
University of Plymouth

PEARL https://pearl.plymouth.ac.uk

04 University of Plymouth Research Theses 01 Research Theses Main Collection

2002

DETERMINATION OF ADDITIVES IN

FUELS USING AUTOMATED FLOW

INJECTION ANALYSIS WITH

CHEMILUMINESCENCE DETECTION

FLETCHER, PHILIP JAMES

http://hdl.handle.net/10026.1/2068

http://dx.doi.org/10.24382/1506

University of Plymouth

All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with

publisher policies. Please cite only the published version using the details provided on the item record or

document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content

should be sought from the publisher or author.



D E T E R M I N A T I O N O F ADDITIVES IN F U E L S USING A U T O M A T E D F L O W 

I N J E C T I O N ANALYSIS W I T H C H E M I L U M I N E S C E N C E D E T E C T I O N 

By 

Pff lLIP J A M E S F L E T C H E R 

A thesis submitted to the University of Plymouth 

In partial fulfilment for the degree of 

D O C T O R O F P H I L O S O P H Y 

Department of Environmental Sciences 

Faculty of Science 

In collaboration with 

Shell Global Solutions, 

Cheshire Innovation Park, Chester. 

January 2002 



90 0506529 1 

UNIVERSITY o r P L v ' M O U T H 
Item No. 

Date 2 8 F E B 2002 

Class No. T H G S I S 5 4 - 3 . 0 
Cont. No. 

P L Y M O U T H ' ? . R A R Y 
8 FL£ 

LIBRARY STORE 

m m 



ABSTRACT 

D E T E R M I N A T I O N O F A D D I T I V E S IN F U E L S USING A U T O M A T E D F L O W 

I N J E C T I O N ANALYSIS W I T H C H E M I L U M I N E S C E N C E D E T E C T I O N 

Philip James Fletcher 

The overall objective of this thesis was to develop field deployable instrumentation for the 
selective, sensitive determination of additives in diesel fiiels using flow injection with 
chemiluminescence detection. The target analytes were the detergent dodecylamine and the 
lubricity additive P655. 

Chapter One describes the types of additives that are used in fully formulated diesel fuels in 
order to improve performance and outlines the need for robust analytical methods to be able to 
detect their presence / absences in fuels at the point of distribution, i.e. at the petrol pump. 
Flow injection (Fl), and chemiluminescence (CL) are described as suitable techniques for 
sample preparation and detection respectively. The application of FI-CL for the quantitative 
deiemiination of various analytes is reviewed, with the focus on real sample matrices. Finally 
the technique of solid phase extraction is discussed as a means of selective analyte 
preconcentration / matrix removal prior to Fl-CL detection 

Chapter Two describes the development and ojjtimisation (both univariate and simplex) of an 
FI-CL method for the determination of dodecylamine in acetonitrile / water mixtures using the 
catalytic effect of amines on the peroxyoxalate / sulphorhodamine 101 CL reaction. The linear 
range for dodecylamine was 0 - 50 mg L"' with a detection limit of 190 |ig L' ' and RSDs 
typically < 4 %. The effect of indigenous diesel compounds on the CL response is also 
investigated. 

Chapter Three investigates the applicability of the method developed in Chapter Two to 
determine dodecylamine in diesel fuels. Solid phase extraction was needed prior to analysis by 
FI-CL. The development of a solid phase extraction that is compatible with the FI-CL system 
is detailed. GC-NPD and GC-MS analysis are used in order to validate the solid phase 
extraction procedure. A range of diesel fuels have been spiked with an additive package 
containing dodecylamine and have been analysed off-line using FI-CL. Recoveries for all 
diesel fuels analysed were < 72 % and all fuels could by identified from the corresponding 
base fuel. 

Chapter Four describes the design and construction of a fully automated on-line solid phase 
extraction flow injection chemiluminescence analyser for the determination of dodecylamine 
in diesel fuel. Details of the automation and programming using LabVIEW^" are described. 
Results obtained using the automated on-line system are compared with results obtained using 
off-line SPE with FI-CL detection fix)m Chapter Three. Recoveries for all fuels except SNV 
were < 71 %, and all fuels except SNV could be positively identified from the corresponding 
base fuels. No significant differences were found between the on-line and off-line results 
(within 95 % confidence limits). 

Chapter Five investigates the feasibility of determining the lubricity additive P655 in diesel 
fuel using FI-CL. The optimisation and development of a method using the competing 
reactions of periodate with alcohols and periodate with the CL oxidation reaction with 
pyrogallol is discussed, and the development of a solid phase extraction procedure for the 
extraction of P655 from an organic matrix is described. The limit of detection for P655 using 
SPE without preconcentration was 860 mg L'* and was linear in the range 0 - 10000 mg L' ' 
(R2 = 0.9965). 
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Chapter 1: Introduction 

1 INTRODUCTION 

1.1 DETERMINATION OF ADDITIVES IN DIESEL FUELS 

1.1.1 COMPOSITION AND S O U R C E S O F D I E S E L F U E L S 

Crude oil has many uses. When refined, crude can be used to produce many products from 

fiiel gas to coke and asphalt. A summary of the refining products of crude is shown in Fig. 

1.1. One of the products derived from crude is diesel fuel which is used for a significant 

Fuel Gas 

ADcv'alioDPlunt 

Gasoline Blending 

+ 

Gasoline Gasoline 

Naphtha 
Catalytic Refbrnrung 

Petrochemical 
Feedstocks 

Hydrotreating 
Light Gas Oil 
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Distiilation 

Hydrocracking 
Heavy gas Oil 

Residuum 
Catalytic Cracking 

Solvent Extraction 
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Diesel Fuel Home : 

lleiiiinu l-iiel j 

W;i\es. Lithric:)ting 
Oils. Greases 

Coke. 
Aspkilt 

Figure 1.1: Distillation of crude oil. 

proportion of motor cars (22 % in western Europe in 1998, (Davies and Weston, 1998)) 

and generators, with 56 % of the middle distillate of crude being used in the production of 

diesel fuel. Diesel is blended from a range of boiling point mixtures (usually in the range 

120-400 °C) and may contain many thousands of compounds, but the main constituents are 
1 



Chanter 1: Introduction 

hydrocarbons with up to 30 % of the fuel consisting of mono-, di- and tri-aromatics. 
Blending is necessary in order to achieve the desired cetane number (EU minimum of 51) 
(EU, 1998). Cetane number is a measure of the ignition quality of a diesel fuel. I f the 
cetane number of a fuel is too low, then there wi l l be a long delay between fliel injection 
and combustion, causing increased engine noise and roughness of operation. Fuels with 
high cetane numbers wi l l give better ignition quality by reducing the ignition delay period. 
Cetane numbers can also be altered by the inclusion of particular additives in fuels. 
Examples of common cetane improvers are 2-ethylhexyl nitrate and tetraethylene glycol 
dinitrate (Suppes et al., 1997). 

1.1.2 F U E L ADDITIVES 

Cetane improvers are not the only additives used to enhance the properties of fuels, and a 

summary of the key classes of additives used is shown in Table 1.1. 

Table 1.1: Common diesel fuel additive types and their purposes. 

Additive Purpose 

Detergents Control the formation of deposits on the fuel injectors, and clean off 
existing deposits. 

Ignition improvers (Cetane improvers) increase the cetane number of diesel fuel. 

Anti-foaming agents Reduce the amount of foam produced when a tank is filled allowing 
quicker and cleaner refuelling. 

Corrosion inhibitors Surfactants which prevent rust from forming. 

Dehazers Accelerate the rate at which water droplets clear, restoring the fuel's 'clear 
and bright* appearance. 

Re-odourants Give the fuel a more acceptable odour. 

Lubricity improvers Added to reduce the pump wear on fuels with low sulphur content. 

Flow improvers Improve cold weather starting ability by interacting with the waxes that 
separate from diesel fuel as it cools. 

Antioxidants Prevent fuel from degrading 

Drag-reducers Reduce turbulence in flowing fuel, so it can be pumped at a faster rate 
through pipelines joining refmeries and depots. 

Dispersant additives Reduce electrostatic build-up to avoid the risk of explosion when the fuel Dispersant additives 
is being pumped at high speed. 

Biocides Prevent growth of bacteria and fungi in fuel tanks. 
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Compounds used as ftiel additives often differ from one manufacturer to another, and can 
therefore be used to differentiate different manufacturer's products. Analysis of additives is 
very important in order to maintain product quality throughout the distribution chain of a 
ftiel. At present, analysis is performed by taking samples from different points of the 
distribution chain (distribution terminals, garage forecourts etc.) and sending them to a 
laboratory. This can incur a lengthy and potentially costly delay between sampling and 
analysis. Analysis at the point of distribution would avoid this delay and, in some parts of 
the world where counterfeiting is commonplace, help to ensure that the product on sale is 
genuine. 

Diesel is a very complex and variable matrix. A gas chromatogram of a typical diesel friel 

is shown in Fig. 1.2. The composition depends on the source o f crude oil and also the 

manufacturing process used to produce the fiiel. A straight run distillate wil l have a very 

different composition to that o f a heavily catalytically cracked fiiel. This presents a 

problem with analysis, as most simple analytical techniques require standards to be 

prepared in a matrix of very similar composition to that of the sample to be analysed. 

Figure 1.2: Gas chromatogram of 0.1 % diesel in heptane. The large number of 
components present can cause problems with analysis. 
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Fuel additives are usually added at relatively low concentrations (typically 10-500 mg L ' ' ) . 
Analysis of compounds present at low concentrations is likely to be difficult, as more 
abundant matrix compounds will interfere. Another analytical problem to overcome is that 
many diesel additives are not distinct chemical entities. Most additives consist of a mixture 
of a number of compounds with broadly similar structures, however, they may have a 
range of molecular masses. Two classes of additives which are of particular important to 
the consumer are detergents and lubricants, which are discussed in more detail below. 

1.1.3 DFTERGENTS 

Detergents are used in fuels to control the formation of deposits in the engine, helping to 

prevent problems caused by the build up of gum, lacquer and carbonaceous deposits. Gum 

deposits are caused by the oxidation of diesel fuel and may lead to the sticking of injector 

needles, engine misfiring, loss of power and increased smoke emissions. Lacquer and 

carbonaceous deposits on fuel injectors can affect the amount of fuel injected and the spray 

pattern, leading to loss of power, poor starting, misfiring, irregular and noisy combustion, 

increased fuel consumption, exhaust odour and increased exhaust emissions. 

Figure 1.3: Fuel injector needles after 3000 km (magnified), using fuel without (left) 
and with (right) a detergent (Forbes, 2000). 
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Photographs of fuel injectors, both with and without detergent additives, are shown in Fig. 
1.3. A large build up can be seen on the injector from the engine that was run without 
detergent in the fuel. Detergent additives for diesel fuel are usually surfactants and function 
by forming a f i lm on metal surfaces which prevents deposits from forming. Detergents can 
also gradually remove deposits which have already formed on the metal, give some 
protection against rust and are sometimes used in conjunction with dispersants to help 
disperse particulate matter. 

Fuels with a low sulphur content often require different detergent chemistry from fuels 

with a high sulphur content. Additives which function well in one type of fuel may be 

much less effective in other types. The concentration needed for an additive to perform its 

task effectively is known as the dose rate for that additive. Typical dose rates for detergent 

additives are 40-200 mg L ' ' . The choice of additive and treatment rate are determined by 

the characteristics of fuel and whether the aim is to maintain clean injectors or to clean up 

dirty ones. 

Detergent additives may be distinct chemical entities e.g. dodecylamine (see Fig. 1.4) or 

can be polymeric containing many compounds of similar functionality e.g. mono and bis 

succinimide (see Fig. 1.5), which have molecular weights in the range 1100 to 2700 

gmo^^ 

Figure 1.4: Structure of detergent additive dodecylamine. 
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Figure 1.5:Structure of detergent additive mono and bis succinimide. 

1.1.4 L U B R I C A N T S 

Sulphur compounds present in diesel fuel act as natural lubricants for fuel system 

components such as fuel pumps and injectors. When sulphur is removed from diesel fuel 

the natural lubricity of the fuel is reduced. Prior to the year 2000, European Union fuel 

specifications allowed a maximum of 500 mg L * sulphur. Since 2000 the maximum 

sulphur content allowed by the EU has been reduced to 350 mg L"' (Directive 98/70/EC) 

(EU, 1998) and this wi l l be further reduced to 50 mg L"' in 2005. Poor lubricity in fuel can 

lead to excessive wearing of the rotary injection pumps, which rely on the fuel for 

lubrication. Other disadvantages caused by poor lubricity are unreliable fuel delivery, 

increased emissions, increased fuel consumption and pump failure. To ensure that this does 

not cause problems, low sulphur diesel fuel is manufactured with some residual sulphur 

compounds. Lubricity is measured by additional testing during the manufacturing process 

and i f lubricity does not meet accepted international standards then it is treated with an 

additive (usually at the refinery). 

Typical dose rates are from 20-500 mg L"' depending on the base fuel and the additive 

used. As with detergent additives, lubricity additives often consist of a mixture of 
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compounds, for example P655 (see Fig. 1.6). which is a mixture of mono-, di- and tri-
esters of glycerol and linoleic acid with molecular weights in the range 354-878 g mol '. 

Figure 1.6: Structures of mono-, di- and tri-esters of glycerol and linoleic acid which 
comprise the additive Paramin 655 (P655). 

1.1.5 T H E N E E D F O R RAPID D E T E R M I N A T I O N O F F U E L ADDITFVES 

Current methods for the detemiination of ftiel additives all require samples to be analysed 

in a laboratory environment. Examples of current methods used in fuel additive analysis 

are; HPLC with IR detection for the detection of alkyl nitrate cetane improvers (Schabron 

and Fuller, 1982); online HPLC-GC for the analysis of vegetable oil methyl esters used as 

lubricants (Plank and Lorbeer, 1994); and trifluoroacetylation derivatisation prior to 

analysis by GC-MS for the detection of amines in petroleum (Thomson et al., 1994). AH of 

these methods require a laboratory for analysis. Rapid, portable, low cost instrumentation 

that could be deployed at the point of distribution would be very desirable because the 

lengthy and potentially costly delay incurred whilst sending samples to the laboratory 

could be eliminated. 



Chapter 1: Introduction 

1.2 CHEMILUMINESCENCE 

1.2.1 O V E R V I E W O F L U M I N E S C E N C E T E C H N I Q U E S 

Luminescence spectroscopy encompasses a wide range of analytical techniques, which are 

of^en used in analytical chemistry. A l l luminescence techniques involve the emission of 

ultraviolet (UV), visible (Vis) or near-infrared (NIR) radiation from an excited electronic 

state. An overview of analytical luminescence techniques is shown in Table 1.2. 

Table 1.2: Summary of luminescence techniques. 

Effect Cause 

Luminescence 

Fluorescence 

Phosphorescence 

Photo luminesce nee 

Anodoluminescence 

Cathodoluminescence 

Radioluminescence 

Thermoluminescence 

Electroluminescence 

Sonoluminescence 

Triboluminescence 

Crystalloluminescence 

Lyoluminescence 

Chemiluminescence 

Bioluminescence 

Electrogenerated 
chemi luminescence 

The emission of ultraviolet (UV), visible or near infrared (NTR) radiation 
from a molecule or an atom resulting from the transition of an electronically 
excited state to a lower energy state (usually the ground state). 

Short-lived luminescence arising from an 'allowed' transition (usually 
singlet to singlet). Lifetimes for fluorescence are 10"'-10'̂  s 

Long-lived luminescence arising from a 'forbidden' electronic transition 
between excited and ground states with different spin multiplicities (usually 
triplet to singlet). Lifetimes for phosphorescence are IC^-IO s. 

Luminescence produced from the absorption of ultraviolet, visible or near 
infrared light. 

Luminescence arising from irradiation by a-particles. 

Luminescence arising from irradiation by p-particles. 

Luminescence arising from irradiation by X- or y- rays. 

Luminescence arising from solids on mild heating. 

Luminescence arising from electronically excited states produced by the 
presence on an electric field. 

Luminescence arising from the passage of intense sound waves through a 
liquid formed by electric discharges in the residual gas of cavities formed 
by the acoustic energy in the liquid. 

Luminescence arising from the rubbing together of certain solids, for 
example when solids are crushed. 

Luminescence produced by the crystallisation of certain crystal, thought to 
be due to the cleavages occurring during the growth of individual crystals. 

Luminescence produced when certain crystals dissolve. 

Emission of light from electronically excited stales produced in a chemical 
reaction. 

Chemiluminescence from a biological system. 

Luminescence produced by chemical reactions of chemiluminescent species 
produced during electrolysis in solution. 
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Luminescence techniques have many advantages over competitive techniques such as 
UVA^is absorption spectroscopy. Luminescence is inherently more sensitive than 
absorption spectroscopy. Absorption techniques rely upon the ratio of transmitted to 
incident light as shown by the Beer-Lambert law (see Equation 1.1). 

A = £bc = L o g ^ (1.1) 

Where A is the absorption, e is the molar absorptivity, c is the concentration, b is the path 

length, lo is the intensity of incident light and I is the intensity o f transmitted light. 

Luminescence techniques measure emitted photons and so do not rely on the ratio of 

absorbed to incident light. Detectors that are used in luminescence have the ability to 

respond to very low levels of light and also have very low background signals, making 

luminescence techniques very sensitive. Luminescence techniques are generally linear over 

several orders of magnitude and are usually very selective. The selectivity of a 

luminescence technique can also be a disadvantage, as there is a limited number of species 

that show luminescence. In order to extend the range applications, derivatisation is often 

used to produce a fluorescent derivative of a non-fluorescent analyte however, the presence 

of excess derivatising reagents can also cause interferences. 

Suppression of luminescence can also be used to detect analytes that cannot be directly 

detected using luminescence. The analyte of interest can react with one of the luminescent 

reagents providing a competing reaction, thus reducing the luminescence emission. 

A potential energy diagram showing the electronic transitions: absorption, fluorescence 

and phosphorescence is shown in Fig. 1.7. 
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Gnwnd Sutc 

Figure 1.7: Potential energy diagram showing the processes of absorption, 
fluorescence and phosphorescence ( IC is internal conversion, E C is external 
conversion, ISC is intersystem crossing and V R is vibrational relaxation). 

Most organic compounds have a pair of electrons in the ground state. According to the 

Pauli exclusion principle, the electrons wi l l have opposing spins, as shown in Fig. 1.8. This 

state is known as a singlet ground state (So). On absorption of UV or visible radiation an 

electron can be raised to an excited singlet state. 

71 

4 
S T 

{ - 4 
4f 4f 4f 4̂  4 

71—•n TI—>7l 

1 ^ 44 
71—>7l 

Figure 1.8: Diagram showing some examples of electronic transitions from the 
ground state G. Singlet states are shown as S, and triplet states as T (a is a sigma 
bonding orbital, 7i is a pi bonding orbital and n is a non-bonding orbital). 
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When a molecule had absorbed light and formed an excited singlet state, then it can 
undergo non-radiative (internal / external conversion or intersystem crossing) or radiative 
(fluorescence or phosphorescence) pathways to relax. The quantum yield (efficiency) of a 
process is defmed as shown in Equation 1.2. 

^ number of events 
<D = (1.2) 

number of photons absorbed 

In the absence of any photochemical reactions, the sum of the quantum efficiencies for 

fluorescence (Op), phosphorescence (<I>p) and non-radiative processes (0|) is 1 (see 

Equation 1.3). 

O F + <DP + C D I = I 3j 

Non radiative processes 

Non radiative processes are vibrational relaxation, internal conversion, external conversion 

and intersystem crossing. Vibrational relaxation is the deactivation of vibrational energy 

levels within a given electronic state. Internal conversion (IC) is a radiationless transition 

between states with the same spin quantum numbers {e.g. Si to So). This occurs when the 

two energy levels are close enough for the vibrational energy levels to overlap allowing 

vibrational relaxation. External conversion (or energy transfer) is the transfer of electronic 

energy from one molecule to another. Intersystem crossing (ISC) is a radiationless 

transition between states with different spin quantum numbers (e.g. Ti to So). 

Fluorescence 

For fluorescence to take place the excited molecule must relax to the lowest vibrational 

energy level within the excited singlet state. The molecule can relax to any of the 

vibrational energy levels in the ground singlet slate with the emission o f a photon with the 

11 
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corresponding amount of energy. No change of spin is needed for fluorescence and so the 
transition is very rapid (10"^ - 10"' s). Transitions that involve no change of spin are termed 
'allowed'. 

Phosphorescence 

Phosphorescence emission involves the change of spin multiplicity prior to emission. 

Because of the change of spin needed for phosphorescence, the transition is termed 

'forbidden' and is a much slower process than fluorescence (10"^-10 s). The change of spin 

is usually from an excited singlet state to a triplet state. Non-radiative processes are very 

fast in relation to phosphorescence, and so phosphorescence is rarely observed. 

1.2.2 C H E M I L U M T N E S C E N C E T H E O R Y 

Chemiluminescence (CL) reactions are chemical reactions where one of the products is 

light. The most familiar examples of CL reactions are the peroxyoxalate CL reaction, 

which is used in light sticks, and the light produced by fireflies. CL reactions exist in the 

gas, liquid and sold phases. The simplest form of chemiluminescence is direct CL, in 

which two chemicals are mixed to produce a product in an excited state (Product') which 

can subsequently relax to the ground state with the emission of a photon (see Equation 

1.4). 

A + B [Product]* -> Product + Light (14) 

In certain cases the excited molecule is a weak or non-emitting species. In this case, the 

energy may be passed to another species F (known as a sensitiser or fluorophore) which 

can go on to emit light. This is known as indirect chemiluminescence (see Equation 1.5). 

12 
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A + B -> [Product]* + F -> [F]* -> F + Light (15) 

The intensity of chemiluminescence is related to the quantum yield for chemiluminescence 

as shown by Equation 1.6. 

Where IQL is the intensity of CL emission (photons per second), CD^L is the quantum yield 

for chemiluminescence (number of photons emitted per molecule reacted), dPldt is 

chemical reaction rate (molecules reacting per second), OEX is the quantum yield for 

excitation (excited states produced per molecule reacted) and OEM is the quantum yield for 

emission (photons emitted per excited state). 

1.2.3 INSTRUMENTATION F O R C L D E T E C T I O N 

Detection systems in chemiluminescence consist of two major parts; a flow cell and a 

device for quantifying the CL emission. 

1.2,3.1 Flow cells 

A flow cell must have a large area in contact with the detector in order to maximise the 

amount of light that is received by the detector. A spiral flow cell is the most common 

design to allow a large emission Eû ea, however other designs such as zigzag flow cells have 

been utilised (see Fig. 1.9). A typical flow cell is 10-15 cm long with a volume >100 ^ L . 

13 
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Figure 1.9: Spiral flow cell (left) and zigzag flow cell (right) designs. 

L23,2 Detectors 

Photodiodes 

Photodiodes are solid state devices. Silicon photodiodes are constructed from single crystal 

silicon wafers with *N' type silicon used as the starting material. A thin layer is formed on 

the front surface of the device by thermal diffusion or ion implantation of the appropriate 

doping material known as the *p' layer. The interface between the 'p ' layer and the 'n ' 

silicon is known as a pn junction. A cross section of a typical silicon photodiode is shown 

in Fig. 1.10. The thickness of the 'p ' layer determines the wavelength of radiation to be 

detected. The silicon near the pn junction becomes depleted of electrical charges and this is 

known as the "depletion region". The depth of the depletion region can be varied by 

applying a reverse bias voltage across the junction. When light hits the pn junction free 

electrons are formed producing a current that is proportional to the intensity of light. 

Examples of photodiodes used for chemiluminescence detection are the determinations of 

H2O2 and 1-lactate (Hayashi et al., 1996; Hemmi et al., 1995). Photodiodes are small and 

relatively inexpensive and have low power requirements, operating at < 15 V. 

14 
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Figure 1.10: Cross section of a typical silicon photodiode (left), and a typical spectral 
response profile for a photodiode (right) (Centrovision Inc., 2001) 

PhotomuUiplier tube (PMT) 

A schematic diagram of a PMT is shown in Fig. 1.11. When a photon of light hits the 

photocathode, an electron is emitted. This electron is accelerated towards a dynode which 

is at a positive potential. 

The dynode then emits a number of electrons that are accelerated to the second dynode, 

which is at a higher potential. The second dynode consequently emits a number of 

electrons for each electron that hits it, and this process is sequentially repeated until the 

electrons reach the last dynode, which is at a very high potential. The resulting current is 

proportional to the amount of light reaching the photocathode. Photomultiplier tubes have 

fast response times (typically nanoseconds), very low noise, and good linearity. 

Wavelength ranges are between 150 and 900 nm. A typical wavelength response profile for 

a PMT is shown in Fig. 1.12. 

15 
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Figure 1.11: A schematic of an end window pbotomultiplier tube. 
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Figure 1.12: Typical photomultiplier tube response profile (Hamamatsu Photonics 
K.K. , 1998). 

