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ABSTRACT 

The aim of this thesis was to evaluate the use of a meiofaunal copepod as a test species for 
assessing the developmental and reproductive effects of toxicants relevant to freshwater 
ecosystems. The harpacticoid copepod Bryocamptus zschokkei was chosen as a candidate 
test species as it possesses several attributes (widespread distribution, small size and fast 
development times) that are considered pre-requisites for toxicity test organisms, and has 
previously been shown to be a sensitive component of the stream community to 
contaminant exposure. Prior to conducting toxicity tests with B. zschokkei, studies were 
performed to evaluate the efifects of water hardness and food quality on the development 
and reproduction of this copepod. These data were then used to define optimal culture 
conditions. Bryocamptus zschokkei was insensitive to water hardness at <150 mg 1"' (as 
CaCOa), reflecting its range of tolerance in the field and suggesting the potential for 
toxicity testing across a range of hardness levels. Food quality afifected development and 
reproduction: beech leaves {Fagus sylvatica L.), conditioned for 2 weeks supported 
optimal overall development to adult and reproduction of B. zschokkei and were chosen for 
use in subsequent culturing and testing regimes. 

Development and reproduction assays for assessing the effects . of environmental 
parameters on B. zschokkei were combined to produce the first full life-cycle toxicity test 
for a freshwater copepod. This life-cycle test was relatively quick (6 weeks at 20°C) and is 
highly reproducible. The effects of three reference chemicals, the trace metal zinc, the 
pesticide lindane, and the moulting hormone 20-hydroxyecdysone (20-HE), were measured 
using this toxicity test. There was no effect of 20-HE (0-269 ng I"') on the life cycle of B, 
zschokkei. Bryocamptus zschokkei was, however, relatively sensitive to zinc and lindane 
compared with other freshwater crustaceans although sensitivity depended on the chemical 
and the duration of exposure. A model of'equiproportional development' was used to aid 
interpretation of the mechanism of toxicity of lindane, which was found to act by 
significantly prolonging the development time to adult. Reproductive endpoints (numbers 
of eggs and nauplii per female) were the most sensitive measure of zinc and lindane 
exposure, with lowest observed effect concentrations (LOEC) of 0.48 mg Zn 1"* and 32 fig 
lindane 1"*, respectively. An increase in abortion frequency, observed for these 
contaminants, may have potential as a biomarker of stress for this copepod. In conclusion, 
it is proposed that toxicity tests with B. zschokkei should be included in contaminant 
assessment procedures for freshwater systems as they would increase the choice and 
ecological relevance of current testing regimes. 
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Chapter 1 

General Introduction 



1.1 The Role of Meiofauna in Stream Ecosystems 

Lotic meiofeuna include those animals which pass through a 500 jim mesh but are retained 

on a 63 |im mesh (Giere, 1993; Robertson et al, 2000a). Within the stream benthos, this 

biotic category incorporates a diverse range of species from a number of functional groups. 

Permanent meiofauna, such as copepods, ostracods, rotifers and micro-turbellarians, spend 

their entire life cycle within the meiofeunal component of the benthos. The early larval 

stages of macroinvertebrates, including chironomid and stonefly larvae, also M l within the 

meiofaunal size class and are known as temporary meiofauna. As well as having a smaller 

size, permanent meiofauna differ from macrofauna in that they have a relatively faster life 

cycle and complete their life cycle entirely within the stream benthos, whereas many of 

macroinvertebrates (insects) have a terrestrial adult stage. The meiofaunal component of 

lotic systems is abundant (densities of animals can reach up to 105 individuals ml * 

sediment), and has a high degree of bio-diversity (Ward et al, 1998; Hakenkamp & Morin, 

2000). Although full species lists for stream meiobenthos are rare, existing data indicate that 

the meiofauna contribute to between 58 and 82% of the total species numbers (Robertson et 

o/, 2000b). The role of benthic meiofauna in the fiinctioning of stream dynamics is 

becoming increasingly well established (Robertson et al, 2000a). For example, it is 

recognised that meiofauna play an important role in benthic food web dynamics (Schmid-

Araya & Schmid, 2000). Permanent meiofauna often feed on microflora including algae, 

bacteria and fungi either as filter or suspension feeders or by browsing the surface biofiim of 

rocks and leaves (Perlmutter & Meyer, 1991). In turn, the meiofaunei, is an important food 

source for macroinvertebrate predators (Rundle & Hildrew, 1990; Lancaster & Robertson, 

1995; Schmid & Schmid-Araya, 1997) and bottom-dwelling fish (Robertson, 1990; Rundle 

& Hildrew, 1992). In addition, meiofauna (at least locally) have an important role in benthic 

metabolism as well as nutrient and organic matter cycling (Hakenkamp & Morin, 2000). 



Within the interstitial spaces of stream sediments, feeding and movement of meiofaunal 

species is thought to stimulate microbial activity by increasing the flow of oxygen and 

nutrients to biofilm layers and their associated microbizd community. Metabolic waste 

produced by meiofauna is likely to be rich in nutrients such as nitrogen and phosphorous 

which can be utilised by microbial communities (Hakenkamp & Morin, 2000). Few studies 

have addressed these ecological roles, however, there is evidence that grazing by meiofauna 

increases the metabolism or density of microbes in lentic systems (Perhnutter & Meyer, 

1991; Traunspurger et al, 1997; Hakenkamp & Morin, 2000). Some meiofaunal organisms 

influence stream sediment dynamics through bioturbation (Ward ei al, 1998). The 

reworking and peUetisation of sediments, as they pass through the gut of meiofauna can 

both increase microbial activity (Hargrave, 1976) and change the sediment composition by 

increasing the grain size (Ladle & Griffiths, 1980; O'Doherty, 1985). As a result, 

meiofauna provide fine particulate organic matter (FPOM) to the stream system, which may 

be used as a food source for other stream invertebrates. 

1.2 Pollution and Meiofauna 

In view of the diversity and potential ecological significance of lotic meiofauna, it is 

becoming increasingly apparent that these communities need to be considered in holistic 

approaches to environmental monitoring. Meiofauna organisms are particularly vulnerable 

to the effects of contaminants because of their mode of life. For exzunple, many pollutants 

have an affinity for particulate matter, therefore, sediments and pore waters often contain 

elevated concentrations of contaminants compared with surfece waters (Salomons et al, 

1987; Tessier & Campbell, 1987). Permanent meiofauna, living their entire lives within the 

interstitial spaces of the stream benthos, are particularly vulnerable to exposure to such 

sediment-bound contaminants. The role of meiofeuna in bioturbation and food web 

dynamics means that they may also be influential in determining the ultimate effects, fate. 



recycling and bioconcentration of contaminants within the stream system. The importance 

of incorporating the meiofauna into pollution monitoring of estuarine and marine systems 

has been recognised for many years (Coull & Chandler, 1992). Indeed, marine meiofauna 

have been found to be at least as sensitive as macroinvertebrates to contaminants in 

community level studies (Austen ei al, 1989; Somerfield e( al, 1994). The sensitivity of 

meiofaunal species may be related to the fact that they have relatively short generation 

times, high metabolism and fast growth rates compared with macroinvertebrates, and 

therefore react more quickly to environmental perturbation (Warwick, 1993; Burton, 1998). 

In marine systems, copepods and nematodes are the most widely used meiofeunal taxa in 

biomonitoring studies (Coull & Chandler, 1992). Analysis of marine benthic communities 

identified copepods as one of the most sensitive meiofaunal species (mainly compared with 

nematodes) to organic pollution (Raffaelli & Mason, 1981; Van Damme et al, 1984). 

Indeed, the ratio of nematode to copepod numbers has been proposed as an index of 

organic pollution, and has been found to be a useful tool for assessing organic pollution in 

sandy sediments (Raflfaelli, 1987). The benthic meiofaunal communities of fi*eshwater 

systems have received far less attention in environmental monitoring, but the available data 

support evidence fi-om marine systems that copepods are relatively more sensitive to 

contaminants than other meiofaunal elements. For example, harpacticoid copepods, 

considered good bioindicators of oligotrophic lakes, are more sensitive to anoxia and 

eutrophy than other meiofauna in community studies evaluating the effects of organic 

loading on benthic communities (Sarkka, 1992; 1995). Analysis of the distribution of 

meiofaunal crustaceans in the groundwater and springs of southern Finland showed 

cyclopoid copepods (many species of which have the ability to enter diapause in response to 

negative environmental conditions) to be more tolerant of anthropogenic disturbance than 

harpacticoids (Sarkka et al, 1997). Recently, Burton et al (2001) evaluated the use of 

stream meiofauna as indicators of trace metal pollution and found that elevated copper, and 



to a lesser extent zinc, were the major factors explaining the distribution of two harpacticoid 

copepods Bryocamptus zschokkei and B. praegeri. These haqjacticoids were also 

highlighted as being particularly sensitive to elevated almninium concentrations in Welsh 

streams (Rundle, 1993). 

Meiofeuna has been largely ignored in toxicity bioassessment of benthic freshwater systems, 

particularly in evaluating the efifects of sediment contamination (Nebeker et al, 1984; Giesy 

& Hoke, 1989; Girling et al, 2000). Current international testing standards recommend 

several potential macrofaunal test species for assessing the effects of sediment associated 

contaminants, including chironomid larvae, amphipods, oligocheates and daphnids (ASTM, 

1999a). While it is often suggested that the ecological relevance of a test species to the 

system to be protected should be an important consideration when choosing a test species, 

this rarely appears to be a major concern to those conducting regulatory tests (Cairns & 

Pratt, 1989). For example, the cladoceran Daphnia magna is used regularly in sediment 

testing despite its planktonic mode of life (Nebeker ei al, 1984; Giesy & Hoke, 1989). 

Other animals also recommended as freshwater test species include the amphipod Hyalella 

azieca, which is not indigenous to British freshwater systems (ASTM, 1999a). The lack of 

concern over the ecological relevance of a test species perhaps reflects a toxicological 

approach to environmental assessment where av2ulability and ease of culture are the main 

priorities of the test organism as opposed to an ecotoxicological approach where ecological 

relevance is the major concern (Chapman, 1995a). 

1.3 Single-Species Tests 

The relevance of single-species tests in environmental monitoring has often been 

questioned. For example, data from single-species toxicity tests cannot necessarily be 

extrapolated reliably to the field (Cairns ei al, 1993). One reason for this is that 



contaminants rarely occur in isolation but are often present as low concentration mixtures of 

contaminants. It is also advocated that the most 'sensitive' species in a community should 

be used in single-species tests to ensure that the entire community is being protected. It is 

now recognised, however, that different species respond differently to individual chemicals 

and that it is, therefore, impossible to choose the most 'sensitive' species within a 

community. In general, any species that has been found to be particularly sensitive to 

environmental perturbation is often difficult to maintain under artificial laboratory 

conditions (Maltby & Calow, 1989; Cairns & Pratt, 1989; Chapman, 1995a). Despite such 

reservations about their ecological relevance, it is generally accepted that single-species 

tests will continue to have a major role in environmental risk assessment and in regulating 

the effects of potentially harmfiil new chemical products (Cairns et al, 1993; Forbes & 

Forbes, 1994). Indeed, laboratory-based studies may be the only way in which the causes of 

effects observed in the field can be reliably verified (Chapman, 1995b). In addition, single-

species tests have a role in determining the potential mechanism of action of contaminants. 

This has become particularly apparent fi-om recent evidence of the potential effects of 

endocrine disrupting chemicals (EDCs). Recognition of the existence of EDCs has 

increased the emphasis on developing single-species tests with endpoints which may indicate 

perturbation of endocrine fiinction and for species where fiill life-cycle tests can be carried 

out (deFur et al, 1999). It is, therefore, imperative that the tools used in toxicity evaluation 

are as reliable as possible and at least have some relevance to the systems that need to be 

protected (Chapman, 1995a). A number of critiques have evaluated the requirements, 

choice and application of single-species toxicity tests (Cairns & Pratt, 1989; Richardson & 

Martin, 1994; Chapman, 1995a; Power & McCarthey, 1997). The choice of a test organism 

will vary depending on the information required and the system that is to be protected. 

Some of the key criteria of a test organism are outlined below (adapted fi^om deFur et al 

1999; ASTM, 1999a): 



• Laboratory culture - The ability to culture animals in the laboratory introduces an aspect 

of quality control to a toxicity test limiting the effects of previous exposure to 

contaminants, disease or parasites. It is also an advantage because animals of a defined 

age or life-stage are available all year round. 

• Short generation time - This means that effects on different life-history parameters (e.g. 

development and reproduction) can be screened rapidly and makes full life-cycle or 

transgenerational studies more practical. In addition, shorter tests are likely to be less 

expensive. 

• Small size - Small animals often have short generation times and require less space for 

their culture or for conducting tests. Small test systems also reduce the quantity of test 

compound that is required. In some cases, small size may be a disadvantage if 

bioaccumulation of chemicals or biomarkers of exposure are being measured as test end 

points. 

• Multiple life-stages - Easily identifiable life-stages means that potentially more sensitive 

juvenile stages can be tested which may give a more accurate indication of the potential 

impact of a contaminant. 

• Ecological or economic relevance - Organisms with a widespread distribution are often 

favoured as test species as this increases the geographical range over which a species 

might be considered representative. 

• Relative sensitivity - In risk assessment, it is considered that if the most sensitive species 

is imaffected by a contaminant then the entire community will be protected. While the 

existence of a most sensitive species is a matter for debate (Maltby & Cedow, 1989; 

Cairns & Pratt, 1989), it is imperative that, before recommending a particular test 

species, comparative information on the reliability of responses and discrimination 

between chemicals of interest is evaluated. 

• Standardisation - Toxicity tests giving repeatable results under defined environmental 



conditions both within and between laboratories increase their reliability and acceptance 

by regulatory bodies. Inter-laboratory calibration is used to verify standardisation 

between laboratories, but are typically only carried out for established test species. 

1.4 Marine Harpacticoid Copepods as Model Test Organisms 

In a review of the use of marine meiofauna for assessing the effects of contaminants in 

single-species tests more than half the tests were carried out using copepods (Coull & 

Chandler, 1992). Harpacticoid copepods possess many attributes that make them ideal as 

toxicity test organisms and have been used for evaluating the effects of marine contaminants 

for more than 20 years (Bengtsson, 1978). In general, they are small, have fast development 

times and are easily cultured under laboratory conditions. As discussed previously, 

harpacticoid copepods have been highlighted as being sensitive to pollution in community-

level environmental assessment of marine systems (Section 1.2), Early studies, using 

harpacticoid copepods as test organisms, focused on the acute toxicity of contaminants 

(Bengtsson, 1978; Moraitou-Apostolopoulou, 1978). Larval life-stages of harpacticoid 

copepods are recognised easily and potentially are more vulnerable to pollutant exposure 

than adults, therefore, the differential sensitivity of life-stages (nauplii and copepodids) to 

selected pollutants are often reported (Verriopoulous & Moraitou-Apostolopoulou, 1982; 

Hutchinson & Williams. 1989; Green et al, 1996). The value of these tests is now 

recognised by regulatory bodies and acute test methods using the copepodid stages of Tisbe 

battagliai have been included as an international standard method (ISO, 1998). In fact, 

short-term tests (96 h) using the harpacticoid T. battagliai have been used for in situ bio-

monitoring of efiQuents from a contaminant gradient in the German Bight (North Sea) in 

shipboard experiments (Williams, 1992), Astley et al (1999) also found that acute tests 

using T. battagliai were more sensitive as a biomonitor of pollution than more conventional 

biomarker techniques (measures of crab glutathione reductase activity and metallothionein 



induction) in an assessment of contaminated sites from the Tees Estuary. 

While acute toxicity tests have value as a screen for contaminant effects, it is now generally 

accepted that the long-term effects of a contaminant cannot be extrapolated irom acute 

toxicity data (Cairns et al, 1993). Sub-Iethal effects v ^ also give more information on the 

mechanism of toxicity of a contaminant. Harpacticoid copepods were found to be ideal for 

use in chronic exposures, and methods have been developed to assess the sub-lethal effects 

of contaminants on both development to adult (Le Dean & Devineau, 1987) and 

reproduction of copepods (Bengtsson & Bergstrom, 1987; Chandler, 1990). More recently, 

the use of life-cycle tests which incorporate endpoints for development to adult and 

reproduction are being advocated in view of evidence for the potential endocrine disrupting 

effects of some chemicals (deFur et al, 1999; Hutchinson et al, 1999a, b). Such tests include 

aspects of embryonic, gonadal and larval development, each of which is subject to endocrine 

regulation. A number of chemicals, including those suspected of affecting both vertebrate 

(17p-oestradiol and diethylstilbesterol) and invertebrate (20-hydroxyecdysone, 

diflubenzuron) endocrine function, have already been screened in copepod life-cycle tests 

(Wright et al, 1996; Hutchinson et al, 1999a, b). It has been suggested that full life-table 

analysis be used in pollution studies. The life-cycle test is extended to obtain information on 

the age-specific survival, development and reproduction of a cohort of individuals which is 

used to calculate the intrinsic rate of natural increase for the population (Chapman, 1995a). 

Endpoints obtained fi'om life-table studies may have greater ecological relevance than short-

term toxicity tests because they consider effects on the whole population rather than on 

individuals and also have the potential to highlight differences between treatments even 

when individual variability is high (Bechmann, 1994). Full life-tables were used successfully 

to evaluate the effects of copper (Bechmann, 1994) on T. furcata, and nonylphenol 



(Bechmann, 1999) and pentachlorophenol (PCP) on 7. battagliai (Williams, 1997). 

Abbreviated life-table analysis has been incorporated into sediment testing regimes to assess 

the effects of chlorpyrifos on the infeunal harpacticoid Amphiascus tenuiremis (Green & 

Chandler, 1996). There is, however, evidence to suggest that increasing the length of the 

bioassay does not necessarily increase its sensitivity (Lotufo, 1997; Lotufo & Fleeger, 1997; 

Kovatch et al, 1999). It is difficult to argue against the use of harpacticoid copepods as 

model test organisms. For example, populations of T. battagliai were entirely suited for 

testing complex models of density dependence on the effects of exposure to 

pentachlorophenoi (PCP) (Sibly et al, 2000). Test guidelines incorporating survival and 

reproduction of pelagic marine crustaceans including harpacticoid copepods have been 

identified as a priority for development by the Organisation for Economic Co-operation and 

Development (OECD, 1998a). In view of the applicability of harpacticoid copepods for 

marine pollution assessment, it is surprising that there is no equivalent representative test 

species from the freshwater meiofauna. 

1.5 Freshwater Copepods as Test Organisms 

Almost without exception, toxicity tests using freshwater copepods have been either acute 

or short-term chronic development assays. The majority of available data refer to the effects 

of trace metals where toxicity appears to be dependant on life stage (Burton, 1998), 

previous exposure (Lalande & Pinel-Alloul, 1986; Burton, 1998) or species (Lalande & 

Pinel-Alloul, 1986). In general, copepods appear to be amongst the most sensitive 

crustacean species to trace metal exposure, although they are generally more tolerant than 

daphnids (Baudouin & Scoppa, 1974; Notenboom et al, 1992; Burton, 1998). Mode of life 

and feeding strategies are probably important in dictating differential sensitivity both within 

and between species. For example, the predatory cyclopoid Cyclops abyssorum was more 

tolerant to zinc, copper, cadmium and mercury than the cyclopoid Tropocyclops prasinus 
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mexicanus or daphnids, which are both filter feeders (Baudouin & Scoppa, 1974; Lalande & 

Pinel-Alloul, 1986). Adult Diaptomm clavipes were found to be much more tolerant to 

acridine than daphnids. This increased tolerance was suggested to be due to the fact that on 

achieving adulthood, copepods cease to moult while cladocerans continue to moult through 

their life (Cooney & Gehrs, 1984). The fact that adult copepods do not moult may also 

explain the increased sensitivity of juvenile life stages of freshwater copepods to 

contaminants (Cooney & Gehrs, 1984; Burton, 1998; Willis, 1999). In contrast, the acute 

toxicity of synthetic pyrethroids to freshwater copepods appears to be in the same range as 

observed for cladocerans (Day, 1989). Calanoid and cyclopoid copepods from New Zealand 

lakes and the groundwater harpacticoid Parastenocaris germanica show relatively more 

sensitivity to the reference toxicant pentachlorophenol (PCP) compared with other 

freshwater invertebrates (Notenboom et al, 1992; Willis, 1999). Copepods also vary in their 

responses to contaminants depending on the part of the water body they inhabit. For 

example, it has been suggested that groundwater species may show enhanced sensitivity to 

some contaminants because of the additional stress of low oxygen conditions (Mosslacher, 

2000). Mosslacher (2000) compared the relative sensitivity of groundwater species and 

related surface-living animals to inorganic nutrient enrichment as potassium chloride (K.CI) 

and potassium nitrate (KNO3). Tolerance of Crustaceans to KCI and KNO3 displayed the 

following pattern, ostracods > copepods > isopods with the sensitivity of different 

Crustacean groups being more important than the influence of groundwater verses surface-

living species. Alternatively, it has been suggested that the groundwater harpacticoid 

Parastenocahs germanica showed increased sensitivity to PCP because it is adapted to low 

oxygen groundwater conditions and that this chemical acts by uncoupling respiration 

(Notenboom e/a/, 1992). 

Most other toxicity data for freshwater copepods originates from mesocosm studies where 
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the numbers of surviving adults and nauplii at selected time periods are used as an endpoint. 

Many of these studies do not distinguish between species of copepod, therefore, it is 

diflBcult to make statements about individual species sensitivity. This lack of species 

differentiation has been recognised as a drawback of mesocosm tests (Girling et al, 2000). 

The majority of these studies also concentrate on zooplankton rather than meiobenthic 

communities. In mesocosms, planktonic copepods have shown sensitivity particularly to 

exposure to insecticides including lindane (Fliedner & Klein, 1996; Peither et al, 1996), 

chlorpyrifos (Brock et al, 1992; Zrum et al, 2000), bifenthrin (Hoagland et al, 1993) and 

permethrin (Kaushik et al, 1985). Reports of differential sensitivity of different zooplankton 

are variable with a general trend towards large-bodied zooplankton showing greater 

sensitivity to pesticides (Hanazato, 2001). In many studies, however, copepods appear to be 

at least as sensitive to contaminant exposure as cladocerans (Kaushik et al, 1985; Hoagland 

et al. 1993; Gillespie et al, 1997). In the majority of mesocosms, where adult and naupliar 

sensitivity is compared, adults are usually less sensitive to toxicant exposure than larval 

stages, corroborating evidence fi*om single-species tests (Brock et al, 1992). Considering 

the ecological relevance and practical applicability of freshwater copepods to toxicity 

testing regimes, it is surprising that more information for these taxa is not available. This 

lack of information is particularly remiss in view of their widespread use in mesocosm 

studies, as it is prudent to understand the response of individual species if contaminant 

effects and inter-species relationships in more complex systems (mesocosms and field 

studies) are to be fully understood (Rundle, 1993). Few studies have attempted to compare 

the responses to pollutants of individual species of copepod with respect to effects observed 

in mesocosms (Day, 1989; Burton, 1998; Willis, 1999). As the information currently 

available refers to different species and a range of contaminants, it is difficult to make 

genereilised conclusions on the responses of fi-eshwater copepods to pollutant exposure. 
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1.6 Bryocamptus zschokkei (Schmeil, 1893) as a Representative Meiofeunal Test Species 

As discussed previously, the major requirements of a test species are their ecological 

relevance and relative sensitivity to contaminant exposure. Bryocamptus zschokkei was 

identified as a sensitive indicator of trace metal pollution from stream community analysis 

and, as such, was considered a key species for fiirther investigation under controlled 

laboratory conditions (Burton, 1998). The acute and chronic (> 10 days) effects of copper 

were evaluated using survival, development to adult and fecundity as test endpoints. 

Chronic effects on survival of this copepod in toxicity tests appeared to reflect the declines 

observed in field populations, suggesting that this species may be highly relevant for 

assessing the effects of contaminants in stream sediments (Burton, 1998). 

Bryocamptus zschokkei also possesses many other attributes that support its further 

development as a test organism. This harpacticoid has a widespread distribution with a 

range that extends over the entire holarctic (Rundle et al, 2000). It occurs in a range of 

habitats including lakes (Anderson & DeHenau, 1980), hyporheic streams, ponds and 

springs (Shiozawa, 1986; Rundle, 1993; Fryer, 1993), and brackish waters (Amhed-Abada, 

2000). Bryocamptus zschokkei is considered a core constituent of stream microcrustacean 

communities, with densities of 8221 per m^ being recorded in streams of southwest England 

(Burton, 1998). It is present all year round with peaks of abundance during late summer / 

autumn (Rundle, 1990; 1993). It favours well oxygenated, fast-flowing waters (Gumey, 

1932; O'Doherty, 1985) although it has also been recorded al depths of up to 70 cm in well 

oxygenated interstitial sediments (Kowarc, 1992). Bryocamptus zschokkei is usually found 

associated with organic matter including leaf material and bryophyte flushes that allow 

shelter torn high flow conditions (O'Doherty, 1985; Fryer, 1993). The distribution of B. 

zschokkei in the field is determined by both physiochemical parameters, pH and aluminium 

concentration (Rundle, 1990; Rundle & Ormerod, 1991; Rundle, 1993) and physical 
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parameters (they show a preference for grassy margins over riffles) (Rundle & Ormerod, 

1991; Suren, 1992). While the distribution of this harpacticoid is relatively well 

characterised, other aspects of the basic biology of B. zschokkei are still unclear; for 

example, it is not known what this copepod feeds on in its natural environment. Detritus has 

been considered to be the major food source for sediment-dwelling harpacticoids, although 

there is increasing evidence (from marine studies) that copepods can feed selectively on 

individual particles (Marcotte, 1984). Algae, protozoa, fungi and bacteria have been 

proposed as potential food sources for B. zschokkei within the stream benthos (O'Doherty, 

1985). It is also known that food utilisation by harpacticoid copepods may vary with season 

(Lee et al, 1976) or stage of development (Decho & Fleeger, 1988). A greater insight on 

how basic environmental parameters affect the life history of B, zschokkei is required if 

culture conditions are to reflect environmental conditions and in order to help interpret 

some of the more subtle effects of contaminants. 

Bryocamptus zschokkei may also be important in terms of overall productivity in streams. 

For example, an estimate of dissolved organic carbon (DOC) production in a stream in 

South Carolina for B. zschokkei was 396 mg m'̂  yr"' based on copepod biomass of 22 mg 

dry mass m"̂  (O'Doherty, 1985). This was similar to estimates of production of 500 mg m'̂  

yr ' for the dominant leaf-shredding stonefly larvae Peltopera maria in the same stream 

system (Meyer & O'Hop, 1983). Although B. zschokkei is not always recorded at the 

densities recorded in South Carolina (22 mg dry mass m"̂ ), such high levels of DOC 

production by this copepod suggests that it may have a considerable influence on stream 

sediment productivity. Grazing by stream harpacticoids has also been shown to enhance 

microbial activity on the surface of leaf material, which could result in an increase in stream 

secondary production (Perlmutter & Meyer, 1991). In addition, meiofaunal crustaceans 

(including Bryocamptus spp.) have been found to contribute to the diets of both 
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macroinvertebrates (Lancaster & Robertson, 1995) and bottom-dwelling fish (Rundle & 

HUdrew, 1992). 

The ability to maintain a species in the laboratory is also a pre-requisite of a test organism. 

Bryocamptm zschokkei have been reared successfully in the laboratory on a diet of beech 

leaf material taken directly from a stream (O'Doherty, 1985; Burton, 1998). Other 

copepods in this genus which have been amenable to laboratory culture include B. echinatus 

(on a diet of decaying plant material) (Sarvala, 1979; Kowarc, 1990) and B. minutis (fed a 

mixed diet of protists, rotifers, detritus and benthic algae) (Monocov, 1972, 1976 cited in 

Sarvala, 1998). 

Bryocamptus zschokkei demonstrates typical harpacticoid development, moulting through 

six naupliar stages (Nl , N2, N3, N4, N5, N6) and five copepodid stages (CI, C2, C3, C4, 

C5), with the sixth copepodid moult corresponding to the adult (Sarvala, 1979). The 

naupliar stages are morphologically distinct from copepodid stages (Fig. 1.1). The life cycle 

of B. zschokkei is relatively short with reported development times to adult ranging from 25 

to 35 days at 15°C, although individuzds have been known to have a life span of up to 370 

days at 18°C (O'Doherty, 1985; Burton, 1998). Burton (1998) ran developmental and 

reproductive toxicity assays using B. zschokkei which took six weeks at 15°C. As B. 

zschokkei is sexually reproducing, endpoints such as sex ratio or male and female 

abnormalities (e.g. intersex) could be incorporated into toxicity test designs. Males and 

females are easily differentiated, both from the distinct shape of their antennae and because 

of their sexual dimorphism; males are smaller, about 0.42 mm long while the larger females 

range from to 0.54-0.60 mm in length (Gumey, 1932). Pairing of copepods rarely occurs 

before the animals are fully mature (O'Doherty, 1985; personnel observation) when males 

are observed clasping the female by their caudal rami (Fig. 1.2). Fertilisation of broods 
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occurs via spermatophore-mediated transfer, fi-om which multiple broods can be fertilised 

(O'Doherty, 1985). Once fertilisation has occurred, there is the potential to monitor 

reproduction of females, in isolation fi-om males, at least for short periods of time. Females 

cany an external egg sac (Fig. 1.3) and, therefore, it should be possible to continually 

monitor any effects of potential stressors on each individual brood. Bryocamptus zschokkei 

has a life-history of continuous iteroparity in which a number of small broods of ofifepring 

(up to 40 ofifepring per brood) are produced over their entire life (O'Doherty, 1985, Rundle, 

1993). Oflspring production is less seasonal than other species and 5. zschokkei is known to 

reproduce over the entire year in southern England (Rundle, 1990), therefore there should 

always be animals available for initiating cultures or conducting toxicity tests. 

1.7 Outline of Thesis 

It is apparent that a representative test species fi-om the meiofauna of lotic systems would 

increase the choice and relevance of current testing regimes. The general aims of this thesis 

were, therefore, to evaluate the use of a meiofaunal copepod {Bryocamptus zschokkei) as an 

ecologically-relevant test species to measure developmental and reproductive effects of 

toxicants released into the fi-eshwater environment. As the general biology of this copepod 

is relatively poorly understood (as with the majority of fi-eshwater meiofeuna) the first half 

of this thesis concentrates on optimising culture conditions for B, zschokkei, by developing 

testing regimes and evaluating the sub-lethal effects of environmental parameters (water 

hardness and detritus type). The effects of water hardness on the development to adult of B, 

zschokkei and general culture techniques are described in Chapter 2. This chapter also 

considers the applicability of two models of development (isochronal vs. equiproportional), 

that have been described previously for marine harpacticoid and fi-eshwater calanoid 

copepods. Chapter 3 assesses the effects of water hardness on several reproductive 

parameters of B. zschokkei including embryonic development time and the numbers of eggs 
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igure 1.1: The morphologically distinct A) naupliar and B) copepodid stages of Bryocamptus zschokkei. 



igure 1.2: Male Bryocamptus zschokkei (left) clasping the female (right) by her caudal rami. 



0.2 mm 

Figure 1.3: Female Bryocamptus zschokkei carrying her egg sac externally 

and nauplii per female and reports baseline data on the reproduction of B. zschokkei under 

laboratory conditions. The effects of different types of detritus as potential food sources for 

B. zschokkei were considered in Chapter 4, by recording their effects on copepod 

development and reproduction in two separate experiments. Electron photo-micrographs 

were obtained using scanning electron microscopy for the different detrital types and the 

surface microflora was quantified using image analysis. The area of microbial coverage and 

density of bacteria on the detritus were used as an indication of food quality, suggesting the 

amount of potential food available for B. zschokkei to browse upon. 

In the second half of this thesis, the development and reproduction bioassays described in 
I Q 



Chapters 2-4 are used in a single life-cycle test for assessing the effects of contaminants on 

B. zschokkei. As one of the major requirements of a test species is to have a database of 

their responses to a range of chemicals, the sensitivity of B. zschokkei to three potential 

toxicants (20-hydroxyecdysone, zinc and lindane) suspected of exerting their effects on 

developmental or reproductive parameters was evaluated. Chapter 5 considers the effects of 

the arthropod moulting hormone 20-hydroxyecdysone (20-HE), which might be expected to 

have an effect on copepod development, on B. zschokkei. The acute toxicity to different 

life-stages of B. zschokkei (nauplii, copepodid and adult) and chronic effects of zinc are 

considered in Chapter 6 incorporating recommended improvements to the life-cycle test 

design suggested in Chapter 5. The final experimental chapter reports the acute and chronic 

effects of the pesticide lindane to B. zschokkei (Chapter 7). Chapter 8 provides a critical 

evaluation of the potential of B. zschokkei for future use as a test organism. 
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Chapter 2 

Influence of water hardness on the 
post-embryonic development of 

Biyocamptus zschokkei 
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2 Abstract 

Prior to the use of any species in environmental monitoring it is important to understand the 

effects on their life history of natural variation in water chemistry before considering any 

potential influence of contaminants. The effect of water hardness (between 10 and 150 

mg r* as CaCOa), a key environmental variable in freshwater systems, on the survival and 

development times of Bryocamptm zschokkei are reported here. Excessive handling of the 

naupliar stages of B. zschokkei resulted in a significant reduction in their survival and 

increased development times compared with lower handling frequency. When handling was 

reduced, the post-embryonic development of B, zschokkei (17.9 days at 20°C) was 

relatively quicker than previous estimates for this species (30.3 days at 18**C, O'Doherty, 

1985). Hardness had no effect on juvenile survival or development times. The data obtained 

were used to test the application of two copepod development models, isochronal (equal 

duration of each moult stage) vs. equiproportional (each moult stage represents a known 

proportion of the total development time) to the development of this copepod. 

Bryocamptus zschokkei exhibited equiproportional development, and more time was spent 

in the later copepodid stages (C4 and C5), irrespective of hardness. As some toxicants 

might be expected to disrupt the normal moulting pattern, this model of equiproportional 

development may have application in interpreting the mode of action of contaminants in 

toxicity tests. 

