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Stabilization of physical systems via saturated

controllers with partial state measurements
Pablo Borja, Member, IEEE Carmen Chan-Zheng, and Jacquelien M.A. Scherpen, Fellow, IEEE

Abstract— This paper provides a constructive passivity-based
control approach to solve the set-point regulation problem for
input-affine continuous nonlinear systems while considering
bounded inputs. As customary in passivity-based control,
the methodology consists of two steps: energy shaping and
damping injection. In terms of applicability, the proposed
controllers have two advantages concerning other passivity-
based control techniques: (i) the energy shaping is carried
out without solving partial differential equations, and (ii)
the damping injection is performed without measuring the
passive output. As a result, the proposed methodology is
suitable to control a broad range of physical systems, e.g.,
mechanical, electrical, and electro-mechanical systems, with
saturated control signals. We illustrate the applicability of
the technique by designing controllers for systems in different
physical domains, where we validate the analytical results via
simulations and experiments.

Index Terms— Passivity-based control, saturation, port-
Hamiltonian systems, Brayton-Moser equations, dynamic ex-
tension, damping injection.

I. INTRODUCTION

The behavior of a physical system is ruled by its energy,
the interconnection pattern among its elements, its dissi-
pation, and the interaction with its environment. These
components are the main ingredients of passivity-based
control (PBC). Hence, this control approach arises as a
natural choice to control a wide variety of physical systems
while taking into account conservation laws and other
physical properties of the system under study see, for
instance, [26], [27], [11], [31].

Due to its versatility, PBC has proven to be a powerful
control approach to solve different problems, such as set-
point regulation or trajectory tracking [26], [27], [30].
However, the implementation of these controllers may be
hampered by physical limitations such as the operation
ranges of the actuators or unavailable state measurements
due to the lack of sensors. To address these issues, we
propose a PBC approach suitable to stabilize a class of
passive systems, where the controller is saturated and does
not require full state measurements. These properties can
be helpful to protect the actuators of the system, to avoid
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undesired oscillations, or to deal with the lack of sensors
to measure specific elements of the state.

The injection of damping into the closed-loop is es-
sential to guarantee that the system converges to the
desired configuration. However, the signals involved in
this process are not always measurable, e.g., velocities
in mechanical systems. In this regard, observers offer a
solution to this problem; we refer the reader to [33] for
the port-Hamiltonian (pH) approach and [32] for a class
of mechanical systems. Nevertheless, the implementation
of observers in nonlinear systems can hinder the stability
analysis of the closed-loop system. In this work, we avoid
the use of observers by proposing a new state vector, the
dynamics of which are designed to inject damping into
the closed-loop system using only measurable signals. For
mechanical systems, a similar method to inject damping
while avoiding velocity measurements is adopted in [19],
[24] for the Euler-Lagrange (EL) approach and in [8], [35]
for the pH framework. In this paper, we generalize the
results reported in [35] to passive systems in different
physical domains, not necessarily in the pH approach.
Some differences between the methodology proposed in
this paper and the results reported in [19], [24], [8] are:

(i) The proposed controllers can handle input saturation.
(ii) The use of the open-loop dissipative terms to improve

the transient response of the closed-loop system. In
particular, in mechanical systems, we exploit the
natural damping to modify the damping of the closed-
loop system without measuring velocities.

(iii) The methodology encompasses, in addition to the EL
and pH approaches, other representation of passive
systems, such as systems presented by the Brayton-
Moser equations.

Some examples of nonlinear control techniques that deal
with the saturation problem for mechanical systems are
[1], [6], [12], [18], [22], [23], [35]. Our approach differs from
the mentioned references in the following aspects:

(i) We propose a PBC approach that is suitable to
stabilize a broad class of physical (passive) systems.
This contrasts with the mentioned references, where
the controllers are designed for specific systems or
particular physical domains.

(ii) The proposed controllers are suitable to consider the
natural dissipation terms and exploit them to improve
the performance of the closed-loop system. None of
the mentioned references (except for [35]) study this
problem.
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(iii) In contrast to [6], [22], [23], we consider underactuated
systems.

(iv) The proposed methodology does not require any
change of coordinates during the control design.

The main contributions of this paper are:

C1 We present a generalized framework for controlling
passive systems, i.e., we consider input-affine non-
linear passive systems. This class of systems encom-
passes, but is not limited to, some popular modeling
approaches, such as the pH framework or the EL
formalism. Hence, we provide a method to stabilize
nonlinear systems in different physical domains and
whose models are not restricted to a particular mod-
eling approach.

C2 We propose a method that considers input saturation
without jeopardizing the stability of the closed-loop
system nor increasing the stability analysis complex-
ity. Consequently, the class of systems that can be
stabilized is not reduced by considering saturated
inputs.

C3 We propose an approach to exploit natural dissipa-
tion to improve the performance of the closed-loop
system. Moreover, this approach does not destroy the
saturation of the controllers.

C4 We provide the analysis of particular cases of interest,
such as mechanical systems and electrical circuits,
where the controllers are designed without solving
partial differential equations (PDEs).

In addition, we stress that the proposed framework is
intended for real-world applications. Hence, the resulting
controllers can be tailored to address implementation is-
sues without increasing the complexity of their design or
understanding.

The remainder of this paper is organized as follows: we
provide some preliminaries and the problem setting in
Section II. Then, Sections III and IV are devoted to
the control design, where we report our main results.
Particular cases of interest are studied in Section V. Three
relevant examples are provided in Section VI. Concluding
remarks and future work are given in Section VII.

Caveat: to ease the readability and simplify the notation
in the proofs contained in this paper, when clear from the
context, we omit the arguments of the functions.

Notation: we denote the n × n identity matrix as In.
The symbol 0 denotes a vector or matrix of appropriate
dimensions whose entries are zeros. The symbols diag{}
and block{} are used to denote diagonal and block di-
agonal matrices, respectively. Consider a vector x ∈ R

n,
a smooth function f : R

n → R, and the mappings
F : R

n → R
m, G : R

n → R
n×m. We define the

differential operator ∇xf := ∂f
∂x

and ∇2
xf := ∂2f

∂x2 . The
ij−th element of the n × m Jacobian matrix of F (x) is
given by (∇xF )ij :=

∂Fj

∂xi
. We omit the subindex in ∇

when it is clear from the context. Given the distinguished
element x⋆ ∈ R

n, we define the constant vectors F⋆ :=
F (x⋆) ∈ R

m, (∇f)⋆ := ∇xf(x)|x=x⋆
, and the constant

matrices G⋆ := G(x⋆) ∈ R
n×m, (∇F )⋆ := ∇xF (x)|x=x⋆

.

We denote the Euclidean norm as ‖x‖, i.e., ‖x‖ =
√
x⊤x,

and the weighted Euclidean norm as ‖x‖A :=
√
x⊤Ax,

where A ∈ R
n×n is positive (semi-)definite, i.e., A ≻ 0

(A � 0). The symbol ei denotes the ith element of the
canonical basis of Ra, where the context determines a, i.e.,
ei is a column vector such that its i-th element is one and
the rest are zero.

II. PRELIMINARIES AND PROBLEM SETTING

Consider the input-affine nonlinear system

ẋ = f(x) + g(x)u (1)

where x ∈ X ⊆ R
n is the state vector, u ∈ R

m is the
input, with m ≤ n, f : X → R denotes the so-called drift
vector field, g : X → R

n×m is the input matrix, which
satisfies rank{g(x)} = m for all x ∈ X .

A broad class of physical systems, in different domains,
can be described by the dynamics given in (1). In this
work, we are interested in the design of controllers that
solve the set-point regulation problem for a class of
nonlinear systems which admit the representation (1).
Therefore, we aim to ensure that the closed-loop system
has an asymptotically stable equilibrium at the desired
point. Accordingly, the first step to formally formulate
the control problem is to identify which points can be
assigned as equilibria for the closed-loop system. Towards
this end, we define the set that characterizes the assignable
equilibria for the system (1), which is given by

E :=
{

x ∈ X |g⊥(x)f(x) = 0
}

, (2)

where g⊥ : X → R
(n−m)×n is the left annihilator of g(x),

i.e., g⊥(x)g(x) = 0.

There exist several nonlinear control design techniques
that solve the set-point regulation problem. However, the
implementation of these techniques is sometimes ham-
pered by physical limitations, which are not considered
by the controller. Two common problems that hinder the
practical implementation of such controllers are:

• The lack of sensors to measure some relevant signals,
for instance, the passive output, which is often neces-
sary to inject damping into the closed-loop system.

• The necessity of saturated control signals to ensure
the safety of the equipment or to avoid undesired
transient behaviors due to the limited working range
of the actuators.

