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ABSTRACT 

The shape and size of sedimentary bedforms play a key role in the reconstruction of sedimentary 

processes in modern and ancient environments. Recent laboratory experiments have shown that 

bedforms in mixed sand–clay develop at a slower rate and often have smaller heights and lengths than 

equivalent bedforms in pure sand. This is generally attributed to cohesive forces that can be of physical 

origin, caused by electrostatic forces of attraction between clay minerals, and of biological origin, 

caused by ‘sticky’ extracellular polymeric substances (EPS) produced by micro-organisms, such as 

microalgae (microphytobenthos) and bacteria. In the present paper, we demonstrate, for the first 

time, that these laboratory experiments are a suitable analogue for current ripples formed by tidal 

currents on a natural mixed sand–mud–EPS intertidal flat in a macrotidal estuary. Moreover, both the 

field data and the laboratory data demonstrate that the widely used definitions of ‘clean sand’ (<25% 

mud: Shepard, 1954) and ‘mature sandstone’ (arenite, <10-15% mud: Folk, 1951; Dott, 1964) need to 

be redefined. Integrated hydrodynamic and bed morphological measurements, collected during a 

spring tide near Hilbre Island (Dee estuary, NW England), reveal a statistically significant linear decease 

in current ripple length for progressively higher bed mud contents, and a concurrent change from 

three-dimensional linguoid to two-dimensional straight-crested ripple plan morphology. These results 

agree well with observations in laboratory flumes, but the rate of decrease of ripple length was found 

to differ substantially between the field and the laboratory. Since the formation of ripples under 

natural conditions is inherently more complex than in the laboratory, five additional controls that 

might affect current ripple development in estuaries, but have not been accounted for in laboratory 

experiments, were explored: wave energy, flow energy, clay type, pore water salinity, and bed EPS 

content. This analysis showed that wave energy and clay type cannot be used to explain the difference 

in the rate of decrease in ripple length, because surface water waves were weak during the flood and 

ebb tides preceding the ripple length measurements, and the bed clay contents were too low for clay 

type to have had a measurable effect on bedform development. Accounting for the differences in flow 

forcing between the field and experiments, and therefore the relative stage of development with 

respect to equilibrium ripples, increases the difference between the ripple lengths by 50%. The 

presence of strongly cohesive EPS in the current ripples on the natural intertidal flat might explain 

most of the difference in the rate of decrease in ripple length between the field and the laboratory. 

The effect of pore water salinity on the rate of bedform development cannot be quantified at present, 

but salinity is postulated herein to have had a smaller influence on the ripple length than bed EPS 

content. The common presence of clay and EPS in many aqueous sedimentary environments implies 

that a re-assessment of the role of current ripples and their primary current lamination in predicting 

and reconstructing flow regimes is necessary, and that models that are valid for pure sand are an 
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inappropriate descriptor for more complex mixed sediment. We propose that this re-assessment is 

necessary at all bed clay contents above 3%. This bed clay content is also recommended as a more 

appropriate boundary, informed by field-based and laboratory-based sediment dynamics, between 

‘clean’ sand and ‘dirty’ sand, and between ‘arenite’ and ‘wacke’.  

 

Running title: Redefining ‘clean’ sand 

Keywords: Clean Sand, Arenite, Current Ripples, Mixed Sand–Clay-EPS, Cohesion, Estuary, Intertidal 

Flat  

 

INTRODUCTION 

In estuaries, the interaction of river flows, tides, and waves leads to more complex particle movement 

and resulting spatiotemporal distribution of deposits than in many other environments (e.g., 

Dalrymple & Choi, 2007; van den Berg et al., 2007). In particular, the common presence of sand mixed 

with cohesive clay and non-cohesive silt – with silt and clay collectively referred to as mud herein – 

renders the reconstruction of sedimentary processes from bedforms and primary current lamination 

in estuarine sedimentary facies a challenge, because cohesive forces can have a large influence on the 

erosion, transport, and deposition of sediment (e.g., Mehta, 2013; Chen et al., 2017). Even small 

volumes of mud-sized particles in sand – well within ‘clean sand’ and ‘mature sandstone’ (arenite), 

defined as sand with less than 25% mud by Shepard (1954) and less than 10-15% mud by Folk (1951) 

and Dott (1964) – are able to bind sediment particles via electrostatic van der Waals forces, and 

thereby increase the threshold stress for sediment entrainment from the seabed, promote 

flocculation of suspended sediment, and change deposit properties, compared to non-cohesive silt 

and sand. In addition to this physical cohesion, estuaries are also major sites of primary and secondary 

production, which promotes the development of biological cohesion by organic molecules produced 

through biological activity (e.g., extracellular polymeric substances, EPS), acting to bind particles 

through electrostatic interactions, hydrogen bond formation, and cation effects. EPS is produced in 

sediments by microphytobenthos, chiefly diatoms and cyanobacteria (Underwood & Paterson, 2003), 

and bacteria. 

At present, cohesion is not sufficiently well-incorporated either into engineering models for estuarine 

sediment transport or into geological facies models of estuaries (e.g., Mitchener & Torfs, 1996). 

Recent experimental work has shown that further fundamental physical sedimentological research is 

needed to close the knowledge gap with non-cohesive sedimentary dynamics (Baas et al., 2013, 
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Malarkey et al., 2015, Schindler et al., 2015; Parsons et al., 2016; Baas et al., 2016). These laboratory 

studies have highlighted that sedimentary bedforms and their primary current lamination in mixed 

sand–clay are significantly different from those in pure sand. Fractions of 1-10% of cohesive clay and 

less than 0.1% of EPS within a sand bed are sufficient to increase the development time of current 

ripples on a flat bed (Baas et al., 2013, Malarkey et al., 2015), and reduce the equilibrium height and 

length of subaqueous dunes (Schindler et al., 2015; Parsons et al., 2016). This decrease in bedform 

size, as clay and EPS content are increased, is particularly pronounced for subaqueous dunes 

(Schindler et al., 2015; Parsons et al., 2016). However, we hypothesise that current ripples in mixed 

sand–clay–EPS will also be smaller than in pure sand when developed within the time frame of a 

semidiurnal tide, because the additional time required to reach equilibrium dimensions compared to 

pure sand ranges from hours to tens of hours (Baas et al., 2013; Malarkey et al., 2015). A key process 

during bedform development in mixed sediments is the entrainment of clay, silt, and EPS into 

suspension from a mixed sand–mud bed, i.e. winnowing (McCrone, 1962), as it may facilitate the 

bedforms eventually reaching heights and lengths that are similar to their mud-free equivalents. This 

facilitative process appeared more important for current ripples (Baas et al., 2013; Malarkey et al., 

2015) than for dunes (Schindler et al., 2015; Parsons et al., 2016). The above results were based 

exclusively on controlled laboratory experiments conducted with steady, uniform flow, constant flow 

depth, well-sorted sand, a single type of clay mineral (kaolinite) and EPS (xanthan gum), and in fresh 

or brackish water. 

