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Abstract

Time-to-event semi-competing risk endpoints may be correlated when
both events are occurring on the same individual. These events and
the association between them may also be influenced by individual
characteristics. In this paper, we propose copula survival models to estimate
hazard ratios of covariates on the non-terminal and terminal events, along
with the effects of covariates on the association between the two events. We
use the Normal, Clayton, Frank and Gumbel copulas to provide a variety
of association structures between the non-terminal and terminal events. We
apply the proposed methods to model semi-competing risks of graft failure
and death for kidney transplant patients. We find that copula survival
models perform better than the Cox proportional hazards model when
estimating the non-terminal event hazard ratio of covariates. We also find
that the inclusion of covariates in the association parameter of the copula
models improves the estimation of the hazard ratios.

Keywords: copula model, renal transplant, semi-competing risk, survival analysis,
hazard ratio

1 Introduction

Often in medical studies, patients who are lost to follow-up, or do not experience
the event of interest during the study period, leave a censored observation.
However, with semi-competing risk endpoints, the non-terminal event has the
possibility of also being censored by the terminal event (Fine et al., 2001). One
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example of semi-competing risks, which will be analysed later in this paper, is
graft failure and death following renal transplant, where the non-terminal event is
graft failure and the terminal event is death.

The Cox proportional hazards model is widely used in practice to analyse time-
to-event outcomes. The Cox model was originally developed to analyse all-cause
mortality (Cox, 1972), of which there is no competing risk. The hazard ratios
estimated from the Cox model, assuming an independent censoring mechanism, are
potentially biased when analysing a non-terminal event (Berry et al., 2010). Some
authors use copula regression models to jointly model non-terminal and terminal
events. Peng and Fine (2007), Hsieh et al. (2008) and Chen (2012) propose
semiparametric copula models for the regression on the marginal distributions.
The analysis on the terminal event can be conducted using common survival
methodology. For instance, Peng and Fine (2007) model the terminal event
with a proportional hazards model marginally within their copula model. Hsieh
et al. (2008) use a copula model, which allows for different dependence structures
between covariate groups. The Bayesian Normal induced copula estimation model
is developed by Fu et al. (2013).

Copulas are multivariate distribution functions which can model the marginal
distributions separately, along with the dependence structure between them.
Sorrell et al. (2022) introduced bivariate copula models to estimate the correlation
between semi-competing risk endpoints, using the following four copula functions,
the Normal, Clayton, Frank and Gumbel copulas. However, the hazard rates of the
non-terminal and terminal events, along with the association parameter between
them, may be influenced by covariates. Including covariates into the analysis of the
correlation between survival endpoints can help understand how the association
may be influenced by individual characteristics. Covariates may also be included
in the analysis of marginal distributions, which allows to estimate hazard ratios
and subsequently the comparison of risks of survival endpoints between groups.

In this paper, we develop copula survival regression models by using conditional
copula (Patton, 2006), which allow both the association parameter between the
survival endpoints and the hazard rates to depend on multiple binary covariates.
This is also an extension from the copula survival model introduced in Sorrell
et al. (2022), where no covariates are included. We estimate the hazard ratio
using copula survival regression models with binary covariates. We also estimate
the effects of these binary covariates on the association between semi-competing
risks. By jointly modelling the non-terminal and terminal events and including
the correlation between them, we hope to improve the inference about the non-
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terminal event.

We focus on the inclusion of covariates in the analysis of survival data with a
semi-competing risk using conditional copulas. In the semi-competing risk setting,
Chen (2012) developed a model allowing the association parameter of the copula
function to vary with categorical covariates. A model allowing each covariate
group to assume a separate Archimedean copula function is introduced by Hsieh
et al. (2008). This allow to have different dependence structures describing the
association between the semi-competing risk events for each covariate group. The
effect of a discrete covariate on the non-terminal and terminal event and the
association parameter between the semi-competing risk events is investigated by
Ghosh (2006). Peng and Fine (2007) studied the effect of a covariate on the non-
terminal event and the association parameter, by proposing a model with a time-
dependent copula and apply the methods to survival endpoints following AIDS
diagnosis. Similarly, Zhu et al. (2021) propose a copula regression approach to
examine covariate effects on the non-terminal and terminal events using a two-stage
approach. In stage 1, the covariate effects on the marginal events are investigated
and in stage 2, the association parameter of the copula model is estimated. Zhu
et al. (2021) prefer the two-stage approach, compared to the one-stage approach
by Peng and Fine (2007), as it allows for separate identification of misspecification
of the marginal regression models and the copula model.

The rest of the paper is organised as follows. The motivating data for this paper are
described in Section 2. We then introduce our proposed Copula regression survival
methods to estimate the effect of covariates on the semi-competing risk events and
on the association parameter using a variety of conditional copula functions in
Section 3. In Section 4, we apply our proposed methods to the motivating data,
followed by a simulation study to compare the copula models in Section 5. We
conclude with a discussion.