The objective of this work is to propose controllers that
regulate physical systems at the corresponding desired
point while overcoming the issues mentioned above. Below
we set the control problem.

Problem formulation. Given the system (1), propose a
systematic control design approach such that:

• The closed-loop system has a locally asymptotically
stable equilibrium at the desired equilibrium x⋆ ∈ E .
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• The elements of the control law u are saturated, i.e.,
ui ∈ [Umin,Umax], where the limits of the interval are
bounded and can be chosen.

• The controller injects damping into the closed-loop
system without measuring the passive output.

III. CONTROL DESIGN

Developing a general control design approach to stabilize
systems that admit the representation given in (1) is,
at best, a challenging task. Nonetheless, when dealing
with physical systems, we can take advantage of some of
their inherent properties. In particular, in this work, we
restrict our attention to passive systems because: (i) an
extensive variety of physical systems are passive, making
these systems relevant in real-world applications, and (ii)
passivity can be exploited for control purposes. Moreover,
the resulting controllers have a physical interpretation in
most cases. A thorough exposition of passive and cyclo-
passive systems can be found in [14], [30]. Here, for the
sake of completeness, we provide the following definition
of passive and cyclo-passive systems.

Definition 1: The system (1) is said to be passive if there
exists a function S : Rn → R+, called the storage function,
and a signal y ∈ R

m, refer to as the passive output, such
that for all initial conditions x(0) = x0 ∈ R

n the following
inequality holds

S(x(t)) ≤ S(x0) +

∫ t

0

u⊤(s)y(s)ds. (3)

Moreover, (1) is said to be cyclo-dissipative if the storage
function is not necessarily nonnegative, i.e., S : Rn → R.

Energy and dissipation play an essential role in the behav-
ior of (cyclo-)passive systems. Consequently, energy-based
controllers, such as the ones derived from PBC techniques,
represent a suitable choice to control physical passive sys-
tems while preserving some physical intuition during the
control design process. In this section, we develop a PBC
approach that complies with the requirements established
in Section II. Hence, the first step consists in proving that
the system to be controlled is (cyclo-)passive. To this end,
we characterize the input-affine nonlinear systems that are
cyclo-passive via the following assumption.

Assumption 1: Given the system (1), there exists S : X →
R such that

[∇S(x)]⊤ f(x) = −‖ℓ(x)‖2, (4)

where ℓ : X → R
r for some positive integer r.

Assumption 1 is closely related to Hill-Moylan’s theorem
[14], which provides necessary and sufficient conditions to
determine whether (1) is cyclo-passive or not. However, at
this point, the output of the plant has not been defined yet.
Thus, it is not possible to establish the (cyclo)-passivity
property of (1). The proposition below establishes that
Assumption 1 guarantees that (1) is cyclo-passive and pro-
vides the structure of the passive output y corresponding
to the storage function S(x).

Proposition 1: Consider the system (1) satisfying Assump-
tion 1, and some mappings w : X → R

r×m, D : X →
R
m×m. Then, Ṡ ≤ u⊤y, with

y = g⊤(x)∇S(x) + 2w⊤(x)ℓ(x) + [w⊤(x)w(x) +D(x)]u,
(5)

where D(x) = −D⊤(x).

Proof: Compute the derivative of S(x) along the
trajectories of (1), that is,

Ṡ = (∇S)
⊤

(f + gu)

= −‖ℓ‖2 + y⊤u− 2ℓ⊤wu− u⊤w⊤wu

= −‖ℓ+ wu‖2 + y⊤u ≤ y⊤u, (6)

where we used (5) and u⊤Du = 0.

Customarily, PBC techniques consist of two steps: first,
the so-called energy-shaping where the new energy—
storage—function is modified to have a minimum at the
desired equilibrium. Second, the damping injection into
the closed-loop system ensures that the trajectories con-
verge to the desired point. We present the following as-
sumption to characterize the class of systems for which the
controllers devised in this section can assign the desired
equilibrium to the closed-loop system and render it stable.

Assumption 2: Consider (1) satisfying Assumption 1, and
the desired equilibrium x⋆ ∈ E , with E defined in (2).
There exists γ : X → R

m such that

γ̇ = y

(∇S)⋆ + (∇γ)⋆ κ = 0

(

∇2S
)

⋆
+

m
∑

i=1

(∇γi)⋆ (∇γi)⊤

⋆ αiβi +
(

∇2
(

γ⊤κ
))

⋆
≻ 0.

(7)

where (·)⋆ denotes the function (·) evaluated at x = x⋆,
αi, βi are positive constants, and the constant vector κ ∈
R
m is defined as

κ := (g⊤

⋆ g⋆)
−1g⊤

⋆ f⋆. (8)

The systems characterized by Assumptions 1 and 2 are rel-
evant from a practical perspective because they encompass
many physical systems. Theorem 1 provides a saturated
controller that addresses the stabilization problem for
these systems.

Theorem 1: Suppose the system (1) and the desired equi-
librium x⋆ ∈ E, with E defined in (2), satisfy Assumptions
1 and 2. Consider the control law

u = −∇γΦ(γ(x)) − κ−
m

∑

i=1

eikpi
tanh(yi), (9)

where kpi
> 0, for i ∈ {1, . . . ,m}, and

Φ(γ(x)) :=

m
∑

i=1

αi
βi

ln (cosh(βi (γi(x) − γi⋆))) . (10)
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(i) The control signals satisfy

ui ∈ [−κi − kpi
− αi,−κi + kpi

+ αi].

(ii) The closed-loop system has a locally stable equilibrium
point at x⋆ with Lyapunov function

Sd(x) := S(x) + Φ(γ(x)) + κ⊤γ(x) + c (11)

where the constant c ∈ R is defined as

c := −S⋆ − Φ⋆ − κ⊤γ⋆.

(iii) The equilibrium is locally asymptotically stable if, on
a domain Ω ⊆ X containing x⋆,

ℓ = w (∇γΦ(γ(x)) + κ)
y = 0

}

=⇒ x = x⋆ (12)

Proof: To prove (i) note that

∇γΦ(γ(x)) =

m
∑

i=1

eiαi tanh(βi (γi(x) − γi⋆ )). (13)

Hence, the control law takes the form

ui = −κi − αi tanh(βi (γi(x) − γi⋆)) − kpi
tanh(yi).

Because the function tanh(·) is saturated, we have that

−κi − kpi
− αi ≤ ui ≤ −κi + kpi

+ αi. (14)

To prove (ii), we compute

Ṡd = −‖ℓ+ wu‖2 + y⊤u+ γ̇⊤∇γΦ + γ̇⊤κ

= −‖ℓ+ wu‖2 + y⊤ (u+ ∇γΦ + κ)

≤ y⊤ (u+ ∇γΦ + κ) (15)

which follows from (6) and (13). Moreover, substituting
(9) in (15) yields

Ṡd ≤ −y⊤

m
∑

i=1

eikpi
tanh(yi) = −

m
∑

i=1

kpi
yi tanh(yi) ≤ 0.

(16)

To prove that Sd(x) qualifies as a Lypunov function, note
that, from Assumption 2, we have the following

(∇Sd)⋆ = (∇S)⋆ + (∇γ)⋆ κ = 0, (17)

(

∇2Sd

)

⋆
=

m
∑

i=1

(∇γi)⋆ (∇γi)⊤

⋆ αiβi +
(

∇2
(

γ⊤κ
))

⋆

+
(

∇2S
)

⋆
≻ 0. (18)

Hence, x⋆ is a strict minimum of Sd(x). Moreover, Sd⋆
= 0

and (16) implies that Sd(x) is non-increasing. Thus, Sd(x)
is positive definite with respect to x⋆. Accordingly, x⋆ is
stable with Lyapunov function Sd(x).

To prove (iii), note that (15) and (16) yield

Ṡd = 0 ⇐⇒
{

ℓ+ wu = 0

y = 0.
(19)

However,

y = 0 =⇒ u = − (∇γΦ(γ(x)) + κ) .

Therefore,

Ṡd = 0 ⇐⇒
{

ℓ = w (∇γΦ(γ(x)) + κ)
y = 0.

Furthermore, x = x⋆ implies Ṡd = 0. Hence, (12) implies
that, on the domain Ω,

Ṡd = 0 ⇐⇒ x = x⋆.

Thus, the asymptotic stability of x⋆ follows by invoking
LaSalle’s invariance principle. See [21].

Note that the saturation limits of the control law (9) can
be adjusted by modifying the control parameters αi and
kpi

. Furthermore, we point out that the natural dissipation
plays an important role in the stabilization of the system.
In particular, we make the following remarks.