The present paper compares, for the first time, the dynamics of experimental small-scale bedforms in 

mixed sand–clay with those on an intertidal flat in the Dee Estuary, NW England, based on integrated 

morphological and hydrodynamical data. Firstly, evidence is provided that current ripples found at low 

slack water at this field site and current ripples in laboratory experiments are influenced by physical 

and biological cohesion in a similar way. Thereafter, the inherently more complex field conditions are 

explored to elucidate the underlying processes that control the differences between the field data and 

the experimental data in the rate of change of current ripple length with changing bed clay and EPS 

content. Finally, the wider implications of this validation study for predictive sediment transport 

models, bedform size predictors, and sedimentary facies analysis are discussed. 

 

METHODS 

The field data described here were collected as part of the NERC COHBED (Cohesive Bedforms) project,  

which examined the dynamics of current-generated bedforms in mixtures of non-cohesive sand and 

physically and biologically cohesive clay. The COHBED project integrated laboratory experiments with 
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a comprehensive set of field measurements in intertidal and subtidal environments near Hilbre Island 

in the Dee Estuary, NW England (Fig. 1A). The Dee Estuary is funnel-shaped and macrotidal, with a 7-

8 m mean spring tidal range at Hilbre Island. Hilbre Island separates Hilbre Channel from intertidal 

flats west of the town of West Kirby (Fig. 1A). These tidal flats are flood-dominated and rich in fine-

grained sediment (Moore et al., 2009). Waves are mainly generated locally within Liverpool Bay, with 

northwesterly waves having the largest influence on the sedimentary processes in the Dee Estuary 

(Brown & Wolf, 2009; Villaret et al., 2011).  

 

Fig. 1. (A) Schematic map of the Dee Estuary around Hilbre Island, with the main tidal channel in white and the study area 

located on the grey-coloured intertidal flat to the northwest of Little Hilbre. The four islands are defined by the area above 

the mean high water mark and by any area of bedrock exposed at low water immediately below this mark. (B) Overview of 

study site. The ripples in the foreground are approximately 150 mm long. 
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The intertidal flats to the northwest of Little Eye (Fig. 1A) have proven valuable as a natural laboratory 

for studying bedform dynamics in mixed sand–mud, because of the large variety in sand-mud ratio, 

ranging from pure sand to sandy mud. During the field campaign in May 2013, the intertidal flats also 

contained significant amounts of EPS, ranging from 0.02% to 0.21% by weight (Lichtman et al., in 

review). Bed clay and EPS content were linearly correlated (R2 = 0.41, p < 0.05, n = 20)  

e = 0.0105c + 0.0302      (1) 

where e is the weight percentage of EPS and c is the volume percentage of cohesive clay (Lichtman et 

al., in review). The present paper uses textural and morphological data collected from a c. 1400 m2 

area on May 26th in 2013 when the bed was covered with plane beds and current ripples with different 

sizes and planform patterns during exposure at low slack water (Fig. 1B). In order to study the 

relationship between these bedform properties and bed clay and EPS content, 3 flat beds and 12 

rippled beds were described visually. Subsequently, bedform lengths were measured (collecting 

bedform heights within the same low slack water period was not possible), and bulk sediment samples 

were collected between the crest and base of individual bedforms and down to 20 mm below the base 

of these bedforms for subsequent grain size analysis (Malvern 2000 laser particle sizer, Bangor 

University). This approach allowed the comparison of surface sediments subject to winnowing (loss of 

fine particles and EPS to the water column) with deeper sediments unaffected by winnowing.  The bed 

sampling also included flat, mud-rich, surfaces without current ripples. For these flat beds, the 

subsurface samples were collected in the same way as for the rippled beds, i.e. 20 mm below the 

surface. These samples were supported by surface scrapes, several millimetres deep, to distinguish 

undisturbed sediment from sediment that may have been subjected to winnowing at the sediment–

water interface. The sand fraction in the mixed sand–mud at the study site had a median grain 

diameter of 0.228 mm, and the mud fraction, encompassing all particles finer than 0.063 mm, ranged 

from 3.8% to 37.1%. The mud fraction of the ripples at the field site contained 36% clay minerals by 

volume (standard deviation: 4%, n = 7), based on X-ray powder diffraction (XRD) data, obtained using 

the standard methodology for bulk sediment analysis (Moore & Reynolds, 1997). In decreasing order 

of abundance, the clay mineral assemblage comprised illite, chlorite and kaolinite. This 36% is 

therefore inferred to represent the cohesive fraction within the mud more accurately than the mud 

fraction; the remaining 64% in the mud fraction was dominated by non-cohesive quartz and feldspar. 

In order to allow a direct comparison with the experimental data of Baas et al. (2013), the bed mud 

content, m, was converted to cohesive clay content using this XRD-derived fraction (Lichtman et al., 

in review): 

   c = 0.36m       (2) 
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thus yielding cohesive clay fractions ranging from 1.4% to 13.4 vol%. Approximately 140 m northwest 

of the area where the bedforms were measured, near-bed flow velocities were measured 

continuously during water cover using two acoustic Doppler velocimeters (ADV) located at 0.25 m and 

0.40 m above the sediment surface. The temporal resolution of the velocity data used herein was 30 

s, derived by bin averaging of the original ADV data acquisition rate of 0.2 Hz. Immediately before the 

bedforms were studied on May 26th, the field site experienced a spring tide with a maximum depth-

averaged flow velocity of 0.67 m s-1 (based on a total period of submergence of both probes of c. 4.7 

hours) and southeastward- and northwestward-directed currents during flood and ebb, respectively. 

The maximum flow depth was 2.73 m close to high slack water. The depth-averaged velocities were 

calculated from the vectorially added horizontal components of the ADV data and the flow depth using 

the standard logarithmic law for wall-bounded shear flow (e.g., van Rijn, 1990). These velocities were 

then used to calculate the grain-related mobility parameter, ’, described in Equation 6 and 7 below, 

in order to characterise the bedform development in terms of bed shear stress.  

 

RELATIONSHIP BETWEEN RIPPLE PROPERTIES AND BED MUD CONTENT  

Results 

Table 1 provides the current ripple length data and the corresponding bed mud, cohesive clay and EPS 

fractions measured at the study site near Little Eye in the Dee Estuary. The mean ripple length, L,  is 

plotted against bed mud percentage within the ripples and in the subsurface underneath the ripples 

in Fig. 2. Figure 2 also provides information on the planform properties of these bedforms, and 

photographic imagery of the various plan morphologies are shown in Fig. 3.  

A statistically significant inverse relationship between the mean ripple length and the bed mud 

content, m, was found for the samples collected from the ripples and from the subsurface (Fig. 2). 

These relationships are described by a linear trend with R2 values of 0.44 (p = 0.027 < 0.05, n = 12) and 

0.75 (p = 0.00058 << 0.05, n = 12), respectively. The mud content in the subsurface was consistently 

higher than the mud content within the ripples, and this difference rapidly increased, as the ripple 

length decreased (Fig. 2). For the beds with the lowest mud content, the ripple length was close to the 

equilibrium length of current ripples in pure sand with a median grain size, D50, similar to the present 

study (D50 = 0.238 mm and L = 141 mm (Baas, 1999) versus D50 = 0.228 mm and L = 142 mm herein). 