2.1 Introduction 

Before investigating the potential impact of contaminants on a species, it is essential to 

understand fiilly their biological response to natural variations in water chemistry. The 

development and growth rates of freshwater copepods are influenced by environmental 

conditions but most of the data are for calanoid and cyclopoid copepods (Hart 1990; Maier, 

1994; Twombly et al, 1998), with similar information for harpacticoids being relatively 
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scarce (Sarvala, 1979). Indeed, details on the life-history strategies of harpacticoid 

copepods are limited (Rundle, 1993; Robertson, 2000). The response of ontogenetic 

development to increasing temperature has been characterised for a few species of 

freshwater harpacticoid (Sarvala, 1979, O'Doherty, 1985), but it is not known how this 

group responds to other environmental variables such as food quality or the ionic 

composition of the dilution water. Water hardness is one of the most important chemical 

parameters in shaping freshwater assemblages, and has been shown to correlate positively 

with shifts in the distribution and abundance of freshwater zooplankton (Tessier & Horwitz, 

1990), stream macro invertebrates (Wright ei al, 1984) and benthic microcrustaceans 

(Rundle, 1990; Rundle & HUdrew, 1990; Fryer, 1993). Rundle & Ramsay (1997) 

demonstrated large-scale geographic differences in the community composition of stream 

microcrustaceans as a result of low mineral concentrations, regardless of pH and ionic 

concentration. Calcium concentrations also influence the density and life-history parameters 

of field populations of individual species of amphipods (OkJand & 0kland, 1985; Gibbons & 

Mackie, 1991; Meyran, 1997), cladocerans (Hessen et al, 1995) and microcrustaceans 

(Fryer, 1993). In crustaceans, calcium is considered an essential element and, after 

moulting, a rapid uptake of this mineral is required for hardening of the exoskeleton 

(Stevenson, 1985; Alstad et al, 1999). Calcium is obtained directly either from food or 

water. For example, the calcium content of the water flea Daphnia magna can be related 

directly to the chemical composition of their dilution medium (Cowgill et al, 1986). 

Development might, therefore, be vulnerable to perturbation as a result of changes in water 

hardness, which can alter the bioavailability of calcium. For example, field populations of 

the amphipod Gammarus fossarum were larger and had a longer moult cycle from water 

with high compared with low water hardness (Meyran, 1997). Delayed maturation of D. 

magna (Lewis & Maki, 1981) and low juvenile survival of the North American fairy shrimp. 
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Streptocephalus seali, have been observed in soft compared to hard water (Anderson & 

Hsu, 1990). 

Development patterns, including information on the duration of individual moult stages of 

several species of calanoid and cyclopoid copepods have been documented (Hart, 1990; van 

den Bosch & Gabriel, 1994). Two models of copepod development have been proposed for 

these groups, 'isochronal' and 'equiproportional development'. Isochronal development is a 

life-cycle with equal duration of each of the various moult stages. This model appears to be 

rare for copepods (Hart, 1990). Equiproportional development is where the duration of 

each development stage is a fixed proportion of the total development time, and is 

independent of temperature and food availability. The latter model is thought to fit most 

copepods (Hart, 1990), however, neither model has been validated for freshwater 

harpacticoids. 

In order to obtain a more thorough understanding of the life history of B. zschokkei in 

response to variation in water chemistry, and to define culture and testing regimes the aims 

of this chapter were to: 

1. assess the effects of water hardness on the post-embryonic development times of this 

copepod, 

2. obtain baseline data for development times to the first copepodid stage, to adult and for 

individu£Ll copepodid stages, and to 

3. determine if models of'isochronal' or 'equiproportional' development are applicable for 

this species of harpacticoid. 
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2.2 Materials and Methods 

2.2.1 Copepod Cultures 

Cultures were initiated using animals sampled on 28 July 1998 from the River Yealm at 

Hele Cross, Comwood, Devon (grid reference 50^*25'90N, 4°57'50W). Samples were taken 

using a kick net (63 |im mesh) throughout the stream, and passed through 500 ^im and 

63 |im sieves. The smaller biological fraction was transported back to the laboratory where 

copepods used to initiate cultures, were sorted individually under a dissecting microscope, 

using a Pasteur pipette. Bryocamptus zschokkei were maintained in 13.5 cm diameter 1 litre 

capacity glass crystallising dishes (cultures) which were covered with a loose fitting lid, to 

reduce evaporation. Approximately one hundred adults of mixed sexes were used to seed 

each stock population. Cultures were initially maintained in a constant temperature room at 

18 (± 1.0)°C which was increased to 20 (± 1.0)°C after a period of acclimation. The light 

regime was 16 h light and 8 h dark with a 20 min dawn dusk transition time. Water from the 

stream where the copepods were sampled was used as the culture medium. This was filtered 

through a 0.2 ^im mesh to remove protozoa, algae, fimgi and small metazoans, and 

measurements of pH, hardness, alkalinity and the concentrations of water soluble heavy 

metals were made prior to use. Approximately 400 ml of water was added to each culture 

vessel giving a water depth of ca 5 cm. Partial replacement (250 ml) of media was carried 

out three times per week and the pH (240 pH meter. Coming, USA) and dissolved oxygen 

(58 meter, YSI Incorporated, USA) content of the water removed was obtained. Water 

temperatures and general observations on the condition of the animals, including mortalities 

and the number of dropped egg sacs, were recorded daily for the first three months (until 

cultures were established) after which observations were performed three times per week. 
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Initially, animals were provided a food source of naturally conditioned leaves taken from the 

stream where they were obtained (River Yealm, 28 July 1998). Beech leaves {Fagus 

sylvatica L.) were chosen as these have previously been shown to support growth and 

reproduction o^ B. zschokkei (O'Doherty, 1985; Burton, 1998). The leaves were frozen 

before use at -20°C for 48 h, in order to kill any associated fauna, but maintain the 

associated microbial community. Leaves were renewed when necessary (i.e. i f the leaf 

material became shrivelled or degraded). A procedure for artificially conditioning leaf 

material was developed to increase standardisation (see Section 2.2.3). Cultures were 

nmintained at 20 (± 1)°C which corresponds to maximum July temperatures in rivers where 

B. zschokkei has been sampled (Rundle, 1990). Rundle and Hiidrew (1990) found that B. 

zschokkei was more abundant in warmer waters and it is well established that, within their 

tolerance range, harpacticoid development is accelerated al high temperatures (Sarvala, 

1979; Hicks and Coull, 1983). A temperature of 20°C is also recommended for regulatory 

testing of other freshwater Crustacea by the American Society for Testing and Materials 

(1999a, b). 

2.2.2 Conditioning Leaves 

To standardise the feeding regime for B. zschokkei, copepods were supplied with artificially 

conditioned leaves. Beech leaves (F. sylvatica L.) were obtained from a single tree in 

Churston Woods, Brixham, Devon (grid reference 50^=24'15N, 4**3r30W) on the 

3 September 1998. Only whole leaves with no visual signs of pathogen infection, were used 

as a food source. The leaves were oven dried at 60**C for 48 h and then stored in a sealed 

polythene container at 20°C. Before use, leaves were rehydrated in Elendt's M4 medium 

(Elendt & Bias, 1990), which had been aged for at least seven days. As it takes about two 

weeks immersion in water for leeching of toxins and microbial colonisation of leaves to 

26 



occur (Allan, 1995), leaves were maintained in continuously aerated Elendt's medium for 

14 days; the medium was replaced every seven days. 

2.2.3 Test Medium 

The advantages of culturing and testing Crustacea in a fully defined medium are well 

established (Cowgill et al, 1986; Vijverberg, 1989). A reconstituted medium also facilitates 

the manipulation of physiochemical parameters by allowing alteration of the concentrations 

of the mineral salts that contribute hardness and alkalinity. Elendt's M4 appears to be one of 

the most appropriate culture media for the maintenance of Daphnia magna, allowing long-

term culture with no apparent signs of reduced viability or reproduction (Elendt & Bias, 

1990; Bradley et al, 1993). Good reproducibility of toxicity tests between laboratories using 

this medium has been demonstrated and it is now recommended as a standard medium in 

regulatory test guidelines (OECD, 1998b). Modifications of Elendt's medium have been 

made for the culture and testing of the amphipod Hyalella azteca (Borgmann, 1996) and 

the marine copepod, Acartia tonsa (Ole Kusk & Wollenberger, 1999). Elendt's M4 medium 

was therefore chosen for use in the present experiment. Elendt's M4 has hardness of 200 

mg r', an alkalinity of 30 mg l ' (both as CaCOa), conductivity of 585 |xs cm ' and pH 7.9. 

All these values are much higher than those recorded in the stream water fi-om which B. 

zschokkei were obtained (Table 2.1). The mineral salts that contribute to water hardness and 

alkalinity in Elendt's M4 medium are CaCl2.2H20, MgS04.7H2O, KCl and NaHCOa. For 

use with B. zschokkei, these salts were diluted using distilled water, prior to the addition of 

other essential elements to obtain a medium of the required hardness. In the investigations 

concerning water hardness (Chapters 2 & 3) each dilution water treatment is referred to in 

terms of its hardness, but it should also be noted that alkalinity, conductivity and pH also 

vary with treatment (Table 2.1). Experimental treatments comprised reconstituted water 

with mineral salts diluted to give a range of hardness conditions of 10, 50, 100 and 150 
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mg r* (expressed as CaCOs) and a reference of filtered stream water (0.2 |im) acted as a 

control (Table 2.1). The stream water was collected from the River Yealm (Section 2.2.2). 

All culture media were aged for at least one week prior to use, after which, they were kept 

in the dark to prevent any excessive growth of micro-algae. 

Table 2.1: Water quality parameters for the five hardness treatments 

Treatment 
(expressed as nominal 

hardness) 

Measured parameters Treatment 
(expressed as nominal 

hardness) 
pH Conductivity 

(ns cm**) 
Hardness 

(mg r' CaCOj) 
Alkalinity 

(mg 1* CaCOa) 
Stream water (9.3) 6.72 063 9.3 4.4 

10 7.05 043 10.7 6.4 

50 7.44 163 56.3 13.8 

100 7.70 297 108.3 19.2 

150 7.81 443 155.7 26.8 

2.2.4 Post-Embryonic Development 

One hundred ovigerous females were separated from the stock population (Section 2.2.1) 

which had been maintained in a culture medium of fihered (0.2 |im) stream water for seven 

months. These females were kept in a loosely-covered crystallising dish containing stream 

water and pre-conditioned leaf material (half a leaf). Animals were monitored every 24 h 

and, if nauplii were present, the females were transferred into a new vessel containing fresh 

food and the same medium. This procedure was continued until there were about one 

hundred .<24 h old nauplii, which were used to initiate each experiment. Individual nauplii 

were placed in I cm diameter polystyrene Cellwells^^ (Dow Coming, Coming, NY, USA) 

containing 2 ml of medium of appropriate hardness and a 4 mm diameter leaf disc pre

conditioned in Elendt's medium for 14 days. At each water hardness there were 18 replicate 

nauplii, maintained in a temperature-controlled room at 20 (± 1.0)**C with a photoperiod of 

16 h light:8 h dark, and a 20 min dawn-dusk transition time. A partial vrater replacement 

(50%) was carried out three times per week, and the dissolved oxygen content and pH of 
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the water were measured before discarding. In order to ensure an adequate supply of food, 

every 14 days, copepods were transferred into new Cellwells™ containing fresh media and a 

new leaf disc. Copepod survival, and the presence of moulted exuviae, recorded dziily using 

a Wild M8 binocular microscope under darkfield illumination (magnification x 20), were 

used to calculate the duration of the combined naupliar stages (Dn), duration of each 

individual copepodid stage, the total copepodid development (Dc) and the time taken to 

reach the adult stage (Nl-A). The ratio of males to femedes was also determined at the end 

of the experiment. 

The early naupliar stages of B. zschokkei are transparent and very small; N l is about 70 |im 

long (Sarvala, 1977). It was, therefore, difficult to locate the early naupliar stages without 

dislodging the animal from the leaf disc. Initially, the experiment was carried out using daily 

observations of the nauplii (high-handling frequency). Mortality of nauplii was high during 

this experiment and development to adult took longer than expected based on previous data 

(Burton, 1998). Consequently, a fiuther experiment, with low-handling frequency was 

performed; nauplii were observed on day 1, to determine that they had been transferred 

successftilly into the cell well, with the next observation on day 7 (low-handling frequency). 

Daily observations were then made until the end of the experiment. The 'high-handling 

frequency' experiment was run for 45 days because of the longer time taken for animals to 

develop to adult. The second Mow-handling fiequency' experiment was terminated after 35 

days. 

2.2.5 Statistical Analyses 

Fisher's Exact Test was used to isolate significant difierences between treatments in 

copepod survival at the end of each experiment. All data were tested for normality 

(Shapiro-Wilks) and equality of variances (Bartlett's test) before applying analysis of 
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variance techniques. I f data did not conform to these assumptions, then they were logio 

transformed. One-way ANOVA was carried out to consider differences in the time taken to 

moult to CI and adult, and the time taken to moult from CI to adult, both between and 

within experiments. I f the assiunptions of ANOVA were still not met even after 

transformation, data were analysed using Kruskal-Wallis analysis of variance by ranks, 

followed by Wilcoxon's test to highlight which treatments were different. To test the model 

of equiproportional development, two-way ANOVAs were carried out to identify any 

effects of handling frequency or hardness, stage and their interaction on arc-sine, square 

root transformed data of the proportion of the development time spent in each copepodid 

stage. Any data that were still not normally distributed were confirmed using the Kruskal-

Wallis test. Chi Square tests were carried out to consider if hardness or handling frequency 

influenced sex ratio. All statistical tests were carried out to detect differences at the 5% 

level unless stated otherwise. 

2.3 Results 

2.3.1 Handling Frequency 

In the iow-handling frequency' experiment, survival was significantly higher than in the 

'high-handling frequency' (Fisher Exact, p<0.05). At 'low-handling frequency', there was 

no mortality in the stream water treatment and survival ranged from 72-83% at all hardness 

levels (Table 2.2). When the handling frequency was high, fewer than 60% of copepods 

survived to day 28 and survival at day 45 (conclusion of experiment) ranged from 29% at 

100 mg r' CaCOs to 59% at 10 mg I"' CaCOj (Table 2.3). Development times were also 

significantly longer when the handling frequency was high compared with low (Kruskal-

Wallis, p<0.05). For example, the mean (± ISD) time taken to attain adulthood in the 

stream water treatment was 36.2 (± 4.1) days, when nauplii were observed daily and 17.9 (± 

3.6) days when handling of nauplii was reduced, representing a halving of the development 

30 



times. The handling of nauplii had subsequent effects on overall development with longer 

copepodid development times, as indicated by high Dc/Dn ratios, at high-handling 

frequency con^)ared with when less fi^uent observations (where Dc is the copepodid 

development time and Dn is the naupliar development time) (Tables 2.2 and 2.3). 

2.3.2 Water Hardness 

There were no significant effects of hardness on the survival of juvenile animals in either 

experiment (Table 2.2 & 2.3). There was also no significant difference in the combined 

naupliar and copepodid development times, or in the tinie taken to develop to adult in either 

experiment (Fig. 2.1). For males, development times were significantly longer compared 

with females (Student's t-test, p<0.05) (Fig. 2.2). I f the duration of individual stages was 

considered, C5 was significantly longer than all the other stages, and stage C4 was longer 

than stages C2 and C3 irrespective of treatment (Fig. 2.3) (Kruskal-WaUis, p<0.05). 
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Figure 2.1: Effect of water hardness on A) naupliar development [Dn] and B) copepodid 
development [Dc] in Bryocamptits zschokkei at Mow-handling fi-equency'. 
No significant difference between treatments; n= 14-18 nauplii per treatment. 
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Table 2.2: The development times (mean ± ISD) of combined naupliar stages (Dn), individual (C1-C5) and combined (Dc) copepodid stages and hatching to 
adult (Nl-A) for Bryocamptus zschokkei at different hardness with low handling frequency. 
n is the number of survivors (from original 18) at the end of the experiment and n̂  is the number of survivors that developed to adult stage within 35 days (end 
of experiment). The number in parentheses is the number of animals used to calculate the duration of each stage. Dc/Dn is the ratio of the copepodid stages 
and the duration of the naupliar stages which, i f isochronal development is assumed, should be 0.83 (Hart, 1990). There were no significant differences in the 
development times of B. zschokkei at different water hardness. 

Hardness 
(mg r ' CaCOa) 

n Dc/Dn Dn Individual copepodid stages Dc (Nl-A) Hardness 
(mg r ' CaCOa) 

n Dc/Dn Dn 
CI C2 C3 C4 C5 

Dc (Nl-A) 

Stream water (9.3) 18 18 1.06 8.67 ±1.24 
(18) 

1.72 ±0.57 
(18) 

1.28 ±0.57 
(18) 

1.22 ±0.43 
(18) 

1.89 ±0.58 
(18) 

3.11 ±1.32 
(18) 

9.22 ±2.56 
(18) 

17.89 ±3.64 
(18) 

10 14 13 1.04 9.60 ± 1.96 
(14) 

1.93 ± 1.49 
(14) 

1.79±1.12 
(14) 

1.64 ±0.74 
(14) 

2.43 ±1.83 
(14) 

3.15±1.14 
(13) 

10.00 ±4.00 
(13) 

19.31 ±5.17 
(13) 

50 15 15 1.18 11.07 ±2.96 
(15) 

2.13 ±0.92 
(15) 

2.07±1.10 
(15) 

1.93 ±1.03 
(15) 

2.93 ±1.44 
(15) 

4.00 ±1.41 
(15) 

13.07 ±5.08 
(15) 

24.13 ±7.85 
(15) 

100 14 14 1.01 9.80 ±2.54 
(15) 

2.00 ± 1.36 
(15) 

1.53 ±0.92 
(15; 

1,64 ±0.74 
(14) 

1.71 ±0.99 
(14) 

3.43 ±0.76 
(14) 

9.86 ±3.18 
(14) 

19.36 ±5.46 
(14) 

150 16 13 1.17 9.94 ±2.21 
(16) 

2.28 ± 1.44 
(16) 

1.59 ±0.92 
(16) 

2.38 ± 1.20 
(16) 

3.31 ±2.24 
(16) 

2.85 ± 1.99 
(13) 

11.62 ±5.25 
(13) 

21.08 ±6.98 
(13) 
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Figure 2.2: Time taken (mean ± 1SE) for male and female Bryocamptus zschokkei to moult 
to adult. 
Data pooled from all five treatments in the low handling frequency experiment; n=56 
females and 17 males. * Males take significantly longer to moult to adulthood (Student's t-
test, p<0.05). 

To test the model o f *equiproportional' development, a two-way ANOVA was carried out 

on the proportion of total development spent in each copepodid stage in the 'low-handling 

frequency' experiment (Table 2.4). This analysis confirmed that there was no efifect of 

hardness on development but there was a significant difiference in the proportion o f time 

spent in each stage (Two-way ANOVA, p<0.05) and a significant interaction term (Two-

way ANOVA, p<0.05) (Fig. 2.4). Bonferroni's multiple comparison tests demonstrated 

again that the proportion of time spent in each stage was significantly longer for the later 

copepodid stages (C4 and C5) than in stages C2 and C3. The results o f a two-way ANOVA 

for the proportion o f total development spent in each copepodid stage in the high vs. low 

fi^uency handling experiments (Table 2.5) showed a significant effect of handling, stage 

and on their interaction (Two-way ANOVA, p<0.05) (Fig. 2.5). 
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Figure 2.3: The mean (± ISE) duration of individual copepodid stages for Bryocamptiis 
zschokkei. 
Data was pooled from all five treatments in the low handling frequency experiment. 
•* Indicates a significant difference from all other stages (TCruskal-Wallis, p<0.05). 
* Indicates a difiFerence from stages C2 and C3 (Kniskal-Wallis, p<0.05). 
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Figure 2.4: An interaction plot showing the proportion of total development spent in each copepodid stage at different hardness in the 'low handling 
frequency' experiment. 
A significantly longer proportion of total development from stages CI -C4 is indicated by 'A ' , from CI -C3 by ' B ' and from C2 by ' C . A similar pattern of 
development is observed at all hardness levels and there was no significant effect of hardness on the proportion of time spent in each moult stage. 
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Figure 2.5: An interaction plot showing the proportion of total development spent in each copepodid stage high vs. low handling frequency. 
A significantly longer proportion of total development from stages C1-C4 is indicated by 'A ' and from C1-C3 by 'B ' . The pattern of development is 
significantly different for animals exposed to high compared with low handling frequency with proportionally more of the total development time spent in early 
copepodid stages (Two-way ANOVA, p<0.05). 



Table 2.4: The efiFect of the proportion of total development time spent in each moult stage 
and hardness on Bryocamptus zschokkei in the experiment with low handling frequency. 
This shows the results of a Two-way Analysis o f Variance on arc sine, square root 
transformed data where * indicates significance at the 1% level. 

Source Sum of Squares D f Mezm Square F-Ratio P-Value 

Moult stage 2841.26 4 710.32 76.43 0.001* 

Hardness 20.75 4 5.19 0.56 0.693 

Interaction 468.66 16 29.29 3.15 0.001* 

Residual 3159.89 340 9.29 

TOTAL 6625.06 364 

Table 2.5: The efifect of the proportion of total development time spent in each moult stage 
and handling frequency on Bryocamptus zschokkei. 
This shows the results of a Two-way Analysis o f Variance on arc sine, square root 
transformed data where * indicates significance at the 1% level. 

Source Sum of Squares D f Mean Square F-Ratio P-Value 

Moult stage 2245.62 4 561.41 50.99 0.001* 

Handling 449.98 1 449.98 40.87 0.001* 

Interaction 363.31 4 90.83 . 8.25 0.001* 

Residual 6000.88 545 11.01 

TOTAL 9851.16 554 

2.3.3 Sex Ratio 

There was no significant effect o f water hardness on the sex ratio of fiilly developed adults 

at different hardness in either experiment but there was a significant efiFect o f handling (/^ 

6.35 d.f 1 p<0.05). In the 'high-handling frequency' experiment, the ratio o f males to 

females did not differ significantly from an expected 1:1 sex ratio (x̂  1.28, d.f 2, p>0.05), 

whereas in the 'low-handling frequency' experiment, the sex ratio was consistently female 

biased (x' 21.07, d.f 4 p<0.05) (Table 2.6), 
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Table 2.6: The proportion of male and female Bryocamptus zschokkei moulting to adult at 
different water hardness in two experiments with different handling frequencies. 
* Indicates a significant female bias. 

Hardness (mg!"' CaCOa) 

High handling Stream water (9.3) 10 50 100 150 

Male 0.44 0.40 0.43 0.40 0.38 

Female 0.56 0.60 0.57 0.60 0.63 

Low handling 

Male 0.28 0.23 0.20 0.21 0.23 

Female 0.72* 0.77* 0.80* 0.79* 0.77* 

2.4 Discussion 

2.4.1 Handling Frequency 

When naupliar stages were exposed to high rather than low-handling frequency 

development times o f Bryocamptus zschokkei doubled. This is probably due to increased 

movement, as a result of being dislodged from the leaf material during observations, which 

may be imposing additional metabolic costs to the nauplii. Increasing the time taken to 

moult to adult might be compensating for such increases in metabolism. The copepodid and 

adult body form is better adapted for movement during feeding and prey avoidance, and are 

likely to be better able to cope with suspension into the water column (Epp & Lewis, 1980). 

In fact, adult harpacticoids have even been found to actively migrate into the water column, 

usually as a result o f high densities of animals in the benthos (Shiozawa, 1986; Palmer, 

1992). This is also likely to be an important mechanism for dispersal (Palmer, 1992). 

2.4.2 Water Hardness 

No significant eflfects o f different water hardness on the development times of B. zschokkei 

were observed between treatments. Bryocamptus zschokkei is a eurytopic species found in a 

range of habitats including lakes (Anderson & DeHenau, 1980), streams (Shiozawa, 1986; 
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Rundle, 1993), ponds and springs (Fryer, 1993), and brackish waters (Amhed-Abada, 

2000). This harpacticoid is tolerant o f both acidic and calcareous conditions and, in the UK, 

has also been recorded at hardness levels of between 0 and 115 mg 1* (as CaCOa) and 

within pH ranges o f 4.3 and 8.3 (Rundle & Hildrew, 1990; Rundle, 1993; Fryer, 1993; 

Burton, 1998). In North America, B. zschokkei has been found in rivers v^th a hardness as 

high as 250 m g f ' (Shiozawa, 1986), This suggests that the ability to tolerate water 

hardness in this copepod is not necessarily an adaptation o f a specific population but is 

within the physiological range o f responses o f each individual. This contradicts evidence 

from studies on other freshwater crustaceans. For example, Meyran (1997) found an 

increase in development times, when Gammarus fossarum was transferred to water of 

higher hardness (from 13 to 80 mg l ' Ca) despite the fact that hardness does not limit the 

distribution of this amphipod in the field. While hardness did not influence B. zschokkei in 

the present laboratory study other physiochemical parameters (pH and aluminium 

concentration) are known to affect the distribution and abundance o f field populations of 

this copepod, as well as the composition of the associated microcrustacean community 

(Rundle & Hildrew, 1990; Rundle & Ormerod, 1991; Rundie, 1993). It seems likely 

therefore that water chemistry variables other than hardness are more important factors in 

determining the distribution of B. zschokkei in the field. 

A fiirther explanation for the lack of effect of water hardness on B. zschokkei is that other 

ions may be more influential than hardness in calcium regulation. It is well established that 

in crustaceans uptake o f calcium during moulting is required for hardening o f the 

exoskeleton (Stevenson, 1985; Alstad et al, 1999). Evidence from freshwater ostracods 

indicates that changes in alkalinity rather than hardness are more important in this 

calcification process and hence moulting. Mezquita et al (1999) found that water with low 

alkalinity (<70 mg 1"*) resulted in low survival and slower moulting rates o f Herpetocypris 
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intermedia even when hardness was relatively high (93 mg 1*' Ca). Although alkalinity was 

varied with hardness in this study its concentration never exceeded 30 mg 1"' as CaCOs 

(Table 2.1). Low levels of alkalinity did not, however, appear to affect survival or 

reproduction in Daphnia magna or Ceriodaphnia dubia (Cowgill & Milazzo, 1991a), while 

D. magna does show delayed maturation water with low hardness (Lewis & Maki, 1981). 

Further work is therefore required in order to interpret frilly the relationship between 

hardness, alkalinity and calcium uptake in crustaceans. 

2.4.3 Copepod Development Times 

Life-history data for freshwater harpacticoids are sparse, however, it is generally agreed that 

they have slower development than freshwater calanoid and cyclopoid copepods (Maier, 

1990). In this study the post-embryonic development times for B. zschokkei (17.9 days at 

20°C) are closer to those for benthic cyclopoid copepods [10-30 days (Sarvala, 1979; Hart, 

1990; Robertson, 2000)] than for other benthic harpacticoids at the same temperature [30-

40 days (Sarvala, 1979; Glatzel, 1990; Kowarc 1990)]. Most data available for freshwater 

harpacticoids are for aninmls adapted to cold waters, where development might be expected 

to be slower (Glatzel, 1990; Kowarc, 1990). Benthic harpacticoids from smaller water 

bodies (as opposed to lakes) or semi-terrestrial habitats have been observed to have shorter 

development times [15-25 days (Nielsen, 1966; Rouch, 1968, and references therein)]. 

More rigorous laboratory studies characterising the development o f other benthic 

harpacticoids are, therefore, required before generalised conclusions can be made on how 

life-history characteristics of copepods may be related to their exploitation of a particular 

niche (Robertson, 2000). 

Within their tolerance range to high temperatures it is widely accepted that copepod post-

embryonic development time is accelerated by an increase in temperature (Hicks & Coull, 
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1983, Hart, 1990). The short development times, recorded for B. zschokkei in this study at 

20°C, compared with results from lower temperatures (Table 2.7), are therefore to be 

expected. There are, however, a number o f other factors that affect copepod development. 

Table 2.7: Data from studies investigating the post-embryonic development of 
Bryocamptus zschokkei. 
All development parameters refer to the mean ± standard error. NR - not recorded. 

Parameter O'Doherty, 
1985 

Burton, 1998 
(Control data) 

Current study 
(Stream water) 

Temperature (°C) 18 15 20 

Photoperiod (Light:Dark) 0:24 0:24 16:8 

Light Intensity (K-Lux) Cosine Dark Dark 050 

Naupliar development [Dn](days) 12.67 ± 0 . 8 9 ± 1 . 5 9 8.67 ± 0.29 

Copepodid development [Dc](days) NR 18.6 ± 0 . 5 6 9.22 ± 0.60 

Total development [ N l - A ] (days) 30.38 ± 1.8 --27 17.9 ± 0 . 8 6 

Dc/Dn 2.39 2.25 1.06 

which may explain such high inter-species variability in the time taken to moult to adult. For 

example, development times may also vary between geographiceilly-isolated populations of 

the same species as reported for the marine harpacticoid Scottolana canadensis (Lonsdale 

& Levinton, 1986). These differences may result from genetic and environmental adaptation 

or from laboratory conditions; for example, photoperiod influences post-embryonic 

development in copepods (Miliou, 1992). Previous estimates o f the time taken by B. 

zschokkei to moult to key life-stages were made for animals maintained in total darkness 

(O'Doherty, 1985; Burton, 1998). In this study, a photoperiod o f 16 h light and 8 h dark 

was chosen, as this is the lighting regime recommended for the culture and regulatory 

testing o f other freshwater crustaceans (OECD, 1998b; A S T H 1999a, b). These conditions 

are also more representative o f those in the River Yealm at the time o f collection. Food 

quantity and quality also affect post-embryonic development times of copepods including B. 
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zschokkei and this will be discussed later (Chapter 4). All these factors are likely to 

contribute to the observed differences in development times o f isolated populations o f B. 

zschokkei. 

The ratio o f copepodid to naupliar development times (Dc/Dn ratio) in the 'low-handling 

fi^uency' experiment ranged from 1.01-LI8 and are similar to those calculated for other 

freshwater harpacticoids [0.63-1.44 (Sarvala, 1979; Hart, 1990)]. Hart (1990) in his review 

on the patterns o f development in copepods, considered evidence for 'isochronal 

development' (equal duration o f each moult stages) and concluded that this type of 

development was rare in copepods. 

I f isochronal development were assumed, harpacticoid copepods which moult through six 

naupliar and five copepodid stages should have a Dc/Dn ratio o f 0.83 (Hart, 1990). As the 

Dc/Dn ratio for B. zschokkei is greater than 0.83, this copepod does not appear to conform 

to isochronal development, assuming the food quality provided in this study is sufficient for 

optimal development. Evidence that development is not isochronal is also supported by the 

fact that the durations o f the individual copepodid stages are not the same. The alternative 

model o f equiproportional development, in which each moult stage should represent a 

known proportion o f the total development time (Hart, 1990; van den Bosch & Gabriel, 

1994) appears to be a more accurate representation of the development pattern o f B. 

zschokkei. In this study, each copepodid stage of B. zschokkei did represent the same 

proportion of the total development time. Many freshwater cakmoid and cyclopoid 

copepods also conform to this second model of development (Hart, 1990; Twombly, 1996). 

In this study, the duration of the final copepodid stages (C4 and C5) were longer than the 

other stages, which is a pattern associated with equiproportional development (Hart, 1990). 

This pattern has also been observed in marine harpacticoids where it has been attributed to a 
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greater food dependence o f the late copepodid stages (Hicks & Coull, 1983). For 

planktonic copepods, it was proposed that this trait had developed as a result o f selection 

for a life-history with less time spent in small, naupliar stages which are more vulnerable to 

predation (Hart, 1990). While benthic harpacticoids are probably less vulnerable to 

predation than the zooplankton (Lancaster & Robertson, 1995), there is still pressure for 

stream-living harpaclicoids to become larger in order to reduce the risk o f being washed 

downstream. High handling (but not water hardness) significantly altered the proportion of 

development spent in each life with more time being spent in smaller copepodid stages. This 

result supports the conclusion that the smaller life stages are more vulnerable to handling 

(Section 2.4.1) (Fig 2.4). 

Equiproportional development predicts that development is independent of food quality and 

temperature (Hart, 1990) and hardness (this study) and, as such might have a potential role 

in determining the mode o f action o f contaminants in toxicity tests. For example, some 

pollutants may affect development indirectly by reducing feeding or increasing metabolic 

rates in which case overall development times would increase but should remain 

'equiproportional'. Other contaminants would be expected to act by disrupting the moulting 

process directly, for example, the insect growth regulator diflubenzuron results in an 

inability in copepods to shed their exuvium during moulting (Wright e/ al, 1996). A 

mechanistic effect might be expected to alter the development time but also disrupt 

equiproportional development particularly where individual moult stages might show 

different degrees o f sensitivity (Costlow, 1977; Wright et al, 1996). 

2.4.4 Sex Ratio 

In all treatments of the low-handling frequency experiment, the sex ratio of adults was 

biased towards females. A 1:1 ratio was observed in laboratory trials of B. zschokkei 
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allegheniensiSy although copepods were not maintained in culture for long periods o f time 

(O'Doherty, 1985). It is not unusual to observe female-biased populations o f harpacticoids 

in the field (Hicks & Coull, 1983); Rundle (1993) found that males contributed 20-40% of 

the population o f B. zschokkei in Welsh streams. A ratio o f two females for each male was 

also found for B. zschokkei in an Austrian mountain stream (Kowarc, 1991). It is not 

known how such a female-biased sex ratio would affect natural population dynamics, 

because a single male can inseminate many females and, once inseminated, spermatophore-

mediated sperm transmission enables each female to fertilise multiple broods (O'Doherty, 

1985). Lower numbers o f males may, however, result in males taking longer to locate 

females; delayed fertilisation in species of the marine harpacticoid genus Tisbe is known to 

result in lower fertility o f females (Volkmann-Rocco, 1972). Skewed sex ratios are not 

unusual in laboratory cultures, although a bias towards males is more commonly observed 

(Bergmans, 1981; Gr^en et al, 1995; Williams 1997). Hicks & CouU (1983) reviewed 

evidence o f the causes o f biased sex ratios in marine harpacticoids and found that 

temperature, food quality and quantity, density, crowding, light intensity and inbreeding had 

all been shown to influence the ratio of males and females present. It is not known if any of 

these factors would cause an imbalance in the cultures o f B. zschokkei used in the present 

study. 

