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Wave diffraction and radiation from a semi-submersible floating
foundation for wind turbines: A semi-analytical study
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达),1, 3, 4, b) and Deborah Greaves2
1)Department of Ocean Engineering, College of Engineering, Ocean University of China, Qingdao 266100,
China
2)School of Engineering, Computing and Mathematics, University of Plymouth, Drake Circus, Plymouth PL4 8AA,
United Kingdom
3)Shandong Provincial Key Laboratory of Ocean Engineering, Ocean University of China, Qingdao 266100,
China
4)Qingdao Municipal Key Laboratory of Ocean Renewable Energy, Ocean University of China, Qingdao 266100,
China

Many marine structures are composed of vertical axisymmetric floats. In this paper, a semi-analytical model based
on linear potential flow theory and an eigenfunction expansion method is developed to study wave diffraction and
radiation by an array of cylindrical structures. Each structure can be formed by three coaxial cylinders of different
dimensions. Based on the semi-analytical model, a constrained matrix equation of motion is presented and solved
to evaluate the performance of multiple interconnected cylindrical structures. In order to verify the accuracy of the
semi-analytical model, a typical OC4-DeepCwind floating offshore wind turbine (FOWT) is selected for validation.
The validated model is then applied to study the effect of base column submergence depth, radius and thickness on the
motion response of a semi-submersible platform. Although the results of this study are of significance for the selection
of the optimum semi-submersible FOWT for specific locations (with specific prevailing wave directions), the focus of
this work was placed on the semi-analytical model itself, which is efficient in modelling the interaction of the wave
field and can be used in future FOWT projects.

I. INTRODUCTION

Wind energy was anticipated to play a significant and vi-
tal part in the energy mix in a carbon-neutral future (UK De-
partment of Energy & Climate Change 1 ). In 2020, wind en-
ergy was found to be 30%− 50% cheaper than the UK gov-
ernment’s previous estimate made just four years earlier (UK
Department for Business, Energy & Industrial Strategy 2 ).
Consequently, offshore wind turbines are attracting more re-
searchers, engineers, universities, institutes, and governments.
Furthermore, offshore wind energy has experienced signifi-
cant growth due to the stable and strong wind conditions at
sea and the availability of larger installation spaces, particu-
larly in deep-sea areas. According to Hong and Möller 3 , the
mean offshore resources in shallow water at the height of 10
meters are approximately 750 GW, while those in deep wa-
ter are approximately 1740 GW. Semi-submersible floating
offshore wind turbines (FOWT) have leveraged these bene-
fits to emerge as a cost-effective solution for water depths ex-
ceeding 50 m, offering the benefits of simple assembly and
transportation4.

In recent years, the development of the semi-submersible
FOWT has become a popular research topic, and sophisti-
cated methods are required to evaluate the performance of
FOWT systems in light of the fluid-structure interaction (FSI)
problem5. To date, numerous methods have been employed
to investigate the dynamic performance of semi-submersibles,
with some methods being utilized extensively. Potential flow
theory is one of the most extensively used methods to accu-
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rately and efficiently calculate the wave excitation forces on
a platform, as well as the added mass and damping due to
radiation potential6. By transforming hydrodynamic coeffi-
cients into the time domain using impulse response functions
or state space methods, non-linear problems can be studied7.
Robertson et al. 8 , for example, employed the potential flow-
based boundary element method (BEM) in the WAMIT soft-
ware to determine the hydrodynamic coefficients, which are
more accurate than those predicted by the Morrison equation.
Coulling et al. 9 entered the hydrodynamic coefficients into
the FAST code and compared various computational results
for unstable aerodynamics, hydrodynamics, and fully coupled
aerohydrodynamics including mooring line loads with the test
date. The results show that FAST accurately captures rele-
vant physics in the coupled floating wind turbine dynamics
problem. This method of calculating the hydrodynamic coef-
ficients using potential flow theory and then coupling it with
the time-domain code (e.g., FAST, WEC-Sim, etc.) has since
become extensively adopted10.

The solution to hydrodynamic coefficients is critical to the
effective application of potential flow theory and serves as
the basis for future platform response research. Previously,
this problem was typically overcome by the use of commer-
cial softwares or by simplifying the interaction between the
floats. For instance, Ghafari et al.11,12 used a potential flow
theory basee on BEM in ANSYS/AQWA software to simulate
the DeepCwind semi-submersible floating wind turbines and
agreed with available experimental data. The AQWA soft-
ware was also used to investigate the effect of second-order
hydrodynamics on the platform responses of three different
semi-submersible platforms in regular waves13. These stud-
ies demonstrated the efficacy of potential flow theory in solv-
ing FSI problems. Furthermore, computational fluid dynam-
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ics (CFD) play an important role in this discipline by enabling
the direct study of viscous fluids characteristics, albeit at a
high computational cost. To account for the viscous effect
accurately, Tran and Kim 14 compared CFD results with dy-
namic motion based on an overset grid and potential-based
panel approach for the semi-submersible DeepCWind FOWT.
The results show that the CFD results are comparable to the
BEM results with viscosity correction. In the process of nu-
merical simulation, model tests are indispensable to verify the
accuracy of the numerical simulation results4,15–20. For in-
stance, Gou 21 created a 1/50th-scale model of FOWT using
Froude scaling at the National Renewable Energy Laboratory
(NREL) involving three generic floating platforms: tension-
leg platform, a spar-buoy and a semi-submersible. The test
results were used to validate, calibrate and potentially improve
floating wind turbine design tools such as NREL’s aero-hydro-
elastic coupling code, FAST9,10. However, scaling conflicts
between the Froude and the Reynolds numbers are inevitable.
Therefore, continuous efforts have been made to improve ex-
isting or develop new experimental methods of FOWT22.

The BEM method, which is based on potential flow theory,
has been widely explored, compared, and validated with CFD
methodologies and model tests throughout the last decade,
confirming its efficiency in studying FSI problems. Further-
more, hydrodynamic coefficients can be employed in time-
domain simulations to account for non-linear elements like
viscosity, mooring, and wind force, giving a full computa-
tional foundation for the total simulation. However, despite
their proven speed and accuracy in evaluating the performance
of marine structures for several decades, analytical models
have yet to be applied for estimating the hydrodynamic co-
efficients for FOWT.

Although semi-submersible platforms have not been ad-
dressed in previous analytical studies, using eigenfunction
expansions to solve truncated cylindrical potential functions
and Graf’s additive formulation to solve multi-body coupling
problems provides a profound foundation for this purpose.
For instance, Siddorn and Eatock Taylor 23 utilized Yeung’s24

approach of expressing velocity potential as a series of eigen-
functions to solve the diffraction and independent radiation
potential of a truncated cylinder array, and Child and Venu-
gopal 25 combined this approach with an algorithm to investi-
gate the configuration of five identically sized truncated cylin-
ders. Zheng and Zhang 26,27 presents an analytical model of
the three-dimensional wave diffraction and radiation problem
for a truncated cylinder in front of a vertical wall or breakwa-
ters. Recently, a new analytical solution to water wave diffrac-
tion and radiation by vertical truncated cylinders in the context
of linear potential theory was developed by Li and Liu 28,29 ,
utilizing the multi-term Galerkin method, which is able to
model the cube-root singularity of fluid velocity near the
edges of the truncated cylinders by expanding the fluid veloc-
ity into a set of basis function involving the Gegenbauer poly-
nomials. Due to the study of structures with arbitrary cross-
sections can be applied to a wider range of fields, a semi-
analytical model of truncated cylinder with a moonpool of
arbitrary cross-section is proposed by Zheng et al. 30,31 . Addi-
tionally, we have divided the waters due to the complex shape

of the floating structures, and there are some studies that pro-
vide the basis for this, i.e., Ning, Zhou, and Zhang 32 divided
the water into six regions to study a novel dual-chamber os-
cillating water column (OWC) wave energy converter (WEC)
based on the linear potential flow theory and eigenfunction
expansion technique. Michele et al. 33 extended the study of
a cylindrical OWC to a hybrid wind-wave energy system and
found that the global behavior is strongly influenced by the
skirt, while the sloshing eigenfrequencies are impacted by the
internal cylinder. The most relevant study to date on FOWT
platforms is that of Cong et al. 34 , who created a theoretical
model within the context of linear potential theory to explore
the hydrodynamic characteristics of a floating column with a
submerged plate attached at the bottom. This structure with a
damping plate can be used in various applications, including
spar-type platforms and floating wind turbines. However, this
study divided the waters into three parts, and radiation poten-
tials and motion responses were not considered.

In this study, the shape of a semi-submersible floating foun-
dation for wind turbines is complex, and the boundary value
problem is solved by applying the matching-method of eigen-
functions. Our method entails decomposing the platform into
arrays of truncated cylinders of various shapes and then solv-
ing for the diffraction and radiation potentials of the mixed
flow field within a linearized theory framework to obtain the
platform’s hydrodynamic coefficients. Each float in our model
is formed by three coaxial cylinders, allowing for the ra-
dius and draft adjustments to cover the components of semi-
submersible platforms (e.g., main columns, base columns,
and offset columns of some wind turbine foundations). Prac-
tical applications of the model, on the other hand, include
a study of the hydrodynamic properties of multiple floating
columns with a submerged coaxial plate attached to each col-
umn, which allows a plate of any finite thickness to be placed
anywhere along the column to investigate the hydrodynamic
properties of the damping plate. Based on the semi-analytical
model, a constrained matrix equation of motion is provided
and solved to evaluate the performance of multiple intercon-
nected cylindrical structures, accounting for both mooring
lines and viscous effects on the wind platform. Based on the
aforementioned system, the OC4-DeepCwind platform is in-
vestigated in this study after running the convergence analysis
and model validation. We perform a multiparameter effect
analysis, considering the effect of base column submergence
depth, radius and thickness on the motion response of the plat-
form.

