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Abstract 

Wave power absorption of a heaving-body wave energy converter (HBWEC) can be improved by 

making the device highly asymmetric and deploying it near a coastal wall, harbour pier, or breakwater. 

However, the coupling between the geometric asymmetry of the HBWEC and the partial reflecting 

boundaries of the various walls and the consequential influence on the power performance of the 

HBWEC are unclear. This research aims to fill this gap. A semi-analytical model based on the linear 

potential flow theory is proposed to deal with an HBWEC with an arbitrary bottom shape and a partial 

reflection wall. The degree of asymmetry (DoA) of the HBWEC and the reflection rate of the wall are 

mathematically defined. Results show that the wall increases the power performance of an HBWEC by 

increasing the reflected wave energy through an increase in the reflection rate. Practically, an HBWEC 

should have a larger DoA to make it more immune to the change of the reflection rate and therefore 

more adaptable to different situations. These findings could offer recommendations for the design and 

deployment of an HBWEC according to the properties of the wall, improving wave power absorption 

efficiency and avoiding unnecessary costs due to improper design.  

Keywords: wave energy converter, asymmetry, wave energy conversion efficiency, partial reflection 

wall, reflection rate 

1. Introduction 

In the past few years, the study of wave energy thrives with the rise of a global consensus of 

transitioning to a low-carbon economy. Various wave energy converters (WECs) have been invented [1]. 

Among them, the ones using a wave-excited heaving body [2]-[4] to drive a generator are flexible and 

adaptable and can be applied in niche markets, such as to power buoys of different usages, desalination 

plants and harbours [5]. Despite the promising prospect, the application of these heaving-body wave 

energy converters (HBWECs) is hindered by unsatisfactory efficiency and high cost caused by the 

immaturity of technology [6]. Improvements in the power take-off (PTO) system, such as developing a 

new generator [7] and using control [8] have been extensively studied. Moreover, the efficiency of an 

HBWEC highly depends on its hydrodynamic performance [9], which is influenced by three key factors 
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including the shape of the floating body [10], the local wave height [11] and the incident wave frequency 

[12]. Consequently, researchers worked to optimize the shape of HBWECs and focus high waves for 

better wave energy conversion. 

In two-dimension (2D), the theoretical upper limit of efficiency of a symmetric HBWEC is 50% [13] 

regardless of the choice of PTO system. The only way to overcome the efficiency limit is to use an 

asymmetric shape [13]. Madhi et al. [14] proposed a Berkeley Wedge HBWEC with a highly asymmetric 

and peculiar shape and achieved an efficiency of 96.34% after optimizing the PTO damping. Zhang et 

al. [4] carried out a comparative study on three asymmetric PTO-integrated breakwaters [15] with 

different bottom shapes and found that the use of a simple triangle-baffle configuration can obtain an 

efficiency of up to 93%. Chen et al. [16] optimized the cross-section of a PTO-integrated breakwater by 

modifying its symmetric structure by replacing the rectangular corner on the seaward side with a circular 

arc corner. The efficiency was greatly improved whereas the wave attenuation ability was slightly 

weakened. While the above studies focused on the optimization of individual devices, Zhou et al. [17] 

provided a general explanation of and quantified the influence of asymmetry on efficiency by 

introducing two mathematical concepts, namely the degree of asymmetry (DoA) and absolute 

asymmetry, and revealed the role of asymmetry in the proportion of absorbed and reflected wave energy. 

HBWECs can be deployed on the seaward side of a coastal wall, harbour pier, or breakwater [18][20]. 

In such combinations, the coastal wall, harbour pier, or breakwater can disturb the surrounding wave 

field and focus high waves for the HBWECs through various mechanisms [21]. They can also provide 

an installation basis for the HBWECs [21] [22]. Zhang et al. [23] studied a box-type floating breakwater-

Wave Energy Converter (WEC) deployed in front of a total reflection coastal wall. They theoretically 

predicted the occurrence of the piston mode and sloshing mode resonances of waves between the WEC 

and the coastal wall and the accompanied increment of efficiency. Sarkar et al. [24] studied an 

Oscillating Wave Surge Converter (OWSC) near a vertical perfect reflection coast. They found when 

the device was located very close to the coast, the efficiency was much higher than it would be in an 

open sea. It is indicated in both refs. [23] and [24] that the WEC should not be located at the antinode 

of standing waves, which could lead to zero efficiency. Zhang et al. [25] investigated a hybrid system 

consisting of an HBWEC and a floating breakwater. They found the wave resonance in the narrow gap 

between the HBWEC and the breakwater increases the efficiency of a symmetric HBWEC but reduces 

the efficiency of an asymmetric HBWEC. 

The above investigations can be abstracted as the problem of an HBWEC with an arbitrary bottom 

shape deployed near a wall with a reflection rate KR_wall ranging from 0 to 1. KR_wall = 0 means the wave 

energy is all dissipated by the wall or there is no wall. KR_wall = 1 means the wave is perfectly reflected. 

0< KR_wall <1 means a partial reflection. Although the problem has long been modelled and investigated, 
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in most cases KR_wall is 0 or 1. As walls are not always perfectly reflecting, the situations where 0< KR_wall 

<1 are much more common [26][27] but rarely studied. To model the partial reflection wall, Isaacson et 

al. [26] used a mixed boundary condition instead of the perfect reflection condition based on the study 

of Berkhoff et al. [27], involving a complex transmission coefficient estimated from the conventional 

reflection coefficient, the reflection phase angle and the incident wave direction. This mixed boundary 

method was derived only for the propagating mode, whereas the evanescent modes are neglected. The 

partial reflection boundary conditions were further used by Elchahal et al. [28] to study the influence of 

the reflection rate of the harbour sidewall on the performance of the floating breakwater. Zhao et al. [29] 

extended the work and studied an interconnected floating breakwater-WEC system deployed in front of 

a porous seawall. They found that the presence of the seawall led to periodical spikes in the frequency 

domain efficiency curve and the greater the reflection rate the sharper the spikes. 