2 Motivating data

The motivating data are from the United Kingdom Transplant Registry (UKTR),
held by the National Health Service (NHS) Blood and Transplant. The outcomes,
time to graft failure and time to death since kidney transplantation, are semi-
competing risks. Our study population is kidney transplant recipients, who had
their single and first transplant between 1995 and 2016 in the UK, with known age,
sex and donor type at the time of transplantation. We present a novel application
by using our proposed copula survival regression models.
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We included 40, 348 single and first kidney transplants between 1995 and 2016
in the UK. For 78.01% of patients the graft failure time is censored, for 80.0%
of patients the death time is censored and for 64.3% of patients both events are
censored.

Table 1 shows the baseline characteristics of interest. The covariates to be included
in the application later in this paper include donor type (deceased or living),
recipient’s sex (male or female), and recipient’s age (> 50 years or ≤ 50 years).
Donor type indicates whether a recipient had received a deceased donor or living
donor kidney for their transplantation. These covariates were included as they are
important factors influencing transplant outcomes according to the literature as
follows. As reported in Terasaki et al. (1995) and Port et al. (2004), living kidney
donor recipients have improved survival compared to deceased donor recipients.

Moreover, recipient’s age has been shown to be a significant factor affecting
survival following transplant (Becker et al., 2000; Fabrizii et al., 2004; Keith et al.,
2004). In Fabrizii et al. (2004), the 5-year survival was found to be affected by
recipient age group, however, these differences were not evident after controlling
for confounding.

Variable n (%)

Donor type
Deceased 27, 971 (69.9%)
Living 12, 377 (30.1%)

Recipient’s sex
Male 24, 945 (61.8%)
Female 15, 403 (38.2%)

Recipient’s age (years)
≤ 50 23, 208 (57.5%)
> 50 17, 140 (42.5%)

Table 1: Baseline characteristics for single and first kidney transplant recipients
from the UK Transplant Registry data set in (1995 − 2016). The number of
recipients with the particular characteristic is given alongside the percentage in
brackets.

3 Methods

In this section, we describe methods to include covariates in copula functions to
examine the effects that they have on the semi-competing risk events. We let the
association parameter of the copula function, along with the hazard rates from the
marginal survival distributions be conditional on covariates. We use conditional
copulas, first introduced by Patton (2006) who extended Sklar’s Theorem (Sklar,
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1959) to account for the conditioning of the random variables on covariates.

Let T1 denote the time to the non-terminal event and T2 denote the time to the
terminal event with censoring time, C. The time to the first event is denoted by
X = min(T1, T2, C) with event indicator d1 = 1 if T1 ≤ min(T2, C) and d1 = 0
otherwise. The time to the second event is denoted by Y = min(T2, C) with event
indicator d2 = 1 if T2 ≤ C and d2 = 0 otherwise.

We let the marginal hazard rates and the association parameter depend on
covariates, W = (W1, ...,Wp). The marginal survival functions are given by
ST1|W(t1|w) = P (T1 > t1|w) and ST2|W(t2|w) = P (T2 > t2|w) for the non-terminal
and terminal events, respectively. The marginal probability density functions
(PDFs) are denoted by fT1|W(t1|w) and fT2|W(t2|w) for the non-terminal and
terminal events, respectively.

We estimate the association between the survival probabilities of individuals,
using univariate survival functions in the copula function. This changes the
interpretation of the strength of association between the endpoints (Renfro et al.,
2015), compared to the use of the cumulative distribution function (CDF) in
Patton (2006). We represent the joint survival function using the copula function,
Cθ, with association parameter θ,

SB(t1, t2|w) = P (T1 > t1, T2 > t2|w) = Cθ(ST1|W(t1|w), ST2|W(t2|w)|w), (1)

where the subscript B is used to indicate the bivariate nature of the function.

Then, the copula density function is as follows,

cθ(ST1|W(t1|w), ST2|W(t2|w)) =
∂2Cθ(ST1|W(t1|w), ST2|W(t2|w)|w)

∂ST1|W(t1|w)∂ST2|W(t2|w)
. (2)

The joint PDF can be expressed using the copula density function and the marginal
PDFs,

fB(t1, t2|w) = cθ(ST1|W(t1|w), ST2|W(t2|w)|w)fT1|W(t1|w)fT2|W(t2|w). (3)

We consider four different types of copula, the Normal, Clayton, Frank and
Gumbel copulas, for which the definitions are given in Sorrell et al. (2022).
These copula functions cover a range of dependence structures and offer different
shapes of the joint survival function in equation (1). For each of these copulas,
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the association parameter θ is univariate. For the marginal distributions for
both events, we consider the Exponential, Weibull and Gompertz distributions,
which are commonly used parametric survival models. We use them to illustrate
the methods and applications, however these can be easily extended to other
parametric survival distributions.