The overall development times o f the small number o f males moulting to adult in the low-

handling frequency experiment were longer than for females. Slower development times of 

males is unusual as male harpacticoids, being smaller than the females, tend to achieve 

adulthood earlier (Hart, 1990). Males and females have different life-history constraints; 

males are required to achieve maturity quickly so that they are ready to mate as soon as the 

females moult to adult. The number o f eggs a female can carry increases with the size o f the 

animal, therefore, a greater investment in growth for females is required to maximise this 
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potential (Allan, 1984). At higher temperatures, this difference in development times often 

becomes less apparent (Sarvala, 1979). 

2.5 Summary 

• Under defined laboratory conditions the post-embryonic development o f B. zschokkei 

was quicker than previous estimates for this species and other freshwater harpacticoids. 

• Development o f B, zschokkei fits the model o f equiproportional development, observed 

in calanoid and cyclopoid copepods. This model may have applications for determining 

the mode o f action o f contaminants in toxicity tests. 

• Water hardness had no effect on either juvenile survival or development times of B. 

zschokkei. 

• Increased handling o f naupliar stages resulted in significantly higher mortality and 

prolonged development times. 
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Chapter 3 

Influence of water hardness on reproductive 
parameters of Bryocamptus zschokkei 
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3 Abstract 

As one o f the most important chemical variables in freshwater systems, the effect of 

hardness was investigated on the reproductive output (numbers o f eggs and viable nauplii 

per female) of Bryocamptus zschokkei. Newly mated pairs were exposed to hardness at 10, 

50, 100 and 150 mg l ' (as CaCOa) for eight weeks; numbers o f broods, eggs and viable 

nauplii produced by each female were recorded. No effect o f hardness on any reproductive 

parameter was observed. The numbers o f eggs and nauplii produced per female were 

elevated and the intrinsic rate o f natural increase (rm) was doubled compared vnih a 

previous estimate for this species. Abortion rate was also high in this copepod. I f aborted 

eggs are a response to stress abortion rate may have application as an indicator o f toxicant 

exposure. 

3.1 Introduction 

The importance of considering the eflfects o f hardness, as a key environmental variable in 

determining the distribution and life-history patterns o f freshwater Crustacea, was 

established in Chapter 2. While there was no effect of hardness (10 - 150 mg l ' as CaCOj) 

on the survival or post-embryonic development times o f the harpacticoid Bryocamptus 

zschokkei, it cannot be assumed that there would be no effect on reproductive output. 

Indeed, reproduction in copepods is oflen more sensitive than development to 

environmental conditions, as revealed from studies of food quality (Williams & Jones, 1999) 

and toxicant exposure (Chandler. 1990). Reproduction in field populations of B. zschokkei, 

and the related harpacticoid Bryocamptus praegeri, was found to be highly sensitive to 

physiochemical parameters, with a trend towards smaller eggs and fewer clutches 

respectively at sites o f low pH (RundJe, 1993). Moreover, in laboratory populations of B. 

zschokkei exposed to copper, a decrease in the numbers o f offepring per female was 

observed at concentrations where there was no effect on development times (Burton, 1998). 
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While food quality has a major effect on reproduction of copepods (Williams & Jones, 

1999; Twombly et al, 1998), it is well established that other factors, including temperature 

(McLaren, 1978; AbduUahi, 1990), food characteristics (Poulet et a/, 1994; lanora, 1998), 

time to first mating (Volkmann-Rocco, 1972) and remating success (Parrish & Wilson, 

1978; lanora et al, 1989), also have a significant role in determining the numbers of 

offspring produced. In addition, contaminant exposure can reduce fecundity in copepods 

(Bengtsson & Berstrom, 1987), by causing a shift in resource allocation, resulting in less 

energy available for the provision of eggs (Hicks, 1979). It is essential to understand how 

such variables influence reproduction in copepods because they are directly related to 

recruitment and ability of a population to replenish itself Before considering the effects of a 

contaminant on a potential new test species it is, therefore, imperative to gain information 

on the variables that influence reproductive output. For example, it is prudent to assess the 

tolerance range of a species (or even particular strain) to water quality variables to avoid 

attributing their potential toxic effects to a contaminant (Cowgill, 1987). 

Few studies have considered the effects of hardness on reproduction of fi-eshwater 

Crustacea. Reduced fecundity has been observed in cladocerans in response to low calcium 

concentrations (Cowgill & Milazzo, 1991b; Hamza et al, 1998; Hessen et al, 2000). High 

levels of hardness, conductivity, sulphate and alkalinity were related to increased 

reproductive output of the amphipod Hyalella azteca (Gibbons & Mackie, 1991). 

The aims of this chapter were to: 

1) Gain baseline data on reproductive parameters (egg and nauplii production) of B. 

zschokkei under defined laboratory conditions. 

2) Assess the effects of water hardness on fecundity. 
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3) To produce an abbreviated life-table using fecundity and developmental data 

obtained in Chapter 2. 

3.2 Materials and Methods 

3.2.1 Test Medium 

The stream water and four reconstituted water treatments used in this experiment were 

identical to those used to investigate the effects of hardness on the post-embryonic 

development of B. zschokkei (Chapter 2). 

3.2.2 Experimental Animals 

Sbrty ovigerous females from stock cultures (Chapter 2) were placed in a 13.5 cm diameter 

glass crystallising dish containing 400 ml of filtered stream water (0.2 ^m) and two pre

conditioned beech leaves (Fagus sylvatica L . ) (Chapter 2). These females were removed 

after one week, leaving a cohort of juveniles less than one week old. The juvenile copepods 

were observed daily until they achieved adulthood and began to form mating pairs; the latter 

were transferred to 2 cm diameter polystyrene Cellwellŝ "^ (Dow Coming, Coming, NY, 

USA) using a wide-bore glass pipette. Cellwells™ contained 3 ml of test medium and a 

1.1 cm diameter beech leaf disc (pre-conditioned in Elendt's M4 medium for 14 days). 

3.2.3 Experimental Design 

Each treatment consisted of 14 pairs maintained in a temperature-controlled room at 20 (± 

I X ) with a photoperiod of 16 h light:8 h dark and a 20 min dawn-dusk transition time. A 

partial water replacement (66%) was carried out three times per week, and the dissolved 

oxygen content and pH of the water was measured before the water was discarded. Daily 

observations of survival (animals which respond to gentle stimulation), and the presence of 

egg sacs and nauplii were made using a Wild M8 binocular microscope with darkfield 
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ilJumination (mzignification, x20). Every seven days, each pair was transferred to another 

Cellwell™ containing fresh media and a new leaf disc. Any nauplii that had hatched during 

that week remained in the old Cellwell™ and were counted as soon as possible. If more 

than one brood of nauplii was present, they were distinguished on the basis of size. Any 

eggs that had not hatched were counted, so that the overall hatching success (proportion of 

viable ofifepring) could be determined. This experiment was continued for eight weeks, by 

which time ofiFspring production was low in all treatments. These observations were used to 

calculate: a) the embryonic development time (the time from egg sac release externally to 

hatching of nauplii); b) the inter-brood period (the time between egg sac releases); and c) 

the number of broods per female. Any aborted egg sacs were removed from the cell well 

and viewed under a high-powered inverted microscope to determine the number of eggs 

present. An abortion was considered to be an egg sac from which no viable ofispring 

hatched. 

3.2.4 Abbreviated Life Table 

Abbreviated life tables were constructed by incorporating post-embryonic development data 

from the Mow handling-frequency' trials (Chapter 2) with measures of offspring number and 

adult survival fix)m this experiment. The age-specific survival (Ix) and fecundity (m )̂ were 

calculated using an estimate for the age of first reproduction in order to calculate the 

intrinsic rate of natural increase (r^) (Fig. 3.1). The life-table calculations were based on the 

equation derived by Lolka (1925): 

I W= 1 
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Development Assay Reproduction Assay 

Day 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 56 
(X) 

A A A A A 

Nauplii Copepodid Adult Age of first Termination of 
(<24 h) (sex ratio) reproduction reproduction 

pairing (estimate) assay 

>-
Age specific survival (IJ and fecundity (m )̂ 

Figure 3.1: A summary of the life-history of Bryocamptus zschokkei indicating where data are obtained for incorporation into the abbreviated life-table 
calculations. 



where: 

/j = the number of females on day x I the number of females at the start of the 

experiment (i.e. 14 females used to initiate the reproduction experiment), 

X = age (days), 

nix = number of female offspring (nauplii) produced on day x I number of living females 

on day x (using survived data from the reproduction experiment only), 

r = the intrinsic capacity for increase for the particular environmental conditions, 

e = 2A 7828 (a constant), and 

Ux = ijrrix = number of female offspring (nauplii) produced on day x I number of females 

at the start of the life table (or in this case the reproduction experiment i.e. 14 females). 

Vx, the realised fecundity, is the number of new bom females produced per day per female 

from the previous generation. This can be used to calculate the factor by which the female 

population increases from one generation to the next, the net reproductive rate (Ro): 

Ro = S /./w. = YXIx 

As a result of the skewed sex ratios observed in the development assay, the same animals 

could not be followed throughout their entire lives. The data used for these abbreviated life-

table calculations, therefore, incorporate data from two experiments (Fig. 3.1). For 

example, when calculating (the number of females on day x divided by the number of 

females at the start of the experiment), the female survival data from the reproduction 

experiment only was used. Juvenile mortality was assumed to be zero (which was true for 

the stream water control and was not greater than 28% in any of the treatments) and was 

not incorporated into the model. The 'age of first reproduction' is estimated as this 

information was not obtained in either experiment. The reproduction experiment was 

terminated at eight weeks after which time offspring production may still have occurred but 
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only at a very low level. To compare results with previously published data, calculations of 

mx assumed a 1:1 sex ratio for newborn animals. An estimate of nix was also made using the 

female biased sex ratios (1:2.6) observed in the 'low handling-frequency' development assay 

(Chapter 2). 

3.2.5 Statistical Analyses 

Fisher's Exact test was used to identify any significant effects of hardness on copepod 

survival at the end of the experiment (day 56); contingency table procedures were used to 

investigate differences in male and female survival. Two-way ANOVA was carried out to 

assess the effects of hardness and time on the numbers of eggs and nauplii produced per 

female. One-way ANOVA was used to consider the effect of hardness on the number of 

broods per female, eggs and nauplii per brood, and embryonic development times. 

Bonferroni's multiple comparison procedure was used to differentiate between the means. 

Reproductive parameters were tested for normality and equality of variances before using 

analysis of variance techniques. I f these assumptions for ANOVA were not met, the data 

were square root transformed. Data that still did not conform were analysed using Kruskal-

Wallis analysis of variance by ranks, followed by Mann Whitney tests to highlight which 

treatments were different at the 5% level. 

3.3 Results 

3.3.1 Survival 

Survival was relatively high (>65%) in all treatments with no significant differences between 

the stream water control and the reconstituted water treatments up to day 56 (end of 

experiment) (Table 3.1). There was also no significant difference in the survival of males or 

females in any treatment. 
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Table 3.1: Effect of hardness on the reproductive parameters of Bryocamptus zschokkei. 
n is the number of females per treatment, Ha is the number of females producing egg sacs and nt is the number of females producing egg sacs from which 
viable offspring hatched. There was no significant difference between treatments. 

Hardness 
(mg r' CaCOa) 

% 
Survival 

n Total number 
of broods 

Total number of 
successfril 

broods 

Proportion 
aborted 

Mean (±1SD) 
number of broods 

per female (n) 

Mean (± ISD) 
eggs per brood 

(na) 

Mean(± ISD) 
nauplii per 
brood (nb) 

Stream water 
(9.3) 

71.4 14 14 12 107 67 0.37 7.64 ±2.13 10.47 ±4.24 8.25 ±4.97 

10 78.6 14 14 14 103 65 0.37 7.35 ±2.06 11.14±4.04 8.38 ±5.11 

50 77.8 13 13 9 91 47 0.48 7.00 ±3.00 9.63 ± 4.37 7.76 ±4.26 

100 67.9 14 14 12 84 59 0.30 6.00 ± 2.72 10.96 ±4.59 10.44 ±4.89 

150 67.9 14 14 11 81 43 0.46 5.79 ±2.33 9.86 ±3.78 8.51 ±4.66 
On 



3.3.2 Fecundity 

There was no significant difference in the mean number of eggs or nauplii per female at any 

of the hardness levels (even when data for females that aborted all their egg sacs were 

excluded (Fig. 3.2). There was, however, a significant time effect (Two-way ANOVA, 

p<0.05) (Fig. 3.3), with the mean numbers of eggs and nauplii produced being highest in 

weeks three and four, this trend was most significant for naupliar abundance. 

Hardness had no significant effect on the number of broods produced by each female (Table 

3.1). The proportion of aborted egg sacs ranged fi-om 0.30-0.46 depending on hardness 

(Table 3.1). There were significantly more egg sacs aborted fi-om broods eight and nine 

compared with broods two to five (Kruskal-WalUs, p<0.05). 

3.3.3 Brood Interval and Embryonic Development 

Embryonic development took 3-7 days and did not vary with hardness (Table 3.2). 

Generally females produced a new egg sac within 24 h of hatching as long as the previous 

brood had not been aborted (i.e. median interval between subsequent broods < 1 day). 

Table 3.2: Embryonic development times for Bryocamptus zschokkei at different hardness. 

Hardness 

(mg CaCOa) 

Mean(± ISD) brood 

duration (days) 

n 

Stream water (9.3) 4.85 ±0 .58 67 

10 4.86 ± 0.62 65 

50 4.91 ±0 .65 47 

100 4.86 ± 0.63 59 

150 4.80 ± 0 . 5 0 43 
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Figure 3.2: The effect of hardness on the mean (±1SE) number of A) eggs and B) nauplii 
produced by each female 
These data exclude females that did not produce egg sacs from which viable offspring 
hatched. There were no significant differences between hardness levels. 
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Figure 3.3: The mean (± 1SE) number of A) eggs and B) nauplii produced per female each 
week. 
This incorporates data from all five hardness levels but excluded females that did not 
produce viable offspring. A significant increase in the numbers of eggs and nauplii from 
week 1 (A), week 7 (B), week 8 (C) and from weeks 2, 5 and 6 (D) are indicated (One-way 
ANOVA, p<0.05). 

3.3.4 Abbreviated Life-Table 

The intrinsic rate of increase (rm) of B. zschokkei was highest in stream water and 100 mg l ' 

CaCOs treatments (Table 3.3). However, values were not markedly different from the 

remaining treatments (± 27%) (NB could not test significance). The net reproductive rate 

(Ro) and cohort generation lime (Tcoh) showed a similar pattern to rm- For example, at ICQ 
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mg r' CaC03, there was the greatest increase in the abundance of newborn females (Ro) 

over the shortest generation time (Tcoh), These data were calculated assuming ofifepring 

with a 1:1 sex ratio, however, life-table calculations were also made incorporating the 

female-biased sex ratio (1:2.6) observed in the 'low handling-fi-equency' development assay 

(Chapter 2). The cohort generation time (Tcoh) remained the same but a large increase in 

Tm and Ro was observed reflecting an increase in the number of females available for 

reproduction. An increase of similar proportions may be expected in the other treatments 

where comparable sex ratios were recorded. 

Table 3.3: Summary of *Life-Table Analyses' for Bryocamptus zschokkei populations 
maintained under different environmental conditions. 
This table includes life-table estimates for animals at each hardness exposure and an estimate 
for B. zschokkei allegheniensis (O'Doherty, 1985) which all assume a 1:1 sex ratio for 
ofi&pring. The life-table data for the stream water control was also calculated using the 1:2.6 
sex ratio for offspring as observed in the 'low handling fi-equency' development experiment 
(Chapter 3). 

Hardness 

(mg r' CaCOa) 

at 2 0 ± r c 

Sex Ratio 

(male: female) 

Ro=DJx=net 

reproductive rate 

per generation 

Tcoh = cohort 

generation time 

(days) 

rn, = intrinsic rate of 

natural increase 

Stream water (9.3) 1:2.6 130.00 40.61 0.137 

Stream water (9.3) 1:1 19.29 40.61 0.079 

10 1:1 19.39 43.68 0.073 

50 1:1 13.85 48.28 0.058 

100 1:1 21.96 39.35 0.079 

150 1:1 13.46 44.33 0.062 

O'Doherty 

(1985)- 18°C 
1:1 4.14 74.7 0.02 
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3.4 Discussion 

3.4.1 Water Hardness 

There were no significant differences in any of the fecundity parameters or life-table 

calculations between treatments of B. zschokkei raised at different hardness levels. In field 

populations of this copepod, reproduction has been shown to be sensitive to water 

physiochemistry, vAih a reduction in the numbers of gravid females and in the mean clutch 

size in streams of low pH and alkalinity and elevated aluminium concentrations (Rundle, 

1990). Other freshwater crustaceans have shown a positive response to increased hardness 

in terms of demographic parameters (Gibbons & Mackie, 1991; Meyran, 1997). For 

example, increased reproductive output of field populations of Hyalella azteca was related 

to environmental variables including increased hardness, alkalinity and conductivity 

(Gibbons & Mackie, 1991). As clutch size and female body size are usually positively 

correlated for crustaceans, an increase in body size of Gammarus fossarum observed in 

lakes with high water hardness would be expected to result in higher levels of fecundity 

(Meyran, 1997). In laboratory studies, the cladocerans Daphnia magna and Ceriodaphnia 

duhia both showed impaired reproduction at concentrations less than 71 mg I * CaCOa 

(Cowgill & Milazzo, 1991a). Data on the effects of hardness are sometimes contradictory 

and, in another study, no effects of hardness were observed on C dubia tested in 

reconstituted water in the range 40-180 mg 1"' CaC03(Cooney et al, 1992). It has, therefore 

been argued that the observed negative effects of low water hardness on the survival and 

reproduction of cladocerans may be due the absence of essential trace minerals (for 

example, zinc and boron) in dilution waters rather than just the ionic composition of the 

media (Winner, 1989). In fact, it is still not clear which ions are most important for calcium 

regulation in Crustacea; recent evidence from studies on the ostracod Herpetocypris 
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intermedia suggests that alkalinity is more important than hardness as a limiting factor for 

moulting and calcification of the ostracod (Mezquita, 1999). 

A further explanation for a lack of an effect of hardness is that the small size of B. zschokkei 

(adult female ca. 600 ^m) reduces their demand for calcium. Selection for microcrustaceans 

and rotifers in American lakes with low hardness was hypothesised to result from a greater 

relative requirement for calcium by large-bodied cladocerans because of their increased size 

(Tessier & Horwitz, 1990). The calcium content of copepods is just 0.06% dry weight 

compared with 2.2 to 7.7% in daphnids (Cowgill, 1976; Havas, 1985; Yan et ai, 1989). 

3.4.2 Fecundity 

Egg and ofTspring production in B, zschokkei were higher than has been observed for the 

American sub-species B. zschokkei allegheniensis (Table 3.4). Reproductive data for the 

latter species (O'Doherty, 1985), however, were collected over a comparatively longer time 

period and at a slightly lower temperature (35 weeks at 1 8 ± P C ) , compared with the 

present study. In both studies the reproductive period was comparable with nauplii 

production ceasing after eight to ten weeks. Burton (1998) found a similar number of 

offspring per B. zschokkei female to those observed in the present study, in laboratory 

maintained animals over a six week period, obtained from the River Lynher, south-west 

England. It is difiBcuU to attribute the increase in numbers of eggs and nauplii per female 

observed in this study compared with previous estimates for this species to a single factor 

because of the range of variables that can influence reproduction. In this case the observed 

differences probably reflect the responses that occur between geographically isolated 

populations or sub-species (Lonsdale & Levinton, 1986) as well as the refined culturing 

methodology in the present study. For example, the food quality, photoperiod and 

temperature were all different to those used in previous studies, all of which are known to 
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influence harpacticoid reproduction (Miliou, 1992; Williams & Jones 1999). As 

reproduction is improved it suggests that the current culture methods can be adopted for 

further studies. 

The mean numbers of eggs per brood observed in this study were lower than those recorded 

for field populations of B. zschokke 'u where females sampled directly from the Upper River 

Tywi, mid-Wales were found to have clutches of about 20 eggs (Rundle, 1993). In field 

populations of B. zschokkei larger numbers of eggs were observed in late spring and early 

summer (Rundle, 1993). Lower productivity in this study, compared with field conditions 

may be linked to the lack of seasonality in temperature and food abundance as a result of 

standard laboratory conditions. Food quality is a major factor in determining the 

reproductive output of copepods (Hopp et a/, 1997; Twombly ei al. 1998). While a leaf 

litter diet supports rapid development times and good survival of B, zschokkei (Chapter 2), 

reproduction in marine harpacticoids is more sensitive to food limitation than growth or 

development (Williams & Jones, 1999). 
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Table 3.4: Data from studies investigating the reproductive parameters of Bryocamptus 
zschokkei. 
All fecundity parameters are expressed, as the mean ±1SE and NR indicates data were not 
recorded. 

Parameter O'Doherty, 1985 Burton, 1998 Current study 

Temperature (**C) 18 15 20 

Photoperiod (Light:Dark) 0:24 0:24 16:8 

Light Intensity (K-Lux) Cosine Dark Dark 050 

Period of observations (weeks) 34 6 7 

No. eggs per sac (range) 8-24 NR 10.47 ± 4 . 2 4 (2-24) 

Embryonic development 4.38 ±0 .13 NR 4.85 ± 0.07 

Eggs per female 122± 14 NR 85.5 ± 11.74 

Nauplii per female 22 ± 7 58 ± 3.09 46.08 ± 8.30 

Broods per female 1 8 ± 2 NR 7.64 ±0 .56 

3.4.3 Embryonic Development 

Copepod embryonic development times will depend on culture conditions (temperature and 

food quality), acclimation effects and geographical separation (Lonsdale and Levinlon, 

1985). The long-term previous thermal conditions of a population are considered the main 

cause of variation both within and between species (Herzig, 1983). In this study embryonic 

development for B. zschokkei (4.85 days) was comparable to previously data at the same 

temperature (4.38 days, O'Doherty, 1985) which probably reflect similar temperature 

regimes in the streams from which the different populations of copepods were obtained (i.e. 

15*'C). These estimates for embryonic development in B. zschokkei are also in the same 

range recorded for other freshwater harpacticoids (5-8.3 days, Sarvala, 1979) but are 

generally longer than observed in benthic freshwater cyclopoids (1-3 days, Maier, 1990; 
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Robertson, 2000) or marine harpacticoids (2-4 days, Lonsdale & Levinton, 1985). 

Differences in embryonic development times of copepods tend to be more pronounced at 

low temperatures (Herzig, 1983). 

Usually, a new egg sac was released within 24 h of nauplii hatching. Such rapid release of 

new egg sacs has been observed for other fi-eshwater harpacticoids and is considered a good 

indicator of an optimal food supply (Sarvala, 1979). Demographic models have 

demonstrated that an increase in the inter-clutch period can reduce the overall fecundity of 

copepod populations irrespective of mortality by reducing the time that the female is 

reproductively active (Ohman et a/, 1996). 

3.4.4 Individual variability 

The variation in the numbers of eggs and nauplii produced by B. zschokkei in this study was 

not unexpected as this parameter is influenced by several life-history parameters (e.g. body 

size, time to first egg sac, embryonic development time, the interbrood period), each of 

which is subject to inherent variability (Bimstedt, 1988). In field populations of copepods, 

plasticity in life-history parameters appears to be an adaptation for exploiting different or 

changeable habitats (Allan, 1984; Bamstedt, 1988; Ohman et al, 1996). Twombly et al 

(1998) suggested that large differences in the offspring production of the fi-eshwater 

calanoid Boeckella triarticulata were either a response to environmental uncertainty ('bet 

hedging') or that other environmentid factors (such as interspecific interactions) were 

important in moulding their life-history strategies. Two natural populations of the 

fi^shwater copepod Mesocyclops edax showed heritable differences in life-history and they 

were related to their environment (Allan, 1984). Sarvala (1990) also found that populations 

of the fi-eshwater harpacticoid Paracamptus schmeili, sampled fi-om different depths of a 

lake, showed pronounced demographic differences shifting fi-om a one to a three year life-
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cycle. Natural variability in life-history responses o f copepods is consistently reflected in 

laboratory-reared populations (Carlotti & NivaJ, 1991; Strawbridge et al, 1992; Bechmann, 

1994; Twombly et al, 1998). Increase in variability o f reproductive output is often 

associated with stress, including sub-optimal feeding regimes (Williams and Jones, 1999) 

and pollution exposure (Bechmann, 1994). Large differences in responses o f individuals to 

the same parameter has implications for toxicity tests where a high degree o f standardisation 

is a prerequisite and variability is considered a weakness in the test method (Calow, 1996). 

However, it has been argued that biological variability itself is a valuable parameter to be 

considered in population level tests (Depledge, 1990). As the success o f a species is related 

to the attributes (e.g. development rate, fecundity) o f the individuals that make up a 

population, some individuals will be better able to respond to environmental change than 

others (Depledge, 1990; 1994). Therefore, individual variability will actually determine how 

a population will survive after a change in environmental conditions, for example, 

contaminant exposure. 

3.4.5 Life-Tables 

Life-tables incorporate information on the development, reproduction emd survival o f a 

population and allow calculation of the intrinsic rate of natural increase o f a population (r^). 

The latter statistic is eui ecologically relevant expression o f the potential o f a population to 

increase under defined conditions. Demographic parameters have been used to assess the 

influence of culture conditions on marine harpacticoid copepods (Williams, 1997) and fiill 

or abbreviated life-tables are being applied increasingly for considering the effects of 

toxicants (Allan & Daniels, 1982; Green & Chandler, 1996, Bechmann, 1999). An 

advantage of the life-table approach is that it considers the entire population and, therefore, 

gives an indication of an adverse effect, even i f high individual variability prevents 

meaningfiil statistical analysis (Bechmann, 1994). Although the life-table described in this 
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study is abbreviated, it still incorporates the ftindamental quantities of demographic analysis, 

such as measures of ofifspring number and the temporal patterns o f births (Bergmans, 1984). 

As such, it is a useful too! for considering differences between treatments. Caution should 

be observed, however, when comparing with previously published data, as the same 

individuals were not used to obtain all the information contained in the life-table. 

The values o f rn, calculated using this life-table (with a 1:1 sex ratio) were more than twice 

as high as the most positive estimates made for B. zschokkei allegheniemis (O'Doherty, 

1985). The main factor affecting rm is the age o f first reproduction (Allan & Daniels, 1982). 

As the estimate of development time used to calculate this value (Chapter 2) was almost 

half the time taken for the North American strain then an increase in rm would be expected. 

This was also reflected in the cohort generation times o f the two populations Tcoh (Table 

3.3). Other factors that influence the capacity o f a population to increase are the number of 

offspring per brood and the number o f successful broods, both o f which were higher in this 

study. Extrinsic factors such as temperature and food quality (see Chapter 4) are also 

known to influence r^ in harpacticoid copepods (Hicks & CoulL, 1983; Williams, 1997). 

Sex ratio also influences the life-table parameters (Table 3). For example, the factor by 

which the female population increased from one generation to the next (Ro) showed an 85% 

increase i f the 1:2.6 (male: female) sex ratio observed in the 'low handling frequency' 

experiment and laboratory cultures (personal observation) is used. This reflects the higher 

number o f females available for offspring production. As field populations o f B. zschokkei 

(Kowarc, 1991; Rundle, 1993) are female biased calculating using a 1:1 sex ratio may 

actually be an underestimation of population increase under environmentally realistic 

conditions. 
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3.4.6 Hatching Success 

Female B. zschokkei carry their egg sacs externally and nauplii hatch from the egg sac while 

it is still attached (O'Doherty, 1985). In the current study a relatively high abortion 

frequency (30 to 48%) was observed depending on the treatment (Table 1). Aborted egg 

sacs have been detected previously in B. zschokkei maintained in the laboratory (O'Doherty, 

1985; Burton, personal communication). There is no information available on the hatching 

success of this harpacticoid in the field. Rundle (1993), when sorting dead females taken 

directly from the stream, observed that some egg sacs detached easily which could be due to 

broods that were not viable, however, this occurred in less than 10% o f cases. 

Bryocamptus zschokkei can, via spermatophore mediated transfer, fertilise a number of 

broods from a single matmg and an absence o f remating may therefore be an explanation for 

the high abortion frequency (O'Doherty, 1985). Females isolated from males produce 

broods from which no viable ofiFspring hatch, (personal observation) a phenomenon 

observed in other freshwater harpacticoids (Sarvala, 1979). A delay in fertilisation may 

therefore have caused the high proportion of aborted first egg sacs and, i f the males were 

infertile, this may explain why some females never produced viable offspring. In this study, 

males were left with the females so that the absence o f remating should not have been a 

problem. This theory, however, does not explain low hatching success o f broods from 

which viable offspring did hatch. I t has also been suggested that in copepod species where 

high sexual dimorphism exists (as is the case v^th B. zschokkei) the males may be weaker 

and therefore need more attempts to fertilise the female (Maier, 1994). 

Published data reporting low hatching success or abortions in other harpacticoids are rare 

and there is little discussion o f the implications. Sarvala (1979) showed that hatching 

success in other species o f freshwater harpacticoids was found to be >90%, except in 
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Canthocamptus staphylinuSy where <60% of eggs were viable (Sarvala, 1979). The marine 

benlhic harpacticoid Amphiascus tenuiremis has been observed to produce nauplii for four 

weeks after which no juveniles were found despite continued egg production (Green et al, 

1995). A mean hatching success o f 57% was observed for Longipedia spp. fed on a diet o f 

algae (Onbd & Kimoto, 1985) and discarded egg sacs have been observed as a stress 

response in ScoHolana canadensis (Harris, 1977). Photoperiod and spectral composition 

caused an abortion rate of up to 57% in Tisbe holothuriae (Miliou, 1992) and Tisbe furcata 

females were observed to produce egg sacs from which no viable offspring hatched 

(Bechmann, 1994). Other authors have found poor juvenile survival when hatching success 

has been low (Feller, 1980), a feature that was not observed for B. zschokkei (Chapter 2). 

Nevertheless, i f abortions in B. zschokkei occur as a response to stress it may be possible to 

utilise this phenomenon as an indicator of toxicant exposure. 

Evidence for mechanisms to explain abortions in copepods comes mainly from work on 

calanoids. In B. zschokkei, an increase in abortion frequency and a reduction in hatching 

success were both observed with time, egg viability in calanoid copepods is also age 

dependent (lanora, 1998). High embryonic mortality in sublemperate calanoid copepods 

was attributed, until recently, entirely to remating success or cannibalism (lanora et al, 

1989). There is now evidence that other factors influence hatching success including anoxia 

(Jonasdoltir & Ki0rboe, 1996) or food quality, for example lack o f essential nutrients 

(lanora & Poulet, 1993) or the presence of deleterious chemical compounds (lanora, 1998). 

Food quality has also been shown to affect spermatophore production in calanoid copepods 

(lanora & Poulet, 1993), so the possibility of low male fertility being the cause o f abortions 

should not be discounted. Unfertilised oocytes are not an ecologically sensible strategy 

(lanora & Poulet, 1993). An explanation of low hatching success would be desirable. 
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particularly as other life-history parameters (e.g. fast development times and short brood 

intervals) suggest good culture conditions. 

3.5 Summary 

o There was no effect o f hardness on any o f the reproductive parameters measured for 

Bryocamptus zschokkei. 

o The number of eggs and nauplii produced under defined laboratory conditions were 

higher than those observed previously for this species resulting in a doubling in the 

estimate of the intrinsic rate o f population increase (rm). 

o High biological variability in reproductive parameters probably reflects the ability o f this 

species to respond to natural environmental changes 

o While abortion fi-equency in this copepod is high, their occurrence as a response to 

stress might be useftil as an indicator of toxicant exposure. 
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Chapter 4 

Effect of detritus quality on the development 
and reproduction of Bryocamptus zschokkei 
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4 Abstract 

AUocthonous inputs of leaf litter and woody debris drive the trophic dynamics o f woodland 

streams. Detritus [decomposing leaf material in the form o f coarse particulate organic 

matter (CPOM) and fine particulate organic matter (FPOM)] is the most important source 

o f food for many aquatic invertebrates and the interaction between detritus and 

macroinvertebrate detritivores has been extensively studied. There is, however, very little 

information on how meiofauna influence detritus processing in streams, despite their 

abundance and diversity within the stream benthos. This study considers the effects o f three 

types o f detritus (beech leaves (Fagus sylvatica), oak leaves (Quercus robur) and stream 

derived FPOM) and leaves conditioned for different lengths o f time (two vs. six weeks) on 

the development and reproduction o f the freshwater harpacticoid Bryocamptus zschokkei. 

Grazing on leaf discs and the food available to copepods reared on these diets was 

determined using a scanning electron microscope (SEM). Grazing by B. zschokkei was 

found to reduce the area of microbial colonisation on beech leaves suggesting that they are 

feeding on microbial biofilms rather than on the detrital material itself. Oak leaves supported 

a larger microbial community than beech but there was no effect observed on the 

development or reproduction of 5. zschokkei reared on either food source. At the scale that 

B. zschokkei is feeding the microbial community on both these detritus types is probably 

sufficient to support ^ t development and high offspring production for this copepod. 

FPOM was a lower quality food source for this copepod, resulting in significantly longer 

development times and lower brood production for B, zschokkei. Diatoms present on beech 

leaves conditioning for 6 weeks, may have contributed to the diet o f B. zschokkei. 

Significantly higher hatching success and shorter embryonic development times were 

observed on leaves conditioned for sbc compared with two weeks although development to 
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adult was prolonged. This may be related to differential feeding o f larval and adult life-

stages. 