From the literature, the problem of an HBWEC deployed near a wall has been well-studied for 

individual cases. The conditions where a particular HBWEC can achieve maximum efficiency and 

where should be avoided as it absorbs little wave energy have been analyzed. The influence of the two 

key factors, the asymmetry of the HBWEC and the reflection rate of the wall, was also studied but in a 

separate manner. In most studies of the asymmetry of the HBWEC, the wall was not considered. In the 

few studies of partial reflection walls, only symmetric HBWECs were involved. Despite the extensive 

investigations on this topic, the fundamental problem that how to select a proper HBWEC according to 

the reflecting wall is not answered, since the coupling between the symmetry of the HBWEC and the 

reflection rate of the wall and its influence on the power performance of the HBWEC are unclear. This 

is partly due to the lack of a comprehensive model, particularly for such a problem. This study aims to 

fill these knowledge gaps and its novelties are as follows. First, a comprehensive semi-analytical model 

able to deal with an HBWEC with an arbitrary bottom shape and a partial reflection wall, which was not 

accomplished in previous studies, is established. It further involves the evanescent modes, which were 

ignored in previous models as recognized as unimportant. Here the evanescent modes are shown to be 

important and cannot be neglected while the HBWEC is close to the wall. Failure of considering them 

will lead to inaccuracy in computation and non-conservation of energy. Second, the influence of 

asymmetry of the HBWEC, the reflection rate of the wall and their coupling are investigated to reveal 

the underlying physics. The findings could help offer recommendations for the design and deployment 

of HBWECs according to the properties of coastal walls, harbour piers, or breakwaters. Such guidelines 

should furnish theoretical insights and practical applications to improve wave energy conversion 

efficiency and avoid unnecessary spending due to improper design. 

The rest of the paper is structured as follows. In Section 2, the mathematical model describing the 

interactions between waves and an HBWEC with an arbitrary bottom shape deployed near a partial 

reflection wall is given. The definition of the degree of asymmetry and absolute asymmetry of the 
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HBWEC are also revisited. In Section 3, the present model is validated through a comparison of 

hydrodynamic coefficients with published results and a test of energy conservation. A comparison 

between the wall reflection boundary conditions in the present model and previous models is also 

conducted to show that the evanescent modes cannot be neglected. In Section 4, the optimal location for 

the deployment of the HBWEC is searched and then the coupling between the asymmetry of the 

HBWEC and the reflection rate of the wall is investigated. In Section 5, conclusions are drawn. 

2. Mathematical model 

2.1. System description 

A two-dimensional (2D) HBWEC near a partial reflection wall is shown in Figure 1. Same as in refs. 

[4][22][25][30], the WEC is allowed for heave motion only and moorings are not used. The PTO system 

with one end connecting to the WEC and the other to the seabed is idealized as linear damping. Wave 

power is generated by the heave motion of the WEC [4][25]. A global Cartesian coordinate system oxz 

is adopted with its origin located at the intersection of the calm water surface and the float’s vertical 

central line while the system is in equilibrium. The water depth is h. The immersed part of the float is 

bounded by two vertical sides at 𝑥 = ±𝑤B 2⁄  and a bottom characterized by 𝑧 = −𝑑(𝑥) for |𝑥| ≤

𝑤B 2⁄ . The distance between vertical central line of WEC and the wall is denoted as 𝐷. 

 

Figure 1 A diagram of an asymmetric HBWEC near a partial reflection wall 

The concept of the degree of asymmetry (DoA) [17] is used to characterize the geometric asymmetry 

of a WEC. As shown in Figure 1, 𝑉S = 𝑑S𝑤
B and 𝑑S are the displacement and draft of the symmetric 

part, respectively. 𝑉A = ∫ 𝑑(𝑥)d𝑥
𝑤B 2⁄

−𝑤B 2⁄
− 𝑑S𝑤

B  and 𝑑A  are the displacement and draft of 

asymmetric part, respectively. 𝑉A is also the sum of the part on the seaward side of the central line with 

a displacement of 𝑉A
sea and the part on the lee side of the central line with a displacement of 𝑉A

lee. The 

DoA of the WEC is defined as [17] 
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 𝛾 = 𝛾1 ∙ 𝛾2, (1) 

 𝛾1 = 𝑑A 𝑤B⁄  (2) 

 𝛾2 = (𝑉A
lee − 𝑉A

sea) (𝑉A
lee + 𝑉A

sea)⁄  (3) 

where 𝑤B is the width of the WEC. The absolute asymmetry of the WEC is defined as |γ|. 

2.2. Hydrodynamic model 

The float is subjected to a regular wave train with an angular frequency 𝜔 travelling in the positive 

x-direction. In the linear potential flow theory, the water flow is described by the velocity potential 

 𝜙(𝑥, 𝑧, 𝑡) = Re[𝜑(𝑥, 𝑧)𝑒−i𝜔𝑡], (4) 

where i = √−1 is the imaginary unit and t denotes time. 𝜑(𝑥, 𝑧) is the time-independent complex 

spatial velocity potential that satisfies Laplace’s equation, 

 𝜕𝑥𝑥𝜑 + 𝜕𝑧𝑧𝜑 = 0 (5) 

𝜑  could be decomposed into scattering and radiation potentials, i.e., 𝜑 = 𝜑0 − i𝜔𝜉3𝜑3 . The 

scattering potential 𝜑0 is the sum of the incident potential 𝜑
I and the diffraction potential 𝜑D. 𝜉3 is 

the amplitude of heave motion. 𝜑3 is the radiation potential due to the heave motion with unit velocity. 

