretation of very high dimensional data. 

5.3.5 Multiple Linear Regression 

Although not strictly a visualisation technique, muhiple linear regression (Harris, 1975) 

may be used for the visualisation of multidimensional surfaces. Multiple linear 

regression involve the fitting of a linear model to multidimensional scatter data, and 

may be applied directly to the surface data generated by a function o f many 

parameters. The linear approximation of the dimensional surface resulting from a 

multiple linear regression is of the form, 

The surface may therefore be visualised by the n linear graphs, 

The objective value for a given parameter set is approximated by the sum of the 

objective values of each graph at the relevant parameter values. 

1=0 
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I f the function in question happens to be linear, this technique results in a quantitatively 

accurate representation of the surface, regardless of the number o f parameters. This is 

a highly desirable trait for a visualisation technique, although many of the functions of 

interest are unlikely to be linear. 

5.3.6 Genernlised Additive Models 

The generalised additive model (Hastie & Tibshirani, 1990) extends the notion of 

multiple linear regression to non-linear data. As with multiple linear regression the 

data may be provided by a function, thus allowing this technique to be used for 

function visualisation. The function is approximated by the sum of a series of one 

dimensional, possibly non-linear, functions 

1=0 

where s are the errors, with E{E) = 0 and var(f) = . 

These // functions are generally calculated iteratively, by removing the contribution the 

remaining functions make to each sample before applying a smooth to the data along 

the relevant axis. 

fi ~ smootli ofg, against x, 
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procedure g e n e r a l i s e d _ a d d i t i v e _ m o d e l 
b e g i n 

f o r i := 0 t o n do 
b e g i n 

i n i t i a l i s e fi,* 
end 

a l p h a := average f ( x ) 
f l a g := 1; 

w h i l e ( f l a g = 1) do 
b e g i n 

f l a g := 0; 

f o r i := 0 t o n do 
be g i n 

g := f - a l p h a ; 
o l d f := f ; 

f o r j := 0 to n do 
be g i n 

i f (not ( j = i ) ) then g := g - f j 
end 

f i := g smoothed against x i ; 

i f (not ( f i = o l d f ) ) then f l a g := 1; 
end 

end 
end 

Figure 5.8 Generalised Additive Model algorithm 

The smooth is a statistical technique which involves smoothing a response (objective) 

against a predictor (parameter). This may be as simple as taking the mean value of the 
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response at each value of the predictor, although more sophisticated techniques are 

generally used. 

Figure 5.8 illustrates this process. In some cases (for example, polynomial 

approximation or linear splines), the univariate functions can be calculated directly 

using curve fitting techniques. 

This approach has all of the advantages of multiple linear regression - it is capable of 

dealing with high dimensional data, and results in a series of easily interpreted one 

dimensional graphs. Furthermore, the errors resulting fi-om the approximation are 

made explicit, allowing the user to determine how much faith should be placed in the 

results. Unlike multiple linear regression, this technique makes no assumption of 

linearity and is therefore less likely to mislead. 

5,3.7 Projection Pursuit Regression 

Projection pursuit regression (Friedman & Tukey, 1974) is similar to the generalised 

additive model. In the case of projection pursuit regression however, a model of the 

form 

/ ( x ) « l y ; ( a , . x ) 

is fitted to the data. The vectors a, project the data onto a new basis, hence the name 

projection pursuit regression. The advantage of choosing an optimal projection of the 

data is clear - the original axes are unlikely to be those for which the additive model is 
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most accurate. The error of the regression is therefore likely to be smaller with this 

technique. 

The mode! is fitted with a similar technique to that used for generalised additive 

models, although the introduction of a new set of basis vectors requires a cycle of 

optimisation rather than smoothing. This optimisation cycle will seek to minimise the 

error of the regression surface at each iteration. As for the other forms of regression 

documented here, this technique may be applied to the data generated by a function 

and the resulting graphs may then be used to visualise this function. 

For example, consider the two dimensional function 

/ ( x ) = X o X X , 

Clearly, this function does not fit the generalised additive model, although it may be 

rewritten as 

- / V ; 2 2 

and may therefore fitted exactly by projection pursuit regression. The graphs of the 

two univariate functions 
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1 2 

may be used with the new bases 

to exactly represent the original two dimensional function/ 
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6 A Technique for the Visualisation of High Dimensional Surfaces 

This chapter will describe a technique for the visualisation o f high dimensional 

functions. This technique, hereafter known as variable separation, generates a model 

similar to that of projection pursuit regression, 

/ W = Z / - ( b , - x ) + ^x) (6.1) 
1=0 

Unlike projection pursuit regression, the number of univariate fijnctions in this model is 

limited to the dimension of the function under investigation, Â . For the purpose of 

visualisation it is sensible to impose this restriction, since although an arbitrary degree 

of accuracy may be achieved by increasing the number of these functions, the legibility 

of the visualisation decreases significantly. 

6.1 The Identification of a Good Projection 

Unlike the scatter data usually analysed with statistical techniques such as the 

generalised additive model and projection pursuit regression, the data generated by a 

function have meaningful derivatives. This gradient information may be utilised to 

identify a good projection of the surface data generated by the function, given by the 

set of basis vectors b,. 

6.1.1 The Use of Second Partial Derivatives 

Consider once again the model to which the function is to be fitted, given by equation 

6.1. Trivially, the error term e represents the residual of the data which, after the 
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change of basis, still depends upon more than one variable. I f this were not the case 

then that portion of the error which was dependant upon only one variable would be 

absorbed by the relevant functions. The second partial derivatives of the model with 

respect to unique pairs of the bases bt are therefore dependant only upon e. 

db^dbj ' db.dbj ' ""^ (^-^^ 

Assuming that the function can be exactly represented by the model, the optimal 

projection for the surface data is trivially the one in which all of these second partial 

derivatives vanish. However, in most cases, the model will not exactly fit the original 

function and the best that may be achieved is the minimisation of the magnitude of 

these terms. For the purposes of the variable separation visualisation technique, the 

magnitude of a function is defined as the integral of its square over the space, 

/ W | = J ^ . . . j / '{x)dXo. . .dx; ,_, (6.3) 

In minimising the magnitude of each of the second partial derivatives with respect to 

the pairs of unique basis vectors, this approach implicitly assumes that this is equivalent 

to minimising the error term itself This is not, in fact, the case and there are two 

extremes which illustrate this. 
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The first of these are those components o f the fijnction with large magnitude and very 

low frequency (or order). For example consider the univariate fijnction / and its 

second derivative/ over the range [0,1]. 

f{x) = \0^ cos(lO^x) 

/ " ( x ) = -10-^cos(lO-^x) 

Computing the magnitude of these gives 

f{x)\ = j 10^ cos^(lO-^x)dx « 0.5 X10^ 
0 

/••(x) | = J-10"^ cos^(l0^x)dx « -0.5X10-

Thus, although the magnitude of the second derivative is very small, the magnitude of 

the function itself is very large. Fortunately, such low frequency components of the 

fijnction are well approximated by linear functions and will therefore be well 

approximated by the model regardless o f the basis. 

At the other extreme are those components of the function with small magnitude but 

very high frequency (or order). For example consider the univariate fijnction g and its 

second derivative over the range [0.1], 

g(x) = 10-^ cos(lO^x) 

g"(x) = -IO^ cos(lO*x) 
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Once again, computing the magnitude of these gives 

1 

g{x)\ = J 1 0 ^ cos^(l0^x)dx « 03 X 10"̂  
0 

g* * (x)| = j -10* cos^ (l x)dr « - O i X 10* 

In this case, the magnitude of the function is small, although the magnitude of the 

second derivative is very large. In reducing the magnitude o f this second derivative, 

this approach will generate a projection which is aligned to remove what may very well 

be a small component of the function, possibly at the expense o f removing larger 

components of the fijnction. It is unlikely, therefore, that this approach will be 

eflFective for functions with high frequency or order components. 

6.1.2 The Minimisation of the Second Partial Derivatives 

Assuming that this approach is valid for the function under investigation, it is necessary 

to develop a technique by which minimises all of the second partial derivatives with 

respect to unique pairs of basis vectors. Returning to equation 6.2, the derivative 

information with respect to the optimal basis is not available in advance and so it is 

necessary to transform this identity so that the derivatives are in terms of the original 

basis. By the chain rule. 