4.1 Introduction 

AlJocthonous inputs of coarse particulate organic matter (CPOM), in the form o f leaf litter 

and woody debris, drive the trophic dynamics o f woodland streams (Giller & Malmqvist, 

1998). Once submerged in the water column, leaf material undergoes weight loss through 

leeching o f soluble molecules such as amino acids, carbohydrates and phenolics 

(Suberkropp et al, 1976). This is followed by microbial colonisation, which is dependent on 

the leaf species (Petersen & Cummins, 1974), time in the stream (Suberkropp & KJug, 

1976), and on chemical conditions such as nutrient content (Webster & Benfield, 1986) and 

pH (Burton et al, 1985; Chamier, 1987). The activities o f these microbial colonisers result 

in decomposition. In the early stages o f decomposition (<6 weeks), fimgi (mainly aquatic 

hyphomycetes) are the dominant microbes (Barlocher & Kendrick, 1973; Suberkropp & 

KJug, 1976; Chamier & Dixon, 1983) but, after 6-12 weeks (depending on the leaf species), 

CPOM will have been broken down to fine particulate organic matter (FPOM, size range 

45-1000 \xm) which is too small to support fimgal hyphae. At this stage, bacterial biomass 

becomes proportionally more important than the fimgi and the degradation process is 

complete (Suberkropp & Klug, 1976). 

In freshwater systems decomposing leaf material in the form o f CPOM and FPOM is 

referred to as detritus and is the most important source of food for many aquatic 

invertebrates. The interaction between detritus and detritivores is the most extensively 

studied trophic pathway within stream systems (Allan, 1995). The nutritional quality and 

palatability o f detritus (particularly CPOM) to many detritivores is dependent on the degree 
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of conditioning, where conditioning is related to the amount of microbial colonisation and 

leaf degradation. A preference for leaves at an optimal stage o f conditioning (maximum 

colonisation by microbes) has been observed for several detritivore species (ArsufiB & 

Suberkropp, 1984; Suberkropp & ArsufB, 1984). Indeed, many stream invertebrates can 

differentiate between areas of leaf with different degrees o f conditioning or even between 

species o f fiingi (ArsufiB & Suberkropp, 1985; Gra9a et al, 1993a, b). For example, feeding 

preferences o f the amphipod Gammarus pseudolimneaus were related to the species o f 

fungi colonising the leaf rather than to the identity of the leaf species (Barlocher & 

Kendrick, 1973). Bacteria also contribute a significant component o f the diet o f some 

detritivores including blackflies (Edwards & Meyer, 1987) and mayflies (Edwards & Meyer, 

1990). Leaf conditioning is enhanced by microbes releasing enzymes which breakdown 

structural carbohydrates (cellulase and hemicellulase) and it has been proposed that rather 

than the attached microbes, it is the leaf material itself, that contribute the major energy 

source for detritivores (Cummins & Klug, 1979; Lawson et al, 1984). Detritus is, therefore, 

a complex food resource and its quality will be determined by the amount of conditioning 

and degradation of the leaf material but also on the feeding ecology of the species itself 

It is often diflScult to define whether detritivores are generalist or specialist feeders or which 

aspect o f detritus (bacteria, fungi or the leaf itself) a particular species obtains most o f its 

energy from. Food preference and stable isotope experiments indicate what animals 

consume and process. However, the key to understanding the value o f food quality is the 

response of individuals in terms of life-history traits. Demographic parameters reflect the 

ability o f a particular food to support long-term population growth (Chen & Folt, 1993), 

and may be used to interpret the energetic costs and benefits of living in a particular habitat 

(Stanko-Mishic et al, 1999). For example, Asellus aquaticus fed diets o f unconditioned and 
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conditioned leaf material had significantly higher growth rates and fecundity on the latter 

diet (Gra^a et al, 1993b). Unconditioned leaf material can, therefore, be considered a low 

quality diet for A. aquaticus. This is not, however, a generzil conclusion as Gammarus pulex 

fed on the same two diets showed no significant difference in growth or fecundity (Graga et 

al, 1993b). Survival and growth o f some detritivores even varies depending on the species 

of fiingm that they are fed (ArsufiB & Suberkropp, 1985). More information on how 

different sources of detritus influence demographic parameters (such as development and 

reproduction) o f detritivores would give a greater understanding of interspecies exploitation 

of food resources (Gra^a et al, 1993b; Stanko-Mishic et al, 1999). 

Despite the large interest in macro invertebrate detritivore-detritus interactions, very little is 

known o f the influence o f meiofeuna in the detritus processing of streams, even though 

meiofauna and protozoans are thought to play an important role in food web dynamics 

forming a trophic link between detritus and macroinvertebrales (Borchardt & Bott, 1995; 

Hackenkamp & Morin, 2000; Swan & Pabner, 2000). There is evidence to suggest that 

meiofaunal distribution in lotic systems is linked v^th organic matter (Swan & Palmer, 

2000). For example, in colonisation experiments o f interstitial sediments a positive 

rektionship was observed between the amount of sediment, and harpacticoid and nematode 

abundance, suggesting that meiofaunal feeding may be related to the presence o f FPOM 

(Schmid-Ayara, 2000; Schmid-Araya & Schmid, 2000). Field studies have also shov^ that 

leaf packs with the highest microbial biomass support the greatest abundances o f several 

meiofaunal groups (Palmer et al, 2000). The species-specific distribution o f some 

microcrustaceans (including Bryocamptus zschokkei) has also been found to vary with the 

amount and size structure of organic material (Shiozawa, 1986; Robertson et al, 1995). 

Further evidence for meiofauna consuming detritus comes fi^om laboratory studies which 
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show that stream harpacticoids {Attheyella spp) will graze selectively on detritally-

associated bacteria, resulting in a reduction in bacterial density and biomass (Perlmutter & 

Meyer, 1991). There is a high biodiversity in the meiofauna o f the stream benthos and 

therefore specialisation in feeding might be expected for species that co-exist (Robertson et 

aly 2000b). The harpacticoid Bryocamptus zschokkei often occurs with species of Atlheyella 

in the interstitial sediments o f streams and it has been proposed that algae, protozoa, fimgi 

and bacteria are all potential food sources for B, zschokkei in its natural environment. 

The general aims o f this chapter are to consider the life-history responses o f B. zschokkei 

when reared on different detrital diets. The potential food available to B, zschokkei on each 

diet was assessed using scanning electron microscopy (SEM). Specific aims were to assess 

whether: 

1) Harpacticoid grazing influences the microbial community o f beech leaves. 

2) Detritus type [i.e. beech leaves {Fagus sylvatica), oak leaves {Quercus robur) or 

FPOM] influences copepod development and reproduction. 

3) Detritus quality (i.e. leaves conditioned for two vs. six weeks) influences copepod 

development and reproduction. 

4.1 Materials & Methods 

4.1.1 Grazing Experiment 

To assess the effects of harpacticoid grazing on the microbial community associated with 

leaf litter, scanning electron micrographs of leaf discs grazed by different densities of 

copepods were compared. Leaf discs (1 cm diameter) were cut from beech leaves that had 

been laboratory conditioned for two weeks in Elendt's medium (see Chapter 2). A leaf disc 

was added to each of eighteen 2 cm diameter polystyrene Cellwells™ (Dow Coming, 
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Coming, NY, USA), with 3 mi o f Elendt's M4 medium (100 mg I * CaCOs). Eight aduU 

female copepods were added to each of six wells (low density), 16 females were each 

introduced into a further sbc wells (high density), and six wells contained no animals 

(controls). Copepods were allowed to graze the leaves for seven days. A partial water 

replacement (66%) was carried out every second day. On day seven, the copepods were 

removed and a smaller (0.4 cm diameter) disc was obtained from the leaves for microbial 

counts. 

4.1.2 Scanning Electron Microscopy 

Leaf discs from both the grazing and demographic experiments were fixed in 2.5% 

Gluteraldehyde (Agar Scientific Ltd., 66a Cambridge Road, Stanstead, Essex) for 2 h. They 

were rinsed in O.IM Cacodylate buffer, and dehydrated serially through 30, 50, 70, 90, 

100% and 100% dry ethanol for 15 mins each, and transferred in ethanol to a critical point 

drier. Once dry, the discs were stored in a desicator for up to two weeks before 

observation. A layer of gold coating was applied to the surface of the specimen using an 

EMITECH IC550 splutter coating unit prior to observation under a JOEL 5300 scanning 

electron microscope. Images were taken at x200 to measure the overall microbial coverage 

and diatom density, and x2000 to obtain bacterial densities. At each magnification 18 leaf 

discs were used. The area o f leaf colonised by microbial flora was measured at x200 using 

an image analysis programme calibrated to measure 1.03 \xm per pixel (Leica Quantimet 

570). The density o f bacteria (x2000) and diatoms (x200) were estimated from images by 

manual counting. 
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4.1.3 The Effects o f Detritus Type on Demographic Parameters 

A beech leaf diet (F. sylvatica) is known to support development and reproduction o f B. 

zschokkei (Chapters 2 & 3). Oak leaves {Q, robur), however, were common in the stream 

from which copepods were obtained to initiate the cultures used in this thesis. As detritus 

quality related to leeif species (Barlocher & Kendrick, 1973), oak leaves were chosen as an 

alternative food soiu"ce for B. zschokkei. Fine particulate organic matter (FPOM) is 

considered as the third type o f detritus. In view of the small size o f B. zschokkei and the fact 

that it inhabits interstitial sediments, where FPOM is the major organic component, FPOM 

may be considered a more appropriate food source for this copepod. 

In September 1998, beech leaves were collected from Churston Woods, Brixham, Devon 

(grid reference 50**24M5N, 4*̂ 3 r30W). In March 1999, oak leaves were taken from a tree 

in close proximity to the River Yealm site (Hele Cross, Comwood, Devon, grid reference 

50*^25'90N, 4°57'50W) where copepods were collected for laboratory cultures (see 

Chapter 2). Only whole leaves with no visual sign of pathogen infection were used as a food 

source. All leaves were oven dried for 48 h at 60 °C and stored in a sealed polythene 

container at 20 °C until required for conditioning. Preliminary experiments showed that 

there was no significant difference in the colonisation by microbes o f beech leaves 

conditioned in stream water or artificial Elendt's M4 medium (Table 4.1) (Elendt & Bias, 

1990). Copepods fed leaves conditioned in either stream water or Elendt's M4 medium also 

did not differ significantly in terms o f their life-history responses (Table 4.2). Therefore, all 

leaves were conditioned for two weeks by immersion in continuously aerated Elendt's M4 

medium, which was replaced once per week. 
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Table 4.1: The effects of two different conditioning medium (stream water and artificial 
Elendt's M4 medium) on the microbial colonisation o f beech leaves. 

Microbial colonisation Stream water 
conditioned 

Elendt's M4 medium 
conditioned 

Mean ± 1SD area of total microbial 
colonisation (nm^) 

2.79 X 10 ' '±1 .24x 10' 
(n=17) 

3.20 X 10' ± 1.26 X 10' 
(n=17) 

Mean ± ISD density o f bacteria 
(per cm^) 

2.19 X 10*^1 1.28 X 10* 
(n=17) 

2.66 X 10* ± 1.67 X 10* 
(n=17) 

Table 4.2: The effects of two different conditioning medium (stream water and artificial 
Elendt's M4 medium) on the life history parameters oiBryocamptus zschokkei. 

Life-history parameter Stream water 
conditioned 

Elendt's M4 medium 
conditioned 

Mean ± 1 SD development 19.47 ± 3 . 6 6 18.83 ±0 .94 
time to adult (N l -A) (days) (n=15) (n=12) 
Mean ± 1 SD no. eggs per 100.89 ±41.21 116,75 ±26.08 
female (n=9) (n=8) 
Mean ± ISD no. nauplii per 58.00 ±53 .02 54.13 ±36.57 
female (n=9) (n=8) 

FPOM was obtained fi"om the River Yealm sampling site (see above and Chapter 2). Kick 

samples of organic material were collected by disturbing the bottom sediments at several 

points in the stream into a 63 jim mesh. This material was then passed through 500 | im and 

63 | im sieves. The FPOM retained on the 63 (im sieve was returned to the laboratory and 

fi-ozen at - 20°C for 48 h to kill the metazoans but to maintain the associated microflora. 

The organic flection was separated fi*om small stones arid mineral particles by elutralion, 

and stored at 20°C in the laboratory in continuously aerated Elendt's M4 medium. 

4.1.4 The Effects of Detritus Quality on Demographic Parameters 

To assess the influence of detritus quality on the demographic parameters of B. zschokkei, 

copepods were reared on a food source of beech leaves that had been conditioned for either 
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2 or 6 weeks in continuously aerated Elendt's M4 medium (medium replaced once per 

week). 

4.1.5 Demographic Parameters 

Trials were carried out in a temperature-controlled room at 20 (± 1) **C with a photoperiod 

of 16 h light: 8 h dark, and a 20 min dawn-dusk transition. Temperature was recorded daily. 

For all treatments, the dilution mediimi was Elendt's M4 medium modified to give a 

hardness o f 100 mg l ', an alkalinity o f 30 mg l ' (both as CaCOs), a conductivity of 290 

^s cm ' and a pH of 7.7 (Chapters 2 & 3). Partial water replacements (66%) were carried 

out three times a week and the dissolved oxygen content and pH of the media was 

measured before discarding. Development to aduh was measured from the nauplius stage as 

described in Chapter 2. Fifteen nauplii (<24 hour old) per treatment were maintained 

individually in 1 cm diameter polystyrene Cellwells™ (Dow Coming, Coming, NY, USA) 

containing 2 ml of dilution medium and a 4 mm diameter disc o f appropriately conditioned 

leaf material or 0.1 ml of FPOM suspension. As this study was concerned with food quality 

not quantity, all food was fed in excess so that the difference in surface area of the leaf 

material and FPOM should not influence the results. Animals were transferred into new 

Cellwells™ containing fresh medium and a new leaf or FPOM every 14 days. On day 1 of 

the experiment, nauplii were observed, to determine i f they had been transferred 

successfiilly, but were not examined again until day 7, as handling o f the naupliar stages 

significantly delays the development time to adult in B. zschokkei (Chapter 2). Copepod 

survival and the presence of moulted exuviae were recorded daily, and used to calculate the 

duration of the combined naupliar stages (Dn), individual copepodid stages, combined 

copepodid stages (Dc) and the total time taken to reach the adult stage ( N l - A ) . The ratio of 

the time taken to develop through copepodid verses naupliar stages (the Dc/Dn ratio) was 
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also calculated, as this is considered to be a good indicator of food quality in copepods 

(Hart, 1990; Williams, 1997). Sex ratio, determined by size and the morphology of the 

antennae, was recorded at the end of the experiment. 

The starting point for the reproduction trials was newly mated pairs (Chapter 3). Fourteen 

pairs were used per treatment, each placed in a 2 cm diameter polystyrene Cellwell™ 

containing 3 ml of Elendt's medium and a 1.1 cm diameter leaf disc or 0.2 ml o f FPOM 

suspension (food in excess). Daily observations of the presence o f egg sacs and nauplii were 

used to calculate: a) the embryonic development time (the time from which the egg sac was 

released externally to the time nauplii hatched), b) the inter-brood period (the time taken for 

a female to release a new egg sac after the previous one had hatched) and c) the number o f 

broods per female. Aborted egg sacs were removed from the cell well and viewed on an 

inverted microscope (x 40) to determine the number o f eggs present. For the purpose of 

this study, an aborted egg sac was defined as an egg sac from which no viable offspring 

hatched. Every seven days, each copepod pair was transferred to a new Cellwell^ 

containing fresh media and a new leaf disc. Nauplii that had hatched during that week 

remained in the old Cellwell™ and were counted as soon as possible. I f more than one 

brood of nauplii was present, they were distinguished on the basis of size. Eggs that had not 

hatched were also counted, so that the overall hatching success could be determined. This 

experiment was continued for eight weeks. Daily observations of copepods were carried out 

using a Wild M8 binocular microscope under darkfield illumination (x 20-40 magnification). 

Data for construction o f abbreviated life-tables were derived from post-embryonic 

development times, and the measures of adult survival and ofispring production from the 

reproduction experiment (see Chapter 3). As the same animals were not followed through 
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their entire life-cycle, approximations o f the age specific survival (/^) and the age o f first 

reproduction are used. These parameters give estimates o f the intrinsic rate o f natural 

increase {r^) and the net reproductive rate (Ro), allowing comparisons between treatments 

and with the previous data on B. zschokkei obtained in Chapter 3. 

Leaves used in the feeding experiments were also observed under the SEM so that the food 

available to copepods fed on different diets could be characterised. To compare different 

types of detritus and detritus quality, 18 leaf discs (0.4 cm diameter) were obtained fi-om 

four leaves of each leaf litter diet. Leaves were observed under the SEM as described in 

Section 4.2.2. 

4.1.6 Statistical Analysis 

Fishers Exact Test (Finney, 1963) was used to identify differences in copepod survival at 

the conclusion of development (day 28) and reproduction (day 50). Before applying analysis 

of variance techniques, all data were tested for normality and equality of variances using 

Bartlett's test. Data not conforming to these assumptions were loglO transformed. One-way 

ANOVA was used to test for differences between treatments in both 'grazing' (zero vs. low 

vs. high density) and detritus type (beech vs. oak vs. FPOM) trials using Bonferroni's 

multiple comparison procedure to discriminate between the means. I f the assumptions for 

ANOVA were not met even after transformation, data were analysed using Kruskal-WalJis 

analysis of variance by ranks, followed by Mann Whitney tests to highlight which treatments 

were different. Students t-tests, assuming either equal or imequal variances, were carried 

out detect differences between 2 or 6 weeks conditioning. 
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4.2 Results 

4.2.1 Grazing Experiment 

High and low density grazing by copepods reduced significantly the area of leaf covered by 

microbes compared with the control (zero grazing) (One-way ANOVA, p<0.05) (Fig. 4.1a). 

There was no significant difference in the area of microbial coverage o f leaves with high or 

low copepod grazing. Although the overall microbial community was reduced in the 

presence of copepods there was no significant eflfect on the density of bacteria, in fact there 

was a trend towards increasing numbers of bacteria with increased grazing pressure (Fig. 

4.1b). 

4.2.2 The Influence o f Different Detritus Types 

4.2.2.1 Microbial Community 

Visually, the microbial community present on the oak leaves was very diflFerent fi-om that 

found on the beech leaves. For example, the numerically dominant fiingal spore on the 

beech leaves was not observed on oak (Fig. 4.2). This difierence in surface flora was 

reflected in the area o f microbial coverage, which was significantly higher on oak compared 

with beech (Student's t-test, p<0.05) (Fig. 4.3a). The density o f bacteria was also 

significantly higher on oak than beech leaves (Student's t-test, p<0.05) (Fig. 4.3b). No 

quantitative data were collected for FPOM as it was dilBcuIt to process defined quantities 

of this material for observation under the SEM. Nevertheless, photomicrographs o f FPOM 

under the SEM demonstrated low bacterial densities and limited biofilm development (Fig. 

4.4). 
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Figure 4.1: The microbial community on the surface of leaves grazed by eight or sbrteen 
copepods for seven day, compared with controls (zero grazing). 
A) shows the mean (± ISE) area of microbial coverage (lO" ^im^) on the surface of leaves 
and B) is the mean (± ISE) density of bacteria (10* bacteria per cm^). n =18 leaf discs per 
treatment and * indicates a significant difference between treatments (One-way ANOVA, 
p<0.05). 

4.2.2.2 Development 

There was no significant difference in the development times for nauplii or copepodids 

reared with oak and beech leaves, however, development o f each life-history stage took 

significantly longer on FPOM compared wnth the leaf litter diets (One-way ANOVA, 

p<0.05) (Fig. 4.5). The Dc/Dn ratio, calculated for copepods on these three diets, was 

similar (Table 4.3), Survival during the development to adult is also shown in Table 4.3. 

Survival was 100% only on the beech leaf diet, and no difference between the three 

treatments during development to adult was observed (Fisher Exact, p>0.05). 
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Beech Oak 

Figure 4.2: Electron micrographs (x2000) of the surface different types of detritus (beech vs. oak). 
A) Fungal spore (N.B. different species of fungal spore on beech and oak leaves), B) polysaccaride matrix, C) bacteria cells and D) fungal hyphae. Scale bar 
represents 10 jam. 
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Figure 4.3: The microbial community on the two types of leaves (beech and oak) used to 
consider the effects of different detritus types on Bryocamptus zschokkei 
A) shows the mean (± ISE) area of microbial coverage (10* jim^) on the surface of leaves 
and B) is the mean (± ISE) density o f bacteria (10* bacteria per cm^). n =18 leaf discs per 
treatment and 
p<0.05). 

indicates a significant difference between treatments (Student's t-test. 
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Figure 4.4: Electron micrograph (x2000) of fine particulate organic matter (FPOM) 
A) bacteria cells, B) flingal hyphae and C) detrital material. Scale bar represents 10 ^m. 
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Figure 4.5: The mean (± ISE) effect o f different detritus types on the time taken for A) 
naupliar development (Dn) and B) copepodid development (Dc) of Bryocamptus zschokkei, 
n = 11-15 copepods per treatment. * Indicates a significant difference fi-om beech and oak 
(One-way ANOVA, p<0.05). 

Table 4.3: The mean ± ISD development time to adult o f Bryocamptus zschokkei reared on 
different types o f detritus. 
n = number of survivors (firom original 15) at the end o f the experiment and n' = number of 
survivors that developed to adult stage within 28 days (end o f experiment). Of the animals 
moulting to adult (n"), the proportion that were male and female is shown. # Indicates 
mortality post development to adult and ## indicates that one animal did not achieve 
adulthood before the experiment was terminated. * Indicates a significant difference 
(Kruskal-Wallis, p<0.05) 

Detritus type n n' Male Female Dc/Dn Development to adult n' 
(days) (Nl-A) 

Beech 15 15 0.13 0.87 1.18 19.47 ± 3 . 6 6 

Oak 10* 14 0.14 0.86 1.27 17.79+1.76 

FPOM 12** 11 0.45 0.55 1.32 24.18 ±4 .09* 
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4.2.2.3 Reproduction 

Only four females fed on FPOM produced egg sacs fi-om which viable oflfepring hatched and 

the mean number of broods and eggs per female were significantly reduced compared with 

animals fed on the leaf litter diets (One-way ANOVA, p<0.05) (Table 4.4). Copepods on 

oak or beech leaves showed no significant differences in the numbers o f egg or nauplii per 

female (Table 4.4). The mean length of the interval between successive broods was 

prolonged significantly (3.5 days) on the FPOM diet (One-way ANOVA, p<0.05) (Table 

4.5). There were, however, no significant differences in the embryonic development times 

between the copepods reared on three types o f detritus (Table 4.5). There was no 

significant difference in adult survival on any o f the diets (Table 4.6). A decrease o f 60% in 

the intrinsic rate of natural population increase (rm) was observed for copepods fed FPOM 

compared with the beech leaf food source. Life-table parameters were similar for copepods 

fed on either oak or beech (Table 4.7). 
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Table 4.4: The effect of three different types of detritus on reproductive parameters, the number of eggs per brood and the number of broods, 
eggs and viable nauplii per female produced by Bryocamptus zschokkei. 
n = the original number of females per treatment, na = the number of females producing egg sacs and nb = the number of females producing egg 
sacs fi-om which viable oflfepring hatched. • Indicates a significant difference from other treatments (One-way ANOVA, p<0.05). 

Detritus 
type n Ob 

Mean ± ISD 
eggs per 

brood 

Mean ± ISD 
number of broods 

per female (Oa) 

Mean ±1SD 
number eggs 

per female (nb) 

Mean ± ISD 
number nauplii 
per female (Ob) 

Beech 14 12 9 11.01 ±4.52 
n=89 8.08 ±3.18 100.89 ±41.21 58.00 ±53.02 

Oak 

FPOM 

14 

14 

14 

12 

8 

4 

12.83 ±4.35 
n=76 

8.10 ±3.46* 
n=30 

7.14 ±2.66 

4.00 ±1 .71* 

94.38 ±67.90 

32.25 ±20.95* 

61.38 ±79.20 

25.75 ±17.59 
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Table 4.5: The efiFect of three different types of detritus on the embryonic development time and the interval between successful broods (fi-om 
which viable nauplii have hatched) and aborted broods produced by female Bryocamptus zschokkei. 
• Indicates a significant difference fi-om other treatments (One-way ANOVA, p<0.05) 

Embryonic development Successful broods Aborted broods 

Mean ±1SD Mean ±1SD Median brood Mean ±1SD Median brood 

Detritus type brood duration n brood interval interval n brood interval interval n 

(days) (days) (days) (days) (days) 

Beech 4.07 ± 0.96 55 1.06±2.16 0 52 3.83 ±3.17 3 30 

Oak 4.02 ± 0.83 33 0.54 ± 1.12 0 35 4.63 ± 3.64 4 52 

FPOM 3.50 ±1.09 12 4,50 ±3.37* 4 10 6.38 ±5.25* 5 29 



Table 4.6: The number of male and female (from original 14) Bryocamptus zschokkei 
reared on dififerent types o f detritus surviving to the end o f the reproduction experiment 
(day 50). 

Detritus type Males Females 

Beech 11 13 

Oak 11 9 

FPOM 11 11 

Table 4.7: Summary o f 'Life-Table Analyses' for Bryocamptus zschokkei populations fed 
different types o f detritus and detritus o f different quality (two vs. six weeks conditioning). 
Life-tables assumed a 1:1 sex ratio for offspring productioiL For animals reared on oak or 
beech Ro and Tm might therefore be expected to be higher because of the female skewed sex 
ratios. Caution should be observed when comparing v r̂ith previously published data as these 
life-tables were constructed using data from two separate experiments and therefore did not 
follow the same individuals over the entire time period. 

Detritus type 
20 (± 1) °C 

Sex Ratio 
(male:female) 

R o = E U , = net 
reproductive rate 

per generation 

Tcoh = cohort 
generation 
time (days) 

rm= intrinsic 
rate of natural 

increase 

Beech 1:4 18.68 42.96 0.077 

Oak 1:4 17.54 44.72 0.073 

FPOM 1:1 3.68 48.01 0.028 
Conditioning time 

20 (± 1) "C 

Two weeks 1:4 18.68 42.96 0.077 

Six weeks 1:4 27.46 43.95 0.084 

4.2.3 The Influence o f Detritus Quality 

4.2.3.1 Microbial Community 

Diatoms were only recorded on leaves conditioned for six weeks (mean (± ISE) = 0.87x10^ 

(± 0.11x10**) diatoms per cm^. A significantly lower density o f bacteria was recorded for 

leaves conditioned for six compared with two weeks (Student's t-test, p<0.05) (Fig. 4.6b). 
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There was no difference in the area o f microbial coverage between the two conditioning 

times (Fig. 4.6a). Beech leaves conditioned for two and six weeks are shown in Figure 4.7. 
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Figure 4.6: The microbial community on leaves conditioned for different lengths of time 
(two vs. six weeks). 
A) shows the mean (± ISE) area of microbial coverage (10^ j^m^) on the surface o f leaves 
and B) is the mean (± ISE) density of bacteria (10^ bacteria per cm^). n =18 leaf discs per 
treatment. * Indicates a significant difference between treatments (Student's t-test, p<0.05). 
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Figure 4.7: Electron micrographs (x2000) of the surface of leaves conditioned for two or six weeks. 
A) diatom B) fungal spore C) polysaccaride matrix, D) leaf stomata, E) bacteria cells and F) fiingal hyphae. Scale bar represents 10 ^m. 



4.2.3.2 Development 

There was no significant difierence in naupliar development (Dn) for the two conditioning 

times but the time taken for copepodid development (Dc) was, however, significantly longer 

in animals fed leaves conditioned for six verses two weeks (Student's t-test, p<0.05) (Fig. 

4.8). This was reflected in a high Dc/Dn ratio (1.40 as opposed to 1.18) for copepods 

reared on leaves conditioned for the lesser time. Analysis for individual stages indicated that 

the second copepodid stage (C2) was significantly prolonged in animals fed leaves 

conditioned for six weeks (Student's t-test, p<0.05) (Table 4.8). 
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Figure 4.8: Effect o f leaves conditioned for different lengths of time (two vs. six weeks) on 
the time taken mean (± ISE) for A) naupliar development (Dn) and B) copepodid 
development (Dc) of Bryocamptus zschokkei, 
n = 13-15 per treatment. • Indicates a significant difference (Student's t-test, p<0.05). 
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Table 4.8: The development times (mean ±1SD) of combined naupliar stages (Dn), individual and combined copepodid stages (Dc), and hatching to adult 
(Nl -A) for Bryocamptus zschokkei fed on beech leaves conditioned for two or six weeks. 
n = number of survivors (from original 15) at the end of the experiment and n** = number of survivors that developed to adult stage within 28 days (end of 
experiment). The number in brackets is the number of animals used to calculate the duration of each stage. • Indicates a significant difference between the two 
treatments (Student's t-test, p<0.05). 

Conditioning Naupliar Individual copepodid stages Copepodid Hatching 

time 
(weeks) 

n n" Dc/Dn Stages 
(Dn) 

C I C2 C3 C4 C5 Stages 
(Dc) 

to 
Adult 

(Nl-A) 
Two 15 15 1.18 8.93±2.28 1.87±0.52 1.47±0.52 1.80±0.56 2.0710.88 3.3311.68 10.5312.67 19.4713.66 

Six 
(15) (IS) (15) (15) (15) (15) (15) (15) 

Six 13 13 1.40 8.79±1.85 2.23±0.60 2.5410.52 2.3110.63 2.3110.95 2.9210.49 12.3111.60 21.0811.85 
(14) (13) (13) * (13) (13) (13) (13)* (13) 



4.2.3.3 Reproduction 

Hatching success was significantly higher in copepods reared on leaves conditioned for the 

longer period and fewer non-viable eggs were produced per female on leaves conditioned 

for six compared with two weeks (Student's t-test, p<0.05) (Fig. 4.9). A higher mean 

niunber o f nauplii per female were recorded for leaves conditioned for sbc as opposed to 

two weeks but there was high variability resulting in the difference being not significant 

(Table 4.9). Embryonic development times were significantly shorter in females fed on 

beech leaves conditioned for 6 weeks than those fed on leaves with less conditioning 

(Student's t-test, p<0.05) (Fig. 4.10). Despite differences in individual demographic 

parameters, life-table analysis showed that there was very little difference in the intrinsic rate 

of increase (rm) or the net reproductive rate per generation (Ro) for animals fed beech leaves 

conditioned for two or six weeks (Table 4.7). 
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Figure 4.9: The proportion of viable and non-viable eggs produced by female Bryocamptus 
zschokkei fed leaves conditioned for different lengths of time (two vs. six weeks). 
n=9-IO females per treatment. * Indicates a significant difference (Student's t-test, p<0.05) 
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Figure 4.10: The effect o f conditioning time (two vs. six weeks) on the mean (± ISE) 
embryonic development time of egg sacs of Bryocamptus zschokkei. 
n =55 (two weeks) and 62 (six weeks). • Indicates a significant difference (Student's t-test, 
p<0.05) 
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Table 4.9: The eflFect of conditioning time on reproductive parameters, the number of eggs per brood and the number of broods, eggs and 
viable nauplii per female produced by Bryocamptus zschokkei. 
n = the original number of females per treatment, no = the number of females producing egg sacs and nb = the number of females producing egg 
sacs from which viable ofifspring hatched. There was no significant efifect of conditioning time. 

Conditioning 
time (weeks) n Da 

Mean ± ISD 
eggs per 

brood 

Mean ± ISD 
number of broods 

per female (na) 

Mean ± ISD 
number eggs 

per female (nb) 

Mean ± ISD 
number nauplii 
per female (Ub) 

Two 
14 12 9 11.01 ±4.52 

n=89 8.08 ±3.18 100.89±41.21 58.00 ± 53.02 

Six 
14 14 10 11.61 ±5.94 

n=94 7.93 ±4.01 102.60 ±69.11 76.70 ± 77.77 



4.3 Discussion 

4.3.1 Grazing Experiment 

The extensive biofilm on stream sediments is thought to contribute either exclusively or in 

part to the diet of the lotic meiofauna (Hakenkamp & Morin, 2000; Schmid-Araya & 

Schmid, 2000). Qualitative assessment of leaves grazed by the freshwater harpacticoid 

(Anheyella sp.) showed that increased copepod density (up to 10 per 1.1 cm diameter leaf 

disc) and grazing time (up to 14.5 days) was accompanied by a reduction in the amount of 

fungi and organic debris on the leaf surface (Perlmutter & Meyer, 1991). The present study 

provides the first quantitative evidence that the harpacticoid B. zschokkei consumes 

microbes from the biofilm o f leaf surfaces. For example, the area o f beech leaves covered by 

microbes was reduced as a result o f copepod grazing by around 60% over seven days. This 

supports evidence from marine systems that meiofauna are grazing on microbial biofilms 

rather than on the detrital material itself (Marcotte, 1984). Grazing pressure by 

harpacticoids in the studies described exceeds levels observed in the field under normal 

conditions but reflect levels which have been observed i f competition from aquatic insects is 

removed, for example as a result o f pesticide exposure (Cufl&iey et al, 1984; Perlmutter & 

Meyer, 1991). This suggests that when locally abundant, B. zschokkei and other 

harpacticoids will have a significant role in the productivity o f the stream benthos. 

Grazing by Auheyella sp. reduced the density of detritally associated bacteria by up to 58% 

(Perlmutter & Meyer, 1991). In the current study, despite the reduction in microbial cover 

as a result of copepod grazing, the density of bacteria was not significantly influenced by the 

presence o f B. zschokkei (Fig. 4.2). This difference in resource utilisation by these two 

harpacticoid species suggests a degree of feeding selectivity. Perlmutter & Meyer (1991) 

showed that Auheyella sp. could distinguish between different types o f bacteria, preferring 
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the larger rod-shaped cells. A degree o f specialisation might be expected as these, and 

several other harpacticoid species, often co-exist within the stream benthos (Rundle & 

Hildrew, 1990; Rundle & Ormerod, 1991). It would appear that, at least for adult B. 

zschokkei, bacteria may be a less important component o f the diet than for other 

harpacticoid copepods. 

Despite a large decrease in the microbial coverage on the leaf surface, due to grazing by B. 

zschokkei there was no efifect o f grazing on bacterial density even at high copepod numbers. 