The smallest ripples, formed at the highest bed mud contents, were c. 20 mm longer than incipient 

current ripples in the experimental study of Baas (1999) (Fig. 2).  
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Table 1. Summary of morphological and textural field data. 

Bed Ripple length Bed mud % Bed clay % Bed EPS % Bedform 

number Mean (mm) Number subsurface ripple * subsurface ripple * subsurface ripple type 

1 - - 23.4 11.7 8.4 4.2 0.128 0.072 Flat bed 

2 - - 33.8 24.0 12.2 8.6 0.178 0.131 Flat bed 

3 - - 37.1 32.8 13.4 11.8 0.194 0.173 Flat bed 

4 77 15 33.5 13.7 12.1 4.9 0.177 0.081 2D ripples 

5 78 9 16.8 13.3 6.0 4.8 0.096 0.079 2D ripples 

6 88 12 16.9 14.3 6.1 5.1 0.097 0.084 2D ripples 

7 95 11 24.7 7.9 8.9 2.8 0.134 0.053 2D ripples 

8 114 9 7.2 5.3 2.6 1.9 0.050 0.041 2D-3D ripples 

9 116 8 16.3 7.8 5.9 2.8 0.094 0.053 2D-3D ripples 

10 120 9 6.7 6.8 2.4 2.4 0.048 0.048 2D-3D ripples 

11 134 7 10.9 6.5 3.9 2.3 0.068 0.047 2D-3D ripples 

12 123 7 14.2 7.5 5.1 2.7 0.084 0.051 3D ripples 

13 129 8 5.3 3.8 1.9 1.4 0.041 0.034 3D ripples 

14 141 7 12.7 1.6 4.6 0.6 0.076 0.023 3D ripples 

15 143 7 4.6 5.2 1.7 1.9 0.037 0.040 3D ripples 

          
* Surface scrape for flat beds 

 

 

Fig. 2. Mean ripple length against bed mud content for the current ripples at the field site. The black continuous and dashed 

lines are the linear least-square best fits for the subsurface and the ripple samples, respectively. The colours indicate incipient 

ripples (yellow), 2D sinuous and straight-crested ripples (red), 2D-3D linguoid ripples (blue), and 3D linguoid ripples (green). 

The boundaries between these ripple types are from Baas (1999). The horizontal stippled lines denote the initial and 

equilibrium lengths of current ripples in 0.238 mm sand (cf. Baas, 1999).    



9 
 

 

Fig. 3. Field examples of flat beds (A,B), 2D ripples (C,D), 2D-3D ripples (E,F), and 3D ripples (G,H). Bed mud content decreases 

from (A,B) to (G,H). The percentages in (A-H) denote subsurface mud contents, as shown in Table 1. The scale bar is 200 mm 

long. 

Figure 3A-B shows examples of flat surfaces without ripples, which were found in concert with high 

subsurface mud contents of 23.4%, 33.8%, and 37.1% (Table 1). As was the case for the rippled beds, 

the mud content in the surface scrapes of the flat beds was consistently lower than in the subsurface 

samples down to 20 mm (Table 1). The average mud content in this surficial layer was 23%, which was 
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higher than any of the mud contents within the ripples. The current ripples with L ≤ 95 mm (Table 1) 

had straight to weakly sinuous crest lines (Fig. 3C-D); these bedforms are referred to as two-

dimensional (2D) ripples in the remainder of this paper (Fig. 2). The ripples with a length greater than 

110 mm were either three-dimensional (3D) ripples with linguoid crests (Fig. 3G-H), or transitional 

between the 2D and 3D ripples (Fig. 3E-F). The beds covered in 2D-3D ripples consisted of patches of 

linguoid ripples next to ripples with more continuous crests. With one exception, the 2D-3D ripples 

were shorter in length than the 3D ripples (Fig. 2).            

Interpretation 

These field data reveal an inverse linear relationship between bed mud content and ripple length, 

suggesting that clay minerals within the bed hinder the near-bed movement of these non-cohesive 

grains (e.g., Mitchener & Torfs, 1996; Baas et al., 2013). Consequently, the tidal currents were able to 

form 3D linguoid current ripples only in beds with m < 11% in the subsurface and m < 6% within the 

ripples.  At progressively higher bed mud contents, cohesive forces restricted bedform development 

to smaller 2D-3D and 2D current ripples. The boundary between these ripple types was at bed mud 

contents in the subsurface and within the ripples of 18% and 10%, respectively. The beds were too 

cohesive for any ripple development at subsurface bed mud contents of c. 31±7% and surficial mud 

contents of c. 23±11%, where 7% and 11% denote standard deviations of the mean. 

The length and plan morphology of the field ripples correspond remarkably well with the laboratory 

ripples in 0.238 mm sand of Baas (1999). The field ripples were too large to be classified as the incipient 

ripples of Baas (1999), which were up to 67 mm long. The length of the 2D field ripples was well within 

the limits of the straight-crested and sinuous ripples of Baas (1999) (Fig. 2), and the 2D-3D ripples and 

most 3D ripples at the field site correspond in length to the non-equilibrium linguoid ripples of Baas 

(1999). Only at the lowest bed mud contents the 3D ripples reached lengths that were similar to the 

equilibrium linguoid ripples in the clay-free sand of Baas (1999).  

The difference in mud content in the samples from the subsurface and the ripples agrees with previous 

studies that associated the development of bedforms with the winnowing of fine particles (e.g., Baas 

et al., 2013; Schindler et al., 2015; Parsons, et al., 2016; Lichtman et al., in review). The winnowing 

depth is limited by the height of the bedforms; this explains why the mud content in the subsurface is 

up to 3 times higher than the mud content in the ripples on the surface (Fig. 2). However, the 

winnowing of fine sediment in the field was not as efficient as in the laboratory experiments of Baas 

et al. (2013). Defining the boundaries of winnowing efficiency as 100% for full removal of bed mud 

and as 0% for full retention of mud during bedform development, the average winnowing efficiency 

at the field site was 35%, compared to 93% in the experiments of Baas et al. (2013). This low 
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winnowing efficiency may be associated with physical and biological processes that counteract 

winnowing and add and store mud in the bed under field conditions, such as advection of suspended 

clay particles, deposition of mud flocs during high slack tide, and mixing of clay and silt into the bed 

by benthic organisms. Winnowing appears to have taken place also on the strongly cohesive flat beds, 

although this might have been limited to the uppermost millimetres, and the reduction of bed mud 

content was insufficient to enable ripple formation within the time available. In addition, the 

production, accumulation, breakdown, and loss of EPS is complex given its multiple sources (bacteria, 

microphytobenthos and infauna), Therefore, EPS dynamics is likely to be different between the field 

and laboratory conditions. In laboratory experiments, a proxy of EPS, such as xanthan gum, is often 

used to provide a known concentration of EPS with more predictable effects. Such proxies provide a 

useful experimental model but are short of natural conditions. Experiments using natural bacterial 

populations or mixed assemblages are becoming more common (Chen et al. 2017). Determining the 

absolute values of EPS concentration in sediments may be problematic in terms of modelling sediment 

dynamics and one solution is to use a more pragmatic approach of considering negligible (sand), low 

(mixed sand mud), medium (muddy sand)  and high level (mud) effect of EPS, rather than small 

variations in absolute values.          