^bp^b^ to po^b, db^ dbfdb° ^^^^ 
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where the are the original bases o f the data. Consider the matrix B which 

transforms the data from the original basis to the optimal basis b. Then, 

^ = (6.5) 

Setting the matrix D to equal B"', equation 6.4 becomes, 

= r ^% (6.6) 

where H is the Hessian matrix of second partial derivatives o f / . H.y = ^ 
db'^db] 

Identifying a basis under which the magnitudes of each of the second partial derivatives 

with respect to unique pairs of basis vectors are minimised is therefore equivalent to 

finding a scalar valued matrix D which, as much as is possible, diagonalises H, 

D ' ^ H D * A(x) (6.7) 

where A(x) is a diagonal function valued matrix, and both D and A(x) are unknown. I f 

H were real valued, equation 6.7 is solved trivially by a matrix D whose rows are the 

eigenvectors of H (since the eigenvectors of a symmetric real valued matrix are 
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orthogonal). There are many techniques for the diagonalisation of symmetric real 

valued matrices which are generally used for the identification of eigenvectors. These 

techniques may be easily adapted for symmetric fijnction valued matrices and may 

therefore be used for the identification of the optimal set of basis vectors. The 

technique described here is perhaps the simplest of these. 

6.1.3 Matr ix Diagonalisntion 

Given a symmetric real valued matrix H, firstly note that 

N-l N-l 
( D - H D ) = S Z D „ D ; , H , 

1=0 /=0 
(6.8) 

Let the elements of D be given by 

i=a,j = b 

otherwise 
(6.9) 

for some a^itb. Equation 6.8 yields 

( D ^ H D ) = 
\ /pq 

p = b,q = b 

p = b,q^b 

p^b,q=b 

otherwise 

(6.10) 

Note that 
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A = ~ ^ ( D ^ H D ) =0 
H \ fab 

A = l => ( D T H D ) = H ^ + 2 H „ , + H , , 

These results form the basis for a technique for the diagonalisation of symmetric real 

valued matrices. The structure of the technique is illustrated in figure 6.1. The 

diagonalising matrix D is initialised to the identity. Iterating fi-om top left to bottom 

right, the first of equations 6.11 is used to zero each of the oflF diagonal elements of H . 

Iterating through the matrix in this order guarantees that each step does not undo the 

work done by previous steps. I f the element on the leading diagonal o f the current 

column is zero, the second of the equations is first used to add to it a non-zero element 

of H from a column to the right (again to preserve the work already done). At each 

step the matrix D' represents the transition, and both H and D must be updated. 

Di->DD' 

Note that at each step D is postmultiplied by D' since i f D, represents the transition 

matrix of the /'th step, the transformation of H is given by 

D ^ H D = D?^D7_, . . D > J H D O D , . . D . _ , D , (6.13) 
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procedure diagonali3e_matrix 
begin 

D := I ; 

fo r i := 0 to iV-1 do 
begin 

i f {Hii = 0) then do 
begin 

f o r j := i+1 to W-1 do 
begin 

i f (not (Hi) = 0)) then do 
begin 

D' := I ; 
D'ji := 1; 

D : = D D • ; 

j := JV; 
end 

end 
end 

f o r j := i+1 to N-1 do 
begin 

i f (not (Hi) = 0)) then do 
begin 

D' := I ; 

D'ij := -Hi) / Hii; 

D := D D' ; 

end 
end 

end 
end 

Figure 6.1 The structure of the matrix diagonalisation technique 
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As an example consider the symmetric real valued matrix H given by 

H = 
r, 2 3̂  

2 4 5 
13 5 6J 

Following the matrix diagonalisation algorithm yields the following steps, 

f I 0 0^ 

D 

2 1 0 
ko 0 i ; 

r i 0 0̂  
0 1 0 
0̂ 0 V 

(I 2 3Y 
2 4 5 

O 5 6J 
f\ -2 0̂  
0 I 0 
0 0 i ; 

I -2 0̂1 
0 I 0 

0 V 
n -2 0' 
0 1 0 

10 0 I 

r i 0 
0 0 
3 -1 

3^ 
- I 
6J 

Hh-> 
' 1 0 0̂  
0 I 0 
-3 0 1, 

f l -2 0^ 
0 1 0 

0 i ; 

n 0 
0 0 - 1 

k3 -1 6J 

1 0 -3"̂  
0 1 0 

10 0 \ ) 

0 1 0 
.0 0 1. 
f\ -2 -3^ 
0 1 0 

<0 0 1 

r i 0 
0 0 
0̂ -1 

0^ 
-1 
3, 

f i 0 oVi 0 o Y i 0 0̂  

D 

0 1 1 
LO 0 U 

'1 -2 -
0 1 
.0 0 

0 0 - 1 
10 -1 3J 

3Vl 0 0' 
0 1 0 

.0 I h 
0 
I ) 

0 1 0 
kO I V 

(\ -5 
0 1 

'1 0 
0 -5 
.0 -4 

-3̂  
0 
1> 

0 
-4 
-3) 
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'1 0 tf '\ 0 f\ 0 0 ̂  ri 0 0^ 
Hh-> 0 1 0 0 -5 -4 0 1 -0.8 = 0 -5 0 

.0 -0.8 L .0 -4 -X u 0 1 > <o 0 0.2. 
1 -5 -3^ '\ 0 0 ' 1̂ -5 1 ^ 
0 1 0 0 I -0.8 = 0 1 -0.8 
.0 1 1> .0 0 1 > .0 1 02 > 

Finally, this may be checked by calculating D^HD. 

D^HB 
r 1 0 0 ' 

-5 1 1 
I. 1 -0.8 0.2, 

^ 1 0 0\ 
-5 1 1 
I -0.8 0.2; 

r i 0 0^ 

0 - 5 0 

ko 0 0.2; 

(I 2 3" 
2 4 5 

.3 5 6, 

n o 0 ^ 
2 -1 -0.2 

L3 -4 0.2. 

' 1 - 5 ! ^ 
0 1 -0.8 
.0 1 02, 

6.1.4 Diagonalising the Hessian 

To adapt this technique for use with symmetric ftinction valued matrices such as the 

Hessian matrix of second partial derivatives it is necessary only to change the choice of 

A in equation 6.9. Specifically, it is necessary to choose A such that the magnitude of 

AH^+U^ is minimised. 
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|AH„„+H„, | = | | A H „ , + H „ , p d K 

0 iff A = 

j H ^ H , , d K 
y (6.14) 

For example, consider the two dimensional function 

A-) 

The Hessian of this function is therefore 

\6XQ +6x^ 6XQ +12X,. 

Clearly Ho, =Hoo and therefore - I . HOI is therefore minimised by setting 

D^HD 
' 1 OVexo +6x, 
-1 lJUxo+6xi 

'1 oVexo 
-1 iJUxo 
'6Xo+6x, 0^ 

0 6x,. 

+6x, 6jf| 

6xo+6xiYl - r 
>Xo+12x,Jlo 1, 
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In practise, the algebraic forms of the second derivatives are not available, and the 

function valued Hessian matrix must therefore be approximated by a vector valued 

matrix of the values of the second derivatives at a finite number of sample points. 

Once again, the value of X in equation 6.9 must be modified so as to minimise 

JIH^+H^ with vector valued Hy. In the same fashion as for equation 6.14 the value 

for X may be calculated to yield 

^ - r - i 2 - (6.15) 

Consider once again the two dimensional function 

j^^r6xo+6x, 6XQ+6X 

\6XQ + 6JC, 6XQ + \2x 

Given the set of samples 

(0,0) (0,0.5) (0, 1) 

(0.5,0) (0.5,0.5) (0.5,1) 

(1,0) (1,0.5) (1.1) 

the Hessian may be represented by 
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H = 
'(0,3,6,3,6,9.6,9,12) (0,3,6,3,6,9,6,9,12) ^ 
,(0,3,6,3,6,9,6,9,12) (0,6,12,3,9,15,6,12,18), 

As before Hoo = Ho, and therefore Do, = - l . 

D^HdJ ' (0.3.6,3,6,9.6,9,12) (0.3.6,3,6,9,6,9,12) V l - A 
l - l ljU0,3,6,3.6,9,6,9,12) (0,6,12.3.9.15.6.12.18wlo 1. L(0.3,6,3.6.9,6.9.12) (0.6,12,3,9,15,6,12,18)j 

'(0,3,6,3,6,9,6,9,12) (0,0,0,0,0,0,0.0,0)̂  
,(0,3,6,3,6,9,6,9.12) (0,3,6,0,3,6,0,3,6), 

^ ((0,3,6,3,6,9,6,9,12) (0.0,0,0.0.0,0,0,oy 
(0,0,0,0,0,0,0,0,0) (0,3,6,0,3,6,0,3,6)J 

-1 I 

V 

Given the second derivatives at a finite number of points, it is therefore possible to find 

an approximation to the matrix D which diagonalises the Hessian. Provided that there 

are no high frequency (or order) components of the fijnction, the inverse of this matrix 

should provide a good basis, although not in general optimal, upon which the model is 

to be fitted to the surface. This derivative information may be obtained in a number of 

ways, two of which are described below. 