𝜑 satisfies the following linearized boundary conditions, 

 𝑔𝜕𝑧𝜑 = 𝜔
2𝜑, on the free surface 𝑧 = 0 (6) 

 𝜕𝑧𝜑 = 0, on the seabed 𝑧 = −ℎ (7) 

 𝜕𝑛𝜑0 = 0, 𝜕𝑛𝜑3 = 𝑛3, on the fluid-float interface (8) 

 𝜑D, 𝜑3 outgoing: finite value, in the far-field 𝑥 → −∞ (9) 

 𝜕𝑥𝜙 = 𝛼𝑘𝜙, 𝑥 = 𝑥wall (10) 

where 𝑔 is the acceleration of gravity, �⃗�  is the unit normal vector on the fluid-float interface, pointing 

into the float. 𝑛3 is the component of the unit normal vector in heave mode. 𝑘 is the wave number 

with 𝑘0 for the propagating mode and 𝑘𝑚, 𝑚 = 1, 2,… the evanescent modes. The partial reflection 

boundary condition given in Eq. (10) is introduced by Isaacson and Qu [26]. 𝛼  is regarded as a 

complex transmission coefficient and has only been derived for the propagating mode in their study. 

This will cause inaccuracy in calculation while the WEC is close to the wall as will be shown in Section 

3. Here we give the complete form of 𝛼 for both the propagating mode and evanescent modes. 

A general expression of the velocity can be written as follows [13] 

 𝜙 = (
𝐵0𝑒

i𝑘0(𝑥−𝑥wall
)

+𝐶0𝑒
−i𝑘0(𝑥−𝑥wall

)
)𝑍0(𝑘0𝑧) + ∑ (

𝐵𝑚𝑒
−𝑘𝑚(𝑥−𝑥wall

)

+𝐶𝑚𝑒
𝑘𝑚(𝑥−𝑥wall

)
)𝑍𝑚(𝑘𝑚𝑧)

∞
𝑚=1  (11) 
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where 𝐵0, 𝐶0, 𝐵𝑚 and 𝐶𝑚 are unknown coefficients to be determined and can be used to represent 

the amplitudes of the incident and reflective waves. Substituting Eq. (11) into Eq. (10), we have 

 
i𝑘0(𝐵0 − 𝐶0)𝑍0(𝑘0𝑧) − ∑ 𝑘𝑚(𝐵𝑚 − 𝐶𝑚)𝑍𝑚(𝑘𝑚𝑧)

∞
𝑚=1

= [𝛼0𝑘0(𝐵0 + 𝐶0)𝑍0(𝑘0𝑧) + ∑ 𝛼𝑚𝑘𝑚(𝐵𝑚 + 𝐶𝑚)𝑍𝑚(𝑘𝑚𝑧)
∞
𝑚=1 ]

 (12) 

Multiply both sides of Eq. (12) by the eigenfunction and integrate it over the partial reflection wall, 

 i𝑘0(𝐵0 − 𝐶0) = 𝛼𝑘0(𝐵0 + 𝐶0) (13) 

 −𝑘𝑚(𝐵𝑚 − 𝐵𝐶𝑚) = 𝛼𝑚𝑘𝑚(𝐶𝑚 + 𝐶𝑚) (14) 

Here the same reflection rate of the wall is assumed for the propagating and evanescent waves, which 

can be defined as the ratio of incident and reflective wave amplitudes on the wall 

 𝐾R_wall = 𝐶0 𝐵0 = 𝐶𝑚 𝐵𝑚⁄⁄  (15) 

where KR_wall = 0 means the incident wave energy is dissipated, KR_wall = 1 means the incident wave is 

perfectly reflected and 0 < KR_wall < 1 means a partial reflection. Goda [31] has provided a suggestion 

about the ranges of reflection rates of a collection of different coastal structures. In the following analysis 

of the influence of the reflection rate of the wall, KR_wall is pre-set as several specific values from 0 to 1. 

By manipulating Eq. (13) and (14), we have 

 𝛼 = {
i
1−𝐾R_wall

1+𝐾R_wall
Propagating mode

−
1−𝐾R_wall

1+𝐾R_wall
Evanescent modes

 (16) 

The incident velocity potential is [32], 

 𝜑I = −
i𝑔𝐴

𝜔

cosh[𝑘0(𝑧+ℎ)]

cosh(𝑘0 ℎ)
𝑒i𝑘0(𝑥−𝑥0) (17) 

where A is the wave amplitude and 𝑘0 obeys the dispersion relation 𝜔
2 = 𝑔𝑘0 tanh(𝑘0ℎ). 

To adopt the semi-analytical approach, the bottom is approximated by discretization into a number 

( ) of rectangular steps. The 𝑖 th step begins from 𝑥 = 𝑥𝑖−1  to 𝑥 = 𝑥𝑖  with a draft 𝑑𝑖 =

𝑑([𝑥𝑖−1 + 𝑥𝑖] 2⁄ ) , 𝑖 = 1,… ,𝑁 . oote that 𝑥0 = −𝑤
B 2⁄   and 𝑥𝑁 = 𝑤

B 2⁄  , and let 𝑑0 = 𝑑𝑁+1 = 0 . 