 

COMPARISON WITH EXPERIMENTAL MIXED SAND–CLAY RIPPLES 

To facilitate a direct comparison of the ripples at the field site with the ripples in the mixed sand–clay 

experiments of Baas et al. (2013), the bed mud contents in the subsurface samples collected at the 

field site, shown in Fig. 2, were converted to cohesive clay contents using Equation 2. For the same 

reason, the ripple lengths were non-dimensionalised to exclude the influence of grain size on current 

ripple dimensions (Raudkivi, 1997; Baas, 1999; Soulsby & Whitehouse, 2005): 

Λ =  
𝐿−𝐿0

𝐿𝐸−𝐿0
       (3) 

where  is the dimensionless ripple length, with  = 0 for L = L0 and  = 1 for L = LE; LE and L0 are the 

lengths of equilibrium ripples and incipient ripples, first appearing on a flat bed, in pure sand. LE and 

L0 are a function of grain size. Herein, LE = 142 mm and L0 = 60 mm for the 0.228 mm sand at the field 

site, where L0 is taken from the experimental data for 0.238 mm sand of Baas (1999), and LE = 115.9 

mm and L0 = 28.5 mm for the 0.143 mm sand used in the experiments of Baas et al. (2013). Baas et 

al.’s (2013) experiments were conducted with steady, uniform, fresh-water flow at a depth-averaged 

velocity of c. 0.36 m s-1 and the current ripples were given 2 hours to develop on a flat bed consisting 

of mixed sand and kaolin clay.  
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Figure 4 demonstrates that the dimensionless length of the current ripples was inversely proportional 

to the initial cohesive clay content in the bed for both the field data and the laboratory data. 

Moreover, both datasets show a change from 3D ripples via 2D-3D ripples to 2D ripples, as the initial 

cohesive clay content in the bed was increased (Baas et al., 2013), and these planforms are 

demarcated by similar  values (Fig. 4). We, therefore, conclude that the laboratory experiments 

provide an appropriate analogue for the effect of cohesive forces on current ripple size and plan 

morphology under estuarine conditions. However, the rate of change in ripple length was significantly 

faster for the field ripples than for the experimental ripples, with linear extrapolation predicting a total 

absence of ripple development at 14% cohesive clay at the field site and 32% cohesive clay in the 

experiments (Fig. 4).  

 

Fig. 4. Dimensionless current ripple length against initial bed cohesive clay content for the ripples at the field site, based on 

the subsurface samples, and in the experiments of Baas et al. (2013). The black continuous and dashed lines are the linear 

least-square best fits for the field data and the experimental data, respectively. The colours indicate 2D ripples (red), 2D-3D 

ripples (blue), and 3D ripples (green). The question mark denotes a rippled bed for which the 2D-3D plan morphology was 

difficult to ascertain because only side-view photographs were available. 

Natural environments are inherently more complex than laboratory flumes (Tolhurst et al., 2009). 

Hence, this difference in the rate of change in ripple length may be caused by physical and biological 

variables that were omitted from the flume experiments of Baas et al. (2013). Below, the possible 

influence on bedform dynamics of the following main variables is assessed: (i) wave energy; (ii) clay 

mineral type; (iii) flow energy; (iv) bed EPS content; and (v) pore water salinity. Increased wave energy 
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and flow energy, i.e., higher tidal flow velocities, are expected to promote the development of current 

ripples on the intertidal flat, whereas strongly cohesive clay minerals, the presence of biological 

cohesion in the form of EPS, and seawater salinity should hinder the development of the current 

ripples. Each of these variables is discussed in detail below, and, if possible, its relative contribution to 

the difference in the rate of change of ripple length is determined (Fig. 4).    

 

DISCUSSION OF SPECIFIC CONTROLS ON RIPPLE DYNAMICS AT THE FIELD SITE   

Wave energy 

The ripples in the experiments of Baas et al. (2013) were formed from steady, uniform currents, 

whereas in estuaries bedforms can also be formed from surface water waves. Shallow water waves 

on intertidal flats may add a near-bed oscillatory stress component to the bed shear stress imposed 

by tidal flow which results in the formation of combined flow bedforms (e.g., Perillo et al., 2014) during 

ebb and flood tides and wave ripples around high slack water. However, even waves that are too weak 

to store evidence of their influence in the bedforms may make sediment particles available for 

subsequent movement by tidal flows, as the effect of wave forcing on bed shear stress is non-linear 

(e.g., Malarkey & Davies, 2012), and thereby can accelerate the development of bedforms on the 

seabed. This non-linearity is well known for sand beds (e.g., Grant & Madsen, 1979; Soulsby & Clarke, 

2005) but it should also apply to muddy sand beds.    

The temporal resolution of the ADV data is too low to determine if waves were present during the ebb 

and flood tide immediately before the emergence of the ripples on the intertidal flat. However, a 

higher-resolution set of pressure sensor and ADV data from a tidal gully 140 m to the southeast of the 

study site, described by Lichtman et al. (in review), shows that on May 26th wave heights were less 

than 0.25 m and maximum near-bed wave stresses were much lower than the critical limit for the 

motion of 0.228 mm sand (0.10 N m-2 as opposed to 0.16 N m-2). This lack of wave influence on the 

dynamics of the ripples is supported by the absence of symmetric wave ripples and combined flow 

ripples at the field site on May 26th, 2013. 

Clay type 

Baas et al. (2013) used kaolinite clay in their experiments, whereas illite clay was dominant at the field 

site. Illite is more cohesive than kaolinite because illite particles have a larger specific surface area and 

a larger cation exchange capacity than kaolinite particles (Hillel, 2004; Yong et al., 2012). Mixtures of 

sand and illite should, therefore, have a higher yield strength than mixtures of sand and kaolinite, and 

bedforms might develop more readily in mixed sand–kaolinite. However, Baker et al. (2017) showed 
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that the difference in yield strength between kaolinite and montmorillonite (incl. bentonite) is small 

for volumetric clay concentrations below 10%. This agrees with an experimental study by Torfs (1995, 

in van Ledden, 2001), in which the critical clay content for cohesive behaviour was 3-4% for both 

kaolinite and montmorillonite. Since illite is less cohesive than montmorillonite, all the current ripples 

at the field site were formed at bed clay fractions below 12%, and the subsidiary clay minerals kaolinite 

and chlorite in the field samples have lower yield strength than the illite, it is inferred that the effect 

of clay type on the difference in the rate of change of ripple length between the field data and Baas 

et al.’s (2013) laboratory data was likely to be small.   

Flow energy 

The experiments of Baas et al. (2013) were conducted at a constant depth-averaged flow velocity of 

c. 0.36 m s-1, whereas the field site was subjected to unsteady flow with a maximum depth-averaged 

flow velocity of 0.67 m s-1 (Fig. 5). As the rate of bedform development increases non-linearly with 

flow velocity (Baas, 1994, 1999), the current ripples at the field site could have been preserved at the 

end of ebb flow in a different development stage than the mixed sand–clay ripples of Baas et al. (2013). 