The rest of this paper is organized as follows. Sec.II
presents the governing equations and boundary conditions of
wave diffraction and radiation problems. Expressions and so-
lutions to both diffracted potentials and radiated potentials to-
gether with wave forces and hydrodynamic coefficients are
presented in Sec.III (with algebraic details relegated to the Ap-
pendix). The dynamic motion equation is derived in Sec.IV.
The semi-analytical model is validated in Sec.V and then
used to study the performance of OC4-DeepCwind FOWT in
Sec.VI. Conclusions are summarized in Sec.VII.
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FIG. 1: Definition sketch: (a) bird’s-eye view; (b) plan view.

II. MATHEMATICAL MODEL

To study the hydrodynamic characteristics of the marine
structure, we consider N cylindrical composite floats, each
with different heights and radii, deployed arbitrarily on the
free surface of a layer of water with finite depth h and mov-
ing independently (see Fig.1a). Each float comprises three
parts, namely upper, middle, and bottom parts, with the radii
and draft of each part adjusted to ensure that the float shapes
cover the components of semi-submersible platforms (e.g.,
main columns, base columns, and offset columns of wind tur-
bine foundations). The submerged depth and radius of each
part are denoted as d(n)

1 and R(n)
1 , d(n)

2 and R(n)
2 , d(n)

3 and R(n)
3

(d(n)
3 ≥ d(n)

2 ≥ d(n)
1 , R(n)

2 ≥ R(n)
1 , R(n)

2 ≥ R(n)
3 ), respectively.

A general Cartesian coordinate system Oxyz is adopted,
with the Oxy plane at the location of the mean water sur-
face and the z-axis pointing upward. The coordinate (point)
of the origin and the direction of the x-axis can be arbitrarily
specified on the mean water surface. The floats are subjected
to a monochromatic incident wave train of small amplitude
A and frequency ω propagating at an angle of β relative to
the positive x-axis. In addition, for each float, local cylin-

drical coordinate systems Onrnθnz (n = 1,2, · · · ,N) are de-
fined (see Fig.1b). The rotation centre of float n is located at
(rn = 0, z= zn), which serves as a reference point for calculat-
ing the wave excitation forces and hydrodynamic coefficients
for the rotary modes. The position of the origin of the float
n can be written in terms of the Cartesian coordinate system
Oxyz as (xn,yn,zn).

For the analysis, the fluid is divided as follows (see Fig.1a):
(a) fluid domains beneath the free water surface and above
the middle part, which are denoted as region Ωn

1 (i.e., R(n)
1 ≤

rn ≤ R(n)
2 ,−d(n)

1 ≤ z ≤ 0); (b) fluid domains beneath the mid-
dle part, which are denoted as region Ωn

2 (i.e., R(n)
3 ≤ rn ≤

R(n)
2 ,−h ≤ z ≤ −d(n)

2 ); (c) fluid domains beneath the bot-
tom part, which are denoted as region Ωn

3 (i.e., 0 ≤ rn ≤
R(n)

3 ,−h ≤ z ≤ −d(n)
3 ); (d) remaining fluid domain horizon-

tally extending to infinity, which is denoted as region Ω0 (i.e.,
rn ≥ R(n)

2 ,−h ≤ z ≤ 0 for n = 1,2, · · · ,N).
Generally, all floats in the array are free to oscillate inde-

pendently with six degrees of freedom. We make the usual as-
sumption that the fluid is inviscid, incompressible, and irrota-
tional such that linear theory applies. The total spatial velocity
potential φ may be decomposed into the incident, diffracted
and radiated spatial wave potential as follows:

φ = φI +φD +
N

∑
p=1

6

∑
i=1

Ȧi
pφp,i (1)

where φI is the incident wave potential; φD is the diffraction
potential; φp,i is the radiated spatial velocity potential due to
unit amplitude velocity oscillation of the float p oscillating in
the ith mode (i=1-6, which represents surge, sway, heave, roll,
pitch, and yaw, respectively); and Ȧi

p is the complex velocity
amplitude of this oscillation.

Following the method in Mei et al.35, the spatial velocity
potential for undisturbed incident waves with amplitude A and
frequency ω propagating in the direction β relative to the pos-
itive Ox axis may be written as:

φI =− igA
ω

cosh [k0 (z+h)]
cosh(k0h)

eik0(xcosβ+ysinβ ), (2a)

φI(rn,θn,z) =− igA
ω

cosh [k0 (z+h)]
cosh(k0h)

eik0

(
xn cosβ + yn sinβ

)

×
∞

∑
m=−∞

ime−imβ Jm (k0rn)eimθn , (2b)

where the equation given by Eqs.2a and 2b are in the gen-
eral Cartesian coordinate system Oxyz and the local cylin-
drical coordinate system Onrnθnz , respectively; k0 denotes
the wave number that satisfies the dispersion relation ω2 =
gk0 tanh(k0h); g is the acceleration of gravity; i is the imagi-
nary unit; Jm denotes the Bessel function of the first kind with
order m. The free-surface and the body-boundary conditions
that φD and φp,i should satisfy are as follows:

Wave diffracted potentials:

∂φD

∂ z
=

ω2

g
φD, z= 0 at Ω0 and Ω

n
1 for n= 1,2, · · · ,N, (3)
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∂φD

∂ z
= 0, z =−h, (4)

∂φD

∂ z
=−∂φI

∂ z
, z =−d(n)

j at Ω
n
j for j = 1,2,3, (5)

∂φD

∂ rn
=−∂φI

∂ rn
, −d(n)

j ≤ z≤−d(n)
j−1, rn =R(n)

j for j = 1,2,3,

(6)
where d(n)

0 = 0.
Wave radiated potentials due to the oscillation of the float p

in ith mode:

∂φp,i

∂ z
=

ω2

g
φp,i, z = 0 at Ω0 and Ω

n
1 for n = 1,2, · · · ,N,

(7)

∂φp,i

∂ z
= 0, z =−h, (8)

the impermeable condition on the body surface:

∂φp,i

∂ z
=


0, i=1,2,6
δn,p, i=3
δn,prn sinθn, i=4
−δn,prn cosθn, i=5

,z =−d(n)
j

at Ω
n
j for j = 1,2,3, (9)

∂φp,i

∂ rn
=



δn,p cosθn, i = 1
δn,p sinθn, i = 2
0, i = 3,6
−δn,p (z− zn)sinθn, i = 4
δn,p (z− zn)cosθn, i = 5

, rn = R(n)
j

,−d(n)
j ≤ z ≤−d(n)

j−1, for j = 1,2,3, (10)

where δn,p represents the Kronecker delta.

III. THEORETICAL SOLUTION OF DIFFRACTED AND
RADIATED POTENTIALS

A. Diffracted/radiated spatial potentials

In different regions, suitable general spatial potentials can
be expressed by applying the variable separation method,
which involves a complex Fourier series and Bessel functions
as follows:

(1) In Region Ω0

φχ (rn,θn,z) =
∞

∑
m=−∞

{Aχ

m,0Hm(k0rn)cosh[k0(z+h)]

Hm(k0R(n)
2 )cosh(k0h)

+
∞

∑
j=1

Aχ

m, jKm(kjrn)cos[k j(z+h)]

Km(k jR
(n)
2 )cos(k jh)

}
eimθn

+
∞

∑
m=−∞

N
∑

k=1
k ̸=n

{[
Aχ

m,0 cosh[k0(z+h)]

Hm(k0R(n)
2 )cosh(k0h)

×
∞

∑
n′=−∞

Hm−n′(k0Rnk)J−n′(k0rn)ei(mθkn−n′θnk)ein′θk

]
+

∞

∑
j=1

[
Aχ

m, j cos[k j(z+h)]

Km(k jR
(n)
2 )cos(k jh)

×
∞

∑
n′=−∞

Km−n′(k jRnk)I−n′(k jrn)ei(mθkn−n′θnk)ein′θk

]}

(11)

where rk ≤ Rnk; χ can be either ‘D’ (for the diffraction po-
tential) or ‘p, i’ (for the radiated potential); Aχ

m, j are unknown
coefficients; Hm is the Hankel function of the first kind of or-
der m; and Km is the modified Bessel function of the second
kind of order m; I−n′ is the modified Bessel function of the
first kind of order −n′.{

ω2 = gk0 tanh(k0h) , j = 0
ω2 =−gk j tan(k jh) , j ≥ 1

, (12)

(2) In Region Ωn
1

φχ (rn,θn,z) = φ
χ

S,1 (rn,θn,z)+
∞

∑
m=−∞

{{[
Bχ

m,0
Jm

(
k(1)0 rn

)
Jm

(
k(1)0 R(n)

