Depression in the Times of COVID-19: A Machine Learning Analysis Based on the Profile of Mood States

PALOMINO, MARCO

https://pearl.plymouth.ac.uk/handle/10026.1/20774

10.14746/amup.9788323241775
Adam Mickiewicz University Press

All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author.
Depression in the Times of COVID-19: A Machine Learning Analysis Based on the Profile of Mood States

Marco A. Palomino†, Rohan Allen†, Aditya Padmanabhan Varma‡

†School of Engineering, Computing and Mathematics (SECaM), University of Plymouth
marco.palomino@plymouth.ac.uk; rohan.allen-13@students.plymouth.ac.uk
‡Department of Computer Science and Engineering, Chalmers University of Technology
vaditya@chalmers.se

Abstract

As the COVID-19 pandemic continues to unfold, a parallel outbreak of fear and depression is also spreading around, impacting negatively on the well-being of the general public and health care workers alike. In an attempt to develop tools to expedite mental health diagnosis, we have looked into emotion analysis and recognition, as this has become indispensable to understand and mine opinions. We have produced a machine learning classifier capable of identifying one of the moods most commonly associated with COVID-19: depression. To analyse how moods and emotions conveyed about COVID-19 have changed in the public discourse over time, we have gathered two Twitter collections—one from 2020 and one from 2022. Our initial findings indicate that fear and depression remain attached to the COVID-19 discourse over the span of two years. Our insights can aid the design of strategic choices concerning the well-being of people in the UK and worldwide.

Keywords: Sentiment analysis, opinion mining, Twitter, machine learning, COVID-19, profile of mood states

1. Introduction

An outbreak of pneumonia reported in Wuhan, China, in December 2019, quickly spread worldwide, and the thousands of deaths caused by it led the World Health Organization (WHO) to declare a pandemic on 11 March 2020 (Ciotti et al., 2020). While adults, particularly men, were at greater risk of developing a serious illness as a consequence of such a coronavirus disease (COVID-19), studies have shown that the pandemic has affected women, young adults, and the unemployed the hardest in terms of mental health (Imran et al., 2020; Piefferbaum and North, 2020; Benjamin et al., 2021; O’Connor et al., 2021). Regrettably, these groups also developed frequently both physiological and behavioural symptoms associated with distress (O’Connor et al., 2021; Shader, 2020).

Although a decrease in psychological well-being has been observed in the general public due to COVID-19, and higher levels of psychiatric symptoms have been found among health care workers (Vindegaard and Benros, 2020), those who have sought help have experienced serious delays in being treated (Papautsky et al., 2021). A major goal of our work in the long run is to develop tools to expedite mental health diagnosis. Thus, we would like to delve deeper into the subject of emotion recognition (Koolagudi and Rao, 2012) and sentiment analysis (Liu, 2012), as they have become indispensable to understand and mine opinions (Sun et al., 2017).

In April 2020, approximately a month after the first national-wide COVID-19 lockdown in the UK was announced, we launched an investigation on the emotions expressed on social media to understand the feelings of the general public. We concentrated on Twitter (Murthy, 2018), the micro-blogging platform. To assess the evolution of the emotions expressed about COVID-19 over time, we gathered a second collection of tweets in March 2022.

Then, we processed our two collections of tweets to extract insights into the feelings and emotions expressed by Twitter users. We expect the insights derived from our study to aid in the decision-making of strategic choices concerning the mental health of the population—especially, as a considerable amount of fear, sadness, and depression was conveyed on the tweets that we retrieved.

The reminder of this paper is organised as follows. We will summarise the related work in Section 2. Afterwards, we will describe the corpora that we used for our experiments in Section 3. We will also employ Section 3 to report on the implementation of our machine learning classifier. Section 4 will present our results and, finally, Section 5 will outline our conclusions.