These results suggest that microbial activity may be stimulated by the activities of the 

copepods. It has been suggested that movement and grazing by interstitial meiofauna 

increases the oxygen and nutrients to biofilm layers, enhancing microbial proliferation 

(Hakenkamp & Morin, 2000). Also, the removal of organic matter by copepod feeding may 

increase the area of leaf available for the bacteria to colonise (Hargrave, 1970; Gerlach, 

1978). Bryocamptus zschokkei is also known to generate relatively large amounts o f faecal 

material, likely to be high in nitrogen and phosphorous, as well as production o f dissolved 

organic carbon (DOC) (O'Doherty, 1985; Brown, personal observation), both of which 

would provide additional food for microbes (O'Doherty, 1985). 

4.3.2 The Influence o f Different Types of Detritus 

There were no significant differences in any of the life-history characteristics of B. zschokkei 

reared on oak or beech leaves, in spite of the fact that microbial coverage was higher on oak 

compared with beech (Fig. 4.2 & 4.3). Oak leaves are consistently more palatable than 

beech to macroinvertebrate detritivores (Kaushik & Hynes 1971; Iverson, 1974). Growth of 

the trichopterans Sericostoma personatum (Iverson, 1974) and Potamophylax cinguiatus 

(Otto, 1974) was retarded on beech compared with other leaf species; the amphipod G. 
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pulex also shows a low preference for conditioned beech leaves (Nilsson, 1974; Friberg & 

Jacobsen, 1994). The low palatability o f beech leaves may result from their poor nutrient 

content (Iverson, 1974; Kaushik & Hynes, 1971) and may also be due to high levels o f 

condensed tannins which appear to inhibit cellulose breakdown in this leaf species (Friberg 

& Winterboum, 1996). Such factors may explain the lower microbial coverage on beech 

compared with oak. In addition, leaf texture can also afifect colonisation by microorganisms. 

Beech leaves are smoother than other leaf species (including oak) and, as a result, support 

lower densities o f microbes (Friberg & Winterboum, 1996). In the current study, high 

densities o f bacteria were observed in the crevices on the surfece o f the oak leaves, which 

may help explain the significantly higher densities o f bacteria on oak compared with beech 

leaves. 

Despite differences in leaf species and different colonisation of microbes, there appears to 

be no nutritional benefit to be derived by B. zschokkei from the oak leaf treatment. One 

possible explanation for the lack o f response in the demographic parameters to the potential 

difference in the nutritional quality o f these diets is that the copepods are compensating for 

poor nutritional quality by consuming more o f the low quality diet. Friberg & Jacobsen 

(1999) found this was the response o f the shredding caddis S. personatum to poor food 

quality. I f 5. zschokkei increased their foraging rate on the poorer diet, a trade o f f in terms 

of reproductive output might be expected with females putting more energy into finding 

food than offspring production; however, such a trade o f f was not observed in this study. It 

is well established that macroinvertebrate detritivores can distinguish between differentially 

conditioned parts o f a leaf and can select the most productive areas on which to feed 

(Arsuffi & Suberkropp, 1985). Meiofauna, however, forage at a much smaller scale and 

may be more efficient at selecting high quality food. It seems that there is sufficient 
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microbial colonisation on the surface o f beech leaves to support rapid development and 

reproduction o f B. zschokkei on a diet, which might for other species be considered low 

quality. 

Prolonged development and a reduction in the numbers o f broods and eggs per female were 

observed on the FPOM diet compared with the leaf litter treatments. Low survival has been 

observed previously for B, zschokkei that were fed on a diet of fine detrital particles as 

opposed to leaf litter (O'Doherty, 1985). The development o f the chironomid larvae 

Paratendipes albimanus was not supported on a diet o f stream-derived FPOM (Milton-

Ward & Cummins, 1979). Although measures o f detritus quality are often inconsistent, 

there is evidence to suggest that FPOM is a lower quality food than course particulate 

organic matter (CPOM) (Webster et al, 1999). Lower rates o f microbial metabolism have 

been measured on stream-derived FPOM compared vAth CPOM (Peters et al, 1987; 1989). 

As results from the current grazing experiment suggest that B. zschokkei is feeding on the 

surface biofilm, the absence o f microbial colonisation on the surface o f FPOM (Fig. 4.4) is 

probably the main factor affecting the life-history parameters on this diet. It may be that the 

particle size o f FPOM is to small to support fungal hyphae or substantial biofilm production 

(Golladay & Sinsabaugh, 1991). Treating the FPOM to use in these laboratory trials, for 

example killing the meiofauna, may also have reduced the palatability o f this food source. 

For example, meiofauna may improve the quality o f FPOM by stimulating microbes and 

through the addition o f faecal material (Hackenkamp & Morin, 2000). A preference for 

CPOM might also have been predicted from field studies in which the distribution of B, 

zschokkei has been correlated with high sediment modal weight (Shiozawa, 1985; 

Robertson e/a/, 1995). 
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Despite the low food quality of FPOM for B. zschokkei, enough nutritional benefit was 

derived to support development (albeit with extended development) and good survival 

(Table 4,3). Extended development times might be an adaptation to help avoid over 

exploitation o f resources when conditions are food limited (Hicks, 1979). Detritus, as a 

major food resource, is characterised by low persistence and patchy distribution (Townsend, 

1989), and animals may eilter their life-history strategies in response to changes in detrital 

quality. Within the stream environment, B. zschokkei may be able survive for long periods 

on a poor quality diet. Input o f higher quality detritus results in prolonged development 

times and a reproductive strategy that is highly flexible to food availability (e,g, by 

increasing the number o f broods produced). 

4.3.3 The Influence of Detritus Quality 

While postembryonic development of the copepodid stages o f B. zschokkei is prolonged on 

beech leaves conditioned for six weeks, the embryonic development times were shorter and 

overall hatching success was significantly higher compared with animals fed leaves 

conditioned for two weeks. This increase in offspring production suggests that leaves 

conditioned for longer are of higher food quality, corroborating the conclusion from 

numerous other studies for macroinvertebrates (Kaushik & Hynes, 1971; Iverson, 1974; 

Bird & Kaushik, 1985; Grata et al, 1993b). 

The main difference in the microbial community of beech leaves conditioned for six rather 

than two weeks was the presence of diatoms on the former. The leachate released from 

beech leaves during early conditioning has been shown to inhibit algal growth (Friberg & 

Winterboum, 1996). In this study leachate released from the beech leaves during 

conditioning may be delaying the colonisation of microalgae such as diatoms. I t is not 
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known whether B. zschokkei is utilising the microalgae directly as a food source. Diatom 

frustules have been found in the gut contents of this copepod taken directly from the field 

(personal observation), but it is not known i f they are o f any nutritional value (Hicks & 

Coull, 1983). There is an increasing amount o f evidence to suggest that detritivores show a 

high degree o f feeding plasticity and will supplement their diets or even show a preference 

for zdtemative food sources. Such foods tend to be o f high nutritional value and include 

fi^sh macrophytes and microalgae (Jacobsen & Sand-Jensen, 1994, 1995; Friberg & 

Jacobsen, 1994; Ledger & Hildrew, 2000). A microalgae source improved the survival and 

production of two estuarine copepods otherwise maintained on a detrital diet (Heinle et al, 

1977). Microalgae also appear to provide essential fatty acids to the diets of some marine 

harpacticoids (Weiss ei al, 1996). Assimilation efiBciencies o f different food types would be 

required to determine the trophic role (generalist vs. specialist) of this primary consumer 

(Mihuk, 1997). 

Copepodid development took significantly longer in animals fed on beech leaves 

conditioned for six rather than two weeks. The relationship between total naupliar and 

copepodid development (Dc/Dn ratio) has been used as an index of food availability during 

development (Hart, 1990; Williams 1997). A decrease in the Dc/Dn ratio is associated with 

an increase in food supply because naupliar stages tend to be less dependant on food than 

copepodid stages (Hart, 1990). The Dc/Dn ratios of 1.40 and 1.18 recorded for copepods 

fed leaves conditioned for six and two weeks, respectively, suggests the former may have 

been food limited. Extended development was also observed in this copepod on a diet o f 

FPOM, which appears to be as a result o f low microbial colonisation. While improved 

hatching success and short embryonic development times suggest that beech leaves 

conditioned for six weeks are a high quality food for B. zschokkei, larval life stages are to 
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some extent food limited. One explanation is that adult and juveniles are consuming 

different food types. Calanoid and cyclopoid copepods often exhibit ontogenetic shifts in 

feeding behaviour (Chow-Fraser & Wong, 1986; Santer & van den Bosch, 1994). Decho & 

Fleeger (1988) showed that the marine harpacticoid Nitocra laciistris did not start to ingest 

diatoms until they were C2 or C3, prior to which they consimied exopolymer exudates and 

bacteria. As the density of bacteria was lower on leaves conditioned for six rather than two 

weeks it might be that juveniles were food limited. Naupliar stages o f B. zschokkei range in 

total length from 79-160 ^m (Sarvala, 1977) and copepodid 248-536 ^m (personal 

observation). Small life-history stages would be unlikely to consume diatoms [length, mean 

(± 1SD)=23.2 (± 3.7) ^im] or fiingal spores 14.7 (± 1.0) ^m whUe bacteria 1.7 (± 0.8) ^m 

would be easy to handle. The second copepodid stage contributes most to the extended 

development of B. zschokkei^ suggesting that there were not enough bacteria available to 

support increased movement and metabolism of this development stage while larger 

copepodids could exploit other available food resources. 

4.4 Summary 

• The overall area of microbial cover on beech leaves was reduced in the presence o f B. 

zschokkei while the density o f bacteria was not affected. The data suggests that B. 

zschokkei may be selectively feeding on the microbial community as suggested 

previously for other freshwater harpacticoids. 

• Oak leaves showed a higher area and diversity o f microbial colonisation compared with 

beech. The high degree o f microbial colonisation on oak leaves was, however, not 

reflected in food quality as no significant differences in demographic parameters were 

observed in B. zschokkei fed on these diets. 
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o Prolonged development to adult, and low level reproduction o f copepods fed on FPOM, 

suggests that this is a low quality food for B. zschokkei. 

o Beech leaves conditioned for six weeks supported greater hatching success and reduced 

embryonic development times than on leaves conditioned for two weeks but copepodid 

development was longer on the former diet. The presence o f diatoms on the leaves 

conditioned for six weeks may provide additional nutrients to the diet o f this copepod 

supporting the increase in reproductive output. Larval life stages would probably be too 

small to utilise this food source. 
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Chapter 5 

The effects of the crustacean moulting hormone 
20-hydroxyecdysone on the development and 

reproduction of Bryocamptus zschokkei 

108 



5 Abstract 

Bryocampttis zschokkei was exposed to the crustacean moulting hormone 20-

hydroxyecdysone (20-HE) in a fiill life-cycle toxicity test. This moulting hormone has been 

recommended as a reference (positive control) for evaluating relevant endpoints for 

chemicals with the potential to disrupt endocrine function in crustaceans. There was no 

significant eflfect o f 20-HE on any of the measured endpoints (i.e. development to adult, sex 

ratio or numbers of eggs or nauplii per female), which probably reflects a greater tolerance 

of B. zschokkei to 20-HE compared with other crustaceans. The eflFects o f 20-HE to B. 

zschokkei may also have been reduced by the presence o f leaf discs, therefore, in subsequent 

long-term studies using this copepod as a test organism, measurement o f the amoimt of test 

substance present in the dilution water is recommended. A solvent effect was also observed, 

with significantly prolonged copepodid (Dc) and total (Nl-Adult) development times in the 

solvent (methanol) control compared with the control. Methanol may act as an additional 

carbon source for the microbial community on the leaf surfece and, in turn, may affect food 

availability to B. zschokkei. This is the first time a fiill life-cycle toxicity test has been 

conducted for a fi-eshwater harpacticoid copepod, however, before the potential use o f this 

test for assessing toxicants effects can be fiilly evaluated, fiirther investigations are required 

which incorporate some recommended modifications to the test protocol. 

5.1 Introduction 

In recent years, there has been growing concern over the effects o f anthropogenic 

compounds, which at low levels have the ability to disrupt normal endocrine fimction in 

animals (Colbom et al, 1993). While most o f the evidence to date comes fi-om studies on 

vertebrates, there is growing concern that invertebrates may also be vuhierable to the 

effects of endocrine disruption (ED) (see recent reviews by Finder et al, 1999; deFur et al, 

1999). The endocrine systems o f arthropods (insects and crustaceans) are the best defined 
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of the aquatic invertebrates (Pinder et al, 1999). While vertebrate-type hormones, 

including ©estrogens and androgens have been detected in arthropods; a fimctional role for 

them has not been established (Pinder et al, 1999). However, arthropods do possess non-

vertebrate peptide hormones, (including the juvenile hormones and ecdysteroids), that are 

knovwi to be vulnerable to perturbation by certain contaminants. In fact, many pesticides 

are designed specifically to target the endocrine systems of insects; examples include 

methoprene and tebufenozide, which are juvenile hormone and ecdysone agonists, 

respectively. As crustaceans possess similar endocrine systems to insects, they might also 

be vulnerable to the effects o f such chemicals. In addition, there are examples o f effects in 

field populations of crustaceans consistent v^th ED. These include the occurrence o f a high 

incidence o f intersexuality (>90%) in several species o f marine harpacticoid associated v^ath 

a sewage outfall in the Firth of Forth, Scotland (Moore & Stevenson, 1991; 1994) and 

intersex lobsters Homarus americanus from sites in Nova Scotia, Canada (Sangalang & 

Jones, 1997). I t was also suggested that a dramatic reduction in the proportion o f males in 

daphnid populations in Lake Mendota (USA) since 1945 could be due to ED effects on 

male development (Dodson & Hanazato, 1995). 

The steroid hormone 20-Hydoxyecdysone (20-HE) is the physiologically active moulting 

hormone in arthropods (Skinner, 1985). As a result o f this, 20-HE has been recommended 

as a reference chemical for considering relevant endpoints for measurement in studies on the 

potential effects of endocrine disrupting chemicals (EDCs) (Hutchinson et al, 1999a, b; 

deFur et al, 1999). Hormonal control of moulting in Crustacea is the subject o f several 

reviews although most o f the information available comes from data on higher crustaceans, 

particularly decapods (Quackenbush, 1986; Charmantier et aly 1997; Fingerman, 1997). 

Despite the lack o f information on hormone control in lower crustaceans, a role in moulting 

for 20-HE has been identified in cirripedes (Clare, 1997), malacostracans (Suzuki et al, 
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1996) and cladocerans (Bodar et al, 1990). In general, ecdysone is synthesised in ecdysial 

glands known as Y-organs and then secreted into the haemolymph where it is converted 

into the active form 20-HE. This hormone has also been found in the ovaries and embryos 

of some crustaceans, suggesting that 20-HE may also have a role in regulating reproduction 

(Suzuki et al, 1996; Subramoniam, 2000). Exogenous 20-HE is active in an in vitro 

ecdysteroid receptor-based screen derived from the Bn blood cell line of Drosophila 

melanogaster (Bn Assay) showing agonistic activity at 100 ^g 1* 20-HE (Dinan et al, 

2001). In vivo studies have a\so shown that exogenous exposure to 20-HE affects moulting 

of decapods (Freeman & Costlow, 1984), moulting and settlement in cirrepedes (Freeman 

& Costlow, 1983), the sex ratio and offspring production o f cladocerans (Bodar et ai, 1990; 

Peterson et aly 2001), and survival and oflfepring production o f copepods (Hutchinson et al, 

1999a, b). 

In an effort to define cause and effect for potential EDCs there has been increased emphasis 

for laboratory tests that include endpoints such as sex ratio and morphological 

abnormalities. The use o f Mife-cycle' tests has edso been advocated to highlight particular 

life stages or endpoints vulnerable to perturbation by hormone mimics (deFur et al, 1999). 

It is recommended that life-cycle tests incorporate aspects o f embryo, larval and gonad 

development and reproduction. A life-cycle test developed for the marine harpacticoid Tisbe 

battagliai has been used successftilly to evaluate the effects o f some vertebrate steroid 

hormones (oestrone, 17p-oestradiol, and l7a-ethynylestradiol) alongside 20-HE as a 

reference chemical (Hutchinson et al, 1999a). This present study combines the development 

and reproduction assays for Bryocamptus zschokkei (see Chapters 2-4) to produce the first 

full life-cycle toxicity test for a freshwater harpacticoid. 
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The general aim of this chapter is to consider how the affects o f elevated concentrations of 

20-HE might be manifest during the life-cycle of B. zschokkei with a view to using this 

chemical as a reference for the potential effects of ED. The specific aims for this chapter 

were to assess the: 

1. Influence of chronic exposure to 20-HE on the long-term survival, development and 

reproduction of B. zschokkei. 

2. Potential of a fiill life-cycle test for B, zschokkei adapted from protocols for considering 

the effects of water hardness on development (Chapter 2) and reproduction (Chapter 3). 

5.2 Materials and Methods 

5.2.1 Test Substance 

20-Hydroxyecdysone (20-HE), minimum purity 95% was obtained from Sigma, Poole, 

Dorset, UK. Test solutions were prepared using the methods described by Hutchinson et al 

(1999a). A primary stock solution o f 5 mg 1"' 20-HE was prepared by dissolving the test 

compound in methanol (a solvent carrier) and stored in an amber vial at -4**C. A secondary 

stock was prepared by the addition o f an appropriate volume o f primary slock to 200 ml of 

dilution water whilst stirring. Individual test solutions (100 ml volumes) were obtained by 

diluting known volumes o f secondary stock with dilution water. In each test solution, the 

solvent concentration was made up to 0.1 ml f ' methanol. All glassware was acid washed 

and then leached in dechlorinated water prior to use. For this study, the dilution water was 

modified EIendt*s M4 medium (Elendt & Bias, 1990) as used in copepod cultures, with a 

hardness o f 100 and an alkalinity of 30 (both as mg 1"' CaCOj), conductivity was 290 |is 

cm ' and pH 7.7. The composition of the dilution water complies with water quality 

guidelines recommended by the American Society o f Testing and Materials (1999a) for the 
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testing of ft-eshwater benthic invertebrates. The dilution water was aged for 7 days prior to 

use and aerated continuously. 

5.2.2 Chronic Toxicity 

The exposure concentrations used in this study were within the same range as observed to 

cause effects on moulting in the cladoceran Daphnia magna (Bodar et al, 1990), and on 

survival and reproduction in the marine harpacticoid Tisbe battagliai (Hutchinson et al, 

1999a). The exposure concentrations consisted of a control, a solvent control, and 0.87, 

2.7, 8.7, 26.9, 86.5 and 269 (ig 1"' 20-HE. Al l experimental work was carried out in a 

ten^)erature-controlIed room at 20 (± XyC and a photoperiod o f 16 h light: 8 h dark with a 

20 min dawn-dusk transition. Temperature was recorded daily. Copepods were supplied 

with a 4 cm diameter beech leaf disc {Fagus sylvatica L.) as a source o f food; discs were 

replaced every 14 days. Test solution was replaced (75%) three times per week and the 

dissolved oxygen concentration and pH o f the media were measured before discarding. 

The effects of 20-HE on the development and reproduction o f B. zschokkei were measured 

in a single experiment. Nauplii (< 24 h old) were used to initiate the experiments and 

allowed to develop to adult. The nauplii were obtained fi'om ovigerous females 

(approximately 100) which had been isolated fi'om stock populations and maintained for 

24 h in a 100 cm diameter crystallising dish containing Elendt's M4 medium (100 ml) and a 

4 cm diameter beech leaf disc. After 24 h, ovigerous females were removed leaving only 

newly-hatched nauplii. The experiment was initiated with 40 nauplii per treatment, 

maintained individually in 1 cm diameter polystyrene Cellwells^"^ containing 2 ml o f test 

solution and a 4 mm diameter beech leaf disc. Every 14 days, the animals were transferred 

into new Cellwells^" containing fi^sh medium and a new leaf disc. Nauplii were observed 

on day 1 of the experiment to determine i f they had been transferred successfully but not 
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again until day 7 because excessive handling of naupliar stages can significantly delay the 

development time to adult of 5. zschokkei (see Chapter 2). Subsequently, daily observations 

of copepods were carried out using a Wild M8 binocular microscope under darkfield 

illumination (magnification, x20-40). Copepod survival and the presence of moulted 

exuviae v̂ êre recorded daily, and used to calculate the duration of the combined naupliar 

(Dn) and copepodid (Dc) stages, and the total time taken to moult to adult. The ratio of 

males to females was also recorded. To consider the effects of 20-HE on reproduction once 

copepods had achieved adulthood (approx. 20 days), females and males were combined in a 

2:1 ratio to match the observed female bias. After pairing, Cellwells™ containing females 

were monitored for the presence of egg sacs and nauplii. These data were used to calculate 

the embryonic development time (the time fi-om which the egg sac was released externally 

to the lime nauplii hatched), and the number of eggs and nauplii per female. Every seven 

days, females were transferred to a new Cellwell™ and nauplii that had hatched during that 

week were retained in the old vessel and counted. I f more than one brood of nauplii was 

present, they were distinguished on the basis of size. Non-viable eggs were also counted. 

The duration of this experiment was sbc weeks, which in the dilution water control, was 

enough time for copepods to develop to adult and for females to produce an average of 

three broods. 

5.2.3 Statistical Analysis 

Differences between treatments in survival at 21 and 42 days were analysed using Fisher's 

Exact test (Finney, 1963). Chi square tests were used to consider differences in the sex ratio 

of copepods moulting to adult. All data were tested for normality (Shapiro-Wilks) and for 

equality of variances (Bartlett's test) before using analysis of variance techniques. I f data 

did not conform to these assumptions, then they were logio transformed. One-way ANOVA 

was used to test for differences between 20-HE exposures in development times, and 
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numbers of eggs and nauplii per female using Bonferroni's multiple comparison procedure 

to discriminate between the means. I f the assumptions for ANOVA were not met, data were 

analysed using Kruskal-Waliis analysis of variance by ranks, followed by Mann Whitney 

tests to highlight which treatments were different. 

5.3 Results 

5.3.1 Long-Term Survival 

There was no significant difference in mortality between the solvent control and control at 

either day 21 or 42. Mortality was not exposure dependent and significantly lower survival, 

compared with the control, was observed for all 20-HE exposures (Fisher's Exact Test, 

p<0.05) apart fi-om 269 ng l ' 20-HE at day 21 and all exposures except 2.7 and 269 ng 1"' 

at day 42 (Fig. 5.1). At both days 21 and 42, there was no significant difference in mortality 

between the solvent control and any of the 20-HE exposures. After 21 days, most animals 

had achieved adulthood and, thereafter, there was no significant mortality in any of the 

treatments. 

5.3.2 Development 

There was a significant increase in the development times of copepodids (Dc) and from 

nauplius to aduh (Nl-Adult) for B. zschokkei in the solvent control compared with the 

control (Student's l-Test, P<0.05). There was, however, no difference in the development 

times for nauplii (Dn), copepodids (Dc) or from nauplius to adult (NI-Adult) in the solvent 

control compared with any of the 20-HE exposures (Fig. 5.2). There was also no difference 

in the ratio of males to females between treatments (x̂  6.87, d.f. 4, p=0.14; Table 5.1) even 

though only two males moulted to adult at 269 fig 1"' 20-HE and there were no males at 8.7 

ĝ r' 20-HE. 
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Figure 5.1: The effect of 20-HE on the age-specilic survival {Ix) ofBryocamptus zschokkei. 
At day 21 there was significant mortality in all 20-HE treatments except the highest (269 ^g I"') from the control but not compared with the solvent control 
(Fisher's Exact Test, p<0.05); n=37-40 per treatment. 
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Figure 5.2: EfiFect of 20-HE on the time taken (mean ± ISE) for A) naupliar development 
(Dn) and B) copepodid development (Dc). 
* Indicates significantly longer development times compared with the control (Kruskal-
Wallis, p<0.05); n=19-35 animals moulting to adult per treatment. 
5.3.3 Reproduction 

There was no significant difference between treatments in the time to release the first egg 

sac (Table 2) or in the numbers of eggs and nauplii per female in any of the 20-HE 

exposures compared with the controls (Fig. 5.3). There was no egg production at 8.7 jig 1"' 

20-HE because there were no males present. The niunbers of viable nauplii produced per 

female at the highest concentration of 20-HE (269 jig l ") were 45 and 39% lower compared 

with the control and solvent control respectively. As there were only two males moulting to 

adult and two females producing viable ofifepring at 269 (ig f ' 20-HE, a significant 

difference was not detected. Embryonic development times did not differ significantly 

between treatments (Table 5.2). 
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Table 5.1 The mean ± ISD development times for combined naupliar (Dn) and copepodid stages (Dc), and from hatching to adult (Nl-A) for Bryocarnptus 
zschokkei exposed to 20-HE. 
The numbers of males and females moulting to adult in each treatment are also shown, n = number of original animals and n" = number of animals that survived 
to achieve adulthood. The number in brackets is the number of animals used to calculate the duration of each stage. • Indicates a significant difference between 
the control and solvent control (Student's t-test, p<0.05). There was no effect of 20-HE compared with the solvent control. 

00 

Sex ratio of copepods Development time (days) 
20-HE (ng r*) n n" Dc/Dn Male Female Dn Dc (Nl-A) 

Control 40 35 0.95 11 24 9.51 ±1.38 
(35) 

9.03 ±0.86 
(35) 

18.54 ±1.72 
(35) 

Solvent control 39 28 1.14 5 23 10.04 ±2.64 
(28) 

11.43 ±1.79 
(28)* 

21.46 ±2.62 
(28)* 

0.87 37 25 1.17 6 19 9.64 ±1.04 
(25) 

11.24 ±1.42 
(25) 

20.88 ±2.09 
(25) 

2.7 39 27 1.21 5 22 9.33 ±0.83 
(27) 

11,33 ± 1.82 
(27) 

20.67 ±2.13 
(27) 

8.7 37 20 1.15 4 36 9.43 ±1.08 
(21) 

10.86 ±1.68 
(21) 

20.29 ±2.43 
(21) 

26.9 38 19 1.15 0 19 10.21 ±1.47 
(19) 

11.74 ±2.76 
(19) 

21.95 ±2.76 
(19) 

86.5 39 26 1.14 6 20 10.23 ±2.30 
(26) 

11.62 ±2.26 
(26) 

21.85 ±2.77 
(26) 

269 38 27 1.22 2 25 9.46 ±0.69 
(28) 

11.59 ±1.39 
(27) 

21.04 ±1.56 
(27) 
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Figure 5.3: The mean ± ISE A) eggs and B) nauplii per female at different 20-HE exposures. 
There was no significant effect of 20-HE; n=2-18 per treatment. 
Table 5.2: The effect of 20-HE on the number of broods produced by Bryocamptus zschokkei, the time to first egg sac and on the embryonic development 
time of each brood. 
n is the number of females per treatment, no is the number of females producing egg sacs and nt is the number of females producing egg sacs from which viable 
offspring hatched. There is no significant effect of 20-HE. 

20-HE (fig r*) n Da Db 

Total no. of 

Total no. successfiil Proportion of 

of broods broods (n,) aborted broods 

MeanilSD time to 

first egg sac (Da) 

Mean ± ISD embryonic 

development time (days) 

(n.) 

Control 22 20 18 59 42 0.29 26.85 ±3.18 3.09 ±0.69 

Solvent control 10 25 15 0.40 29.44 ±3.32 3.07 ±0.49 

to o 0.87 
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26.9 
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22 
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3 

0.45 

0.18 

0.22 

0.41 

0.50 

29.82 ±3.95 

30.80 ±4.16 

31.00 ±1.85 

31.11 ±4.76 

27.67 ±2.52 

3.38 ±0.62 

3.14±0.41 

3.03 ±0.46 

3.08 ±0.49 

3.00 ±0.00 



5.4 Discussion 

5.4.1 Effects of 20-Hydroxyecdysone 

There was no effect of 20-HE on development times for B. zschokkei over the exposure 

range chosen for this study. In view of evidence fi-om previous studies on the effects of 

20-HE, an excess of this hormone would be expected to result in hyperecdysonism, where 

an animal is unable to regulate haemolymph levels of 20-HE (Bodar ei al, 1990; deFur e( al, 

1999). Hyperecdysonism occurs in the presence of persistent 20-HE (or chemicals that 

mimic 20-HE) due to an agonistic effect on the ecdysone receptor, often manifest as 

accelerated moulting in Crustacea (McConaugha & Costlow 1981; 1987; Freeman & 

Costlow 1984; Clare et al, 1992). Impaired moulting was observed in Daphnia magna 

exposed to 480 ^g l * 20-HE with animals failing to shed their exuviae and sometimes living 

in more than one moult sac before dying (Bodar et al, 1990). Survival of the marine 

harpacticoid Tisbe baUagliai during development was significantly reduced at 269 jig 1*' 

20-HE (Hutchinson et al, 1999a). Reports on the effects of 20-HE are, however, variable 

with no significant effect on naupliar development of the marine copepod Arcartia lonsa 

being recorded at exposures up to 4 mg I * 20-HE (Andersen et al, 2000). A potential role 

for ecdysteroids (including 20-HE) in regulating reproduction in Crustacea has also been 

suggested (Suzuki et al, 1996; deFur et al, 1999; Subramoniam, 2000) and reproductive 

parameters appear to be more sensitive to exposure to 20-HE than effects on development. 

For example, a decrease in offspring production has been observed in D. magna at 480 \xg 1" 

' 20-HE (Bodar ai al, 1990), Daphnia pulex at 100 ^ig 1*' 20-HE (Peterson et al, 2001) and 

T. battagliai at 26.9 \x% l ' 20-HE (Hutchinson et al, 1999 a, b). In the present study, the 

number of nauplii per female zschokkei was lower at 269 \xg 1"' 20-HE than observed in 

the controls and in other exposures. It is, however, impossible to attribute this to a toxic 

effect of 20-HE because of the low numbers of males moulting to adult in this treatment. 
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Crustaceans are able to regulate haemolymph levels of 20-HE either through the production 

of a moult inhibiting hormone (MIH), which acts on the target tissues of ecdysteroids 

blocking their effects, or they may regulate production of 20-HE through a negative 

feedback mechanism (Charmantier e( al, 1997). It would appear that, in B, zschokkei, 

ecdysteroid activity could be regulated over the concentration range tested. Therefore, the 

most likely explanation for a lack of effect of 20-HE in B. zschokkei is that the nominal 

exposure range chosen was too low for effects on development or reproduction to be 

apparent within the chosen test system. Due to practical constraints, no chemical analysis 

was obtained for the present study. There is, however, approximately 40% loss of 20-HE 

compared with nominal exposures over three days firom seawater maintained in 3 cm 

diameter Cellwells™ at 20°C in the absence of any additional organic matter (Hutchinson, 

personal communication). The presence of organic matter (i.e. a leaf disc) would be 

expected to reduce fiirther the toxicity of 20-HE as observed for both zinc (Chapter 6) and 

lindane (Chapter 7). It may also be that micro-organisms present on the surface of the leaf 

disc have the capacity to degrade 20-HE. The presence of a leaf disc increases the 

ecological relevance of the test environment by reflecting more closely field conditions 

where organic matter will strongly influence the toxicity of a particular contaminant. The 

microbial flora on the surface of the leaf disc also increases the complexity of the test 

creating in effect a microcosm. It is therefore imperative that detailed chemical analysis is 

obtained in fijture studies using this test system so that a true representation of the 

compound being tested can be obtained. 

5.4.2 Solvent Effects 

A significant increase in copepodid development (Dc) and total development times (Nl -

Adult) of B. zschokkei was observed in all treatments containing the carrier solvent 

methanol compared with the control. An exposure-independent increase in mortality in the 
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20-HE treatments compared with the control, but not with the solvent control, was also 

indicative of a solvent effect. The carrier solvent, methanol, did not exceed 0.1 ml l ' in any 

of the treatments which is the maximum solvent concentration recommended in regulatory 

guidelines for testing of freshwater invertebrates (ASTM, 1999a, b). Methanol was also the 

carrier solvent in previous studies on Daphnia magna (Bodar et ai, 1990) and Tisbe 

battagliai (Hutchinson ei a/, 1999a, b) exposed to 20-HE and no solvent effects were 

observed in these studies. The use of water-miscible solvents such as methanol, ethanol and 

acetone are, however, known to stimulate undesirable growth of micro-organisms in some 

test systems (Granmo et al, 1989; Willis, 1998; ASTM, 1999a). The test system used in this 

study included a leaf disc from which B. zschokkei is known to obtain food (Chapter 4). 

Methanol may be acting as an additional source of carbon for microbes and, as such, 

influencing the microbial population on the surface of the leaf disc. A change in the 

microbial flora of the leaf surface could alter the quality of the leaf as a food source for B. 

zschokkei. For example, significantly prolonged development times have been observed for 

B, zschokkei fed on leaf discs of low detritus quality where quality was related to the degree 

of microbial coverage on the leaf surface (Chapter 4). In the current study, the leaf discs 

were replaced once every 14 days (based on protocols used to consider water hardness and 

detritus quality), and this may have been long enough for the microbial community to 

respond to the presence of a solvent. In a subsequent study, where B. zschokkei were 

exposed to lindane with methanol as a solvent carrier, the leaf disc was replaced every 7 

days and no solvent effects were observed (see Chapter 7). It is recommended, therefore, 

that in further tests, with B. zschokkei the leaf discs be renewed regularly. 

5.4.3 FuU Life-Cycle Test 

Based on the published literature this was the first time a fiiU life-cycle toxicity test has been 

carried out for a fi^shwater harpacticoid. In six weeks, B. zschokkei developed to adult and 
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produced approximately three broods of oSspring, therefore, incorporating embryonic, 

larvzd and gonadal development. The assay was sensitive enough to detect solvent effects on 

the development time to adult but over the concentration range tested no effects of 20-HE 

were observed. While this study demonstrates that a full life-cycle test can be carried out 

using B. zschokkei, fiirther work is required before the utility of this bioassay can be fuUy 

evaluated. For example, the sensitivity of B. zschokkei to a range of chemicals should be 

evaluated to establish if this copepod also exhibits relatively high tolerance to other 

contaminants. The suggested recommendations for more detailed chemical analysis and 

more fi^uent renewal of leaf discs should also be incorporated into any further tests with 

this species. 

5.5 Summary 

• There was no effect of 20-HE on the development or reproduction of B, zschokkei over 

the nominal concentration range tested (8.7-269 \xg f ' 20-HE). It is possible that the 

presence of a leaf disc reduced the toxicity of 20-HE to B. zschokkei or that breakdowrn 

of this hormone was accelerated by micro-organisms present on the leaf surface. 