This development stage would render these ripples non-equilibrium bedforms sensu Baas (1994). 

Before testing this hypothesis, it is important to consider the alternative that the ripples on the 

intertidal flat were smaller than ripples in the equivalent clay-free sand because they are equilibrium 

bedforms (Baas, 1994) with lengths that are inversely proportional to bed clay content. Baas et al. 

(2013) discussed both possibilities without stating a preference, but, subsequently, Malarkey et al. 

(2015) provided experimental evidence that current ripples in cohesive mixtures of sand and EPS reach 

equilibrium heights and lengths that are similar to those in non-cohesive sand, provided that the flow 

duration is sufficiently long. Assuming that this evidence can be extrapolated from biological cohesion 

to physical cohesion, the mathematical model of Oost & Baas (1994) and Baas et al. (2000) for current 

ripple development in unsteady flow was used to compare the development stage of the ripples at 

the field site and in the experiments of Baas et al. (2013): 

𝐿𝑆𝐿−𝐿0

𝐿𝐸−𝐿0
= 1 − 0.01𝑆𝐿     ∧     𝑆𝐿 = ∫

𝑑𝑡

𝑇𝐸(𝑡)
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0
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Fig. 5. Summary of the field data, collected on May 26th, 2013. (A) water depth, (B) depth-averaged flow velocity, (C) grain-

related mobility parameter, (D) cumulative ripple length development stage, (E) predicted temporal development of ripple 

length. The dashed lines in (B) and (C) denote linear extrapolations. θc = 0.0508 is critical grain-related mobility parameter; 

LE = 142 mm is equilibrium ripple length; L0 = 60 mm is initial ripple length. SL is cumulative ripple length development stage. 
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In Equation 4, LSL is the ripple length at time T (in hours), T is the flow duration in hours, SL is the 

cumulative development stage of ripple length, and TE(t) is the equilibrium time in hours as a function 

of time t, i.e. the time needed to reach equilibrium ripple length at the acting current strength. SL = 0 

for a flat bed, and SL ≥ 1 for equilibrium ripples. In Equation 5, TE is related to the inverse of the flow 

forcing: 
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      (6) 

𝐶′ = 18 log(
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3𝐷90
)      (7) 

where ’ is the grain-related mobility parameter, U is the depth-averaged flow velocity, s = 2650 kg 

m-3 is the sediment density,  = 1027 kg m-3 is the density of seawater, D50 is the median grain size of 

the bed sand fraction, C’ is the grain-related Chézy coefficient, h is the flow depth, and D90 is the 90-

percentile of the grain-size distribution of the sand fraction (herein, D90 = 0.364 mm). 

 

 

In Equation 5, c represents the critical mobility parameter for particle entrainment, parameterised 

from the Shields curve (Shields, 1936) by Soulsby (1997): 

𝜃𝑐 =
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where D* is the dimensionless grain size parameter, g = 9.81 m s-2 is the constant due to gravity, and 

 = 1.37×10-6 m2
 s-1 is the kinematic viscosity of seawater at 10ºC. The coefficients a and b in Equation 

5 are grain-size dependent. For the field site with 0.228 mm sand herein, a = 0.112 and b = 0.473, 

which are linearly interpolated from values for 0.095 mm and 0.238 mm sand (cf., Baas et al., 2000). 

Equations 4 to 9 were used to predict the final length of clay-free current ripples developing on a flat 

bed during the flood and ebb tides immediately preceding the data collection (Fig. 5). The grain-

related mobility parameter (Fig. 5C) was calculated from the water depth (Fig. 5A) and the depth-

averaged flow velocity (Fig. 5B). In turn, ’ was used to predict the cumulative ripple development 

stage (Fig. 5D) and finally the temporal development of ripple length (Fig. 5E). As expected, the highest 

rates of ripple length development occurred around maximum flood and maximum ebb flow. The 
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ripples were predicted to attain their full equilibrium length after of 4.4 h of the available 4.7 hours of 

tidal flow (Fig. 5D-E). The model predicts SL = 1.263 at time T, with LSL = 141.8 mm. However, the age 

of the sandiest ripples at the field site might extend further back in time, as it is unknown how long 

these bedforms had been at equilibrium. Yet, it is unlikely that these bedforms formed more than 

three or four principal lunar semi-diurnal tidal cycles before the ripple length data were collected 

because strong waves on May 24th generated wave ripples, combined flow ripples, and upper-stage 

plane beds in the tidal gully of Lichtman et al. (in review). The model predictions for SL and LSL in Fig. 

5D-E should, therefore, be considered minimum values.  

In the experiments of Baas et al. (2013), the equilibrium length of the current ripples in pure sand, 

based on LSL = 0.99 LE (cf., Equation 4), was reached at 2.7 h. All the experiments with mixed sand–clay 

were halted after 2 h. Hence, a simple division of these durations (Equation 4) yields a cumulative 

ripple length development stage of 0.741, which applies to all the bed clay fractions. This SL-value is 

smaller than the predicted minimum cumulative development stage of 1.263 for the present study. 

Figure 4 should therefore be used to compare ripple lengths only after this difference in the 

development stage is accounted for. In order to better match the field data with the experimental 

data, Equation 4 was applied in modified form to predict the length of the mixed sand–clay ripples in 

the field for SL = 0.741: 

𝐿 0.741−𝐿0

𝐿𝐸−𝐿0
= 1 − (

𝐿𝐸−𝐿1.263

𝐿𝐸−𝐿0
)

0.741

1.263
      (10) 

where L0.741 and L1.263 are the ripple lengths for each bed cohesive clay content, and for SL = 0.741 and 

SL = 1.263, respectively. Equation 10 again assumes that the 2D, 2D-3D, and small 3D bedforms at the 

field site are non-equilibrium equivalents of clay-free equilibrium ripples in 0.228 mm sand, and that 

the tidal flow started to affect the bed at the study site simultaneously for all bed clay contents – 

including a possible delay in the first appearance of the bedforms (cf. Baas et al., 2013). Replotting the 

field data for L0.741 (Fig. 6) reveals that differences in flow forcing cause a 50% increase in the difference 

in  between the field data and the laboratory data. This 50% increase should be considered a 

minimum in the difference in  because Equation 10 does not take into account the earlier mentioned 

possibility that the ripples started to form before the last phase of tidal inundation and thus had even 

lower -values at SL = 0.741 than the laboratory ripples.  