2. Related Work

The availability of large language-based datasets has allowed us to improve the identification and understanding of mental health issues through the study of words (Tausczik and Pennebaker, 2010; Pennebaker et al., 2003). A great deal of research has demonstrated that word use is a reliable indicator of a person’s psychological state (Chung and Pennebaker, 2011). Recognising the emotions expressed by words in pieces of text has earned significance, as an alternative to assess the well-being of people—for example, when attempting to prevent suicide (Desmet and Hoste, 2013). Two of the most notable works on this field, which deserve careful consideration, are Ekman’s basic emotion model (Ekman, 1992) and Plutchik’s bipolar emotion model (Plutchik and Kellerman, 2013). Although Ekman’s and Plutchik’s are well-regarded models, and we would like to look into them in the future, we will not pursue them in our current investigation. Ekman studied facial expressions, but facial recognition is beyond the scope of our project, as we do not have the equipment to pursue it.
Plutchik, on the other hand, considered eight basic, pairwise, contrasting emotions: joy vs. sadness, trust vs. disgust, fear vs. anger, and surprise vs. anticipation (Plutchik, 1980). Even though we plan to widen the range of emotions analysed by our classifiers as our research progresses, the lack of annotated training collections complicates any attempts to implement Plutchik’s model.

As depression is a state of mood often associated with COVID-19 (Renaud-Charest et al., 2021; Johns et al., 2022), we wanted to have a classifier capable of detecting depression. Hence, we opted for the Profile of Mood States (POMS) (Norcross et al., 1984), which is a psychological test for assessing an individual’s mood state (Berger and Motl, 2000). POMS was formulated by McNair et al. (McNair et al., 1971) and it contemplates depression. This made it particularly relevant to our work. We will elaborate below on the details of our implementation of POMS.

We were keen on testing approaches that depart from the traditional methods followed by sentiment analysis, which use lexicons and bag-of-words models (Rudkowsky et al., 2018). We are aware of the improvements reported by researchers who have worked with sequences of characters, without pre-processing the text that becomes the input of a recurrent neural network (RNN). For instance, Colnerič and Demšar (Colnerič and Demšar, 2018) implemented one of such approaches and used it to classify tweets into emotional categories.

Following Colnerič and Demšar’s example, we have implemented our own POMS classifier. However, we only used characters that occurred in the training set 25 times or more, and we removed emoticons and other symbols that were not part of the tweets in our corpus.

3. Materials and Methods

As a testbed for our experiments, we gathered 409,761 tweets about COVID-19 on 22 April 2020, and we will refer to this corpus hereafter as the 2020 Corpus. We chose 22 April 2020, because it was when the then UK Foreign Secretary, Dominic Raab, delivered a press briefing to address the Government’s response to COVID-19, and he highlighted the use of a vaccine for the first time.

The British press started to cover news about a COVID-19 vaccine at the start of April 2020, when the first human trials began in Europe (Walsh, 2020). A significant investment was made on these trials; therefore, we assumed that the briefing on 22 April 2020 would spark off the discussion on Twitter. We thought this would be an ideal moment to capture tweets with a strong sentiment attached to them, either in the form of Government’s criticism or concern for the prevailing situation. We expected the briefing to begin at around 16:30; hence, we started the retrieval of tweets a couple of hours prior to the beginning of the briefing, and kept it going for a couple of hours after the end of the briefing. To be precise, we captured our first tweet at 14:24:39, and the last one at 18:56:27.

To ensure that we were capturing information about COVID-19, we looked specifically for tweets comprising the hashtags listed in Table 1. Note that Table 1 also displays the number of tweets retrieved for each hashtag.

<table>
<thead>
<tr>
<th>Hashtag</th>
<th>Number of tweets</th>
</tr>
</thead>
<tbody>
<tr>
<td>#covid19</td>
<td>238,432</td>
</tr>
<tr>
<td>#coronavirus</td>
<td>116,557</td>
</tr>
<tr>
<td>#stayhome</td>
<td>31,820</td>
</tr>
<tr>
<td>#covid19</td>
<td>11,068</td>
</tr>
<tr>
<td>#socialdistancing</td>
<td>6,510</td>
</tr>
<tr>
<td>#covid19</td>
<td>4,636</td>
</tr>
<tr>
<td>#covid2019</td>
<td>2,341</td>
</tr>
<tr>
<td>#flattenthecurve</td>
<td>2,124</td>
</tr>
<tr>
<td>#coronavirusoutbreak</td>
<td>2,058</td>
</tr>
<tr>
<td>#omicron</td>
<td>1,861</td>
</tr>
<tr>
<td>#vaccinated</td>
<td>1,211</td>
</tr>
</tbody>
</table>

Table 1: Hashtags used to retrieve the 2020 Corpus.