3.1 Likelihood

Let Θ be a vector of the parameters of the marginal distributions and the
association parameter θ that are conditional on covariates. Then, the likelihood
function is given as follows,

L(Θ) =
n∏
i=1

(
cθ(ST1|W(ti,1|wi), ST2|W(ti,2|wi)|wi)fT1|W(ti,1|wi)fT2|W(ti,2|wi)

)di,1di,2
(
∂Cθ(ST1|W(ti,1|wi), ST2|W(ti,2|wi)|wi)

∂ST1|W(ti,1|wi)
fT1|W(ti,1|wi)

)di,1(1−di,2)
(
∂Cθ(ST1|W(ti,1|wi), ST2|W(ti,2|wi)|wi)

∂ST2|W(ti,2|wi)
fT2|W(ti,2|wi)

)(1−di,1)di,2

(
Cθ(ST1|W(ti,1|wi), ST2|W(ti,2|wi)|wi)

)(1−di,1)(1−di,2) ,
(4)

where n is the total number of individuals.

Below, we give the formulae for the likelihood when the four types of copula, the
Normal, Clayton, Frank and Gumbel, are used. Table 2 summarises the different
link functions for each copula that are used to ensure the association parameters
are within the permissible ranges within the respective copula functions.

For the Normal copula, the association parameter θ = ρ, where ρ is the Pearson
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Copula Cθ Link function for θ Range of θ

Normal θ =
exp(2(b0 + b1W1 + ...+ bpWp))− 1

exp(2(b0 + b1W1 + ...+ bpWp)) + 1
θ ∈ [−1, 1]

Clayton θ = exp(b0 + b1W1 + ...+ bpWp) θ ∈ (0,∞)

Frank θ = b0 + b1W1 + ...+ bpWp θ ∈ (−∞,∞)

Gumbel θ = exp(b0 + b1W1 + ...+ bpWp) + 1 θ ∈ [1,∞)

Table 2: Link functions for the association parameter θ.

correlation coefficient, and the likelihood function of equation (4) is given by

LN(Θ) =
n∏
i=1

(
1√

1− ρ2
exp

(
1

2(1− ρ2)

2ρΦ−1(ST1|W(ti,1|wi))Φ
−1(ST2|W(ti,2|wi))− ρ2(Φ−1(ST1|W(ti,1|wi))

2

+Φ−1(ST2|W(ti,2|wi))
2)
)
fT1|W(ti,1|wi)fT2|W(ti,2|wi)

)di,1di,2(
Φ

(
Φ−1(ST2|W(ti,2|wi))− ρΦ−1(ST1|W(ti,1|wi)))√

1− ρ2

)
fT1|W(ti,1|wi)

)di,1(1−di,2)

(
Φ

(
Φ−1(ST1|W(ti,1|wi))− ρΦ−1(ST2|W(ti,2|wi))√

1− ρ2

)
fT2|W(ti,2|wi)

)(1−di,1)di,2

(
Cρ(ST1|W(ti,1|wi), ST2|W(ti,2|wi))

)(1−di,1)(1−di,2) ,

(5)

where Φ is the CDF of the standard normal distribution.

For the Clayton copula, the likelihood function is given by

LC(Θ) =
n∏
i=1

(
(1 + θ)

(Cθ(ST1|W(ti,1|wi), ST2|W(ti,2|wi)|wi))
1+2θ

(ST1|W(ti,1|wi)ST2|W(ti,2|wi))1+θ

fT1|W(ti,1|wi)fT2|W(ti,2|wi)
)di,1di,2((

Cθ(ST1|W(ti,1|wi), ST2|W(ti,2|wi)|wi)

ST1|W(ti,1|wi)

)1+θ

fT1|W(ti,1|wi)

)di,1(1−di,2)

((
Cθ(ST1|W(ti,1|wi), ST2|W(ti,2|wi)|wi)

ST2|W(ti,2|wi)

)1+θ

fT2|W(ti,2|wi)

)(1−di,1)di,2
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(
Cθ(ST1|W(ti,1|wi), ST2|W(ti,2|wi))

)(1−di,1)(1−di,2) . (6)

For the Frank copula, the likelihood function is given by

LF (Θ) =
n∏
i=1

(
θeθCθ(ST1|W(ti,1|wi),ST2|W(ti,2|wi)|wi)(eθCθ(ST1|W(ti,1|wi),ST2|W(ti,2|wi)|wi) − 1)

(eθST1|W(ti,1|wi) − 1)(eθST2|W(ti,2|wi) − 1)

fT1|W(ti,1|wi)fT2|W(ti,2|wi)
)di,1di,2(

1− eθCθ(ST1|W(ti,1|wi),ST2|W(ti,2|wi)|wi)

1− eθST1|W(ti,1|wi)
fT1|W(ti,1|wi)

)di,1(1−di,2)
(

1− eθCθ(ST2|W(ti,2|wi),ST2|W(ti,2|wi)|wi)