6.1.5 Obtaining the Second Partial Derivatives 

The simplest method by which derivative information may be generated is to 

approximate them with finite differences. By definition, the partial derivative of a 

function with respect to a basis ^ at a point x is given by 
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db 
= I'm 

/ ( x + <5b)- /{x) 
n b 1 (6-16) 

where b is the basis vector of the basis b. 

The partial derivative may be approximated by choosing a small but non-zero value for 

S. For example given the two dimensional fiinction 

then by choosing S= 0.01 

/((l,l ) 4 . 0 . 0 l(l , 0))-/((U)) 
0.01 

_ ( l . 0 l 2 ^ l 2 ) , ( , 2 ^ , 2 ) ^ ^ ^ ^ ^ 

0.01 0.01 
= 2.01 

which closely approximates the correct value of 2.0. The second partial derivatives 

may be calculated in a similar fashion. One of the advantages of using second finite 

differences to approximate the second partial derivatives is that by Shannon's Sampling 

Theorem, components of the flinctions with a frequency greater than 03x<j-' are 

removed. This goes some way to removing the problems which such components are 

likely to create for this technique. 
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A second, more computationally expensive, technique is to approximate the 

neighbourhood of each point by a quadratic fijnction. The second partial derivatives 

may then be calculated with the coefficients of the quadratic. For example, let 

be the quadratic equation which approximates the surface in the neighbourhood of the 

point X. The second partial derivatives of the fijnction/may then be approximated by 

w a a + a ij^'^ji (6.17) 

Rather than fitting the quadratic to the points within some arbitrary neighbourhood of 

X, it is not difficult to fit the quadratic to the entire sample of the surface but with the 

emphasis upon points close to x. This has the added advantage of eflfeclively 

smoothing high frequency components out o f the data, removing one of the cases for 

which the technique is likely to fail. 

6.2 Fitting the Model to the Surface 

Having found a good projection of the surface data, the next step is to fit the model to 

the data using this projection. This may be achieved using a simple curve fitting 

technique, adapted so that it fits a curve in the form of the model. 
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6.2.1 A Simple Curve Fitting Technique 

Given a function / of which a finite number of samples are known, consider the 

approximating function/ given by 

/•W = Z ^ / / ' . W (6.18) 

where the/ , are known and the a, unknown. To fit this function to the data generated 

b y / i t is necessary to minimise the difference between them throughout the sample. 

minimise Z( / (x , ) - /K) ) ' = Z Z ^ / ' y ( ^ . ) - / ( ^ . ) ) ' (619) 

Setting the partial derivatives of this expression with respect to the aj to zero yields the 

simultaneous linear equations in a, 

Z I " / / ' ; (»<)A (̂ ,) = Z/(x, )A (>,) (6.20) 

the solution of which are the coefficients which yield the best approximation of the 

function (since equation 6.19 is quadratic with respect to the at , there is only one 

stationary point - the minimum). 

Note that with a little modification, this technique may be used for the locally weighted 

quadratic fit mentioned in section 6.1.5. To fit a quadratic to the data, weighted to the 

neighbourhood of a point x, equation 6.20 becomes 

140 



I S (^i)">/•> (^)/•* (x,) = I (i.)/(»,)/•* (i,) (6.21) 
' J 

where * i ' , ( x i ) is the weight for the point X / with respect to the point of interest x . This 

has the effect of making the curve fitting process more sensitive to the errors at those 

points near to the point of interest. One possible form of this weight function could be 

where a) \sa constant determining the severity of the weighting. 

6.2.2 Generating the Model with the Simple Curve Fit t ing Technique 

Consider once again the model which is to be fitted to the surface data, given by 

equation 6.1, 

/ W = E / , ( ' > , - ) M « ) 
/=0 

Before the curve fitting technique may be used to fit this model, it is necessary to 

decide upon the set of basis functions g, which will be used to describe the univariate 

functions/. Each of the univariate functions may then be described by, 

fi^Z^ugj (6.23) 
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and given M such basis fijnctions, equation 6.1, ignoring the error term becomes 

1=0 >=0 

This is similar in structure to equation 6.18, the equation governing the curve fitting 

algorithm. Substituting equation 6.24 for equation 6.18 yields the simultaneous linear 

equations, 

Y.Y.Y.''jkSk\}^j'^i)Sq\^pT^i)^Y.f{^^^ (6.25) 
I j=Ok=0 I 

The solution of which yields the best fit of the model to the surface given the basis 

vectors b/. 

For the variable separation technique it was decided that the best set of basis functions 

were linear splines. These have a number of advantages over polynomial or sinusoidal 

basis ftmctions, primarily that they are applicable over a much wider range o f domains 

(including discontinuous ftmctions) and that they do not suffer from the eflfect of 

ringing - high fi-equency components of the curve fit causing wild fluctuations at the 

boundaries of the domain. Furthermore, in most cases, when the model is finally 

presented graphically to the user, most graphing utilities approximate the curve with 

linear splines and so they seem to be a natural choice. 
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The fiinctional form of a linear spline is simple and is shown graphically in figure 6.2. 

g*(x) 

0,+d 

Figure 6.2 The graphical form of a univariate linear spline 

The algebraic form of the linear spline is given by, 

1 . 0 - ^ 
s 

x - o . 1.0-

0.0 

Oj ~S<x^ Of 

< X < Of + S 

otherwise 
(6.25) 

where Oj and S depend upon the range of the parameter x and the number o f splines 

being used to approximate the function. Assuming that the parameter has been scaled 

onto the unit interval [0,1], these parameters are given by. 
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o, = 
M-\ 

1 (6.26) 

where is the number of linear splines used to approximate each univariate ftinction. 

In effect, the set of linear splines produce a linear interpolation between the points o,. 

To illustrate this, consider a pair of linear splines go and g\. With only two splines the 

parameters O / and (5 are given by 

OQ =0, o, = 1, 6=\ 

and so, noting that the range of x is assumed to be scaled to the unit interval [0,1], the 

splines g, are given by 

goW = 1.0-x 

Consider a function approximation of the form of equation 6.23 using these splines, 

1=0 

and therefore 
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As expected, this function describes a line firom the point (0, ^o) to (1 , oi). 

6.3 The Variable Separation Algorithm 

Having described the individual tasks necessary for the variable separation visualisation 

technique it is now necessary to combine these into an algorithm for the visualisation 

of high dimensional surface data. 

6.3.1 Diagonalising the Hessian in Practise 

As has been noted, in practise it may not be possible to completely diagonalise the 

Hessian. One of the simplest functions for which this is true is given by, 

f { x ) = x l x , 

The Hessian of this function is 

H = 
^ 2x, 2xoX, 
U^ox, 0 

and clearly Hoo and Hoi are independent functions. In such cases it is unlikely that the 

simple matrix diagonalisation technique will identify the optimal basis in a single pass, 

having been originally developed for application to real valued matrices. An obvious 

improvement is to iterate the technique a number of times. This gives the technique 
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greater flexibility since, after the initial pass, the leading diagonal of the matrix will 

have changed. The transformed elements of the leading diagonal may, in later passes, 

prove useful for the reduction of the magnitude of some of the off diagonal elements. 

An additional change which may be made is to allow the diagonalisation technique to 

remove only a proportion of each of f diagonal element during a given iteration. This 

may be achieved by changing the choice of >l in equation 6.15, 

^ - ^ ^ ^ (6.27) 

where ae[0,l] is a constant. This has the effect of transforming the iterated 

diagonalisation of the sampled Hessian matrix into a form of optimisation, taking only 

a small step in the right direction at each stage. 

6.3.2 Fitting the Model in Practise 

Once the basis is generated it is necessary to fit the model to the surface. As has 

already been explained, it was decided that linear splines would provide the most 

flexible set of basis functions for the fitting procedure. For the sake of simplicity, the 

sample data is scaled onto the unit interval [0,1] along each of the new basis vectors 

before fitting the model. Once the model has been fitted it is necessary to reverse this 

before displaying the data so that it retains some quantitative value. 
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Having generated the simultaneous linear equations which describe the best fit of the 

model for the chosen basis, it is necessary solve these equations. There are many 

techniques for the solution of such systems o f equations, although the one selected for 

the variable separation technique is perhaps one of the least elegant. 