Detailed chemical analysis is therefore recommended when carrying out any subsequent 

toxicity testing using these protocols. 

• A significant increase in copepodid (Dc) and total development times (Nl-A) of B. 

zschokkei was observed in the methanol control compared with the control. This solvent 

effect may be an indirect effect on the growth of micro-organisms on the leaf surface 

due to methanol providing an additional carbon source. More frequent renewal of leaf 

discs is recommended for further testing with this species. 

• Further work is required incorporating the above recommendations before the potential 

of this life-cycle test can be fully evaluated. 
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Chapter 6 

The effects of zinc on the development and 
reproduction of Bryocamptus zschokkei 
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6 Abstract 

The lethal and sublethal effects of zinc to the fi-eshwater harpacticoid Bryocamptm 

zschokkei were measured in this study. Larvjd life-stages (nauplii and copepodids) were 

more sensitive than adult females to acute zinc exposure with a 96 h LC50 (± 95% CL) of 

0.62 (0.52-0.73) mg Zn I * for copepodids in the absence of food. The toxicity of zinc to 

adult females was significantly reduced in the presence of a leaf disc. In chronic exposures, 

long-term survival (> 10 days) and reproductive panuneters (numbers of egg and nauplii per 

female, and embryonic development times) showed similar sensitivity to zinc with significant 

mortality, reduced offspring production and prolonged embryonic development times 

observed for copepods at measured concentrations of 0.48 mg Zn l ". Based on acute and 

chronic toxicity data B. zschokkei is more tolerant to zinc than cladocerans, but has a similar 

sensitivity range as peracarid crustaceans {Gammarus pulex and Asellus aquaticus) which 

are "standard" aquatic organisms used in the generation of water quality guidelines. 

6,1 Introduction 

Copepods have been widely used for studying the effects of pollutants in marine systems 

(Bengtsson & Bergstrom, 1987; Williams, 1992; Green et al, 1995) and possess many 

attributes that are advantageous for toxicity test organisms, including short life-cycles, small 

size and ease of culture in the laboratory. More importantly, test organisms should be 

relevant to the environment that needs to be protected. The use of the fi*eshwater 

harpacticoid Bryocamptus zschokkei as a bioassay organism for lotic systems was proposed 

after this copepod was identified as a sensitive indicator of copper toxicity in rivers of 

Southwest England (Burton ei al, 2001). Preliminary laboratory trials showed that adult 

survival and reproduction of B. zschokkei were influenced by exposure to copper and that 

for accurate evaluation of developmental effects, there was a requirement for more refined 

methodologies (Burton, 1998). More detailed measurements during reproduction are 
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needed to determine the mode of toxicity of the contaminant. Standardised protocols for B. 

zschokkei have been described (Chapters 2-4) to evaluate how natural environmental 

parameters (i.e. water hardness and food quality) affect development and reproduction. 

These methods have been adapted in order to develop chronic toxicity testing protocols for 

this copepod (Chapter 5). Zinc was chosen for evaluation in this study as this trace metal (in 

association with copper) is known to affect the distribution and abundance of B. zschokkei 

in the field (Burton et al, 2001). Concentrations of zinc in surface and pore waters of metal-

impacted rivers occur at levels which are lethal to some fi-eshwater crustaceans (Burton et 

al, 2001). 

There is a relatively extensive database documenting the lethal effects of zinc on fi-eshwater 

biota. For example, 48 h LC50s for daphnids have been recorded at exposures as low as 40 

|ig Zn r' (Eisler, 1993). With the exception of daphnids, freshwater copepods appear to be 

amongst the most sensitive species of crustacean to this metal (Boudouin & Scoppa, 1974; 

LaLande & Pinel-AUoul, 1986; Notenboom et al, 1992). Growth and development of 

crustaceans appears to be sensitive to sublethal zinc exposure (Biesinger & Christensen, 

1972; Maltby et al, 1990; Conradi & Depledge, 1999), but data for copepods are scarce. 

Studies of the chronic effects of zinc to copepods have tended to focus on reproductive 

output rather than development (Sunda et al, 1987; Verriopoulos & Hardouvelis, 1988), 

despite the fact that copepod development has been shown to be vulnerable to perturbation 

by trace metals such as copper and cadmium (D'Agostino & Finney, 1974; Moraitou-

Apostolopoulou et al, 1983). Reproduction in crustaceans is very sensitive to zinc and 

results in decreased egg production in marine copepods at sublethal exposiu-es (Sunda et al, 

1987; Verriopoulos & Hardouvelis, 1988). A significant reduction in offspring production 

has been observed in daphnids at concentrations as low as 25 pg Zn I * in soft water 

(Paulauskis & Winner, 1988). 
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This study had the general aim of reporting the lethal and sub-lethal responses of B. 

zschokkei to zinc. Specific aims were to assess: 

1. the effects of acute exposure to zinc on different life-stages (nauplii, copepodids and 

adult females), 

2. how the presence of food influenced acute zinc toxicity, and 

3. the influence of chronic exposure on long-term survival (>10 days), development and 

reproduction. 

6.2 Materials and Methods 

6.2.1 Test Chemical 

Zinc, added as zinc sulphate (ZnS04.7H20), was obtained from Fisher Scientific Ltd. 

Primary stocks were prepared by dissolving the test compound in dilution water. Individual 

test solutions (100 ml volumes) were prepared by diluting the appropriate volume of the 

aqueous stock solution with dilution water. The dilution water, Elendt's M4 medium 

(Elendt & Bias, 1990), was the same as that used in the cultures. Elendt's M4 medium was 

diluted to give a hardness of 100, an alkalinity of 30 (both as mg 1"' CaCOs), conductivity of 

290 î s cm ' and pH 7.7. All glassware was acid washed and leeched in dechlorinated water 

for 24 h prior to use. The concentration of zinc in water was analysed using a Perkin Elmer 

llOOB atomic absorption spectrophotometer (AAS) accurate to 0.01 mg Zn l '. The 

measured concentration of zinc in the chronic exposures was calculated using time-

weighted means by the following equation: 

(x, + y, * Dl)+(x, + y, * D2)+ -h(x„ + y„ * Dn) 
2^D1,Z)2 Dn 
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Where x is the measured concentration at the start of each renewal period, y is the measured 

concentration at the end of each renewal period and D is the number of days in the renewal 

period. 

6.2.2 Acute Toxicity 

Test concentrations for acute toxicity tests were chosen on the basis of range finding 

experiments, and consisted of a dilution water control and exposures of 0.32, 0.56, 1.0, 1.8, 

3.2 and 5.6 mg Zn 1"'. The acute toxicity of zinc up to 96 h was calculated for three life-

stages (nauplii, copepodid and non ovigerous adult females) in the absence of food, and for 

non ovigerous adult females in the presence of a food source (a pre-conditioned beech leaf 

disc). All experimental work was carried out in a temperature-controlled room at 20 (±I)''C 

and a photoperiod of 16 h light: 8 h dark, with a 20 minute dawn / dusk transition. The 

temperature in the test-vessels was recorded daily using a thermometer. 

Ovigerous females (approximately 100) were transferred from cultures to a 100 cm 

diameter crystallising dish, with a 4 cm diameter beech leaf disc (Fagus sylvatica L.) as a 

food source, over a 24 h period. All females were then removed, leaving nauplii (< 24 h old) 

for initiating the exposure experiments. To obtain copepodids (stage C1-C3) and non-

ovigerous adult females, ovigerous females were separated from the cultures as described 

for the nauplii. Leaf discs and media were changed three times per week for 10 or 25 days 

in order to obtain copepodids and adults respectively. 

At each zinc exposure, there were four replicates, each of five animals, per 2 cm diameter 

polystyrene Cellwell^'^ (Dow Coming, Coming, NY, USA); this was set up for all three life-

stages (nauplii, copepodid and non ovigerous adult females) and for non ovigerous females 

in the presence of a leaf disc. Each Cellwell^" contained 3 ml of the appropriate test 
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solution. The treatments exposing adult females in the presence o f a food source contained 

a I cm diameter beech leaf disc {F, sylvatica L.) which had been pre-conditioned for two 

weeks in Elendfs medium. At the beginning o f the experiment, 10 ml o f each test solution 

was retained in a glass vial for chemical analysis. After 48 h ejqjosure, 2.4 ml o f test 

solution from each Cellwell^'^ was replaced. To assess i f the presence o f leaf discs 

influenced zinc concentrations in the test vessels, the concentration o f zinc in the test 

solution (9.6 ml) was measured for treatments with adult females both in the presence and 

absence o f leaf discs. Media removed from the vessels containing nauplii and copepodids 

were used to obtain pH and dissolved oxygen concentrations before they were discarded. 

For this experiment, the measurement o f effect was mortality. Each replicate was observed 

for the presence of dead animals every 24 h. A copepod was considered to be dead i f it did 

not respond to gentle mechanical stimulation after 10 seconds. Using these data, it was 

possible to calculate an LC50 value. 

6.2.3 Chronic Toxicity 

The following logarithmic gradient of exposure concentrations was used (Rochinni et al, 

1982), based on acute toxicity values: control (dilution water) and 0.032, 0.056, 0.1, 0.18, 

0.32, 0.56 and 1 mg Zn \ ' \ All experimental work was carried out under the same 

conditions as acute exposures. For all treatments, the dilution water was Elendt's M4 

medium. Test solutions were replaced (75%) three times per week, and the dissolved 

oxygen concentration and pH o f media were measured before discarding. Exposure 

concentrations were analysed for zinc once per week, using 20 ml of the test solution before 

and after renewal (old and new solution). The timings o f weekly sampling o f water for zinc 

analysis were varied to incorporate both two and three day intervals in the water changes. 
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Developmental and reproductive responses o f B. zschokkei to zinc were measured in a 

single exposure experiment. The development time was based on the time taken for nauplii 

(< 24 h old) to moult to adult. Forty nauplii (obtained as described in Section 6.2.2), 

maintained individually in I cm diameter polystyrene Cellwells™ containing 2 ml o f test 

solution and a 4 mm diameter beech leaf disc, were used at each zinc exposure. Daily 

observations were carried out using a Wild M8 binocular microscope under darkfield 

illumination (magnification, x 20-40). Every 7 days, the copepods were transferred into new 

Cellwells^'^ containing fi*esh medium and a new leaf disc. Nauplii were observed on day I of 

the experiment to determine i f they had been transferred successfully but not again until day 

7 because excessive handling o f naupliar stages can significantly delay the development time 

to adult o f B. zschokkei (see Chapter 2). Subsequent daily observations o f copepod survival, 

and the presence o f moulted exuviae, were used to calculate the duration o f the combined 

naupliar (Dn) and copepodid (Dc) stages and the total time taken to moult to adult. The 

number of males and females was also recorded. As soon as the final moult had occurred 

(after approx. 20 days) copepods were paired so that reproductive parameters could be 

considered. Females and males were combined in a 2:1 ratio to match the observed female 

bias. As fertilisation of broods occurs via spermatophore mediated transfer, multiple broods 

can be fertilised fi-om a single mating, therefore, when a female was observed to have 

produced an egg sac she was transferred to a separate cell well and monitored in isolation. 

The presence of egg sacs and nauplii were recorded daily and used to calculate the 

embryonic development time (i.e. the time fi^om egg sac release to hatching), the inter-brood 

period (the time taken for a female to release a new egg sac after the previous one had 

hatched) and the number of broods per female. Aborted egg sacs were removed fi-om the 

cell well and viewed under a high powered inverted microscope to determine the number o f 

eggs present. Every seven days, animals were transferred to a new Cellwell™ and nauplii 

that had hatched during that week were retained in the old vessel and counted. I f more than 
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one brood o f nauplii was present, they were distinguished on the basis o f size. Non-viable 

eggs were also counted, so that the overall hatching success could be determined. The 

duration o f this experiment was six weeks, sufficient time for control copepods to develop 

to adult and for females to produce an average o f three broods. 

6.2.4 Statistical Analysis 

The acute toxicity of zinc after 48 and 96 h was calculated for all life-history stages using 

the moving average angle method (Stephan, 1977). In the chronic exposures, significant 

diflferences between treatments in survival at days 21 and 42 were identified using Fisher's 

Exact test (Finney, 1963). All data were tested for normality (Shapiro-Wilks) and for 

equality o f variances (Bartlett's test) before using analysis o f variance techniques. I f data 

did not conform to these assimiptions, they were logio transformed. One-way ANOVA was 

used to test for differences in development times and egg and nauplii production between 

zinc exposures using Bonferroni's multiple comparison procedure to discriminate between 

the means. I f the assumptions for ANOVA were not met, data were analysed using Kruskal-

Wallis analysis o f variance by ranks, followed by Mann Whitney tests to highlight which 

treatments were different. 

6.3 Resuhs 

6.3.1 Analytical Chemistry 

As loss o f zinc between renewal periods was greater than 20% in the presence of leaf 

material, mean measured zinc concentrations (Table 6.1) were used to calculate LC50 

values. The measured concentration of zinc in the chronic exposures is shown in Table 6.2. 

Zinc was elevated compared with nominal concentrations in the dilution water control and 

at low zinc exposure concentrations (0.032-0.18 mg Zn f*). The dilution medium used in 

both acute and chronic exposures was therefore re-analysed for zinc (using a 1 litre sample) 
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at the end of the experiment. This confirmed that the dilution water contained only trace 

levels o f zinc (0.0015 mg Zn 1"'). 

6.3.2 Acute Toxicity 

Zinc toxicity increased with time for all life-stages with larval life-stages (nauplii and 

copepodids) being up to three times more sensitive than adult females (Table 6.3). The 

presence of leaf material reduced the toxicity to adult females o f zinc by 35% compared to 

females tested in the absence o f a leaf disc. 

6.3.3 Long-term Survival 

During development, mortality was concentration-response related (Fig. 6.1). After 21 

days, mortality was significantly higher at 0.48 and 0.78 mg Zn f ' compared vAth the 

control (Fisher's Exact Test, P<0.05). At 0.78 mg Zn I * all copepods died by day 28. In all 

other exposures most copepods had achieved adulthood by day 21 and after which there 

was no significant mortality. 

Table 6.1: Measured concentrations of zinc in the acute exposures both in the absence and 
presence of leaf material. 

Nominal cone, of 

zinc (mg Zn 1"*) 

Mean (± 1SD) measured cone, 

o f zinc (mg Zn 1"*) n=2 

Mean (± 1 SD) measured cone, 

of zinc + Leaf (mg Zn 1"') n=2 

Control 0.08 (± 0.07) 0.08 (± 0.06) 

0.32 0.32 (± 0.02) 0.29 (± 0.05) 

0.56 0.53 (± 0.02) 0.45 (± 0.10) 

1 0.90 (± 0.04) 0.73 (±0.21) 

1.8 1.60 (± 0.00) 1.23 (± 0.43) 

3.2 2.85 (± 0.07) 2.40 (±0.55) 

5.6 4.85 (± 0.07) 4.30 (± 0.61) 
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Table 6.2: The time weighted mean measured zinc concentrations calculated fi-om chronic 
exposures. 

Nominal cone, of 

zinc (mg Zn 1"') 

Time weighted cone, of 

zinc (mg Zn 1*) % o f nominal 

Control 0.024 

0.032 0.058 + 45 

0.056 0.081 + 31 

0.100 0.134 + 25 

0.180 0.213 + 15 

0.320 0.303 -5 

0.560 0.485 -13 

1.000 0.779 -22 

Table 6.3: The 48 and 96 h LC50 (± 95% CL) values for three life-stages of Bryocamptus 
zschokkei exposed to zinc in the absence of food and for adult females exposed in the 
presence of leaf material. 
NR = not recorded. 

Life stage LC50 (± 95% CL) 

48 h 96 h 

Nauplii 1.38(1.17-1.69) 0.92 (0.78-1.09) 

Copepodid 0.94 (0.76-1.14) 0.62 (0.52-0.73) 

Adult 2.89 (2.46-3.41) 2.07(1.73-2.57) 

Adult + Leaf NR 3.23 (2.99-3.65) 

6.3.4 Development 

There was no significant effect o f zinc on the duration o f naupliar development (Dn), 

copepodid development (Dc), or on the total development time to a l̂uU (Nl-Aduh) 

(Kruskal-Wallis, P>0.05) (Table 6.4). Apart fi-om two animals, all cop^pods moulted to 
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adult within the 42 day duration o f this experiment. The ratio o f males to females was 

independent regardless o f treatment (x̂  11.11, d . f 6, p>0.05; Table 6.4). 

6.3.5 Reproduction 

The number o f eggs and nauplii per brood was significantly lower at 0.48 mg Zn 1"' (i.e. the 

highest concentration where animals survived to reproduce) compared with the control 

(One-way ANOVA, p<0.05) (Fig. 6.2). This zinc exposure was the only one to result in 

naupliar mortality during hatching. Fewer eggs and nauplii per female were observed at zinc 

exposures greater than 0.13 mg Zn I * compared with the control but, because of high 

variability and low numbers o f females achieving reproductive status in these treatments, no 

significant difference was detected (One-way ANOVA, p>0.05) (Table 6.5). Egg sac 

abortions increased fi-om the control (20%) in zinc exposures above 0.13 mg Zn f ' (39 -

62%), but there was no clear pattern between treatments (Table 6.5). For example, although 

significantly more egg sacs were aborted at 0.13 and 0.3 mg Zn f ' than in the control, there 

were no differences at 0.21 and 0.48 mg Zn f ' compared with the control {y^ 21.31 d.f 6, 

p<0,05). Embryonic development time at 0.48 mg Zn l ' was significantly longer than the 

control and compared with zinc exposures up to 0.21 mg Zn 1"' (Kruskal-Wallis, p<0.05) 

(Fig. 6.3). 
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Figure 6.1: The effect of zinc (mg Zn 1'') on survival of Bryocamptus zschokkei during development to adult. 
* Indicates a significant difference fi-om the control (Fisher's Exact Test, p<0.05) and * * indicates a significant difference fi-om the control (Fisher's Exact 
Test, p<0.01); n=38-40 per treatment. 



Table 6.4: The development times (mean ±1SD) for combined naupliar (Dn) and copepodid stages (Dc), and hatching to adult (Nl-A) for Bryocamptus 
zschokkei exposed to zinc. 
The numbers of males and females moulting to adult in each treatment are also shown, n = number of original animals and n"* = number of animals that survived 
to achieve adulthood. The number in brackets is the number of animals used to calculate the duration of each stage. # Indicates that two other animals survived 
the 42 day duration of the experiment but did not moult beyond C5 during this time. There was no significant difference between treatments. 

Mean measured cone, 
zinc (mg Zn l ') n n' Dc/Dn 

Sex 0 'copepod )eveIopment time (days) Mean measured cone, 
zinc (mg Zn l ') n n' Dc/Dn Male Female Naupiiar stages 

(Dn) 
Copepodid stages 

(Dc) 
Hatching to adult 

(Nl-A) 
Control 38 32 1.00 11 21 9.321±0.68 

(34) 
9.34±1.18 

(32) 
18.66±1.43 

(32) 
0.06 40 31 1.06 18 13 9.70±0.98 

(33) 
10.29±3.16 

(31) 
20.03±3.16 

(31) 
0.08 38 28 0.99 13 15 9.70±1.88 

(30) 
9.61±1.23 

(28) 
19.07±1.23 

(28) 
0.13 40 29 1.00 15 14 9.84±1.19 

(31) 
9.83±1.26 

(29) 
19.59±1.90 

(29) 
0.21 39 28 1.04 11 17 9.63±1.16 

(30) 
10.00±1.41 

(28) 
19.61£2.23 

(28) 
0.30 39 30* 0.98 7 23 9.77±2.33 

(31) 
9.57±1.07 

(30) 
19.10±2.73 

(30) 
0.48 38 24 0.98 7 17 10.10±1.88 

(29) 
9.92±1.21 

(24) 
20.00±2.84 

(24) 
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Figure 6.2: The mean ±1SE number o f A) eggs and B) nauplii per brood at different zinc 
exposures. 
* Indicates a significant difference from the control (One-way ANOVA, p<0.05); n=7-15 
females per treatment. 
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Table 6.5: The efifect of zinc on the number of broods produced by Bryocamptus zschokkei and on the number of eggs and nauplii per female. 
n = the number of females per treatment, na = the number of females producing egg sacs and nb = the number of females producing egg sacs from which viable 
offspring hatched. • Indicates a significant difference from the control, and from 0.06 and 0.08 mg Zn 1"* (x̂  21.31 d.f 6, p<0.05). 

Mean measured 
cone, zinc 
(mg Zn r') 

Total 
number of 

broods 

Total no. of 
successful 

broods 

Proportion of 
aborted broods 

Mean (±1SD) 
no. broods per 

female (Ob) 

Mean (±1SD) no. 
eggs per female 

(nb) 

Mean (±1SD) 
no. nauplii per 

female (nb) 

Control 20 15 50 40 0.20 3.00 ±1.31 41.87 ±24.80 38.73 ± 24.78 

0.06 14 12 49 35 0.29 4.08 ±1.16 39.92 ±19.84 35.33 ±20.58 

0.08 14 13 48 34 0.29 3.31 ±1.32 38.92 ±23.15 35.61 ±21.29 

0.13 13 7 25 12 0.52* 2.43 ±0.98 19.86 ±9.70 17.14±11.19 

0.21 16 12 40 22 0.45 3.08 ±1.00 28.91 ±18.36 24.64 ±18.73 

0.30 15 7 34 13 0.62* 2.71 ±1.25 29.71 ±21.30 26.57 ±22.12 

0.48 16 12 38 23 0.39 2.75 ±1.14 22.83 ±10.59 15.41 ±9.74 
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Figure 6.3: The mean (±1SE) effect o f zinc on the time taken for embryos to hatch. 
* Indicates a significant difference from the control and from 0.06-0.21 mg Zn l ' (Kruskal-
Wallis, p<0.05); n= 7-15 females per treatment. 

6.4 Discussion 

6.4.1 Acute Toxicity 

Naupliar and copepodid stages o f Bryocamptus zschokkei were more sensitive to acute zinc 

exposure than adult females. This corroborates previous data on the toxicity of trace metals 

to marine copepods (Verriopoulos & Moraitou-Aposlolopoulou, 1982; Sunda et al 1987; 

Verriopoulos & Moraitou-Apostolopoulou, 1989; Bechmann, 1994; Hutchinson et al, 

1994) and for larval B. zschokkei exposed to copper (Burton, 1998). The vulnerability of 

early life-history stages to contaminant exposure compared with adults has been attributed 

partly to the high surface area to volume ratio o f the smaller stage, which increases the area 

over which a toxicant can be absorbed. In the case of trace metals, increased sensitivity is 

related also to the moult cycle (Nayior et al, 1990). As crustaceans get older, they may be 

able to mobilise more trace metals v^thin their exoskeleton, thereby, reducing body 

concentrations (Bertine & Goldberg, 1972; Verriopoulos & Hardouvelis, 1988). There is 

140 



also evidence that the detoxification mechanisms present in adult Crustacea are not properly 

developed in larval stages resulting in less effective regulation o f metal ions (Bernard and 

Lane, 1964; Bryan, 1971; Bryan & Hummerstone, 1971). 

The presence of a leaf disc in the test vessel reduced the toxicity o f zinc to adult females. As 

the hydrated cation is the most bioavailable zinc ion, complexation with organic matter 

(such as leaf material) will reduce its availability and, as a result, its toxicity (Rainbow et al, 

1993). For example, humic acids reduced the toxicity of zinc to Daphnia magna 

(Paulauskis & Winner, 1988) and the presence o f macroalgae (UJva spp.) increased the 

tolerance o f the marine harpacticoid Tisbe holothuriae to zinc (Verriopoulos & Moraltou-

Apostolopoulou, 1989). Leaf material accumulated zinc in a concentration dependent 

manner and at a higher rate than gammarids exposed at the same concentration (Maltby & 

Crane, 1994). Fungal colonisation o f leaf material will also adsorb metals via organic 

ligands on the siuface of their mycelium (Duddridge & Wainwright, 1980; Abel & 

Barlocher, 1984). Uptake of zinc by crustaceans is, however, often via their food. For 

example, approximately 50% of zinc accumulated by marine copepods was due to ingestion 

of algae (Wang & Fisher, 1998). T. holothuriae showed high mortality when zinc was 

supplied via contaminated macroalgae (Verriopoulos & Morai'tou-Apostolopoulou, 1989). 

Therefore, while a reduction in the toxicity o f zinc in the presence of organic matter occurs 

during short-term exposures, uptake o f zinc through dietJiry mechanisms may represent a 

major route o f exposure to zinc in long-term studies. This must be taken into consideration 

when carrying out chronic exposures or when attempting to extrapolate back to field 

conditions. 

When considering the acute toxicity of a contaminant, comparisons with previously 

published data must be made with caution because a number o f factors can alter the 
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tolerance o f a population. For example, physiochemical parameters, especially water 

hardness and pH, affect the toxicity o f zinc by altering the concentration o f the toxic free 

metal ion available to the test organism. In water with low water hardness and pH [typiced 

for B, zschokkei (Rundle & Hildrew, 1990; Fryer, 1993)], greater sensitivity to zinc might 

be expected. It is also well established that continued exposure to metals can infer a degree 

o f tolerance. For example, the sensitivity o f the copepod Tropocyclops prasinus mexicanus 

to zinc was increased by an order of magnitude when individuals were obtained from a 

pristine water rather than a polluted lake (LaLande & Pinel-Alloul, 1986). Bryocampius 

zschokkei previously exposed to copper were less sensitive to this metal in laboratory trials 

than copepods from pristine sites (Burton, 1998). Although a number of factors can 

influence the acute toxicity of zinc some general comparisons with other freshwater 

Crustacea can be considered. For example, other freshwater copepods have similar LC50s 

when acutely exposed to zinc as B. zschokkei, although B. zschokkei was more sensitive to 

zinc than the predatory cyclopoid Cyclops abbyssorum (Table 6.6). Bryocamptus zschokkei 

also appears to be more sensitive to zinc than Gammarus pulex and Aseiius aquaticus. The 

latter are larger freshwater Crustacea often used as standard test organisms for water 

quality guidelines and both are representative species o f stream macro-benthos (Martin & 

Holdich, 1986; Abel & Green, 1981; Naylor et al, 1990). Cladocerans, however, appear to 

be the most sensitive crustacean group to zinc with 96 h LC50s (over a range o f water 

hardness vedues) between 42-655 mg l ' (Attar & Maly, 1982). Daphnids were also found to 

be much more sensitive to acute copper exposure than B. zschokkei (Burton, 1998). As 

copepods and cladocerans have very different life histories this may influence the mode of 

action o f a toxicant and hence the relative sensitivity to different chemiceds. For example, 

while cladocerans continue to moult once attaining adulthood copepods have a determinate 

number of moults with the final moult being the adult (Cooney & Gehrs, 1984). Crustacea 

are likely to be more vulnerable to contaminants during moulting. Moulting may, however, 
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also be a mechanism for excreting contaminants that have been secreted into the 

exoskeleton. However, as daphnids are rarely present in running waters (Rundle & Ramsay, 

1997), their relevance for use in protecting such systems may be open to debate (Cairns, 

1986; Gray, 1989; Burton, 1998). 

6.4.2 Long-term Survival 

For B. zschokkei survival fi-om nauplius to adult appears to be at least as sensitive to zinc as 

the other parameters (development times and reproductive parameters) measured in the 

chronic exposures. Exposure to 0.78 mg Zn f ' resulted in 100% mortality after 28 days. 

Survival was also significantly reduced at 0.49 mg Zn 1'̂  compared with the control. These 

data support the acute toxicity data and highlight the sensitivity o f larval life-stages to zinc 

exposure, particularly as no effects o f zinc were observed on adult survival during this 

experiment. Zinc has also been found to reduce the longevity o f both D. magna (Winner, 

1981) and the marine harpacticoid Tisbe holothuriae when exposed over their entire life 

cycle (Verriopoulos & Hardouvelis, 1988). In view o f this, it might be that fiirther effects 

on the survival o f B. zschokkei would be observed i f exposures were continued over the 

entire life of the copepod. It would, however, be time consuming to test this hypothesis for 

B. zschokkei as they have a relatively long life cycle surviving for up to 370 days at 18 °C 

(O'Doherty, 1985). 

Control mortality did not exceed 10% during development to adult (21 days). This complies 

with limits set by standardised test guidelines requiring at least 80% survival o f benthic 

fi^shwater invertebrates during 10 day tests (ASTM, 1999a). High naupliar mortality is a 

potential problem associated with chronic toxicity tests using freshwater copepods (Willis, 

1999). Control mortality o f 28 and 65% has been reported for naupliar stages o f 

Calamoecia iucasi and Boeckella delicata, respectively, in an 8 day development assay 
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(Willis, 1999). The high survival observed in this and previous experiments with B. 

zschokkei (Burton, 1998) reflect satisfactory culture and testing regimes. 

6.4.3 Development 

There was no effect of zinc exposure on the time taken for B. zschokkei to develop from 

nauplius to adult. There is evidence that copper and cadmium disrupt development of 

marine harpacticoids (D'Agostino & Finney, 1974; Morai'tou-Apostolopoulou et al, 1983) 

but no comparable data for zinc. Moulting fi^quency was, however, reduced in the isopod 

Porcellio scaber when fed zinc contaminated food (Drobne & Strus, 1996) and growth (or 

scope for growth) of Crustacea has been retarded in response to zinc exposure (Biesinger & 

Christensen, 1972; Maltby & Nayior, 1990; Maltby et al, 1990; Conradi & Depledge, 

1999). Impairment of growth in amphipods exposed to zinc appears to be due to a 

reduction in feeding rates (Maltby et al, 1990; Weeks, 1992). While growth and 

development in copepods are thought to be independent processes, they often respond in a 

similar manner to environmental conditions (Twombly & Tisch, 2000). Development in B, 

zschokkei was sensitive to low food quality (Chapter 4), therefore, had zinc caused a 

depression in feeding rate, it would have been expected to be reflected by an extension of 

the development times. 
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Table 6.6: The acute toxicity of zinc to selected freshwater invertebrates. 
Unless otherwise stated, LC50 values are based on nominal concentrations of the free zinc ion and hardness and alkalinity are expressed in terms of mg 1'' as 
CaCOs. 

Species Life stage Metal salt Test conditions Exposure 

time (h) 

LC50 (± 95% CL) 

(mgZn r') 

Ref. 

Bryocamptus zschokkei Adult ZnSO^THiO 20°C, Hardness 100, pH 7.7 96 2.07(1.73-2.57) This study 

Nauplii Alkalinity 30 96 0.92(1.73-2.57) 

Tropocyclops prasinus mexicanus Adult ZnClz I8°C, Hardness 120, pH7.10 

Alkalinity 3.8-4.4 

48 2.93 (2.86-3.00) LaLande&Pinel-Alloul, 1986 

Parastenocahs germanica Adult ZnS047H20 10.5*C, Hardness 0.79 mmol r' 96 1.7(1.4-2.0) Notenboom era/, 1992 

Cyclops abbyssontm Adult ZnS047H20 Calcium 0.46 meq 1"', pH 7.2 48 5.5 (4.5-6.8) Baudouin & Scoppa, 1974 

Eudiaptomus padamts Adult Alkalinity 0.58 meq 1"' 48 0.50 (0.39-0.72) 

Daphnia hyalina Adult 48 0.04 (0.03-0.05) 

Daphnia magna Adult ZnS047H20 20-24''C, Hardness 240 48 0.92 Halle/a/, 1986 

Ceriodaphnia dubia ^48h ZnS047H20 25'*C, Hardness 280-300, 48 0.36 (0.26-0.50) Schubauer-Berigan et a/, 

Hyalella azteca 7-14 days pH 7-7.5, Alkalinity 225-245 96 1.50(1.20-1.90) 1993 

Lumbriculus variegatm Adults 96 >5.00 

Asellus aquaticus Adults ZnS047H20 n^C, Hardness 45-55, 96 18.2(12.1-25.1) Martin & Holdich, 1986 

Crangonyx pseudogracalis Adults pH 6.7-6.8, Alkalinity 40-60 96 19.8(15.1-24.5) 

Gammams pulex Adults 

(fed leaf discs) 

ZnS047H20 I3.5*»C. Hardness 112-116, 

pH8.l2, Alkalinity 253-257 

96 (1-2) Crane, 1995 



6.4.4 Reproduction 

Zinc exposure at 0.48 mg Zn I * caused a significant reduction in the numbers of eggs per 

brood for B. zschokkei. Decreased egg production appears to be a characteristic response to 

zinc exposure and has been observed in the snail Biomphalaria glabrata at 0.5 mg Zn f ' 

(Munzinger & Guarducci, 1988) and in Daphnia magna at between 0.025-0.1 mg Zn 1"' 

(Biesinger & Christensen, 1972; Paulauskis & Winner, 1988). The marine harpacticoid 

Nitocra spinipes also showed a reduction in the numbers of viable ofifepring at zinc 

exposures between 0.17 and 0.43 mg Zn f ' (Bengtsson & Bergstrom, 1987). A significant 

reduction in the numbers of females producing egg sacs by another harpacticoid, Tisbe 

holothuhae, exposed to concentrations of zinc greater than 7 jig Zn 1*, became more 

pronounced after two and three generations (Verriopoulos & Hardouvelis, 1988). Maltby & 

Naylor (1990) observed an increase in the number of broods aborted by G. pulex exposed 

to zinc but there was no efifect on ofifspring production of broods not aborted. The abortion 

of broods was attributed to a shift in the resource allocation of females due to a reduction in 

the energy available to provision eggs. The lower numbers of eggs per brood observed in B. 

zschokkei is probably also due to a reduction in resource allocation by females. This is 

supported by a significant increase in the proportion of broods aborted by B. zschokkei at 

some zinc exposures above 0.13 mg Zn 1"'. 

Zinc also affected reproduction of B. zschokkei through a lethal effect on the brood itself, 

causing a decrease in the number of viable oflfepring produced. At exposures of 0.48 mg Zn 

r', the reduction in viable offspring was associated with prolonged embryonic development 

times and naupliar mortality during hatching. Copepods carry their broods externally within 

a brood sac that protects the embryos fi^om contaminants. Direct contact of vulnerable 
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naupliar life-stages to zinc may have been compounded by em increase in metabolic activity 

during hatching. 