1− eθST2|W(ti,2|wi)
fT2|W(ti,2|wi)

)(1−di,1)di,2

(
Cθ(ST1|W(ti,1|wi), ST2|W(ti,2|wi)|wi)

)(1−di,1)(1−di,2) .
(7)

Finally, for the Gumbel copula the likelihood function is given by

LG(Θ) =
n∏
i=1

(
1

ST1|W(ti,1|wi)ST2|W(ti,2|wi)(− log(Cθ(ST1|W(ti,1|wi), ST2|W(ti,2|wi)|wi)))2θ−1

Cθ(ST1|W(ti,1|wi), ST2|W(ti,2|wi)|wi)(− log(ST1|W(ti,1|wi)))
θ−1(− log(ST2|W(ti,2|wi)))

θ−1

(θ − 1− log(Cθ(ST1|W(ti,1|wi), ST2|W(ti,2|wi)|wi)))fT1|W(ti,1|wi)fT2|W(ti,2|wi)
)di,1di,2(

Cθ(ST1|W(ti,1|wi), ST2|W(ti,2|wi)|wi)(− log(ST1|W(ti,1|wi)))
θ−1

ST1|W(ti,1|wi)(− log(Cθ(ST1|W(ti,1|wi), ST2|W(ti,2|wi)|wi))θ−1
fT1|W(ti,1|wi)

)di,1(1−di,2)
(
Cθ(ST2|W(ti,2|wi), ST2|W(ti,2|wi)|wi)(− log(ST2|W(ti,2|wi)))

θ−1

ST2|W(ti,2|wi)(− log(Cθ(ST2|W(ti,2|wi), ST2|W(ti,2|wi)|wi))θ−1
fT2|W(ti,2|wi)

)(1−di,1)di,2

(
Cθ(ST1|W(ti,1|wi), ST2|W(ti,2|wi))

)(1−di,1)(1−di,2) .
(8)

For the Normal, Clayton and Gumbel copulas, the variance of the association
parameter θ can be approximated using the Delta method. We describe for the case
of one covariate as well as for several covariates in the Supplementary Materials,
in Section 1.2 for the Normal, Section 1.3 for the Clayton and Section 1.4 for the
Gumbel copula, respectively.
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3.2 Event times models

We consider the Exponential, Weibull and Gompertz distributions for the marginal
distributions of event times. For each model, we specify the link function for
marginal parameters. An Exponential model assumes a constant hazard rate, while
the Weibull and Gompertz models allow for increasing, constant or decreasing
hazard rates. The methods can be easily extended to other parametric survival
distributions such as a Log-normal or Log-logistic distributions.

Exponential event times

Assume that the marginal distributions for both events follow the Exponential
distribution with hazard rates λ1 and λ2 for the non-terminal and terminal events,
respectively. Then, the survival functions are given by ST1|W(t1) = exp(−λ1t1) and
ST2|W(t2) = exp(−λ2t2) for the non-terminal and terminal events, respectively. We
incorporate covariates W1, . . . ,Wp into the hazard rates of both events:

λ1 = exp(a0 + a1W1 + ...+ apWp), (9)

λ2 = exp(c0 + c1W1 + ...+ cpWp), (10)

where a0, ..., ap are regression coefficients for the non-terminal event and c0, ..., cp
are regression coefficients for the terminal event. Therefore, the hazard ratios for
a binary covariate Wk, where k ∈ {1, . . . , p}, are given by

HRNT =
exp(a0 + ak)

exp(a0)
= exp(ak), (11)

HRT =
exp(c0 + ck)

exp(c0)
= exp(ck), (12)

for the non-terminal and terminal events, respectively.

Weibull event times

Assume that the marginal distributions for both events follow the Weibull
distributions with the PDFs

fTj |W(tj) = βjαjt
αj−1
j exp(−βjtαj ),

for j = 1, 2, where αj is the shape parameter and βj is the scale parameter and tj
represents the event time for the non-terminal and terminal events, respectively.
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The survival function and hazard function are given by the following

STj |W(tj) = exp(−βjtαj ),

hTj |W(tj) = βjαjt
αj−1
j ,

for j = 1, 2.

We consider the case where the shape parameters α1 and α2 are constant and the
scale parameters β1 and β2 depend on the covariates W = (W1, . . . ,Wp) using the
following calibration functions:

β1 = exp(a0 + a1W1 + ...+ apWp),

β2 = exp(c0 + c1W1 + ...+ cpWp),

where a0, ..., ap are regression coefficients for the non-terminal event and c0, ..., cp
are regression coefficients for the terminal event.

Therefore, the hazard ratios for a binary covariate Wk, where k ∈ {1, . . . , p}, are
given by

HRNT =
exp(a0 + ak)α1t

α1−1

exp(a0)α1tα1−1
= exp(ak),

HRT =
exp(c0 + ck)α2t

α2−1

exp(c0)α2tα2−1
= exp(ck),

respectively. These are in the same form as for the Exponential event times
described in equations (11) and (12).