Remark 1: If ℓ⋆ 6= 0, then the desired equilibrium can be
assigned only by shaping the energy using a γ derived from
a passive output with relative degree zero. A proof of this
fact can be found in [3]. This phenomenon is called the
dissipation obstacle. We refer the reader to [25] for further
details on this topic.

Remark 2: If

ℓ = w (∇γΦ(γ(x)) + κ) =⇒ x = x⋆, (20)

then it is not necessary to inject damping into the closed-
loop system to ensure the asymptotic stability of the
desired equilibrium. Moreover,

u = −κ− ∇γΦ(γ(x))

solves the regulation problem. On the other hand, if ℓ = 0,
then (12) reduces to

y ≡ 0 =⇒ x = x⋆. (21)

In particular, when x⋆ = 0 and f(0) = 0, (21) becomes

y ≡ 0, u ≡ 0 =⇒ x = x⋆,

which is referred to as zero-state observability, see [30].
Note that (21) is more conservative than (12).

The control law (9) addresses the regulation problem and
ensures that the control signals are saturated, where the
damping is injected through the passive output. However,
the measurement of this signal is not always available,
e.g., in mechanical systems without velocity sensors. To
overcome this issue, we propose a modified control law
such that the damping injection does not require the
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measurement of y. To this end, we introduce the controller
state xc ∈ R

m, and we define the following mappings

zc(γ(x), xc) := γ(x) − γ⋆ + xc

Φc(zc(γ(x), xc)) :=
m

∑

i=1

αci

βci

ln (cosh(βci
zci

(γi(x), xci
))) ,

(22)
where αci

, βci
are positive constants. Without loss of

generality, we consider xc⋆
= 0. Moreover, to simplify the

notation, we omit the argument of zc.

The following theorem provides a saturated control law
that shapes the energy of the closed-loop system and
injects damping without measuring y.

Theorem 2: Suppose that the system (1) and the desired
equilibrium x⋆ ∈ E, with E defined in (2), satisfy As-
sumptions 1 and 2. Consider the positive definite matrices
Rc,Kc ∈ R

m×m, the dynamics1

ẋc = −Rc

[

m
∑

i=1

eiαci
tanh(βci

zci
) +Kcxc

]

, (23)

and the control law

u = −κ−
m

∑

i=1

eiαci
tanh(βci

zci
). (24)

(i) The control signals satisfy ui ∈ [−κi−αci
,−κi+αci

].
(ii) There exists Kc such that the closed-loop system has

a locally stable equilibrium point at (x⋆,0) with Lya-
punov function

Sdc
(x, xc) := S(x) + Φc(zc) + κ⊤γ(x) +

1

2
‖xc‖2

Kc
+ c,

(25)
where Φc(zc) is given in (22) and c is defined as in
Theorem 1.

(iii) The equilibrium is locally asymptotically stable if, on a
domain Ωc ⊆ X ×R

m containing (x⋆,0), the following
condition holds

ℓ = w (κ−Kcxc)
y = 0

}

=⇒
{

x = x⋆
xc = 0

(26)

Proof: To prove (i) note that

ui = −κi − αci
tanh(βci

zci
).

Thus
−κi − αci

≤ ui ≤ −κi + αci
. (27)

To prove (ii) note that

∇γΦc = ∇xc
Φc =

m
∑

i=1

eiαci
tanh(βci

zci
). (28)

Hence,

Ṡdc
= −‖ℓ+ wu‖2 + y⊤ (u+ κ) + ż⊤

c ∇xc
Φc + ẋ⊤

c Kcxc

= −‖ℓ+ wu‖2 − ‖ẋc‖2
R

−1

c
≤ 0 (29)

which follows from (6), (23), (24), and (28). We recall
that ‖ẋc‖R−1

c
denotes a weighted Euclidean norm, i.e.,

1where αci
and βci

satisfy (7).

‖ẋc‖2
R

−1

c
= ẋ⊤

c R
−1
c ẋc. Moreover, we adopt the notation

(·)⋆ to denote the function (·) evaluated at the desired
equilibrium (x⋆,0). Hence, zc⋆

= 0 and

(∇xSdc
)⋆ = (∇S)⋆ + (∇γ)⋆ κ. (30)

Therefore, from Assumption 2, (∇xSdc
)⋆ = 0. Moreover,

∇xc
Sdc

= ∇xc
Φc +Kcxc =⇒ (∇xc

Sdc
)⋆ = 0.

Consequently, (x⋆,0) is a critical point of Sdc
(x, xc). Fur-

thermore, some simple computations show that

(

∇2Sdc

)

⋆
=

[

(

∇2S
)

⋆
+

(

∇2
(

γ⊤κ
))

⋆
0

0 Kc

]

+

[

(∇γ)⋆

Im

]

m
∑

i=1

eie
⊤

i αci
βci

[

(∇γ)⊤

⋆ Im

]

.

(31)

Note that the block (1, 1) of
(

∇2Sdc

)

⋆
can be expressed

as
(

∇2Sd

)

⋆
; see (18). Thus, the blocks (1, 1) and (2, 2) of

(

∇2Sdc

)

⋆
are positive definite. Moreover, Kc is a control

parameter whose only restriction is to be positive definite.
Therefore, a Schur complement analysis shows that a
Kc large enough ensures that

(

∇2Sdc

)

⋆
≻ 0. Hence, an

appropriate selection of Kc ensures that Sdc
(x, xc) has a

strict minimum at (x⋆,0). Note that Sdc
(x⋆,0) is zero.

Therefore, the fact that (x, xc) is a strict minimum of
Sdc

(x, xc), together with (29), implies that Sdc
(x, xc) is

positive definite with respect to the equilibrium. Thus,
Sdc

(x, xc) is a Lyapunov function and the desired equi-
librium is locally stable.

To prove (iii) note that, from (29),

Ṡdc
= 0 ⇐⇒

{

ℓ+ wu = 0

ẋc = 0.

Note that, from (23) and (28),

ẋc = 0 =⇒ ∇xc
Φc +Kcxc = 0. (32)

Moreover, from (28), we compute

d

dt
(∇xc

Φc +Kcxc) =
m

∑

i=1

eiżci
αci

[sech(βci
zci

)]2 +Kcẋc,

where
żci

= γ̇i + ẋci
= yi + ẋci

.

Therefore, recalling that ẋc = 0, we have the following
chain of implications

∇xc
Φc +Kcxc = 0 =⇒ d

dt
(∇xc

Φc +Kcxc) = 0

=⇒
m

∑

i=1

eiyiαci
[sech(βci

zci
)]2 = 0 =⇒ y = 0, (33)

where the last implication is obtained noting that
[sech(βci

zci
)]2 is always positive. Moreover, (24) takes the

form u = −κ+ Kcxc. Hence, (26) implies that Ṡdc
= 0 if

and only if (x, xc) = (x⋆,0). Accordingly, the asymptotic
stability of the desired equilibrium point follows from
LaSalle’s invariance principle.
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In the control law (24), the damping is injected via the
controller state xc. In particular, we propose the specific
dynamics given in (23). This can be interpreted as a filter;
see [24] and [9]. In contrast to the mentioned references,
we extend this approach to a more general class of sys-
tems, i.e., input-affine nonlinear systems, while considering
saturation in the inputs. Note that, as a consequence of
(33), the desired equilibrium is asymptotically stable if
(21) holds.

The saturated controllers developed in this section address
the regulation problem by shaping the energy of the
system and injecting damping either through the passive
output or the controller state xc. In both cases, the damp-
ing injection is closely related to the output port. However,
to improve the performance of the closed-loop system, it
may be necessary to inject damping into coordinates that
are not associated with y. In the following section, we
provide an alternative to address this issue.

IV. ON THE ROLE OF DISSIPATION

Dissipation is present in most physical systems. Nonethe-
less, the mathematical models that represent these systems
commonly neglect the dissipation inherent to them. This
section proposes a method to inject damping into the
coordinates with natural dissipation without measuring
them. This can be exploited to improve the convergence
rate of the closed-loop system or to remove an undesired
transient behavior, such as oscillations. Furthermore, this
approach can be instrumental when the system under
study exhibits poor damping propagation, resulting in a
slow convergence rate.

We characterize the systems for which this new type
of damping injection is suitable through the following
assumption.

Assumption 3: Given the passive output y ∈ R
m, there

exists η : X → R
s, with 1 ≤ s ≤ n − m, such that the

system (1) satisfies

[∇γ(x)]⊤ ∇η(x) = 0

−‖ℓ(x) + w(x)u‖2 = −‖η̇‖2
Λℓ(x) − ‖y‖2

Λc(x)

where γ̇ = y and Λℓ : X → R
s×s, Λc : X → R

m×m are
positive definite diagonal matrices.