In this study, chronic effects on reproduction were only observed at high zinc 

concentrations, at which lethal effects on juvenile life-stages were also observed; a lowest 

observed effect concentration (LOEC) of 0.49 mg Zn I * was obtained for both these 

endpoints. This was also within the range at which zinc was acutely toxic to copepodids. 

Although the presence of leaf material reduces the toxicity of zinc to B. zschokkei and 

makes con^arisons with other species more difficult to interpret, this experimental design 

will reflect more closely conditions in the field. The sensitivity of cladocerans to acute 

exposure has resulted in them being the focus of the majority of chronic studies using zinc, 

where effects on brood size have been observed at concentrations as low as 0.025 mg Zn l ' 

in soft water (Paulauskis & Winner, 1988). In general, freshwater crustaceans are less 

sensitive than cladocerans with sublethal effects of zinc on Gammarus pulex being recorded 

between 0.3-0.5 mg Zn 1"' (Maltby et al, 1990; Crane, 1995). 

The levels of zinc toxic to B. zschokkei exceed the recommended UK Environmental 

Quality Standards (8-50 jig Zn f ' depending on the water hardness) (Hunt & Hedgecott, 

1992), however, trace metals are still locally elevated in some river systems. For example, in 

a recent survey of streams in Southwest England, surface water zinc varied between 0.05 

and 0.87 mg Zn I * at twelve different sites (Burton, 1998). Analysis of the meiofaunal 

community at these sites indicated that restriction in the distribution and abundance of B. 

zschokkei was due nrninly to copper contamination often in combination with elevated levels 

of zinc (Burton et al, 2001). The presence of B. zschokkei (albeit at reduced densities) in 

sediments with measured concentrations of interstitial zinc at levels observed to cause lethal 
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effects in this study (0.95 and 1.08 mg Zn l ') reflects the potential for this copepod to 

develop resistance to this heavy metal. 

6.5 Summary 

• Nauplii and copepodids were more sensitive to zinc than adult females corroborating 

data for other crustaceans exposed to this metal. 

• The presence of a leaf disc reduced the toxicity of zinc to adult females. 

• In the chronic exposures, survival during development and reproductive parameters 

(reduced egg and nauplii production and prolonged embryonic development times) 

showed equal sensitivity to zinc resulting in a lowest observed effect concentration of 

0.48 mgZn i V 

• Whilst B. zschokkei is more tolerant to zinc than Daphnia magna, the former species 

shows similar acute and chronic sensitivities as other freshwater Crustacea (Gammarus 

pulex and Asellus aquaticus) commonly used for generation of water quality guidelines. 
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Chapter 7 

The effects of lindane on the development and 
reproduction oi Btyocamptus zschokkei 
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7 Abstract 

The effects of lindane were assessed at nominal concentrations between 3.2 - 3200 (ig I * on 

the survival, development times and reproduction of the freshwater harpacticoid 

Bryocamptus zschokkei. This copepod was highly tolerant to acute lindane exposure, with 

more than 50% of animals surviving 96 h exposure to 3200 jig 1"' lindane. Using data from 

chronic exposures, a 10 day LC50 of 241^g 1"' lindane (95%CL 141-440) was calculated 

which is an order of magnitude greater than lethal effects observed for other freshwater 

Crustacea. There were also sub-lethal effects of lindane, with development times being 

significantly longer at 100 ^g I * lindane compared with the controls. Development of B. 

zschokkei remained equiproportional (i.e. the same proportion of the totzd development time 

was spent in each moult stage) regardless of lindane exposure. It appears, therefore, that 

increased development times may be explained by of shifts in metabolic activity due to stress 

imposed by toxicant exposure, rather than to a direct effect of lindane on the moulting 

process. Reproductive effects of lindane, observed at 32 ^g 1"', included fewer eggs and 

viable offspring per female compared with the solvent control. At low concentrations of 

lindane (3.2 and 10 ^g 1*'), a significant stimulation in reproductive output was observed 

compared with the control and the solvent control. This appears to be a hormesis response 

but is also discussed in view of recent evidence that suggests that chemicals, known to be 

oestrogenic in vertebrates (such as lindane), also cause an increase in offspring production 

in some invertebrates at low doses. 

7.1 Introduction 

Lindane (gamma hexachlorocyclohexane) is a broad-spectrum organochlorine insecticide 

that has been widely used in agriculture for crop and seed protection, in forestry against 

pests on cut logs, and in public health to suppress insect borne diseases (Sang ei al, 1999). 

Lindane has also been added to shampoos and lotions to control for scabies and lice in 
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humans (Bintein & Devillers, 1996). While the use of lindane is restricted in Europe, and is 

now subject to a complete EC Member State ban (ENDS, 2000a), it is still widely used in 

many countries, including India and Mexico (Li et al, 1999). As a result of its volatile 

nature and persistence in the environment, lindane has been distributed globally where it can 

be detected in the air, surface waters and within organisms (Walker et al, 1999). Although 

its use has been gradually phased out, lindane still persists in aquatic systems at levels 

known to cause chronic effects in non-target species. For example, in Greece where the use 

of lindane has been restricted since 1975, it is still detected in surface waters at levels up to 

0.15 ^g r' (Miliadis, 1994, Piperidou et al, 1994; Albanis et al, 1995). In the UK, 

concentrations of lindane in rivers and estuaries have declined due to a reduction in its use 

but it is still present in major rivers at concentrations up to 0.025 ^g I * lindane (Robson & 

Neal, 1997; Zhou e/a/, 1998; Power e/A/, 1999). 

There is a large database on the aquatic toxicology of lindane to non-target invertebrates. 

The response to acute lindane exposure can be very variable. For example, reports of the 

48 h LC50 of lindane to Daphnia magna vary between 0.48-3.8 mg l ' (Macek et al, 1976; 

Randall ei al, 1979; Gliwicz & Sieniawska, 1986). Such variation in the acute toxicity of 

lindane to D. magna probably reflects different degrees of tolerance between strains of this 

cladoceran (Baird et al, 1989). Many other species are highly sensitive to lindane; for 

example, for freshwater amphipods, 96 h LC50s are in the range 12.9-79 ^gl * lindane 

(Taylor et al, 1991; Blockwell et al, 1999a) and between 9.6-34 ^gl ' lindane for insects 

(Taylor et al, 1991; Shultz & Liess, 1995). In chronic studies, growth of the freshwater 

amphipods Gammarus pulex and Hyalella azteca have been significantly depressed at 6.1 

and 13.5 ugl * lindane respectively (Blockwell et al, 1996; 1999b). Lindane at 250 iigl"' 

was, however, required to detect a significant effect on growth of the cladoceran D. magna 
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(Ferrando et al, 1995). Reproductive behaviour of amphipods is also affected by lindane 

with a significant reduction in the numbers of precopulatory pairs and gravid females at 

13.5-17.7 ngf* lindane (Macek et al, 1976; Blockwell et al, 1999a). There has also been 

recent concern over the potential of lindane to disrupt the endocrine systems of humans and 

wildlife. Lindane has been identified as being weakly oestrogenic both in vitro and in vivo 

(Flouriot et al, 1995; Petit et al, 1997). It has also been reported as being anti-oestrogenic, 

blocking the response of oestrogen-dependent cells to oestrodiol (Cooper et al, 1989). As a 

result of its oestrogenic activity, this insecticide has been identified as a priority candidate, 

endocrine disrupter in terms of exposure concern in a draft list drawn up by the European 

Commission (ENDS, 2000b). In addition, lindane has been shown to act as an ecdysone 

agonist in an in vitro ecdysone receptor assay, raising concerns that this pesticide may 

disrupt the endocrine function of insects (Dinan et al, 2001). As moulting in Crustacea is 

also regulated by ecdysones, perturbation of development might also be predicted as a result 

of lindane exposure. 

Toxicity testing regimes for the freshwater harpacticoid Bryocamptus zschokkei have been 

developed in this thesis and used to consider developmental and reproductive effects of both 

natural environmental conditions and perturbation by contaminants. For example, prolonged 

development times were observed in response to excessive handling and low food quality 

(Chapters 2 & 4). A decrease in the number of eggs and nauplii per female were observed 

for B, zschokkei exposed to zinc (Chapter 6). These protocols are, therefore, used in this 

study with the general aim of considering the effects of different concentrations of lindane 

on the lethal and sublethal responses of B. zschokkei. Specific aims were to assess: 

1. The effects of acute exposure to lindane on different life-stages (nauplii, copepodids and 

adult females). 

152 



2. How the presence of a leaf disc in the test system influenced acute toxicity. 

3. The influence of chronic exposure to lindane on long-term survival, development time 

and reproduction. 

7.2 Materials and Methods 

7.2.1 Test Substance 

The test substance in this study was radioiabetled for the purpose of chemical analysis. 

Hexachlorocyclohexane Gamma-Isomer (lindane) and radiolabelled (''̂ C) lindane were both 

obtained fi'om Sigma, Poole, Dorset, UK. The puinty of lindane and *''C-lindane was 

specified as 99% (w/w) and 95% (w/w), respectively. Radiolabelled lindane had a specific 

activity of 109 KBq mg"'. For each exposure, individual stock solutions were prepared in 

methanol, using equal quantities of radiolabelled (hot) '*C-iindane made up to the 

appropriate concentrations with non-labelled material (cold). Test solutions were prepared 

by the addition of 10 jil of aqueous stock solution to 100 ml of dilution medium whilst 

stirring. The concentration of the carrier solvent methanol in the test solutions did not 

exceed 0.1 ml l '. 

7.2.2 Acute Toxicity 

Nominal test concentrations of 320, 560, 1000, 1800 and 3200^g 1"' lindane were chosen on 

the basis of published data describing the effects of lindane on other fi-eshwater Crustacea 

(Green et al, 1986; Taylor et al, 1991; Ferrando et a/, 1992). A logarithmic scale was used 

for the exposure range to put emphasis on effects at the lower end of the range (Rochinni et 

al, 1982). A control (dilution water) and solvent control (made up to 0.1 ml f ' methanol) 

were also included. Dilution water was Elendt's M4 medium (Elendt & Bias, 1990) diluted 

to give a hardness of 100 mg 1*' as CaCOj, an alkalinity of 30 mg 1"' as CaCOs, conductivity 
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of 290 JOS cm"' and pH 7.7. The acute toxicity of lindane up to 96 h was calculated for three 

life stages of B. zschokkei (nauplii, copepodids and non ovigerous adult females) in the 

absence of food using the methods described in Chapter 6. The acute toxicity of lindane to 

non ovigerous adult females was also determined for females in the presence of a 1 cm 

diameter beech leaf disc (Fagus sylvatica). All experimental work was carried out in a 

temperature-controlled room at 20 (± 1) °C and a photoperiod of 16 h light: 8 h dark with a 

20 minute dawn dusk transition. Temperature was recorded daily. The measured endpoint 

of the acute experiments was mortality. Each replicate was observed every 24 h for the 

presence of dead animals. A copepod was considered to be dead if it did not respond to 

gentle mechanicjd stimulation after 10 seconds. In addition to mortality, observations of the 

following behaviours were recorded: 1) how many animals required mechanical stimulation 

and 2) for exposure experiments conducted in the presence of a leaf disc, the number of 

females on the surface of the leaf disc. 

Water samples from both new and old test solutions were obtained for analysis of water 

quality parameters (pH and dissolved oxygen) and chemical analysis by liquid scintillation 

counting (LSC). Three replicate 10 ml samples of new test solution were retained in glass 

scintillation vials prior to each renewal for chemical analysis. To assess the difference in 

dissolved lindane concentration in Cellwells™, with and without a leaf disc, duplicate 9.6 ml 

samples were taken from wells not containing a leaf, a third sample was taken from wells 

containing leaf discs and analysed separately. Only one renewal of test solution was made 

over the 96 h duration of this test. At the end of the assay, the lindane accumulated in the 

leaf discs was determined by combustion followed by LSC (see Section 7.2.5). The 'time-

weighted" mean concentrations of lindane at each exposure were calculated as described in 

Chapter 6. 
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7.2.3 Chronic Toxicity 

The chronic effects of lindane on development and reproduction were assessed using the 

methods described in Chapter 6. Treatments included a control (dilution water), solvent 

control and nominal exposure concentrations of 3.2, 10, 32, 100, 320, 1000 and 3200 ^g 1"' 

lindane. This exposure range overlaps the range chosen for acute exposures because a 

short-term lethal effect was not observed in the acute experiment. The range also includes 

lower lindane concentrations than used in the acute exposures to incorporate 

concentrations, which relate to published toxicity data for other freshwater Crustacea 

(Ferrando et al, 1995; Blockwell et al, 1999b). Three replicate 10 ml samples of new test 

solution were retained in glass scintillation vials for LSC before each renewal. Prior to 

discarding old test solution, three replicate 9.6 ml samples were obtained from each 

exposure to determine the concentration of lindane present. Water was renewed three times 

per week, therefore, the timings of these analyses were noted so that two and three day 

intervals between water changes could be taken into account. 

7.2.4 Chemical Analysis 

On termination of the acute assay, leaf discs were transferred to individual pre-weighed 

"combustocones" (Camberra Packard) and allowed to dry for 1 h at 60*'C. The dry weight 

(mg) was then measured prior to combustion in a Packard D306 sample oxidiser 

(Camberra-Packard). In this process, "*C in the sample is oxidised to *^C02, trapped in a 

"Carbosorb" (Camberra Packard) and mixed with "Permalluor E" scintillator (Camberra 

Packard). To obtain a count for radioactivity, and hence calculate the amount of lindane 

that had adsorbed to the leaf disc, the vial containing the trapped '̂ C02 was then analysed 

by liquid scintillation counting (LSC). The concentration of lindane in water samples was 

also determined by LSC. An equal volume of Opti-phase Hisafe 3 scintillator (Fisher 

Scientific Ltd.) was added to water samples from the acute and chronic assays. The 
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samples were equilibrated to ambient temperature for twenty minutes and counted in a 

Camberra Packard 2500 TR tri-Carb spectrometer (Packard Instruments Ltd.) for 10 mins 

or 1.6 X 10̂  counts whichever was reached first. 

7.2.5 Statistical Analysis 

A Student's t-test was performed to assess differences in lindane concentrations in 

treatment water in the presence and absence of leaf material. Differences between 

treatments in the number of copepods associated with leaf discs in the acute exposures were 

analysed using chi-square tests. In the chronic experiment, the lethal concentration of 

lindane was calculated after 10 days using the moving average angle method (Stephan, 

1977). For chronic exposures, differences between treatments in survival at days 21 and 42 

were analysed using Fisher's Exact test (Firniey, 1963). All data were tested for normality 

(Shapiro-Wilks) and for equality of variances (Bartlett's test) before using analysis of 

variance techniques. I f data did not conform to these assumptions, they were log 

transformed. One-way ANOVA was used to test for differences between lindane exposures 

using Bonferroni's multiple comparison procedure to discriminate between the means. I f the 

assumptions for ANOVA were not met, data were analysed using Kruskal-Wallis analysis of 

variance by ranks, followed by Marui Whitney tests to highlight which treatments were 

different. To test whether copepods exposed to lindane still conformed to a model of 

'equiproportional' development (Chapter 2) a two-way ANOVA was carried out on arc-

sine, square root transformed data of the proportion of total development time spent in each 

copepodid moult stage. Any data that were still not normal were confirmed using the 

Kruskal-Wallis test. 
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7.3 Resuhs 

7.3.1 Analytical Chemistry 

Measured lindane concentrations in the test vessels were within 20% of the nominals in both 

the acute and chronic exposures (Table 7.1), therefore, all data are referred to in terms of 

the nominal concentration. In the acute exposures, the concentration of lindane did not 

differ significantly in the presence or absence of food (Student's t-test, p>0.05), despite leaf 

discs accumulating lindane in a concentration-dependant manner (Table 7.1). The time-

weighted mean concentrations of lindane were not more than 20% different from nominals 

(Table 7.2). 

7.3.2 Acute Toxicity 

Lindane did not result in more than 50% mortality of any life stage of B. zschokkei within 

96 h, therefore, LC50 values could not be calculated. All animals exposed to lindane 

showed limited activity, often not moving unless gently stimulated. This response was 

unpredictable, therefore, it could not be used to calculate an EC50 (effective concentration) 

(for example, some animals that were stimulated after 48 h would not require stimulation at 

96 h). In treatments where a leaf disc was present, significantly fewer animals were found 

on the leaf disc at all lindane concentrations compared with the control and solvent control 

(96 h, 22.28 d.f 6 p<0.05) (Fig. 7.1). Only 40% of copepods were recorded on the leaf 

litter at the highest concentration of 3200 jig 1"' lindane whereas in both the controls more 

than 90% were on the leaf discs. 
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Table 7.1: Mean measured concentrations of lindane (0, 48 and 96 h) in the acute 
exposures, in the presence and absence of leaf material and the concentration of lindane 
accumulated in the leaf discs after 7 days exposure. 
There was no significant difference in the water concentration of lindane in the presence or 
absence of a leaf disc. 

Nominal cone, 

of lindane 

(Mg r') 

Mean (± ISD) 

measured cone, 

of lindane 

(^g n=3 

Mean(± ISD) 

measured cone, of 

lindane + leaf (ng 1"') 

n=3 

Measured cone, of lindane 

accumulated in leaf discs 

(mg kg*' dry wt) 

Control <2 <2 <7.6 

Solvent control <2 <2 <7.1 

320 310 (± 1.7) 297 (± 2.5) 257 

560 520 (± 2.5) 500 (±3.5) 436 

1000 910 (± 4,3) 875 (± 5.0) 772 

1800 1650 (±8.2) 1600 (± 10.0) 1520 

3200 2880 (± 17.3) 2775 (± 25.2) 2457 

Table 7.2: The time-weighted mean measured lindane concentrations calculated in chronic 
exposures 

Nominal cone, of 

lindane 

(Mg r') 

Time weighted 

cone, of lindane 
Percentage of 

nominal 

Control <2 -

Solvent control <2 -

3.2 3.5 +8.6 

10 9.7 -3.0 

32 30.0 -6.3 

100 89.9 -10.1 

320 297.4 -7.1 

1000 832.5 -16.8 

3200 3575.0 +10.5 
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7.3.3 Long-term Survival 

Despite the lack of lethal effects in acute exposures, long-term survival was significantly 

reduced in the chronic experiments at exposures >320 jig 1* lindane compared with the 

control and solvent control (Fisher's Exact Test, P<0.05). At 1000 and 3200 \ig lindane, 

all animals had died by day 13 and at 320 jig f ' by day 42 (Fig. 7.2). Significant mortality 

was also observed at 100 ^g l ' lindane after 21 days compared with the control (Fisher's 

Exact Test, p<0.05) but not with the solvent control. A 10 day, LC50 of 241 ng 1* (95%CL 

of 141-440) was determined for the naupliar stages using these data. Except for 320 \ig l ' 

lindane, where all five animals moulting to adult died before the end of the experiment, there 

was no further significant mortality for adults. 

Control Solvent 
control 

320 560 1000 

Lindane ()ig 1"̂ ) 

1800 3200 

Figure 7.1: The mean (± ISE) number of females found on the leaf disc in acute toxicity 
tests. 
The data were pooled from observations at 48, 72 and 96 h. 
* Indicates a significant difference from the control and the solvent control (96 h, 22.28 
d.f 6 p<0.05); n =20 copepods at each exposure 
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Figure 7,2: The efifect of lindane (^g 1"') on the age-specific survival {ix) of Bryocamptus zschokkei. 
*• Indicates a significant difierence from the control and solvent control and • from the control at day 21 (Fisher's Exact Test, p<0.05). 
significant difference from the control and solvent control at day 42 (Fisher's Exact Test, p<0.05); n=38-40 for each treatment. 
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Table 7.3: The mean ± I SD development times for combined naupliar (Dn) and copepodid stages (Dc), and hatching to adult (Nl-A) for Bryocamptus 
zschokkei exposed to lindane. 
The numbers of males and females moulting to adult in each treatment are also shown, n = number of original animals and n° = number of animals that survived 
to achieve adulthood. The number in brackets is the number of animals used to calculate the duration of each stage. * Indicates a significant difference fi-om all 
other treatments (Kruskal-Wallis, p<0.05). 

Nominal cone, of 
lindane (̂ g r ' ) n n" Dc/Dn 

Sex ratio of copepods Deve opment time (days) Nominal cone, of 
lindane (̂ g r ' ) n n" Dc/Dn Male Female Dn Dc (Nl-A) 

Control 38 33 0.95 11 22 9.94 ± 1.45 
(35) 

9.45 ± 2.80 
(33) 

19.3613.32 
(33) 

Solvent control 39 30 0.83 9 21 10.69 ± 
2.64 (32) 

8.87 ±0.68 
(30) 

19.5312.80 
(30) 

3.2 39 31 0.91 11 20 9.68 ± 1.14 
(31) 

8.7710.67 
(31) 

18.4511.41 
(31) 

10 36 25 0.90 7 18 10.11 ± 
1.85 
(27) 

9.0810.91 
(25) 

18.8011.38 
(25) 

32 38 26 0.94 8 18 10.301 
1.86 
(27) 

9.7011.07 
(26) 

20.0012.08 
(26) 

100 38 21 1.00 6 15 11.44 ± 
2.63 
(25) 

11.481 
2.11 
(21)* 

22.5713.44 
(21)* 
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Figure 7.3: Effect of lindane on the time taken (mean ± ISE) for A) naupliar (Dn) and B) 
copepodid development (Dc). 
* Indicates a significant difference fi-om all other treatments (Kruskal-Wallis, p<0.05); n = 
21-35 for each treatment. 

7.3.4 Development 

Development times for copepodids (Dc) and from nauplius to adult (N-A) were significantly 

prolonged at 100 fig l ' lindane compared with both the controls and lower lindane 

exposures (Table 7.3; Fig. 7.3) (Kruskal-Wallis, p<0.05). For copepods exposed to higher 

lindane concentrations, development times could not be calculated because o f the high 

mortality in these treatments. Although there was a significant effect of lindane on the 

development time to adult o f B. zschokkei, there was no significant change in the proportion 

of development time spent in each moult stage regardless o f lindane concentration (Table 

7.4). 
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Table 7.4: The effect of the proportion o f total development time spent in each moult stage 
and lindane exposure on Bryocamptus zschokkei. 
This shows the results of a Two-way ANOVA on arc sine, square root transformed data 
where * indicates significance at the 1% level. 

Source 
Sum of 
Squares Df Mean Square F-Ratio P-Value 

Moult stage 4803.18 4 1200.79 162.50 0.001* 

Lindane 75.64 5 15.128 2.05 0.07 

Interaction 379.61 20 18.98 2.57 0.001* 

Residual 5948.69 805 7.39 

TOTAL 11477.0 834 

7.3.5 Reproduction 

The mean time taken for adult females to produce their first brood was significantly longer 

(by approximately 5 days) at 100 ng 1*' lindane compared with the controls (Kruskal-Wailis, 

p<0.05) (Table 7.5). The number of fertile females in this treatment was also significantly 

reduced compared with the controls with only three o f the twelve paired females producing 

viable offspring (x^ 14.17 d.f 2 p<0.05) (Table 7.5). This treatment was excluded fi*om 

further analysis because there were not enough animals for meaningfiil statisticcd analysis. 

There was no significant difference between the control and the solvent control in any o f the 

reproductive parameters measured (Student's t-test, p>0.05). At 32 jig f* lindane, the 

numbers of eggs and nauplii per female were reduced by 44 and 60% respectively compared 

with the control but a significant decrease was only observed vnih respect to the solvent 

control (One-way ANOVA, p<0.05) (Fig. 7.5). The proportion of broods aborted was 

significantly higher at 32 jig l ' lindane compared with lower lindane exposures and both 

controls {y^ 18.97 d.f 4, p<0.05) (Table 7.5). At low concentrations o f lindane, increased 
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Figure 7.4: The proportion of the total development time spent in each molt stage in the controls and at four lindane (ng 1'') exposures, 
'a'- indicates a significantly longer stage duration compared with all other stages and 'b'- a significantly longer stage duration compared with C2 and C3 
(Two-way ANOVA, p<0.05). A similar pattern of development is observed at all hardness levels and there was no significant effect of lindane on the 
proportion of time spent in each moult stage; n=25-33 for each treatment. 



oflfepring production was observed with significantly more viable nauplii at 10 jig 1"' 

compared with the control and solvent control (51 and 38% less nauplii per female 

respectively) (One-way ANOVA, p<0.05). A significant increase in the number o f eggs per 

female (37 and 45% at 3.2 and 10 fig P' respectively) was also observed compared with the 

control (One-way ANOVA, p<0.05). 

A stimulation o f oflfepring production was reflected in the number o f eggs and viable nauplii 

per brood which were significantly lower in the control and 32 | ig 1"' lindane compared with 

10 and 3.2 ^g l ' lindane (Kruskal Wailis, P<0.05) (Table 7.5). There was no significant 

difference in the number of broods per female compared with either of the 

controls, although significantly more broods were observed at 3.2 and 10 \xg I * lindane 

compared with 32 ^ig I * lindane (Table 7.5) (One-way ANOVA, p<0.05). The embryonic 

development time was similar at all treatments (Table 7.6). 

7.4 Discussion 

7.4.1 Acute Toxicity 

Bryocamptus zschokkei was highly tolerant of acute exposure to lindane compared with 

other fi^shwater invertebrates (Table 7.7). I t is difiBcult to explain the resistance of this 

copepod to short-term lindane exposure, particularly in view o f the susceptibility of other 

fi-eshwater Crustacea. Generally, lindane acts via the stomach through ingested food, and 

aflfects the nervous system. It is possible that this copepod is reducing uptake o f lindane by 

not consuming food even when it is available. This explanation is supported by the 

behavioural changes exhibited by B. zschokkei where less animals were found on the leaf 

discs (fi*om v ^ c h they are known to obtain food, see Chapter 4) compared with the control 
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Table 7.5: The efifect of lindane on the number of broods produced by Bryocamptus zschokkei, time to &st egg sac and on the numbers of eggs and nauplii 
per female. 
Where n is the number of females per treatment, n̂  is the number of females producing egg sacs and nb is the number of females producing egg sacs from 
which viable offspring hatched. Where, ^ (y^ 31.85 d.f 5, p<0.05) and ^ (Kruskal-Wallis, p<0.05) are significantly diflferent from all other treatments. A 
significant increase with respect to the control, solvent control and 32 \ig lindane is indicated by ^, with respect to the control and 32 |ig f lindane by °and 
with respect to just 32 fig 1'* lindane by ^ (Kruskal-Wallis, p<0.05). 

Nominal cone, of 
lindane (^g 1'') n 

Total 
no. of 

broods 

Total 
successful 

broods 

Proportion 
of aborted 

broods 

Mean ± ISD 
time to first egg 

sac (n,) 

Mean ± ISD . 
no. of broods 

per female (n,) 

Mean ± ISD 
no. eggs per 
brood (Ub) 

Mean ± ISD 
no. nauplii 

per brood (nb) 

Control 19 17 14 59 37 0.37 25.65 ± 3.72 3.53 ±1.42 10.46 ±5.44 10.20 ± 5.67 

Solvent control 15 15 13 55 34 0.38 25.25 ±3.79 3.44 ± 1.26 13.49 ±5.80 14.06 ±5.75 

^ 3.2 20 18 17 76 56 0.26 23.06 ±3.89 4.22 ± 1 . 2 6 ^ 14.18 ±6.56 14.20 ±6.70 

10 16 14 13 60 44 0.27 25.00 ±2.83 4.29 ± 0.99 ̂  16.63 ±5.82 17.70 ±4.71 

32 14 12 8 35 12 0.66^ 26.93 ±4.08 2.69 ±1.32 10.37 ±5.36 7.42 ±6.19 

100 12 8 3 21 5 0.76 32.22 ± 4.29 ̂  2.33 ±0.71 11.38 ±5.60 11.00 ±5.07 



80 - I 

Control 32 Solvent 
control 

Lindane (jig 1-') 
Figure 7.5: The mean (± ISE) number o f A) eggs and B) nauplii per female Bryocamptus 
zschokkei producing viable offspring at different exposures o f lindane, 
A significant difference fi-om 32 | ig 1* is indicated by 'a', from the control by 'b ' and from 
the solvent control by 'c' (One-way ANOVA, p<0.05); n=8-17 females for each treatment). 

Table 7.6: Embryonic development times for Bryocamptus zschokkei at different lindane 
exposures. 
There was no significant effect of lindane on development times. 

Nominal cone, of 

lindane (^g l ') 

Mean ± ISD 

brood duration 

(days) 

n 

Control 3.26 ± 0.62 39 

Solvent control 3.2510.57 34 

3.2 3.13 ±0 .49 52 

10 3.15 ±0 .43 44 

32 3.38 ±0 .53 12 

100 3.00 ± 0 . 2 9 7 
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animals. Chandler (1990) also reported unusually high lethal tolerance o f marine 

harpacticoids to the pesticide fenvalerate compared v^ath other Crustacea, which was 

attributed to a lack o f uptake via the stomach. Bryocamptus zschokkei did show low activity 

at all acute lindane exposures and movement was often so limited that fimgi started to grow 

on the animals. Despite limited activity, the copepods did respond to gentle mechanical 

stimulation The ability to reduce energy utilisation by restricting movement probably also 

contributed to the ability o^B. zschokkei to withstand high lindane exposures. 

7.4.2 Long-Term Survival 

Nauplii (<24 h old) were able to withstand exposure to lindane up to 3200 ^ig l * for more 

than six days before significant mortality was observed. A 10 day LC50 of 241 \ig f * 

(95%CL of 141-440) for nauplii is more than an order of magnitude greater than observed 

for juvenile amphipods (7-9.8|jg 1"' lindane) or chironomid larvae (13 ^g 1"' lindane) (Taylor 

et al, 1991; Blockwell et al, 1999a). In this experiment, any significant mortality occurred 

during the larval life stages (nauplii and copepodids), with no significant mortality for 

adults. Low mortality of adults compared with juveniles was also observed for B. zschokkei 

exposed to zinc (Chapter 6) and copper (Burton, 1998) and for other crustaceans exposed 

to lindane (Taylor et al, 1991; Blockwell et al, 1999a). 

7.4.3 Development Times 

Growth and development o f freshwater Crustacea is known to be sensitive to lindane and 

disruptive effects have been observed at concentrations o f between 6.1-250 ng 1"' (Ferrando 

et al, 1992; Blockwell et ah 1996; 1999b). While effects on the development times from 

nauplius to adult were observed for B, zschokkei, they were only manifest at the highest 

concentration for which data were available, 100 ^g 1'̂  lindane, reflecting an apparent 

tolerance to lindane o f this copepod relative to other Crustacea. 
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Table 7.7: The acute toxicity of lindane to selected freshwater invertebrates. Hardness is expressed in terms of mg 1"' as CaCOs. 

Species Life-stage Test conditions 
Nominal/ 

measured 

Exposure 

time (h) 

LC50±95%CL 
Ref 

Bryocamptus zschokkei 
Adult and nauplii 

Nauplii 

20±PC, hardness 100, 

pH7.8 
nominal 

96 

240 

>3200 

241 (141-440) 
This study 

Gammarus piilex 2™*-3"' moult 12±rC, hardness 151, 

pH 6.8-7.2 

measured 96 

240 

79 

7 

Taylor e/a/, 1991 

Chironomotts riparius 2™" instar 20±rC, hardness 151. 

pH 6.8-7.2 

measured 96 

240 

34 

13 

Gammants pulex Adult 
15±2°C, hardness 160-

228, pH 7.0-7.6 
nominal 96 34 (25-46) Abel, 1980 

Gammarus pulex 

Asellus aquaticus 

Chironomous riparius 

Adult 

Adult 

4*̂  instar 

l l ± r C , hardness 92.9, 

pH 7.5-8.0 
measured 

96 225 

375 

235 

Green eM/, 1986 

Hyalella azteca 0-7 days 
21.9*»C, hardness 105, pH 

7.9 
measured 

96 

240 

12.9 (8.9-18.8) 

9.8 (7.3-13.3) 
Blockwell e/fl/, 1999a 

Daphnia magna <24h 48 516(480-551) Randall etal, 1979 

Daphnia magna Juvenile 
22±rC, hardness 250, pH 

7.9 
nominal 24 

1640 (1150-

1780) 
Ferrando e/a/, 1992 



Bryocamptus zschokkei has been found to conform to a model o f equiproportional 

development where each moult stage represents a certain proportion o f the total 

development time (Chapter 2). In copepods, this type of development is independent of 

processes such as food quality and temperature which affect metabolism (Hart, 1990). It is 

therefore hypothesised that contaminants, which eiffect metabolic processes directly, would 

have no effect on 'equiproportional' development whereas chemicals exerting an effect on 

moulting directly would disrupt the normal moulting pattern. This theory has been tested for 

B. zschokkei exposed to lindane where it was found that although overall development times 

were longer at 100 [ig l ' lindane than in the controls, there was no significant difference in 

equiproportional development. I f lindane was having a mechanistic affect on the 

developmental process, it might be expected to interrupt the normal moulting pattern, 

particularly i f each moult stage exhibits a different degree o f sensitivity (Costlow, 1977; 

Wright et al, 1996). For example, copepods exposed to the insect growth regulator 

diflubenzuron had difficulties in shedding their exuviae (Wright et al, 1996). The use o f a 

copepod growth model is of particular interest when considering lindane as this insecticide 

is known to act as an ecdysone agonist in an in vitro ecdysteroid receptor assay (Dinan et 

al, 2001). As development in copepods is mediated via the ecdysteroid receptor, effects on 

these hormonal processes would be expected to be manifest in the pattern of moulting. As 

lindane did not disrupt the moulting pattern of B. zschokkei, it seems likely that the 

observed increase in development time is as a result o f changes in metabolic processes and 

not due to endocrine disruption. Zou & Fingerman (1997) did not observe any effects o f 

lindane on moulting o f D. magna that could be attributed to endocrine disruption. The 

model ecdysone agonist 20-hydroxyecdysone also had no effect on the development times 

ofB. zschokkei (Chapter 5). It is well established that, in response to contaminant exposure, 

animals are subject to increased metabolic demands for maintaining homeostasis, causing 
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the redirectioaof energy to other physiological processes (Maund et al, 1992; Blockwell et 

al, 1999b). Lindane is known to reduce the feeding rate o f Gammarus pulex (Blockwell ei 

al, 1998) and the filtering rate of Daphnia magna (Gliwicz & Sieniawska, 1986). Reduced 

feeding would result in less energy available for growth. Whilst the feeding rate of lindane-

exposed B. zschokkei has not been considered in the present study, fewer lindane-exposed 

copepods were found on the surface o f leaf discs (on which this cope pod is known to feed, 

see Chapter 4) compared with control animals in the acute exposures. 