Bed EPS content 

An important difference between the field data and the laboratory data of Baas et al. (2013) is the 

lack of biological cohesion in the flume experiments. The EPS concentrations in the bed samples from 

the field site were not measured, but Equation 1 can be used to make a qualitative assessment of the 
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effect of EPS on the remaining difference in the rate of change of dimensionless ripple length with 

increasing bed clay content (Fig. 6). The subsurface samples contained up to 0.194% EPS (Table 1). The 

development of the ripples appears to have been limited to subsurface EPS contents below c. 0.177% 

EPS, and the ripples contained up to 0.084% EPS after winnowing. These threshold values match the 

experimental data of Malarkey et al. (2015), in which current ripples ceased to form between e = 

0.125% and e = 0.250% on flat beds that contained mixed sand, EPS, and fresh water. However, a more 

detailed comparison between the field data and Malarkey et al.’s (2015) data is not possible because 

these sand–EPS experiments were conducted without any cohesive clay, and with xanthan gum, which 

is an EPS proxy that is unlikely to be fully representative for the type of EPS present in the Dee estuary 

(cf., van de Lageweg et al., 2017). Nonetheless, Malarkey et al. (2015) showed that EPS have a strong 

influence on bedform dynamics, with concentrations of EPS similar to those found at the study site 

reducing the rate of development of the current ripples by orders of magnitude. The EPS might, 

therefore, also have had a strong influence on the development of the current ripples at the study site 

that could explain most of the difference in the rate of change of  between the field and laboratory 

data (Fig. 6). Clearly, more field data are needed, in combination with tailored flume experiments on 

bedform development in mixed sand–clay–EPS, to determine the precise influence of EPS for a wider 

range of boundary conditions. 

 

Fig. 6. Dimensionless current ripple length against initial bed clay content for the ripples at the field site and in the 

experiments of Baas et al. (2013) after accounting for differences in flow forcing. The continuous and long-dashed lines are 

the linear least-square best fits for the field data and the experimental data, as in Fig. 4. The short-dashed line is the linear 

least-square best fit for the predicted bedform lengths at the field site (black dots) at SL = 0.741. The arrows denote the 

change in dimensionless ripple length from SL = 1.263 to SL = 0.741. 
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Water salinity 

The laboratory experiments of Baas et al. (2013) were conducted with fresh water, whereas the 

current ripples at the field site were formed in seawater. Salinity is well known to promote the 

formation of cohesive bonds between clay particles through the availability of cations that neutralise 

the negatively charged edges of clay platelets and therewith stimulate the attraction of these platelets 

by van der Waals forces (e.g., Manning et al., 2007; Mehta, 2013). This physicochemical attraction 

leads to the development of clay aggregates, i.e. floccules, that often have higher settling velocities 

than their constituent particles. Experimental studies typically find a positive correlation between 

erosion threshold and salinity for muddy sediments (e.g., Kandiah, 1974; Parchure & Mehta, 1985). 

However, no significant statistical relationship between salinity and critical shear stress existed for 

mixed sand-EPS in the laboratory experiments of van de Lageweg et al. (2017). Furthermore, the 

relationship between salinity and critical shear stress for sediment motion in field studies is 

ambiguous. Amos et al. (2003) found no difference in the threshold of erosion for natural muds in 

marine and freshwater environments, whereas Debnath et al. (2007) obtained a negative correlation 

between salinity and erosion rate for natural muds, and Spears et al. (2008) found that the erosion 

threshold increased seaward with salinity in the Eden Estuary (south-eastern Scotland). These 

differences between the field studies, in comparison to theoretical and experimental approaches, 

suggests that at least in some cases the effect of salinity on bed erosion is masked by other parameters 

in the natural environment, such as bed density and EPS content (e.g., Grabowski et al., 2011). For the 

present study, it is postulated that the difference in the rate of decrease of dimensionless ripple 

length, as cohesive clay content is increased, between the field data and the experimental data (Fig. 

6) is partly caused by the difference in pore water salinity. Some support is provided by unpublished 

pilot experiments of the authors, which show that mixed sand–EPS current ripples take longer to 

develop in seawater than in fresh water. However, further experiments are needed to determine how 

much of the difference between the field data and the laboratory data (Fig. 6) can be explained by 

differences in pore water salinity. We expect salinity to have a smaller effect than EPS, considering the 

strong inverse relationship between ripple development rate and bed EPS content (Malarkey et al., 

2015).  

 

WIDER IMPLICATIONS 

Frequency of occurrence of equilibrium and non-equilibrium current ripples 
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At the field site, the presence of cohesive clay and EPS was found to have had the greatest influence 

on the growth rate and size of the current ripples, followed in decreasing order of influence by flow 

forcing and salinity, whereas the influence of wave energy and clay type was small to negligible. 

However, the relative contribution of these controlling variables is likely to be unique to the 

measurement period at the study site. Table 2 summarises the more general importance of each 

variable in mixed sand–clay–EPS environments.  

Physical and biological cohesion are expected to have a strong influence on current ripple dynamics 

(Table 2), because small fractions of clay and EPS, akin to most aqueous environments, are sufficient 

to reduce current ripple size, promote two-dimensionality of ripples, and delay ripple growth. In 

environments where the currents and waves are stronger than at the field site, e.g., in tidal channels 

and on wave-facing beaches, sand-rich equilibrium bedforms are probably more common, because 

stronger hydrodynamic forcing promotes the development rate of the bedforms, assisted by a faster 

rate of winnowing of clay and EPS from the bed. This raises the question if non-equilibrium mixed 

sand–clay–EPS ripples will dominate the bed when the currents are weaker than at the field site. In 

fact, this weaker hydrodynamic forcing should be the more likely scenario because the mean spring 

tidal range of 7-8 m in the Dee estuary is amongst the largest in Europe, and the field data were 

collected at spring tide in this macrotidal estuary. Under such circumstances, maximum tidal velocities 

are higher than in many microtidal, mesotidal and other macrotidal environments. However, since the 

formation of the current ripples in this study was restricted to bed clay and EPS fractions of up to only 

12% and 0.2%, we infer that mixed sand–clay–EPS ripples form less readily on sand–mud tidal flats in 

these lower-energy environments, even under the consideration that these percentages might vary 

with clay type, EPS type, and flow forcing. Assuming that it is possible to form bedforms at all in such 

conditions, many tidal cycles would be needed to form recognisable mixed sand–clay–EPS ripples, and 

their preservation would depend on the frequency of occurrence of processes that destroy these 

bedforms, such as bioturbation and storm waves. Mixed sand–clay–EPS ripples might be restricted to 

a narrow strip at the boundary between sandy tidal channels and muddy tidal flats in estuaries with a 

smaller tidal range than the study site. Likewise, it is anticipated that during neap tides in the Dee 

Estuary, and in other macrotidal estuaries with a similar tidal range, the mixed sand–clay–EPS 

bedforms shift from intertidal flats towards subtidal channels and other areas of confined tidal flow.  

Although the effect of pore water salinity on current ripple growth rate and size is not fully understood 

at present (Table 2), the concentration of cations in brackish water and seawater are expected to be 

large enough to cause longer delays in the development of mixed sand–clay–EPS current ripples in 

fully marine and estuarine environments than in freshwater environments, such as rivers and lakes. It 

is therefore hypothesised for the benefit of future studies that equilibrium mixed sand–clay–EPS 
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bedforms are more common in fresh water. At the field site, the influence of clay type was found to 

be small (Table 2). However, tidal flows with significantly larger velocities than at the field site, and 

possibly helped by surface water waves, might be able to form current ripples at c > 12% and e > 0.2%, 

for which differences in yield strength between clay types start to play a more significant role in 

causing differences in bed cohesion (Baker et al., 2017), and therefore bedform development rate.  

 

Table 2. Summary of relative contribution of factors controlling bedform development in mixed sand–clay–EPS. 