The fluid domain is divided into 𝑁 + 2  columns: 𝛺0  for 𝑥 < 𝑥0  and −ℎ < 𝑧 < −𝑑0 , 𝛺𝑖  for 

𝑥𝑖−1 < 𝑥 < 𝑥𝑖  and −ℎ < 𝑧 < −𝑑𝑖 , 𝑖 = 1,… ,𝑁 , and 𝛺𝑁+1  for 𝑥𝑁 < 𝑥 < 𝑥wall  and −ℎ < 𝑧 <

𝑑𝑁+1, where 𝑥wall denotes the position of the partial reflection wall. From Eqs. (5)-(9) and using the 

separation of variables, the velocity potential in each subdomain could be given according to refs. [33]-

[35]. For 𝑖 = 1, …, 𝑁 and 𝑗 = 0, 3, 

 𝜑𝑗
𝛺0 = 𝛿0𝑗𝜑

I + (−
i𝑔𝐴

𝜔
)
𝛿0𝑗
[
𝑅0𝑗
𝛺0𝑒-i𝑘0(𝑥−𝑥0)𝑍0(𝑧) +

∑ 𝑅𝑚𝑗
𝛺0 𝑒𝑘𝑚(𝑥−𝑥0)𝑍𝑚(𝑧)

∞
𝑚=1

] (18) 
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 𝜑𝑗
𝛺𝑖 = (−

i𝑔𝐴

𝜔
)
𝛿0𝑗
[

𝜑𝑗
p,𝛺𝑖 + (𝑆0𝑗

𝛺𝑖 + 𝑇0𝑗
𝛺𝑖𝑥)𝑌0

𝛺𝑖(𝑧) +

∑ (𝑆𝑙𝑗
𝛺𝑖𝑒𝜆𝑙

𝛺𝑖𝑥 + 𝑇𝑙𝑗
𝛺𝑖𝑒−𝜆𝑙

𝛺𝑖𝑥)𝑌𝑙
𝛺𝑖(𝑧)∞

𝑙=1

] (19) 

 𝜑𝑗
𝛺𝑁+1 = (−

i𝑔𝐴

𝜔
)
𝛿0𝑗
[
𝑅0𝑗
𝛺𝑁+1(𝑒i𝑘0(𝑥−𝑥𝑁) + 𝐾R_wall𝑒

−i𝑘0(𝑥+𝑥𝑁−2𝑥wall))𝑍0(𝑧) +

∑ 𝑅𝑚𝑗
𝛺𝑁+1(𝑒−𝑘𝑚(𝑥−𝑥𝑁) + 𝐾R_wall𝑒

𝑘𝑚(𝑥+𝑥𝑁−2𝑥wall))𝑍𝑚(𝑧)
∞
𝑚=1

] (20) 

where 𝛿 is the Kronecker Delta function. 𝛿 = 1 when the two indices in the subscript are equal and 

𝛿 = 0 otherwise. 𝑅0𝑗
𝛺0, 𝑅𝑚𝑗

𝛺0 , 𝑆0𝑗
𝛺𝑖, 𝑆𝑙𝑗

𝛺𝑖, 𝑇0𝑗
𝛺𝑖, 𝑇𝑙𝑗

𝛺𝑖 , 𝑅0𝑗
𝛺𝑁+1  and 𝑅𝑚𝑗

𝛺𝑁+1  (𝑚, 𝑙 = 1, 2,...) are unknowns 

to be determined. In 𝛺0  and 𝛺𝑁+1 , 𝑘𝑚  (𝑚 = 1, 2,... ) obeys the dispersion relation 𝜔2 =

−𝑔𝑘𝑚 tan(𝑘𝑚ℎ)[36]. The corresponding eigenfunctions 𝑍0(𝑧) and 𝑍𝑚(𝑧) are defined as 

 𝑍0(𝑧) =
cosh[𝑘0(𝑧+ℎ)]

cosh(𝑘0ℎ)
, 𝑍𝑚(𝑧) =

cos[𝑘𝑚(𝑧+ℎ)]

cos(𝑘𝑚 ℎ)
 (21) 

𝜆0
𝛺𝑖 and 𝜆𝑙

𝛺𝑖 (𝑙 = 1, 2, ...) are the eigenvalues in the subdomain 𝛺𝑖. Subjected to the homogeneous 

boundary conditions on the seabed (Eq. (7)) and the bottom of the asymptotic float while it is in 

equilibrium, 

 𝜕𝑧𝜑 = 0, on the bottom of the asymptotic float 𝑧 = −𝑑𝑖 (22) 

𝜆0
𝛺𝑖=0 and 𝜆𝑙

𝛺𝑖 = 𝑙𝜋 (ℎ − 𝑑𝑖)⁄ . The corresponding eigenfunctions 𝑌0
𝛺𝑖(𝑧) and 𝑌𝑙

𝛺𝑖(𝑧) are 

 𝑌0
𝛺𝑖(𝑧) =

√2

2
, 𝑌𝑙

𝛺𝑖(𝑧) = cos[𝜆𝑙
𝛺𝑖(𝑧 + ℎ)] (23) 

𝜑𝑗
p,𝛺𝑖 is a solution of radiation potential in 𝛺𝑖 satisfying the non-homogeneous condition in Eq. (8). 

Based on refs. [33]-[35], it is expressed as 

 𝜑𝑗
p,𝛺𝑖 =

(𝑧+ℎ)2−𝑥2

2(ℎ−𝑑𝑖)
𝛿3𝑗 (24) 

The continuity conditions are used to determine the unknown coefficients 𝑅0𝑗
𝛺0, 𝑅𝑚𝑗

𝛺0 , 𝑆0𝑗
𝛺𝑖, 𝑆𝑙𝑗

𝛺𝑖, 𝑇0𝑗
𝛺𝑖, 

𝑇𝑙𝑗
𝛺𝑖, 𝑅0𝑗

𝛺𝑁+1  and 𝑅𝑚𝑗
𝛺𝑁+1  (𝑚, 𝑙 = 1, 2,...). The specific procedure could be referred to ref. [17]. 