2

) +Cχ

m,0
Hm

(
k(1)0 rn

)
Hm

(
k(1)0 R(n)

2

)
]

×
cosh

(
k(1)0

(
z+d(n)1

))
cosh

(
k(1)0 d(n)1

)
}
+

∞

∑
j=1

{[
Bχ

m, j
Im
(

k(1)j rn

)
Im
(

k(1)j R(n)
2

)
+Cχ

m, j
Km

(
k(1)j rn

)
Km

(
k(1)j R(n)

2

)
]
×

cos
(

k(1)j

(
z+d(n)1

))
cos
(

k(1)j d(n)1

)
}}

(13)

where  ω2 = gk(1)0 tanh
(

k(1)0 d(n)
1

)
, j = 0

ω2 =−gk(1)j tan
(

k(1)j d(n)
1

)
, j ≥ 1

, (14)

Bχ

m, j and Cχ

m, j are unknown coefficients; φ
χ

S,1 is a particular
solution in Region Ωn

1, which can be expressed in a coordinate
system of the float n for χ = ‘D’, φ

χ

S,1 =−φI ; for χ = ‘p,i’ and

n ̸= p, φ
p,i
S,1(rn,θn,z) = 0; for n = p, φ

n,i
S,1(rn,θn,z) is equal to

φ
n,i
S,1 =


0, i = 1,2,6
z+ g

ω2 , i = 3

rn sinθn

(
z+ g

ω2

)
, i = 4

−rn cosθn

(
z+ g

ω2

)
, i = 5

. (15)
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(3) In Region Ωn
2

φχ (rn,θn,z) = φ
χ

S,2 (rn,θn,z)+

+



[
Dχ

0,0 +Eχ

0,0

(
1+ ln

(
rn

R(n)
2

))] √
2

2 +

∞

∑
j=1


Dχ

0, j
I0
(

k(2)j rn

)
I0
(

k(2)j R(n)
2

)
+Eχ

0, j
K0

(
k(2)j rn

)
K0

(
k(2)j R(n)

2

)

 cosk(2)j (z+h)

cosk(2)j h



∞

∑
m=−∞
m ̸=0



[
Dχ

m,0

(
rn

R(n)
2

)|m|
+Eχ

m,0

(
rn

R(n)
2

)−|m|
]

√
2

2

+
∞

∑
j=1


Dχ

m, j
Im
(

k(2)j rn

)
Im
(

k(2)j R(n)
2

)
+Eχ

m, j
Km

(
k(2)j rn

)
Km

(
k(2)j R(n)

2

)

 cosk(2)j (z+h)

cosk(2)j h


eimθn

,

(16)
where

k(2)j =
jπ

h−d(n)
2

, j = 0,1,2, ..., (17)

Dχ

m, j and Eχ

m, j are unknown coefficients and φ
χ

S,2 is a particular
solution in Region Ωn

2, which is equal to −φI for χ = ‘D’; for
χ = ‘p,i’ and n ̸= p, φ

p,i
S,2(rn,θn,z) = 0; for n = p, φ

n,i
S,2(rn,θn,z)

can be expressed in a coordinate system of the float n as

φ
n,i
S,2 =



0, i = 1,2,6
1

4
(

h−d(n)2

) [2(z+h)2 − rn
2
]
, i = 3

sinθn

8
(

h−d(n)2

) [4rn(z+h)2 − rn
3
]
, i = 4

−cosθn

8
(

h−d(n)2

) [4rn(z+h)2 − rn
3
]
, i = 5

. (18)

(4) In Region Ωn
3

φχ (rn,θn,z) = φ
χ

S,3 (rn,θn,z)+

×
∞

∑
m=−∞


Fχ

m,0

(
rn

R(n)
3

)|m| √
2

2

+
∞

∑
j=1

Fχ

m, j
Im
(

k(3)j rn

)
Im
(

k(3)j R(n)
3

) cosk(3)j (z+h)

cosk(3)j h

eimθn ,
(19)

where

k(3)j =
jπ

h−d(n)
3

, j = 0,1,2, ..., (20)

Fχ

m, j are unknown coefficients and φ
χ

S,3 is a particular solution
in Region Ωn

3, which can be expressed in a coordinate system
of the float n for χ = ‘D’, φ

χ

S,3 =−φI ; for χ = ‘p,i’ and n ̸= p,

φ
p,i
S,3(rn,θn,z) = 0; for n = p, φ

n,i
S,3(rn,θn,z) is equal to

φ
n,i
S,3 =



0, i = 1,2,6
1

4
(

h−d(n)3

) [2(z+h)2 − rn
2
]
, i = 3

sinθn

8
(

h−d(n)3

) [4rn(z+h)2 − rn
3
]
, i = 4

−cosθn

8
(

h−d(n)3

) [4rn(z+h)2 − rn
3
]
, i = 5

. (21)

B. Eigenfunction matching method
The expressions for the diffracted and radiated spatial po-

tentials, as presented in Eqs.(11) - (21) in Sec.III A, satisfy all
the boundary conditions given in Eqs.(3) - (10) in Sec.II, ex-
cept for those at the interfaces of the two adjacent subdomains.
The conditions of continuity for the pressure and normal ve-
locity at the boundary can be used to determine the unknown
coefficients in Eqs.(11) - (21) for both diffracted and radiated
spatial potentials. The continuity conditions for the spatial
potentials are as follows:

(1) Continuity of pressure at the boundary rn = R(n)
2 :

φχ(r
+
n ,θn,z) = φχ(r

−
n ,θn,z), −d(n)

1 ≤ z ≤ 0

and −h ≤ z ≤−d(n)
2 , (22)

(2) Continuity of pressure at the boundary rn = R(n)
3 :

φχ(r
+
n ,θn,z) = φχ(r

−
n ,θn,z), −h ≤ z ≤−d(n)

3 , (23)

(3) Continuity of normal velocity at the boundary rn = R(n)
1 :

∂φχ (r+n ,θn,z)
∂ rn

=
− ∂φI(r+n ,θn,z)

∂ rn
, χ = ‘D’

δn,p

 δ1,i cosθn +δ2,i sinθn
−δ4,i (z− zn)sinθn
+δ5,i (z− zn)cosθn

 ,χ = ‘p, i’
,−d(n)

1 ≤ z ≤ 0,

(24)
(4) Continuity of normal velocity at the boundary rn = R(n)

2 :

∂φχ (r+n ,θn,z)
∂ rn

=


− ∂φI(r+n ,θn,z)

∂ rn
, χ = ‘D’

δn,p

 δ1,i cosθn +δ2,i sinθn
−δ4,i (z− zn)sinθn
+δ5,i (z− zn)cosθn

 ,χ = ‘p, i’
,

for −d(n)
2 ≤ z ≤−d(n)

1 ,
∂φχ (r−n ,θn,z)

∂ rn
,−d(n)

1 ≤ z ≤ 0 and −h ≤ z ≤−d(n)
2

(25)

(5) Continuity of normal velocity at the boundary rn = R(n)
3

∂φχ (r+n ,θn,z)
∂ rn

=


− ∂φI(r+n ,θn,z)

∂ rn
, χ = ‘D’

δn,p

 δ1,i cosθn +δ2,i sinθn
−δ4,i (z− zn)sinθn
+δ5,i (z− zn)cosθn

 ,χ = ‘p, i’
,

for −d(n)3 ≤ z ≤−d(n)2 .
∂φχ (r−n ,θn,z)

∂ rn
, −h ≤ z ≤−d(n)

3

(26)

By substituting the diffracted and radiated spatial potentials
from Eqs.(11) - (21) into Eqs.(22) - (26), utilizing the orthogo-
nal properties of the trigonometric function and vertical func-
tion, and rearrangements, diffracted spatial potentials and the
radiated ones in each subdomain can be obtained by solving
a matrix equation36–38. The infinite series can be truncated
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by selecting (2M+1) terms (m = −M, ...,0, ...,M) for angu-
lar functions and (J+1) terms ( j = 0,1,2, ...,J) for vertical
functions. A brief derivation of the calculation of these un-
known coefficients is given in Appendix A.

C. Forces and hydrodynamic coefficients
(1) Wave excitation forces and radiation forces
Fn, j

χ represent forces ( j ≤ 3) or moments ( j > 3) acting on
the float n in jth mode. Here, χ = ‘D’ represents the wave
excitation force, and χ = ‘p,i’ represent radiated force due to
unit amplitude velocity oscillation of the float p in ith mode,
for which φI would vanish in the corresponding expressions.
The brief derivation and the final complicated formulae for
calculating forces and moments are given in Appendix B.