The limitations of PMTs are that they are fairly fragile and require a high voltage power 

supply (>1 kV) to power them, although PMTs with built in power supplies can be 

obtained, which operate at 12 V. 
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1.2.4 COMMON L I Q U I D PHASE C L R E A C T I O N S 

A number of chemiluminescence reactions are available in analytical chemistry. The most 

common reactions (luminol, lucigenin, tris(2,2'-bipyridine)ruthenium(ll), peroxyoxalate 

and pyrogallol) are discussed below, 

1.2.4.1 Luminol 

The luminol CL reaction involves the oxidation of luminol (5-amino-2,3-

dihydrophtha2ine-l,4-dione) to produce an excited molecule o f 3-aminophthalate (see 

Fig. 1.13). Emission is in the blue region (425 nm) with a quantimi yield o f O.OI in 

aqueous alkali and blue-green emission (480-502 nm) with a quantum yield of 0.05 in 

dimethyl suphoxide. 

O 

OH-, catalyst, H , 0 , f - ^ ^ ^ O " „ . . . . 

Luminol 3-Aininophthalate* 3-Aminophthalate 

Figure 1.13: Luminol chemiluminescence reaction (Robards and Worsfold, 1992). 

The reaction is catalysed in the presence of a number of metal cations and by haem 

containing enzymes. 

1.2.4.2 Lucigenin 

Lucigenin (A^^'-dimethyl-9,9'-diacridinium nitrate) undergoes oxidation to produce an 

excited molecule o f Mmethylacridone, which can relax to produce light in the blue-green 

region (440 nm) as shown in Fig. 1.14. 
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Oxidation 

2NO3- > + Light 

Lucigenin A'-Methylacridone 

Figure 1.14: Lucigenin chemiluminescence reaction (Birks et al., 1989). 

The quantum yield for this reaction is 0.016 (Robards and Worsfold, 1992). The lucigenin 

reaction (as with luminol) is catalysed by a number of metal cations, as well as some 

cations, e.g. Bi(III), that do not catalyse the luminol reaction. 

L2.4.3 Trb(2,2*-bipyridme)ruthenium(Il) 

In the tris(2,2'-bipyridine)ruthenium(II) reaction, Ru(bpy)3"^ and Ru(bpy)3''^ react yielding 

the excited state molecule Ru(bpy)3^^* which relaxes with the emission o f orange light. 

Ru(bpy)3'^- Ru(bpy)/* + e-

Ru(bpy)3^' + C204--^ Ru(bpy)3^* + Ru(bpy)3* + 2CO2 

Ru(bpy)3* + Ru(bpy)3'*- Ru(bpy)3'^ + Ru(bpy)3'^' 

Ru(bpy)3^*'— Ru(bpy)3 '̂̂  + Light 

Figure 1.15: Tris(2^'-bipyridine)ruthenium(II) chemiluminescence reaction with 
oxalate (Birks et al., 1989) 

Ru(bpy)3^ and Ru(bpy)3^^ can both be electrogenerated or an appropriate oxidant or 

reductant (e.g. oxalate) can be used to chemically generate these oxidation states. This 

reaction is particularly useful for the detection of amines (Noffsinger and Danielson, 

1987). 
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L 2.4,4 Peroxyoxalate 

Peroxyoxalate chemiluminescence involves the oxidation of an aryl oxalate ester (usually 

with hydrogen peroxide) as shown in Fig. 1.16. This reaction is an example of indirect CL, 

whereby emission is not from the CL reagents, but from a fluorophore. The emission 

wavelength, therefore, depends on the fluorophore used. 

O O fluorophore 
y—^ j>- [intermediate-^fluorophore--] 

R - O O - R 
Peroxyoxalate ester 

2ROH + 2CO2 + fluorophore* ^ fluorophore + Light 

Figure 1.16: Peroxyoxalate chemiluminescence reaction (Rauhut et al., 1967). 

Quantum yields for the peroxyoxalate reaction are relatively high (up to 0.5). The 

peroxyoxalale reaction is discussed in more detail in Chapter 2. 

7.2.^.5 Pyrogallol 

The oxidation of pyrogallol with periodate will produce weak chemiluminescence 

emission. Hydroxylamine is thought to react with pyrogallol to produce a sensitiser for this 

reaction resulting in a stronger CL emission. The emission from the pyrogallol reaction is 

in the reddish pink region (630 nm) in alkaline hydrogen peroxide. A more detailed 

discussion of the pyrogallol CL reaction is presented in Chapter 5. 

+ KIO^ + H j N - O H ^ Singlet O2 + Products ^ + Light 

Pyrogallol Periodate Hydroxylamine 

Figure 1.17: Pyrogallol chemiluminescence reaction (Evmiridis, 1987). 
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1.2.5 ADVANTAGES O F C H E M I L U M I N E S C E N C E 

Chemiluminescence has certain advantages over other flow through detection systems. 

Most CL reactions are highly selective for a particular class of compounds which means 

that an analyte can often be measured without requiring any separation from the sample 

matrix. Chemiluminescence is also very sensitive compared with other analytical 

techniques. Instrumentation needed for chemiluminescence is very simple and relatively 

inexpensive, resulting in the need for less sophisticated instrumentation than that needed 

for fluorescence or spectrophotometric techniques that also require a light source and 

monochromator. This also makes chemiluminescence a potentially more portable detection 

technique. 

1.3 FLOW INJECTION 

Flow injection analysis (FIA) was first described in 1975 (Ruzicka and Hansen, 1975). 

This technique involves the injection of a highly precise volume of liquid sample into a 

continuously flowing reagent stream and, as is shown below, is an excellent method for 

automating wet chemical reactions. 

1.3.1 BASIC P R I N C I P L E S 

The key components of a flow injection system are a propulsion device to cause the liquid 

to flow, an injector to introduce a known volume of sample into the flowing stream, and a 

flow-through detection system to measure the resulting chemical reaction. A schematic of 

a basic FI system is shown in Fig. 1.18. 
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Carrier 
Stream 

Sample injector 

Waste 

Flow through 
detector Pump Mixing coil 

Figure 1.18: Schematic diagram of a basic flow injection manifold 

A key principle of flow injection is 'controlled dispersion' of the sample into the carrier 

stream. Dispersion must be controlled in order to obtain reproducible results. Dispersion is 

the process by which a sample appears to spread out or disperse after injection. An 

example of this is shown in Fig. 1.19. 

(« c o c 

d' 

Distance from sample injection 

Figure 1.19: Dispersion process of an injected fluid zone in flow injection. Modified 
from (Fang, 1995) where is the measured concentration at distance (f from the 
injection valve. 
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The two processes that cause dispersion are molecular diffusion and convection. 
Convection effects are the most dominant of these. A measure of dispersion is defined by 
the dispersion coefficient as shown in Equation 1.7 

D is the dispersion coefficient, cP is the measured concentration before dispersion, and C" 

is the concentration after dispersion at a distance (f (see Fig. 1.19) from the injection. 

Dispersion coefficients can be less than 1 i f preconcentration is used. Typical values are 1-

3 for selective detector manifolds {i.e. no sample conversion) and 3-10 for manifolds with 

chemical derivatisiation. 

I J, LI Pumps 

Various systems have been used for pumping in flow injection, each of which have various 

advantages and disadvantages associated with them. 

HPLC piston pumps can be used for flow injection, however they are very expensive, 

prone to blocking, not very portable and are only single channel, so multiple pumps are 

needed to pump multiple carrier / reagent streams. The flow from HPLC is also pulsed, 

resulting in variations in background signals. 

Gas pressure FI relies on a stream of compressed gas to force reagents out of reagent 

reservoirs. The resulting stream is very smooth, but flow rates are not constant due to back 

pressure. A compressed gas cylinder and pressure regulators are needed which mean this 

system cannot be used for portable instrumentation. 
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Gravity fed FI, like gas pressure FI, offers smooth delivery of reagents. A large height 
difference is needed to produce relatively small hydrostatic pressure resulting in low flow 
rates and cumbersome instrumentation. This system is therefore also not readily portable. 

Solenoid operated micro-pumps have been used in flow injection (Coles et al., 2000). 

Computer controlled solenoids are used to pump liquids, with flow rates proportional to 

solenoid switching rates. These pumps offer excellent portability, are low in cost, can be 

battery operated and are very small. They are, however, prone to blockages and have 

limited suction power, which means they cannot pump viscous liquids such as diesel fuel. 

Pumping from solenoid valves is also very pulsed, resulting in large fluctuations in 

baseline signals. Each pump is only single channel, meaning that a separate pump is 

needed for each reagent stream. 

Peristaltic pumps are the most commonly used pumps in flow injection. A number of 

rotating rollers force liquid to travel along a compressible tube, by squeezing small aliquols 

of liquid between the rollers as they rotate. An example of a peristaltic pump is shown in 

Fig. 1.20. Flow rate can be altered by changing either the rotation speed of the rollers or by 

changing the intemal diameter of the peristaltic pump tubing. The flow resulting from a 

peristaltic pump is pulsed, although careful selection of the correct intemal diameter tubing 

and rotations speed of the rollers can reduce the pulsing. These pumps are small, portable, 

low cost and may be battery operated and are multiple channel, so often only one 

peristaltic pump is needed for a flow injection system. 
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Figure 1.20: Schematic diagram of a peristaltic pump. (Fang, 1995). R, rollers; B, 
compression block; A, pressure adjustment screw; T, peristaltic pump tube; C , tube 
collars. 

L3J,2 Injectors 

The most common injection system used in flow injection is the 6 port, 2 position rotary 

injection valve. A schematic diagram of which is shown Fig. 1.21. Position A shows the 

sample loading. Sample is pumped through the sample loop to waste whilst the reagents 

are continually pumped through to the detector. Position B shows the sample injection. In 

this case reagents are directed through the sample loop, pushing the sample in the sample 

loop through to the flow manifold. 

Sample Waste 

From 

Sample 

pump detector pump 

Waste 

detector 

Figure 1.21: Flow injection sample injection valve: a) Sample loading; b) sampli 
injection. 
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L3.L3 Flow injection connections 

Not all flow injection manifolds contain just one line (as shown in Fig. 1.18). They may 

contain many different reagent or sample lines that need to be joined. This usually takes 

place using a T-piece, as shown in Fig. 1.22, although other junctions such as Y-pieces can 

also be used. The most common devices for connecting flow injection lines are VA'-1% 

flange fittings (Fig. 1.22) and 5/16"-PTFE cone fittings (Fig. .23). 

PTFE 
manifold 

tubing 

Silicone 
Washer 

V*-2Z Polypropylene 
Tube end fitting 

Flanged edge 
Of manifold tubing 

Metal Washer 
Polypropylene 

coupling Y 
PTFE T-piece 

Figure 1.22: V "̂-28 Flange fitting (left), flange coupling fltting (middle) and flange T-
piece (right) 

Flange fittings require the PTFE manifold tubing to be melted in order to produce a flat 

end on the tubing which is used to hold the flange fitting in place. A metal washer and/or a 

silicone washer are often used as well to help seal the connection. 

PTFE cone provides 
Zero dead volume 

/16" BSF thread 
PTFE body 

olypropylene cap 

Figure 1.23: 5/16"-PTFE cone fittings. 
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PTFE cone fittings require a PTFE cone to be fitted to the end of the manifold tubing. 
These connections are simpler than flange fittings because the tubing does not have to be 
melted. 

Reproducible mixing is very important in flow injection. Many different techniques can be 

deployed to ensure that good mixing happens. Straight tubing will not promote the radial 

redistribution of fluid that is required for good mixing. In order to promote this radial 

redistribution, the tube must contain bends. The most common methods used are mixing 

coils and knitted tubing (see Fig. 1.24). A mixing coil has the advantage of simplicity and 

does not require very much space within the manifold. Knitted tubing wi l l result in greater 

radial redistribution due to the tubing being bent in many different directions, however 

knitted tubing takes up a lot more space. 

Figure 1.24: A mixing coil (left) and a length of knitted tubing (right). 

1.3.1,4 Flow injection detection systems 

A large range of detection systems including all HPLC detectors are applicable to flow 

injection. The key requirement for an FI detector is fast response time. FI peaks generally 

have a width of less than a minute, therefore the detector must be able to respond faster 

than this in order to detect any peaks. Data acquisition rates in FI are generally in the range 

0.1 -10 s. The most common detectors in FI are based on molecular spectroscopic 

techniques such as UV/visible spectrophotometry (Purohit and Devi, 1997), fluorescence 

(Guo et al., 2000), chemiluminescence (see Section 1.4) and bioluminescence (Gamborg 

and Hansen, 1994). Atomic spectroscopic techniques such as ICP-MS (Elwaer et al., 20(X)) 

and ICP-AES (Alonso et al., 1995) are also routinely used. Less common detection 
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techniques are FT-IR (Cassella et al.. 2000), biosensors (Adeloju et al., 1996), optical 
(Scudder et al., 1992) and fluorescence microscopy (Scampavia et al., 1999), mass 
spectrometry (Morand et al., 2001), electrochemical techniques such as voltammetry (Fogg 
et al., 1983) and ion-selective electrodes (Najib and Othman, 1992) and finally 
radiochemistry (Grate and Egorov, 1998) 

1.3.2 ADVANTAGES O F F L O W I N J E C T I O N A N A L Y S I S 

FIA has many advantages over tradition *batch' methods for chemical analysis. Sample 

analysis can be very rapid (up to 120 samples h"*). Human error is reduced, as sample 

volumes are measured out using sample loops, thereby eliminating manual pipetting errors. 

Reagents are continuously flowing and therefore reagent mixing is always constant. This 

also means that analysis is very reproducible (typically < 5 % RSD). The chance of 

contamination from the surrounding environment is thus greatly reduced. Instrumentation 

is relatively low cost compared with other analytical techniques. Fl instrumentation is 

generally simple and robust, and therefore lends itself to automation and is suitable for 

field deployment. 

L4 FLOW INJECTION WITH CHEMILUMINESCENCE 

DETECTION 

Chemiluminescence reactions are usually very rapid and therefore require rapid, 

reproducible mixing prior to detection. Flow injection can provide the necessary rapid, 

reproducible mixing required for chemiluminescence. FI provides portable, low cost, 

automated reactions, whilst chemiluminescence provides rapid, sensitive and selective 

detection using simple instrumentation. A l l of these features are desirable for field 
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deployable instrumentation. FI-CL has many analytical applications, a summary of which 
follows. 

1.4.1 APPLICATIONS O F H - C L 

1.4.1.1 Pharmaceutical applications 

The high sensitivity of CL due to the dark current principle of the technique in 

combination with the versatility of FIA has attracted considerable effort on the 

development of chemiluminogenic reactions, which can be applied in pharmaceutical 

samples. A variety of oxidants have been developed for this area o f application. The 

luminol - hydrogen peroxide reaction without and with K7Cu(I06)2 added to luminol has 

been used for the measurement of ascorbic acid in tablets with good agreement with 

iodimetry (Feng et al., 1996; Shen et al., 1997), morphine, sinomenine and codeine in 

tablets and injection solutions with recoveries of 96-106% (Li and Lu, 1997b), pyridoxide 

in some dietary sources, e.g. peanut, yeast, lemon, tomato and apple (Alwarthan and Aly, 

1998), nitroprusside in injection solutions with recovery of 98.5-101% and good agreement 

with official methods (Wang et al., 1997b) and rutin in traditional Chinese medicines (He 

et al., 1999a). Some catecholamines (dopamine, adrenaline, isoprenaline) have been 

measured by the same reaction after treatment with Reineche's salt (L i and Lu, 1997a), 

Potassium periodate added to the luminol stream has been proposed for the determination 

of ascorbic acid (Wu et al,, 1999b) or isoniazid (Zhao et al,, 1997a) in preparations with 

good agreement with official methods or glucose after treatment with glucose oxidase and 

measurement of the hydrogen peroxide evolved (Zhou et al,, 1999). Ascorbic acid has also 

been determined by the luminol - hydrogen peroxide reaction in the presence o f Fe(II) in 

vitamin C tablets, multivitamin capsules, mung bean sprouts, tomato and cucumber skin, 

with recoveries of 96-105% (Chen et al., 1997). The presence of hexacyanoferrate in the 
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chemical reaction allowed measurement of beta-Iactam antibiotics via generation of 
hydroxy and superoxide radicals (Kubo et al., 1999). Ascorbic acid has been also 
determined by using hexacyanoferrate(III) instead of hydrogen peroxide (Yang et al., 
1996). Inhibition of luminol CL has been applied to the determination o f ascorbic acid in 
vitamin pills and tablets of vegetable extracts with good agreement with iodimetry (Zhang 
and Qin, 1996) or isoniazid (Alapont et al., 1998) or paracetamol (Alapont et al., 1999). 
Tannic acid in Chinese gall has been determined by the inhibition effect on the luminol-
hydrogen peroxide reaction catalysed by copper(n) (Cui et al., 1998). 

A variety of other oxidants in acidic or alkaline media has been investigated within the 

area of drug analysis by CL detection. Potassium permanganate in acidic medium with or 

without CL enhancers or promoters has been proposed for the determination of 

amidopyrine (He et al., 1999c; He et al., 1999b), benzocaine, procaine and other local 

anaesthetics (Zhang et al,, 1995c), cefadroxil (Aly et al., 1998a), codeine (Christie et al., 

1995), imipramine (LopezPaz and Townshend, 1996; Xue et al., 1999b), levodopa (Yang 

et al., 1998), medazepam (Sultan et al., 1998), methotrexate (He et al., 1998a), naltrexone 

(Campiglio, 1998a), perphenazine (Sultan et al., 1999), promethazine (Xue et al., 1999a), 

reserpine (Li et al., 1998a), salicylamide (Mestre et al., 1999), tetracyclines (Li et al., 

1997d) and tetrahydropalmatine (Li et al., 1997a) in pharmaceutical preparations with 

good recovery values and agreement with official or accepted analytical methods. Initiation 

of CL reactions in acidic media has also be achieved by using cerium(rV) for analgin 

(Huang et al., 1999d), captopril (Zhang et al., 1996b), flirosemide (Rao et al., 1999), 

hydrochlothiazide (Ouyang et aL, 1998), naproxen (Campiglio, 1998b), penicillamine 

(Zhang et al., 1995d; Zhang et al., 1996a), phenothiazines (Aly et al., 1998b), tetracyclines 

(Zhang et al., 1995b) and tiopronin (PerezRuiz et al., 1998; Zhao et al., 1997b). 
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The CL reaction of cerium(rV) with sulphite has been used for excitation by energy 
transfer to ciprofloxacin (Liang et al., 1997) and prednisone acetate (Liang et al., 1998). 
CL also occurs i f sulphite is substituted by a mercapto-compound such as glutathione or 
cysteine and sensitisation by hydrocortisone (Li and Ci, 1997b) while the reaction with 
glutathione has been used for excitation of progesterone or hydrocortisone which was 
measured in human serum by means of the standard addition procedure (Li and Ci, 1997a). 
The release of sulphite from menadione sodium bisulphite has been utilised for 
measurement of the analyte by cerium(IV) CL in injection solutions with good agreement 
with the spectrophotometric method (Huang et al., 1999a). Similarly the reaction of 
permanganate with dithionite has been used for exciting riboflavine (L i et al., 1997b) or 
with thiosulphate for vitamin B6 (Li et al., 1998b). 

Potassium hexacyanoferrate(III) in alkaline solutions has been used for the determination 

of ergonovine maleate in synthetic pharmaceutical preparations with good agreement with 

the official method (FusterMestre et al., 1999) or thiamine (Ishii and Kawashima, 1998). 

Alternatively, sodium hypochlorite can be used for initiation of CL reactions in alkaline 

media and the assay of persatin in injection and tablets with good agreement with the 

official method (Nie et al., 1997). Rutin has been measured successfully in Chinese 

traditional medicines with good agreement with the official method by the hypochlorite-

semicarbazide CL chemical system (Nie et al., 1999). 

The CL autooxidation of analgin in Tween 80 in the presence of rhodamine 6G as 

sensitiser allows measurement of the analyte in pharmaceutical preparations (Huang et al., 

1999b). Lucigenin CL has been employed for measuring ascorbic acid (Hasebe and 

Kawashima, 1996) while inhibition of the reaction catalysed by iron(II) allows 

measurement of dopamine (Zhang et al., 1999). 

30 



Chapter 1: Introduction 

Table 1.3: Pharmaceutical applications. 

A n n l j l e Sample matrix Reaction L . O . D . Reference 

Amidopyrine Injection Formaldehyde / Qcidified potassium permanganate 3x10^ mol dm-' (He etal . . 
solutions chemil umi ncscence. 1999c; He et 

al., 1999b) 

Analgin Pharmaceutical Auto-oxidation o f analgin in the presence o f Tween 80 with 0.15 mg L ' (Huang et 
preparations rhodamine 6G as a sensitiser imnrobilised on a cation- al.. 1999b) 

exchange column. 

Analgin Tablets Ce(IV) / sulphuric acid chemiluminescence with rhodamine 0.02 Jig mL ' (Huang et 
6G as a sensitiser. al.. 1999d) 

Ascorbic acid Vitamin C Luminol / Fe(II) / NaiB407 / potassium hydroxide 0.2 ng mL"' (Chen et al.. 
tablets and chemi luminescence. 1997) 

multivitamin 
capsules 

Ascorbic acid Pharmaceutical Luminol / K7[Cu(I06)]] / potassium hydroxide 1.5x10-' (Feng et al. . 
samples and chemi luminescence. mol dm*' 1996) 

tablets 

Ascorbic acid Pharmaceutical Lucigenin chemi luminescence with ascorbic acid in a basic 2 x I 0 - ' m o l d m ' (Hasebe and 
samples medium, enhanced with i ron(l l l ) and Bri j 35. Kawashima, 

1996) 

Ascorbic acid Tablets Luminol / sodium hydroxide / hydrogen peroxide 8.6x10'' mol (Shen et al.. 
chemi luminescence. d m ' 1997) 

Ascorbic acid Pharmaceutical Luminol / potassium periodate / ascorbic acid 0.8 ng m L ' (Wu et al., 
preparations chemi luminescence. 1999b) 

Ascorbic acid Pharmaceuticals Potassium hexacyanofeTTate(in) / luminol 4 x i a * m o l d m ' (Yang et al.. 
and blood chemil uminescence. 1996) 

Ascorbic acid Tablets Inhibition o f luminol / ferricyanide chemi luminescence S.SxlO-'ngmL' (Zhang and 
(immobilised on an on ion-exchange resin column, eluiion 

S.SxlO-'ngmL' 
Qin, 1996) 

with sodium phosphate). 

Aztreonam, Aqueous Luminol / hydrogen peroxide chemi luminescence with 100.60.40.20, (Kubo et al.. 
penicillin G, hexacyanoferTate(lll) and hexacyanoferrate(II) as catalysts. 4, 2, 1 and 1 ng 1999) 
cephalothin, 6- respectively 
aminopenicilla ( 5 i i L injection) 
nic acid, 7-
amino-
cq)hatosporani 
c acid. 
panipenem. 
latamoxef and 
faropenem 

Benzocaine, Pharmaceutical Acidic permanganate chemi luminescence. 30 ng mL ', (2^ang et 
buiacaine, preparations 20 ng mL '. al., 1995c) 
butoform. 30 ng mL*', 
procaine. 40 ng mL"'. and 
tetr^icaine. 3 ng mL"' 

respectively. 
Caplopril Pharmaceutical Cerium ( I V ) / sulphuric acid chemi I uminescence. 2x10*' mol dm ' (Zhang et 

preparations al., 1996b) 
Cefadroxil Pharmaceutical Potassium permanganate / sulphuric acid 0.05 ng mL ' (Alye t al.. 
monohydrole preparations chemi luminescence with quinine as o sensitiser. 1998a) 

and biological 
fluids 

Ciprofloxacin Tablets and Cerium sulphate / sulphuric acid / NajSOj 0.27 mg L ' (Liang et al.. 
hyd roc blonde capsules c hemi 1 umin^cence. 1997) 

CoCil) Eye lotions Lophine / Co(II) / hydrogen peroxide chemi luminescence 4.5x10"* (Nakashima 
enhanced with hydroxylammonium chloride. nrol dm"' et al.. 1997) 

Codeine Pharmaceutical Permanganate / polyphosphoric acid chemi I uminescence. 2x10"' mol dm*' (Christie et 
samples al.. 1995) 

Dopamine Aqueous Inhibition o f the lucigenin / Fe(II) / Br i j 35 2x10"'mol dm ' (Zhang et 
chemi luminescence reaction al., 1999) 

Dopamine, Injection Treatment with EDTA / Reineche's salt Detection using 4 ng mL*', ( L i and Lu . 
adrenaline and solutions luminol / hydrogen peroxide chemi luminescence. 20 ng mL ' 1997a) 
isoprenaline and 16 ng mL*' 

respectively 

Ergonovine Pharmaceutical Potassium ferricyanide / sodium hydroxide 0.07 Mg L"' (FustcrMestr 
mnleate preparations chemiluminescence enhanced using hexadecylpyridinium 

0.07 Mg L"' 
e et al.. 

chloride. 1999) 
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Table 1.3: Pharmaceutical applications (continued). 