The first 𝑀 terms in 𝑅𝑚𝑗
𝛺0  and 𝑅𝑚𝑗

𝛺𝑁+1  and the first L terms in 𝑆𝑙𝑗
𝛺𝑖 and 𝑇𝑙𝑗

𝛺𝑖 are truncated. A linear 

system of 2(𝑀 + 1) + 2𝑁(𝐿 + 1) complex equations for each 𝑗 is yielded. 

 𝐀𝐗𝑗 = 𝐁𝑗 (25) 

where 𝐗𝑗 = [𝑅0𝑗
𝛺0 , . . . , 𝑅𝑀𝑗

𝛺0 , 𝑆0𝑗
𝛺𝑖 , . . . , 𝑆𝐿𝑗

𝛺𝑖 , 𝑇0𝑗
𝛺𝑖 , . . . , 𝑇𝐿𝑗

𝛺𝑖 , 𝑅0𝑗
𝛺𝑁+1 , . . . , 𝑅𝑀𝑗

𝛺𝑁+1]
𝑇
 . The expressions of most 
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items in 𝐀 and 𝐁𝑗 can be obtained from ref. [17], together with 

 

{
 
 

 
 𝐴𝑙,𝑚

𝛺𝑁+1,𝑝 =
∫ 2𝑍𝑚(𝑘𝑚𝑧)
−𝑑𝑁
−ℎ

𝑌𝑙(𝜆𝑙
𝛺𝑁𝑧)𝑑𝑧

(ℎ−𝑑𝑁)
[1 + 𝐾R𝑒

−2𝑖𝑘0(𝑥𝑁−𝑥wall)]

𝐴
0,0

𝛺𝑁+1,𝑣 = i𝑘
0
𝑄
0
[1 − 𝐾R_wall𝑒

−2𝑖𝑘0(𝑥𝑁−𝑥wall)]

𝐴𝑚,𝑚
𝛺𝑁+1,𝑣 = 𝑘𝑚𝑄𝑚[1 − 𝐾R_wall𝑒

2𝑘𝑚(𝑥𝑁−𝑥wall)]

 (26) 

2.3. Energy conversion efficiency, reflection coefficient and transmission coefficient 

The wave excitation force, added mass and radiation damping can be derived according to ref. [17]. 

The motion response 𝜉3 of the WEC could be solved from the equation of motion in the frequency 

domain 

 [−𝜔2(𝑚33 + 𝑎33) − i𝜔(𝑏33 + 𝑏33
PTO) + 𝑐33]𝜉3 = 𝐹3

EX (27) 

where 𝑚33 = 𝜌𝑉, 𝑎33, 𝑏33, 𝑏33
PTO, and 𝑐33 = 𝜌𝑔𝑆 are the mass, added mass, radiation damping, PTO 

damping and hydrostatic restoring stiffness of the float, respectively. 𝐹3
EX  is the vertical wave 

excitation force. 𝑉 is the displacement of the float and 𝑆 = 𝑤B is the area of the waterplane, i.e., the 

width of the WEC 𝑤B. The motions of the WEC in surge and pitch are restricted by adopting a stiffness 

of 1.0×1030 N/m, only heave motion is released. The time-averaged absorbed power is 

 𝑃ave =
1

2
𝜔2𝑏PTO|𝜉3|

2 (28) 

The power per unit incident wave width is [37] 

 𝑃wave =
1

4
𝜌𝑔𝐴2 [1+

2𝑘0ℎ

sinh(2𝑘0ℎ)
]
𝜔

𝑘0
 (29) 

The energy conversion efficiency of the PTO-integrated breakwater is 

 𝜂 =
𝑃ave

𝑃wave
 (30) 

The theoretical optimization of PTO damping can be derived as [38]: 

 𝑏opt =
1

𝜔
√[(𝑚33 + 𝑎33)𝜔

2 − 𝑐33]
2 +𝜔2𝑏33

2  (31) 

The optimal absorbed power can then be computed from Eq. (28). 

While the velocity potential is solved, the energy reflected by WEC and the partial reflection wall 

could be expressed in the form of a reflection coefficient 𝐾R, and the energy dissipated by the partial 

reflection wall could be expressed in the form of a transmission coefficient 𝐾T 

 𝐾R = |
𝜑D−i𝜔𝜉3𝜑3

𝜑I
|
𝑥=−∞

= |𝑅


𝛺
 +

𝜔2𝑅03
𝛺0𝜉3

𝑔𝐴
|  (32) 

 𝐾T = √1 − 𝐾R_wall
2 |

𝜑I+𝜑D−i𝜔𝜉3𝜑3

𝜑I
|
𝑥=+∞

= √1− 𝐾R_wall
2 |𝑅00

𝛺𝑁+1 +
𝜔2𝑅

03

𝛺𝑁+1𝜉3

𝑔𝐴
| (33) 
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The main nomenclatures are provided in Table 1: 

Table 1 Main nomenclatures 

Parameter Symbol Parameter Symbol 

Degree of asymmetry (DoA) γ Water depth h 

WEC draft lB Wave number k 

WEC width wB Wave frequency ω 

Optimal PTO damping bopt Reflection rate of the wall KR_wall 

Energy conversion efficiency η Reflection coefficient KR 

Distance between the WEC and the wall D Transmission coefficient KT 

3. Validation 

The validation of the present model is two-folded. The semi-analytical approach for the asymptote of 

the arbitrary bottom of the WEC should be first verified. This has been done in a previous work of the 

authors (Zhou et al. [17]) and will not be repeated here. The presence of the partial reflection wall should 

also be verified, which is emphasized in the present validation. This is carried out by a two-step 

procedure. First, the interaction between the WEC and the wall should be validated. The results proposed 

by Zheng et al. [33] are employed for comparison. In their paper, the radiation and diffraction of a 2D 

rectangular box deployed in front of a seawall were analytically investigated. The comparison is carried 

out by examining the hydrodynamic coefficients of a rectangular box (width and draft: wB/h = 0.33, dS/h 