Fn, j
χ = iωρ

3

∑
l=1

∫ −d(n)l−1

−d(n)l

∫ 2π

0
R(n)

l C j(φI +φχ)dzdθn, j = 1,2,

(27)

Fn, j
χ = iωρ

∫ 2π

0


3
∑

l=2

∫ R(n)
l

R(n)
l+1

(φI +φχ)rndrn

−
∫ R(n)

2

R(n)
1

(φI +φχ)rndrn

dθn, j = 3, (28)

Fn, j
χ = iωρ×

∫ 2π

0



3
∑

l=1

∫ −d(n)l−1

−d(n)l

R(n)
l C j(φI +φχ)(z− zn)dz

−D j


3
∑

l=2

∫ R(n)
l

R(n)
l+1

(φI +φχ)rndrn

−
∫ R(n)

2

R(n)
1

(φI +φχ)rndrn



dθn, j = 4,5,

(29)
where R(n)

4 = 0,

C j =

{
−sinθn, j = 2,4
−cosθn, j = 1,5 ,D j =

{
rn sinθn, j = 4
rn cosθn, j = 5 . (30)

(2) Hydrodynamic coefficients
The hydrodynamic coefficients can be written in terms of

radiation force asLi and Liu 39 :

Fn, j
p,i = iωan, j

p,i − cn, j
p,i , (31)

where an, j
p,i and cn, j

p,i are added mass and radiation damping of
the float n in jth mode due to the float p in ith mode.

IV. EQUATION OF MOTION

This section presents an analytical model for the response
of multi-body structures with arbitrary geometric dimensions
in regular waves. We consider the n-th interconnected rigid
structure floating in the water of constant depth h and sub-
jected to regular waves with small wave amplitude propagat-
ing in a direction with an angle β relative to the x-axis of the
floats. For such a system, a frequency-domain analysis can
be used to efficiently evaluate the floats’ dynamics. The dy-
namic equation of motion for the interconnected floats in the

FIG. 2: Coordinate system and dimensions of the
OC4-DeepCwind semi-submersible platform9.

frequency domain is expressed as follows: [ −ω2 (Mm +Ma)+Ks
−iω (Cd +Cv)+Km

]
AT

J

AJ 0

{ X
FJ

}
=

{
F
0

}
, (32)

where

F = Fe +Fw +Fm, (33)

[Fe] = [Fn, j
D ] is the frequency-dependent complex amplitude

of the exciting force array of (6N ×1) in which N repre-
sents the number of structures; X is the complex amplitude
of corresponding displacements array of (6N ×1) for the N
structures; Mm is the structure mass matrix of (6N ×6N);
Ks is the hydrostatic restoring matrix of (6N ×6N); Ma and
Cd are the hydrodynamic added mass and damping matrix
of (6N ×6N), respectively; Cv is linearised viscous damp-
ing matrix of (6N ×6N) ; Km is the mooring stiffness ma-
trix of (6N ×6N); wind force Fw acting on the rotor and
tower array are both assimilated to a thrust-type force array
of (6N ×1)40; Fm is the mooring force array of (6N ×1) due
to prestressing41; AJ is the displacement constraint matrix of
(NJ ×6N) , in which NJ represents the number of rigid con-
straints; FJ is the rigid force vector of (NJ ×1), Fe, Ma and
Cd can be obtained by solving wave diffraction and radiation
problems using the present semi-analytical model.

Here, we take a typical semi-submersible FOWT (OC4-
DeepCwind) as an example to study the motion performance,
as shown in Fig.28,9. Substituting all the forces acting on the
OC4 platform into the Eq.(32), a rigid constraint of four struc-
tures for transmitting a force in six degrees of freedom is ap-
plied. Specifically, the number of rigid constraints NJ is 18.
All elements of the displacement constraint matrix AJ are pro-
vided in Appendix C.

V. MODEL VALIDATION

We validate the above-derived theoretical hydrodynamic
model for spatial potentials and dynamic motion equation by
using a numerical computational fluid dynamics model and
published data13,34. This includes the validation of wave exci-
tation forces exerting on different floats, hydrodynamic coef-
ficients, and motion response amplitude operator (RAO). The
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TABLE I: Main properties of OC4-DeepCwind
semi-submersible FOWT.

Designation Symbol Value Unit

Total mass Mm 14,070,000 kg

Water depth h 100 m

Wave heading β 0 rad

Total draft d(n)
3 20 m

Bottom of base column depth d(n)
2 20 m

Top of base column depth d,d(n)
1 14 m

Base column thickness l 6 m

Spacing between offset columns S 50 m

Radius of the central column Rc 3.75 m

Radius of offset column R(n)
1 6 m

Radius of base column R,R(n)
2 12 m

dimensionless quantities of the wave excitation forces and hy-
drodynamic coefficients are defined as42,43:

Fn, j
χ =

∣∣∣Fn, j
χ

∣∣∣
ρgR0

i′A
, (34)

where R0 is a reference length, unless otherwise stated, R0 = 6
m is selected for the OC4-DeepCwind semi-submersible plat-
form; i′ = 2 for j = 1−3 and i′ = 3 for j = 4−5.

an, j
p,i =

an, j
p,i

ρRi′
0

; cn, j
p,i =

cn, j
p,i

ωρRi′
0
, (35)

where i′ = 3 for (i, j) = (1−3,1−3) ; i′ = 4 for (i, j) = (1−
3,4− 5) and (4− 5,1− 3); whereas i′ = 5 for (i, j) = (4−
5,4−5) .

A conventional BEM-based commercial code (ANSYS
AQWA, 2022) is adopted to study the wave diffraction and
radiation problem for the OC4-DeepCwind FOWT. The main
properties of the OC4-DeepCwind are presented in Table I,
where all the parameters are chosen according to the previ-
ous studies by Robertson et al.8 and Zhang et al.13. The CPU
time required to achieve the numerical simulation using 21910
wetted elements is about 26 mins for each frequency.

We conducted a convergence analysis using Eigen-series
analysis to ensure accurate results. In Figs.3 and 4, the conver-
gence study of the wave excitation forces and hydrodynamic
coefficients are presented to illustrate the impact of the ver-
tical and angular truncated cut-offs (i.e., in terms of J and
M), respectively. In order to obtain the converged results,
J ≥ 25 and M ≥ 3 are suggested as learnt from Figs.3 and
4. Hereinafter, J = 30 and M = 4 are adopted. The CPU
time required for solving the diffraction and radiation problem
for each wave frequency is merely about 83 s by the semi-
analytical model, providing a more efficient tool than nu-
merical models. The excellent agreement between the semi-
analytical and numerical results verifies the accuracy of the
semi-analytical model in solving wave diffraction and radia-
tion problem. Meanwhile, the solutions of the present semi-
analytical are compared with Cong et al.34 and Zhang et al.13

as follows.

A. Single structure validation
A theoretical model of a compound column-plate structure

was developed by Cong et al.34 to study hydrodynamic char-
acteristics. We used a scaled system, with the same device
geometry, sea state, and water depth as Cong et al. (2018,
Fig.8)34, to facilitate better comparison with Cong’s previous
work, i.e. N= 1, d(1)

2 /R(1)
1 = 1, l/R(1)

1 = 0.1, h/R(1)
1 = 3 and

d(1)
2 = d(1)

3 . In Fig.5, the present analytical results are consis-
tent with the results of Cong’s, indicating that the analytical
solution can accurately calculate the wave excitation forces
for a single structure.

B. Multiple structures validation
To validate the accuracy of the hydrodynamic coefficients

and motion equation Eq.(32) for the multi-body structure,
the hydrodynamic coefficients are brought into the motion
equation to investigate the motion response of the OC4-
DeepCwind semi-submersible FOWT. The same computa-
tional parameters as those used in Zhang et al.’s study (2020,
Section 4.1, Fig.6)13 are used here. The excellent agreement
between the semi-analytical solutions and Zhang et al.13 con-
firms the accuracy of the semi-analytical model in solving the
hydrodynamic coefficients and dynamic motion equation for
the multi-body structure (see Fig.6).

VI. RESULTS AND DISCUSSION

Submerged plates are often installed on floating structures
to improve their seakeeping capability. Although the attached
plate provides an additional immersed body surface that re-
ceives fluid action and aggravates the wave loads, the effects
of added mass and radiation damping can help suppress the
motion response. Due to the complexity of the effects of sub-
merged plates on structures, the base column of the OC4 plat-
form is investigated in this section, focusing on the effects of
the submergence depth d(n)

1 , radius R(n)
2 and thickness l on the

platform motion response. In each case, calculations are per-
formed with the same linear viscous correction and mooring
stiffness matrix used in Sec.V (Fig.6) at a water depth of 100
m.

A. Effect of base column submergence depth
The correlation between the motion performance and base

column submergence depth d(n)
1 is investigated in this subsec-

tion. For brevity, we use the generic symbol d instead of d(n)
1 .

Fig.7 presents the curve of surge motion X1 as a function of
angular frequency ω and base column submergence depth d
with R = 12 m and l = 6 m. For a clearer display of the curves,
Fig.7b and 7c are detailed views of Fig.7a. As ω increases
from 0 rad/s, the response of surge motion significantly de-
creases when ω ≤ 0.8 rad/s, and the decline of X1 tends to be
slower as ω further increases. For any specified value of d, a
local peak of X1 occurs at 0.85 < ω < 1.15 rad/s. This peak is
sensitive to changes in d (see Fig.7b). In this region, X1 no-
tably increases with the decrease in d, where the peak value
rises from 0.25 to 0.37 as d decreases from 14 to 6 m, reflect-
ing an increase of 48%. The peak further increases with the
d decreases from 6 to 3 m, representing an increase of 140%.



8

FIG. 3: Impact of the vertical cut-offs (i.e., in terms of J) on wave excitation forces, M = 5: (a) F1,1
D ; (b) F1,3

D ; (c) F1,5
D .