Controlling factor Relative contribution 

This study 

Relative contribution 

Generalised 

Cohesive clay Large Large 

EPS Probably large Probably large 

Flow energy Large Variable 

Water salinity Unknown, perhaps smaller than EPS Unknown, perhaps smaller than EPS 

Wave energy None Variable 

Clay type Small Small 

 

Implications for studies in modern environments 

Accurate knowledge of the geotechnical, morphological, and biological properties of the seabed is 

essential for the quantification of near-bed sediment transport in modern environments. These 

properties include the sediment size, the cohesive strength of the bed, the critical shear stress for 

sediment motion, and the size and migration rate of bedforms. The rate of bedload transport per unit 

width, qb, can be calculated based on the volumetric sediment concentration, Cb, the particle velocity, 

up, and the saltation height of the particles, b (van Rijn, 1993): 

𝑞𝑏 = 𝐶𝑏𝑢𝑝𝛿𝑏       (11) 

or on the current ripple height, H, and the current ripple migration rate, ur (van den Berg, 1987): 

𝑞
𝑏

= 0.6 (1 − 𝑃) 𝑢𝑟 𝐻       (12) 

where P is the bed porosity. Equation 11 was expressed by van Rijn (1993) also in terms of flow forcing 

and sediment size: 

𝑞𝑏 = 0.053√(  /s ) 𝑔 𝐷50
1.5 𝐷∗

−0.3 (
𝜏𝑏 – 𝜏𝑏,𝑐

𝜏𝑏,𝑐
)

2.1

      (13) 
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where b is the bed shear stress, and b,c is the critical bed shear stress according to Soulsby (1997). 

Baas et al. (2000) found a power-law relationship between flow forcing and ripple migration rate for 

Equation 12, which in modified form can be written as: 

𝑢𝑟 = 𝛼(𝜃′ − 𝜃𝑐)𝛽      (14) 

where  and  are coefficients dependent on sediment size.  

Equations 11-14, as well as other bedload transport equations, have been used successfully for 

cohesionless sand, albeit with large degrees of uncertainty. The fact that “it is hardly possible to 

predict the transport rate with an inaccuracy of less than factor 2” (van Rijn, 1993) might result in part 

from the lack of parameterisation of the effect of physical and biological cohesion in these equations. 

The present study, combined with the recent laboratory studies, on bedform development in mixed 

sand-clay (e.g., Baas et al., 2013; Malarkey et al., 2015; Parsons et al., 2016) suggests that predictions 

of qb could be vastly improved if cohesive forces were included in bedload transport equations. 

Insufficient data are available at present to achieve this, but these improvements would require the 

modification of b,c in Equation 13 and θc in Equations 14 for cohesive forces in the bed, even at several 

percent of clay and hundredths of a percent of EPS. An improved parameterisation of ripple height in 

Equation 12 is also essential, because existing mathematical predictors for the size of current ripples 

(Raudkivi, 1997; Baas, 1999; Soulsby & Whitehouse, 2005), which relate the equilibrium height (and 

length) of the ripples to the median sediment size within the ripples, have been developed only for 

non-cohesive sand. Hence, these predictors are unlikely to be sufficiently accurate for mixed sand–

clay–EPS.  

The present study strengthens the evidence collected in previous studies (e.g., Baas 1994, 1999) that 

current ripples are often smaller in size, and more two-dimensional in planform, than those predicted 

from the size of the sand particles in the bed alone. In other words, the common presence of cohesive 

clay and EPS in the natural environment increases the likelihood of finding smaller ripples with non-

equilibrium planforms. By using an equation for the development of ripple height from a flat bed in 

clay-free 0.228 mm sand (e.g., Baas, 1999), similar to Equations 4 and 5 but with an initial height, H0, 

equal to zero, it can be shown that the smallest ripples in the study area were c. 4 mm high, and the 

equilibrium height, HE, was 17 mm. For this 13 mm difference in ripple height alone Equation 12 would 

overpredict the bedload transport rate by a factor 4, if the effect of cohesion is ignored. The presence 

of clay and EPS also increases θc ; this is likely to further worsen this overprediction. Figure 7 provides 

an estimation of the possible error in θc for kaolin clay and the EPS-proxy xanthan gum, based on flume 

experiments in which the critical Shields parameter was determined for mixed sand–clay–EPS by 

gradually increasing the bed shear stress imposed by a steady, uniform flow until a downstream 



23 
 

bedload trap started to collect sediment particles (See Appendix A for further details). For up to 1% 

xanthan gum and up to 30% kaolin, θc was up to 73% and 83% higher than in the non-cohesive 

reference sand (Fig. 7). The combined effect of biological and physical cohesion led to an increase in 

θc by up to 123%. At the field site, where the current ripples formed only below 12% clay and below 

0.2% EPS, Fig. 7 suggests a maximum increase in θc by 27% for the mixed sand–clay–EPS. It should be 

emphasised, however, that this percentage increase is merely an approximation of the combined 

effect of physical and biological cohesion on θc because the experiments were conducted with types 

of sand, clay, and EPS that were different from those at the field site.  

 

Fig. 7. Relative change in critical Shields parameter (including standard error) for sand with kaolin clay, sand with EPS-proxy 

xanthan gum, and sand with mixtures of kaolin and xanthan gum. The term θc,0 on the vertical axis denotes the critical Shields 

parameter for pure sand with a median grain diameter of 0.148 mm. The blue coloured surface denotes the laboratory data. 

The red coloured insert denotes the approximate range of the field data. 

Implication for geological studies 

Whilst not a strong indicator of depositional environment, current ripples and their primary current 

lamination have been used extensively for the reconstruction of depositional processes in the 

geological record (e.g., Stow, 2005). The equilibrium height and length of current ripples increase, as 

the median size of the sediment particles in the bed increases, but their equilibrium dimensions are 

independent of flow strength (Baas, 1994). Instead, flow strength accelerates the development 
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towards equilibrium height and length. On their way to linguoid equilibrium shape, current ripples go 

through distinct plan morphologies, i.e., incipient, straight-crested, sinuous, and non-equilibrium 

linguoid (Baas, 1994). This progressive increase in three-dimensionality has been used to determine 

the development stage of current ripples in deep-marine and shallow-marine environments (e.g., 

Baas, 1993, Oost & Baas, 1994). However, reconstructing flow strength from the size and shape of 

non-equilibrium current ripples in clean sand has been challenging, because Equations 4 and 5 show 

that the formation of non-equilibrium ripples also includes a time factor. For example, the presence 

of underdeveloped straight-crested ripples and associated tabular cross-lamination may signify low 

flow strengths of relatively long duration, but also high flow strengths of very short duration. The 

present study shows that physical and biological cohesion push current ripples further away from 3D 

towards 2D shapes, unless flow strengths are high enough to successfully winnow the clay and EPS 

from the bed. Above all, a full recognition of the importance of cohesive forces for bedform dynamics, 

even at low bed clay and EPS fractions, requires a paradigm shift in sedimentary facies analysis. The 

boundary between clean sand (Shepard, 1954) or mature sandstone (‘arenite’ of Folk, 1951, and Dott, 