7.4.4 Reproduction 

The number of eggs and viable offspring produced per female, were the most sensitive 

endpoints for lindane exposure to B. zschokkei, with lower numbers o f both observed at 

32 (ig r' lindane compared with the solvent control. There was also a significant increase in 

the proportion o f broods aborted at 32 ^g 1"' lindane compared with lower exposure levels 

and the controls. This supports previous evidence for egg sac abortions being a stress 

response in B. zschokkei. For example, B, zschokkei exposed to zinc also showed an 

increase in abortion fi^quency at high zinc exposures (Chapter 6). Aborting broods may 

mean that females can allocate more energy to physiological processes such as metabolism 

of the toxicant rather than to the provision o f eggs (Maltby & Naylor, 1990). It may be that 

measuring abortion frequency in B. zschokkei will have application as a biomarker o f 

pollution exposure (Chapter 2). 

Other life-history endpoints (survival and development times) considered in this study 

suggest a high degree of tolerance o f B. zschokkei to lindane compared with other 

freshwater Crustacea. Effects on reproduction at 32 jig l ' lindane are, much lower than 

those observed for D. magna at 250 j ig 1* lindane (Ferrando et al, 1995) and similar to 
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effects observed for Hyalella azteca (Amphipoda) at 13.5 | ig 1"' lindane (Blockwell et al, 

1999b). The lowest observed effect concentration (LOEC) o f 32 ng f ' lindane for B. 

zschokkei is also consistent with results from mesocosm experiments where reduced 

densities o f freshwater copepods have been reported between 2 - 200 ^g lindane (Lay et 

a/, 1987; Neugebaur-BUchler et al, 1991; Peither et al, 1992; Fliedner & Klein, 1996). 

Of particular interest in this study was the significantly higher numbers o f nauplii per brood 

at low lindane exposures compared with the control (3.2 and 10 ^g f ' lindane) and solvent 

control (10 ^g I * lindane). This phenomenon, where stimulation by a toxicant is observed at 

the lower end o f the dose response curve, is termed hormesis and has been widely 

documented in pharmacological and toxicological studies (Stebbing, 1982). The result of 

this phenomenon is a beta dose response curve (Fig. 7.6). A database o f studies in which 

hormesis has been documented shows that common endpoints for low-dose enhancement 

include offspring and egg production (as observed in this study), and that the response is 

most often observed for heavy metals, insecticides and radiation (Calabrese & Baldwin, 

1999). The potential implications of this phenomenon are now being recognised. For 

example, physiological 'hormetic' stimulation may be responsible for insect outbreaks after 

pesticide applications (Morse, 1998). Evidence from studies on 'growth' hormesis suggest 

that hormesis is an adaptive response to the inhibitory effects o f agents at high 

concentrations which results in an overcompensation o f control mechanisms (Stebbing, 

1998). In a recent review, the implications o f hormesis have been considered in terms o f 

life-history traits and ecological risk assessment (Forbes, 2000). The available data suggests 

that stimulation o f one life-history trait would be expected to result in a trade o f f with other 

traits, ultimately compromising overall fitness of the individual. 
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Figure 7.6: A beta-shaped dose response curve which shows stimulation at the lower end 
of the curve, indicative of a hormesis response (adapted from Stebbing, 1982). 

For example, in the presence of environmental stress a female may put more effort into 

offspring production than into her own survival so that the next generation will be present 

to exploit any improvement in natural conditions. Forbes (2000) concluded that stimulation 

of individual life-history traits (i.e. reproduction or growth) might have evolved as an 

adaptation to maintain fitness in a changeable environment. The stream benthos in which B. 

zschokkei inhabits is a complex environment characterised by the presence o f a transient and 

patchy food resource, detritus. Bryocamptus zschokkei appears to have adapted a number of 

traits for surviving life within this heterogeneous environment such as tolerance o f changes 

in environmental conditions (Chapters 2 & 3), variability in ofifepring production (see 

Chapter 3) and omnivory (see Chapter 4). The ability to shift energy resources in order to 

maximise survival from an evolutionary perspective (as characterised by a hormesis 

response) may be a fiorther adaptation o f B. zschokkei for successftilly exploiting these 

interstitial stream sediments. 

Recent evidence on the effects o f endocrine disrupting chemicals suggests that oestrogenic 

chemicals cause a specific 'hormetic' response manifest in the reproductive parameters of 
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invertebrates. This effect is of particular interest in this study as lindane is known to display 

weak oestrogenic activity (Flouriot et al, 1995; Petit et al, 1997). Oehlmann et al (2000) 

reported morphological alterations of the prosobranch snail Marisa cornuarietis exposed to 

the xeno-oestrogens bisphenol A and octylphenol, which were related to a massive 

stimulation in oocyte and spawning mass production. These females have been termed 

'superfemales'. There is also evidence for stimulation in reproductive output in crustaceans 

exposed to low doses of xeno-oestrogens. For example, the marine copepod Acartia tonsa 

exposed to both bisphenol A and 17p-oestrodiol showed significant increases in 

reproduction which were attributed to an oestrogenic effect on female sexual maturation 

and egg production (Andersen et al, 1999). Alkylphenol exposed female daphnids showed 

malformations based on the morphological differences between males and females, which 

was associated with an increase in reproduction (Gerritsen et al, 1998). The amphipod 

Corophium volutator (Brown et al, 1999) and the copepod Tisbe battagliai (Bechmann, 

1999) each showed beta shaped dose response curves when exposed to 4-nonylphenoI but 

this stimulation in oflfepring production was not significant. More mechanistic evidence is 

required before such increase in reproductive output in crustaceans can be directly 

attributed to endocrine disruption. It should be noted that there is no evidence of oestrogens 

having a fiinctional role in arthropods (deFur et al, 1999). 

From the current data, it is not possible to conclude that the stimulation in reproduction of 

B. zschokkei in this study was due to the oestrogenic properties of lindane. There does not 

appear to be evidence for low-dose increases in reproduction for other Crustacea exposed 

to this insecticide (Ferrando et al, 1995; Blockwell et al, 1999b). I t may be that the 

tolerance of this copepod to the direct toxicity o f lindane results in subtle sublethal effects 

becoming more apparent. I f this were true, it has implications for choosing test species as it 

suggests that the most sensitive species might not necessarily give the most information on 
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how a contaminant is exerting its toxicity. Whatever the reason for this stimulatory 

response, it provides an interesting paradigm for risk assessors, as an increase in 

reproductive output cannot be considered detrimental to the fitness of the individual species 

(Andersen et al, 1999; Forbes, 2000). It may not be beneficial, however, particularly i f the 

individual is making a trade off* in some respect (e.g. longevity or maternal input into 

individuals o f the next generation) and overall population fitness is compromised. 

Alternatively, i f other species in a community do not respond in the same fashion a sudden 

increase in numbers as a result of low dose stimulation in reproduction could result in single 

species dominance of natural populations. 

7.5 Summary 

• Bryocamptus zschokkei is highly tolerant o f short-term exposure to lindane with a 96 h 

LC50 > 3200 ng r' lindane. 

• Long-term survival and development times of this copepod are affected at 100 ^ig 1* 

lindane. Using the model o f equiproportional development (Chapter 2) prolonged 

development times were probably due to shifts in metabolic activity due to stress 

imposed by toxicant exposure. 

• Abortion fi^uency was higher at 32 jig 1* lindane compared with controls. Females 

produced significantly fewer eggs and nauplii at 32 | ig I"' lindane compared v^th the 

solvent control and lower lindane exposures (3.2 and 10 | ig f ' lindane). Chronic 

sensitivity to this insecticide is within the range observed for other fi^shwater Crustacea, 

• Stimulation in the numbers of eggs and nauplii per female was observed at low lindane 

exposures (3.2 and 10 fig l ' ) compared with the controls, and was considered to be a 

hormesis response. 
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Chapter 8 

General Discussion 
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8 Discussion 

The main aim of this thesis was to evaluate the freshwater meiofaunal copepod 

Bryocamptus zschokkei as a test species for assessing the developmental and reproductive 

effects o f contaminants to lotic systems. Bryocamptus zschokkei was amenable to laboratory 

culture and a suite o f toxicity testing procedures was developed for this copepod, including 

tests for assessing the effects o f environmental parameters (water hardness or food quality) 

or contaminants on development to adult (Chapter 2), reproduction (Chapter 3), and the full 

life-cycle (Chapters 5-7). In addition, acute toxicity tests for multiple copepod Ufe-stages 

have been described (Chapters 6-7). This final chapter aims to review critically the 

applicability o f B. zschokkei as a test organism with respect to the key requirements o f a test 

species (Section 1.3) and in relation to established testing protocols for assessing 

contaminant effects in fi-eshwater systems. 

8.1 Laboratory Culture 

There are several obvious advantages to being able to culture a test organism in the 

laboratory, not least of which is the ability to obtain large numbers of animals of a defined 

age for conducting toxicity tests. A culture also avoids pre-exposure of animals to 

contaminants, disease or parasites. Water quality and nutrition are the key parameters in 

determining successfial culture conditions for copepods (Vijverberg, 1989). Within this 

thesis, the effects of water hardness (Chapters 2 & 3) and detritus quaUty (Chapter 4) on the 

development and reproduction o f B. zschokkei were established and used to define the 

optimal culture conditions for this copepod. Bryocamptus zschokkei was insensitive to 

changes in water hardness up to 150 mg l ' (as CaCOj) with no significant effects o f 

hardness being observed on either development or reproduction (Chapters 2 & 3). The 

tolerance of B. zschokkei to water hardness in the laboratory reflected the range o f calcium 

levels at which populations have been recorded in the field. The ability of B. zschokkei to 
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adapt to diflferent calcium concentrations also means that this copepod can be considered a 

relevant test organism for water bodies with different hardness levels. 

The four different types of detritus [Beech leaves (Fagus sylvatica) conditioned for 2 or 6 

weeks, oak leaves (Quercus robur) conditioned for 2 weeks or stream derived fine 

particulate organic matter (FP0N4)] supplied to B. zschokkei as a food source supported 

development to adult and reproduction of this copepod (Chapter 4). Laboratory conditioned 

beech leaves conditioned for 2 weeks maintained optimal overall development times to adult 

and offspring production of this copepod compared with the other detritus types. A low 

maintenance culture system was, therefore, established for B. zschokkei using reconstituted 

water of modified Elendt's M4 medium (hardness of 100 mg f ' as CaCOa), and a food 

source of beech leaves laboratory conditioned for 2 weeks prior to use. Survival in the 

cultures was high and was reflected in the toxicant exposure experiments where mortality 

did not exceed 20% in any of the controls over the 6-week duration of the tests (Chapters 

5-7). These levels of mortality are in line with regulatory test guidelines for 10 day toxicity 

tests using other fi-eshwater benthic invertebrates (ASTM, 1999a). The cultures of B. 

zschokkei also provided large numbers of ovigerous females all year round and they 

produced nauplii (<24 h old) for initiating life-cycle toxicity tests. 

8.2 Small Size and Short Generation Time 

This thesis describes the first fiill life-cycle bioassay for a fi-eshwater copepod. The 

maintenance and toxicity testing regimes described for B. zschokkei require limited amounts 

of space. In fact, a life-cycle test including multiple treatments can be carried out in 

conventional incubators or within a meter square of bench space. The tests also require only 

small amounts of test chemical, for example, less than 200 ml of test solution per treatment 

at each renewal. This is important when a test compound is highly toxic (less material to 
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dispose of, expensive or is in short supply. 

Bryocamptus zschokkei took a mean (± ISD) of 17.9 (± 3.6) days to develop to adult at 

20°C (Chapter 2). A development bioassay for this copepod can, therefore, be carried out in 

three weeks, while a fiili life-cycle test, which also includes the time taken for females to 

produce three broods, takes six weeks (Chapters 5-7). These toxicity tests are faster than 

previous tests described for B. zschokkei, where, a development to adult bioassay took 20-

30 days and a three brood reproduction test took 6 weeks at IS '̂C (Burton, 1998). With the 

exception of cladocerans, the duration of the life-cycle test with B. zschokkei compares 

favourably with other freshwater crustaceans recommended as toxicity test species (deFur 

et al, 1999). Survival and growth toxicity tests using freshwater amphipods such as 

Hyalella azteca and Gammarus pulex have been considered a priority by the OECD Test 

Guidelines Program. Most amphipods, however, have a generation time of at least 5 weeks 

at 20°C, which means that a full life-cycle test for these species may be time consuming and 

impractical (OECD, 1998a; deFur et al, 1999). The generation time of freshwater isopods, 

such as Asellus aquaticus also used in the generation of water quality guidelines, t£ikes 

several weeks at 12**C (Peeters et al, 2000). Standard methods for conducting life-cycle 

tests for three species of cladocerans (Daphnia magna, D. pulex and Ceriodaphnia dubid) 

take 3 weeks at 20**C, providing information on contaminant effects on both development 

and reproduction (OECD, 1998b; ASTM, 1999b). Such rapid bioassays are one of the main 

reasons why cladocerans are so widely u ^ in toxicity bioassessment. Indeed, despite their 

planktonic mode of life and occurrence primarily in waters with low flow conditions, 

cladocerans are even recommended as sediment test organisms (Nebeker et al, 1984; Geisy 

& Hoke, 1989; ASTM, 1999a). Cladocerans are also parthenogenic and therefore toxicants 

are likely to have a different mode of action in these animals compared with sexualy 
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reproducing organisms. The dififerenlial responses of male and female animals cannot be 

assessed in a bioassay using Daphnids (Cooney & Gehrs, 1984). A bioassay using B. 

zschokkei would provide a relatively quick and more ecologically relevant alternative to 

cladocerans for determining the toxicity of contaminated freshwater sediments. 

The life-cycle test described for B. zschokkei is similar in duration to combined development 

and reproduction tests using the benthic marine harpacticoids Amphiascm tenuiremus and 

Microarthridion Uttorale, which take 5-6 weeks at 20*'C. Toxicity tests using these 

detritivores are already widely used in marine sediment bioassessment (Green et al, 1995; 

Green & Chandler, 1996; Kovatch et al, 1999). The life cycles of infaunal detritivores are, 

however, considerably longer than those of some epibenthic marine harpacticoids; for 

example, a full life-cycle test for Tisbe battagliai (incorporating reproductive data for three 

broods) takes just three weeks at 20**C (Hutchinson et al, 1999a, b). The different 

development time of these marine harpacticoids (and B. zschokkei) reflects their relative 

diets and different life-history strategies. Tisbe battagliai consumes a mainly algal diet 

which is considered to provide a higher quality food source than detritus, the major food 

available to B. zschokkei or A. tenuiremis within either the freshwater or marine benthos 

respectively (Hicks & Coull, 1983; O'Doherty, 1985). It is imperative that toxicity testing 

regimes include species from different frmctionaJ feeding groups, habitat types and with 

different modes of life, as such animals are likely to respond differently to contaminant 

exposure. 

The majority of bioassays using freshwater copepods incorporate short-term development 

tests considering toxicant effects on development to the first copepodid-stage (Nl-Cl) 

(Cooney & Gehrs, 1984; Willis. 1999). A fiiU life-cycle toxicity test has not been described 
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for any other freshwater copepod, other than B, zschokkei. Development assays at 20*'C for 

two species of calanoid {Boeckella delicata and Calamoecia lucasi) and two species of 

cyclopoid copepod {Mesocyclops leuckarti and Diapiomus clavipes) took approximately 10 

days, which would be the same duration as an equivalent test using B. zschokkei (Cooney & 

Gehrs, 1984; Willis, 1999). Low control survival has also been reported as a problem in 

toxicity tests using some freshwater copepods (Willis, 1999). Alternative test species 

representative of permanent meiofaunal communities would include cyclopoid copepods, 

which generally have relatively shorter embryonic development times and larger clutch sizes 

than stream harpacticoids (Robertson, 2000). The generation times of many cyclopoids (10-

30 days at 20**C) are, however, within the same range as those recorded for B. zschokkei 

(ca. 20 days at 20**C) (see Chapter 2), There is also evidence to suggest that, in benthic 

communities, cyclopoid copepods may be less sensitive than harpacticoids to adverse 

environmental conditions. For example, cyclopoid copepods were relatively more tolerant 

to trace metal contamination than harpacticoids in a community-level survey of streams in 

Southwest England (Burton et al, 2001). Many cyclopoid species are also tolerant of acidic 

(Rundle & Hildrew, 1990) or eutrophic conditions (Sarkka, 1992). The ability of cyclopoid 

copepods to enter a resting stage in response to stress may increase their tolerance range to 

adverse environmental conditions (SSrkka, 1992). Other meiofeunal species such as 

ostracods or mites, which have been identified as being sensitive to copper contamination 

(Burton ei ai, 2001), may prove diflScult to culture in the laboratory. Some nematode 

worms were also found to be sensitive to trace metal contamination but individual species 

can be difficult to identify (Burton, 1998). 

8.3 Multiple Life-Stages 

It is well established that larval life stages of copepods are generally more sensitive to 

contaminant exposure than adults (Verriopoulos & Moraftou-Apostolopoulou, 1982; 
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Bechmann, 1994; Williams, 1997). This was also the case for B. zschokkei where naupliar 

and copepodid stages were more sensitive to both zinc and lindane exposure than adult 

copepods (Chapters 6 & 7). Techniques for obtaining larval copepods for initiating toxicity 

tests have been described (Chapters 2 & 6). The sensitivity of larval stages to contaminants 

makes them ideal for use in short-term toxicity tests. The development to adult bioassay 

described in this thesis (Chapter 2) could be abbreviated to produce a 10-day test (at 20*'C) 

to consider contaminant effects on the time taken to develop to the first copepod stage (Nl -

Cl). In view of the fact that B. zschokkei was tolerant of acute (96 h) but sensitive to 10-

day lindane exposure, a naupliar development assay is likely to be a more relevant screen for 

toxicant effects than an acute toxicity test (<96h) (Chapter 7). Abbreviated development 

assays have been described for other fi-eshwater copepods (Cooney & Gehrs, 1984; Willis, 

1999) and a test which incorporates copepodid development of the marine harpacticoid 

Tisbe battagliai is included as a standard method for toxicity assessment (ISO, 1998) 

8.4 Ecological Relevance 

The requirement for a test organism representative of the meiofauna was discussed in the 

Introduction (Chapter 1). Bryocamptus zschokkei was considered to be an ideal candidate 

species for developing as a test species because of its widespread distribution, presence in a 

wide range of habitats and apparent sensitivity to trace metal contamination in the field 

(Burton et al, 2001). Copepods are also amongst the most species diverse and abundant 

components of fi-eshwater benthic communities (Robertson et al, 2000b). Bryocamptus 

zschokkei can, therefore, be considered to be a highly relevant test species for use in 

assessing the effects of contaminants on benthic fi-eshwater communities in the United 

Kingdom. Particularly when alternative recommended test organisms include non-

indigenous species such as Hyalella azteca or members of the zooplankton, such as, 

Daphnia magna and Ceriodaphnia dubia (ASTM, 1999a) 
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The ecological relevance of the life-cycle test for B. zschokkei was increased by the addition 

of a leaf disc as a food source for the copepod. Allocthonous inputs of leaf material drive 

the trophic dynamics of woodland stream systems (Giller & Malmqvist, 1998) and detritus 

and its associated microbial flora are considered the major food source available to B. 

zschokkei in the natural environment (O'Doherty, 1985; Chapter 4). The presence of a leaf 

disc in the test design, therefore, increases the relevance of the test by reflecting field 

conditions more closely, in effect creating a "microcosm". The addition of a leaf disc means 

that the toxicity test will not only highlight the direct toxic effects of a particular 

contaminant on B. zschokkei but may also indicate indirect effects of toxicant exposure. For 

example, the significant increase in the development time to adult of B. zschokkei, observed 

at low solvent (methanol) concentrations, was attributed to an indirect effect on the growth 

of the microbial community on the leaf disc (Chapter 5). The acute toxicity of zinc was 

reduced in the presence of a leaf disc (Chapter 6) and adsorption of lindane onto leaf 

material was concentration dependant (Chapter 7). The association of B. zschokkei with leaf 

material was also used as a behavioural endpoint for acute lindane exposure (Chapter 7). 

The presence of leaf material within the test system, therefore, appears both to increase the 

relevance of the test and to give an indication of the complex interactions between organic 

matter, the test species and contaminant exposure. It should be noted that to understand 

fully how a contaminant is behaving within the test system detailed chemical analysis and 

measurement of the concentration of test substance in the dilution water and if possible in 

the leaf material is essential 

8.5 Relative Sensitivity 

Sensitivity to a range of contaminants is a particular concern for regulatory bodies needing 

to define a threshold level of response for contaminants, and is considered a key 
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requirement of a toxicity test organism (ASTM, 1999a). The sensitivity of B. zschokkei to 

exposure to each of three chemicals, the moulting hormone 20-hydroxyecdysone, the trace 

metal zinc and the pesticide lindane, on the life-cycle has been discussed (Chapters 5-7). 

Bryocamptus zschokkei showed variable tolerance depending on the toxicant, being 

completely insensitive to 20-hydroxyecdysone (Chapter 5) but exhibiting sensitivity 

comparable with other freshwater crustaceans to zinc and lindane (Chapters 6 & 7). The 

duration of exposure was also important in determining the relative sensitivity of this 

copepod. For example, B. zschokkei is highly tolerant of zicute (96 h) lindane exposure but 

relatively sensitive to chronic (6 week) lindane exposure compared with other freshwater 

crustaceans (Chapter 7). These results support a general view that a 'most sensitive' species 

does not exist but that species respond differently depending on the contaminant and its 

mode of action (Maltby & Calow, 1989; Cairns & Pratt, 1989). In view of such inter

species differences in response to toxicant exposure, an expansion of current testing regimes 

to include novel species such as B. zschokkei should be encouraged. Furthermore, species 

that may be more tolerant to certain toxicants might have application for ranking 

contaminated sites, where a more sensitive species might not be present (Traunspurger & 

Drews, 1996). 

As well as gaining information on the threshold of response and sensitivity of test organisms 

to different contaminants, toxicity tests can also be used gain information on the mechanism 

of effect of a particular toxicant. Daily observations of B. zschokkei, while labour interisive, 

meant that development times of individual moult stages could be determined accurately. 

Using information on individual stage duration, B. zschokkei was found to conform to a 

development model of "equiproportional development" where each moult stage is a known 

proportion of the total development time, irrespective of processes that affect metabolism 
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such as temperature and food quality (Chapter 2). It was proposed that this development 

model might be useful in determining whether a toxicant is exerting its effect directly on the 

moulting process or via an indirect effect of reducing the energy available for growth. The 

model of "equiproportional development" was tested for lindane, which was the only 

toxicant in this thesis found to increase the development time to adult of B. zschokkei 

(Chapter 7). When exposed to lindane, B. zschokkei still conformed to "equiproportional 

development", suggesting that the increase in development time to adult was a result of 

shifts in metabolic processes. The model of "equiproportional development" may, therefore, 

be useful as a tool for evaluating the mode of action of a toxicant on the moulting process. 

Indeed, such models niay have particular application when considering the effects of 

endocrine disrupting chemicals (EDCs). As moulting in crustaceans is under hormonal 

control, the effects of EDCs might be expected to be manifest on the moulting process 

directly, which should be highlighted using the model of "equiproportional development". 

Further studies are required both using B. zschokkei and other copepods before the utility of 

this model as a tool for highlighting toxicant effects on the moulting process can be fully 

evciluated. 

Daily observations of egg and offspring production can also be made for B. zschokkei as the 

female carries her egg sac externally. These observations enable general conclusions on how 

toxicants exert their effects on the reproductive processes of this copepod. For example, 

mortality of nauplii during hatching suggested that the significant decrease in ofispring 

production of B. zschokkei exposed to zinc was due to a direct toxic effect on the larvae 

(Chapter 6). Significant increases in egg and offspring production in B. zschokkei exposed 

to low doses of lindane also highlighted the potential of a hormesis response (Chapter 7). In 

addition, increased abortion frequency was observed in copepods exposed to zinc and 
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lindane (Chapters 6 & 7). Abortions have been reported as a stress response in the marine 

harpacticoids Scottolana canadensis and Tisbe holoihuriae (Harris, 1977; Miliou, 1992). 

An increase in abortion fi^uency in the amphipod Gammanis pulex at elevated zinc 

exposures was attributed to females shifting their resources to their own maintenance rather 

than to the provision of eggs (Maltby & Naylor, 1990). While further studies are required to 

determine if increased abortions are a general response of B. zschokkei to toxicant 

exposure, abortion frequency may have application as a biomarker of stress for this copepod 

(Chapters 6 & 7). 

8.6 Standardisation and Reproducibility 

The main objective of a toxicity test is to predict, with confidence, the concentration at 

which an adverse biological effect can be measured. Inter-individual variability in the 

responses of different endpoints to a contaminant can lead to problems with the 

reproducibility of a test and may also result in an effect not being detected because of too 

much background noise (Bradley, 1993; Forbes & Forbes, 1994). The life-cycle test using 

B. zschokkei showed variation between individuals to different extents, depending on the 

endpoint being measured (Table 8.1). The time taken for naupliar (Dn) and copepodid 

development (Dc), and development to adult (Nl-A) for control B. zschokkei at 20°C is 

highly conserved between individuals as indicated by low CVs (Table 8.1). Low variability 

means that toxicant effects on development were detectable even when there was only a 

small increase in development time; indeed significantly prolonged development times were 

observed as a resuh of exposure to methanol (carrier solvent) (Chapter 5) and lindane 

(Chapter 7). There is also a high degree of reproducibility in copepod development times 

between different experiments. For example, there was no significant difference in the time 

taken to moult to adult (Nl-A) in control B. zschokkei from the three life-cycle tests 

described in Chapters 5, 6 and 7 (Kruskal-Wallace, p<0.05) (Fig. 8.1). 
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Figure 8.1: The time taken (mean ± ISE) to develop to adult (Nl-A) in Bryocamptus 
zschokkei control animals fi-om three separate life-cycle toxicity tests. 
20-HEC (Chapter 5), zinc (Chapter 6) and lindane (Chapter 7). There was no significant 
difference between treatments (Kruskal-Wallis, p<0.05); n=32-35 for each treatment. 

Reproductive endpoints showed more difference in overall variation fi-om those measured 

during development (Table 8.1). For example, traits such as time to first egg sac and the 

embryonic development time show much less variation than the numbers of eggs or nauplii 

per female (Table 8.1). Such differences in the variability of different life-history traits have 

been observed in other species. For example, asexually and sexually reproducing 

populations of the brine shrimp Artemia were each found to exhibit considerable differences 

in the mean CV of different traits (% CV fi-om 7-151) (Browne et al, 1984; Forbes & 

Depledge, 1996). The intrinsic inter-individual variability in ofifepring production observed 

for B. zschokkei appears to be a phenomenon reflected in many laboratory reared 

populations ofcopepods(Carlotti& Nival, 1991; Bechmann, 1994; Twombly e/a/, 1998). 
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Table 8.1: The mean (± ISD) percent coefiBcient of variation (CV) for different life-history 
traits measured for Bryocamptus zschokkei in life-cycle toxicity tests. 
The means are based on control animals from three life-cycle tests; 20-HE (Chapter 5), zinc 
(Chapter 6) and lindane (Chapter 7). n is the number of animals in each e?q>eriment used to 
calculate the CV. 

Trait measured Mean (± ISD) CV (%) n 

Naupliar development (Dn) (days) 12.15 (±4.17) 34-35 

Copepodid development (Dc) (days) 17.23 (± 10.80) 32-35 

Development to eidult (Nl-A) (days) 11.37 (±5.09) 32-35 

Time to first brood (days) 13.36 (±1.36) 14-18 

Embryonic development time (days) 18.44 (±4.17) 39-42 

Eggs per female 56.32 (± 3.69) 14-18 

Nauplii per female 60.73 (± 3.00) 14-18 

The reasons for such variability in reproductive parameters and its implications for toxicity 

testing are discussed in Chapter 3. Despite high variability in the numbers of eggs and 

nauplii produced per female, these parameters were very sensitive endpoints for 

contaminant exposure. For example, the lowest observed effect concentrations (LOEC) for 

both zinc (Chapter 6) and lindane (Chapter 7) were based on significant decreases in the 

numbers of eggs per female. These endpoints were also used to highlight a significant 

stimulation in egg and oflfepring production at low doses of lindane (Chapter 7). As well as 

being a sensitive indicator of toxicant exposure, the numbers of eggs and nauplii per female 

showed high reproducibility between intralaboratory tests. There was no significant 

difference in the numbers of eggs or nauplii per female B. zschokkei in control animals from 

the three life-cycle tests described in this thesis (Chapters 5-7) (One-way ANOVA, p<0.05) 

(Fig. 8.2). These results suggest that the endpoints measured in the life-cycle test for B. 

zschokkei are sensitive and reproducible and that this test would, therefore, have application 
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for discriminating between a range of toxicants. Further validation of this life-cycle test 

would include intercalibration exercises to determine its reproducibility when carried out by 

different operators or with different copepod populations. 
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Figure 8.2: The mean ± ISE A) eggs and B) nauplii per female in Bryocamptus zschokkei 
control animals from three separate life-cycle toxicity tests. 
20-HEC (Chapter 5), zinc (Chapter 6) and lindane (Chapter 7). There was no significant 
difference between treatments (One-way ANOVA, p<0.05); n= 14-17 for each treatment. 

8.7 Conclusions and Recommendations 

The freshwater harpaclicoid B. zschokkei possesses many of the attributes (small size, fast 

development times and multiple life st^es) that make its marine counterparts such ideal 

toxicity test organisms. In addition to these traits, B, zschokkei has proved amenable to low-

maintenance laboratory culture. Relatively quick, standardised and highly reproducible 
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toxicity testing protocols, including a frill life-cycle test, have been established for this 

copepod and used to demonstrate the sensitivity of 5. zschokkei to chronic exposure to two 

common contaminants (zinc and lindane) compared with other freshwater crustaceans. 

Most importantly, this copepod is a representative test species from the meio fauna and, due 

to its widespread distribution, is relevant for assessing contaminant effects on the benthos of 

a range of freshwater habitats. The evidence provided in this thesis suggests that bioassays 

using B. zschokkei should be considered by risk assessors to supplement current testing 

procedures increasing the choice and relevance of regulatory procedures by including a 

representative meiofaunal test species. A bioassay using B. zschokkei might also be 

developed fiirther to provide an ecologically relevant alternative to cladocerans in 

freshwater sediment toxicity evaluation. 

Life-cycle tests have been recommended for assessing the effects of chemicals with the 

ability to disrupt hormone fiinction in invertebrates (deFur ei al, 1999; Hutchinson et al, 

1999a, b). The rigorous design of the life-cycle test using B. zschokkei described in this 

thesis enables both the application of a development model of "equiproportional 

development" and detailed evaluation of how toxicants exert their effect on reproductive 

parameters. These observations increase the potential of this bioassay to emphasise the 

mechanism of toxicity of contaminants, and highlight perturbation of development or 

reproduction, which might be indicative of endocrine disruption. Further work is required, 

(e.g. screening chemicals suspected of causing perturbation of endocrine fiinction) to 

validate fiiUy the model of "equiproportional development" and to evaluate the potential of 

this test as a screen for endocrine disrupting chemicals. 
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8.8 Summary 

• Bryocamptus zschokkei can be maintained easily under laboratory conditions to provide 

sufficient numbers of animals of known background to conduct large scale life-cycle 

toxicity tests 

• The first full life-cycle toxicity test for a fitishwater copepod has been described using B. 

zschokkei. The duration of this test (6 weeks at 20**C) is similar to that of equivalent 

toxicity tests using the benthic harpacticoids Amphiascus tenuiremus and 

Microarthridion littorale, which are widely used in marine sediment bioassessment. 

Abbreviated toxicity tests using B. zschokkei can be adapted easily fi*om the methods 

described in this thesis. 

• A major advantage of B. zschokkei as a test organism is that it can be considered 

representative of several different fi-eshvrater habitats over a wide geographical range. 

Providing a leaf disc as a food source for B. zschokkei enhances the ecological relevance 

of the test system. 

• The relative sensitivity of B. zschokkei to different toxicants depends on the contaminant 

and on the duration of exposure. Characterisation of the responses of this copepod to 

other toxicants vrill allow more generalised conclusions to be made on its overall 

sensitivity to pollution exposure. 

• A development model proposing "equiproportional development" has been validated for 

B. zschokkei. Using this model it may be possible to distinguish between toxicants that 

exert an effect directly on the moulting process and effects on development that occur 

as a result of shifts in metabolic processes. Such a model has application when 

considering the effects of potential endocrine disrupting chemicals, which might be 

expected to cause perturbation of the hormonal processes controlling moulting. 

• As female B. zschokkei carry their egg sacs externally, detailed observations of toxicant 
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effects on the brood itself and hatching of larval stages can be evaluated. The numbers 

of eggs and nauplii per female were found to be sensitive endpoints for zinc and lindane 

exposure. An increase in abortion frequency was also observed in response to these 

contaminants. Abortion frequency appears to be a useful biomarker of stress for this 

copepod. 

The variability of different life-history traits used as endpoints for toxicity tests are 

relatively low (CV, 12-61%). Reproductive parameters (numbers of eggs and nauplii per 

female) show a high degree of variability compared with measured developmental 

parameters but were the most sensitive endpoints for both zinc and lindane exposure. 

The life-cycle test for B. zschokkei described in this thesis is standardised and highly 

reproducible. No significant differences were observed in either development or 

reproductive parameters between control animals from three different bioassays. 

The use of a life-cycle test using B. zschokkei is recommended for future development 

both to supplement present testing regimes and as an ecologically relevant alternative to 

current sediment test organisms. 
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