Furosemide 

Glutnihione 
and cysteine 

Hydrochloro
thiazide 

Hydrogen 
peroxide, 
glucose and 
periodaie 

Imipramine 

Imipramine 
and 
chlorpromazin 
e 

Isoniazid 

Isoniazid 

Levodopa 

Medazepam 

Menadione 
sodium 
bisulphite 
Methotrexate 

Morphine, 
sinomcnine 
and codeine 

Naltrexone 

Naproxen 

Paracetamol 

Penicillamine 

Perphenazine 

Persantin 

Phenothiazines 

Prednisone 
acetate 

Progesterone 
and 
hydrocortisone 
s 

Tablets Ce(IV) / sulphuric acid chcmiluminescence, sensitised by 
rhodaminc 6G 

Aqueous Ce(rV) / hydrocortisone chemil uminescence. 

Pharmaceutical Ce(IV) / sulphuric acid chemil uminescence, sensitised by 
preparations rhodamine 6G. 
and tablets. 

Phannaceuticals Luininol / hydrogen peroxide / potassium periodate 
chemilumincsccnce (indirect C L using glucose oxidase for 
the detection o f glucose) 

Tablets 

Urine 

Pharmaceutical 
formulations 

Pharmaceuticals 

Tablets 

Drug 
formulations 

Injection 
solutions 

Injection 
solutions and 

tablets 

Pharmaceutical 
preparations 
and tablets 

Pharmaceutical 
preparations 

Pharmaceutical 
preparations 

Pharmaceutical 
formulations 

Pharmaceutical 
preparations 

Drug 
formulations 

Pharmaceutical 
preparations 
and tablets 

Pharmaceutical 
preparations 

and biological 
fluids 

Tablets 

Aqueous 

Imipramine / glyoxal / potassium permanganate 
chemi 1 uminescence 

Acidified permanganate chemiluminescence 

Inhibition o f the luminol / hydrogen peroxide / potassium 
hexacyanoferrate(l!!) reaction. 

Mn(II) / luminol / potassium periodate chemiluminescence. 

Acidified permanganate chemi I uminescence. 

Potassium permanganate / sulphuric acid 
chemiluminescence 

Ce(IV) / menadione sodium bisulphite chemiluminescence. 

Permanganate / HjSO^ / formaldehyde chemiluminescence. 

Treated with EDTA / Reineche's salt Detected with luminol 
/ hydrogen peroxide chemiluminescence. 

Acidified permanganate chemi luminescence. 

Ce(IV) / sulphuric acid chemiluminescence. 

Inhibition of the luminol / hydrogen peroxide / potassium 
hexacyanofenate(III) reaction. 

Cerium ( IV) / sulphuric acid chemiluminescence with 
quinine as a sensitiser. 

Acidified permanganate chemiluminescence 

Sodium hypochlorite chemiluminescence with Triton X-100 
OS an enhancer. 

Cerium(I V) / acid chemi I uminescence with ihodamine B as 
a sensitiscr. 

NajSO] / ammoiium eerie sulphate / sulphuric acid 
chemi luminescence. 

Ccrium(IV) / sulphuric acid chemi luminescence sensitised 
with the mercapto-group (-SH) o f the analyte. 

2 .2x10 ' 
mol dm-^ 

2xl(r' mol d m ' 
and 1.4x10-* 

mol dm"' 
respectively 

1.5x10'mol 
d m ' 

3 x i a " m o I d m - ' , 
0.08 ng m L ' 

and 6xlO'*mol 
d m ' 

respectively 

12 ng mL ' 

5x10"* mol dm ' 
and 2x10-* mol 

dm"' 
respectively 

5 mg L ' 

30 ng mL' ' 

62 Mg L ' 

1.85 X 10 > mol 
d m ' 

2x10 ' Mg mL ' 

3 .4x10 ' mol 
d m ' 

60 ng mL' ' , 
70 mg mL"' and 

600 ng mL"' 
respectively 
2.5 n g m L ' 

15 ng mL ' 

2.5 MS " i L ' 

ISpmol (50 Ml 
injection) 

50 mg L ' 

11 ng m L ' 

0.01-0.1 Mg niL' 

3 l M g L ' 

0.10 Mg m L ' 

(Rao et al., 
1999) 

( U and Ci . 
1997b) 

(Ouyang et 
al., 1998) 

(Zhou ct al., 
1999) 

(Xue et al., 
1999b) 

(LopezPaz 
and 

Townshend, 
1996) 

(Atapont et 
al.. 1998) 

(23iao elal . , 
1997a) 

(Yang c ta l . . 
1998) 

(Sultan ct 
al., 1998) 

(Huang et 
al., 1999a) 

(He et al., 
1998a) 

(Li and Lu, 
1997b) 

(Campiglio, 
1998a) 

(Campiglio, 
1998b) 

(Alaponi el 
al.. 1999) 

(Zhang et 
al., 1995d; 

Zhang et al.. 
1996a) 

(Sultan et 
al., 1999) 

(Nie etal. , 
1997) 

(Aly et al., 
1998b) 

(Liang et al., 
1998) 

( U and Ci . 
1997a) 
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Table 1.3: Pharmaceutical applications (continued). 

Promethazine Tablets Potassium permanganate / oxalic x i d chemiluminescence. 3 .5x lO-"gmL ' (Xue et al., 
hydrochloride 1999a) 

.Pyridoxine Tablets Luminol / hydrogen peroxide chemi luminescence 6 ng mL ' ' (Alwarthan 
hydrochloride and Aly, 

1998) 

Reserpine Injection Permanganate / hydrogen peroxide / H6P4O1] 0.3 (ig mL"' ( U e t a l . , 
solutions chemi luminescence. 1998a) 

Riboflavine Injection Acidified potassium permanganate / sodium dithionite 62 ng mL' ' ( L i c t a l . , 
solutions and chemi luminescence. 1997b) 

tablets 

Rutin Sophora Luminol / potassium hexacyano ferrate chemiluminescence. e . T x I O - ' g m L ' (He et al.. 
japonica L 1999a) 
(traditional 

Chinese 
medicine) 

Rutin Traditional Sodium hypochlorite / rutin / semicarbazide hydrochloride I 3 p g L - ' (Nieet al., 
Chinese chemiluminescence. 1999) 

medicines. 

Sah'cylamide Human urine Acidified potassium pemianganate chemi luminescence. 30 ng mL"' (Mestre el 
and al., 1999) 

pharmaceutical 
formulations 

Sodium Pharmaceuticals Luminol / hydrogen peroxide chemiluminescence 9x10-' moldm- ' (Wang el at.. 
nitroprusside 1997b) 

Tannic acid Chinese gall Inhibition o f luminol / hydrogen peroxide / Cu(II) 9x10"' m o l d m ' (Cui et al.. 
(traditional c hemi 1 umi ncscen ce 1998) 
medicine) 

Tetracyclines Commercial Acidic permanganate chemiluminescence with octylphenyl 0.4 - 0.6 ng mL" (Li et al.. 
formulations polygylcol ether as a sensitiser. 1 1997d) 

Tetracyclines Pharmaceutical Cerium (IV) / sulphuric acid chemiluminescence with 0.025 - 0.25 (Zhang ei 
preparations quinine as a sensitiser. nmol (50 ^ L al., 1995b) 

injection) 

Telra- Pharmaceutical Acidified potassium pemianganate / sodium dithtonite 3.2 ng mL"' (Li et al.. 
hydropalmatin preparations chemi luminescence. 1997a) 
e and tablets 

Thiamine Tablets Potassium hcxacyanoferrate{III)/ sodium hydroxide / 2.0x10"* (Ishii and 
nitrate uranine chemiluminescence. mol dm"' Kawashima, 

1998) 

Tiopronin Pharmaceuticals Ce(IV) / sulphuric acid chemiluminescence using rhodamine 1x10"'mol dm-^ (PerezRuiz 
6G and quinine as fluorophores. el al., 1998) 

Tiopronin Pharmaceuticals Cerium(IV) / sulphuric acid chemiluminescence with 3.4x10"' mol (Zhao el al.. 
quinine as a sensitiser. dm-' 1997b) 

Vitamin B6 Injection NajSjO) / potassium permanganate / sodium polyphosphate 58 ng mL ' ( U etal., 
solutions and chemiluminescence. 1998b) 

tablets 

7.4, L 2 En vironmental applications 

FI-CL methodologies have been applied to wide ranging analyses of environmental 

samples, as detailed in Table 2. Here these are categorised according to the type of sample 

matrix concerned, which include aquatic (natural waters, drinking water and wastewaters), 

geological, atmospheric and biological (human hair) matrices. 
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Natural potable and waste waters 

Metal ion determinations comprise the majority of published FI-CL applications for 

aqueous environmental samples. Many of these are based on the luminol reaction, which is 

catalysed by certain metal ions. Examples include determinations o f cobalt(II) to sub-

picomolar levels in river, sea and tap water (Lan and Mottola, 1996) and of copper(n) at 

nanomolar levels in natural water samples (Liu et al., 1996). Luminol CL has been used to 

detect iron(II) and iron(III) at nanomolar or sub-nanomolar levels in seawater (Bowie et 

al., 1998; deJong et al., 1998), natural freshwaters (Emmenegger et al., 1998; Qin et al., 

1998b; Saitoh et al., 1998), groundwater (Zhou and Zhu, 1997) and treated waters (Zhou et 

al., 1997). Similar methods have measured chromium(in) at part-per-billion levels in tap 

water (Economou et al., 1998), and both chromium(III) and chromium(rV) at nanomolar 

levels in wastewaters (Escobar et al., 1995; Zhang et al., 1995a; Zhang et al., I995e). 

Modified luminol-based methods have also been used to determine mercury(II) at part-per-

billion levels in natural waters (Zhao et al., 1996), manganese(II) at sub-nanomolar levels 

in seawater (Okamura et al., 1998), lead(II) at part-per-trillion levels in wastewaters (Gong 

and Yu, 1995) and vanadium(lV) at nanomolar levels in tap water (Li et al., 1998d). The 

chemiluminescent reaction between 1,10-phenanthroline and hydrogen peroxide has been 

applied to the determination of copper complexation in seawater (Zamzow et al., 1998), 

while cobalt(II) in seawater has been determined using methods involving both gallic 

acid/hydrogen peroxide (Hirata et al., 1996) and quercetin/hydrogen peroxide/potassium 

hydroxide (Li et al., 1999a). The latter reaction has also been applied to determinations of 

chromium(III) and chromium(IV) in natural waters (Han et al., 1998). Iron(II) in rainwater 

has been determined using peroxyoxalate CL (Quass and Klockow, 1995), and 

iron(II)/total iron have been measured in both river and seawater using brilliant 

sulfoflavine/hydrogen peroxide CL (Hirata et al., 1999). A CL method based on the 

oxidation of 7,7,8,8-tetracyanoquinodimethane has been used to measure manganese(Il) in 
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drinking water (Bowie et al., 1995), and the reaction between lucigenin, hydrogen peroxide 
and sodium hydroxide has been applied to the determination of lead(II) in natural waters. 

As shown previously, a number o f CL reactions are based on the oxidative properties of 

hydrogen peroxide. FI-CL methods have therefore proved highly suitable for determining 

low levels of dissolved hydrogen peroxide in natural waters. Nanomolar levels have been 

detected in rainwater using methods based on either octylphenyl polyglycol 

ether/potassium permanganate (Feng et al., 1997b) or cobalt(II)/luminol (Qin et al., 1997a; 

Qin et al., 1998a) reactions. The latter method has also been applied to nanomolar and sub-

nanomolar determinations of hydrogen peroxide in seawater (Price et al., 1998; Yuan and 

Shiller, 1999), while a periodate/potassium carbonate CL method has been used to measure 

nanomolar levels in melted snow (Lin et al., 1998). 

Fl-CL methods have been used to determine a range o f dissolved inorganic molecular and 

anionic species in aqueous samples. Free chlorine has been measured at part-per-billion 

levels in tap water using a luminol CL method (Liu et al., 1996), and modified luminol 

methods have been used to determine cyanide at nanomolar levels in river (Ikebukuro et 

al., 1996b), tap and waste waters (Lu et al., 1995). Sub-micromolar levels of hydrazine in 

drinking water have been determined with a CL method based on n-bromosuccinimide 

(Safavi and Baezzat, 1998). Hypochlorite ions have been measured in tap water using CL 

generated by the oxidation of indole by hydrogen peroxide (Cheregi et al., 1999). Variants 

of the luminol reaction have been applied to the determination of nanomolar levels of 

nitrite in natural (Mikuska et al., 1995) and potable (Yang et al., 1997) waters, and to the 

determination of phosphorus and phosphates at micro-nanomolar levels in natural 

freshwaters (Ikebukuro et al., 1996a; Ikebukuro et al., 1996c; Jiang et al., 1997; Nakamura 

et al., 1999a; Nakamura et al., 1999b; Noguchi et al., 1995) and drinking water (Nakamura 
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et al., 1997). Sulphite in tap water has been measured using an auto-oxidative CL method, 
sensitised with rhodamine 6G (Huang et al., 1999c). Dissolved oxygen has been quantified 
at part-per-million levels in river and tap waters using a luminol/sodium hydroxide CL 
method (Shen et al., 1999), while a gas diffusion method based on luminol/ozone CL has 
been applied to the measurement of part-per-billion levels of dissolved ozone in treated 
waters (Mcgowan and Pacey, 1995). 

Determinations of a small number of organicA)iological parameters using FI-CL methods 

have been reported. Acetaldehyde has been measured at part-per-billion levels in both 

natural and waste waters using a gallic acid/hydrogen peroxide CL method (Yao et al., 

1997). Similar levels of volatile phenols present in polluted waters have been determined 

using a hydrogen peroxide/p-chlorobezenediazonium fluoroborate CL reaction (Zhuang et 

al., 1995). FI-CL methods have also been used to identify the presence o f two strains of red 

tide phytoplankton in natural waters (Asai et al., 1998; Asai et al., 1999), with a CL 

reaction based on 2-methyl-6-(p-methoxyphenyl)-3,7-dihydroimidazo(l,2-alpha)-pyrazin-

3-one/ superoxide used in each case. 

Geological samples 

FI-CL methods have been reported for the determinations of five elements in a variety of 

geological/geochemical samples. Trace levels of arsenic(III) in geochemical solutions have 

been determined using a luminol/hydrogen peroxide CL reaction (Jia and Zhou, 1995), 

while a similar method incorporating prior reduction of arsenic(V) to arsenic(nr) has been 

applied to the measurement of total As in acidic extracts of rocks and ores (Jia et al., 1998). 

Picogram levels of iridium(IV) have been determined using a hydrogen 

peroxide/potassium hydroxide CL reaction (Han et al., 1997), and a luminol method 

incorporating potassium dichromate and sodium hydroxide has been applied to the 
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measurement of part-per-billion levels of antimony(III) in mineral extracts (Li et al., 
1997c). Variants of the luminol reaction have also been applied to the determinations of 
vanadium(V) and zirconium(IV) in geochemical samples. The former uses luminol and 
hexacyanoferrate(II) as immobilised reagents on an anion-exchange column (Qin el al., 
1997b) while the latter uses the frequently applied luminol/hydrogen peroxide reaction (Li 
et al., 1998c). 

Atmospheric samples 

Four FI-CL applications have been reported for the determination of micromolar - sub-

nanomolar levels of sulphur dioxide in air and of sulphite in aqueous solution. Three of 

these methods use triethanolamine for initial adsorption, followed by CL reactions 

involving either ruthenium (2,2*-bipyridyl)3/potassium persulphate (He et al., 1998b), 

tris(l,10-phenanthroline) ruthenium/potassium periodate (He et al., 1999d) or ruthenium 

(2,2'-bipyridyl)3/potassium permanganate (Meng et al., 1999). The fourth method is based 

on luminol CL, with luminol initially immobilised on an anion exchange column, then 

eluted by hydrolysis (Qin et al., 1998d). Trace levels of hydrazine in air have been 

determined using a CL method based on the luminol/potassium periodate/sodium 

hydroxide reaction, following initial absorption of hydrazine in sulphuric acid solution 

(Wu et ai., 1997). Part-per-billion levels of gaseous hydrogen peroxide have been 

measured with a method based on l,r-oxalyldi-imidazole/peroxyoxalate CL, and 

incorporating a diffusion scrubber (Stigbrand et al., 1996). The peroxyoxalate/hydrogen 

peroxide CL reaction has also been employed in the determination o f a range of polycyclic 

aromatic hydrocarbons (PAHs) at part-per-billion levels in synthetic hexane and 

acetonitrile solutions (Andrew et al., 1997). This method of detection, in combination with 

chromatographic separation, would also prove suitable for the analysis o f PAHs in solvent-

extracted atmospheric particulate samples. 
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Human hair 

Analysis of human hair samples can often provide useful indications o f the body's intake 

of a range of chemical species, either through diet or by environmental exposure. Analyses 

of human hair samples using FI-CL methods have been reported, all of which focus on the 

determination of trace metal levels. Part-per-billion levels of cobalt and nickel have been 

measured in microwave-digested samples by utilising their catalytic effect in the CL 

reaction of alizarin purple/ethanol cetyltrimethylammonium bromide/potassium hydroxide 

(Fang and Liu, 1996). Similar levels of copper(II) have been determined using the 

luminol/potassium permanganate reaction, with these reagents initially immobilised on an 

anion-exchange resin, then eluted with sodium hydroxide (Chen and Qin, 1997). Iron(n) in 

hair has been determined using both the lucigenin/sodium hydroxide (Zhu and Lu, 1998) 

and the luminol/hydrogen peroxide (Saitoh et al., 1998) CL reactions, either of which are 

capable of nanomolar/part-per-trillion detection limits when sensitised with cationic 

surfactants. Manganese has been measured at part-per-billion levels using an 

iodine/luminol CL method (Shen et al., 1998), and part-per-million levels of vanadium(V) 

have been determined with a CL method based on the luminol/hexacyanoferrate(II) 

reaction (Qin et al., 1997b). 

Table L4 : Environmental applications. 

A n a l j l e Sample matrix Reaction L.O.D. Reference 

Acetaldehyde River / waste 
water 

Gallic acid / hydrogen peroxide / sodiimi hydroxide 
chemiluminescence. 

0.31 ngmL"' (Yao et al., 
1997) 

As Ores and rocks Dissolution wiih HCI. Reduction o f As(V) to As(III) using 
potassium iodide / thiourea follou'ed by luminol / hydrogen 
peroxide / Cr(III) chemiluminescence detection. 

3.4x10"* 
mol dm"* 

(Jia etal., 
1998) 

As([II) Geochemical 
samples 

Sample mixed with KjCrjO? / HjS04 followed by luminol / 
hydrogen peroxide chemiluminescence. 

I x l O ' ^ m o l 
dm-* 

(Jia and 
Zhou. 1995) 

Chattonella 
antiqua (red 
tide 
phytoplankto 
n) 
Chlorine 

Aqueous 2-Methyl-6-(p- melhoxyphenyl>3,7-dihydroimidazo[ I »2-
atphal-pyrazin-3-one / superoxide chemiluminescence. 

2x10* cells 
m L ' 

(Asai et al., 
1998) 

Chattonella 
antiqua (red 
tide 
phytoplankto 
n) 
Chlorine 

Chattonella 
antiqua (red 
tide 
phytoplankto 
n) 
Chlorine Tap water Luminol is immobilised on an anion exchange resin column. 

Sodium hydroxide is passed through the column to elute 
luminol n'hich is mixed with a sample stream to produce C L . 

SxlO- 'g 
m L ' 

(Liu et al., 
1996) 
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Table L4 : Environmental applications (continued). 

C o ( I I ) Seawater Preconcentration using 8-qutnolinol immobilised on 8HQ- 0.62 ng L ' (Hirata et al., 
M A F and chemiluminescence detection using gallic acid / 1996) 
hydrogen peroxide. 

C o ( I I ) River, sea and tap Luminol chemi luminescence enhanced with C0i(g). 5x10 '^ mol (Lan and 
water dm-' Mottola. 

1996) 

Co(ll) Seawater and river Quercetin / hydrogen peroxide / potassium hydroxide 0.1 n g m L ' ( U etal . . 
water reversed flow injection chemiluminescence. 1999a) 

C o ( I I ) and Natural waters Cetyltri methyl ammonium bromide / hydrogen peroxide / 10 pg mL"' (Fang and 
Cr f l l l ) luminol chemiluminescence. and 12 pg mL' Wang. 1997) 

' respectively 

C o ( I I ) and Hair Microu'ave digestion in HNOj and hydrogen peroxide. 0.1 M g L ' (Fang and 
Ni( l l ) E>etection using alizarin purple / etha^ol 

0.1 M g L ' 
Liu, 1996) 

cetyltrimethylammonium bromide / potassium hydroxide. 

Cr( l l l ) Tap water Hydrogen peroxide / luminol chemiluminescence. 0.5 Mg L ' (Economou 
et al., 1998) 

C r < I I I ) a n d Waste water Reduction to C T ( I I I ) using hydrogen peroxide followed by < 10 ' 'mol dm' (Escobar et 
Cr(VI) detection with luminol / hydrogen peroxide 3 al., 1995) 

chemiluminescence. 

Cr(in) and Natural waters Online oxidation o f Cr(III) to CrfVO on a PbOi column 1 ng mL' ' (Han et al.. 
Cr(VI) followed by quercctin / hydrogen peroxide / potassium 1998) 

hydroxide chemiluminescence. 

C r ( I I I ) a n d Waste \rater Reduction using copper coated zinc followed by luminol / 2.3x10-' (Zhang etal. . 
Cr(VI) hydrogen peroxide chemiluminescence detection. mol dm' ' 1995a) 

Cr(Vl) Waste water Chemi luminescence produced by luminol and 0.014 MgmL' ' (Zhang et al., 
hexacyanoferrate(ll) (immobilised on an an ion-exchange resin 

0.014 MgmL' ' 
I995e) 

column, eluted with sodium phosphate). 

Cu Sea water 1,10-Phenanthroline / hydrogen peroxide chemiluminescencc. I x l O ' ° mol (Zamzow ei 
(complexed) d m ' al., 1998) 

C u ( I I ) Hair Luminol / potassium permanganate immobilised onto D20I *7 0.2 ng mL' ' (Chen and 
anion-exchange resin. Elution with sodium hydroxide to react Qin, 1997) 
with Cu(II) to produce chemiluminescence. 

CuCIl) Natural u-aters Immobilised luminol / cyanide are eluted with Na3p04 and 1.3x10' (Liu et al.. 
mixed with the sample / sodium hydroxide for mol dm' ' 1998) 
chemiluminescence detection. 

Cyanide River water Sulphite generated by the reaction o f cyanide and sodium 1.2x10-' (Ikebukuro et 
thiosulphate catalysed by immobilised rhodanese reacts with mol dm' ' al. . 1996b) 
immobilised sulphite oxidase and produces sulphate and 
hydrogen peroxide which is detected with luminol and 
peroxidase. 

Cyanide Tap and waste Luminol immobilised on Amberlyst resin with copper 2 x 1 0 ' g (Lu etal . . 
water immobilised on D151 resin. Chemiluminescence is produced mL ' ' 1995) 

with cyanide. 

Fe Seawater Preconcentmtion with TSK-8HQ followed by detection with 2.2x10-" (deJong et 
(dissolved) luminol / hydrogen peroxide chemiluminescence. mol dm-' al., 1998) 

Fe and Underground Luminol / potassium periodate chemiluminescence. 3xlO*Mg mL' (Zhou and 
Mn(dissolved water ' and 5x10^ Zhu.1997) 
) MB mL"' 

respectively 

Fe(ll) Natural waters Luminol / hydrogen peroxide chemiluminescence. 2x10 ' 'mol (Emmcnegge 
dm"' re t al. . 1998) 

Fedl) Treated waters O-phenanthroline/ luminol / potassium periodate 3 ng L ' (Zhou et al.. 
chemi I uminescencc (reversed flow-injection). 1997) 

F e ( I I ) Hair Lucigenin / sodium hydroxide chemiluminescence with 2 pg mL*' (Zhu and Lu, 
cetyltri methylammonium bromide as a sensitiser. 1998) 

F e ( I I ) and Seawater Preconcentration with 8-HQ followed by detection with 4 x 1 0 " mol (Bowie etal. . 
Fe(IIl) luminol chemiluminescence d m ' 1998) 

Fe(n) and Natural waters Fe<III) reduced to Fe(II) with Cu coated Zn. Luminol 0.4 ng L ' (Qin et al.. 
F e ( I I I ) immobilised on on an ion-exchange resin. Eluted with sodium 

0.4 ng L ' 
1998b) 

hydroxide for chemtluminescence detection. 

F e ( I I ) and Rain water Oxygen / peroxyoxalate chemiluminescence. < l x l O ' mol (Quass and 
hydrogen d m ' Klockow, 
peroxide 1995) 
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Table 1.4: EDvironmental applications (continued). 