Consider once again equation 6.20, 

' J ' 

In matrix notation, this may be represented by 

iVla = b 

where M is a matrix and a and b are vectors, M and b are known and 

k 

The solution of equation 6.27 is given by 

a = IVl-*b 
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A matrix inversion technique is therefore required to generate M *, from which the 

solution to the simultaneous equations may be trivially generated. Singular Value 

Decomposition (SVD) was used to invert the matrix M . This technique has a number 

of advantages and is itself the justification for the use of the matrix inversion approach. 

SVD is capable of generating an RMS. best inverse to singular and ill-conditioned 

matrices, where in the first instance no inverse exists and in the second many 

techniques will fail. Alternative approaches to the solution o f simultaneous linear 

equations generally rest upon matrix inversion, although they do not all explicitly use 

matrix manipulation, and are subject to the same problems. When curve fitting, there 

is no guarantee that the matrix M will not be ill-conditioned or indeed singular. 

I Generate sampled Hessian mauix 

Finite differences 

Weiglited quadratic approximation 

II Diagonalise Hessian 

Iterated maUix diagonalisation 

Optiniisation-like iterated matrix diagonalisation 

III Invert diagonalising niaUix to generate basis vectors 

IV Transform and scale data onto new basis 

V Use curve fitting to fit model to data 

VI Rescale data to preser\'e quantitative information 

VU Calculate Error 

Figure 6.3 The structure of the variable separation visualisation technique 
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6.3.3 The Completed Algorithm 

Finally, the various stages must be combined into a single algorithm. Each stage is. 

more or less, independent and the full description in pseudo code would be somewhat 

lengthy. The structure of the variable separation algorithm is therefore presented in 

figure 6.3 as a number of steps (noting possible alternative approaches). 

The final step is perhaps one of the most important features of using regression-like 

techniques for visualisation. The user is provided with a measure o f confidence in the 

results of the visualisation algorithm, which is essential i f the visualisation is to 

communicate properly with the user. The error measure used for the variable 

separation visualisation technique is defined by. 

E = 
m a x / ( x ) - m i n / ( x ) (^-28) 

the RMS. error of the model divided by the range of the original function. The division 

by the range of the fijnction allows the error to be presented as a proportion rather 

than as a raw number. This simplifies the comparison of different visualisations and is 

generally simpler for the user to understand. 
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6,4 A Comparative Study of Variable Separation and Projection Pursuit Regression 

In order to test the effectiveness of the variable separation technique, it was compared 

upon a number of test problems to the technique of projection pursuit regression. 

During this study the PPR algorithm was encoded using the polytope (or simplex) 

optimisation algorithm for the iterative optimisation of the basis vectors. Furthermore, 

the smoothing cycle of the PPR algorithm was provided by the curve fitting technique 

described above. It must be noted that this encoding is not necessarily the most 

computationally efficient. 

The visualisation techniques were each applied 32 times to each test function and the 

time taken, average error and best visualisation were recorded. The elapsed time for 

32 runs of each technique was measured in real time rather than CPU time and so gives 

only a rough comparative measure (The experiments were performed upon a Sparc 

Station GX) and the errors of the visualisations were measured with a random sample 

of 256 points. Both techniques operated upon a further random sample of 256 points, 

the variable separation technique taking 16 samples o f the Hessian matrix. Where 

finite differences were used to approximate the derivatives they were calculated with a 

step length, S, of 0.01, and where locally weighted quadratic approximation was used, 

the weighting function was 

ISO 



Both techniques approximated the functions of the model with 16 evenly spaced linear 

splines. The PPR algorithm was allowed up to 32 iterative cycles and the variable 

separation algorithm 32 iterations of the matrix diagonalisation stage. 

For simplicity of presentation, all variables of the test functions were, when necessary, 

scaled onto the unit interval [0,1]. When applying the visualisation technique in 

practise, this process is automated, with the final visualisation being rescaled onto the 

ranges of the original parameters, allowing the user to view the visualisation in terms 

of the original variables. This was not thought necessary for the purposes of 

comparative testing. 

6.4.1 An Initial Test Suite 

The initial suite o f test function developed for the comparative analysis o f the two 

techniques was chosen to illustrate the expected behaviour o f the variable separation 

technique, both in success and in failure. Table 6.1 shows the algebraic form and gives 

a short description of each test function. 

The first function provides an example o f a separable function. 

/ l (x ) =XoX, s i - (xo +x,)^ - i ( x o - X , ) ' 

Functions/2 and/3 were chosen that they might fool the visualisation techniques since, 

from sample data, they appear very similar t o / . The former is in fact separable 

151 



f2{^) = 0m[xl +x,2) + XoX, =25(0.02x0 ~24.99xf 

although the latter is not. 

Function Description 

f l ( s ) = XQXi A simple separable function. 

/2(x) = 0.0l(xo'+x?) + xox, A separable function which appears from 

samples to be, but for a small deviation, 

identical toy] 

/3(x) = 0.0l(xo^+x,^) + xox, A non-separable function which appears 

from samples to be, but for a small 

deviation, identical t o / 

A simple non-separable function 

A simple non-separable function 

/^(x) = 0.01cos(l00xox,) +XoX, A non-separable function which appears 

from samples to be, but for a small high 

frequency deviation, identical to/i 

f j { j ) = 0.001cos(l000xox,) + XoX, A non-separable function which appears 

from samples to be, but for a small very high 

frequency deviation, identical loyi 

/8(x)=O.Ol(xoX,)''^+XoXi A non-separable function which appears 

fit)m samples to be, but for a small high 

order deviation, identical toyj 

/ , { x ) = 0.00l(xox,)'^+xox, A non-separable function which appears 

from samples to be, but for a small veiy high 

order deviation, identical toyi 

Table 6.1 The initial test suite 
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Functions fa and f% were chosen since they are perhaps two of the simplest possible 

non-separable functions. The final four functions were chosen for their high frequency 

(or order) components, a feature which is expected to cause problems for the variable 

separation visualisation technique. Note that the range of each fijnction is the unit 

square. x€[oa]^. 

6.4.2 Results for the Initial Test Suite 

The average errors and elapsed times for the experiments upon each o f the test 

fijnciions are given in table 6.2. Table 6.3 shows the unit basis vectors identified by 

the best visualisation from each experiment for each of the test fijnctions. 

PPR Variable Separation using Variable Separation using 

finite diflerences quadratic approximation 
Function Time Taken Mean Error Time Taken Mean Error Time Taken Mean Error 

(niijis) (%) (niins) (%) (mills) (%) 
fx 127 0.72 1 0.34 4 0.64 

h 115 0.62 2 0.76 5 0.73 

h 142 0.41 1 0.14 4 0.50 

U 299 1.17 1 0.72 5 0.74 

h 312 2.03 2 0.64 4 0.52 

h 141 1.59 4 5.68 4 0.86 

f i 132 1.10 5 1.60 5 0.61 

h 124 1.02 4 1.44 4 4.96 

h 120 0.26 5 0.35 4 0.69 

Table 6.2 Results of experiments upon the initial test suite 
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PPR Variable Separation using Variable Separation using 

finite differences quadratic approximation 
Function Basis Error (%) Bases Error (%) Bases 1 Error (%) 

(a72,a69) 
(-a72,a7o) 

0.05 (a7i.a7i) 
(-0.7I,a7I) 

0.05 (071,071) 
(-0.71,071) 

0.05 

(a69.a72) 
(-a69,a72) 

0.05 {0.02,IM) 

(QOaLOO) 
.0.66 (002,LOO) 

(O0(XL00) 
0.62 

A (a72,a69) 
(-a72,a69) 

0.06 (017,059) 
(-014,099) 

0.11 (004,1.00) 
(-0014.00) 

0.42 

A (095̂ 031) 
(-a9i,a4i) 

0.30 (099,016) 
(-098.017) 

0.13 (092,038) 
(-084,054) 

0.41 

Is (a98,-ai8) 
(-a79,a62) 

0.62 (032,095) 
(-027,096) 

0.05 (032,095) 
(-026̂ 097) 

0.05 

(a73,0.68) 
(-a73,a69) 

0.75 (074,067) 
(-099,015) 

2.98 (027,-096) 
(027,096) 

0.74 

(a72,a7o) 
(-a72.a7o) 

0.09 (068,-O74) 
(069,073) 

0.12 (002,-LOO) 
(001,1.00) 

0.51 

(a7i,a7o) 
(-0.7I,a70) 

0.05 (071,071) 
(-071,071) 

0.05 (071,071) 
(-0.71,071) 

0.05 

f9 (a69,a72) 
(-a69,a72) 

0.05 (071.071) 
(-0.71,071) 

0.05 (071,071) 
(-0.71,071) 

0.05 

Table 6.3 Best visualisations of the functions in the initial test suite 

The variable separation technique clearly outperforms the PPR technique in terms of 

computational expense. The results are a little less conclusive when examining the 

average and best errors of the visualisations however. It is interesting to note that for 

/2, both variants of the variable separation technique identified the correct basis, 

although the best error of the PPR is, in fact, the lesser. As predicted, the variable 

separation technique utilising finite differences fails for function/g where there are high 

frequency components, of the order of ^ ' (<5 being the step length used to calculate the 

finite differences). 