Gompertz event times

Assume that the marginal distributions for both events follow the Gompertz
distributions with the PDFs

fTj |W(tj) = λj exp

(
γjtj −

λj
γj

(exp(γjtj)− 1)

)
,

for j = 1, 2, where γj is the shape parameter and λj is the rate parameter and tj
represents the event time for the non-terminal and terminal events, respectively.

The survival function and hazard function are given by the following
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STj |W(tj) = exp

(
−λj
γj

(exp(γjtj)− 1)

)
,

hTj |W(tj) = λj exp(γjtj),

for j = 1, 2.

We consider the case where the shape parameters γ1 and γ2 are constant and the
rate parameters λ1 and λ2 depend on the covariates W1, . . . ,Wp using the following
calibration functions:

λ1 = exp(a0 + a1W1 + ...+ apWp),

λ2 = exp(c0 + c1W1 + ...+ cpWp),

where a0, ..., ap are regression coefficients for the non-terminal event and c0, ..., cp
are regression coefficients for the terminal event.

Therefore, the hazard ratios for a binary covariate Wk, where k ∈ {1, . . . , p}, are

HRNT =
exp(a0 + ak) exp(γ1t)

exp(a0) exp(γ1t)
= exp(ak),

HRT =
exp(c0 + ck) exp(γ2t)

exp(c0) exp(γ2t)
= exp(ck),

respectively. These are in the same form as for the Exponential and Weibull event
times.

For all three marginal models, the variances of the hazard ratios can be
approximated by

Var(HRNT ) = exp(2âk)Var(âk), (13)

Var(HRT ) = exp(2ĉk)Var(ĉk), (14)

using the Delta method described in Section 1.1 in the Supplementary Materials.

3.3 Estimation

The regression coefficients for the marginal distributions and the association
parameters are estimated by maximising the log-likelihood, i.e. the logarithm
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of (4). This is achieved by using the function optim in package R (R Core Team,
2021) in the practical application presented in this paper. The 95% confidence
intervals (CI) are constructed using the Fisher Information matrix.

4 Application

We apply the methods described in Section 3 to the UKTR data set introduced in
Section 2. The data set contains time to graft failures and time to death of kidney
transplant recipients. To illustrate the use of the methods, we include the following
binary covariates, recipient age group (> 50 years and ≤ 50 years), recipient sex
(female and male) and donor type (living and deceased donors), in the analysis
of both survival endpoints. We allow both the hazard rates and the association
between the survival endpoints to vary with these covariates. We estimate the
hazard ratios of the non-terminal and terminal events along with the association
parameters for the reference and covariate groups.

We use Exponential, Weibull and Gompertz distributions to model the survival
time. We apply four different copula functions to describe the association between
the survival endpoints and we select the best fitting models using the Akaike
Information Criterion, AIC (Akaike, 1974). The estimated hazard ratios for
each covariate and the regression coefficients of the covariates for the association
parameter are provided in Tables 3, 4 and 5 for the Exponential, Gompertz and
Weibull survival distributions, respectively. The results for the Cox model are
presented in Table 3. Moreover, in Tables 3-5 the computational time for each
model is reported for a computer with processor 11th Gen Intel (R) Core(TM)
i7-1165G7 CPU @ 2.80GHz.

4.1 Hazard ratios

4.1.1 Graft failure following transplant

Across all considered models, sex is not found to be associated with the risks for
graft failure. Compared to a deceased donor transplant, living donor transplant is
associated with lower risk for graft failure. Older age (> 50 years) is found to be
associated with increased risk across all considered copula models except for two
cases: Normal and Gumbel copulas with Weibull survival model, where there is
no association found. This is in contrast with the Cox model where the older age
group is found to be associated with lower risk of graft failure (HR: 0.911, 95% CI:
0.872 to 0.952, Table 3). This may be in part due to the censoring of graft failure
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by death in the Cox model, the older individuals who die before experiencing graft
failure may be seen as less likely to experience graft failure.

In the fitted Cox model for graft failure, there was evidence for non-proportional
hazards for all three covariates. Using Grambsch and Therneau’s approach to
diagnose non-proportionality, we obtained P-values of 0.091, 0.017 and <0.001 for
sex, age and donor type, respectively.

4.1.2 Death following transplant

For all considered models, including the Cox model and all copula models, all
three covariates: sex, age and donor type, are found to be associated with death
after transplant. In particular, female sex, living donor transplant and younger
age (≤ 50 years) are associated with lower risk of death. In contrast, male sex,
deceased donor transplant and older age (> 50 years) are associated with higher
risk of death. These findings are consistent across all models and the estimated
hazard ratios are fairly similar.