Assumption 3 is related to the natural damping of the
system to be controlled. Some examples of systems that
satisfy this assumption are mechanical systems including
friction between surfaces and electrical circuits containing
resistors in series with inductors. To exploit the natural
damping in the control design, we introduce the virtual
state xℓ ∈ R

m, and the following mappings

zℓ(η(x), xℓ) := Υ [η(x) − η⋆] +Kℓxℓ

Φℓ(η(x), xℓ) :=

m
∑

i=1

αℓi

βℓi

ln (cosh(βℓi
zℓi

(η(x), xℓ))) (34)

where the constant matrix Υ ∈ R
m×s satisfies rank{Υ} =

min{m, s}, Kℓ ∈ R
m×m is a diagonal positive definite

matrix, and αℓi
, βℓi

are positive constant parameters.
Without loss of generality, we consider xℓ⋆

= 0. To
simplify the notation, we omit the argument from zℓ.

The following theorem provides a saturated control law
that shapes the energy and modifies the damping of the
coordinates that are naturally damped.

Theorem 3: Suppose that the system (1) and the desired
equilibrium x⋆ ∈ E, with E defined in (2), satisfy Assump-
tions 1–3. Consider the control law

u = −κ− ∇zℓ
Φℓ(zℓ) − ∇γΦc(zc), (35)

where Φc(zc) is defined in (22), Φℓ(zℓ) is defined in (34),
the dynamics of xc are given by (23), and

ẋℓ = −Rℓ
m

∑

i=1

eiαℓi
tanh(βℓi

zℓi
). (36)

(i) The control signals satisfy

ui ∈ [−κi − αℓi
− αci

,−κi + αℓi
+ αci

] .

(ii) There exist Kc, Kℓ, and Rℓ such that the closed-loop
system has a locally asymptotically stable equilibrium
point at (x⋆,0,0), with Lyapunov function

Sdℓ
(x, xℓ, xc) := Sdc

(x, xc) + Φℓ(zℓ),

with Sdc
(x, xc) defined in (25).

(iii) For an appropriate selection of Kℓ and Rℓ, the equi-
librium is locally asymptotically stable if, on a domain
Ωd ⊆ X ×R

m×R
m containing (x⋆,0,0), the following

condition holds

η̇ = 0

y = 0

ẋℓ = 0

ẋc = 0















=⇒







x = x⋆
xℓ = 0

xc = 0.
(37)

Proof: To prove (i) note that, from (28) and (34), the
control law (35) can be rewritten as

u = −κ−
m

∑

i=1

ei {αci
tanh (βci

zci
) + αℓi

tanh (βℓi
zℓi

)} .

Therefore,

−κi − αci
− αℓi

≤ ui ≤ −κi + αci
+ αℓi

.

To prove (ii) note that (36) can be rewritten as

ẋℓ = −Rℓ∇zℓ
Φℓ. (38)

Hence, from (29), (35), and Assumption 3, we have that2

Ṡdℓ
= −‖η̇‖2

Λℓ
− ‖y‖2

Λc
+ (żℓ − y)

⊤ ∇zℓ
Φℓ − ‖ẋc‖2

R
−1

c

= −‖η̇‖2
Λℓ

− ‖y‖2
Λc

− ‖ẋc‖2
R

−1

c
− ‖ẋℓ‖2

KℓR
−1

ℓ

+ (Υη̇ − y)
⊤ ∇zℓ

Φℓ

= −
[

η̇⊤ y⊤ ẋ⊤
ℓ

]

Θ
[

η̇⊤ y⊤ ẋ⊤
ℓ

]⊤

− ‖ẋc‖2
R

−1

c
. (39)

2Note that Rℓ and Kℓ are diagonal. Thus, their product commutes.
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where

Θ :=









Λℓ 0
1
2 Υ⊤R−1

ℓ

0 Λc − 1
2R

−1
ℓ

1
2R

−1
ℓ Υ − 1

2R
−1
ℓ KℓR

−1
ℓ .









(40)

Thus, Ṡdℓ
≤ 0 if Θ is positive semi-definite. Moreover, via

a Schur complement analysis, we get that Θ � 0 if and
only if

[

Λℓ 0

0 Λc

]

− 1

4

[

Υ⊤

−Im

]

K−1
ℓ R−1

ℓ

[

Υ −Im
]

� 0. (41)

Note that (41) holds for Kℓ and Rℓ large enough. Accord-
ingly, an appropriate selection of these matrices ensures
that Sdℓ

(x, xℓ, xc) is non-increasing. Similar to the proof
of Theorem 2, we adopt the notation (·)⋆ to denote the
function (·) evaluated at the desired equilibrium (x⋆,0,0).
Hence, zℓ⋆

= 0 and (∇zℓ
Φℓ)⋆ = 0. This, together

with (∇Sdc
)⋆ = 0—see the proof of Theorem 2—yields

(∇Sdℓ
)⋆ = 0. Furthermore,

(

∇2Sdℓ

)

⋆
=

(

∇2Sdc

)

⋆
+

(

∇2Φℓ
)

⋆
.

Some simple computations show that
(

∇2Φℓ
)

⋆
� 0 and,

using the arguments of the proof of Theorem 2, a Kc

large enough guarantees that
(

∇2Sdc

)

⋆
≻ 0. Therefore,

there exists Kc such that (x⋆,0,0) is a strict minimum for
the closed-loop storage function. Note that Sdℓ

(x⋆,0,0) =
0. Therefore, the closed-loop storage function is non-
increasing and positive definite with respect to the desired
equilibrium. Accordingly, Sdℓ

(x, xℓ, xc) qualifies as a Lya-
punov function and the closed-loop system has a stable
equilibrium at (x⋆,0,0).

To prove (iii), we consider Kℓ and Rℓ such that Θ ≻ 0.
Then, from (39),

Ṡdℓ
= 0 ⇐⇒















η̇ = 0

y = 0

ẋℓ = 0

ẋc = 0

Thus, (37) implies that, on Ωd, the desired equilibrium is
the only solution to Ṡdℓ

= 0. Consequently, the asymptotic
stability of the equilibrium follows by invoking LaSalle’s
invariance principle.

Remark 3: The stability properties of the equilibrium
points in Theorems 1–3 are global if the corresponding
Lyapunov function is radially unbounded, see [21].

In general, to ensure the existence of γ(x) in Assumption 2,
it is necessary to solve a PDE. However, in some particular
cases, γ(x) can be found by satisfying some algebraic
conditions. A thorough discussion on this topic is provided
in [2]. Notably, the well-defined structure of some physical
systems permits finding γ(x) without solving PDEs, as is
shown in Section V.

V. PARTICULAR CASES

The controllers developed in Sections III and IV are
devised to stabilize a rather general class of nonlinear

systems characterized by Assumptions 1–3. In principle,
such assumptions should be checked system by system.
However, in some particular cases of interest, these as-
sumptions always hold or can be straightforwardly veri-
fied. This section focuses on mechanical systems modeled
in the pH framework and electrical circuits represented
via the Brayton-Moser equations and how the mentioned
assumptions translate to these systems. We stress that
these modeling approaches encompass a broad range of
systems. See, [4], [5], [11], [16], [31].

A. Mechanical systems in the pH representation

Consider a standard mechanical system represented by




q̇

ṗ



 =





0 In

−In −D(q, p)









∇qH(q, p)

∇pH(q, p)



 +





0

G



 u,

H(q, p) :=
1

2
p⊤M−1(q)p+ V (q),

(42)
where:3

• q, p ∈ R
n represent the generalized positions and

momenta, respectively.
• V : R

n → R+ denotes the potential energy of the
system.

• The so-called inertia matrix M : Rn → R
n×n is pos-

itive definite. For further details on the computation
and properties of this matrix we refer the reader to
[20], [29].

• The Hamiltonian H : Rn × R
n → R+ is given by the

total energy of the system.
• The input matrix G ∈ R

n×m, with m ≤ n, is given

by G =
[

0 Im

]⊤

.

• D : R
n × R

n → R
n×n is a diagonal positive semi-

definite matrix that represents the system’s dissipa-
tion (damping).

The set of assignable equilibria for (42) is

EM :=
{

(q, p) ∈ R
n × R

n|G⊥∇V (q) = 0, p = 0
}

. (43)

We make the following observations about the system (42):

O1 It admits a representation of the form (1), with

f(x) =

[

0 In

−In −D(q, p)

] [

∇qH(q, p)

∇pH(q, p)

]

, g(x) =

[

0

G

]

.

O2 Some simple computations show that

Ḣ = −‖q̇‖2
D(q,p) + q̇⊤Gu.