154 



Suprisingly, when using weighted quadratic approximation to generate the second 

partial derivatives the variable separation technique performs poorly, on average, upon 

function f% although not upon function f^. This may be due to the fact that the very 

high order component of is approximately zero over most o f the range [0,1] and that 

the high order component off% is poorly approximated by a quadratic. Excepting these 

cases, the variable separation technique appears to compare favourably with PPR upon 

the functions in the initial test suite. For most of the functions in this test suite, the use 

of finite differences for the approximation o f derivative information appears to be the 

more robust. 

6.4.3 A Second Test Suite 

The De Jong test suite for fijnction optimisation (q.v. table 2.2) was selected to 

provide a second, less contrived, test suite for the variable separation and PPR 

visualisation techniques. Unfortunately, the computational inefficiency of PPR 

removed the possibility of using the 30 dimensional function JA from De Jong's test 

suite. The two variants of the variable separation technique and PPR were therefore 

compared upon the remaining four functions. Note that the parameters of the De Jong 

test functions have been scaled onto the unit interval [0,1]. 

6.4.4 Results for the Second Test Suite 

As for the results for the initial test suite, the average errors and elapsed times for the 

experiments upon each of the test functions fi-om the second test suite are given in 

table 6.4. The unit basis vectors and errors o f the best visualisations for each of the 

functions are given in table 6.5. 
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PPR Variable Separation using Variable Separation using 

finite differences quadratic approximation 
Function Time Taken Mean Error Time Taken Mean Error Time Taken Mean Error 

(mins) (%) (mins) (%) (mins) (%) 
De Jong'syi 319 0.14 11 0.10 38 0.10 
De Jong's / : 216 9.68 5 3.47 13 7.98 
De Jong's/^ 327 5.65 39 2.24 182 3.07 
De Jong's/5 72 17.65 4 17.98 10 17.56 

Table 6.4 Results of experiments upon the second test suite 

PPR Variable Separation using 

finite differences 

Variable Separation using 

quadratic approximation 

Function Basis Error (%) Basis Error (%) Basis Error (%) 

Dc Jong's/ (I.O0.0.OI.-O.03) 

( - 0 . 0 1 , 1 . 0 0 , 0 . 0 1 ) 

(0.03,-0.01,1.00) 

0.09 (1.00,0.00,0.00) 

(0.00,1.00,0.00) 

( 0 . 0 0 , 0 . 0 0 , 1 . 0 0 ) 

0.08 (1.00,0.00.0.00) 

(0.00.1.00.0.00) 

( 0 . 0 0 , 0 . 0 0 , 1 . 0 0 ) 

0.09 

Dc Jong's/ (0.96.0.27) 

(-056,029) 
2.30 (0.97,-0.26) 

(0.95,031) 
2.32 (0.95,0J0) 

(-OA4,034) 
3.89 

De Jong's/ (ii)o.(uia-«.o3jm(toj) 
(oin.o».ojaiOjoo.OL06) 
[<ii3.oyij3.62.-aiija.-n) 

(-«04.-aO4.025J)J3.0J9) 
(-ai3.0m.aD l.-OW j059) 

2.38 (u».aoo.aoaoi)o.ojoo) 
[aoojJMLOoaoaojun] 
(aoo.Qoo.LoaojooAoo] 
(aoojuw.oj)aun.ooo) 
(aoo.iuiox>i)aaoaLOo] 

1.89 (OM.OJ2.-4.10.OJ2.OilO) 
[0^92.00 i.oa&-aj9) 

{009.012,09^,017.-020) 
(001.-0 J2.0.18.029 .-040) 
(0O0.a02.0.3S.-OJ »A9S) 

1.67 

De Jong's / (1 .00 .0 .03) 

(-0.06,1.00) 
14.17 (0 .00 ,1 .00 ) 

(LOO.0.00) 

15.17 ( 1 . 0 0 , 0 . 0 2 ) 

(0.03,1.00) 
14.45 

Table 6.5 Best visualisations o f the functions in the second test suite 

The first and third of the De Jong test functions are, in their initial forms, separable 

functions and it is interesting to note that the PPR algorithm has not retained the 

original bases for either of these fijnctions. The variable separation technique, when 

utilising quadratic approximation for the generation of second partial derivatives, has 

also failed to retain the original basis for the third of the De Jong test functions. The 
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third test ftinction is a step function, having a number of discontinuities. I t is likely, 

therefore, that the failure of the variable separation technique upon this function occurs 

due to the high order components introduced by such discontinuities. Such 

discontinuities may also be described in terms o f high fi-equency components and it 

may therefore appear surprising that, when using finite differences, the variable 

separation technique succeeds in identifying the correct basis. However, the function 

in question is not, in fact, cyclic and it is likely that this accounts for the success of the 

variable separation technique in this case. 

The remaining pair of fijnctions are not separable, and all three techniques identified 

similar sets of basis vectors. As for the initial test suite, the variable separation 

technique compares favourably with the PPR technique in terms of the mean errors of 

the visualisations and very well in terms of computational expense. Furthermore, upon 

these test fijnctions, the use of finite differences for the approximation of the second 

partial derivatives appears to be more effective, both in terms o f mean errors and 

computational expense, than the use of quadratic approximation. 

6.4.5 A Final Test Suite 

The final test suite is comprised of functions which have some practical application, as 

opposed to those fijnctions in the previous test suites which were constructed purely 

for the purposes of comparative analysis - the first for the visualisation techniques, the 

second for the GA. The algebraic forms of these test functions and their origins are 

given in table 6.6. As for the above test functions, the parameters range over the unit 

interval, [0,1]. 
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Function Origin 

Colebrook and White's 

formula for the friction 

factor in turbulent pipe 

flow 

[(99^,70Qbf, +3000)̂ 0.023X0 +0002 "î ^̂ J + O J ylomix^ +0,002 

Colebrook and White's 

formula for the friction 

factor in turbulent pipe 

flow 

/,,(x) = m i n ( . V o + j : , + J C 2 + j r 3 . . V o + X 5 + X 2 + X 4 , j : 3 + X 5 + x , +X4) 

The length of the shortest 

path for the four city non-

geometric travelling 

salesman problem 

0 
dy 

The brachistochrone 

problem applied to a family 

of normalised sixth order 

polynomials 

0 - H I 
I i=0 j 

dy 

The brachistochrone 

problem applied to a family 

of normalised sixth order 

polynomials 

Table 6.6 The final test suite 

The first function of the final test suite is derived fi-om Colebrook and White's formula 

for the friction factor in turbulent pipe flow. 

15\ K 
+ • 

RE^ 3.7Z) 
(6.29) 
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where / is the fiiction factor, RE Reynold's number, K a coefficient o f surface 

roughness, D the diameter of the pipe and 

0.002 < / < 0.025 
3000 100,000,000 
O ^ A : ^ I 
1 < £ ) < 2 0 

are reasonable ranges for these four parameters. Setting 

/-0.002 
^0 = 

0.023 
RE-3m 

* 99,999,700 
X , = 

X2=K 
D~\ 

and taking the left hand side away from both sides of the equation yields the first of the 

final test functions - a normalised version of Colebrook and Whites formula 

1(99,999,700J:, +30O0)^0.D23XO+0.002 3.7(l9xj + l) V0.O23xo+0.002 
(6.30) 

the roots of which yield the solutions to Colebrook and White's formula. 

The second of the functions in the final test suite gives the length of the shortest tour 

of the four city non-geometric travelling salesman problem (TSP), the structure of 

which is illustrated in figure 6.4. 