Fe([[) and River and seawater Preconccntnition on amberlite XAD-4 functionaltsed by N - 0.80 nmol (Hirata et al.. 
total Fe hydroxyethylethylenediamine grou[S followed by brilliant L ' and 0.36 1999) 

sulfoflavtne / hydrogen peroxide chemiluminKcence nmol L"' 
detection. respectively 

Fe([l) and Human hair and Luminol / hydrogen peroxide chemi luminescence enhanced 2x10^ mol (Saitoh et al.. 
total Fe natural waters with cationic surfactant tetrodecyltrimethylammonium dm"^and 1x10" 1998) 

bromide. ' mol dm"' 
respectively 

Heterosigma Aqueous 2-Methyl-6-(p- niethoxyphenyl)-3,7-dihydroiniidazo[ 1 ^ - Ix lO 'ce l l s (Asai et al., 
cQrterae (red alpha]-pyrazin-3-one ( M C L A ) / superoxide m L ' 1999) 
tide chemi luminescence. 
phytoplankto 
n) 
• • / 

Hg(n) Environmental Cu(n) / luminol / sodium hydroxide / potassium 0.33 Jig L ' (Zhao et al., 
waters hexacyanoferTate(ll) chemi luminescence. 

0.33 Jig L ' 
1996) 

Hydrazine Drinking water Chemilumincscence produced f rom 5x10-' mol (Safavi and 
N-bromosuccinimide in alkaline medium with dm' ' Baezzat. 
dichlorofluorescein as sensitiser. 1998) 

Hydrazine Air Absorption in sulphuric acid followed by tuminol / potassium 2 Jig m"' (Wu et al.. 
periodatc / sodium hydroxide chemi luminescence 

2 Jig m"' 
1997) 

Hydrogen Rainwater Octylphenyl polyglycol ether / acidic potassium 6.0x10' (Feng el al., 
peroxide permanganate chemi luminescence. mol dm*' 1997b) 
Hydrogen Snow-water Potassium periodate / potassium carbonate 5x10 ' mol (Lin et al., 
peroxide c hemi 1 uminescence. d m ' 1998) 
Hydrogen Seawater Co(l l ) / luminol chcmiluminescence 1.06x10-* (Price etal. . 
peroxide mol dm' ' 1998) 
Hydrogen Rainwater Immobilised Co( l l ) and luminol are eluted with NaSOi. 3.5x10-' (Qin etal., 
peroxide Chemilumincscence is produced in the presence o f hydrogen mol dm' ' 1997a) 

peroxide 

Hydrogen Rain water Luminol and Co(l 1) are immobilised on a strongly basic 1.2x10'' (Qin etal., 
peroxide an ion-exchange resin and a weakly acid cation-exchange mol dm"' 1998a) 

resin, respectively. Reagents are eluted by hydrolysis for 
chemi luminescence detection. 

Hydrogen Air Hydrogen peroxide dtfTusion scrubbed. Detection with 1,1'- 3.4 ppbv (Stigbrand et 
peroxide oxalyldi-imidazole / peroxyoxalate chemi luminescence al., 1996) 
Hydrogen Seawater Co(l l ) / hydrogen peroxide / luminol chemi luminescence. 4.2x10'" (Yuan and 
peroxide mol dm' ' Shiller. 1999) 
Hypochlorite Tap water Oxidation o f indole in propan-2-ol with hydrogen peroxide. 5 \xg mL' ' (Chercgi et 

al., 1999) 
Ir( lV) Ores and rocks Potassium hydroxide / hydros peroxide / Twecn-80 l l p g L ' (Han el al.. 

chemi 1 u rrtinescence. 1997) 
Mn Human hair Sample ashed and dissolved in acid, detected using I3 / 0.1 n g m L ' (Shen et al.. 

luminol chemi luminescence 1998) 
Mn(n) Potable u'ater 7,7,8,8- Tctnicyanoquinodimethane oxidation with Eosin Y as 4.5 Mg L ' (Bowie et al.. 

a sensiiiser. 1995) 
Mn(II) Natural waters Immobilised luminol and 10 / eluted with Na}P04 for 1x10' 'g (Lu and 

chemi luminescence with Mn(II) . mL ' ' Zhang, 1995) 
Mn(II) Seawater Luminol / hydrogen peroxide chemi luminescence. 2 .9x10" (Okamura et 

mol dm' ' al., 1998) 
Nitrite Natural waters Nitrite reacts with hydrogen peroxide to form peroxynitrite I x l O - ' m o I (Mikuska et 

which produces chemi luminescence with luminol. d m ' al.. 1995) 
Nitrite Drinking water Luminol / U (produced f rom potassium iodide in acid) 1.6 ng mL' ' (Yang et al., 

and food chemi luminescence. 1997) 
Oxygen River and tap Reaction with MnS04 / iodine / potassium iodide / ammonia 0.412 m g L ' (Shen et al., 
(dissolved) water to form a precipitate that is dissolved in H1SO4/ HjPO^. 1999) 

Detection with luminol / sodium hydroxide. 

Ozone Treated waters Luminol / ozone cherrdluminescence using gas diffusion FIA. SugOiL' . (Mcgouan SugOiL' . 
and Pacey, 

1995) 
Pb(II) Natural n-aters Lucigenin / hydrogen peroxide / sodium hydroxide 0.1 (ig mL ' (Gong and 

chemi luminescence enhanced with ethanol. 
0.1 (ig mL ' 

Yu, 1995) 
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Table 1.4: Environmental applications (continued). 

Pb(II) Waste water Pb(ll) replaces Fe(ll) f rom an EDTA complex. Fe(ll) reacts 
with luminol / sodium hydroxide to produce 
chemiluminescence. 

20 ng L ' (Li et al., 
1998e) 

Phosphate Natural waters Hydrogen peroxide produced f rom the reaction o f 
immobilised pyruvate oxidase with phosphate is detected 
using luminol / horseradish peroxidase chemilurrrinescence. 

7.4x10-* 
mol dm' ' 

(Ikebukuro et 
al., 1996c; 

Ikebukuro et 
al.. 1996a) 

Phosphate Drinking uater Phosphate ion-dependent pyruvate oxidase reaction produces 
hydrogen peroxide which is delected using luminol 
chemiluminescence catalysed by arthromyces ramosus 
peroxidase. 

1.6x10' 
mol d m ' 

(Nakamura et 
al., 1997) 

Phosphate River water Immobilised pyruvate oxidase G producing hydrogen 
peroxide for luminol chemiluminescence detection. 

9.6x10"' 
mol dm"' 

(Nakamura et 
al.,1999b) 

Phosphate River water Maltose phosphorylase, mutarotase, and glucose-oxidase 
immobilised on N-hydroxysuccinimide beads with 
arthromyces ramosus peroxidase / luminol 
chemiluminescence detection. 

1x10-* mol 
d m ' 

(Nakamura et 
al., 1999a) 

Phosphate Natural waters Purine nucleoside phosphorylase and xanthine oxidase 
imrrubilised on aminopropyl-controlled pore glass beads 
convert phosphate to hydrogen peroxide for peroxyoxalate / 
rhodamine B chemiluminescence detection. 

3.9x10-* 
mol dm' ' 

(Noguchi et 
al.. 1995) 

Phosphorous Natural waters Conversion to phosphomolybdic acid using HCIO4 / 
ammonium molybdate with Luminol / sodium hydroxide 
chemiluminescence detection. 

36 tig L ' (Jiang el al.. 
1997) 

Pol>'aromatic 
hydrocarbons 

Organic (hexane or 
acetonitrile) 

Peroxyoxalate / hydrogen peroxide chemiluminescence. 0.6-79 Mg 
L ' 

(Andrew et 
al.. 1997) 

Sb(II[) Ores and rocks KjCrjO? / luminol / sodium hydroxide chemiluminescence. 0.1 ng m L ' (Li el al.. 
1997c) 

Sulphite Tap water Auto- oxidation sensitised by rhodamine 6G (immobilised on 
cation exchange resin) enhanced with Tween 80. 

0.01 mg L ' (Huang et al., 
1999c) 

Sulphite and 
sulphur 
dioxide 

Water and air Luminol immobilised on an anion exchange column. Luminol 
is eluted by hydrolysis for chemi luminescence detection. 

1x10-' 
mol dm ' 

(Qin etal., 
1998d) 

Sulphur 
dioxide 

Air Adsorption using triethanolamine followed by Ru(2^'-
bipyridyOa'* / SOj*' / K j S j O i 
chemiluminescence. 

4.1x10^ 
mol dm ' 

(He ct al., 
1998b) 

Sulphur 
dioxide 

Air Absorption on triethanolamine followed by Tris(UIO-
phenanthroltne)ruthenium / potassium periodate 
chemi luminescence. 

7x10 '* 
mol dm' ' 

(He et al., 
I999d) 

Sulphur 
dioxide 

Air Adsorption using triethanolamine followed by Ru(2,2'-
bipyridyl))'* / SO}^ / potassium permanganate 
chemi luminescence 

2.5x10-* 
mol dm' ' 

(Meng et al., 
1999) 

V(1V) Tap w-ater Potassium dichromate / potassium iodide / sodium hydroxide / 
luminol chemiluminescence. 

7x10'"* 
mol dm' ' 

(Li et al.. 
1998d) 

V(V) Geochemical and 
hair samples 

Luminol and hexacyanoferrateCH), are both immobilised on 
an anion-exchange resin column, and are eluted with 
phosphoric acid to produce chetrdluminescence. 

5.4x10 ' M g 
c m ' 

(Qin etal., 
1997b) 

Volatile 
Phenols 

Polluted waters Quenched p-chlorobenzenediazonium fluoroborate / hydrogen 
peroxide chemiluminescence. 

0.015-0.03 
Mg mL ' 

(Zhuang et 
al.. 1995) 

Zr<IV) Rocks and ores Luminol / hydrogen peroxide chemiluminescence. 30 pg L ' (Li et al., 
1998c) 

L4.L3 Food and beverage applications 

This has been an area of considerable development in recent years. The bioluminescence 

reaction involving firefly luciferase has been used to monitor bacterial contamination of 

foods but CL reactions have also been used to quantify species such as ascorbic acid, 

sulphite and carbohydrates in alcoholic beverages and a variety o f foods. 
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Ascorbic acid 

Various FI-CL systems have been used to determine ascorbic acid in vegetables and non

alcoholic beverages with detection limits in the range 0.2 jig 1'̂  - 5.5 mg r \ The oxidation 

of ascorbic acid by pemianganate produced CL (Agater and Jewsbury, 1997) and results 

compared well with spectrofluorimetric and titrimetric methods but transition metals, 

sorbitol and mannitol interfered. The inhibition of the CL reaction between ferricyanide 

and luminol can also be used for the detection of ascorbic acid. This reaction can be 

performed with (Zhang and Qin, 1996) or without (Chen et al., 1997) the reagent being 

immobilised on an anion exchange column. The CL reaction between luminol, 

permanganate and sodium hydroxide has also been used for the determination of ascorbic 

acid and, as with the previous reaction, the reagent can be used with (Wang et al., 1997a) 

or without (Ye and Wang, 1998) reagent immobilisation on an anion exchange column. 

Mn(Il) and Cu(II) interfered when present at 5-fold excess. 

Sulphite 

A variety of CL reactions have been used for the determination of sulphite in diverse 

matrices, including sugar, beers and wines with sub micro-molar limits of detection. 

Chemiluminescence produced from tri(2,2-bipyridyl)ruthenium(II) in the presence of 

either K2S2O8 (He et al., 1998b) or KMnOa (Meng et al., 1999) was used to quantify 

sulphite in sugar and sulphur dioxide in air (absorbed in triethanolamine) with interference 

from Cu(II) and EDTA. Sulphite (detection limit 30 jig ml *) has also been determined in 

beers and wines using the auto-oxidation of sulphite sensitised by rhodamine 6G in the 

presence of Tween 80 surfactant micelles (Huang et al., 1999e), with interference from Ŝ ", 

NO2*, and ascorbic acid. This is a good example of the increasing trend to add surfactants 

to enhance CL emission by providing a protective environment for the reaction. FI-CL has 

been used to determine sulphite in wines using the NaHC03 / sodium carbonate / Cu(n) 
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CL reaction (Lin and Hobo, 1996). The manifold incorporated a gas diffusion module to 
enhance selectivity and remove physical interferences but iodide, Co(II), Ni(II) , and S '̂ 
interfered at 2-fold excess. 

Carbohydrates 

Chemiluminescence is produced when carbohydrates are oxidised by acidified potassium 

permanganate (Agater et al., 1996). Glucose, galactose, fructose, arabinose, xylose, lactose 

and sucrose have all been detected over the linear range 10^ - 10"' mol dm"*'. The oxidation 

of pyrogallol by periodate has been used for the detection of carbohydrates (Evmiridis et 

al., 1999) with a detection limit for hexose of 20 |ig. An interesting aspect of this method 

was the use of differential CL reaction kinetics to allow the resolution of binary mixtures 

of glucose and fructose. 

Other analytes 

Luminol chemiluminescence has been used for a variety of other analytes in food and 

beverages including 3,4-dihydroxybenzoic acid (Cui et al., 1999), choline (Yaqoob et al., 

1997a), citric acid (Li and Zhuang, 1999), ethanol (Danet et al., 1997), malate (Kiba et al., 

1995a), glycerol (Kiba et al., 1996), lactate (Hemmi et al., 1995), nitrite (Yang et al., 1997) 

and tannic acid (Cui et al., 1998). 3.4-Dihydroxybenzoic acid (protocatechuric acid) (Cui et 

al., 1999) has been measured in wines using CL produced by the oxidation o f luminol with 

hydrogen peroxide with Co(IT) as a catalyst. Citric acid in orange drinks (Li and Zhuang, 

1999) has also been determined using the luminol reaction, Fe(III) is reduced by citric acid 

to Fe(II), which can then be detected with luminol but ascorbic acid interfered. Ethanol in 

beer can be indirectly determined by the enzymatic generation o f hydrogen peroxide using 

alcohol oxidase (Danet et al., 1997). Cysteine interference was removed by prior 
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complexation with Cu(n). Malate (KJba et al., 1995a), glycerol (Kiba et al., 1996) and 
lactate (Hemmi et al., 1995) have all been indirectly detected using immobilised enzyme 
reactors to produce hydrogen peroxide, followed by luminol detection. Nitrite can be 
detected in foods by reaction with K l (Yang et al., 1997) to produce h which then reacted 
with luminol. Fe(n), Cu(II), As04^* and Sb04̂ * interfered. Tannic acid (Cui et al., 1998) 
has been determined in hop pellets using the luminol / peroxide reaction with a Cu(II) 
catalyst and hydrogen peroxide has been measured in fermented liquors (Hasebe et al., 
1996) using bis-(2,4,6- trichlorophenyl)oxalate and perylene chemiluminescence. The 
latter method has been applied to the determination of glutamic acid in culture media. 
Acetaldehyde has been determined using gallic acid / hydrogen peroxide / sodium 
hydroxide chemiluminescence (Yao et al., 1997) but formaldehyde, Co(n), Mn(II), Ag(I), 
Cd(II), Pb(II) and permanganate were all found to interfere, Amino acids have been 
detected in food (lysine) and serum (phenylalanine) using both the luminol / hydrogen 
peroxide and o-phenanthroline / hydrogen peroxide reactions (Zhang et al., 1996c). 

Table 1.5: Food and beverage applications. 

Analyte Sample matrix Reactions L . O . D . Reference 

3.4-
Dihydroxybe 
nzolc acid 

Wines Inhibition of the luminol / hydrogen peroxide / Co(II) 
chemi 1 uminescence. 

2.7x10-' 
mol dm' ' 

(Cui et al.. 
1999) 

Acetaldehyde Alcoholic beverages Gallic acid / hydrogen peroxide / sodium hydroxide 
chemi luminescence. 

0.31 ng 
m L ' 

(Yao et al., 
1997) 

Amino acids Food Cu(II) amino acid complex formation catalysis o f the 
luminol / hydrogen peroxide and o-phenanthroline / 
hydrogen peroxide chemiluminescence systems 

Pmol (Zhang et al.. 
1996c) 

Ascorbic acid Beverages Oxidation with permanganate / acid. 5x10-' 
mol dm-^ 

(Agater and 
Jewsbury, 1997) 

Ascorbic acid Mung bean sprouts, 
tomato and 

cucumber skins. 

Luminol /Fe(I1)/ Na2B407/potassium hydroxide 
chemiluminescence. 

0.2 ng 
m L ' 

(Chen el al., 
1997) 

Ascorbic acid Fruit juices Luminol and potassium permanganate immobilised on 
resins in a glass column. Eluent mixed with sodium 
hydroxide to produce chemiluminescence. 

5 Hg L ' (Wang et al., 
1997a) 

Ascorbic acid Vegetables Acidified permanganate / luminol chemiluminescence 0.1 ng 
mL-' 

(Ye and Wang, 
1998) 

Ascorbic acid Vegetables Inhibition o f the chemiluminescence produced from 
luminol and feiricyanide (immobilisol on an anion-
exchange resin column, eluted with sodium phosphate). 

5.5x10-' 
MgniL-' 

(Zhang and Qin, 
1996) 

Carbohydrate 
s 

Aqueous Acidified permanganate / Mn(I I ) chemi luminescence. 1x10^ 
mol dm*' 

(Agater et al., 
1996) 

44 



Chapter 1: Introduction 

Table 1.5: Food and beverage applications (continued). 

Choline Cabbage Luminol / Co(II) detection of hydrogen peroxide produced 
from an immobilised choline oxidase column. 

I x l O ' 
mol dm'' 

(Yaqoob etal., 
!997a) 

Citric acid Non-alcoholic 
beverages 

[Ruction of Fe(ni) to Fe(ll) with citric acid followed by 
tuminol chemiluminescence detection. 

0.1 Jig 
m L ' 

(Li and Zhuang, 
1999) 

Ethanol Beer Production of hydrogen peroxide using alcohol oxidase 
followed by luminol diemi*luminescence. 

0.01% 
(v/v) 

(Danet et al., 
1997) 

Free L-malate Wines Malate dehydrogenase/reduced nicod'neamide adenine 
dinucleotide oxidase co-immobilised on polymer beads to 
produce hydrogen peroxide for detection using luminol / 
hexacyanofeiTate(in) chemi luminescence. 

SxlO-" 
mol dm"' 

(Kiba et al., 
1995a) 

Glucose and 
fructose 

Aqueous PyrogaOol / hydroxylamine hydrochloride / periodate 
chemi 1 uminescence. 

Not 
reported 

(Evmiridis et 
al., 1999) 

Glycerol Wines Glycerol dehydrogenase and NADH oxidase are co-
immobilised on poly (vinyl alcohol) beads to produce 
hydrogen peroxide which was detected using luminol / 
hexacyanofcTTBte (ill) chemi luminescence. 

TxlO-" 
mol dm"' 

(Kiba ct al., 
1996) 

Hydrogen 
peroxide 

Fermented liquors Peroxyoxalate chemi luminescence in an emulsion of ethyl 
acetate, non-ionic surfactant polyoxyethylene(20) sorbitane 
monolaunite(Tween 20) and water. 

1x10^ 
mol dm ' 

(Hasebe et al., 
1996) 

L-Iactate Food samples Immobilised 1-Iactate oxidase to produce hydrogen peroxide 
for luminol / horseradish peroxidase / luminol 
chemi luminescence detection. 

1x10' 
mol dm"' 

(Hemmi et al., 
1995) 

Nitrite Water and food Luminol /1] (produced from potassium iodide in acid) 
chemi luminescence. 

1.6 ng 
m f ' 

(Yang et al., 
1997) 

Sulphite Sugar Ru(2^'-bipyridyl),'* / SOj'" / K j S j O i 
chemi luminescence. 

4.1x10"* 
mol dm"' 

(He et al., 
1998b) 

Sulphite Beers and wines Auto- oxidation sensitised by rhodamine 6G (immobilised 
on cation exchange resin) enhanced with Tween 80. 

0.03 mg (Huang et al., 
1999e) 

Sulphite Wines Na2C03 / NaHCOj / Cu(II) chemiluminescence with a gas 
diffusion module. 

5x10"' 
mol dm"' 

(Lin and Hobo, 
1996) 

Sulphite Sugar Ru(2^'-bipyridyl)j^* / SO3'' / potassium peroxide 
chemiluminescence 

2.5x10"' 
mol dm'' 

(Meng et al., 
1999) 

Tannic acid Hop pellets samples Inhibition of luminol / hydrogen peroxide / Cu(ll) 
chemiluminescence 

9x10"' 
mol dm"' 

(Cui et al., 
1998) 

L4.L4 Biomedical applications 

A particularly wide variety of analytes have been determined by enzymatic conversion to 

produce hydrogen peroxide which is then quantitatively detected by the luminol or 

peroxyoxalate reactions. 

The luminol reaction has been used for the measurement of hydrogen peroxide generated 

from acetylcholine and choline after passing the sample through two consecutive columns 

containing immobilised acetylcholinesterase and choline oxidase (Fan and Zhang, 1996; 

Hasebe et al., 1997). Similarly ATP has been determined with immobilised alkaline 

phosphatase (Fujiwara et al., 1997) and glyceroI-3-phosphate with immobilised glycerol-3-

phosphate oxidase (Yaqoob et al., 1997b). Branched-chain 1-amino-acids have been 

45 



Chapter 1: Introduction 

determined in human plasma with recoveries in the range 98-102% by passing the analyte 
solution through an enzyme reactor column containing leucine dehydrogenase and NADH 
oxidase (Kiba et al., 1995b) or by introducing the solution mixed with luminol and NAD"^ 
into a spiral flow cell onto which leucine hydrogenase, N A D H oxidase and peroxidase 
have been immobilised (Kiba et al., 1998). Cholesterol has been monitored by passing the 
sample through immobilised cholesterol oxidase (Huang et al., 1999f; Nabi et al., 1996) 
and L-alanine, alpha-ketoglutarate and L-glutamate determined with immobilised alanine 
aminotransferase and glutamate oxidase (Janasek and Spohn, 1999). Glucose has been 
monitored in subcutaneous tissue fluid and blood of rabbits after passing through 
immobilised glucose oxidase(Fang et al., 1997), in plasma by flowing through immobilised 
pyranose oxidase (Kiba et al., 1997), in mixtures with 3-hydroxybutyrate by passing 
through two NADH oxidase enzyme reactors containing glucose dehydrogenase and 3-
hydroxybutyrate dehydrogenase (Kiba et al., 1995c) and in mixtures with lysine by passing 
through immobilised glucose oxidase to measure glucose and through lysine oxidase to 
measure lysine (Almuaibed and Townshend, 1997). The same principle has been applied to 
the measurement of lysine and ornithine (Almuaibed and Townshend, 1999). On line co-
immobilised 3-hydroxybutyrate dehydrogenase and N A D H oxidase has been used for the 
measurement of 3-hydroxybutyrate in serum with very good agreement with other 
accepted analytical methods (Tabata and Totani, 1995). Hydrogen peroxide can also be 
produced from sulphated bile acids by passing through a column of bile acid sulphate 
sulphatase and 3beta-hydroxysteroid dehydrogenase (Gao et al., 1997). Alpha-
chymotrypsin, trypsin and a commercial protease have been determined by passing through 
a mini-column containing immobilised isoluminol(Edwards et al., 1995). 

Catecholamines can be measured in plasma by imidazole conversion to hydrogen peroxide 

prior to the peroxyoxalate (PO) CL reaction (Nozaki et al., 1999), D-amino acids in plasma 
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have been determined with good agreement with a colorimetric method by flowing through 
a specific enzyme reactor containing D-amino acid oxidase before PO CL detection of 
hydrogen peroxide (Wada et al., 1997). Incubation of dopamine with imidazole at 60 °C 
for 30 min in the dark generated hydrogen peroxide which was then introduced into a FI 
analyser for PO-CL detection (NozakJ et al., 1996). Glucose or choline and acetylcholine, 
separated by a cation exchange column, have been determined in urine by conversion to 
hydrogen peroxide via a glucose oxidase reactor or a choline oxidase/acetylcholine 
esterase reactor respectively (Emteborg et al., 1997). Compounds containing an alcoholic 
or phenolic hydroxyl group (polyphenols, monophenols and sugars) have been determined 
by mixing with imidazole and heating to 80 °C prior to PO detection of hydrogen peroxide 
(Nozaki et al., 1995). 

Several other reactions have also been used for biomedical applications of FI-CL. Amino 

acids have been determined by complexation with cobalt(II) and inhibition of the lucigenin 

CL reaction (Chen et al., 1996a), by the inhibiting effect of cobalt(n) complexes or 

enhancing effect of copper(IT) complexes on the ninhydrin-hydrogen peroxide CL reaction 

(Chen et al., 1996b) and by their effect on the l,10-phenanthroline-copper(U)-hydrogen 

peroxide CL reaction (Li et al., 1995). Chlorotetracycline has been assayed in urine, with 

recoveries of 98.8-101.1% by its effect on the copper(II)-ammonium carbonate-

cetyltrimethylammonium bromide-hydrogen peroxide CL reaction (Li and Wang, 1998). 