Hence, Assumption 1 holds for S(x) = H(q, p), and
‖ℓ(x)‖2 = ‖q̇‖2

D(q,p). Moreover, the passive output is

given by y = G⊤q̇. Thus, γ(x) = G⊤q.
O3 In this case, κ = −G⊤ (∇V )⋆. Then, from (43), we

have (∇H)⋆ + (∇γ)⋆κ = 0.
O4 Since ℓ⋆ = 0, there is no dissipation obstacle.

3Without loss of generality, we consider that mechanical systems
have dimension 2n.
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O5 Since D(q, p) is diagonal, we can rewrite it as follows

D(q, p) = block {Du(q, p),Da(q, p)} ,

where Du : R
n × R

n → R
(n−m)×(n−m) and Da :

R
n×R

n → R
m×m are diagonal matrices. Accordingly,

if Da(q, p) has full rank and Du(q, p) has at least
one nonzero entry, Assumption 3 holds with Λc(x) =
Da(q, p), the diagonal matrix Λℓ(x) consists of all the
nonzero entries of Du(q, p), and η(x) is given by the
positions that satisfy qjDuj

(q, p) 6= 0, where

qj := e⊤
j q, Duj

(q, p) := e⊤
j Du(q, p)ej ,

for j ∈ {1, . . . , n−m}.

From the observations listed above, we conclude the con-
trollers developed in Sections III and IV stabilize (42) at
the desired equilibrium if

(

∇2V
)

⋆
+ G (diag{α1β1, . . . , αmβm})G⊤ ≻ 0,

(

D +GG⊤
)

q̇ = 0 =⇒
{

q = q⋆
p = 0.

(44)

1) Fully actuated mechanical systems: A mechanical system
such that n = m is said to be fully actuated. This subclass
of mechanical systems is of great interest in robotics as a
broad range of robotic arms satisfies the aforementioned
conditions.

When dealing with fully actuated mechanical systems, it
is possible to modify Theorem 2 to provide a stronger
result, i.e., a saturated controller that guarantees the
global asymptotic stability of the desired equilibrium while
avoiding velocity measurements. This controller is intro-
duced in the following proposition.

Proposition 2: Consider the system (42), with G = In, the
function Φc(γ(x), xc) given in (22), with γ(x) = q, and the
dynamics of xc provided in (23). Assume that ∇V (q) is
bounded. Then, the saturated control law

u = ∇V (q) − ∇qΦc(q, xc), (45)

ensures that (q⋆,0,0) is a globally asymptotically stable
equilibrium point of the closed-loop system with Lyapunov
function

Hd(q, p, xc) = Φc(q, xc)+
1

2
p⊤M−1(q)p+

1

2
x⊤

c Kcxc. (46)

Proof: Note that the closed-loop system takes the
form









q̇

ṗ

ẋc









=









0 In 0

−In −D 0

0 0 −Rc

















∇qHd

∇pHd

∇xc
Hd









with Hd defined in (46). Therefore

Ḣd = −‖q̇‖2
D − ‖∇xc

Hd‖2
Rc
.

Furthermore, some simple computations show that
(∇Hd)⋆ = 0 and

(

∇2Hd

)

⋆
≻ 0 for any Kc ≻ 0.

Accordingly, (q⋆,0,0) is a stable equilibrium point for the
closed-loop system.
To prove asymptotic stability, note that, following the

arguments given in the proof of Theorem 2, we have that
Ḣd = 0 implies ẋc = 0 and y = q̇ = 0. In particular, the
latter leads to M−1(q)p = 0. Hence,

p = ṗ = ∇qΦc = 0.

Moreover, since ∇xc
Φc = ∇qΦc and Kc is full rank, we

get that ẋc = 0 implies xc = 0. Hence,

∇qΦc =

n
∑

i=1

eiαci
tanh(βci

(q − q⋆ + xc)) = 0

implies q = q⋆. The proof is completed noting that
Hd(q, p, xc) is radially unbounded.

Remark 4: As a result of the comparison between the con-
trollers (24) and (45), we note that in the latter, the term
−κ is replaced with ∇V (q). The physical interpretation
of this is that the controller is canceling the effect of the
open-loop potential energy while assigning a new potential
energy function with a minimum at the desired position.
An example of this is the gravity compensation in robotic
arms.

2) Removing the steady-state error: Due to the complexity
of their characterization, some nonlinear phenomena, e.g.,
static friction and asymmetry in the motors, are often ne-
glected in the mathematical model of a mechanical system.
Nevertheless, these phenomena may affect the behavior of
the closed-loop system. In particular, steady-state errors
may arise. A common practice to deal with this problem
is adding an integrator of the position error or a filter.
However, it is necessary to ensure that the integrator–or
filter–does not jeopardize the stability of the closed-loop
system. Some solutions to this problem involve a change
of coordinates. See, for instance, [7], [10], [13]. However,
this may lead to controllers that depend implicitly on the
velocities. Here, we provide a condition that is sufficient
to ensure that the addition of the filter that deals with the
steady-state error does not affect the stability properties of
the closed-loop system. To this end, we propose a direct
application of the so-called Lyapunov’s indirect method,
see [21]. While this result is only local, it provides a simple
way to ensure the stability of the closed-loop system after
the addition of the integrator or filter without involving
changes of coordinates nor velocity measurements.

Consider the system (42), let ψ ∈ R
m be the state of

the filter, and fψ : R
m → R

m, Ψ : R
m → R

m×m be
differentiable functions. Consider the error q̃ := q − q⋆, a
filter with dyamics

ψ̇ = fψ(ψ) + Ψ(ψ)G⊤q̃, (47)

and the augmented state vector ζ := (q, p, xc, xℓ, ψ).
Hence,

ζ̇ = fζ(ζ, u) :=



















M−1(q)p

−∇qH(q, p) −D(q, p)M−1(q)p+Gu

−Rc (Kcxc + ∇xc
Φc(zc))

−Rℓ∇xℓ
Φℓ(zℓ)

fψ(ψ) + Ψ(ψ)G⊤q̃



















(48)
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where H(q, p), Φc(zc), and Φℓ(zℓ) are defined in (42),
(22), and (34), respectively. Moreover, some simple com-
putations show that ζ⋆ = (q⋆,0,0,0,0) is an assignable
equilibrium for the augmented system (48) if (q⋆,0) ∈ EM.
Let us modify the control law (35) as follows

u = −
n

∑

i=1

ei [αci
tanh (βci

(q̃ + xc)) + αℓi
tanh(βℓi

zℓi
)]

+G⊤ (∇qV )
⋆

+ uψ(ψ), (49)

where uψ : Rm → R
m is a new input related to the filter

(47). Thus, (48) in closed-loop with (49) can be expressed
as ζ̇ = fζcl

(ζ), with fζcl
: R2n+3m → R

2n+3m. Therefore,
it follows from Lyapunov’s indirect method that ζ⋆ is a
locally asymptotically stable equilibrium for the closed-

loop system if the linear system ˙̃ζ = (∇fζcl
)
⋆
ζ̃ is stable,

where ζ̃ := ζ − ζ⋆. At this point we make the following
observations:

O6 If fψ = 0 and Ψ(ψ) = Im, then (47) is an integrator.
Furthermore, by fixing uψ(ψ) = −ψ, we obtain a
classical integrator of the position error.

O7 If uψ(ψ) is saturated and (∇qV )
⋆

is bounded, then the
controller (49) is saturated. Then, a suitable choice is

uψ(ψ) = −
m

∑

i=1

eiαψi
tanh(βψi

ψi),

where αψi
and βψi

are positive constants.

Note that the results presented in this section can be
straightforwardly adapted to fully actuated mechanical
systems, where xc ∈ R

n, and xℓ is not necessary. Moreover,
for fully actuated mechanical systems, the approaches
proposed in [6], [22] remove the steady-state error via an
adaptive term that does not rely on the linearization of
the system.

B. Electrical circuits

In general, the pH approach is suitable to model electrical
circuits composed of passive components. Nevertheless,
the state variables of such models are fluxes and charges,
which most of the time are not measurable signals. A
solution to this problem is to represent the behavior of
the electrical networks via the Brayton-Moser equations,
where the state variables are voltages and currents. In
this section, we study the Brayton-Moser equations that
represent a broad class of electrical networks. Then, we
provide sufficient conditions to ensure that the controllers
developed in Sections III and IV are suitable for stabilizing
these systems. In particular, we provide conditions to
identify y and guarantee the existence of γ(x) without
solving PDEs. To this end, we restrict our attention
to topologically complete networks, which are introduced
below. For further discussion on this topic we refer the
reader to [34].