159 



Figure 6.4 The four city non-geometric TSP 

The parameters XQ to X 5 represent the lengths of the paths between the cities A-D, next 

to which they are placed in figure 6.10. By non-geometric, it is meant that the lengths 

of the paths are not necessarily consistent with a geometric interpretation o f figure 

6.10 - for example parameters Xo to X 3 may be non-zero whilst parameters X4 and X 5 are 

zero. Each tour through the four cities must visit each city once and only once, except 

for the first city in which the tour must also end. For the four city non-geometric TSP 

there are but three unique paths, namely ABCDA, ABDCA and ADBCA. A l l other 

tours are isometric to one of these three. The lengths of these tours are given by 

lengfh{ABCDA) = X Q + JC, + X 2 + X 3 

length{ABDCA) = X Q + X 3 + + ^ 4 

kngth{ADBCA) = X 3 + X 5 + x, + X 4 

and for each set of parameters the minimum of these lengths provides the second 

function of the final test suite, 
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fx 1 (x) = min(xo + + + , + + X 2 + X 4 , X 3 + X 5 + x, + ) (6.31) 

The lengths the paths between the cities are assumed to lie within the interval [0,1]. 

em The last function in this final test suite is based upon the brachistochrone probi 

proposed by John Bernoulli in 1696. The brachistochrone is a curve joining two points 

in the plane xo and Xi, such that a bead placed upon this curve will, under gravity, 

traverse its length in minimal time. This problem is not soluble by calculus and led to 

the development of the calculus of variations (Pars, 1962) by which it was solved. The 

problem is illustrated graphically in figure 6.5. 

Figure 6.5 The brachistochrone problem 

Given a curve y = / ( x ) , the time taken for the bead to travel from x© to xi is given by 
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/ = 1 Y .2> 

y J 
dx (6.32) 

where y represents ^ 
dx 

Since this equation represents a functional (an operator which acts upon functions) 

rather than a function, it is not possible to apply the visualisation techniques to it 

directly - the single parameter j'l^x^ of the fiinctional is a function itself. In order that 

this problem may be visualised, the functional is applied to a constrained set o f curves 

which may be represented parametrically - in this case sixth order polynomials. These 

polynomials are constrained to pass through the start and end points (0, 1) and (1,0), 

and therefore take the form 

f{x) = X-L = 0 a (6.33) 

For the purposes of the visualisation, the six coefficients a, are assumed to lie in the 

range 0-1. Substituting equation 6.33 into equation 6.32 and multiplying the result by 

V2g yields the six dimensional test function 

/ . 2 W = J 
Vi=o / 

2 \ 

/=o 

dy (6.34) 
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which is calculated by trapezoidal approximation. This function is undefined at the 

origin (since there is a pole at this point) and therefore, for the purposes of the 

visualisation techniques, the function is set to 0 there. 

6.4.6 Results for the Final Test Suite 

As for the results upon the prior test suites, the average errors and elapsed times for 

the experiments upon each of these test functions are given in table 6.7. Once again, 

the unit basis vectors and errors of the best visualisations for each function are 

presented in table 6.8. 

PPR Variable Separation using Variable Separation using 

finite differences quadratic approximation 

Function Time Taken Mean Error Time Taken Mean Error Time Taken Mean Error 

(mins) (%) (niins) (%) (mins) (%) 

yio 1154 1.88 68 0.75 145 2.21 

fu 3114 25.91 92 6.35 364 3.18 

M 3748 55.53 346 15.65 549 13.56 

Table 6.7 Results of experiments upon the final test suite 

For the first of the flinctions of the final test suite it is interesting to note that, although 

the function is not separable, the best visualisation (identified by the variable separation 

technique using finite differences) utilises the original basis vectors. Both PPR and 

variable separation utilising quadratic approximation failed to identify this basis. 

Interestingly, both PPR and variable separation utilising quadratic approximation 

settled upon similar bases, although the former generated the better visualisations of 
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this function. For the second of the final test functions, the best visualisations were 

identified by the variable separation technique utilising quadratic approximation. 

Perhaps counter-intuitively, given the apparent linear nature of this function, none of 

the visualisation techniques settled upon the original basis - although for both PPR and 

variable separation utilising finite differences, four of the six basis vectors o f the best 

visualisations are close to the original bases. For the final fijnction, the best 

visualisation of both PPR and, to a lesser extent, variable separation utilising quadratic 

approximation settle upon basis vectors which are similar to the original bases. 

Despite this similarity, the PPR technique generated the worst visualisations of this 

function. 

PPR Variable Separation using 

finite dilTcrcnces 

Variable Separation using 

quadratic approximation 

Function Basis Error (%) Basis Error (%) Basis Error (%) 
(1.00.0.00,0,00.0.00) 

( 0 , 1 3 . 0 . 9 9 . - 0 0 2 . - 0 . 0 8 ) 

( -0 .01 .0 .00 .1 .00 .002) 

( -O.OI.0 .01.0 .0I .1 .00) 

0 .47 ( 1 I X ) , 0 . 0 0 . 0 . 0 0 , O J O O ) 

( 0 . 0 0 , U ) 0 , 0 . 0 0 , O J O O ) 

(O.OO.O.OO.LOO.OiM) 

( O . O 0 , 0 . 0 0 , 0 . O O , L 0 O ) 

0.34 ( 1 . 0 0 . 0 , 0 0 . 0 . 0 1 . - 0 . 0 2 ) 

( - 0 . 1 3 . 0 , 9 7 . 0 . 2 0 . 0 0 9 ) 

( 0 . 0 3 . - 0 . 0 8 , 1 . 0 0 . 0 , 0 1 ) 

(0 .06 . -0 .06 .0 .01 . l .OO) 

1.13 

|0M,.4U)uuiijm,AU(ux:̂  
^m,nno..O07,A2]jiWji>ix̂  

5.09 
^ooi mooafitojuaoM^ 

^tjUMfliijfun. n Js. oji^ 

2.31 

j-iijajifliiUij(niuej9.-o^ 

2.15 

r " 

h2 
j-aaij-oijiiojmnj)iaji»j 

7.70 

• Ann A . V A . A 

7.24 

^at4.jji,mina ooi..oaî  
^junjuaoion njiw..ojij 
^ AAA . t l * n w A A A * AAf^ 

6.92 

Table 6.8 Best visualisations of the functions in the final test suite 
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As for the previous test suites, it would appear that the use o f finite differences for the 

generation of partial derivative information results in a more robust visualisation 

technique than does the use of quadratic approximation. For the functions in the final 

test suite, the variable separation technique utilising finite differences consistenly 

outperforms the PPR technique both in terms of computational expense and in terms of 

accuracy. 

The best visualisations generated by the variable separation technique utilising finite 

dififerences of each fijnction in the final test suite are illustrated in figures 6.6 - 6.8. 

? -5 

•15 J 

•1.35 

-1.6 

-1.65 

x'0 = xO x'i 

x'2 = x2 x ' i - x J 

Figure 6.6 The best visualisation o f f \ o 
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0.75 

^.5 

x'O = 0.52x0 + 0.52x2 - 0.4Sx3 - 0.09x4 
0.52x5 

> 0.25 

.0.23 

0.26 0.53 0.81 

x7 -xV 

0.26 0.53 0.81 

x'2= x2 

^.250J87 

x'3 = 012x0 + ay2i:2 + 0.63x3 - 0.75x^ 

1.25 

1 

0.75 

0.5 

^ 0.25 

0 

.0.25 

.0.5 

.0.75 

0.75 

0.53 0.81 

r> 0.25 

.0.25 

x'4 = X-/ x'5=xi 

Figure 6.7 The best visualisation o f f u 
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0.75 

0.5 

0.25 

-0.83 -0.22 0.39 1.01 

x'O = 0.56x0 - 0.13x1 + 0.43x2 + 0.48x3 
0.26x4-0.44x5 

0.25 

-1.11 -0.54 0.03 0.59 

x7 = -0.69x0 + 0.45x1 - 0.39x2 + 0.25x3 
0.03x4 + 0.31x5 

0.5 

r* 0.25 

-0.38 0.13 0.65 0.16 

x'2 = -0.32x0 + 0.79x1 + 0.46x2 - 0.06x3 
+ 0.06x4 + 0.23x5 

0.5 

0.25 

1.57 -0.99 -0.41 0.18 

x'3 = -0.48x0 - 0.63x1 + 0.11x2 + 0.35x3 
+ 0.09x4-0.45x5 

-0.5 

x'4 = O 72x0 - a38x1 -0.12x2- 0.03x3 + 
0.25x4 + 0.51x5 

0.4 

0.3 

0.2 

0.1 
-1.55 -1.02 -0.49 0.04 

x'5 = -0.5x0 - 0.78x1 + 0.26x2 - 0.09x3 
017x4 + 0.19x5 

Figure 6.8 The best visualisation o f f n 

Although the funct ion/ i of the visualisation o f / lo appears to be very noisy, it has a 

significantly smaller range than the remaining three functions. This would indicate that 

the parameter x'l does not contribute greatly to the function /lo and could possibly be 
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ignored with little loss of information (x'l is identical to Xi - a normalised Reynolds 

number). The remaining functions are smooth and monotonic which is surprising given 

the complexity of the original function. 