FIG. 4: Impact of the angular cut-offs (i.e., in terms of M) on hydrodynamic coefficients, J = 30: (a) a1,1
1,1 ; (b) a1,3

1,3 ; (c) a1,5
1,5; (d)

c1,1
1,1; (e) c1,3

1,3 ; (f) c1,5
1,5.

This indicates that the base column at the bottom of the off-
set column is critical for ensuring the stability of the platform
in surge mode. In other words, it is advisable to avoid d ≤ 6
m at 0.85 < ω < 1.15 rad/s. Conversely, for ω ≥ 1.15 rad/s,
the value of X1 decreases with increasing d, indicating that the

increasing radiation damping and additional mass play domi-
nant roles compared to the wave force.

Fig.8 plots the heave motion X3 against different values of
d and ω . Compared to X1, X3 is more sensitive to changes in
d, especially at ω < 0.42 rad/s. As shown in Fig.8b, the peak
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FIG. 5: Comparision normalized linear wave force amplitude (black: R(1)
2 /R(1)

1 = 2, red: R(1)
2 /R(1)

1 = 1): (a) horizontal force;
(b) vertical force.

FIG. 6: Comparision RAOs of OC4-DeepCwind semi-submersible FOWT. (a) and (d) Surge RAO (m/m), (b) and (e) Heave
RAO (m/m), (c) and (f) Pitch RAO (deg/m); (a)-(c) in 100 m water depth; (d)-(f) in 200 m water depth.
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FIG. 7: Variation of the response of the surge mode in terms of the unit amplitude (m/m) with R = 12 m and l = 6 m for
different submergence depths; (b) and (c) are detailed descriptions for (a), respectively.

FIG. 8: Variation of the response of the heave mode in terms of the unit amplitude (m/m) with R = 12 m and l = 6 m for
different submergence depths; (b) and (c) are detailed descriptions for (a), respectively.

value of X3 around ω = 0.35 rad/s decreases from 2.57 to 2.39
as d increases from 3 to 5 m. At an optimal d of approx-
imately 5 m, the local peak value at peak frequency is mini-
mized, and X3 decreases by 43% from d = 14 to 5 m. However,
for ω ≥ 0.42 rad/s, the trend changes, and X3 increases mono-
tonically as d decreases. The peaks become more pronounced
at two locations: for d = 14 m, X3 = 0.22 at ω = 0.5 rad/s and
X3 = 0.07 at ω = 0.9 rad/s; for d = 3 m, X3 is 0.54 and 0.31,
respectively. As ω keeps increasing, X3 decreases and stays at
a low value for ω ≥ 1.4 rad/s.

Fig.9 illustrates the motion response curve for the pitch
mode, which exhibits similarities to that of the heave mode.
For ω < 0.4 rad/s, the value of X5 rapidly increases with de-
creasing d within the range of 8 m ≤ d ≤ 14 m, while it sig-
nificantly increases with d within the region of 3 m ≤ d ≤ 8
m. The maximum and minimum peak values X5 = 12.65 and
X5 = 4.65 occur at ω = 0.25 rad/s, d = 8 m and d = 14 m
(see Fig.9b). In the region of ω > 0.4 rad/s, X5 increases with
decreasing d, but the amplitude is small. For any specified
value of X5, two peaks are visible in the X5 −ω curve: one is
1.02 occurring around ω = 0.75 rad/s, d = 3 m and 0.38 for
d = 14 m; the other one is 0.33 at ω = 1.15 rad/s, d = 3 m and

0.08 for d = 14 m. This means that the pitch value of X5 at
ω ≥ 0.42 rad/s is smaller than 1.02, indicating that the pitch
motion in this region can be ignored.

Based on the overview of the submergence depth effect, the
influence of the submergence depth d on the heave and pitch
modes is more significant than on the surge mode, and shows
distinct regularity of variation in each mode. For 1.4 rad/s
> ω ≥ 0.42 rad/s, the value of the motion response in each
mode decreases with increasing d value. Note that X1,X2 and
X3 are less than 0.6, 0.27, and 0.33, respectively, for ω ≥ 1
rad/s. In particular, for ω ≥ 1.4 rad/s, X1,X2 and X3 are less
than 0.05, 0.06, and 0.12, respectively, indicating that the ef-
fect of d is negligible. The difference is that, when ω < 0.42
rad/s, the d is slightly influenced in X1, while in the heave
mode, X3 first decreases and then increases with d and the
peak value at d = 5 m is 43% smaller than that at d = 14 m.
In the pitch mode, the trend is the reverse version of that of the
heave motion, that is, first increases and then decreases and a
170% increase in the peak value is observed at d = 8 m com-
pared with d = 14 m. These performances provide the pre-
conditions for the optimisation of d. For example, if the local
sea state is dominated by frequencies greater than 0.3 rad/s, an
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FIG. 9: Variation of the response of the pitch mode in terms of the unit amplitude (deg/m) with R = 12 m and l = 6 m for
different submergence depths; (b) and (c) are detailed descriptions for (a), respectively.

appropriate d value should reduce the peak of vertical motion
significantly while ensuring that the surge and pitch motions
are not too large. For such a condition, d = 14, 11, or 10 m
may be appropriate, given that the maximum pitching motion
occurs in the range of 0.2 to 0.3 rad/s, whereas the maximum
vertical motion occurs in the range of 0.3 to 0.4 rad/s. This
is important for engineering applications, but multi-parameter
optimisation is necessary44,45 and is briefly analysed here in
the frequency domain.

Additionally, the motion response displays multiple peaks
and troughs across the entire frequency range, which can
be attributed to Bragg resonance, as shown in Figs.7b and
7c46–48. When the spacing Sr between successive scatter-
ers is half-integral multiples of the incident wavelength, i.e.
k0Sr cosβ ′ = nBπ , where nB is a positive integer and β ′ is
the angle between the incident wave and the line connect-
ing the centroids of the base columns, constructive interfer-
ence gives rise to strong reflection49,50. In this study, the
Bragg resonances are primarily generated by reflections be-
tween the offset columns, where the separation distance Sr
consists of two parts: the upper part is the distance be-
tween the offset columns Sr1 = (l − 2R(n)

1 )cosβ ′, and the
bottom part is the distance between the base columns Sr2 =

(l − 2R(n)
2 )cosβ ′. When incident waves propagate along the

x-axis, the Bragg resonance position calculated from the sep-
aration distance Sr1 is expected to occur at ωr1 =0.97, 1.22,
1.68, 1.93· · · rad/s, while the position calculated from Sr2
should occur at ωr2 =1.36, 1.72, 2.11, 2.43· · · rad/s, based on
Bragg’s law. To further investigate the Bragg resonance phe-
nomenon, Fig.10 presents the dimensionless quantities of the
wave excitation force. It can be observed that the peak fre-
quencies ωr resulting from the effect of Bragg resonance are
1.25, 1.64, 2.04, 2.37· · · rad/s, which fall within the range of
ωr1 < ωr < ωr2. Moreover, ωr is consistent with the peak
frequencies depicted in Figs.7b and 7c.

The Bragg resonance phenomenon is also observed in the
heave and pitch modes, as depicted in Figs.8a and 9a. The
first peak frequency observed in the X3 − ω and X5 − ω

curves correspond to the eigenfrequency ωh of the wind tur-

bine platform. This eigenfrequency can be calculated by
ωh =

√
sw/(Mm +ma), where sw and ma denote the platform

stiffness and radiation added mass of the platform, respec-
tively. The second peak frequency observed in Figs.8a and
9a are consistent with the main (first) peak frequency of the
wave excitation force seen in Fig.10, which is determined by
the geometric and mass properties of the structure. In the ab-
sence of structure interaction, only this main peak would be
observed, such as for a single truncated cylinder in the wave.
The remaining peaks are caused by the Bragg resonance phe-
nomenon. Furthermore, it is found that in heave mode, the
occurrence condition of the Bragg resonance shifts slightly
towards the left, possibly due to the similarity between the di-
mensions of the floats and the separation distance51. A similar
phenomenon is observed in the study by52, where increasing
the separation distance resulted in nB converging to an integer.