Figure 1 shows the number of tweets that we retrieved every 30 minutes. On average, we retrieved 81,952 tweets per hour between 14:24 and 19:24; yet, we retrieved more than 90,000 tweets per hour for the first three hours.

To assess how the emotion related to COVID-19 has changed from 2020 to 2022, we retrieved a second corpus, and we will refer to it as the 2022 Corpus. We started the retrieval of this Corpus on 24 March 2022, because this date marked the second anniversary of the announcement of the first nationwide lockdown in the UK (Johnson, 2022). There was potential for the anniversary to spike the volume of the COVID-19 discourse on Twitter.

We planned to gather as many tweets as we did in 2020. However, COVID-19 seems to have lost popularity as a Twitter topic recently. Hence, we were unable to gather as many tweets as we did before. We collected tweets for five consecutive days, from 24 March 2022 to 29 March 2022—the first tweet was collected on 24 March 2022 at 23:30:05, and the last one on 29 March 2022 at 00:30:07. While the retrieval of the 2020 Corpus lasted 4 hours, 31 minutes, and 48 seconds, and gathered 427,639 tweets, the second one spanned over 4 days, 13 hours, and 2 seconds, and gathered only 265,108 tweets. The size of the 2022 Corpus is only 62% of the size of the 2020 Corpus. However, it provides enough material to assess the evolution of the subject between 2020 and 2022.

To retrieve the 2022 Corpus, we looked for tweets comprising the hashtags listed in Table 2. We considered hashtags that were not part of the discourse in 2020 but have now emerged—for example, #longcovid, #omicron, #vaccinated, and #covididiots.
Hashtags used to gather the 2022 Corpus

<table>
<thead>
<tr>
<th>Hashtag</th>
<th>Number of tweets</th>
</tr>
</thead>
<tbody>
<tr>
<td>#covid</td>
<td>182,686</td>
</tr>
<tr>
<td>#covid19</td>
<td>125,434</td>
</tr>
<tr>
<td>#longcovid</td>
<td>34,565</td>
</tr>
<tr>
<td>#covidisnotover</td>
<td>25,010</td>
</tr>
<tr>
<td>#omicron</td>
<td>15,608</td>
</tr>
<tr>
<td>#covid19</td>
<td>9,487</td>
</tr>
<tr>
<td>#mask</td>
<td>8,443</td>
</tr>
<tr>
<td>#sarscov2</td>
<td>8,429</td>
</tr>
<tr>
<td>#stayhome</td>
<td>6,627</td>
</tr>
<tr>
<td>#virus</td>
<td>2,950</td>
</tr>
<tr>
<td>#vaccinated</td>
<td>2,118</td>
</tr>
<tr>
<td>#covid19</td>
<td>2,032</td>
</tr>
<tr>
<td>#deltacron</td>
<td>1,320</td>
</tr>
<tr>
<td>#vaccinated</td>
<td>1,038</td>
</tr>
<tr>
<td>#cases</td>
<td>283</td>
</tr>
<tr>
<td>#deltacron</td>
<td>273</td>
</tr>
</tbody>
</table>

Table 2: Hashtags used to gather the 2022 Corpus.

3.1. Profile of Mood States (POMS)

POMS is a test to measure an individual’s mood (Curt-
ran et al., 1995). POMS is relevant to clinical and social
psychology. POMS specifies 65 adjectives that are rated
by the individual on a five-point scale. Each adjective con-
tributes to one of seven categories: anger, confusion, de-
pression, fatigue, friendliness, tension, and vigour.