Definition 2 ([34]): A topologically complete network of
two-terminal voltage-controlled and current-controlled el-
ements has a graph that possesses a tree containing

all the capacitive branches and none of the inductive
branches. Moreover, each resistive tree branch corresponds
to a current-controlled resistor, and each resistive link
corresponds to a voltage-controlled resistor. Finally, the
location of the resistive branches is such that there is no
fundamental loop in which resistive branches appear as
both tree branches and as links.

Topologically complete networks can be split into two
subnetworks: one containing all the inductors and current-
controlled resistors and the other containing all the capaci-
tors and voltage-controlled resistors. In particular, we con-
sider a topologically complete electrical network consisting
of ς linear inductors, ̟ linear capacitors, and none con-
trolled nor constant source. Then, iL := [iL1

, · · · , iLς
]
⊤ ∈

R
ς represents the currents through the inductors, and

vC := [vC1
, · · · , vC̟

]
⊤ ∈ R

̟ denotes the voltages across
the capacitors, where ς + ̟ = n. Hence, the network can
be represented via the Brayton-Moser equations, see [4],
[5], as

−LdiL
dt

= ∇iL P̂ (iL, vC) + ĝLuL

C
dvC

dt
= ∇vC

P̂ (iL, vC) + ĝCuC

(50)

where the positive definite matrices L ∈ R
ς×ς and C ∈

R
̟×̟ denote the inductance and capacitance matrices,

respectively; the constant matrices ĝL ∈ R
ς×mς , ĝC ∈

R
̟×m̟ represent the voltage-related input matrix and the

current-related input matrix, respectively; and P̂ : R
ς ×

R
̟ → R denotes the so-called mixed-potential function,

which is given by

P̂ (iL, vC) := i⊤L ΓvC + P̂R(iL) − P̂G(vC), (51)

where:

• The matrix Γ ∈ R
ς×̟ determines the interconnection

between the inductors and capacitors of the system,
and all its entries are either 1, −1, or zero.

• The mappings P̂R : R
ς → R and P̂G : R

̟ → R are
the dissipative current-potential and the dissipative
voltage-potential, respectively, with4

P̂R(iL) :=

∫ 1

0

v⊤

R (iLs)iLds

P̂G(vC) :=

∫ 1

0

i⊤G (vCs)vCds,

(52)

where vR : R
ς → R

ς , iG : R
̟ → R

̟, vR(0) = 0,
iG(0) = 0, and

i⊤L vR(iL) ≥ 0, ∇vR(iL) � 0 ∀ iL ∈ R
ς

v⊤
C iG(vC) ≥ 0, ∇iG(vC) � 0 ∀ vC ∈ R

̟.
(53)

• The inputs uL ∈ R
mς , uC ∈ R

m̟ , with mς + m̟ =
m, denote the external (not controlled nor constant)
voltage sources in series with the inductors and the
external current sources in parallel with the capaci-
tors, respectively.

4For a more detailed explanation about the mixed-potential func-
tion (51)-(52), we refer the reader to [15], [16].
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The system (50)-(51) admits a more compact representa-
tion of the form

Q̂ẋ = ∇P̂ (x) + ĝu (54)

with

x =

[

iL

vC

]

, Q̂ := block {−L,C} , ĝ :=

[

ĝL

ĝC

]

. (55)

Note that the system (54) can be expressed as in (1) with

f(x) = Q̂−1∇P̂ (x), g = Q̂−1ĝ. (56)

To ensure that Assumption 1 holds, we look for a new pair
(Q(x), P (x)) such that

Q̂−1∇P̂ (x) = Q−1(x)∇P (x). (57)

For a detailed discussion on this topic we refer the reader
to [4], [5], [17], and [3]. In particular, we have the following
result.

Proposition 3: Suppose that the Hessian of P̂ (x) has full
rank. Define

P (x) :=
1

2

[

∇P̂ (x)
]⊤

Ξ∇P̂ (x)

Q(x) := ∇2P̂ (x)ΞQ̂
(58)

where P̂ (x) and Q̂ are defined in (51) and (55), respec-
tively, and Ξ := block

{

L−1, C−1
}

. Then, the system (54)
can be rewritten as

ẋ = Q−1(x)∇P (x) + gu. (59)

Furthermore, the map u 7→ −g⊤Q⊤(x)ẋ is passive with
storage function P (x). Proof: Note that

∇P = ∇2P̂Ξ∇P̂ .

Hence, (57) holds, and the expression (59) is obtained from
(56). To prove passivity note that

Q =

[

−∇vR Γ

−Γ⊤ −∇iG

]

.

Thus, from (53), the symmetric part of Q(x) is negative
semi-definite. Hence, by premultiplying both sides of (59)
by ẋ⊤Q(x), we obtain

ẋ⊤Qẋ = Ṗ + ẋ⊤Qgu =⇒ Ṗ ≤ −ẋ⊤Qgu.

In light of Proposition 3, we make the following observa-
tions:

O8 Assumption 1 holds for S(x) = P (x).
O9 The elements of y are given in terms of the deriva-

tives of voltages and currents, which may be non-
measurable signals. However, since γ̇ = y, γ(x) can
be expressed in terms of voltages and currents, which
are, in general, the available measurements in an RLC
network.

Fig. 1. Electromechanical actuator.

O10 The asymptotic stability of the equilibrium in Theo-
rems 1–3 is ensured if

diag {∇vR(iL),∇iG(vC)} ẋ = 0 =⇒ x = x⋆.

We conclude this section with the following remark con-
cerning the integrability of the passive output provided in
Proposition 3.

Remark 5: As a result of Poincaré’s lemma, there exists
γ(x) such that γ̇ = y if ∇(Q(x)g) = [∇(Q(x)g)]

⊤
.

VI. EXAMPLES

In this section, we present simulations and experimental
results derived from the stabilization of three systems
in different physical domains. In particular, the example
provided in Section VI-A illustrates the results of Section
IV, i.e., how to exploit the natural damping of the system.
Then, the example given in Section VI-B shows how to
implement the controller provided in Theorem 2 in a non-
linear circuit, illustrating the discussion exposed in Section
V-B. Finally, in Section VI-C, we provide experimental
results from the implementation of the controller given
in Theorem 2 and the filter proposed in Section V-A. In
all the examples, we propose large values for βci

and βℓi

to illustrate the saturation of the controllers. However,
these are extreme scenarios and the mentioned parameters
should be tuned to obtain the desired performance in each
application.

A. Electromechanical actuator

Consider the system depicted in Fig. 1, where u is the
voltage provided by the source; R1 and R2 denote linear
resistors; C represents a linear capacitor, the electrical
part of the system is coupled with the mechanical one via
the gyrator G; the symbol k represents a linear spring;
x1 is the charge across the capacitor; x2 and x3 are the
positions of the masses; x4 and x5 are the momenta; and
the term fR(x5) is an approximation of the friction force
present in the second mass, which is given by

fR(x5) =
a1

m2
x5 + a2 tanh(a3x5),

where a1, a2, and a3 are positive constant parameters. The
dynamics of this system can be represented as in (1), with
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g = e1
1
R1

and

f(x) =



















−
(

1
R1

+ 1
R2

)

1
C
x1 + 1

a0m1R2

x4

1
m1

x4

1
m2

x5

−k (x2 − x3) + 1
a0R2

(

1
C
x1 − 1

a0m1

x4

)

k (x2 − x3) − a1

m2

x5 − a2 tanh(a3x5)



















,

where a0 is a positive constant parameter that charac-
terizes the relation between the electrical and mechanical
variables of the motor.
The set of assignable equilibria for this system is given by

E =
{

x ∈ R
5 | x1 = x4 = x5 = 0, x2 = x3

}

,

and the control objective is to stabilize the mass m2 at the
desired point x3⋆

while considering that the voltage source
has a limited operation range. Moreover, we consider that
there are no velocity sensors. To solve the control problem,
consider the total energy of the system, given by

S(x) =
1

2C
x2

1 +
1

2
k (x2 − x3)2 +

1

2m1
x2

4 +
1

2m2
x2

5.

Then, some simple computations show that

[∇S(x)]
⊤
f(x) = − 1

C2R1

x2
1 − 1

R2

(

1
C
x1 − 1

a0m1

x4

)2

− a1

m2

2

x2
5 − a2

m2

x5 tanh(a3x5).

Accordingly, Assumption 1 is satisfied. Moreover,

Ṡ = − R1R2

R1+R2

ẋ2
1 − 1

a2

0
(R1+R2)

ẋ2
2

− [a1ẋ3 + a2 tanh(m2a3ẋ3)] ẋ3 + y⊤u ≤ y⊤u
(60)

with

y =
R2

R1 +R2
ẋ1 +

1

a0 (R1 +R2)
ẋ2.