B. Effect of base column radius

The base column radius, R(n)
2 , is also an important param-

eter to consider. As discussed in Section VI A, for ω > 0.3
rad/s, values of d = 14, 11, or 10 m are recommended choices,
although the optimal value of d depends on multiple param-
eters and optimization algorithms45. In this subsection, the
effect of the base column radius, R(n)

2 , is investigated sepa-
rately for d = 14 and 10 m. The comparison reveals a similar
trend. Hence, d = 10 is selected for the following discussion.
For clarity, the generic symbol R is used instead of R(n)

2 .
As illustrated in Fig.11, the surge motion RAO (X1) is

slightly affected by R, particularly at ω ≤ 1 rad/s and ω ≥ 1.45
rad/s. For any specified value of X1, a relatively large effect
can be observed at 1 rad/s ≤ ω ≤ 1.45 rad/s. The peak of
the frequency response of X1 in terms of the peak value and
the corresponding ω where the peak occurs is mainly affected
by the R value. The peak values of the X1 −ω curves for R
ranging from 6 to 17 m vary from 0.26 to 0.31 at ω = 1.05
rad/s (see Fig.11b). This indicates that the peak value of X1
and peak frequency decrease with an increase in R. However,
the decrease is very small, especially for ω > 1.45 rad/s, in-
dicating that the effect of R on X1 is similar to the effect of d
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FIG. 10: The dimensionless quantities of the wave excitation
per unit amplitude for the OC4 semi-submersible at a
zero-degree wave heading for the surge force FD

1 , heave force
FD

3 and pitch moment FD
5 .

described in Sec.VI A.
The variation of R with ω is more complex in the heave

mode than in the above-mentioned studies. Therefore, we
performed a detailed analysis using more cases, as depicted
in Figs. 12 and 13. The X3 −ω curve shows that X3 is highly
sensitive to R when ω ≤ 0.8 rad/s, and there exists a peak in
the frequency response of X3 in the range of 0.1 ≤ ω ≤ 0.8
rad/s (see Figs. 12a and 12b). As depicted in Fig. 13, as
R increases, the value of X3 first rises and then falls. As R
continues to increase, X3 increases and then decreases again,
similar to a "wave," but the amplitude of the "wave" gradually
increases. Specifically, as R increases from 6 to 7.4 m, X3 first
declines from 1.98 to 1.77 at ω = 0.62 rad/s (see Fig. 13a). As
R continues to increase, X3 rises and then falls after reaching
a peak value of 2.39 at R = 7.2 m and ω = 0.58 rad/s.

The rate of the increase is always smaller than the rate of
the decrease. Furthermore, this change is accompanied by a
decrease in the peak frequency, that is, the peak value in the
X3 −ω curve shifts to the left. For a given value of ω be-
tween 0.2 to 0.3 rad/s, a sharp drop of X3 can be observed with
R ranging from 14 to 14.4 m, and a slow drop occurs in the
range of 14.4 ≤ R ≤ 14.8 m. Meanwhile, the peak frequency
decreases more quickly in the range of 14.4 ≤ R ≤ 14.8 m,
leading to a new peak frequency at ∼0.25 rad/s (see Fig.13b).
This similar phenomenon is repeated. For ω > 0.8 rad/s, the
peak value of X3 occurs at approximately ω = 0.9 rad/s and in-
creases with R, whereas the maximum value of X3 is smaller
than 0.14 (see Fig.12c). As ω further increases to 1.4, the
heave motion of the platform can be ignored.

Figs.14 and 15 depict the response of the pitch mode for
different values of R and ω at d = 10 m and l = 6 m. The
X5 −ω curve is highly influenced by R when ω ≤ 0.45 rad/s,
and a peak in the frequency response of X5 is observed within

the range of 0.14 ≤ ω ≤ 0.45 rad/s. In this region, R also af-
fects the peak of the frequency response of X5 −ω in terms of
the peak value and the corresponding peak frequency. Specif-
ically, as illustrated in Fig.14b, the peak frequency decreases
with an increase in R, consistent with the behavior observed
in the heave mode. The difference is that the general trend of
the peak decreases with increasing R, as shown in Fig.15. For
ω > 0.5 rad/s, the peak value increases with R and is less than
0.82 (see Fig.14c). As ω continues to increase to 1 rad/s, the
response of X5 becomes increasingly smaller regardless of the
value of R. Therefore, the performance of pitch mode is simi-
lar to that of the heave mode, except that the main peak value
of the X5 −ω curve tends to decrease as R increases.

C. Effect of base column thickness
In this subsection, the effect of the base column thickness l

on the motion response is discussed. The parameters R = 12
m in Sec.VI A and d = 10 m in Sec.VI B are adopted for this
subsection. The base columns’ thickness must be less than 10
m or the boundary must be larger than the draught depth. For
clarity, the range of l is set to 1∼10 m.

The results in Fig.16 show that the surge motion RAO (X1)
is slightly influenced by l, especially for ω ≤ 0.8 rad/s and
ω ≥ 1.4 rad/s. For any specified value of ω , a peak in the
frequency response of X1 occurs in the range of 1 ≤ ω ≤ 1.1
rad/s. The peak values of the X1−ω curves for l ranging from
1 to 10 m vary from 0.32 to 0.25. This implies that the peak
value of X1 decreases as l increases. A similar variation of the
peak is observed in terms of the peak value and correspond-
ing l and ω (see Fig.16c). The data in Fig.16c also show that
the peak value insignificantly changes with l, that is, less than
0.04. These results indicate that the surge motion of the plat-
form is stable at ω ≥ 1.4 rad/s, as previously discussed.

Fig.17 shows the response of the motion RAO in the heave
mode. The X3 − ω curve presents a more complex varia-
tion than in the surge mode, as observed in Sec.VI B. Fig.17b
shows that the influence of the parameter l on X3 is significant
in the range of 0.25 ≤ ω ≤ 0.5 rad/s, particularly when the
angular frequency is close to the peak frequency. The peak
values of X3 and their corresponding frequencies in the inter-
val ω ∈ [0.3,0.5] rad/s are strongly influenced by the value of
l. At each peak frequency, the peak value of X3 initially in-
creases with l and then decreases after reaching a minimum
at the same frequency. During the decrease in the peak value,
the peak frequency also shifts towards lower values, i.e., the
curve shifts to the left. Notably, as the peak approaches the
minimum peak, the peak frequency decreases dramatically as
l increases continuously. When the peak frequency decreases
to a certain value, it slowly decreases again. For a given value
of ω between 0.4 and 0.45 rad/s, X3 increases rapidly from
1.9 to 3.4 as l increases from 1 to 3 m and then significantly
decreases after reaching the maximum peak value at l = 3 m
(see Fig.18a). Simultaneously, the peak frequency slowly de-
creases until l reaches 4.2 m. For 4.2 ≤ l ≤ 5 m, the peak fre-
quency rapidly decreases from 0.39 to 0.36 rad/s and the peak
value of X3 significantly increases again. Furthermore, as l in-
creases, a new peak frequency emerges at ω = 0.35 rad/s, and
in such cases, X3 increases from 2.4 to 4.2 as l increases from
5.8 to 7.8 m. Based on Fig. 17b for the range of 0.3 ≤ ω ≤
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FIG. 11: Variation of the response of the surge mode in terms of the unit amplitude (m/m) with d = 10 m and l = 6 m for
different base columns radii.

FIG. 12: Variation of the response of the heave mode in terms of the unit amplitude (m/m) with d = 10 m and l = 6 m for
different base columns radii.

FIG. 13: Comparison of the peak value X3 (m/m) and peak frequency for different R values with step sizes of 0.2 m, at d = 10 m
and l = 6 m: (a) R = 6 - 8 m; (b) R = 14 - 16 m.
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FIG. 14: Variation of the response of the pitch mode in terms of the unit amplitude (deg/m) with d = 10 m and l = 6 m for
different base columns radii.

FIG. 15: Comparison of the peak value X5 (deg/m) and peak frequency for different R values with a step size of 0.2 m, at d = 10
m and l = 6 m: (a) R = 6 - 8 m; (b) R = 14 - 16 m.

FIG. 16: Variation of the response of the surge mode in terms of the unit amplitude (m/m) with d = 10 m and R = 12 m for
different base column thicknesses.
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FIG. 17: Variation of the response of the heave mode in terms of the unit amplitude (m/m) with d = 10 m and R = 12 m for
different base column thicknesses.

FIG. 18: Comparison of the peak response of X3 (m/m) and peak frequency for different l values with a step size of 0.4 m, at d
= 10 m and R = 12 m: (a) l = 1 - 5.4 m; (b) l = 5.8 - 9.8 m.

0.5 rad/s, the peak frequency decreases with an increase in l,
and the peak value of X3 shows a cyclical growth and decline,
similar to a "wave." However, the main peak value of X3 in-
creases with l, which is consistent with observations made for
the heave mode in Sec.VI B. For ω ≥ 0.8 rad/s, the peak value
of X3 is 0.11 at ω = 0.95 rad/s. As ω further increases, the
heave response of X3 remains small, indicating that the hydro-
static restoring and mooring forces play a major role relative
to the wave forces, and the combined effect of viscosity, added
mass, and radiative damping ensure platform stability in the
heave mode.

Figs.19 and 20 present the motion response of the pitch
mode for varying parameters of the thickness l and angular
frequency ω . The results indicate that the behavior of the pitch
mode is similar to that observed in the heave mode. As illus-
trated in Fig.19, the value of X5 is sensitive to l when ω ≤ 0.45

rad/s and the peak frequency in range of 0.15 ≤ω ≤ 0.35 rad/s
with 1 ≤ l ≤ 10 m. In this range, l has a significant impact on
both the peak frequency and peak value of X5. The influence
of l on X5 is further illustrated in Fig.19b, where the peak fre-
quency decreases with an increase in l and the peak value of
X5 exhibits a "wave" pattern, with the peak value of X5 in-
creasing with l. For ω > 0.35 rad/s, the peak value of X5 also
increases with l and the maximum value X5 = 0.53 occurs at
ω = 0.65 rad/s (see Figs.20a and 20b). As ω further increases
to 1 rad/s, the pitch response becomes negligible, regardless
of the value of l.

VII. CONCLUSIONS

A semi-analytical model for an array of marine structures
is proposed in this work. The marine structures can be com-
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FIG. 19: Variation of the response of the pitch mode in terms of the unit amplitude (deg/m) with d = 10 m and R = 12 m for
different base column thicknesses.