Proteins have been monitored via the catalytic effect of copper(II) complexes on the 

luminol (Li et al., 1999b) or phenanthroline (Ping et al., 1998)-hydrogen peroxide CL 

reaction and porphyrins have been measured in urine via the PO-hydrogen peroxide 

reaction (Lin and Huie, 1997). 
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Chromiuni(III) has been determined in urine, blood serum and hair by its catalytic effect 
on the luminol-hydrogen peroxide CL. The method was validated by analysing a certified 
reference material and recoveries were within the range of 89-115% (Escobar et al., 1998). 
Copper(II) in serum has been determined with recoveries of 94-97% by its effect on the 
hydroxylamine-fluorescein CL reaction (Lin and Hobo, 1995) and iron(ni) in blood has 
been monitored by its effect on the luminol and the results showed good agreement with 
those obtained by flame AAS (Qin et al., 1998c). Iodide in urine can be monitored after 
oxidation to iodine with dichromate and measurement by the cobalt(II) catalysed luminol 
reaction (Burguera et al., 1996). The luminol reaction with K7[Cu(I06)]2 has been used for 
determining glucose (Huang et al., 1997) or uric acid (Feng et al., 1997a) while 
vanilmandelic acid has been determined by its enhancement effect on the luminol-
hexacyanoferrate(III) CL reaction, with an excellent detection limit (Bamett et al., 1999), 
and uric acid has been measured in urine by its inhibiting effect on the luminol-periodate 
reaction with results comparable with those obtained by spectrophotometry (Wu et al., 
1999a). 

Serum glucose has been assayed by the CL reaction of hydrogen peroxide with 3-propyl-

7,8-dihydropyridazino-[4,5-g]quinoxaline-2,6,9(l H)-trione, which is a luminol related 

compound (Ishida et al., 1995). Acidic permanganate has been used as a chemiluminogenic 

reagent for the determination of pyruvate in serum (Feng et al., 1999), serotonin and 

related indoles (Bamett et al., 1998) and uric acid (Li et al., 19980* Tryptophan has been 

found to exhibit CL by the action of cerium(rV) (Alwarthan, 1995) while bilirubin 

generates CL by reaction with N-bromosuccinimide or sodium hypochlorite (Palilis et al., 

1996). 
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Table 1.6: Biomedical applications. 

Anal>te Sample matrix Reaction L . O . D . Reference 

Acetylcholine Rat brain tissue Following sample prepamdon. injection into stream. 600 and SOO (Fan and 
and choline passed through two reactors containing fmot Zhang, 1996) 

acetylcholinesterase and choline oxidase immobilised on respectively 
glass beads. Detection using Co(II) / luminol 
chemi I undnescence. 

Aceiylcholine Culture media Production of hydrogen peroxide using an immobilised 1x10-* mol dm ' (Hasebe et al.. 
and choline enzyme reactor followed by detection with luminol / 1997) 

Co(I!) chemiluminescence enhanced using sodium 
dodecyl sulphate. 

Adenosine-5'- Aqueous Alkaline phosphatase from Escherichia coli (immobilised) IxlO^moldm-' (Fujiwara et 
iriphosphate is used to produce hydrogen peroxide for detection with al.. 1997) 

luminol / heteropoly acid. 

Atpha- Aqueous Immobilised tnpeptide and isoluminol / Co(II) / hydrogen 2.7x10"' mgL-'. (Edwards et 
chymoirypsin, peroxide chemi luminescence. 4x10-^ m g L ' al., 1995) 
trypsin and a and 2x10*^ mg 
commCTcial L"' r^peclively 
protease 

Amino acids Aqueous Inhibition of the lucigenin / Co(ll) chemi luminescence I x l O ' - (Chen ei al., 
reaction 2xl0-'mol dm-̂  1996a) 

Amino acids Aqueous Ninhydrin / hydrogen peroxide / Cu(II) or Co(]l) 4.2x10'- (Chen ei al.. 
chemi luminescence. 9.2x10-' mol 

dm'* 
1996b) 

Amino acids. Aqueous Unsaturated connplex of Cu(ll) and organic ligands 2.7-90 pmol (Li et al.. 
polyamines, and enhanced 1,10- phenanthroline / hydrogen peroxide / 1995) 
salicylic acids C T M A B chemi luminescence 

Bilirubin Aqueous N-bromosuccinimide / sodium hypochlorite 1.75 ^g mL ' (Palilis et al.. 
c hemi 1 umi nescence. 1996) 

Branched-chain Plasma Leucine dehydrogenase and NADH oxidase are co- 3x10 ' moldm-^ (Kiba et al.. 
1-amino-acids immobilised on aminated poly(vinyl alcohol) beads to 1995b) 

produce hydrogen peroxide which is detected using 
luminol / hexacyanofenate (III) chemi luminescence. 

Catecholamines Plasma Imidazole catalysed decomposition by catecholamines Not reported (Nozaki et al., 
producing hydrogen peroxide which is detected using 1999) 
peroxyoxalate chemi luminescence. 

Chlorotetracycli Urine Copper sulphate / hydrogen peroxide / ammonium 4xl0-*moldm-' (Li and 
ne cariHjnate / cetyltri methyl ammonium bromide Wang, 1998) 

chemi luminescence. 
Cholesterol Human scrum Cholesterol oxidase immobilised on amine-modified silica 5xl0-*g (Huang et al.. 

gel in a column is used to produce hydrogen peroxide. m L ' 19990 
Luminol and ferricyanide are co-immobilised on an 
an ion-exchange column for chemil umi nescence detection. 

Cholesterol Blood serum Hydrogen peroxide produced from on immobilised O . I mg L"' (Nabi et al.. 
cholesterol oxidase column is detected using luminol / 1996) 
Co(n) chemil uminescence. 

cm) Urine Luminol / hydrogen peroxide chemi luminescence. 0.01 Mg L"' (Escobar et 
al., 1998) 

Cu(II) Serum Hydroxy lamine / fluorescein / hydroxide 0.5 Mg L ' (Lin and 
chemi luminescence. 

0.5 Mg L ' 
Hobo. 1995) 

D-amino acids Human plasma Immobilised enzyme column reactor with peroxyoxalale 0.4 to 30 pmol (Wada et al.. 
chemil umi nescence detection. ( I O M L 1997) 

injection) 

D-glucose and Serum 2 Enzyme reactors, one containing glucose dehydrogenase IxlO"* mol dm-* (Kiba el al.. 
3- and NADH oxidase the other containing 3- and 1x10^ mol 1995c) 
hydroxybulyrate hydroxybutyrate dehydrogenase and NADH oxidase co- dm-' 

immobilised on beads to produce hydrogen peroxide for respectively 
detection using luminol / hexacyanoferniie(ni) 
chemi luminescence. 

Dopamine Biochemical Imidazole / peroxyoxalate chemi luminescence. 10 nmol (20ML (Nozaki et al.. 
samples injection) 1996) 

Fe(III) Blood Luminol and potassium hexacyanofeTTate(ll), are 7 MgL-' (Qin et al.. 
immobilised on a D20I anion exchange column. Elution 

7 MgL-' 
1998c) 

with NaSO^. Detection with sodium hydroxide. 
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Glucose 

Glucose 

Glucose 

Glucose 
acetyl choline 
and choline 

Glycerol-3-
phosphaie 

Hydrogen 
peroxide 

Iodide 

L-alanine, 2-
oxogluiarale 
and 
L-glulamate 

L-valine, L -
leucine and L -
isoleucine 

Lysine and 
glucose 

Lysine and 
ornithine 

Polyphenols, 
monophenols 
and sugars 

Porphyrins 

Proteins 

Proteins 

Pyruvate 

Serotonin and 
related indoles 

Scrum 3-
hydroxybulyrale 

Rabbit fluid and 
blood 

Biochemical 
samples 

Plasma 

Urine 

Aqueous 

Human serum 

Urine 

Cell cultivation 
media of 

mammalian 
cells 

Plasma 

Aqueous 

Aqueous 

MicT^latysis followed by reaction in an immobilised 
glucose oxidase reactor to produce hydrogen peroxide, 
detected with luminol / hexacyanoferrate 
chemi luminescence 

K7[Cu(I06)]i / luminol / sodium hydroxide 
chemi luminescence. 

Immobilised pyranose oxidase produced hydrogen 
peroxide for reaction with luminol in a flow cell 
containing immobilised peroxidase. 

Production of hydrogen peroxide using immobilised 
glucose oxidase or acetylcholine esterase / choline 
oxidase followed by peroxyoxalate chemi luminescence 
detection. 

Glycerol-3-phosphate oxidase immobilised on controlled 
pore glass, [detection with luminol / Co(II) 
chemi luminescence. 

3-Propyl-7.8-dihydropyridazinoI4,5-g]quinoxaline-
2.6,9(1 H> trione 

Conversion to iodine by potassium dichromate followed 
by detection with luminol /Co(II) chemiluminescence. 

Sample passed through reactor containing alanine 
aminotransferase and glutamate oxidase immobilised on 
sieved porous glass beads before passing into a How cell 
containing NaHCOj / luminol / Co(ll) immobilised 
peroxidase from Arthromyces ramosus for 
chemiluminescence detection. 

Leucine dehydrogenase, NADH oxidase and peroxidase 
arc co-immobilised covalently on tresylate-hydrophilic 
vinyl polymer beads in o How cell. NAD* and luminol 
used to produce chemiluminescence. 

Immobilised lysine oxidase and glucose oxidase 
producing hydrogen peroxide with luminol / Co(II) 
chemiluminescence detection. 

Immobilised lysine oxidase producing hydrogen peroxide 
with luminol / Co(II) chemi luminescence detection. 

1x10"* mol dm"' (Fang et at., 
1997) 

Not reported Imidazole / peroxyoxalate chemiluminescence. 

Peroxyoxalate / hydrogen peroxide chemiluminescence. 

Cu(ll) - proteins complexes catalyse 
luminol / hydrogen peroxide chemiluminescence. 

1.10-Phenanthroline/hydrogen peroxide / Cu(n) 
cetyltrimeihylammonium bromide / chemi luminescence. 

Aqueous 

bovine serum 
albumin, human 
serum albumin, 
human gamma

globulin, and 
egg albumin 

Bovine serum 
albumin, human 
serum albumin, 

gamma
globulin, and 
egg albumin 

Blood serum Acidified permanganate / quinine chemiluminescence. 

Aqueous Potassium permanganate / sulphuric acid 
chemiluminescence. 

Serum Two immobilised enzymes, 3-hydroxybutyrale 
dehydrogenase and NADH oxidase producing hydrogen 
peroxide, detection with luminol /hexacyanoferrate 
chemiluminescence. 

0.18 ng mL ' 

3x10 'mol dm-' 

3x10 'mol dm"' 
and 5x10** mol 

d m ' 
respectively 

5x10"' mol dm ' 

1.3 pmol 
(100 n L 

injection) 

l O M g L ' 

2x10-* mol dm ', 
5x10-* mol dm ' 
and lxlO-*mol 

dm"' 
respectively 

1x10-* mol dm'' 

4x10'* and 
7x10-'mol dm ' 

respectively 

4x10''mol dm ' 

Not reported 

0.1 MgL"' 

0.03 - 0.05 Mg 
m L ' 

0.02 Jig mL ' 

0.8 l̂g mL ' 

2x10-'- 1.5x10-' 
mol dm ' 

Not reported 

(Huang etal., 
1997) 

(Kiba et al., 
1997) 

(Emteborg et 
ol., 1997) 

(Yaqoob et 
al., 1997b) 

(Ishida et al., 
1995) 

(Burguera et 
al., 1996) 

(Janasck and 
Spohn, 1999) 

(Kiba etal., 
1998) 

(Almuaibed 
and 

Townshend, 
1997) 

(Almuaibed 
and 

Townshend, 
1999) 

(Nozaki etal. 
1995) 

(Lin and 
Huie. 1997) 

(Li et al., 
1999b) 

(Ping et al., 
1998) 

(Feng et al., 
1999) 

(Bamett etal.. 
1998) 

(Tabata and 
Totani, 1995) 
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Table 1.6: Biomedical applications (continued). 

Sulphated bile Urine Production of hydrogen peroxide using muldstep IxIO"' moldm-^ (Gao ci at.. 
Qcids enzymatic reactions with detection using luminol 

chemiluminescence. 
1997) 

Trypiophan Tissue Cerium(IV)/ sulphuric acid chemiluminescence 0.1 ^g mL"' (Alwarthan, 
1995) 

Uric acid Urine Luminol / K7{Cu(I06)i] / potassium hydroxide 7.2x10' (Feng et al., 
chemiluminescence enhanced with polyhydroxy mol dm'' 1997a) 
compounds. 

Uric acid Urine Acidic permanganate chemiluminescence with 0.055 Mg mL ' ( U et al.. 
octylphenyl polygylcol ether as a sensitiser. 

0.055 Mg mL ' 
19980 

Uric acid Aqueous Inhibition of luminol / potassium periodate / Mn(ll) 
chemi luminescence. 

1 .8x10'gmL' (Wu et al., 
19993) 

Vanilmandelic Urine Luminol / hexacyanoferrate(III) chemiluminescence. 2x10-" mol dm ' (Bamett etal., 
acid 1999) 

1.5 SOLID PHASE E X T R A C T I O N 

Solid phase extraction (SPE) is a method of sample preparation for the preconcentration 

and/or clean up of analytes prior to detection. SPE was introduced in the early 1970s as an 

alternative to liquid-liquid extractions (Bumham et al., 1972) however the name solid 

phase extraction was not introduced until much later (Zief et al., 1982). SPE is much more 

rapid than traditional liquid-liquid extractions, eliminates emulsions, requires much less 

solvent and hence saves money and is more environmentally friendly. Recoveries using 

SPE are usually high (>90 % is possible once a separation has been optimised). 

SPE can be used in two different ways. The simplest method involves passing the sample 

through an SPE cartridge or column (See Fig. 1,25). Interfering compounds are retained on 

the sorbent bed allowing the cleaned up analyte to pass through unretained. 

51 



Chapter I: Introduction 

Sample reservoir 

Fritted discs 
(20 ^im. Polypropylene) 

Sorbent bed 

Fritted discs 
(20 nm. Polypropylene) 

Luer Tip 

Figure 1.25: Solid phase extraction cartridge (left) and column (right). 

The second (and most common) method of solid phase extraction is a four step procedure. 

First the sorbent is conditioned, then the sample is loaded (retaining the analyte and some 

interferences on the sorbent). Next, the interference compounds are washed off, and finally 

the desired analyte is eluted (allowing preconcentration). A diagram shoving the four step 

procedure is shown in Fig. 1.26. 

Conditioning Loading Washing Elulion 

O 
O 

©Matrix 
DO Undesired compounds 

A Analyte 

Figure 1.26: Four step solid phase extraction procedure. 
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Solid phase extraction cartridges and columns are usually disposable. Sorbent material is 
comprised of particles typically with an average diameter of 40-60 ^im and an average pore 
size of 50-60 A. 

1.5.1 P R I N C I P L E S O F SPE 

Conditioning 

An SPE cartridge is first conditioned with a solvent that is stronger than the final elution 

solvent in order to remove impurities present on the column, ensuring that the final eluent 

is free from impurities from the column. Conditioning is also needed to activate the 

sorbent. Diagrams of unconditioned and conditioned sorbents are shown in Fig. 1.27. The 

final conditioning solvent must be of a similar polarity (see Table 1.7) to that of the sample 

matrix to ensure that the maximum retention is obtained. 

Figure 1.27: Unconditioned (left) and conditioned SPE phases. 
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Table 1.7: Solid phase extraction solvent strength. 

Solvent Solvent Polarity 8°(Al203) 
n-Hexane 0.00 o 
Toluene 0.29 
Dichloromethane 0.39 

^1 phase £ 

Chloroform 0.40 

^1 phase £ Ethylmethyl ketone 0.51 

^1 phase £ 

Acetone 0.56 o_ 
Tetrahydro fiiran 0.62 •< 

3 
Tert-Butylmethyl ether 0.62 
Acetonitrile 0.65 
Iso- + n-propanol 0.78 r-J 3 

qc 
Ethanol 0.88 \ "3" 

Methanol 0.95 ^ 
Water High 

Loading 

When the sample is passed through the conditioned sorbent bed, the analyte (and possibly 

some interfering compounds) are retained. The matrix wi l l pass straight through the 

sorbent and not be retained. 

Washing 

The column is washed with a solvent that is strong enough to remove impurities that have 

been retained along with the analyte, but not strong enough to elute the analyte. 

Eluiion 

Finally a solvent with enough strength to remove the analyte of interest is used. However i f 

a solvent that is too strong is used then other impurities that have been retained on the 

column wil l also be eluted. 

An example of a typical reverse phase SPE procedure is the extraction of sulcoftiron and 

flucofijron from river water using Cig cartridges shown in Table 1.8 (Hancock et al., 1998). 

54 



Chapter 1: Introduction 

Table 1.8: SPE procedure for the extraction of sulcofuron and flucofuron from river 
water. 

Conditioning Washing 
5 mL acetone No washing step required 
5 mL methanol 
5 mL water 

Loading Eluting 
1000 mL water sample 3 x 2 mL aliquots of methanol 

1.5.2 AN A L Y T E - S O R B E N T I N T E R A C T I O N S 

Solid phase extraction utilises the same interactions that are used in high performance 

liquid chromatography. Normal phase, reverse phase, anion exchange and cation exchange 

are the most common interactions used in SPE. 

Reversed phase sorbents (See Fig. 1.28) are more hydrophobic than the sample matrix, and 

are used predominantly when the sample matrix is aqueous. Van der Waals forces are the 

mechanism of primary interactions, although secondary interactions utilising free silanol 

(Si-OH) groups must be taken into account. An example of reversed phase SPE is the 

isolation of metal-organic complexes in ocean waters (Donat et al., 1986). Common 

reverse SPE phases are phenyl (S i - (CH2)3-C6H5) , octyl (Si-(CH2)7-CH3) and octadecyl (Si-

(CH2),7-CH3). 
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I 
\ I 

\ I I t S i - O - S i 

q I si-oH " 
Si-OH O I " 

q I ^ ^ ^ ^ s i - o - i i - ^ y - H 

O I * * S i - O H H , . * N Si-OH ^ \ ^ \ / 

Figure 1.28: Left, interactions; Right, normal phase interactions. 

Normal phase sorbents consist of a stationary phase that is more polar than the sample. 

Hydrogen bonding and dipole-dipole interactions are the mechanisms utilised in normal 

phase SPE. Aqueous samples are not usually used with normal phase SPE, as water is too 

strong a solvent for analytes to be retained. An example of normal phase SPE is the 

enrichment of polyunsaturated fatty-acids in hexane (Wilson et al., 1993). Common normal 

SPE phases are aminopropyl (Si-(CH2)3-NH2), diol (Si-(CH2)3-0-CH2-CH(OH)-CH2-OH), 

cyano (Si-(CH2)3-CN), silica (Si-OH) and primary / secondary amine (Si-(CH2)3-NH-CH2-

CH2-NH2). 

Electrostatic interactions occur between charged analytes and sorbents with the opposing 

electrostatic charge. Anion exchange uses negatively charged sorbent to attract positively 

charged analytes whilst cationic exchange uses positively charged sorbent to attract 

negatively charged species (see Fig. 1.29). 
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O 

S i - 0 - S i - ( v />—S-Oi-*-'N , I \ 

S i - O H f ^ " V 
/ OH 

Figure 1.29: Electrostatic interactions (left, cationic exchange and right, anionic 
exchange). 

Common cation exchange phases are benzenesulphonic acid (Si-(CH2)3-C6H4-S03"H'*^), 

carboxylic acid (Si-(CH2)3-C02H), propylsulphonic acid (Si-(CH2)3-S03Tr) and silica (Si-

OH). An example of cation exchange SPE is the isolation of drug and drug metabolites 

from urine (Logan et al., 1990). Common anion exchange phases are quaternary amine (Si-

(CH2)3-N^((CH3)2)-CH3Cr), aminopropyl (Si-(CH2)3-NH2) and primary / secondary amine 

(Si-(CH2)3-NH-CH2-CH2-NH2). An example of anion exchange SPE is the 

preconcentration of urinary organic acids from urine (Verhaeghe et al., 1988). 

1.5.3 SOLID PHASE E X T R A C T I O N APPARATUS 

When using a large sorbent bed it may not be possible for a sample to pass through a 

column using gravity flow alone. In order to assist the flow (and hence speed up extraction 

time) extemal pressure is often applied. This can either be positive pressure (applied from 

the top of the column) or negative pressure (a vacuum applied to the bottom of the 

column). Positive pressure is usually applied using a syringe. A vacuum can be applied to 

an individual cartridge or column (using a trap to collect the sample / solvent). When a 

number of samples are to be extracted, the most common method is to use an SPE vacuum 

manifold (see Fig. 1.30), which can accommodate 12 samples simultaneously. 
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Figure L30: Solid phase extraction manifold. 

1.5.4 A U T O M A T E D SPE 

Automated SPE has many advantages over manually operated SPE. Automation results in 

better precision as gross operator errors (e.g. pipetting errors) are reduced and there is less 

chance of contamination. 

Three common methods are used for the automation of solid phase extraction procedures. 

These are semiautomatic (96 well plates), workstations and on-line solid phase extraction. 

L5,4.1 Semiautomatic SPE 

96 well plates consist of 96 solid phase extraction columns in 12 rows o f 8. An array of 8 

automatic pipettes applies samples to the columns one row at a time. This type of system is 

appropriate i f a large number of samples need to be extracted in parallel, as all 96 samples 

can be processed in less than an hour instead of taking up a whole working day. A diagram 

and photograph of a 96 well system is shown in Fig. 1.31. 
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Figure 1.31: Diagram (3M, 1998) and photograph (Varian, 2000) of a 96 well plate. 

The disadvantage of this type of system is that a large number of samples is needed in 

order for the system to become economical (each plate costs around £100). In addition, the 

system must be accommodated in a laboratory and is not suitable for field deployment. 

L5.4.2 Workstations 

These instruments can perform multiple functions using dedicated computer software to 

control hardware incorporating a certain amount of robotics to perform a set of predefined 

operations. Workstations can perform a host of laboratory functions including addition of 

internal standards, filtration, mixing, evaporation and derivatisation, and can be operated in 

both batch and serial modes. Various commercial workstation systems are available with 

prices in the range £15,000 to £40,000. The most common systems are ASPEC X L (Gilson 

Medical Electronics, Inc.) (Langen et al., 2000), Microlab SPE (Hamilton) (Whitter et al., 

1999), Prepstation (HP) (Hankemeier et al., 1999), Prospekt (Jones Chromatography) 

(Marchese et al., 1998), AutoTrace (Tekmar) (Gerwdnski and Schmidt, 1998) and 

BenchMate (Zymark) (Hamlin, 2000). A photograph and diagram of the Prospekt system 

are shown in Fig. 1.32. 
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Figure 1.32: Prospekt automated SPE system. (Techlab, 2001) 

As in the case of 96 well plates, workstations require laboratory conditions for successful 

operation and are therefore also inappropriate for field monitoring. 

1.5.4.3 On-line SPE 

The third approach is on-line SPE which involves placing a column into a flow system (see 

Fig. 1.33). The sample is preconcentrated onto the column and the column is then injected 

directly into the flowing steam, leading to the detector. On-line solid phase extraction has 

many advantages, including reduced solvent usage, lower detection limits due to the whole 

sample being analysed and faster analysis. On-line SPE is discussed in more detail in 

Chapter 4. 
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Figure 1.33: On-line solid phase extraction. Left conditioning / loading / washing, 
right elution. 

1.6 AIMS O F P R O J E C T 

The primary objective of this research was to develop field deployable instrumentation for 

the analysis of fiiel additives in diesel fiiel. 

The specific objectives of this research were: 

1. To develop and optimise a flow injection-chemiluminescence method for the 

determination of dodecylamine in acetonitrile / water mixtures and to investigate 

the effects indigenous compounds present in diesel fuel would have on this method. 

2. To evaluate the potential of the FI-CL manifold for determination of dodecylamine 

in diesel fiiels. 

3. To develop solid phase extraction procedures for the extraction of dodecylamine 

fi-om diesel fuel into a matrix compatible with FI-CL system. 

4. To develop a reference method using GC-NPD / GC-MS for the determination of 

dodecylamine in solid phase extracts in order to validate the SPE procedure. 
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5. To construct an on-line FI-SPE-CL manifold for determination of DDA in diesel 
fuels and to fully automate the on-line manifold. 

6. To compare results obtained from on-line SPE with off-line SPE results. 

7. To develop and optimise an FI-CL method, based on the oxidation reaction of 

pyrogallol by periodate, for the detection of lubricant additive P655 

8. To develop an SPE method for extraction of P655 from organic matrices. 

9. To analyse P655 extracts using the Fl-CL method developed. 
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2. DETERMINATION O F D O D E C Y L A M I N E USING 
F L O W INJECTION W I T H C H E M I L U M I N E S C E N C E 

D E T E C T I O N ( F I - C L ) 

2.1 INTRODUCTION 

This chapter describes the modification and the univariate and simplex optimisation of a 

flow injection peroxyoxalate / sulphorhodamine 101 chemiluminescence reaction 

(Katayama et ai., 1993; Katayama et al., 1994) for the determination o f dodecylamine (a 

detergent used in diesel fuels) in acetonitrile / water matrices. Dodecylamine (DDA) is 

typically present in fuels at a concentration of 40 mg L"'. Detection limits must therefore 

be lower than this value in order for the method to be applicable to commercial diesel 

fuels. Interferences from indigenous compounds present in diesel fuels are evaluated and 

the effect of different solvents on the sensitivity of detection have been investigated. The 

analytical figures of merit for the FI-CL manifold are also reported. 