As for func t ion / i of the visualisation of /lo, fijnction/a of the visualisation of f n 

appears, at first, to be very noisy. However, it has a significantly smaller range than 

the remaining five functions - once again indicating that it may be possible to ignore 

this parameter without significant loss of information. The remaining functions, with 

the exception of/o* appear to be close approximations to linear fijnctions, which is not 

unexpected given the apparent linear nature of the original function. Note that the 

functions/o and fz are not defined for the full range of their respective parameters due 

to the fact that the original data did not cover these ranges. 

As for the previous visualisations, some of the univariate functions of the visualisation 

o f f n are not defined for the fijll range o f their respective parameters. Once again, this 

is due to the original data not spanning the range of those parameters. Unlike the 

previous visualisations, each of the univariate functions contributes significantly to the 

visualisation - the range of each of these fijnction is comparable. As would be 

expected, given the complexity of the fijnction / n , the forms of these univariate 

functions are complex and noisy. The error of this visualisation is relatively high (at 

7.24%) and this, combined with the complexity of the univariate functions, makes it 

difficult to draw any firm conclusions about the nature o f the original function. 
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6.5 Conclusions 

The variable separation technique provides a rapid, and in general, effective tool for 

the visualisation of high dimensional surfaces generated by functions o f many 

parameters. The results show a favourable comparison to PPR for this technique in 

terms of the errors of the visualisations for the various functions in the test suites. In 

terms of computational expense, the variable separation technique compares very well 

indeed although, as was stated at the beginning of this chapter, the PPR algorithm used 

here is not necessarily the most computationally efficient and some allowances must 

therefore be made. 

The use of finite differences for the approximation of derivative information is 

consistently more computationally efficient than the use of quadratic approximation. 

Furthermore, although the use of quadratic approximation is often an improvment 

upon the use of finite differences in terms of the errors of the visualisation, the use of 

finite differences would appear to provide a more robust visualisation technique. For a 

number of the test functions, it could be argued that the variable separation technique 

utilising quadratic approximation for the generation of derivative information overfits 

the data. 

The variable separation technique has a number of additional advantages which have 

not been discussed. Firstly, the variable separation technique generates the basis 

vectors for the projection independently of the functions of the transformed 

parameters. This allows the user to apply a wide range of curve fitting techniques to 

the data without the necessity of recalculating the basis vectors at each stage. For 
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example, an initial visualisation may use a small number o f linear splines to 

approximate the univarate functions of which the model is comprised. At a later stage, 

more splines may be used to improve the accuracy o f the visualisation without the 

necessity of recalculating the basis vectors - a computationally expensive task. 

A further advantage is that it is relatively simple to constrain the basis identification 

technique so that the transformed parameters do not include terms of different physical 

dimension. For example consider the function 

K = /, Xl-y XV x( (6.35) 

which describes the volume of material, K(m^), which flows through a rectangular pipe 

with cross section i\ (m) by h (m) at a velocity v (ms"') over time / (s). For a 

meaningful visualisation it may be desirable that the length, velocity and time terms are 

not linearly combined. For the variable separation technique this is simply achieved 

during the diagonalisation of the Hessian - any step which requires placing a non-zero 

value in an element of D which corresponds to the combination of two such parameters 

is skipped. For the PPR algorithm these disallowed combinations act as constraints for 

the optimisation process. Such constraints may seriously compromise the performance 

of traditional optimisation techniques, although the simplex (polytope) algorithm used 

during this study will not violate this type of constraint provided that the initial sample 

of points are feasible (do not violate the constraints). The visualisation techniques 

were compared upon this constrained function and the results o f this experiment are 

given in tables 6.9 and 6.10. 
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PPR Variable Separation using 

finite differences 

Variable Separation using 

quadratic approximation 

Time Taken 

(mins) 

Mean Error 

(%) 

Time Taken 

(mins) 

Mean Error 

(%) 

Time Taken 

(mins) 

Mean Error 

(%) 

1154 33.97 32 21.21 150 11.52 

Table 6.9 Results of experiment upon the constrained function 

PPR Variable Separation using 

finite differences 

Variable Separation using 

quadratic approximation 

Basis Error (%) Basis Error (%) Basis Error (%) 

(0.60,0.80,0.00,0.00) 
(0.06,L00.0.00,0.00) 
(o.oo,aoo,i.oo,o.oo) 
(0.00,0.00,0.00.1.00) 

8.67 (0.71,0.7 i,o.oô aoo) 
(-o.7i,a7i,ojoo.aoo) 
(oDo,aoo,uAaoo) 
(OX)0,0.00,OJOO,LOO) 

8.53 (0.62.0.78,0.00.0,00) 
(-0.63.0.78.0.00.0.00) 
(OX«).0.00.1.00.0.00) 
(O.OO.OJOO.O.OO.I.OO) 

8.00 

Table 6.10 Best visualisations of the constrained function 

It is interesting to note that although the variable separation technique utilising finite 

differences does not generate the visualisations with the smallest errors, it does identify 

the optimal basis. This may be a result of over-fitting to the data on the part of the 

other techniques. 

6.6 Further Work 

Clearly, the second partial derivatives at the sample points do not provide a sufficiently 

robust measure of the codependance of parameters. As has been shov^, high 

frequency (or order) components of the function invariably lead to unnecessary errors 

in the visualisation. Clearly, one of the first tasks in improving the effectiveness of the 
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variable separation technique would be to define a better measure of codependance -

one for which these high frequency (or order) components were not so disruptive. 

Furthermore, the matrix diagonalisation technique used for the diagonalisation of the 

Hessian is merely a adaptation of a technique for the diagonalisation of real valued 

symmetric matrices. It would be of great advantage, therefore, to develop a technique 

specifically for the diagonalisation of vector valued matrices. Unfortunately, 

preliminary investigations into the possibility o f developing such a technique have, so 

far, proven unsuccessful. 

The model to which both the variable separation technique and PPR seek to fit the data 

bears a great deal o f similarity to the model to which a single hidden layer feed-forward 

neural network (Muller & Reinhardt, 1990) attempts to fit data and such neural 

networks may be considered as a form o f non-linear regression. Figure 6.9 shows the 

structure of one such neural network where the Xi are the input parameters, the Wy and 

Vj are weights, the Sj are sigmoid fijnctions and the 7 is the output. Where a number of 

lines converge, the inputs which they represent are assumed to be summated. 

Figure 6.9 A feed-forward neural network 
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In algebraic notation, the neural network in figure 6.9 is given by 

y = ti^jSj{^^^j^i) (6.36) 
1=0 /=o 

and this may be consider as a less general form of the model to which the data is fitted 

under variable separation and PPR. Previous research has compared PPR and neural 

networks, and the two techniques have been shown to yield similar results (Ripley, 

1994). It would be of interest to compare the relative performance of such neural 

networks, variable separation and PPR. A clear difficulty for the variable separation 

technique is that it uses second partial derivatives which, as has been explained, are not 

meaningful for the scatter data to which PPR and neural networks are usually applied. 

However, both neural networks and PPR implicitly assume that a regression surface 

for the data exists, and this ideal regression surface does have meaningfiji derivatives. 

The locally weighted quadratic approximation approach for the generation o f second 

partial derivatives, or an improvement of it, may possibly generate a good 

approximation to the second partial derivatives o f the ideal underlying regression 

surface. I f so, this approach will allow the generalisation of the variable separation 

technique to scatter data. Furthermore, before the variable separation technique may 

be compared to such neural networks, it is necessary to adapt the technique so that the 

number of univariate functions in the model is not constrained to the dimension of the 

input data. This is a desirable feature for a visualisation technique, but not for data 

approximation. 
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7 Conclusions 

Each of the chapters o f this thesis present conclusions upon the research documented 

therein. This chapter reiterates those conclusions and furthermore draws conclusions 

upon the research project as a whole, taking into consideration the original research 

goals. 

7.1 An Empirical Investigation of the Building Block Hypothesis 

This chapter documents the development of a technique for the extraction o f highly 

sampled building blocks from the populations of the GA. These building blocks were 

subsequently used for the empirical analysis of the building block hypothesis. The 

extraction technique was shown to isolate those building blocks occurring most 

regularly within the populations of the GA at relatively little computational expense 

through the use of a clustering algorithm. 