FIG. 20: Comparison of the peak response of X5 (deg/m) and peak frequency for different l values with a step size of 0.4 m, at d
= 10 m and R = 12 m: (a) l = 1 - 5.4 m; (b) l = 5.8 - 9.8 m.

posed of any number of floats, and each one can contain three
different coaxial cylinders with different dimensions.

Based on the semi-analytical model, a dynamic motion
equation for the response of the multiple interconnected rigid
structures floating in regular waves is presented, with the
study of semi-submersible FOWT being a typical application.
The OC4-DeepCwind platform is adopted and investigated in
this paper, including the effect of base column submergence
depth, radius and thickness on the motion response of the plat-
form, which the semi-analytical methods have not been used
in this field.

A multiparameter impact analysis is conducted using the
theoretical model. The results indicate that the surge motion
response is insensitive to the base column depth d, radius R,
and thickness l, except for the effect of d within the inter-
val of ω ∈ [0.8,1.15] rad/s. The small variation observed is

primarily manifested in the peak value of the X1 −ω curve,
which varies monotonically with d, R, and l, while the peak
frequency remains constant. It is noteworthy that regardless
of the geometrical parameters, the platform tends to stabilize
in the surge mode at ω ≥ 1.35 rad/s.

In contrast to the surge mode, the heave and pitch motion
responses are significantly influenced by the geometrical pa-
rameters of base column depth d, radius R, and thickness l.
The variations in these parameters exhibit a more complex
trend, particularly in the range of ω ≤ 0.5rad/s. The main
peak value of X3 −ω and X5 −ω curves shows a cyclic in-
crease and decrease with monotonous variations in radius R
and thickness l. The main peak frequency decreases with in-
creasing R and l, while remaining insensitive to the depth of
the base column d. Additionally, for ω ≥ 1.2 rad/s, the motion
response of X3 and X5 decreases as ω increases, regardless of
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the variation in d, R, and l.
Finally, the semi-analytical model proposed in this study

has demonstrated high accuracy in predicting hydrodynamic
coefficients and motion response of marine structures. In
comparison to numerical models, it provides a more efficient
approach. The development of this model has enabled the
extension towards time-domain analysis of semi-submersible
flouting foundation to study the effect of nonlinear factors.
Moreover, the semi-analytical models can significantly im-
prove the efficiency of fitness value calculation for optimiza-
tion algorithms, leading to better multi-parameter optimiza-
tion as demonstrated in previous studies. Overall, the interest
of this work lies in the semi-analytical model itself, which is
highly efficient in modelling the interaction of the wave field
and can be applied in future FOWT projects. It is worth not-
ing that this model is based on linear potential flow theory and
may not be suitable for extreme wave-structure interactions.
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Nomenclature

A Ambient incident wave amplitude

AJ Displacement constraint matrix (NJ ×24)

Ȧi
p Velocity complex amplitude of the float p oscillating

in the ith mode

an, j
p,i , ā

n, j
p,i Radiation added mass and dimensionless form of the

float n in jth mode due to the Float p in ith mode

cn, j
p,i , c̄

n, j
p,i Radiation damping and dimensionless form of the

float n in jth mode due to the Float p in ith mode

Cd Hydrodynamic damping matrix (6N ×6N)

Cv Linearized viscous damping matrix (6N ×6N)

d,d(n)
1 Submerged depth of the upper part of the float n

d(n)
2 Submerged depth of the middle part of the float n

d(n)
3 Total draft of the float n

Fn, j
χ , F̄n, j

χ Forces or moments and dimensionless form acting
on float n in jth mode

Fe The frequency-dependent complex amplitude of ex-
citing force array (6N ×1)

FJ The rigid force of floats vector (NJ ×1)

Fm Mooring force array (6N ×1)

Fw Wind force array (6N ×1)

g Gravitational acceleration

h Water depth

i Oscillating mode of float (i=1-6, which represents
surge, sway, heave, roll, pitch, and yaw, respectively)

J Vertical cut-offs number ( j = 0,1,2, ...,J)

k0 Incident wave number

k(q)0 Wave number for propagating mode in the region Ωn
q

k(q)j Wave number for evanescent modes in the region
Ωn

q, ( j ≥ 1)

Ks Hydrostatic restoring matrix (6N ×6N)

Km Mooring stiffness matrix (6N ×6N)

l Base column thickness

L Distance between the centre of the platform and the
centre of the column in the Oxy plane

M Angular cut-offs number(m =−M, ...,0, ...,M)

Mm,Ma Floats mass matrix (6N ×6N) and add mass matrix
(6N ×6N)
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N Total floats number (n = 1,2, ...,N)

NJ Number of floats displacement constraint

Rc The radius of the central column

R,R(n)
2 The middle part radius of the float n

R(n)
1 ,R(n)

3 The upper and bottom part radius of the float n

R0 Reference length

S Spacing between offset column centre

X The complex amplitude of corresponding displace-
ments array of (6N ×1) for the N floats

Xi Response of the motion in ith mode due to unit am-
plitude velocity oscillation

(x,y,z) Cartesian coordinate system

(r,θ ,z) Cylindrical coordinate system

β Wave incident angle

Ωn
q Fluid domains of the float n in region q

(0,θ ,zn) The rotation centre of the float n

φ The total spatial velocity potential

φI Incident wave potential

φD Diffraction potential

φp,i Radiated spatial velocity potential due to unit ampli-
tude velocity oscillation of the float p oscillating in
the ith mode

δ The Kronecker delta

ρ Density of water

ω Wave angular frequency

Appendix

A. Derivation process of the formulas and calculation for the
unknown coefficients of both diffracted and radiated
potentials

Substitute the diffracted spatial potentials in Eqs.(11)-(18)
and wave incident potential given in Eq.(2b) into Eq.(22), then
after multiplying both sides by e−iτθnZ(q,n)

l (z) and integrating

for θn ∈ [0,2π] and z ∈
[
−d(n)

1 ,0
]

and
[
−h,−d(n)

2

]
, we get:

igA
ω

Iniτ e−iτβ Jτ

(
k0R(n)

2

)∫ 0
−d(n)1

Z(0)
0 (z)Z(1,n)

l (z)dz

=
∞

∑
j=0

Aχ

τ, j
∫ 0
−d(n)1

Z(0)
j (z)Z(1,n)

l (z)dz

+
N
∑

k=1
k ̸=n

∞

∑
m=−∞

∞

∑
j=1

Aχ

m, jT
k,τ

n, j,m
∫ 0
−d(n)1

Z(0)
j (z)Z(1,n)

l (z)dz

−(Bχ

τ,l +Cχ

τ,l)
∫ 0
−d(n)1

[
Z(1,n)

l (z)
]2

dz,

(A1)

igA
ω

Iniτ e−iτβ Jτ

(
k0R(n)

2

)∫ −d(n)2
−h Z(0)

0 (z)Z(2,n)
l (z)dz

=
∞

∑
j=0

Aχ

τ, j
∫ −d(n)2
−h Z(0)

j (z)Z(2,n)
l (z)dz

+
N
∑

k=1
k ̸=n

∞

∑
m=−∞

∞

∑
j=1

Aχ

m, jT
k,τ

n, j,m
∫ −d(n)2
−h Z(0)

j (z)Z(2,n)
l (z)dz

−(Dχ

τ,l +Eχ

τ,l)
∫ −d(n)2
−h

[
Z(2,n)

l (z)
]2

dz,

(A2)

where In = eik0

(
xn cosβ + yn sinβ

)
is a phase factor; Z(q,n)

l
is the vertical function of the float n of lth mode (l = 0,1, · · ·)
in region Ωn

q, which are given by

Z(0)
j (z) =


cosh[k0(z+h)]

cosh(k0h) , j = 0
cos[k j(z+h)]

cos(k jh)
, j ̸= 0

, (A3)

Z(1,n)
j (z) =


cosh

[
k(1)0

(
z+d(n)1

)]
cosh(k(1)0 d(n)1 )

, j = 0

cos
[
k(1)j

(
z+d(n)1

)]
cos
(

k(1)j d(n)1

) , j ̸= 0
, (A4)

Z(2,n)
j (z) =


√

2
2 , j = 0

cos
[
k(2)j (z+h)

]
cos
(

k(2)j h
) , j ̸= 0

, (A5)

Z(3,n)
j (z) =


√

2
2 , j = 0

cos
[
k(3)j (z+h)

]
cos
(

k(3)j h
) , j ̸= 0

, (A6)

T k,τ
n, j,m =


Hm−τ (k0Rnk)Jτ

(
k0R(n)

2

)
ei(m−τ)θnk

Hm

(
k0R(n)

2

) , j = 0

(−1)τ Km−τ(k jRnk)Iτ
(

k jR
(n)
2

)
ei(m−τ)θnk

Km

(
k jR

(n)
2

) , j ̸= 0
.