2.2 E X P E R I M E N T A L 

2.2.1 REAGENTS AND STANDARDS 

Dodecylamine (98%) and sulphorhodamine 101 hydrate (-95%) were obtained fi-om 

Aldrich (Gillingham, Dorset, U.K.). Bis(2,4-dinitrophenyl) oxalate (DNPO) (>97%), 

aniline (puriss grade), carbazole (purum grade), p-cresol (puriss grade), hexanoic acid 

(purum grade), indole (puriss grade), and phenol (puriss grade) were obtained fi-om Fluka 

(Gillingham, Dorset, U.K.). Methanol (Hipersolve grade), propan-2-ol (AnalaR grade) and 

30% (w/v) stabilised hydrogen peroxide were obtained from Merck (Poole, Dorset, U.K.). 
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Acelonitrile (HPLC grade) was purchased from Rathbums (Walkerbum, U.K.) . Water used 

was analytical reagent grade (18.2 MQ cm'*) deionised water from an Elgastat UHQ I I 

system (Elga Ltd., High Wycombe, Bucks., U.K.). 

1X10"^ M solutions of DNPO were prepared by dissolving 0.1056 g in 250 mL of 

acetonitrile (for the optimisation, a 1X10"^ M stock solution was prepared). Stock solutions 

of 1X10'^ M sulphorhodamine 101 were prepared by dissolving 0.0015 g in 250 mL of 

acetonitrile. Stock solutions of 0.1 M hydrogen peroxide were prepared by dissolving 2.58 

mL in 250 mL of water (for the optimisation, a 1 M stock solution was prepared). Stock 

solutions of dodecylamine (400 mg L"*) were prepared by dissolving 40 mg in 100 mL of 

90 % acetonitrile /10 % water. A l l standards and reagents were prepared by serial dilutions 

of the above stock solutions. Solutions of DNPO, hydrogen peroxide and sulphorhodamine 

101 were stored in the dark when they were not being used. Sulphorhodamine stock 

solutions were found to be stable for months when kept in the dark. DNPO and peroxide 

solutions were stable for 1 week. 

1000 mg L"' stock solutions of interfering compounds (aniline, p-cresol, carbazole, 

hexanoic acid, indole and phenol) were prepared by weighing out 100 mg into 100 mL 

volumetric flasks and making them up to the mark with 90 % acetonitrile / 10 % water. 

Serial dilutions were made to produce lower concentrations as required. 

Al l solutions were prepared in grade A glass volumetric flasks. A l l glassware was soaked 

overnight in 5% Decon 90 solution (Fisher Scientific) then rinsed with copious amounts of 

ultrapure water and lefl to air dry. 
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2.2.2 INSTRUMENTATION 

Chemiluminescence emission was measured using a CamSpec CL-2 detector (Cambridge 

Instruments, Cambridge, U.K.) containing a low power, 12 V Hamamatsu photomultiplier 

tube with a quartz flow cell (emission length of 12 cm, with a volume o f 120 ^iL). The 0-

10 V analogue output from the detector was acquired using a multifunctional DAQ-700 

data acquisition / digital I/O card (National Instruments, Berkshire, U .K.) attached to a 

laptop computer. Software written in LabVIEW (National Instnmients) was used to record 

and process the signal (see Chapter 4). The reagent pump used was a variable speed Gilson 

Minipuls 3 peristaltic pump (Gilson, Villiers-le-Bel, France), The sample pump used was a 

fixed speed Ismatec peristaltic pump (Ismatec, Weston-super-Mare, U .K.). Ismaprene 

(Ismatec) pump tubing was used (1.02 mm i.d. for DNPO, sulphorhodamine and sample, 

and 0.5 mm i.d. for H 2 O 2 and carrier). A Rheodyne (Rheodyne, California, U.S.A.) 6 port, 

2 position rotary injection valve (part no. 5020) was used to inject the sample into the 

carrier stream. Al l manifold tubing was 0.75 mm i.d. PTFE tubing (Fisher Scientific, 

Loughborough, U .K.). Poly(tetrafluoroethylene) T-pieces (Omnifit Limited, Cambridge, 

U.K.) were used to merge reagent streams. A l l other coimections were made using V^"-!^ 

flanged polypropylene FI fittings (Omnifit). 

Fluorescence spectra were measured using a Hitachi F4500 fluorescence spectrometer with 

a photomultiplier voltage of 400 V and slit widths of 5 nm for excitation and emission. A 

charge coupled device (CCD) with a liquid nitrogen cooled (256 x 1024 pixels) chip and a 

270M imaging spectrograph (Instruments SA) were used to record CL emission spectra. 

The injection valve was removed and the system was used in a continuous flow mode to 

produce a constant CL emission. The spectrum of sulphorhodamine 101 was obtained 

using a 1X10"^ M solution. 150 nm pieces of the spectrum were normalised and *glued' 

together using Microsoft Excel 2000. 
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2.2.3 P R O C E D U R E S 

2.2.3J Peak evaluation / limit of detection calculations 

Fig. 2.1 shows an example flow injection-chemiluminescence peak. Definitions of the 

terms peak height, start/end of peak, upper/lower noise limits and mean noise are all shown 

in this figure. Equation 2.1 gives a definition of how signal/noise has been measured. 

,/ . Peak height 
Signal/noise = — — — •— (2.1) 

Upper noise level - Lower noise level ^ ' 

In all cases where signal/noise has been measured, the limit of detection has been 

calculated as the point on the calibration graph where the signal/noise = 3. The magnitude 

of the mean peak-to-peak noise (0.415 in the Fig. 2.1) is caused by background CL 

emission from the reagents when they are mixed in the absence of sample. 

Start of peak 

^{Signal - Mean noise) (2.2) 
End of peak 

Equation 2.2 shows the method used for integrating peaks. The trapezoidal rule method for 

integration has been used in all cases. Limits of detection for calibration graphs using peak 

area have been defined as three times the standard deviation of the area o f the blank (3sb) + 

the intercept of the calibration graph on the y-axis (yb) i.e. L.O.D, = yb+3sb (Miller and 

Miller, 1993). 
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Figure 2.1: Example derinitions of peak dimensions used in calculations. 

2,2,3,2 Evaluation of the CL manifold 

The manifold shown in Fig. 2.2 (Katayama el al., 1993) was evaluated to determine 

whether it was suitable for the detection of dodecylamine in acetonitrile / water mixtures. 

20 Sample loop 

Sample injection 
valve 

Sample 
input 

90 % Acetonitrile / 10 % 1.5 

( 2X10-2 M H 2 O 2 in H 2 O ) 

5X10^ M DNPO + 1X10-^ M 1.5 
Sulphorhodamine 101 

Laptop PC Waste 

CamSpec 

CL-2 detector 

12 V P M T 

120 nL cell 

•Waste 

mL min" 

Figure 2.2: C L manifold for the detection of amines (Katayama et al., 1993). 
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2.23,3 Univariate optimisation 

The manifold shown in Fig. 2.2 was adapted by the inclusion of a separate DNPO and 

sulphorhodamine streams to increase reagent stability. A 2 m mixing coil was introduced 

to ensure good mixing of the sulphorhodamine and DNPO. A separate carrier stream was 

also introduced so that the peroxide stream was not disrupted when samples were 

introduced. The adapted manifold shown in Fig. 2.3 was then univariately optimised for 

the parameters listed in Table 2.1. A 10 mg L * solution of DDA in 90/10 acetonitrile / 

water was injected into the carrier stream, and the signal was measured. The baseline was 

recorded for 2 minutes, and the peak to peak noise was used to determine the noise level. 

The sample was injected 5 times for each experiment. 

Table 2.1: Parameters used in the univariate optimisation of the F I - C L manifold 

Parameter Lower limit Upper limit Interval 

DNPO concentration / mol L * 4X10-^ 1.4X10-^ 2x10-^ 

Sulphorhodamine 101 concentration / mL min"' 0 1X10"^ 2X10"' 

H2O2 concentration / mol L * 4X10'^ 1.4X10"' 2X10"^ 

Percentage of water in acetonitrile carrier 
stream / % 

5 25 5 

H2O2 + carrier flow rate / mL min'* 1.53 6.9 0.75 

DNPO + sulphorhodamine flow rate / mL min"' 0.67 3.2 0.33 

2.2.3,4 Simplex optimisation 

A simplex optimisation of the parameters (DNPO + sulphorhodamine 101) flow rate, 

(hydrogen peroxide + carrier) flow rate and the mixing coil length was performed. A 10 

mg L ' ' DDA solution in 90 % acetonitrile / 10 % water was injected 5 times, and the 

average peak height was taken as the signal. The peak-to-peak noise from 2 min of 

baseline was calculated by subtracting the minimum noise value from the maximum noise 

value from the 2 minute period. Optimisation experiments were performed until there was 
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Figure 2.3: Adapted flow injection chemiluminescence manifold for the determination of dodecyiamine. 
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no increase in the signal/noise for 5 experiments. The conditions used in the simplex 

optimisation are shown below in Table 2.2. 

Table 2.2: Parameters used in the simplex optimisation of the F I - C L manifold for the 
detection of PDA. 
Parameter Starting Lower Upper Interval Simplex 

condition limit limit size 

DNPO + sulphorhodamine flow 3 1.5 4.5 0.5 1.5 
rate / mL min' 

H 2 O 2 + carrier flow rate / mL m i n ' 1.25 0.75 1.75 0.25 0.6 

Mixing coil length/cm 15 15 30 5 10 

2.2. J. 5 Solvent effects 

Different ratios of acetonitrile / water fi-om 50% to 100% acetonitrile were used as carrier 

solvents using the FI-CL manifold shown in Fig. 2.3. Standards prepared in the same 

solvents (0 to 10 mg L"*) were analysed to determine which solvent ratio gave the best 

signal/noise ratio (S/N)- Methanol and propan-2-ol (IPA) were also used as carrier 

solvents, once again using a matched solvent for the standard solutions. 

2.2. J. 6 Interferences 

Samples containing 40 mg L*' DDA in 90% acetonitrile / 10% water (v/v) were spiked 

with varying concentrations (fi-om 1 to 1000 mg L ' ' ) of the following compounds: aniline, 

carbazole, p-cresol, hexanoic acid, indole and phenol (structural formulae shov^ in Fig. 

2.3) in order to determine the lowest concentration at which each caused an interference. 

The FI-CL manifold shown in Fig. 2.3 was used with 90% acetonitriie / 10% water as the 

carrier solvent. The fluorescence spectnmi of a 1000 mg L"* solution o f each interferent 

was measured to determine i f the native fluorescence of the compound was causing an 

interference by energy transfer. 
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Figure 2.4: Structures of classes of indigenous diesel compounds. 

2.3 R E S U L T S AND DISCUSSION 

2.3.1 P E R O X Y O X A L A T E C H E MI L U M I N E S C E N C E 

The peroxyoxalate chemiluminescence (PO-CL) reaction was discovered in 1963 

(Chandross, 1963) by reacting oxalylchloride with hydrogen peroxide in the presence of 

fluorescent compounds. Chandross suggested that the compound H O 2 C O C O C I was 

formed. When this molecule collided with another molecule A, the products HCl, 2C0, 

^02 and ^A* were formed. The excited state triplet A species lost vibrational energy and 

crossed over to the fluorescent lowest excited singlet state ( ' A * ) , which emitted visible 

radiation on decay to the ground state. An alternative mechanism was proposed for the 

reaction (Rauhut et al., 1967) involving the formation of the peroxyacid oxalate ester 

which then formed the unstable intermediate 1,2-dioxetanedione as shown in Fig. 2.5. 

The 1,2-dioxetanedione intermediate produces a charge-transfer complex with a 

fluorophore. As the complex breaks up to produce two molecules of carbon dioxide, the 
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fluorophore becomes sensitised and emits light in the visible region upon decay to the 

ground state. 

NO, HO 
0-N + H , 0 

DNPO 

O ^ N — " ^ O 0 - O H 

o-o 
Fluorophore 

O - O 
1,2-dioxetanedione 

O - O ^ 

Charge transfer complex 

Ov ^o 
• O 2CO2 + F 

•Cs- F hv 
Light 

Figure 2.5: A schematic diagram of the Rauhut ei. al mechanism for the 
peroxyoxalate chemiluminescence reaction (Rauhut et al., 1967). 

Many different fluorescent compounds have been used as fluorophores in order to produce 

visible emission from the PO-CL reaction such as aminopyrene (Weinberger et al., 1984), 

perylene, 1-aminoanthracene and anthracene (Lee et al., 1996). These reactions form the 

basis of many commercially available Might sticks', W\\h different fluorophores used to 

generate different coloured CL emission. Most PO-CL methods for the determination of 

amines require the chemical derivatisation of the amino group using compounds such as 
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dansyl chloride (Fu et al., 1993) or naphthalene-2,3-dialdehyde / anthracene-2,3-

dialdehyde (Kwakman et al., 1990) but these steps are relatively time consuming. The 

sulphorhodamine 101 reaction (Katayama et al., 1993) does not require any derivatisation 

and has been shown to be a very sensitive method for the detection of primary, secondary 

and tertiary amines in acetonitrile / water mixture. For this reason, sulphorhodamine 101, 

the structure of which is shown in Fig. 2.6, has been used as the fluorophore for the 

detection of dodecylamine in this work. 

SO3H 

Figure 2.6: Structure of the fluorophore sulphorhodamine 101. 

A postulated mechanism (Jonsson and Irgum, 1999) to explain why the PO-CL reaction is 

catalysed in the presence of strong nucleophiles such as amines is shown in Fig, 2.7. 

The nucleophile (in this case DDA) attacks the peroxyoxalate I forming an amide I I . This 

step is repeated to produce the disubstituted diamide I I I . A hydrogen peroxide anion 

attacks the carbonyl group producing the amide peroxyacid IV . The peroxyacid group can 

then intramolecularly cyclise, producing the 1,2-dioxetanedione excited state. 
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Figure 2.7: Postulated amine catalysed peroxyoxalate chemiluminescence reaction 
mechanism (Jonsson and Irgum, 1999) as applied to dodecylamine. 

A number of different peroxyoxalate compounds have been used to produce CL, the most 

common of which are shown in Table 2.3. 

Of the various peroxyoxalate compounds that have been used for chemiluminescence, the 

most popular are TCPO and DNPO. A l l of the common peroxyoxalates have associated 

relative advantages and disadvantages. TCPO and 2-NPO are stable in the presence of 

hydrogen peroxide, but these compounds are relatively insoluble in common LC solvents 

such as acetonitrile and methanol (Kwakman and Brinkman, 1992). The kinetics of DNPO 

are more rapid than for TCPO due to the presence of nitro substituents which are more 

electron withdrawing than chlorine groups. This means that although DNPO has a higher 

background signal than TCPO, it is more sensitive because CL intensity is a function of 
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reaction rate rather than a steady state measurement. TDPO is also soluble in acetonitrile 

and methanol, however it is not commercially available in the U.K. Other peroxyoxalate 

compounds that are water soluble have been synthesised (Bamett et al., 1998) for systems 

that require a purely aqueous environment. 

Table 2.3: Common peroxyoxalate compounds used in chemiluminescence reactions. 

O^N 

bis(2,4-<linitrophenyl) oxalate 
(DNPO) 

00(CH2CH20)3CH. O O COO(CF 

COO(CH2CH20)jCH2 

bis|4-nitro-2-<3,6,9-trioxadecyloxycarbonyl)phenylt 
oxalate (TDPO) 

CI O^ p CI 

M: >=\ 
\ _ / ^ o - ^ ^ ^ ^ c i 

CI CI 

bis(2,4,6-trichloro) oxalate 
( T C P O ) 

NO, 0 , N 

bis(2-nitrophenyl) oxalate 
(2-NPO) 

2.3.2 D E T E R M I N A T I O N O F DDA USING T H E F I - C L M A N I F O L D 

The manifold used by Katayama (Fig. 2.2) was initially evaluated for the detection of 

dodecylamine in 90 % acetonitrile / 10% water. It was found that within minutes of starting 

the experiments, the peaks heights of sequential injections of a 10 mg L * standard solution 

of DDA dropped significantly, as shown in Fig. 2.8. 

This drop in peak intensity was thought to be due to small amounts of amine present in the 

solvent (acetonitrile) reacting with the mixture of DNPO and sulphorhodamine. Also, 

when the solutions were premixed, they were found to have decomposed within 24 h (a 

complete colour change from light pink to yellow was observed). However, without 

premixing the DNPO and sulphorhodamine 101, peak heights were found to be constant, 

and the solutions were stable individually for at least one week. 
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Figure 2.8: Peak heights of sequential injections of a 10 mg standard solution of 
DDA in 90% ACN / 10% H 2 O . DNPO and sulphorhodamine 101 solutions were 
premixed. 

A 2 m mixing coil was therefore inserted to ensure the two reagents (pumped separately) 

were thoroughly mixed before reacting with hydrogen peroxide. The limit of detection 

decreased when the sample loop was increased from 20 to 50 \iL, however, when the larger 

sample volume was injected directly into the peroxide, split peaks resulted. This was 

because of the incomplete dispersion of the sample in the peroxide stream, causing a lower 

(rate limiting) peroxide concentration in the middle of the sample zone. The addition of an 

extra carrier line overcame this problem by providing a constant stream of peroxide to 

merge with the sample. The modifications stated above (separation of DNPO and 

sulphorhodamine, 2 m mixing coil for DNPO and sulphorhodamine, introduction of 

separate carrier and peroxide streams, and larger injection volume) are shown in the 

adapted manifold diagram (Fig. 2.3). 

2.3.3 L U M I N E S C E N C E S P E C T R A L P R O F I L E S F O R 

SULPHORHODAMINE 101 

The fluorescence excitation and emission and the chemiluminescence emission of a 1X10'^ 

M solution of sulphorhodamine 101 are shown in Fig. 2.9. Fluorescence measurements 

were carried out in acelonitrile, whilst chemiluminescence measurements were carried out 
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using the FI-CL manifold shown in Fig. 2.3, and so contained some water in the reaction 
mixture. 

c 
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Fluorescence 
Emission 

CL Emission 

400 450 500 550 600 650 

Wavelength / nm 

700 750 XOO 

Figure 2.9: Normalised spectral profile for the fluorescence excitation and emission 
and chemiluminescence emission of sulphorhodamine 101. 

The A^ax values for CL and fluorescence emission were found to be 598 and 592 nm 

respectively. The similarity of the emission profiles is consistent with the postulated charge 

transfer mechanism (Rauhut et al., 1967) shown earlier in Fig. 2.5 which suggests that CL 

emission is produced by the fluorescent sensitiser molecule (in this case sulphorhodamine 

101). The CL emission broadening and the small bathochromic shift with 

chemiluminescence as compared with fluorescence are due to the presence of water 

creating a more polar environment. 

2.3.4 UNIVARIATE OPTIMISATION 

Univariate optimisation graphs for the 6 parameters DNPO, sulphorhodamine 101 and 

hydrogen peroxide concentrations, water content (in the carrier stream and sample matrix) 
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and reagent flow rates are shown in Fig. 2.10, with a summary of the optimum conditions 

shown in Table 2.4. 

Table 2.4: Optimum F I - C L parameters for the detection of dodecylamine. 
Parameter Optimum Condition 
DNPO concentration I.OXIO"-* mol U ' 
Sulphorhodamine 101 concentration 8X10"' mol L"* 
Hydrogen peroxide concentration 0.1 mol L'* 
Water content in acetonitrile stream 10 % 
Carrier + peroxide flow rate 1.25 mL min"^ 
Sulphorhodamine + DNPO flow rate 3 mL min"' 

Fig. 2.10(a) shows the effect of altering the DNPO concentration in terms of the CL 

response. A maximum CL response was obtained using 1 XIO""' M DNPO. At 

concentrations greater than this the noise level is increased due to the presence of higher 

concentrations of the product 2,4-dinitrophenol (Baeyens et al., 1990). 

The effect of sulphorhodamine 101 concentration on the CL response is shown in Fig. 

2.10(b). An emission maximum was seen using a concentration o f 8X10'' M . At 

concentrations greater than this no increase was seen in the signal, however the noise level 

continued to increase. 

Fig. 2.10(c) shows the effect of hydrogen peroxide concentration on the CL response. A 

maximum CL response was seen using an H 2 O 2 concentration of 0.1 M . It has been shown 

(Hanaoka et al., 1988) that increasing the concentration of hydrogen peroxide increases the 

rate of reaction for peroxyoxalate chemiluminescence, and the decrease in CL response 

seen for concentrations of peroxide greater than 0.1 M is therefore likely to be due to the 

maximum CL intensity occurring before the sample arrives at the flow cell. 
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Fig. 2.10(d)v shows the effect of the water content in the carrier stream. A maximum was 

observed using 10 % water in 90 % acetonitrile. The hydrolysis o f peroxyoxalate 

compounds has been shown to produce carbon dioxide and carbon monoxide as shown 

below (Orosz and Dudar, 1991). 

NO2 OjN NO2 

Therefore i f a high concentration of water is present, any DNPO wi l l become hydrolysed 

and wi l l not take part in the CL reaction. 

Fig. 2.10(e) shows the effect of the carrier and peroxide stream flow rate on the 

chemiluminescence intensity. A plateau was observed between 0.7 and 2 mL min ' with a 

slight maximum at 1.25 mL min '. Fig 2.10(0 shows the effect o f the sulphorhodamine and 

DNPO flow rate on the CL response. A plateau was observed between 3 and 4.5 mL' ' with 

slight maximum at 3 mL min '. The effect of flow rates on the intensity can be described 

using the *time windows' concept as shown in Fig. 2.11. I f the flow rate is too great, then 

the point of maximum emission wi l l occur after the sample has passed through the flow 

cell and conversely, i f the flow rates are too low, then the point of maximum emission wi l l 

occur before the sample reaches the flow cell. 

I f the detector mixing coil length had been changed, a different result may have been 

obtained for the flow rates. For this reason, a multivariate *simplex* approach had also 

been used to optimise the flow rates and the detector mixing coil length. 

80 



Chapter 2: Determination of dodecylamine usins flow injection with chemiluminescence detection 

Time _ Time in 15 [Time in 12| 
! cm mixing! cm flow ! 

coil cell 

Figure 2.11: Time / intensity profile showing the 'time window' concept for C L 
detection. 

2.3.5 S I M P L E X OPTIMISATION 

Fig. 2.12 shows a schematic univariate optimisation o f a two variable system. I f variable 1 

is optimised first using the starting conditions shown for variable 2, then the optimum 

value found univariately for variable 1 wi l l not necesszuily be the true optimum value. 

When variable 2 is optimised after this using the optimum value found for variable 1, then 

a univariate optimum for variable 2 is found. This however wil l also not necessarily be the 

optimum value for variable 2, as this approach does not take account o f any synergistic 

interaction between the variables. 

An alternative approach is to map the entire response surface by taking measurements 

using several combinations of values for all variables. This approach however, may result 

in many hundreds of measurements being required and is therefore not practical for 

systems that contain more than two experimental variables. 
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> 

Univariate 
optimisation of 
variable 1 

Optimum conditions 

Univariate 
optimisation of 
variable 2 

Univariately 
optimised 
conditions 

Variable 2 

Figure 2.12: Univariate optimisation. 

In contrast to the above. Multivariate optimisation techniques allow two or more variables 

to be altered simultaneously in a structured way which means that fewer experiments are 

needed to find optimum conditions. Examples of multivariate methods include: simplex 

optimisation, steepest ascent optimisation and pattern recognition techniques such as 

principle components analysis. Of these, simplex optimisation is relatively simple and 

reliable and has therefore been used for the optimisation o f this reaction. 

A simplex is a geometrical figure with one more vertex than the number of variables to be 

optimised (three vertices for a 2 variable system, 4 vertices for a 3 variable system etc.). 

An example for the two variable system is shown in Fig. 2.13. The starting conditions for 

the two variables are entered into the simplex, as shown in the diagram (experiment 1). 

The next two experiments (2 and 3) complete the first simplex triangle. Experiment 1 
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shows the worst result, and so would be rejected. A new simplex is then formed by 

projecting the initial simplex through the two points that gave the greater response (the 

triangle 2,3,4). This process is repeated again and again until the simplex does not produce 

any greater response. This is shown as experiment 13 in the diagram. More experiments 

may be needed to ensure that this is the true optimum (experiment 14) and not a local 

minimum. A refinement of this approach is the variable size simplex where the magnitude 

of the variable being projected can be increased (to speed up) or decreased (to provide 

better resolution) as required. 

C3 > 

Optimum conditions 

Variable 2 

Figure 2.13: A typical two variable simplex optimisation. 