Therefore,

γ(x) =
R2

R1 +R2
x1 +

1

a0 (R1 +R2)
x2 (61)

satisfies γ̇ = y. Furthermore, Assumption 2 holds for γ(x)
given in (61), κ = 0, and any α, β > 0. Note that, given
(60), Assumption 3 is satisfied for η = x3, where Λc

depends on the value of the resistors. For this example,
we have Υ = 1 and xℓ ∈ R. Hence, from Theorem 3, it
follows that the controller (35) ensures that the closed-
loop system has a stable equilibrium at (0, x2⋆

, x3⋆
, 0, 0),

with x2⋆
= x3⋆

. We remark that, given (61) and η = x3,
the control law does not depend on x4 and x5, which are
the states related to the velocities of the masses.

To prove asymptotic stability of the equilibrium, we check
if (37) holds. For this example, we have the following chain
of implications

η̇ = 0 ⇐⇒ ẋ3 = 0 ⇐⇒ x5 = 0
=⇒ ẋ5 = 0 ⇐⇒ x2 = x3 =⇒ ẋ2 = ẋ3

=⇒ ẋ2 = 0 ⇐⇒ x4 = 0 =⇒ ẋ4 = 0
⇐⇒ x1 = 0 =⇒ ẋ1 = 0 =⇒ u = 0.

(62)

Fig. 2. Evolution of the masses and the control law with and without
damping injection through the term ∇zℓ

Φℓ(zℓ).

On the other hand, from (38),

ẋℓ = 0 ⇐⇒ ∇zℓ
Φℓ = 0 ⇐⇒ zℓ = 0. (63)

Hence, from (35) and recalling that κ = 0, we get that

u = 0 =⇒ ∇γΦc = 0 ⇐⇒ zc = 0. (64)

Therefore, from (23) and (64), we get that ẋc = 0 if and
only if xc = 0. Thus, zc = 0 if and only if γ = γ⋆,
which implies that x2 = x2⋆

. Note that, from (62), x2 =
x2⋆

implies x3 = x3⋆
. Hence, from the definition of zℓ

and (63), we conclude that xℓ = 0. Consequently, (37)
holds, and the equilibrium point is asymptotically stable.
Furthermore, in this case, Sdℓ

(x) is radially unbounded.
Thus, the equilibrium is globally asymptotically stable.

TABLE I
PARAMETERS OF THE ELECTROMECHANICAL COUPLING DEVICE

Parameter Value Parameter Value
R1 100 R2 100
C 2.2 × 10−4 m1 0.01

m2 0.015 a0 0.005
a1 6 × 10−4 a2 8 × 10−5

a3 40 k 0.3

Simulations: To corroborate the effectiveness of the satu-
rated controller, we perform simulations considering the
parameters provided in Table I, where we are particularly
interested in showing that the control signal is saturated
and how the term ∇zℓ

Φℓ(zℓ) can be used to reduce the
oscillations in x3, i.e., the position of m2. To this end, we
consider x2⋆

= x3⋆
= 0.025[m] and the control parameters

Kc = 106, Rc = 0.3, βc = 450,

Kℓ = 5.5 × 10−4, Rℓ = 33, βℓ = 2 × 106.
(65)

To illustrate how the term ∇zℓ
Φℓ(zℓ) affects the closed-

loop behavior, we consider that the voltage source operates
in the range of ±5[V ]. Fig. 2 shows the results of simulating
two different scenarios: (i) αc = 5, αℓ = 0, which is plotted
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Fig. 3. Behavior of the masses for different saturation limits.

in blue, and (ii) αc = 2.5, αℓ = 2.5 plotted in orange. In
both cases the initial conditions are 0. From the plots, we
observe that in the scenario (i), the first mass converges
towards the desired position without oscillations. In con-
trast, the second mass exhibits an oscillatory behavior as
the natural damping terms are relatively small. On the
other hand, in the second scenario, it is evident that the
term ∇zℓ

Φℓ(zℓ) injects damping into the second mass,
reducing notoriously the oscillations in x3.
To show the saturation of the controller, we consider the
control parameters (65) and three different set of values
for αc and αℓ, namely,

αc = αℓ = 2.5, αc = αℓ = 3.75, αc = αℓ = 5.

Accordingly, the corresponding control laws must saturate
at ±5, ±7.5, and ±10, respectively. In all cases, we
consider initial conditions equal to zero. The simulation
results are depicted in Figs. 3 and 4. In the former, we
note that the behavior of the masses is not drastically
affected by the saturation limits. On the other hand, the
saturation of the control signals is appreciated in Fig.
4, where the plot at the right-hand shows the first two
seconds of simulation when the saturation takes place.

B. Nonlinear RLC circuit

Consider the circuit depicted in Fig. 5, which admits a
representation of the form (54) with g̃c = 0, g̃L = −e1,
and

Q̂ = diag{−L1,−L2, C}, Γ =
[

1 −1
]⊤

,

irD
(x) = a

(

e
x3

b − 1
)

, vR(x) =
[

0 rx2

]⊤

,

(66)

where x1, x2 denote the currents through the inductors,
x3 represents the voltage across the capacitor, the con-

Fig. 4. Control signals evolution during the 20 seconds of simulation
(left-hand), and only the first 2 seconds (right-hand). The saturation
limits for each control signal are plotted with a dotted line.

Fig. 5. Nonlinear RLC circuit.

stant parameters L1, L2, C denote the inductances and the
capacitance, respectively, a and b are positive constant
parameters, rD is a nonlinear load, and r denotes the
resistance of the linear resistor.

The control objective is to regulate the current through
rD at the desired value while keeping the supplied voltage
bounded. Moreover, we consider that only the voltage
across the capacitor can be measured. To solve this prob-
lem, we first define the set of assignable equilibria for this
system, which is given by

E =

{

x ∈ R
3 | x1 =

1

r
x3 + a

(

e
x3

b − 1
)

, x2 =
1

r
x3

}

.

(67)
According to Proposition 3, this system can be represented
as in (59) with g = e1

1
L1

and

Q(x) =









0 0 1

0 −r −1

−1 1 −a
b
e

x3

b









,

P (x) = 1
2L1

x2
3 + 1

2L2

(rx2 − x3)2 + 1
2C [x1 − x3 + irD

(x)] .

Moreover, a passive output for this system is given by

y = −g⊤Q⊤ẋ =
1

L1
ẋ3,

with storage function S(x) = P (x). Hence, Assumption 1
is satisfied. Furthermore, γ(x) can be chosen as

γ(x) =
1

L1
x3,

and some simple computations show that Assumption 2
holds for every α, β > 0, and κ = −x3⋆

. Accordingly, from
Theorem 2 it follows that the control law (24) renders the
equilibrium point (x⋆, 0) stable. Notice that, since γ(x)
depends exlcusively on x3, the controller only requires to
measure the voltage across the capacitor.
To prove the asymptotic stability of the equilibrium,
consider Sdc

defined in (25) and note that

−‖ℓ(x) + w(x)u‖ = ẋ⊤Q(x)ẋ = −rẋ2
2 − a

b
e

x3

b ẋ2
3.

Hence, we have the following chain of implications

Ṡdc
= 0 ⇐⇒

{

ẋ3 = 0
ẋ2 = 0

}

=⇒ ẋ1 = 0

=⇒ x3 − x3⋆
= −αc tanh(βczc).

(68)

On the other hand,

ẋc = 0 ⇐⇒ Kcxc = −αc tanh(βczc). (69)
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Therefore, combining (68) and (69), we conclude that
Kcxc = x3 − x3⋆

. Accordingly, we have

xc =
L1

Kc + L1
zc.

Then, (69) can be rewritten as

ẋc = 0 ⇐⇒ KcL1

Kc + L1
zc = −αc tanh(βczc),

which holds only if zc = xc = 0. Moreover, from (68), we
conclude that

x3 = x3⋆
=⇒

{

x1 = x1⋆

x2 = x2⋆
.

TABLE II
PARAMETERS OF THE NONLINEAR RLC CIRCUIT

Parameter Value Parameter Value
r 100 L1 0.01

L2 0.02 C 2 × 10−4

a 10−7 b 0.25

Simulations: For illustration purposes, we consider the
parameters given in Table II and the following scenario:
the voltage source must operate in the range from 0 to
3.1[V], and the load demands a current of 20[mA]. Then,
u⋆ = x3⋆

= 3.0515. Thus, the load drives the voltage
source near to its operation limit. Accordingly, we need
to ensure that the control signal saturates to protect the
source. To this end, we consider the control parameters
Kc = 10, Rc = 10, and αc = 0.0485. Note that the selected
value for αc ensures that the control signal saturates at
3.003 and 3.1 volts. Fig. 6 depicts the simulation results
considering initial conditions zero and different values for
βc. We observe that larger values for βc provoke that the
control signal reaches the saturation limits more times—
exhibiting an oscillatory behavior—because the control
law becomes more sensitive to errors between the actual
current and the desired one.