1964) and dirty sand (Shepard, 1954) or immature sandstone (‘wacke’ of Folk 1951, and Dott, 1964) 

needs to be redefined. This new boundary should divide muddy sand from sand in which the detrital 

clay and associated EPS content are too low to significantly affect the geotechnical properties, and do 

this better than the arbitrarily chosen and disproportionately high boundaries of 25% clay of Shepard 

(1954) and 10-15% of Folk (1951) and Dott (1964). As before, detrital clay content in sediments and 

sedimentary rocks should inform this new boundary, because it is unlikely that EPS are preserved in 

sedimentary rocks. We propose a modified boundary between mature and immature sand of 3% 

detrital clay; this limits the effect of cohesion to a c. 20% reduction in  (Fig. 6) and a c. 8% increase 

in θc (Fig. 7). At the study site, 3% detrital clay was equivalent to 8% mud (<0.063 mm; Equation 2), 

and a size fraction <0.030 mm of 7%, which was used to define matrix sediment by Folk (1951) and 

Dott (1964). Further work is needed to verify if these new boundaries are applicable beyond the limits 

of the present comparative laboratory and field study.  

As the development of current ripples in mixed sand–clay involves loss of clay and EPS by winnowing, 

facies analysis should not use the clay content within current ripples and ripple cross-laminated sand 

to relate current ripple size and shape to bed cohesion and hydrodynamic forcing. However, the clay 

content in the sediment immediately below the base of current ripples and sets of cross-lamination 

may in many cases be representative for the original bed clay content from which the ripples were 

generated, especially if the textural properties of the sediment – other than the clay content – are 

similar. On intertidal flats in estuaries, the field data show that time is an important limiting factor for 

the formation of current ripples. Following on from the above interpretations for mixed sand–clay in 
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modern estuaries, the presence of 3D current ripples and trough cross-lamination in intertidal 

sandstones with more than c. 12% clay requires extraordinary processes of formation, such as 

combinations of spring tides within the macrotidal range, promotion of bedload transport by near-

bed wave stress, close proximity to sandy tidal channels, and a large number of consecutive tidal cycles 

of slow ripple growth without destructive processes. Under normal circumstances, however, such 

clay-rich sandstones are expected to be associated with a total absence of current ripples or with 

small, 2D, straight-crested current ripples and tabular cross-lamination, whereas fully developed 

linguoid current ripples and their cross-lamination should dominate sandstones that are poor in 

cohesive clay. Based on the data presented (Figs 4 and 6), the 3% detrital clay defined above for the 

boundary between mature and immature sand in the subsurface might also be an appropriate upper 

boundary for the presence of 3D ripples and their cross-lamination in sedimentary facies associated 

with tidal flats in macrotidal estuaries. This maximum in clay content is inferred to get progressively 

lower with decreasing tidal range in mesotidal and microtidal estuaries, with an increasing probability 

of finding sedimentary facies with 2D current ripples and their cross-lamination or no ripples at all. 

Moreover, clay-poor 3D current ripples are expected to be more common in tidal flat facies that are 

close to tidal channel facies, where tides accelerate owing to ebb and flood flow confinement.  

 

CONCLUSIONS 

This validation study shows that laboratory experiments on current ripple development in mixed sand-

clay–EPS are a suitable analogue for current ripple development on mixed sand–clay–EPS intertidal 

flats, and possibly also in other environments where physical and biological cohesion influence 

sediment erosion, transport, and deposition. The comparison between the field and laboratory data 

has led to the following main conclusions: 

 Current ripples in sand develop at an increasingly slower rate, as progressively larger volumes of 

cohesive clay are mixed into the sand.  

 These current ripples tend to become smaller and change from three-dimensional linguoid to two-

dimensional straight-crested, as bed clay content is increased. 

 These findings demonstrate that clay starts to affect bedform dynamics in sandy sediment at much 

lower concentrations than the definitions of ‘clean sand’ and ‘arenite’ of Shepard (1954) and Folk 

(1951) implicate. A revised boundary of 3% detrital clay, equivalent to 7% matrix sediment with a 

grain size <0.030 mm, appears more appropriate for the onset of bed stabilisation by cohesive 

forces in the seabed. 

 EPS might have a similar, yet stronger, effect on the size and planform of current ripples than clay. 
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 Surface water waves may accelerate bedform development, but waves were too weak to explain 

any of the difference in the relationship between ripple length and bed clay content in this study. 

 Clay type had a small influence on current ripple development in mixed sand–clay–EPS, because 

these bedforms were generated mostly at bed clay contents for which the rheological differences 

between clay mineral types are small. 

 Differences in cumulative flow forcing need to be accounted for in comparisons of the dynamics of 

current ripples in mixed sand–clay between field and laboratory. 

 Pore water salinity is also expected to control bedform development in mixed sand–clay–EPS, but 

quantification of this influence requires further study.  

 These findings have important implications for predicting current ripple properties from 

hydrodynamic data in hydraulic engineering and for reconstructing flow properties from current 

ripple size and shape in sedimentary geology. 
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APPENDIX A – DESCRIPTION OF CRITICAL SHEAR STRESS EXPERIMENTS 

The ‘vertical shear flume’ (Hydrodynamics Laboratory, Bangor University; Fox, 2000) was used to 

estimate the critical shear stress for sediment motion from beds comprising mixed sand–clay–EPS (Fig. 

7). This flume consists of a straight, rectangular, channel, 1.2 m long and 0.18 m wide, with a water 

depth of 0.12 m, through which fresh water was recirculated by a variable-speed pump. A block-

shaped sediment box was slotted onto the bottom of the channel, ensuring that the surface level of 

the sediment in the box was flush with the floor of the channel. The sediment column within the box 

was 0.14 m long, 0.1 m wide, and 0.1 m deep. Downstream of this box, a bedload trap collected 

sediment particles moving along the bottom of the flume in flows that exceeded the critical shear 

stress for sediment motion.  

The experiments were conducted with well-sorted, fine sand (D50 = 0.142 mm) mixed with 0-1% 

xanthan gum (EPS proxy), 0-30% kaolin clay, or a mixture of up to 30% kaolin and up to 1% xanthan 

gum. In each experiment, steady, uniform flow was started well below the critical shear stress for the 

pure sand and then increased in small steps every 10 minutes. Streamwise flow velocities were 

measured with a vertical stack of five ultrasonic Doppler velocimetry (UVP) probes. Bed shear stresses 

were calculated from the UVP data by squaring the friction velocity determined from standard 

logarithmic law of the wall techniques (e.g., van Rijn, 1990). Water samples were taken periodically to 

determine suspended sediment concentrations, using the standard weighing and drying method, such 

that an optical backscatter (OBS) instrument, which was continuously recording, could be calibrated. 

For each sand–clay–EPS mix, the critical bed shear stress was determined by a combination of three 

methods: (1) visual observation of the erosion of sand grains from the sediment surface; (2) initiation 

of infilling of the bedload trap; and (3) the first signifciant increase in the concentration of suspended 

sediment. All critical bed shear stresses, relative to the critical bed shear stress for the pure sand, are 

shown in Fig. 7. 

 

 