For the detection of dodecylamine in 90 / 10 acetonitrile / water, using FI-CL, the variables 

H 2 O 2 + carrier flow rate, DNPO + sulphorhodamine flow rate and detector mixing coil 

length, were identified as being highly dependent on each other. A simplex optimisation 
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was carried out using the results obtained from the univariate optimisation as a starting 

point. The starting conditions, limits and ranges of the variables used in the simplex 

optimisation are shown in Table 2.2.The conditions zmd response for each of the simplex 

experiments are shovm in Fig. 2.14 and in Table 2.5. The signal/noise was improved from 

112 (arbitrary units) after the univariate optimisation to 148 after the simplex optimisation 

(a 32% increase). The optimum conditions were DNPO + sulphorhodamine flow rate of 

3.0 mL min ' \ H 2 O 2 + carrier flow rate of 0.75 mL min * and a mixing coil length of 30 cm. 

Further simplex optimisation of the reagent concentrations may have increased the 

response still further, however the limit o f detection was already well below the target 

needed for the determination of dodecylamine in diesel fuels. 

Table 2.5: Simplex experimental parameters and the corresponding C L response. 
Simplex DNPO + H202 + Detector Signal Noise S/N 

experiment sulphorhodamine carrier mixing coil 
flow rate/ mL flow rate / length / cm 

min'' mL min'' 
1 3 1.25 15 0.4163 0.0037 113 
2 4.5 1.25 15 0.3131 0.0037 85 
3 3.5 1.75 15 0.3284 0.0037 89 
4 3.5 1.5 25 0.4322 0.0037 117 
5 2 1.75 20 0.1868 0.0024 78 
6 3.5 1.25 15 0.4297 0.0049 88 
7 3.5 1.25 15 0.476 0.0049 97 
8 3.5 1.25 20 0.5286 0.0036 147 
9 3 1 25 0.5225 0.0037 141 
10 3 0.75 30 0.5481 0.0037 148 
11 3 1 30 0.5188 0.0049 106 
12 2.5 1 30 0.5017 0.0037 136 
13 3.5 0.75 30 0.5481 0.0048 114 
14 3 0.75 30 0.4638 0.0049 95 
15 3.5 1.25 25 0.4931 0.0049 101 

2.3.6 S O L V E N T E F F E C T S 

The effect of changing the carrier / sample solvent was evaluated and the results are shown 

in Fig. 2.15 and in Table 2.6. The sensitivity was very poor for methanol, with a better 

sensitivity with propan-2-ol, and the greatest sensitivity for acetonitrile / water mixtures 
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with 90% or more acetonitrile. 

The postulated peroxyoxalate chemiluminescence reaction mechanism (Fig 2.7) involves 

nucleophilic attack of H 2 O 2 on the oxalate carbon. Nucleophilic solvents such as water and 

methanol can also attack the oxalate consuming it, resulting in non-chemiluminesent side 

reactions. It has been reported that 1 % methanol can result in the chemiluminescence 

intensity being halved (Hanaoka et al., 1988). A further reason for the decrease in 

sensitivity seen with methanol and propan-2-oI is the reaction rates. Kinetic studies studied 

using methanol, propan-2-oI and acetonitrile as mobile phases (Weinberger, 1984) have 

shown that the kinetics o f the peroxyoxalate CL reaction are considerably faster in 

methanol and propan-2-oI than in acetonitrile and so a system optimised for the relatively 

slow acetonitrile kinetics would not give the greatest sensitivity for other solvents with 

different reaction rates. The system would need to be re-optimised using the simplex 

approach. 

Table 2.6: Summary of the effects of different carrier / sample solvents on the 
chemiluminescence sensitivity. 

Solvent L.O.D,(S/N=3) S/N at 10 RSD at 10 mg L * 
/ mg L ' mg L ' / % (n=5) 

50/50 Acetoni t r i le /H2O 4.3 9 3.3 
60/40 Acetonitrile / H 2 O 2.4 31 1.3 
70/30 Acelonitr i Ie /H20 1.5 86 1.9 
80/20 Acetoni t r i le /H2O 0.4 270 0.5 

90/10 Acetoni t r i le /H2O 0.6 1100 4.1 

100/0 Acetoni t r i le /H2O 0.6 1000 4.5 
Methanol 1.3 26 3.5 
Propan-2-ol (IPA) 0.2 180 4.4 

The reason for the large decrease in the sensitivity between 90 % acetonitrile and 80 % 

acetonitrile is due to the increase in hydrolysis of the peroxyoxalate, which leads to the 

removal of DNPO via a non chemiluminescent pathway, as discussed in Section 2.3.4. 
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Figure 2.15: Effect of difTerent acetonitrile / water ratios and methanol and IPA, used 
as carrier / sample solvents on the CL response. 

2.3.7 INTERFRRENCES 

The effect of classes of compounds indigenous in diesel fuel on the peroxyoxalate 

chemiluminescence reaction was evaluated. Aniline, carbazole, /T-cresol, hexanoic acid, 

indole and phenol were selected as representative compounds, and each evaluated 

separately by injection into the manifold shown in Fig 2.3 in order to determine their 

effects on the CL emission intensity. A summary of the interferences caused by these 

compounds is shown in Table 2.7, and calibration graphs for the most significant 

interferences are shown in Fig. 2.16 

Aniline and indole were found to interfere with the peroxyoxalate reaction at relatively low 

concentrations (sub mg L ' ' ) . This is due to their quenching effects (Vanzoonen et al., 

1986). Quenching (Vanzoonen et al., 1987) takes place after the reaction between the 
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Table 2.7: Interfering effects of indigenous compounds found in diesel fuel. 
"^Concentration required to alter the measured concentration of a 40 mg L * 

Interference Concentration 
causing interference* 

Effect Maximum fluorescence 
intensity 

Aniline < 1 mg L ' Suppression 0 

Indole < 1 mg L " ' Suppression 273 

p-CresoI >300 mg L"* Suppression 241 

Hexanoic acid >100mg L"* Enhancement 69 

Carbazole >800 mg L ' * Enhancement 177 

Phenol >1000 mg L " ' Suppression 194 

peroxyoxalate and the hydrogen peroxide and also after the complex formation between 

the intermediate and the fluorophore. The quencher causes radiationless deactivation of the 

charge transfer complex [F"* !̂"] by donating an electron to the charge transfer complex. 

Aniline and indole both have delocalised structures with the capacity to stabilise a positive 

charge making them excellent quenchers. p-Cresol was found to suppress at much lower 

levels compared to phenol (300 mg L ' ' compared with > 1000 mg L"' for phenol). This is 

consistent with the above theory, as the electron donating methyl group present in cresol 

makes the molecule a better electron donor than phenol, which has no electron donating 

groups present. Carbazole has no electron donating groups present, and any stabilisation of 

an electron being donated from the nitrogen would result in disruption o f the delocalisation 

present in carbazole. The slight enhancement caused by carbazole is likely therefore to be 

produced by fluorescent emission induced by the same charge transfer mechanism as for 

sulphorhodamine emission. 

Hexanoic acid was found to cause a slight enhancement on the CL signal at concentrations 

over 100 mg L'*, however hexanoic acid does not have a very intense fluorescence 

spectrum, and so the enhancement was more likely due to the small change in pH caused 
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by the acid. The optimum pH using DNPO has been reported to be 6.0 (Honda et al., 

1983), so a small increase in the acidity from a neutral pH is likely to have a small 

enhancement on the chemiluminescence response. 

2.3.8 A N A L Y T I C A L F I G U R E S O F M E R I T 

An example calibration set is shown in Fig. 2.17, which demonstrates the high sample 

throughput and good precision that are characteristic of FI-CL methods. Up to 80 

injections can be made per hour using the adapted FI-CL manifold. A comparison of peak 

height and peak area calibrations (see Fig. 2.18) shows that they have similar precision but 

the peak area method has a lower detection limit due to the lower contribution of the blank. 

Table 2.8 shows the analytical figures of merit for peak height and for peak area. Peak area 

was found to give a better straight line regression (0.9970 compared with 0.9959) and also 

a significantly lower limit of detection (190 ng L ' ' compared with 280 | ig L"^). For this 

reason, the peak area was used for all subsequent measurements. A reported value for the 

limit of detection of dodecylamine using the manifold prior to the modifications is 

9.8X10"^ M (1.8 mg L*') (Sanders, 1999). The adapted manifold gave a limit of detection 

of 1X10"* M which is a significant improvement (one order of magnitude) in the sensitivity 

for dodecylamine. 

Table 2.8: Analytical figures of merit 
n Gradient 

/ L mg ' 
Intercept L.O.D. L.O.D. 

/ mol L * 
R^ 

Peak height (signal 
/ noise) 

10 14.56 -1.018 280 1.5X10** 0.9959 

Peak area 10 3.346 -0.1058 190 1.0X10"^ 0.9970 
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Figure 2.17: Example DDA peaks in the range 0 to 6 mg L *. 
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Figure 2.18: Calibration graphs for DDA using (a) peak area and (b) peak height / 
noise, (error bars 3s, n=5) 
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Fig 2.19 shows the linear range for DDA using the optimised manifold. The calibration 

graph is linear over the range 0 to 40 mg L ^ At concentrations greater the 40 mg L"' the 

graph levels o f f due to depletion of the reagents which ultimately becomes rate limiting. 

.£P 0.3 

« 0.1 

100 

Dodecylamine conceDtration / mg L ' 

Figure 2.19: Linear range for DDA. 

2.4 CONCLUSIONS 

The specific conclusions from the research discussed in this chapter are: 

1. Flow injection analysis with chemiluminescence detection can be utilised to 

provide rapid, reproducible, sensitive analysis. The sulphorhodamine 101 / 

peroxyoxalate reaction can be used in an F I - C L manifold to determine amines in 

various solvents. With a carrier solvent of 90% acetonitrile / 10% water, 

dodecylamine could be measured with a detection limit of 190 j ig L'* and a linear 

range of 0 - 50 mg L ' (R^=0.9979, y= 3.34x - 0.106). RSDs are typically <4% in 

the range 1-50 mg L *. 

2. The emission from the peroxyoxalate / sulphorhodamine 101 reaction was found to 

have a Xmax of 598 nm for chemiluminescence and 592 nm for fluorescence. 
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3. The chemiluminescence reagents DNPO and sulphorhodamine 101 were found to 
be unstable when present together. Separating the streams increased stability 
allowing solutions to be kept for more than 24 hours. 

4. Univariate optimisation of the manifold parameters determined that a maximum CL 

response was obtained with DNPO concentration of 1X10""' M , sulphorhodamine 

101 concentration of 8X10'^ M , hydrogen peroxide concentration of 0.1 M , 90% 

acetonitrile / 10 % water in the carrier stream and sample matrix, carrier + peroxide 

flow rate of 1.25 mL min * and sulphorhodamine 101 + DNPO flow rate of 3 

mL min"'. 

5. A simplex optimisation of flow rates and detector coil length gave an increase of 

32 % in the signal / noise ratio in comparison with that obtained using the 

univariately optimised conditions. In this case the optimum conditions were found 

to be DNPO + sulphorhodamine 101 flow rate o f 3 mL min"', carrier + peroxide 

flow rate of 0.75 mL min"' and a detector mixing coil of 30 cm. 

6. The indigenous diesel compounds aniline, carbazole, p-cresol, hexanoic acid, 

indole and phenol were found to cause a significant change in the measured 

dodecyiamine concentration when present at <1, 800, 300, <1, 100, 1000 mg L"' 

respectively. 
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3 COMBINATION OF OFF-LINE SOLID PHASE EXTRACTION 
(SPE) WITH F I - C L FOR THE DETERMINATION OF 

DODECYLAMINE IN DIESEL FUELS 

3.1 INTRODUCTION 

This chapter describes the analysis of diesel ftiels spiked with dodecylamine directly 

(without any extraction), using the FI-CL manifold developed in Chapter 2. It also 

describes the development and optimisation of a solid phase extraction procedure to extract 

dodecylamine from diesel matrices into a solvent that is compatible with the FI-CL system 

described in Chapter 2. Gas chromatographic reference methods (with nitrogen phosphorus 

detection and mass spectrometric detection) have also been developed to validate the SPE 

procedures and are described in this chapter. Extracts of a number of diesel samples have 

been analysed by FI-CL and the results compared with those obtained using GC analysis. 

3.2 EXPERIMENTAL 

3.2.1 R E A G E N T S AND S A M P L E S 

All chemiluminescence reagents (DNPO, sulphorhodamine 101 and H2O2) were prepared 

as described in Section 2.2.1. Diesel fuels (Shell Haven, Swedish, Stanlow, Hamburg, 

SNV and Brazilian) and a diesel fuel additive package were obtained from Shell Global 

Solutions (Cheshire Innovation Park, Chester, U.K.). 400 mg L"' spiked diesel stock 

solutions were prepared daily by dissolving 400 mg of dodecylamine in 100 mL of diesel 

fuel or heptane. 40 mg L ' ' samples were prepared by serial dilution. Fully formulated ftiel 

samples (containing the additive package) were prepared by dissolving 85 mg of the 
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additive package in 100 mL of diesel fuel to give the required 40 mg L"* dodecylamine 

concentration in the fuel (dodecylamine is present at a concentration of 4.7 % (m/v) in the 

additive package, therefore spiking at a concentration of 85 mg / 100 mL is equivalent to 

40 mg L'* dodecylamine). 

3.2.2 INSTRUMENTATION 

All flow injection instrumentation was as described in Section 2.2.2 and the manifold used 

is shown in Fig. 2.3. Two different detection systems were used in conjunction with gas 

chromatography; nitrogen-phosphorus detection (NPD) and mass spectrometric detection 

(MS) and the gas chromatographic parameters for the different instruments used are shown 

in Table 3.1. 

Table 3.1: Gas chromatographic conditions for the determination of dodecylamine in 
diesei fuel. 

GC-NPD GC-MS 
Chromatograph Varian 3600 gas chromatograph GC-MSD 
Column Hewlett Packard capillary HP-1 J&W Scientific DB-5 
Injector Autosampler, septum injection with a Autosampler, septum injection 

split of 10:1 with a split of 10:1 
Injection volume 2 nL 1 ̂ L 
Injection temperature 70°C, held for I minute, 100°C / minute 

to 320*'C, held for 1 minute 
280°C 

Initial oven 70°C, held for 5 minutes 60°C held for 5 minutes 
temperature 
Temperature ramp TC / minute 10°C/minute 
Final 325°C, held for 5 minutes 300°C, held for 10 minutes 
Total run time 46 minutes 39 minutes 
Detector Nitrogen / phosphoms detection 

(detector temperature: 340'*C, bead 
current: 3.30 A) 

Mass spectrometric detector 

Solid phase extraction columns used were 200 mg solid phase 3 mL, reservoir 

Aminopropyl Isolute SPE cartridges, purchased from International Sorbent Technology 

(Mid Glamorgan , U.K.). The manifold used for all solid phase extractions procedures was 

a I2-port vacuum SPE manifold purchased from Whatman (U.K.). 
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3.2.3 P R O C E D U R E S 

3.2.3 J Direct FI-CL analysis of diesei fuels without SPE 

Heptane and diesel samples (unspiked, spiked with 4 0 mg L ' ' dodecylamine and spiked 

with the additive package containing 4 0 mg L " ' DDA) were diluted to 25 % (v/v) in 

propan-2-ol (IPA). These samples were analysed using the manifold shown in Fig. 2.3 

using a carrier stream consisting of 25 % heptane / 75 % IPA. The chemiluminescence 

response for each was recorded. 

5.2.5.2 Extraction of dodecylamine from heptane with GC-NPD detection 

In order to develop an SPE method for the extraction of 4 0 mg L * DDA from heptane, the 

procedure shown in Table 3.2 was used. A l l eluents were analysed using GC-NPD and 

recoveries were calculated by comparing peak areas with those obtained from standards. 

5.2.5.5 Extraction of dodecylamine from Swedish base fuel with GC-NPD 

detection 

The same procedure that was used for the extraction of DDA from heptane was used for 

the extraction of 4 0 mg L ' DDA from Swedish base friel. Again, eluents were analysed by 

GC-NPD. This experiment was carried out in triplicate. 
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Table 3.2: Solid phase extraction procedure used to determine the solvent needed to 
elute 40 mg L~' DDA from an aminopropyl SPE column. 

Step Volume 
/ m L 

Solvent Polarity 
/AAI2O3) 

Conditioning 1 4 Methanol 0.95 
2 4 Toluene 0.29 
3 4 Heptane 0 

Loading 4 10 40 mg L"' DDA in heptane 0 
Eluting 5 3 Heptane 0 

6 3 Toluene 0.29 
7 3 Dichloromethane 0.39 
8 3 Acetonitrile 0.65 
9 3 90 / 10 acetonitrile / water >0.65 
10 3 80 / 20 acetonitrile / water » 0 . 6 5 

3,2.3,4 SPE elution volume optimisation for the extraction of DDA from Iteptane 

To optimise the elution volume needed to elute DDA from the SPE cartridge, the 

procedure shown in Table 3.3 was used. Successive 0.5 mL aliquots of 90 / 10 acetonitrile 

/ water were used to elute DDA from the column. Eluents were analysed using the FI-CL 

manifold developed in Chapter 2. Samples were diluted in order to bring them into the 

linear range of the FI-CL calibration. 

Table 3.3: Solid phase extraction procedure used to optimise the volume of 90/10 
acetonitrile / water needed to elute dodecyiamine. 

Step Volume / mL Solvent 
Conditioning 1 5 Methanol 

2 5 Toluene 
3 5 Heptane 

Loading 4 4 40 mg L"' dodecyiamine in heptane 
Washing 5 2 Heptane 

6 2 Toluene 
7 2 Dichloromethane 

Eluting 8 0.5 Successive 0.5 mL aliquots o f 90 / 10 
acetonitrile / water 
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3.2.4 GC-MS O F BASE F U E L E X T R A C T S 

Heptane and each of the base fiiels were spiked, both v^ith 40 mg L' ' DDA and with the 

additive package. Each sample was diluted to 25 % in heptane in order to reduce the 

viscosity of the samples. The samples were extracted as shown in Table 3.4. 

Table 3.4: Optimised solid phase extraction procedure for the extraction of 40 mg L ' 
DDA from diesel fuels. 

Step Volume / mL Solvent 

Conditioning 1 5 Methanol 

2 5 Toluene 

3 5 Heptane 

Loading 4 10 25 % sample / 75 % heptane 

Washing 5 2 Heptane 

6 2 Toluene 

7 2 Dichloromethane 

Eluting 8 2.5 90 /10 acetonitrile / water 

The solvent was evaporated of f of all the samples under a stream of nitrogen, and samples 

were resolubilised in dichloromethane prior to analysis by GC-MS. 

3.2.5 F I - C L ANALYSIS O F E X T R A C T S O F S P I K E D F U E L S F O R T H E 

D E T E C T I O N O F D O D E C Y L A M I N E 

The FI-CL manifold and all reagents used were as described in Chapter 2. A 40 mg L~' 

DDA standard was injected after every 5 samples to compensate for any drift in the CL 

response during the analysis. The solid phase extraction procedure used was as shown 

above in Table 3.4. 
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3.3 RESULTS AND DISCUSSION 

3.3.1 D I R E C T F l - C L ANALYSIS O F D I E S E L F U E L S W I T H O U T SPE 

In order to determine the effect of the diesel fuel matrix on the CL response, spiked and 

unspiked diesel samples were analysed using the FI-CL manifold developed in Chapter 2. 

Al l samples and the carrier stream were diluted to 25 % by adding 75 % (v/v) IPA, in order 

to ensure that the diesel fuel was totally miscible with the polar reagent streams 

(acetonitrile and water) required for the FI-CL manifold. The chemiluminescence 

responses for heptane, Shell Haven base fuel and Swedish base fuel samples are shown in 

Fig. 3.1 and the responses (relative to the peak height of a 40 mg L"* DDA in heptane 

sample) are plotted in Fig. 3.2. Fully formulated fuels are base fuels that have been spiked 

with an additive package containing, amongst other compounds, 40 mg L~' dodecylamine. 

40 mg L DDA in 
Heptane 

Heptane 

Shell Haven 
base fuel 

Fully 
formulated 

heptane 

Fully 
formulated 

Shell Haven 

Fully 
formulated 

Swedish 

Swedish 
base fuel 

"YYY 

Figure 3.1: F I - C L peaks from heptane, heptane spiked with 40 mg L ' ' , diesel base 
fuels, heptane and fuels spiked with an additive package containing 40 mg L * 
dodecylamine. 

There have been many papers published on the development of FI-CL methods for a range 

of analytes (See Chapter 1) (Fletcher et al., 2001). However, Fig. 3.1 highlights the 

potential difficulty in using such methods for the analysis of real sample matrices. Other 
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compounds in the matrix can either enhance the signal by reacting directly with CL 

reagents, acting as a sensitiser, or suppressing the CL signal by providing non-radiative 

relaxation pathways for the excited state or alternative, non-chemiluminescent reaction 

pathways. 

50 

40 4 

30 

f 20 

10 c 

I " 
Lx3 10 

-20 J 
Heptane Heptane + 

40 ppm 
DDA 

Heptane + 
additive 
package 

Swedish 
base fuel 

Sample 

Swedish + 
additive 
package 

Shell Haven Shell Haven 
+ additive 
package 

Figure 3.2: C L response for diesel samples injected directly into the F I - C L system 
with no SPE. Intensities shown are relative to the response from a 40 mg L~' DDA 
standard in 25% Heptane / 75% propan-2-ol. All samples were diluted to 25% with 
propan-2-ol. Error bars represent 3s (for n = 3). 

In this case it can clearly be seen that heptane provides a stable baseline and that 40 mg L'^ 

DDA provides a good CL response with a well defined peak shape. However, in the 

presence of the full additive package, the DDA response is significantly suppressed (by 

approximately 50 % in temis of peak height). The situation with the Swedish and Shell 

Haven fuels is markedly different. The Swedish base fuel contains components that 

suppress the CL response fi-om the sulphorhodamine reaction, resulting in a reduction in 

the baseline (background CL) when injected. The ful ly formulated package generates a 
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good peak profile, the height of which (relative to the base fuel) is equivalent to that 

obtained with heptane. The Shell Haven base ftiel gives a sharp positive peak followed by 

a broad negative peak for both the base fuel and the ftilly formulated fiiel. This is due to 

the more viscous nature of the Shell Haven ftiel which leads to poor mixing of the sample 

with the reagent stream. The CL suppression fi^om both of the base fiiel samples is most 

likely due to sulphur compounds in the fiiel which are well known to have effects on a 

range of CL reactions (Galan et al., 1997). Selected properties of the diesel fuels used in 

this chapter are shown in Table 3.5. 

Table 3.5: Sulphur and aromatic content of diesel fuels evaluated. (n.d. = not 
determined) 

(n.d. = not 

Fuel Sulphur Mono Di- T r i Total 
content aromatic aromatic aromatic aromatic 

/ mg kg ' content content content content 
/ % (m/v) /% (m/v) / % (m/v) / % (m/v) 

Heptane 0 0 0 0 0 
Swedish <5 3.7 0.1 0.1 3.8 
Stanlow 300 21.5 2.7 0.5 24.7 
Hamburg 375 n.d. n.d. n.d. n.d. 
Shell Haven 400 19.0 4.6 0.5 24.7 
SNV 600 21.5 3.9 0.6 26.0 
Brazilian 3100 18.1 6.5 L4 26 

3.3.2 S O L I D PHASE E X T R A C T I O N 

Solid phase extraction (SPE) is a technique that has predominantly been used for the 

selective extraction of analytes fi-om aqueous samples and a number of reviews are 

available on this subject (Liska et al., 1989; Mills et al., 1992; Soriano et al., 2001). SPE 

has been widely used in the areas of pharmaceutical analysis and drug screening 

(Andersson, 2000; Scheurer and Moore, 1992), but to date, however, there have only been 

a limited number of papers describing its use for the extraction of components fi-om fiiels 
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and oils. A summary of these is presented in Table 3.6, which highlights the fact that most 

applications have involved edible and industrial oils rather than fiiels. Also most 

applications have targeted classes of compounds rather than specific analytes or marker 

compounds. The aim of the methodology reported in this section is therefore to design a 

suitable SPE procedure for the selective and quantitative isolation of dodecyiamine from a 

variety of real diesel ftiels. 

3.3.3 OPTIMISATION O F SPE P R O T O C O L F O R T H E E X T R A C T I O N O F 

DDA F R O M D I E S E L F U E L S 

Diesel contains many different classes of compounds, such as aliphatics, aromatics 

(predominantly mono, di and tri-aromatics) and polar compounds (e.g. indoles, carbazoles, 

phenols, carboxyHc acids, anilines and sulphur containing compounds such as sulphonic 

acids). Interference studies in Chapter 2 have shown that most of these interfere to a lesser 

or greater extent with the FI-CL system that has been developed. Studies have shown 

certain classes of compounds could be fractionated from crude oil using silica columns 

(Theobald, 1988). An ideal SPE procedure for the extraction of dodecyiamine would 

therefore remove all classes of matrix components whilst leaving only dodecyiamine on 

the column. 

It has been reported that silica as a solid phase sorbent has problems with moisture (Burke 

and Calveriey, 1998). Variable recoveries wi l l result unless silica has been dried prior to 

use. To fractionate diesel ftiel using silica it has been reported that the silica must be dried 

at 140°C for 1 hour for reproducible results. I f a system is to be deployed in the field, as is 

the aim with this project, then having to dry sorbent prior to analysis is a distinct 

disadvantage. Aminopropyl has a similar sorbent strength to silica, however it does not 
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Table 3.6 Solid phase extraction procedures for analytes in non-aqueous solutions. 