In the fitted Cox model for death, there was evidence for non-proportional
hazards for donor type (P<0.001), whilst there was insufficient evidence for non-
proportional hazards for sex (P=0.936) and age (P=0.882).

4.2 Association between graft failure and death

The results from all the copula survival models showed that the association between
graft failure and death is stronger for individuals in the older age group compared
to the younger age group.

In most of the fitted copula models, we observe no difference between female
and male recipients for the association between graft failure and death. The
exceptions are the Clayton copula models and Frank copula Gompertz model
which show stronger association between these two end points for female recipients.
Similarly, in most of the fitted copula models, we observe no difference between
living and deceased donors for the association between graft failure and death. The
exceptions are the Clayton copula models and Frank copula Exponential model
which show stronger association between these two end points for living donor
recipients.
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4.3 Results for the preferred model

In our real data analyses, we reported the AIC value for each model. However, we
did not compare Cox model with the copula models using AIC. This is because
the Cox model was fitted to graft failure and death, separately, and the Cox model
has a partial likelihood instead of a full likelihood. In contrast, the copula survival
model analysed both graft failure and death jointly, and has a full likelihood.
Hence, the AIC values for the Cox model where outcomes were analysed separately
and the copula-based parametric survival models where outcomes were analysed
jointly are not comparable. However, we used the AIC to compare between the
copula survival models. For each survival distribution, the Frank copula model is
the preferred according to the AIC criterion (Tables 3, 4, 5). Moreover, for each
copula model, the Weibull survival distribution provides the lowest AIC.

In the Frank copula Weibull survival model, the association between graft failure
and death is affected by age, with individuals in the older age group having a
stronger association compared to those in the younger age group. The hazard
ratio of graft failure for living donors is 0.560 (95% CI: 0.532 to 0.588), and for
death is 0.519 (95% CI: 0.490 to 0.549), indicating the living donor recipient group
is at lower risk for both events. Female sex is associated with lower risk for death
compared to men, with hazard ratio 0.920 (95% CI: 0.882 to 0.957). The hazard
ratio of graft failure for the older age group is 1.202 (95% CI: 1.152 to 1.251) and
for death is 3.734 (95% CI: 3.565 to 3.903), indicating the older age group is at
higher risk of graft failure and death.

The Frank copula Weibull survival model suggests that in general male patients
above 50 years who received a transplant from a deceased donor are at highest
overall risk for death following kidney transplant. At the other extreme, younger
female patients who received a transplant from a living donor are at the lowest
overall risk for death. The hazard functions estimated from the preferred model are
presented in Figure 1 for these two subgroups, respectively. For both subgroups,
the hazard for graft failure is greatest immediately following the transplant and
gradually decreases within 4 years where it is stabilised (Figure 1a). The hazard
for death is stable over time since transplant (Figure 1b). For male recipients aged
> 50 years with a deceased donor, for the first 2 years following kidney transplant,
the hazard for graft failure is greater than for death and after that the order is
reversed.
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Figure 1: Estimated hazard functions for two subgroups of patients: male
recipients above 50 years with deceased donor and female recipients aged below 50
years with living donor, using Frank copula with Weibull survival times.

5 Simulation study

We conduct two simulation studies. In simulation study 1, we aim to assess the
performance of the proposed bivariate copula regression models for semi-competing
risk data. We simulate data to mimic the real example of renal transplant data. We
compare the performance of three models: the Cox proportional hazards model;
the bivariate copula regression models with predictors for the hazard rates (Copula
model 1); and the bivariate copula regression models with predictors for both
hazard rates and the association parameters (Copula model 2).

In simulation study 2, we aim to assess the effect of misspecification of the survival
distributions on the estimation of the model parameters. We use the AIC value to
select the best fitting model for the simulated data and calculate the percentage
that the underlying survival model is correctly selected.

5.1 Design

We simulate data with known marginal hazard rates for the non-terminal and
terminal events, and the correlation between the two event times. We assess
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the accuracy of the estimates for the hazard ratios of the non-terminal and
terminal events, HRNT and HRT , respectively. The number of replications in
both simulation studies was 1000. The simulation algorithm is provided below.

1. We generate the binary covariates, Wk, where k = 1, ..., p for p covariates, in
proportions that represent the renal transplant data.

2. We generate Pearson’s correlation coefficient for the Normal copula, or
association parameters for the Clayton, Frank and Gumbel copulas,
respectively, as described in Table 2, with chosen bk.

3. Hazard rates for the non-terminal event, λ1, and terminal event λ2,
with chosen ak and ck being generated by using equations (9) and (10),
respectively.

4. We use the conditional distribution method (Nelsen, 2006) to simulate time
to the non-terminal and terminal events from a specified copula.

(a) (U, V ) have the joint distribution function of the chosen copula, where
U represents the uniformly transformed time to the non-terminal event,
and V represents the uniformly transformed time to the terminal event.

(b) Generate U from Uniform(0, 1).