= 0.4) deployed at D/h = 0.367 from a wall with KR_wall = 1. The comparative results are shown in Figure 

2. Good agreement is achieved with a maximum difference of 0.83% (the ratio is calculated by the 

following equation: Difference = |Present-Published|/Published). Then the modelling of the reflection 

rate of the partial reflection wall and the wave energy conversion of the WEC is validated through a test 

of energy conservation (Figure 3). A rectangular WEC (width and draft: wB/h = 0.33, dS/h = 0.4) 

deployed at D/h = 0.8 from a wall with KR_wall = 0.6 is employed. The reflected energy, dissipated energy 

and absorbed energy are conservative. 

A comparison between the mixed boundary conditions in the present model and the previous models 

is also conducted. The present mixed boundary condition considers the influence of evanescent modes, 

whereas the previous boundary condition did not. A rectangular WEC (width and draft: wB/h = 0.5, dS/h 

= 0.6) and a partial reflection wall (KR_wall = 0.5) are employed. Two cases with D/h = 0.3 and D/h = 1 

are simulated. The PTO damping of the WEC is optimized in each case. The results are shown in Figure 

4. When D/h = 1, the two models are both accurate. When D/h = 0.3, energy is conservative in the 

present model but is not in previous models. This is because as the WEC and the wall become closer, 

the influence of the evanescent modes becomes significant and cannot be neglected as in previous 

models. A further examination of the influence of the evanescent modes concerning the change in the 

distance between the WEC and the wall is presented in Figure 5. 
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Figure 2 Comparison of hydrodynamic coefficients of a rectangular box in front of a reflective wall: 

(a) added mass; (b) radiation damping; (c) wave excitation force 
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Figure 3 Energy conservation test of a rectangular WEC near a partial reflection wall 
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Figure 4 Energy conservation test of previous and present partial reflection boundary conditions for a 

rectangular WEC with different D/h: (a) 1; (b) 0.3. 
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Figure 5 oon-conservation of energy of previous partial reflection boundary condition for a 

rectangular WEC with different D/h 

4. Numerical results 

In this section, the effects of the asymmetry of the HBWEC, the reflection rate of the wall and their 

coupling on the power performance of the HBWEC are investigated after the optimal deployment 

location is determined. The water depth is h=20 m. Regular incident waves with a period ranging from 

4 s to 7 s (dimensionless wave number k0h from 4.93 to 14.85) according to field data of typical China 

seas [39] are used and their amplitudes are set as unit length. The PTO damping is optimized for all 

cases according to Eq.(31). The HBWEC can reach an efficiency peak while it is resonant. 

4.1. Optimal location for H WEC 

A location where an HBWEC can achieve its optimal power performance is expected to exist 

regardless of the shape of the HBWEC and the reflection rate of the wall. The two HBWECs used in 

this investigation are shown in Table 2. WEC #1 is used to search for the optimal location. Its dimensions 

are lB/h = 0.36 and wB/h = 0.09. The reflection rate of the wall is KR_wall = 0.6. As the frequency of ocean 

waves always varies, the power performance of an HBWEC is determined not only by the peak 
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efficiency in a particular frequency but by the power in the entire wave spectrum (4 s to 7 s). Therefore, 

the integral of efficiency over a wave period from 4 s to 7 s is used as a criterion for comparing power 

performance. 61 different locations are chosen, including D/h ranging from 0.05 to 3.0 with an increment 

of 0.05 and D/h = 0.045 (closely attached to the wall). The comparative results are given in Figure 6. 

Table 2 Configurations of WECs 

Models WEC #1 WEC #2 

Cross-section 
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Figure 6 Wave energy performance of WEC #1: (a) integral area and maximum value of the efficiency 

η; (b) the efficiency η corresponding to different D/h. 

The efficiency peak and the efficiency integral over the wave spectrum for different D/h are in Figure 

6a. The maximum value of the efficiency integral occurs for D/h = 0.045, where the HBWEC is attached 

to the wall with no gap in between. However, the maximum value of the efficiency peak is not obtained 

at this location. Two greater local maximum values of the efficiency peak occur for D/h = 0.85 and D/h 

= 2.15. From a closer examination of the efficiency for D/h = 0.045, 0.85 and 2.15 in a range of k0h 

shown in Figure 6b, while the HBWEC is attached to the wall, although the efficiency peak is not the 

largest, the efficiency band is the broadest. This explains why the maximum value of the efficiency 

integral does not match the maximum value of the efficiency peak. 
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Figure 7 Integral area and maximum value of the efficiencyη of WEC #2 

The generality of the result is then verified by WEC #2 with different geometry properties deployed 

at a different place in front of a wall with a different reflection rate. Its dimensions are l1
B
h⁄ =0.18, 

l2
B
h⁄ =0.18 and wB/h = 0.09. A wall with KR_wall = 0.4 is employed. The results are shown in Figure 7. 

The patterns of both the efficiency peak and efficiency integral of WEC #2 are similar to those of WEC 

#1. The optimal location for WEC #2 is the same as that of WEC #1. From the above results, the most 

effective way of deploying an arbitrary HBWEC is to closely attach it to the wall without leaving a gap. 