The building block hypothesis relies upon the assumption that the fitness of a 

chromosome is dependant upon the fitness of the building blocks from which it is 

constructed. I f this were so, the fitness of a schema constructed from a pair o f building 

blocks would depend upon the fitness of those constituent building blocks. Through 

combinatorial analysis it was shown that, upon a range of test fijnctions, fit building 

blocks do not combine to yield significantly fitter schemata than those that result from 

the addition of randomly generated building blocks to fit building blocks (for the 

purpose of this analysis, the fitness of a building block was taken to be the static fitness 

of that building block - the mean fitness of the chromosomes which are matched by it). 
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These results suggest that the static building block hypothesis (the building block 

hypothesis where fitness is taken to mean static fitness) is fiindamentally flawed. 

The static building block hypothesis is not generally considered to be an accurate 

picture of the mechanics of the GA. The building block hypothesis, in its most general 

form, relies upon the dynamically changing fitnesses of building blocks defined by the 

mean fitness of the chromosomes in the current population which are matched by it. 

The relationship between the static fitness of a building block and its utility to the GA 

was therefore examined. The utility of a building block was defined to be the number 

of times it was sampled by the GA during the search process - the assumption that fit 

building blocks propagate justifies this choice of measure of utility. The dynamic 

fitness o f a building block is, unfortunately, an unsuitable measure for such an analysis 

since it changes from generation to generation. A linear regression of the static fitness 

of building blocks and their utility revealed that these measures are related and 

consequently that the building block hypothesis is likely to be more closely related to 

the static building block hypothesis than is generally believed. 

7.1.1 Further Work 

the empirical analysis of building blocks documented in this chapter was performed 

upon the De Jong test functions. Clearly, this is a restricted domain and it would be of 

advantage to apply the same analysis upon a wider class of function - particularly the 

Royal Road functions developed to encourage the exploitation of building blocks by 

the GA. 
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7.2 An Alternative Description of the Action of Crossover 

The description of crossover as a rotation in the parameter space yielded a pair of 

performance models of the GA upon the simple function /(x) = |x|^x e[0,l). These 

models were shown to approximate the performance of the GA accurately, in both the 

short and the long term. The accuracy o f these models provides validation of the initial 

assumption - that crossover can be described as a rotation in the parameter space. 

The role o f crossover in the GA is generally believed to be in the recombination of 

building blocks. However, the analysis of the building block hypothesis revealed that it 

was unlikely that the GA was combining building blocks to construct solutions. Some 

alternative account of the operation of the GA, and in particular of crossover, is 

therefore required. The description of crossover as a rotation in the parameter space 

provides such an account since it does not rely in any way upon the notions o f schema 

or building block. Furthermore, unlike the assumptions of the building block 

hypothesis, this description is valid for a wide range o f chromosomal representations 

(real coding, for example). 

The mechanics of the GA search process may be explained in terms of this rotational 

description of crossover. Initially, the population consists of a diverse set of parameter 

sets (defined by the randomly generated chromosomes). The effect o f crossover 

during the eariy generations of the GA is therefore to make large scale changes to 

these parameter sets. The selection process rejects those parameter sets of low fitness 

and the population begins to converge on the fitter regions of the search space. The 

effect of crossover upon the newly created, less distributed, population is therefore less 
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marked. The GA may be described as initially performing a coarse search, making 

large scale changes to the population and allowing the survival of poor solutions. As 

the population converges, the search becomes more and more fine grained and the 

increasing selection pressure reduces the likelihood of poor solutions surviving. This 

search process is not unlike that of simulated annealing and this description goes some 

way to explain the similarities in performzmce between these techniques. 

7.2.1 Further Work 

The description of crossover as a rotation is an approximation - the distribution of 

offspring more closely represents a rectangle. A model built upon a more accurate 

approximation of the effect f crossover would itself be more accurate. The use of 

these models as predictive tools is possible, although not very accurate. It would be of 

great advantage therefore i f a model could be derived for a more general class of 

flinctions. For example, consider the class of quadratic functions 

/ ( x ) =ax^x + b^x + c 

for arbitrary scalars a and c, and vector b. Such flinctions may be used to approximate 

small regions of a surface - a model buih for such a function might therefore still hold 

predictive power upon arbitrary classes of functions during the latter stages o f the GA, 

once the population has converged and the neighbourhood of each pair o f 

chromosomes may be accurately approximated by such a quadratic. 
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A number of alternative crossover techniques have been proposed for the real coded 

GA, most of which attempt to emulate binary crossover to some extent. The similarity 

between crossover and a rotation in the parameter space suggests that such a rotation 

could be used in place o f crossover - providing a new alternative crossover operator. 

7.3 A Technique for the Visualisation of High Dimensional Surfaces 

The variable separation visualisation technique compares favourably against the 

statistical technique of projection pursuit regression (PPR). In terms of computational 

expense, variable separation consistently outperforms PPR, and in terms of the errors 

of the visualisations variable separation performs well in comparison. As was 

predicted, the variable separation technique encounters difficulties when presented with 

functions containing high frequency (or order) components. Clearly, this represents a 

major failing of the technique and as a result, variable separation is not suitable for a 

wide range o f functions. 

An advantage of the variable separation approach is that it is simple to constrain the 

basis vector to include only terms of the same physical dimension. It may be desirable 

to the user that the visualisation does not include bases which combine velocity terms 

and distance terms, for example. This is more difficult for PPR, since it represents a 

constraint upon the optimisation cycle. Traditional optimisation technique may 

encounter difficulties when faced with such constraints - possibly resulting in a 

significant degradation in performance of the PPR algorithm. 
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7.3.1 Further Work 

The main failing of the variable separation technique is its poor performance upon 

fiinctions with high frequency (or order) components. This results from the use of 

second partial derivatives as a measure of the codependance of pairs o f parameters. 

An alternative measure must therefore be found - one for which a suitable 

diagonaiisation technique may be devised. 

The technique for the diagonaiisation o f the Hessian matrix is simply an adaptation of a 

technique for the diagonaiisation of real valued symmetric matrices and does not 

therefore guarantee optimal results. I t would be of benefit, therefore, to develop a 

diagonaiisation technique for symmetric vector valued matrices, although preliminary 

investigations into the possibility of such techniques have not been fruitful. 

Finally, there are many similarities between the model to which the variable separation 

technique and PPR fit the surface data and a single hidden layer feed-forward neural 

network. Such networks can be considered to be a less general form of regression 

technique. Comparative studies have shown that PPR and neural networks yield 

similar results, and it would therefore be of interest to compare variable separation to 

such neural networks. Some work must be done to adapt the variable separation 

technique before this is possible. In general, neural networks are applied to scatter 

data for which no meaningfijl derivatives exist. Furthermore, it would be desirable to 

increase the number of univariate fiinclions in the model to which variable separation 

fits the data above the dimension of the parameter set. 
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7.4 The Original Research Goals 

As has been explained in the introductory chapter of this thesis, the original research 

goals were to create an accountable optimisation technique, which in addition to the 

generation of an optimal or near optimal solution would provide reasons for the 

optimality of that solution. This was to be achieved through the extraction o f building 

blocks from the populations of the GA. Given the building block hypothesis, it was 

reasoned that those building blocks which were sampled most regularly by the GA 

would represent important relationships between parameters. The relationships could 

be used to justify the solution upon which the GA had converged. Furthermore, it was 

intended that the information contained within these building blocks could be used for 

the visualisation of the problem space. 

The first of the research goals was to develop a technique for the extraction o f building 

blocks from the populations of the GA. This extraction process was to concentrate 

upon the building blocks of highest utility and involve as little computational expense 

as possible. This goal was met, and computational expense was kept to a minimum 

through the use of a clustering algorithm (although for one of the De Jong test 

functions, computational expense was a serious issue resulting in the redefinition of 

that function). 

The second of the original research goals, the development of an accountable 

optimisation system, was not completed. Doubt cast upon the validity of the building 

block hypothesis by the previous research task indicated that they could not be used to 

provide an account for the solutions upon which the GA converges. This facility was 
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fundamental to the development of the accountable optimisation technique and it was 

therefore necessary to abandon this phase of the research. 

The final goal of the original plan of research was to use high utility building blocks for 

the visualisation of the functions to which the GA was applied. Although this was not 

possible, the development of a visualisation technique for high dimensional functions 

remained a major research goal. This goal was met by the variable separation 

visualisation technique which compared favourably with the statistical technique of 

PPR (used as a visualisation technique). 
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