Fig. 6. Control signals for different values of βc (left-hand), and current
through the load (right-hand).

C. Philips Experimental Robot Arm

Consider the Philips Experimental Robot Arm (PERA)
shown in Fig. 7, a robotic arm designed to mimic the
human arm motion [28]. This setup is not equipped with
velocity sensors. Hence, we only consider positions mea-
surements.

Fig. 7. PERA setup.

To illustrate the applicability of the results reported in
Sections III and V, we carry out experiments with the
PERA system considering only three degrees-of-freedom,
namely, the shoulder roll q1, the elbow pitch q2, and the
elbow roll q3. Note that the system admits a representation
of the form (42) with G = I3, D = 0, and

M(q) =









m1(q2) 0 I3 cos(q2)

0 I2 + I3 +m3d
2
c3 0

I3 cos(q2) 0 I3









m1(q2) :=

3
∑

i=1

Ii +m3d
2
c3 sin2(q2),

V (q) = m3grdc3 (1 − cos(q2))

where Ii denotes the moment of inertia of the ith link with
i ∈ {1, 2, 3}; m3 and dc3 denote the mass and the distance
to the center of mass of the third link, respectively; and gr

represents the gravitational acceleration. The parameters
of the system are provided in Table III.5

TABLE III
MODEL PARAMETERS

Parameter Value Parameter Value
gr 9.81 I1 0.0054
dc3 0.16 I2 0.0768
m3 1 I3 0.00211

The shoulder roll q1 is controlled directly by the rotation
of a motor with corresponding torque u1. On the other
hand, the other two angles are controlled via a differential
drive, which consists of two motors with corresponding
torque denoted by u2 and u3. Hence, the elbow pitch q2

and the elbow roll q3 are controlled by the combination of
the torques from these two motors, i.e., by u2+u3 and u2−
u3, respectively. Moreover, the maximum allowable input
for each motor corresponds to ±16A. We refer the reader
to [28] for further details on the conversion constants from
current to torque.

The control objective is to stabilize the system at a desired

5A MATLAB® script for generating the PERA model can be found
in https://github.com/cachanzheng/PERA.
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TABLE IV
PARAMETERS FOR CONTROL LAW (45)

Parameter Value Parameter Value

α (17, 3, 3.3)⊤ Kc diag{1, 1, 1}

β (80, 100, 80)⊤ Rc diag{0.1, 0.005, 0.05}

configuration q⋆ while ensuring that

|u1| ≤ 17.1007 Nm

|u2 + u3|, |u2 − u3| ≤ 7.901 Nm
(70)

to protect the motors.

1) Implementation of the control law (45): Following the
results of Proposition 2, the saturated control law
(45) renders (q⋆,0,0) globally asymptotically stable. To
corroborate the effectiveness of the control approach,
we perform an experiment under the initial conditions
q(0) = (−2.257,−0.206, 0.044), where the PERA is stabi-
lized at the desired configuration q⋆ = (−1.81, π/2, 0.78)
with the control parameters given in Table IV.

Note that the control law (45) is bounded by α and
∇q2

V (q2), where the latter reach its extrema when
sin(q2) = ±1. Therefore, α is selected such that the
controller satisfies the limits given in (70), i.e.,

|u1| ≤ α1 ≤ 17.1007

|u2 + u3| ≤ |α2 ± ∇q2
V (q2) + α3| ≤ 7.901

|u2 − u3| ≤ |α2 ± ∇q2
V (q2) − α3| ≤ 7.901,

where the extrema of ∇q2
V (q2) are given by ±1.57, and

αi is the ith element of α with i ∈ {1, 2, 3}. On the other
hand, we observe from Proposition 2 that β corresponds
to the slope of Φc(q, xc), and it is related to the sensitivity
of the controller. Hence, we choose a high value for β to
illustrate the control saturation. Finally, Kc and Rc are
selected to be positive definite satisfying the conditions
proposed in Proposition 2.

The results of the experiments are depicted in Fig. 8,
where we show the evolution of the angular position of
each joint. Furthermore, the corresponding control inputs
are shown in Fig. 9, where the saturation for each joint is
evident. Particularly, in Fig. 8, we note steady-state errors
in q1 and q3. These errors may be caused by several factors,
such as the neglected damping, the asymmetry of the
motors, or their dead zones. Hence, to remove these errors,
we implement an integral-like term as it is explained in
Section V-A.2.

2) Implementation of the control law (49): To remove the
steady-state error from the results of Section VI-C.1, we
implement a filter of the form (47) with

fψ(ψ) = −Rψψ,

Ψ(ψ) =

3
∑

i=1

eie
⊤

i αψi
βψi

sech (βψi
ψi) ,

uψi
(ψ) = −

3
∑

i=1

eiαψi
tanh (βψi

ψi) ,
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Fig. 8. Top: shoulder roll angular trajectory. Middle: elbow pitch angular
trajectory. Bottom: elbow roll angular trajectory.

Fig. 9. Top: shoulder roll control input. Middle: elbow pitch control
input. Bottom: elbow roll control input.

where Rψ is a diagonal matrix with positive entries.
Accordingly,

(∇fζcl
)
⋆

=













0 M−1
⋆ 0 0

−Dc 0 −Dc −Dψ

−RcDc 0 −RcKc −RcDc 0

Dψ 0 0 −Rψ













, (71)

where

Dc := diag{αc1
βc1

, αc2
βc2

, αc3
βc3

}
Dψ := diag{αψ1

βψ1
, αψ2

βψ2
, αψ3

βψ3
}.

Note that the controller (49) is bounded by αc, αψ , and
∇q2

V (q2). Therefore, αc and αψ are chosen such that they
satisfy the limits provided in (70). Based on the discussion
provided in Section V-A.2, the rest of parameters are
selected to guarantee that the augmented system has
a globally asymptotically equilibrium at (q⋆,0,0,0). To
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Fig. 10. Top: shoulder roll angular trajectory. Middle: elbow pitch
angular trajectory. Bottom: elbow roll angular trajectory.

this end, we use the values provided in Table V for the
parameters of the control law (49), where uψ is proposed
as in Section VI-C.1. Hence, the matrix (71) is stable, i.e.,
the real part of its spectrum is negative.

TABLE V
PARAMETERS FOR THE CONTROL LAW (49)

Parameter Value Parameter Value

αc (6, 1.4, 1)⊤ Kc diag{1, 1, 1}

βc (120, 120, 120)⊤ Rc diag{0.1, 0.005, 0.05}

αψ (11, 1.5, 2.4)⊤ Rψ diag{1, 1, 35}

βψ (7, 7, 7)⊤

To corroborate that the steady-state errors are removed,
we carry out experiments under the initial conditions
q(0) = (−2.23,−0.212, 0.086), considering the same de-
sired configuration as in Section VI-C.1. The results are
shown in Figs. 10 and 11. We remark that by adding the
filter, the rate of convergence of the angular trajectories
has improved with respect to Section VI-C.1. Moreover,
the results of Figs. 10 and 11 exhibit less energy con-
sumption and fewer oscillations than the ones depicted
in Figs. 8 and 9. We also underscore the absence of
steady-state errors in the trajectories depicted in Fig. 10,
where the improvement with respect to the results of VI-
C.1 is particularly notorious in q1 and q3. Moreover, the
saturation of u1 is evident in Fig. 11. The video of this
experiment can be watched at:

https://www.youtube.com/watch?v=l-9DbTZvyD0

VII. CONCLUDING REMARKS AND FUTURE WORK

We have presented a PBC approach to design saturated
controllers suitable for stabilizing a broad class of phys-
ical systems. The proposed controllers do not require
measuring the passive output to inject damping into the
closed-loop system. Additionally, we have introduced a
method to exploit the natural dissipation of the system
to improve the performance of the controllers for systems
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-20
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20

0 1 2 3 4 5 6 7 8 9 10
-10

0

10

0 1 2 3 4 5 6 7 8 9 10
-10

0

10

Fig. 11. Top: shoulder roll control input. Middle: elbow pitch control
input. Bottom: elbow roll control input.

with poor damping propagation. We have illustrated the
applicability of the technique by controlling three systems
in different physical domains, where the effectiveness of
the methodology has been validated through simulations
and experiments

As future work, we aim to propose a constructive approach
to tune the gains of the controllers to guarantee appropri-
ate performance of the closed-loop system and enlarge the
class of systems that can be controlled with the proposed
methodology.
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