The HBWEC can benefit from a broader efficiency band due to the presence of the wall. oote that the 

location where the WEC obtains the worst power performance is also close to the wall (the two first 

troughs of the efficiency integral shown in Figure 6 and Figure 7). The worst location should be carefully 

avoided because it is quite near the optimal location. 

4.2. Degree of asymmetry of H WEC 

The effect of the DoA of the HBWEC on its power performance under the presence of a wall with 

various reflection rates is investigated. WECs from #3 to #7 with γ = −1, −0.667, 0, 0.667 and 1 are used 

and their configurations are shown in Figure 8 and Table 3. The walls with KR_wall = 0, 0.5 and 1 are 

employed. Referring to Figure 1, the symmetric (upper) parts of WEC#3~WEC#7 are the same. The 

displacements of the asymmetric parts of these HBWECs are also the same. The change of DoA is 

implemented by sliding the vertex of the triangle. In this way, the masses of the five WECs are kept 

equal and the influence of the difference in their heaving natural periods is utmostly minimized. The 

change of efficiency against k0h is presented in Figure 9. The efficiency peaks and their corresponding 

dimensionless wave number k0h are given in Table 4 and Table 5, respectively. 
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Figure 8 Five HBWECs with equal masses but different DoAs 

Table 3 Geometric properties of WECs #3~#7 

WEC l1B (m) l2B (m) lB (m) wB (m) γ 

#3 3.6 3.6 7.2 1.8 −1 

#4 3.6 3.6 7.2 1.8 −0.667 

#5 3.6 3.6 7.2 1.8 0 

#6 3.6 3.6 7.2 1.8 0.667 

#7 3.6 3.6 7.2 1.8 1 

Table 4 Efficiency peaks of WECs #3~#7 

WEC KR_wall = 0 KR_wall = 0.25 KR_wall = 0.5 KR_wall = 0.75 KR_wall = 1 

#3 0.039 o/A o/A 0.288 1.000 

#4 0.203 o/A 0.201 o/A 1.000 

#5 0.500 0.442 0.406 0.431 0.999 

#6 0.797 o/A 0.709 o/A 0.999 

#7 0.960 0.964 0.971 0.983 1.000 

Table 5 Dimensionless wave numbers k0h where the efficiency peaks of WECs #3~#7 are obtained 

WEC KR_wall = 0 KR_wall = 0.25 KR_wall = 0.5 KR_wall = 0.75 KR_wall = 1 

#3 3.21 o/A o/A 2.25 2.28 

#4 3.42 o/A 3.10 o/A 2.54 

#5 3.47 3.42 3.33 3.11 2.80 

#6 3.42 o/A 3.37 o/A 3.03 

#7 3.27 3.27 3.25 3.24 3.23 

From Figure 9a and Figure 9b, while KR_wall ≠ 1, the DoA has a large influence on the efficiency peak 

and a small influence on the natural period of the HBWEC. An HBWEC with a greater DoA has an 

absolute advantage in wave energy conversion in the entire wave spectrum. For example, comparing 

WEC #3 with γ = −1and WEC #7 with γ = 1 for KR_wall = 0. The efficiency of WEC #7 is relatively large 
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in the wave spectrum and has an efficiency peak of 0.96, whereas WEC #3 absorbs only a little wave 

energy. Similar results have also been demonstrated in ref. [17] where the wall was not considered. From 

Figure 9c, for KR_wall = 1, all WECs reach the same efficiency peak η = 1, but the efficiency bandwidth 

and the natural period of the HBWECs are quite different. An HBWEC with a greater DoA has a smaller 

natural period and broader bandwidth. It loses the advantage of a larger efficiency peak but still has a 

broader efficiency band. One can also obtain KR = 0 according to Eq.(32) while the wall is perfectly 

reflective and the HBWEC is resonant. In this situation, the reflected wave and radiated wave canceled 

each other and all energy is absorbed. 
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Figure 9 Energy conversion efficiency η of WECs #3~#7, the reflection rates of the walls KR_wall:  

(a) 0; (b) 0.5; (c) 1 

4.3. Reflection rate of wall 

Then the effect of the reflection rate of the wall on the power performance of the HBWEC is 

investigated. The walls with KR_wall = 0, 0.25, 0.5, 0.75 and 1 and the HBWECs with γ = −1, 0 and 1 are 

employed. The change of efficiency against k0h is presented in Figure 10. The efficiency peaks and their 

corresponding dimensionless wave number k0h are given in Table 4 and Table 5, respectively.  

From the results in Figure 10a, b and c, generally, an increase in the reflection rate of the wall increases 

the efficiency of the HBWEC. This is because as the reflection rate of the wall increases, the wave 
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energy reflected by the wall increases. This part of wave energy could also be absorbed by the HBWEC, 

which increases the total absorbed power. As revealed by the left shift of the efficiency peak, an increase 

in the reflection of the wall also increases the natural period of the HBWEC. As the hydrostatic 

restoration coefficient and the mass of the HBWECs do not change, the increase in natural period 

indicates that the presence of the wall increases the added mass of the HBWECs [36], and the greater 

the reflection rate of the wall, the larger the addition to the added mass, as shown in Figure 10d. 
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Figure 10 Energy conversion efficiency η of (a) WEC #3; (b) WEC #5; (c) WEC #7 and (d) the 

dimensionless added mass a33 of WECs #3 for KR_wall = 0, 0.25, 0.5, 0.75 and 1. 