(c) Generate V from C(v|u), which is the inverse of the conditional copula
distribution function of V given U .

5. We obtain T1 and T2 from the respective inverse marginal survival functions,

T1 = S−1T1 (U),

T2 = S−1T2 (V ).

Here T1 =
− log(U)

λ1
and T2 =

− log(V )

λ2
, when the survival distribution is

Exponential for both events.

6. We simulate censoring time, C, independently from a Uniform distribution.

7. Set the time to the non-terminal event, X = min(T1, T2, C), with event
indicator d1 = 1 if T1 ≤ min(T2, C) and d1 = 0 otherwise.

8. Set the time to the terminal event, Y = min(T2, C), with event indicator
d2 = 1 if T2 ≤ C and d2 = 0 otherwise.
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In simulation study 1, the simulated data are analysed using Cox model, and
the models with underlying copula function. For example, when analysing the
simulated data generated using the Clayton copula, we use the Clayton copula
model. Sorrell et al. (2022) conducted an extensive simulation study to evaluate
the effect of misspecification of copula functions and we will not duplicate that
simulation in this paper.

5.2 Choice of parameters

We generate data sets with 3000 individuals with hazard rates and association
parameters mimicking the real data analysis from the UKTR data set. The binary
covariates are generated from a Bernoulli distribution with parameters mimicking
the real data. Specifically, the age group > 50 years with probability 0.40, females
with probability 0.38 and living donor recipients with probability 0.30.

The regression coefficients are set to be equal to those in Tables S1 and S2 in
the Supplementary Materials for simulation studies 1 and 2, respectively. The
censoring time, C, is generated independently from Uniform(0, 25) distribution,
representing a maximum follow up time of 25 years.

5.3 Performance measures

We maximise the log-likelihood described in Section 3 using the optim function
in R to estimate the regression coefficients for the marginal and association
parameters. The performance of the maximum likelihood estimates is evaluated
using the bias, the mean squared error (MSE) and the coverage probability.

5.4 Results of simulation study 1: performance of the
proposed bivariate copula regression models

For the non-terminal event, the hazard ratio of age group estimated from the
Cox model has the following coverage probabilities, 11.7%, 0.0%, 0.0% and
18.9%, if data were simulated from Normal, Clayton, Frank and Gumbel copulas,
respectively (Table 6). These coverage probabilities were far below the nominal
level. In copula regression model with covariates included for the hazard rate
but not for the association parameter (copula model 1), the equivalent coverage
probabilities were 0.0%, 90.3%, 56.7%, 45.5% (Table 6). Using copula model 2,
where covariates were included for the hazard rates and the association parameter,
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the coverage probability is around the nominal level for each copula, 94.6%, 95.1%,
94.5%, 95.2% (Table 6). We observe a reduction in the bias and MSE of the non-
terminal hazard ratio for the age group in copula model 2, as compared to the Cox
model. This explains the discrepancy in the findings between the Cox model and
the copula model in the real data analysis.

For the hazard ratios of sex and donor type for the non-terminal event, both the
Cox model and the Copula model 2 result in coverage probabilities close to the
nominal level. However, the results from the copula models show slight reductions
in bias and MSE. For example, when using the Cox model for data generated from
the Normal copula, the bias and MSE of the hazard ratio are 0.240 and 0.062,
respectively, for the non-terminal event with covariate age agre. Comparing this
to Copula model 2, we find the bias to be −0.003 and the MSE to be 0.007.

The results for the hazard ratios of the terminal event are similar between the
Cox model, Copula models 1 and 2 with coverage probability close to 95%. This
is expected, because the terminal event can not be censored by the non-terminal
event. However, using copula model 1 the coverage probability is 100.0%, for the
hazard ratio of age group, where data are generated from the Clayton copula.
When including the covariate age group in the association parameter, in copula
model 2, we find the coverage probability increases to 95.7%.

5.5 Results of simulation study 2: effects of the
misspecification of survival distributions

We evaluate the use of alternative survival distributions and the effects
of misspecification of the survival distribution. For the simulation studies
investigating misidentification, we simulate data mimicking the real data set
using four different copula distributions, with true values given in supplementary
material Table S2. We also evaluate the use of AIC to select the survival
distributions. We simulate data with the following combinations of survival
distributions and copula functions, Exponential, Weibull and Gompertz survival
distributions and Normal, Clayton, Gumbel and Frank copulas.

The results of simulation study 2 are given in Table S3 in the Supplementary
Material. Here we give a summary of finding from this simulation study. Our
simulation study shows that AIC can be used to select the survival distributions.
The survival distribution is chosen correctly in almost 100% cases for the Weibull
distribution, roughly 91% or above for Gompertz distribution, and around 78% or
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above for Exponential distribution. Where the underlying Exponential distribution
is not correctly identified, about 10% of the times the survival distribution is
misspecified as Weibull or Gompertz distribution. However, the estimation is in
general robust to the misidentification of the Exponential distributions by Weibull
or Gompertz distribution. The summary of performance of the models selected by
lowest AIC show that the coverage probability is close to the nominal level.