Given that POMS can recognise depression, it became
ideal for our work, as depression is commonly associated
with COVID-19 (Renaud-Charest et al., 2021). Adjectives
such as unworthy, miserable or gloomy used to describe a
person’s feelings contribute to classify her mood within the
depression category (Mackenzie, B. 2022). Also, we
removed friendliness, as Norcross et al. have found that the
adjectives corresponding to it are too weak to ensure a valid classification (Norcross et al., 1984). We com-
plemented the model with other adjectives suggested by the
BrianMac Sports Coach website (Mackenzie, B. 2022).

Table 3 shows the full list of adjectives that we employed
to identify each of the mood states under consideration.

For the implementation of our classifier, we experi-
mented with the following options: SVM (Noble, 2006),
Naive Bayes (Berrar, 2018), logistic regression (Klein-
baum et al., 2002), random forests (Blau, 2012)—the
number of trees was selected using linear search—and
long short term memory (LSTM) (Nowak et al., 2017).

To train our classifier, we used Colnerič and De-
sčar’s training set, which is based on a corpus comprising 73 bil-
lion tweets annotated using distant supervision (Colnerič
and Demšar, 2018). The corpus was collected between
August 2008 and May 2015, and it is split into training (60%), validation (20%) and test (20%) sets. Colnerič and
Dešmar’s corpus is considerably larger than other options,
such as Mohammad and Kiritchenko’s corpus (Moham-
mad and Kiritchenko, 2015). Unfortunately, the random
forest was so slow that we were only able to build forests
with a maximum of 100 trees. Training 100 trees using bi-grams took longer than a day on Google Colab.

Results

A common metric to estimate the overall sentiment ex-
pressed towards a topic on social media is the net senti-
ment rate (NSR). While the NSR was developed for dig-
ital marketing, it has been successfully applied to other
fields, for example, Palomino et al. (Palomino et al., 2016)
have applied it to public health studies. The NSR is de-
finite as the difference between the number of positive
conversations—positive tweets—and the number of nega-
tive conversations—negative tweets—divided by the total
number of conversations—total number of tweets:

\[
NSR = \frac{\text{Positive tweets} - \text{Negative tweets}}{\text{Total number of tweets}}.
\]
We selected SentiStrength (Thelwall et al., 2010) to determine the sentiment expressed on the tweets constituting our experimental corpus. SentiStrength estimates the strength of positive and negative sentiment in short texts, such as tweets, using methods to exploit the *de-facto* grammars and spelling styles of the informal communication that regularly takes place in social media, blogs and discussion forums (Thelwall et al., 2012).

The NSR values for both the 2020 Corpus and the 2022 Corpus are negative: -0.32% and -0.37%, respectively, reflecting the negative nature of the corpus as a whole. Figure 2 displays the percentages of positive, negative and neutral tweets in the 2020 Corpus and the 2022 Corpus, according to SentiStrength. Because the size of the 2020 Corpus differs from the size of the 2022 Corpus, Figure 2 displays percentages, as opposed to absolute values. As shown in Figure 2, the distribution of the polarities in the 2020 Corpus and the 2022 Corpus is very similar.

![Figure 2: Polarity of the experimental corpus.](image)

Using POMS, we assigned each tweet in the corpus a probability associated with each of the moods under consideration. Figure 3 displays the addition of the probabilities for each mood to occur in each of the tweets. Because the size of the 2020 Corpus differs from the size of the 2022 Corpus, Figure 3 displays percentages, instead of absolute values. Clearly, depression dominates the experimental corpora—the presence of the rest of the emotions appears minimal. Additionally, the percentages of all moods are utterly similar, despite of the year.

![Figure 3: Moods according to POMS.](image)

Research has found that the rates of depression have doubled since the pandemic began (Khubchandani et al., 2021; Seal et al., 2022). An increase in depression commonly accompanies large-scale disasters, whether natural or environmental (Galea et al., 2020).

5. Conclusions

We have applied machine learning to analyse tweets about COVID-19 recorded at two different points in time. Our analysis provides practical insights to aid in the decision-making of strategic choices concerning the well-being of the population. The advantages of using POMS to identify depression have been discussed, and we expect to start the search for other models that are applicable to expedite mental health diagnosis.

6. References

Mackenzie, B, 2022. Scoring for POMS. https://www.brianmac.co.uk/pomscore.htm