4.4. Coupling between asymmetry and reflection 

From the above analysis, as shown in Figure 9 and Figure 10 and Table 4 and Table 5, both the DoA 

of the HBWEC and the reflection rate of the wall influence the power performance of the HBWEC, but 

their influential regions are different. The efficiency of the HBWEC highly depends on its DoA. The 

reflection rate of the wall determines the amount of the reflected wave energy and increases the added 

mass of the HBWEC, and a larger reflection rate leads to greater influence. In this section, how the DoA 

of the HBWEC and the reflection rate of the wall couple with each other and how the coupling influences 

the power performance of the HBWEC are discussed. 

Considering a case that the incident waves interact with the HBWEC, the wave energy is reflected, 
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absorbed (call this first absorption hereafter) and transmitted by the HBWEC. While KR_wall = 0, the 

transmitted wave energy will not be reflected and reused in this case. While KR_wall ≠ 0, the wave energy 

transmitted by the HBWEC is dissipated and reflected by the wall, and the proportions of the dissipated 

and reflected wave energy are determined by the reflection rate of the wall. Part of the wall-reflected 

wave energy is again absorbed by the HBWEC (call this second absorption hereafter). This can explain 

why the presence of the wall can almost always increase the efficiency of the HBWEC. Because the 

energy through the second absorption is complemented, as shown in Figure 10. As found in ref. [17], 

the amount of wave energy transmitted by the HBWEC changes a little while the draft and the absolute 

asymmetry of the HBWEC were fixed. That is, while the orientation of an asymmetric HBWEC reverses 

(the sign of DoA reverses), it only changes the proportions of the reflected and absorbed wave energy 

but not changes the proportion of the transmitted wave energy. For an HBWEC with a larger DoA, most 

of the un-transmitted wave energy is extracted through the first absorption. To the waves reflected by 

the wall, the sign of DoA of the HBWEC reverses and therefore only a small amount of the reflected 

wave energy is extracted by the second absorption. For an HBWEC with a smaller DoA, the opposite 

process happens. Most of the un-transmitted wave energy is reflected by the WEC and the first 

absorption is small. The second absorption could be large depending on the amount of transmitted energy. 

In summary, while KR_wall ≠ 1, the efficiency of an HBWEC with a positive DoA is the sum of a large 

first absorption and a small second absorption and is dominated by the first absorption. The situation 

reverses for an HBWEC with a negative DoA and whether the efficiency could be dominated by the 

second absorption depends on its wave attenuation ability and the reflection rate of the wall. This 

explains why the efficiency of an HBWEC with a smaller DoA is more easily influenced by a wall with 

a larger reflection rate. Because in this situation the second absorption becomes more prominent. A 

special case occurs for KR_wall = 1, where one can obtain KR=0 by Eq.(32). The reflected wave and 

radiated wave cancelled each other. oo wave energy is dissipated and all is absorbed. 

The wall also changes the added mass of the HBWEC. From the comparative results in Table 4 and 

Table 5, while KR_wall = 0, the natural periods of WEC #3 and WEC #7 are close. As KR_wall increases, 

the natural periods of all HBWECs increase, but the increase of an HBWEC with a smaller DoA is larger. 

The wall has a larger influence on the added mass of an HBWEC with a smaller DoA. It also has a larger 

influence on the power performance of an HBWEC with a smaller DoA. It can be concluded that while 

the DoA of the HBWEC is smaller and the reflection rate of the wall is larger, the power performance 

of the WEC is more influenced by the wall. This can also be evident in Figure 10. The efficiency of the 

HBWEC with γ = 1 is almost not influenced by the change of reflection rate compared with the two 

HBWECs with γ = −1 and γ = 0. From a practical view, as the wall is not always vertical nor is perfectly 

reflecting, its reflection rate of the wall is mostly 0< KR_wall <1, the HBWEC with a larger DoA is more 

immune to the change of the reflection rate and therefore more adaptable to different situations. 
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5. Conclusion 

A 2D frequency-domain semi-analytical model dealing with an HBWEC with an arbitrary bottom 

shape deployed in front of a partial reflection wall is established based on the linear potential flow theory. 

The method of matching eigenfunction is applied to solve the diffracted and radiated potential. The 

model is validated against published results and demonstrated more comprehensively than previous 

models by considering the evanescent modes. The concepts of the degree of asymmetry and the absolute 

asymmetry of the HBWEC and the reflection rate of the wall are mathematically determined. The 

HBWEC is deployed at different distances to the wall and the corresponding power performances are 

compared. The coupling between the asymmetry of the HBWEC and the reflection rate of the wall and 

the consequential influence on the power performance of the HBWEC are investigated. The major 

conclusions are: 

(1) The optimal location for an arbitrary HBWEC to achieve its maximum power performance in the 

entire wave spectrum is closely attached to the wall. 

(2) Similar to the situation without a wall, an HBWEC with a larger DoA has better power performance. 

(3) The partial reflection wall influences the power performance of an HBWEC by increasing its added 

mass and the reflected wave energy through an increase in the reflection rate. This influence is 

larger on an HBWEC with a smaller DoA. 

(4) Practically, the HBWEC should be built with a large DoA to obtain higher power performance and 

better adaptability to different walls. 

The major limitations of the present study are: 

(1) Viscous drag is not considered. 

(2) Only the potential flow theory of linear waves is used. 

(3) Only theoretical derivation is carried out, whereas lab-scale or open-sea experimental study is not 

conducted to validate the influence of varying DoA and KR_wall. 

(4) Only regular waves are considered. 

Future works can be carried out following the points: 

(1) Effect of the boundary layers between the WEC and the wall. 

(2) Performance of an array of asymmetric HBWECs. 

(3) Cost evaluation of wave energy conversion. 

(4) Optimization of the HBWEC body geometries. 

(5) Influence of varying bathymetry. 
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