6 Discussion

We propose a set of copula regression models to allow both the hazard rates and
the association between times to non-terminal and terminal events to vary by
covariates. We use conditional copulas (Patton, 2006) with predictors for the
hazard rates of the semi-competing risk events and the association parameters. The
advantage of the proposed method is the estimation of the hazard ratios by taking
into account the correlation between the semi-competing risks and the flexibility of
using a variety of copulas to describe different patterns in the relationship between
the survival endpoints.

Our work demonstrates the importance of considering the correlation between the
semi-competing risks. In the real data analysis, different conclusions were found
for the effect of age group, where Cox model showed older age was associated with
lower risk of graft failure (HR: 0.911, 95%CI: 0.872 to 0.952), while our proposed
copula models showed older age was associated with higher risk of graft failure
from all copula models. The estimated hazard ratio from Frank copula Weibull
survival model, which has the lowest AIC, is 1.202 with 95%CI: 1.152 to 1.251
(Table 5).

We conduct simulation studies to assess the performance of the copula regression
models and to evaluate the use of AIC to choose survival distributions. The
estimation of the hazard ratio for the non-terminal event is improved by using the
copula model 2, with coverage probability around the nominal level, compared to
using the Cox model which has coverage probability 0% in some scenarios (Table
6). These results corroborate the findings from Leffondré et al. (2013). For the
non-terminal hazard ratio, we found a reduction in bias and MSE using the copula
regression models compared to the Cox model. Our work highlights the importance
of acknowledging the semi-competing risk when analysing the effect of a covariate
on an endpoint, where the covariate has a strong effect on a competing risk.

We have considered the effect of misspecification of survival distribution. Our
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simulation studies show that the AIC can be used to select the survival
distributions in the majority of cases. In the remaining cases, misspecification is
more likely to occur when the underlying distribution is Exponential or Gompertz.
However, miss-specifying these two distributions by a Weibull distribution still
holds good properties in terms of the parameter estimates. Further research may
also investigate other parametric survival distributions or the use of non-parametric
methods to model the marginal survival functions.

We have used a full maximum likelihood approach for estimating the model
parameters. We acknowledge the two-stage estimation procedures for the
association parameter may be more efficient for copula survival models (Shih
and Louis, 1995). In the two-stage approach, the association parameter and the
parameters in the marginal survival distributions are estimated separately. In
stage 1, parameters in the marginal distributions are estimated assuming they
are independent. In stage 2, the association parameter is estimated by fixing
the two marginal distributions at the estimates from stage 1. This approach
ignores the dependency structure in stage 1, however, it offers the advantage of
being practically efficient especially when the models become more complex. The
application of the two-stage approach in our proposed models and the comparison
with the one-stage full maximum likelihood approach is a topic for future research.
Another possible extension could be to estimate the marginal survival function
using non-parametric methods (Li et al., 2020) or Cox proportional hazards model
(Li et al., 2021). It would be also of interest to investigate the use of grid search
methods to find starting values for optimising the likelihood function.

In this paper, we have extended the recent work in bivariate semi-competing risk
models by including covariates. Another topic of future research could be to extend
the model to include frailty terms to account for unmeasured covariates. Since
we have bivariate semi-competing risk data, this extension will require to model
the frailty terms by using a bivariate distribution to account for the potential
correlation between the two frailty terms.

We have used Exponential, Weibull and Gompertz distributions to illustrate
the methods and applications of our proposed models. However, this can be
readily extended to other parametric survival distributions. We have assessed
the performance of our proposed copula survival models using simulation studies
and compare between them using AIC. Assessing the goodness-of-fit of the copula
survival models may be developed in future research.

As this paper focuses on describing copula regression models with binary
covariates, the dichotomous age groups (> 50 years or ≤ 50 years) representing
younger and older age were included for illustration purpose. We acknowledge
that age should be best analysed with more categories or as a continuous variable.
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In our follow-up work, we are developing copula regression models to include more
categories for age or include age as a continuous variable.

Further research may investigate the inclusion of continuous and categorical
covariates. We have considered a linear function to incorporate covariates into the
hazard rates and association parameter, however, alternatives may be considered.
Acar et al. (2013) have developed methods to compare potential functions that
describe the association parameter of the copula function’s relationship with the
covariate by using a generalised likelihood ratio test. We have used available case
analysis to illustrate the application of our methods. Future research can use
multiple imputation to deal with missing data when using our proposed methods.
This could be time consuming when the Normal copula model is used.

As can be seen in Tables 3-5, it takes 2-4 hours to optimize the likelihood for
Normal copula models. Future research may investigate how to speed up the
optimization process for the analysis of a single data set, and the use of parallel
computing in R for conducting simulation studies.
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