(A7)

Similarly, substitute the spatial potentials in Eqs.(11)-(18)
and wave incident potential given in Eq.(2b) into Eq.(25), then
after multiplying both sides by e−iτθnZ(0)

l (z) and integrating
for θn ∈ [0,2π] and z ∈ [−h,0], we get:

Aχ

τ,la
χ,(n)
τ,l

∫ 0
−h

[
Z(0)

l (z)
]2

dz

+
N
∑

k=1
k ̸=n

∞

∑
m=−∞

Aχ

m,lT
′k,τ

n,l,m
∫ 0
−h

[
Z(0)

l (z)
]2

dz

− igA
ω

Iniτ e−iτβ

 τ

R(n)
2

Jτ

(
k0R(n)

2

)
−k0Jτ+1

(
k0R(n)

2

)
∫ 0

−h Z(0)
0 (z)Z(0)

l (z)dz

=
∞

∑
j=0

[
Bχ

τ, jb
χ,(n)
τ, j +Cχ

τ, jc
χ,(n)
τ, j

]∫ 0
−d(n)1

Z(1,n)
j (z)Z(0)

l (z)dz

+
∞

∑
j=0

[
Dχ

τ, jd
χ,(n)
τ, j +Eχ

τ, je
χ,(n)
τ, j

]∫ −d(n)2
−h Z(2,n)

j (z)Z(0)
l (z)dz,

(A8)
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where

T
′k,τ

n, j,m =

Hm−τ (k0Rnk)

Hm

(
k0R(n)

2

)
 τ

R(n)
2

Jτ

(
k0R(n)

2

)
−k0Jτ+1

(
k0R(n)

2

)
ei(m−τ)θnk , j = 0

(−1)τ Km−τ(k jRnk)
Km

(
k jR

(n)
2

)
 τ

R(n)
2

Iτ

(
k jR

(n)
2

)
+k jIτ+1

(
k jR

(n)
2

)
ei(m−τ)θnk , j ̸= 1

,

(A9)

aχ,(n)
τ, j =


τ

R(n)
2

−
k0Hτ+1

(
k0R(n)

2

)
Hτ

(
k0R(n)

2

) , j = 0

τ

R(n)
2

−
k jKτ+1

(
k jR

(n)
2

)
Kτ

(
k jR

(n)
2

) , j ̸= 0
, (A10)

bχ,(n)
τ, j =


τ

R(n)
2

−
k(1)0 Jτ+1

(
k(1)0 R(n)

2

)
Jτ

(
k(1)0 R(n)

2

) , j = 0

τ

R(n)
2

+
k(1)j Iτ+1

(
k(1)j R(n)

2

)
Iτ
(

k(1)j R(n)
2

) , j ̸= 0
, (A11)

cχ,(n)
τ, j =


τ

R(n)
2

−
k(1)0 Hτ+1

(
k(1)0 R(n)

2

)
Hτ

(
k(1)0 R(n)

2

) , j = 0

τ

R(n)
2

−
k(1)j Kτ+1

(
k(1)j R(n)

2

)
Kτ

(
k(1)j R(n)

2

) , j ̸= 0
, (A12)

dχ,(n)
τ, j =


|τ|

R(n)
2

, j = 0

τ

R(n)
2

+
k(2)j Iτ+1

(
k(2)j R(n)

2

)
Iτ
(

k(2)j R(n)
2

) , j ̸= 0
, (A13)

eχ,(n)
τ, j =


− |τ|

R(n)
2

,τ ̸= 0; 1
R(n)

2

,τ = 0, j = 0

τ

R(n)
2

−
k(2)j Kτ+1

(
k(2)j R(n)

2

)
Kτ

(
k(2)j R(n)

2

) , j ̸= 0
. (A14)

Substitute the spatial potentials in Eqs.(13)-(21) into
Eqs.(23), (24) and (26), then after multiplying both sides
by e−imθnZ(q,n)

l (z) and integrating for θn ∈ [0,2π] and z ∈[
−h,−d(n)

3

]
,
[
−h,−d(n)

2

]
,
[
−d(n)

1 ,0
]
, we get:

∞

∑
j=0

[
Dχ

m, jd
′χ,(n)
m, j +Eχ

m, je
′χ,(n)
m, j

]∫ −d(n)3
−h Z(2,n)

0 (z)Z(3,n)
l (z)dz

= Fχ

m,l
∫ −d(n)3
−h

[
Z(3,n)

l (z)
]2

dz,

(A15)

[
Dχ

m,ld
′′χ,(n)
m,l +Eχ

m,le
′′χ,(n)
m,l

]∫ −d(n)2
−h

[
Z(2,n)

l (z)
]2

dz

= Fχ

m,0
|m|
R(n)

3

∫ −d(n)3
−h Z(3,n)

0 (z)Z(2,n)
l (z)dz

+
∞

∑
j=1

Fχ

m, j

(
m

R(n)
3

−
k(3)j Im+1

(
k(3)j R(n)

3

)
Im
(

k(3)j R(n)
3

)
)∫ −d(n)3

−h Z(3,n)
j (z)Z(2,n)

l (z)dz,
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[
Bχ

m,lb
′χ,(n)
m,l +Cχ

m,lc
′χ,(n)
m,l

]∫ 0

−d(n)1

[
Z(1,n)

l (z)
]2

dz = 0, (A17)

d
′χ,(n)
m, j =


(

R(n)
3

R(n)
2

)|m|
, j = 0

Im
(

k(2)j R(n)
3

)
Im
(

k(2)j R(n)
2

) , j ̸= 0
, (A18)

e
′χ,(n)
m, j =




(

R(n)
3

R(n)
2

)−|m|
, m ̸= 0

1+ ln
(

R(n)
3

R(n)
2

)
, m = 0,

, j = 0

Km

(
k(2)j R(n)

3

)
Km

(
k(2)j R(n)

2

) , j ̸= 0

, (A19)

d
′′χ,(n)
m, j =


|m|
(

R(n)
3

)|m|−1

(
R(n)

2
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mIm
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)
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3 Im
(
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(A20)

e
′′χ,(n)
m, j =
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(
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3

)−|m|−1

(
R(n)

2

)−|m| ,m ̸= 0; 1
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3

,m = 0, j = 0
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(
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3

)
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3 k(2)j Km+1

(
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(A21)

b
′χ,(n)
m, j =


mJm

(
k(1)0 R(n)

1

)
−R(n)

1 k(1)0 Jm+1
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1

)
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1 Jm

(
k(1)0 R(n)

2

) , j = 0
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)
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(A22)

c
′χ,(n)
m, j =


mHm

(
k(1)0 R(n)

1

)
−R(n)

1 k(1)0 Hm+1

(
k(1)0 R(n)

1

)
R(n)

1 Hm

(
k(1)0 R(n)

2

) , j = 0

mKm

(
k(1)j R(n)

1

)
−R(n)

1 k(1)j Km+1

(
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1

)
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1 Km

(
k(1)j R(n)

2

) , j ̸= 0
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(A23)

For the radiated spatial potentials due to float oscillation
of all the floats in six freedom, similar expressions can also
be derived. Derivation shows that the diffracted and radiated
spatial potentials share the same M and J order linear complex
coefficient matrix, hence wave diffraction and wave radiation
problems can be solved simultaneously.



20

B. The brief derivation and the final complicated formulae
for calculation of forces and moments

(1) For j = 1,2, Fn, j
χ can be expressed as

Fn, j
χ =−πω2ρ×

R(n)
1

[
P0

tanh
(

k(1)0 d(n)1

)
k(1)0

+P1
tan
(

k(1)j d(n)1

)
k(1)j

]

+R(n)
2

 Q0
sinh

[
k0

(
h−d(n)1

)]
−sinh

[
k0

(
h−d(n)2

)]
k0 cosh(k0h)

+Q1
sin
[
k j

(
h−d(n)1

)]
−sin

[
k j

(
h−d(n)2

)]
k j cos(k jh)


+R(n)

3

[
Y0√

2

(
d(n)

3 −d(n)
2

)
+Y1

sin
[
k(2)j

(
h−d(n)3

)]
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(
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when χ = ‘D’ and j = 1,2, f n, j
D can be expressed as

f n, j
D = 1

k0 cosh(k0h)
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when χ = ‘p,i’ and j = 1,2, f n, j

p,i can be expressed as
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(2) For j = 3, Fn, j
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Ta =
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when χ = ‘D’ and j = 3, f n, j
χ vanishes; when and χ = ‘p,i’, f n, j

χ can be expressed as
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(3) For j = 4,5, Fn, j
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when χ = ‘D’ and j = 4,5, f n, j
D can be expressed as:
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when χ = ‘p,i’ and j = 4,5, f n, j
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where fc = i j+1πω2ρ
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C. Displacement constraint matrix

AJ =



1 0 0 0 0 −Lcos π

6 −1 0 0 0 0 −Lsin π

3 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 Lsin π

6 0 −1 0 0 0 −Lcos π

3 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 Lsin π

3 −Lcos π

3 0 0 0 −1 Lcos π

6 Lsin π

6 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 −Lcos π

6 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 Lsin π

6 0 0 0 0 0 0 0 −1 0 0 0 L 0 0 0 0 0 0

0 0 1 Lsin π

3 −Lcos π

3 0 0 0 0 0 0 0 0 0 −1 0 −L 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0

1 0 0 0 0 −Lcos π

6 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0

0 1 0 0 0 Lsin π

6 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0

0 0 1 Lsin π

3 −Lcos π

3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1


where L = 50√

3
m is the distance between the centre of the platform and the centre of the column in the Oxy plane.
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