Analyte/ 
Fraction 

Matrix Cartridge Conditioning Loading Washing Eluting Reference 

o 

Fractionation of 
aliphatics, 
monoaromatics, 
diaromatics, 
polyaromatics, 
and polar 
compounds. 

Alkylphenols 

Phospholipids 

Fractionation of 
components 

Nonpolar/polar 
Lipid Classes 

Diesel fuel 

Crude oil 

Sunflower 
oil 

Crude oil 

Edible oils 

Self prepared 
silica gel in 
borosilicate 

glass. 

Jones Isolute 
Ci8 and Cg non 

end capped 
and C i8 end 

capped. 

Diol (J.T. 
Baker 500mg) 

Baker 3 ml 
silica 

Amino and 
silica 

(Analytichem) 

Heated at I40°C 
for I h before 

use, followed by 
a 4-5 mL n-

pentane wash at 
30°C. 

3 mL Petroleum 
Ether. 

2mL MeOH, 
2mL 

chloroform, 
4mL hexane. 

lOmL DCM, 
lOmL hexane 

None 

200 nLof 10 
% diesel in n-

pentane 

0.5 mL of 
crude oil. 

50-150 mg oil 
in chloroform 

100 ML 

hexane 
containing 10 

\ig of each 
compound. 

20-60 mg of 
oil. 

2mL 
n-pentane 

4.5 mL 
petroleum 

ether. 

2.5 mL 
chloroform 

None. 

None. 

Aliphatics - 4 mL n-pentane 
Monoaromatics - 8.5 mL 5 % DCM in n-pentane 
Diaromatics - 5 mL 10 % DCM in n-pentane 
Polyaromatics - 5 mL 60 % DCM in n-pentane 
Polar conqjounds - 5 mL 25 % acetic acid in 
methanol 

5 mL Methanol / water (1:1) 

7 mL MeOH containing 0.5 mL /100 mL 25 % 
ammonia solution. 

Alkanes / alkenes 2 mL hexane 
Benzenes 2mL 10% DCM in hexane. 
2-3 Ring aromatics 2 mL 10% DCM in hexane. 
4-6 Ring aromatics 2 mL 20% DCM in hexane. 
Cholesterol / fatty acids / phthalates 2 mL DCM. 

Non-polar fraction, 20mL hexane / diethyl ether 
(9:1) 
Polar fraction, 10 mL chloroform / methanol (2:1) 
and 10 mL methanol / acetic acid (98:2) 

(Bundt et 
al., 1991) 

(Bennett et 
al., 1996) 

(Carelli et 
al., 1997) 

(Theobald, 
1988) 

(Hopia et 
al., 1992) 



Table 3.6 Solid phase extraction procedures for analytes in non-aqueous solutions (continued). 

Analytc / 
Fraction 

Matrix Cartridge Conditioning Loading Washing Eluting Reference 

o 

Polar 
Compounds 

isomers 

Phenolic 
Compounds 

Bitter taste 
components 

Oils and 
fats 

Diacylglycerol Vegetable 
oils 

Virgin 
olive oils. 

Virgin 
olive oils. 

lOOOmg 
Sep-Pak 

Silica 
(Waters). 

3 mL Diol 
(Supelco) 

Alltech 500 
mg 3.5 mL 

Cg 

JT.Baker6 
mL 
C,8 

IOmL9:l light 
petroleum / diethyl 

ether. 

4 mL Hexane. 

lOmLn-hexane, 10 
mL acetonitrile 

6 mL Methanol, 6 
mL hexane. 

2 mL of light 
petroleum 

containing 50 
mg of oil. 

200fiLof0.2 
mg mL"' oil in 

hexane. 

I gof oil in 10 
mL n-hexane. 

1 g of oil in 4 
mL hexane. 

None. 

6 mL hexane 
/ D C M / 
methanol 
(89:10:1) 

10 mL n-
hexane / 

cyclohexane 
(1:1) 

10 mL 
hexane 

Non-polar fraction, 15 mL of light petroleum/ 
diethyl ether (9:1). 
Polar fraction, 15 mL diethyl ether 

4 mL Chloroform / methanol (2:1). 

2.5 mL Acetonitrile. 

25 mL Methanol / water (1:1) 

(Marquezr 
uiz et al., 

1996) 

(Perezcami 
no et al., 

1996) 

(Pirisi et 
al., 1997) 

(Gutierrez 
Resales et 
al., 992) 

Acylglycerols 

Sulphides and 
Thiols 

Soybean 
oil. 

Petroleum 

3mL200 
mg Silica 

(Bond Elut) 

5 g Alumina 
(ICN 

Biomedical) 

None. 

400**Cfor4hours, 
DCM / pentane 

(2.5:97.5). 

15 - 20 mg oil None. Triacylglycerol: 5 mL diethyl ether / hexane (Neff et 
inO.SmL (10:90). al., 1992) 
hexane. Fatty acids: 18 mL diethyl ether / hexane (10:90). 

Diacylglycerol: 6 mL diethyl ether / hexane / 
Acetic acid (50:50:1). 
Monoacylglycerol: 4 mL methanol. 

10 mL of None. Hydrocarbons, thiophenes: 20 mL DCM / pentane (Thomson 
distillate. (2.5:97.5). etal., 

Sulphides, thiols: 20 mL methyl t-butyl ether. 1997) 
Phenols, polar compounds: methanol / methyl t-
butyl ether (10:90). 
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need to be dried prior to extraction. It was therefore decided to be used as the sorbent to 

extract dodecylamine fi-om ftiels. 

3,3,3,1 Extraction of dodecylamine frotn heptane with GC-NPD detection 

In order to extract dodecylamine fi-om heptane, it must be determined which solvent has 

sufficient polarity to remove the analyte from the SPE column. A solid phase extraction 

procedure to determine the elution solvent needed to extract dodecylamine from heptane is 

shown in Table 3.2. Methanol was chosen as the first conditioning solvent as it is very 

polar and therefore was able to remove any impurities present on the column. For 

maximum retention, the final conditioning solvent should be as close to the sample matrix 

as possible, therefore heptane was chosen for this purpose. Heptane and methanol are 

immiscible and so a solvent of intermediate polarity (toluene) was used as an intermediate 

conditioning solvent. A sample of 10 mL 40 mg L"' DDA in heptane was passed through a 

200 mg aminopropyl SPE column and the heptane leaving the column was collected for 

analysis to ensure that the dodecylamine had been ftilly retained by the sorbent. A vacuum 

solid phase extraction manifold was used for the extraction, with the pressure kept to 

below 15 cm Hg. Subsequent 3 mL aliquots of heptane, toluene, dichloromethane (DCM), 

acetonitrile, 90 /lO acetonitrile / water, and 80 / 20 acetonitrile / water were passed through 

the column and collected for analysis by GC with nitrogen-phosphorus detection. 

The nitrogen-phosphorus detector (NPD) uses a bead of alkali metal salt (often Rubidium) 

that is electrically heated, generating a stable population of alkali metal ions. Nitrogen and 

phosphorus compounds interact with the alkali ions by a series of complex reactions that 

produce thermionic electrons. These electrons are collected, giving rise to an increase in 

current proportional to the analyte concentration. Hydrogen bums on the surface of the 

bead producing a plasma. Nitrogen compounds produce CN radicals by pyrolysis, which 
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react with alkali atoms in the plasma to form an ion pair. The cyanide ions migrate to the 

collector electrode to fomi the detector signal. An NPD is 50 times more sensitive to 

nitrogen and 500 times more sensitive to phosphorus than a flame ionisation detector 

(FID). Normal FID type response is suppressed so compounds that do not contain nitrogen 

or phosphorus do not produce a measurable signal. This enhanced sensitivity to nitrogen 

makes the NPD ideal for method development o f solid phase extraction procedures to 

isolate dodecyiamine from diesel ftiel. The GC-NPD results for the solid phase eluents are 

shown in Fig. 3.3. 
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Figure 3.3: Elution proFile from a 40 mg L ' ' dodecyiamine sample in heptane. 
Analysis by GC-NPD. 

No dodecyiamine was measured in the loaded solution after it had passed through the 

column, therefore showing that all of the dodecyiamine had been retained. The heptane, 

toluene and dichloromethane extracts were also free of dodecyiamine, showing that they 

are suitable as wash solvents to remove impurities without eluting dodecyiamine. 3 mL of 

acetonitrile eluted 9 % of the dodecyiamine. Acetonitrile was therefore strong enough to 
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elute dodecylamine, however a large elution volume would be needed to elute all of the 

dodecylamine. A robust SPE procedure should be able to extract into a small volume, and 

therefore 90/10 acetonitrile / water was used. 92 % (cumulative) o f the dodecylamine was 

extracted into this solvent, and using a stronger solvent (80 / 20 acetonitrile / water) eluted 

no more dodecylamine. 90 /10 acetonitrile / water was therefore chosen as the appropriate 

elution solvent for dodecylamine. 

Acetonitrile / water mixtures were chosen as elution solvents in preference to unmixed 

solvents (such as methanol) due to the compatibility of acetonitrile / water mixtures with 

the FI-CL manifold developed in Chapter 2. 

33,3,2 Extraction of dodecylamine from Swedish base fuel with GC-NPD 

detection 

The procedure that was used for the extraction of dodecylamine from heptane was also 

used for the extraction of 40 mg L"' dodecylamine from a commercial diesel fuel (Swedish 

base fuel) to determine whether similar results could be obtained. The spiked diesel fuel 

was loaded directly (without dilution). GC-NPD chromatograms of successive extracts 

from spiked Swedish base fuel are shown in Fig. 3.4 and the cumulative recoveries are 

plotted in Fig. 3.5, 

As with heptane, the dichloromethane eluent contained no dodecylamine proving that it 

was a suitable wash solvent for the extraction of dodecylamine. The acetonitrile extract 

recovered 40 % of the dodecylamine, further showing that it was not a robust elution 

solvent (not reproducible), 90 /10 acetonitrile / water recovered 84 % of the dodecylamine 

(cumulative) and the 80 / 20 acetonitrile / water extract again recovered no further 
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Figure 3.4: GC-NPD chromatograms of: (a) 40 mg dodecylamine in heptane, (b) dichloromethane diesel extract, 
(c) acetonitrile diesel extract, (d) 90 / 10 acetonitrile / water diesel extract, (e) 80 / 20 acetonitrile / water diesel 
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70 ^ 

Elution Solvent 

Figure 3.5: Elution profile from a 40 mg L ' ' dodecylamine sample in Swedish base fuel 
analysis by GC-NPD. 

dodecylamine. This demonstrated that 90 /10 acetonitrile / water was a suitable elution solvent for 

diesel samples as well as for heptane. The extraction procedure was performed in triplicate and 

reproducibility was shown to be good (RSD of 6.4 %, n=3). The reduced recovery was likely to.be 

due to the viscosity of the diesel fuel, which has been reported to decrease analyte recovery 

(Porsch, 1994) by reducing the analyte retention. A l l subsequent diesel samples analysed were 

therefore diluted to 25 % in heptane to reduce the viscosity of samples prior to SPE. 

33.33 Elution volume optimisation 

In order to determine the optimum elution volume for the extraction of dodecylamine from 

heptane using 90 / 10 acetonitrile / water as the elution solvent, sequential 0.5 mL aliquots of 90 / 

10 acetonitrile / water were passed through a column using the procedure described in Table 3.3. 

The resulting aliquots were analysed using the FI-CL manifold described in Chapter 2. Dilutions 
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of the aliquots were made when required to bring the concentration into the linear range of the 

FI-CL cahbration. Recoveries were calculated by comparing peak heights with dodecylamine 

standards also prepared in 90 / 10 acetonitrile / water. A cumulative recovery graph for the 

sequential aliquots is shown in Fig. 3.6. 61 % of the dodecylamine eluted in the first 0.5 mL, and 

after 1.5 mL had passed through the column, 94 % of the dodecylamine had been eluted and 

further aliquots did not elute significantly more dodecylamine. 1.5 mL was therefore shown to be 

the ideal elution volume for dodecylamine using 90 /10 acetonitrile / water. 

0 0.5 1.5 

Clution volume / mL 

Figure 3.6: Elution profile for dodecylamine from a 200 mg aminopropyl SPE cartridge 
using 90/10 acetonitrile / water as the elution solvent 

3.3.4 GC-MS O F BASE F U E L E X T R A C T S 

In order to determine which compounds would be co-eluted with dodecylamine into 9 0 / 1 0 

acetonitrile / water, the solid phase extraction procedure was carried out using only the base fuels. 

The chromatograms of the extracts from each base fliel are shown in Fig. 3.7. A l l of the peaks that 

could be identified are tabulated in Table 3.7. 
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Figure 3.7: GC-MS chromatograms of extracts of the base fuels; (a) heptane, (b) 
Swedish and (c) Stanlow. 

I l l 



Chapier 3: Combination of off-line SPE with FI-CL for the determination of PDA in diesel fuels 

70000 

BOOOO 

50000H 

40000 
E . S l 

30000 IS 

30000 19.94 

10000 

Time 5.00 10.00 15.00 20.00 25.00 30.00 35.00 
Abundance 

120000 

110000 
14.50 

inoooo 

90000 

80000 5.07 
700DG 

16.38 
S.9P7.4 60000 

50000 
12.10 I B . B l 

40000 
19.94 

30000 21.03 

20000 

10000 

Tlmo--> S.OO 

Abundance 

140000 

120000 

100000-1 

10.00 15.00 20.00 25.00 30.00 

80000 

60000 

40000 

35.00 

14.50 5 .07 

18.81 

19.94 m63 

21.03 

25.89 

20000 

10.00 Timo--> 5.00 15.00 20.00 25.00 30.00 35.00 

Figure 3.7: GC-MS chromatograms of extracts of the base fuels; (d) SNV, (e) 
Hamburg and (f) Brazilian. 
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Table 3.7: Identified compounds present in 90 / 10 acetonitrile / water extracts from base fuels( retention times in minutes are in 
brackets). 

Swedish Stanlow Hamburg SNV Brazilian 

undecane (9.3) 2,4-bis( I -melhylethyi)-phenol 
(10.2) 

4- (1,1 -dimethylethyl) -benzoic 12-undecyl-pentacosane (10.8) 
acid (10.2) 

3-ethyI-2,7-dimeihyIoctane 
(10.8) 

2,6,10.15-
tetramethylheptadecane (12.3) 

hexadecane(12.3) 

heptadecane (13.7) 

2,3-dimethylundecane (13.7) pentadecane (13.9) 

5-ethyl-5-methyldecane (13.9) octadecane (15.1) 

7, 9-dimethylhexadecane (15.1) 6-propyItridecane (15.3) 

9-octylheptadecane (16.4) 

2- methylhexadecane (17.6) 

3- melhylnonadecane( 18.8) 

3-methylphenol (3.9) 

2,5-dimelhylphenol (4.7) 

3- ethylphenol (5.1) 

2-ethyl-6-methylphenol (6.0) 

2,3,6-trimethylphenol (6.5) 

2,3,5,6-tetramethylphenol (7.1) 

2-methyl-6-propylphenol (7.9) 

octacosane (12.3) 

2-methyl-tridecane (13.7) 

2-methylhexadecane (15.1) 

nonadecane (17.6) 

4- ethyltetradecane (18.9) 

2,6-dimethylphenol (5.1) 4-meihylphenol (3.7) 

3-(l-methylethyl)phenol (6.0) 2-methylphenol (3.4) 

2-ethyl-4-methylphenol (6.5) 2,5-dimethylphenol (5.1) 

2-ethyl-4,5-dimethylphenol 
(7.1) 

4- ( 1 -methylpropyl)phenol 
(7.4) 

2-ethyl-4,5-dimethylphenol 
(7-5) 

1 -(4-methoxyphenyl)-1 -
propanone (8.5) 

2,5-bis( I -methylethyl)phenol 
(10.1) 

5- methyl-pentadecane (12.3) 

9-ocytlheptadecane (13.7) 

Octadecane (15.1) 

4-methylheptadecane (17.6) 

3,4,5-trimelhylphenol (6.5) 

3- methyl-6-propylphenol (7.9) 

l,2-diethyl-3.4-
dimethylbenzene(IO.i) 

4- cyc!ohexylphenol (12.1) 

heptadecane (13.7) 

2-methylpentadecane (16.4) 
heptadecane (18.8) 
dodecane(19.9) 

l-methoxy-3-pentylbenzene 
(25.9) 
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As expected, the chromatogram of the extract from heptane is very clean, showing that 

nothing is leaching from the column. The only peaks identifiable from the heptane 

chromatogram are plasticisers from the sample vial. 

The only classes of compounds that were present in the base fuel extracts were 

hydrocarbons such as undecane and substituted phenols (and cresols). Phenols and cresols 

have been shown to produce a suppression of the sulphorhodamine 101 peroxyoxalate 

reaction (see Chapter 2) at relatively high concentrations (>300 mg L ' ' ) . The Brazilian base 

fuel extract contained the most components, with a characteristic diesel 'hump' still being 

present. However these compounds are unlikely to produce a significant interference at the 

concentration in which they are present in the extracts. 

3.3.5 F I - C L ANALYSIS O F E X T R A C T S O F S P I K E D F U E L S F O R T H E 

D E T E C T I O N O F D O D E C Y L A M I N E 

Samples of each base fuel and heptane (unspiked, spiked with 40 mg L ' ' DDA and spiked 

with the additive package) were prepared and extracted into 9 0 / 1 0 acetonitrile / water 

using the procedure shown in Table 3.4. Each of the extracts was analysed using the FI-CL 

manifold described in Chapter 2. Each sample was extracted in triplicate (except the 

samples spiked with 40 mg L"' which were only extracted once). The results of the FI-CL 

analysis are shown in Fig. 3.8. "FF" samples refer to fully formulated fuels (spiked with 

the additive package to produce a DDA concentration of 40 mg L"'), while "40" samples 

refer to samples that have been spiked with 40 mg L'* DDA without the additive package. 

"0" samples refer to base fuels containing no DDA or other additives. 

Al l of the base fuels analysed gave a measured dodecylamine content of less than 6 mg L"', 

which is acceptably low for positive identification of the additive at 40 mg L"'. Heptane had 
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no compounds present in the GC-MS chromatogram, so this enhancement of the CL 

response for heptane cannot be due to eluted interfering compounds. It is most likely due 

to small amounts of the wash solvent, dichloromethane, being present in the eluent. The 

suppression seen for Swedish, Hamburg and SNV base fuels is most likely due to the 

phenols and cresols that are co-eluted in the extracts. A l l of the fully formulated fuels gave 

measured DDA concentrations that were greater than 29 mg L"^ with RSDs < 12% (n=3). It 

has been reported (Forbes, 2000) that sulphur compounds (present as sulphonic acids) 

FF Brazil 

F F S N V 

F F Hamburg 

FF Stanlow 

FF Swedish 

FF Heptane 

40 Brazil 

40 SNV 

40 Hamburg 

40 Slanlow 

40 Swedish 

40 Heptane 

0 Brazil 

P GNV 

0 HaMbufg 

0 Stanlow 

0 Swedish 

0 Heptane 

(=B-i 

3 1 

-20.00 -10.00 0.00 10.00 20.00 30.00 

Measured DDA concentration / mg L"' 

40.00 50.00 

Figure 3.8: F I - C L results for the analysis of diesel fuel extracts (error bars represent 
2s for the solid phase extraction (n=3)). 

form dimers with dodecylamine. I f the dodecylamine becomes bound up with the sulphur 

compounds then it wi l l form neutral species that wil l not be retained on the SPE column, 
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therefore the fxiels with the highest sulphur contents would be expected to have the lowest 

recoveries (see Table 3,5 for the sulphur content of the fliels analysed). 

The fuels spiked with DDA show a different profile to those spiked with DDA in the 

additive package. This suggests that some components of the additive package are not 

being completely removed from the matrix by the procedure. Fuels containing 

dodecylamine however can clearly be distinguished from fuels without dodecylamine. In 

order to prove the results for the fiiUy formulated ftiels were significantly different from 

those of the base fuels, a t-iesi was performed (see Equations 3.1 and 3.2). A pooled 

estimate of the standard deviations was calculated (Equation 3.1) and the / value was then 

calculated using the pooled estimate (Equation 3.2) 

Z?! + rtj - 2 

^ V l / w , + 1 / ^ 2 3.2 

A table of the calculated s and / values are shown in Table 3.3. Each measurement was 

made in triplicate, so the number of degrees of freedom was (ni+n2 - 2) i.e. 3 + 3 - 2 = 4. 

Table 3.8: Calculated t-values for the F I - C L results obtained for fully formulated 
fuels in comparison with their respective bases. 

Pooled estimate of the standard Calculated 
Fuel deviation (s) / mg L ' ' 1/1 

Fully formulated heptane 2.46 11.16 

Fully formulated Swedish 2.58 14.94 

Fully formulated Stanlow 2.76 8.97 

Fully formulated Hamburg 2.35 13,99 

Fully formulate SKV 3.40 11.26 

Fully formulate Brazilian 2.03 14.03 
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The critical t value for this number of degrees of freedom is 4.3 (with 95 % confidence), 

and all of the calculated values were greater than this, therefore proving the results for the 

fully formulated fuels were significantly higher than those of the respective base fuels. 

This method can therefore be used to identify the presence or absence of this particular 

additive in diesel fuel. FI-CL with off-line SPE therefore represents a rapid, low cost 

approach to investigate fuel authenticity. 

3.4 CONCLUSIONS 

The specific conclusions of the work carried out in this chapter are as follows: 

1. Dodecylamine could not be determined directly in diesel fuel samples using FI-CL 

without prior sample pre-treatmenl because the sample matrix and additive package 

components interfered with the chemiluminescence response. 

2. Dodecylamine was quantitatively (> 92 %) extracted into 9 0 / 1 0 acetonitrile / 

water from a heptane matrix using an amino SPE cartridge. The optimum 

conditions were: conditioning with 5 mL of each of methanol, toluene and heptane, 

loading with 25 % sample in heptane, washing with 2 mL of each of heptane, 

toluene and dichloromethane and elution with 2.5 mL of 90 /10 acetonitrile / water, 

3. GC-MS analysis of solid phase extracts of base f\iels showed the presence of 

phenols, cresols and hydrocarbons at low concentrations. 

4. FI-CL analyses of five base fuel extracts (Swedish, Stanlow, Hamburg, SNV and 

Brazilian) gave CL responses less than that the equivalent of a 6 mg L"' DDA 
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sample. A l l five fully formulated fuels (containing 40 mg L"' DDA) gave a CL 

response equivalent to a measured DDA concentration of > 29 mg L'^ (>72 % 

recovery) with RSDs < 12 %. A t-test proved that the results from all five of the 

fully formulated were significantly different to those of the base fuels (with 95 % 

confidence). This method is therefore suitable for determining the authenticity of 

fully formulated diesel fuels that should contain DDA in the additive package. 

118 



Chapter 4: Pesien and performance of an automated FI-CL system with on-line SPE 

Chapter 4 

Design And Performance 
Of An Automated FI-CL 

System With On-Line SPE 



Chapter 4: Pesisn and performance of an automated FI -CL system with on-line SPE 

DESIGN AND PERFORMANCE OF AN AUTOMATED FI - C L 
SYSTEM WITH ON-LINE SPE 

4.1 INTRODUCTION 

Automation of chemical procedures has many desirable advantages. For example, analysis 

times can be reduced, precision can be improved, operator intervention can be minimised 

and results can be made available in real time. This chapter describes the design and 

construction of both a manual and a fully automated on-line SPE-FI-CL manifold for the 

determination of dodecylamine in diesel fuels. The objective was to design a prototype 

system that could be deployed in the field {e.g. at a filling station). Results for the 

determination of dodecylamine from a variety of diesel fuels using the on-line system are 

presented and compared with results obtained using off-line SPE with FI-CL detection (as 

described in Chapter 3). 

4.2 EXPERIMENTAL 

4.2.1 R E A G E N T S AND S A M P L E S 

Al l chemiluminescence reagents were prepared as described in Section 2.2.1. Diesel 

samples were prepared as described in Section 3.1.1. 

4.2.2 INSTRUMENTATION 

4.2,2,1 Manual on-HneSPE-FI-CL manifold 

The manifold developed for the manual on-line SPE-FI-CL procedure is shown in Fig. 4.1. 

Both the sample and reagent pumps used were Minipuls 3 (Gilson, Villiers-le-Bel, France) 

peristaltic pumps. Ismaprene pump tubing (Ismatec) was used to propel all reagents and 
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Figure 4.1: A schematic diagram of the manual SPE-FI-C L manifold: (a) measuring conditioning / loading / washing solvent 
volume, (b) conditioning / loading / washing and (c) eluting from the column. 
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carrier streams (0.5 mm i.d. for peroxide / carrier, and 1.0 mm i.d. for sulphorhodamine 

101 and DNPO lines). 0.75 mm i.d. (PTFE) manifold tubing and T-pieces (Omnifit, 

Cambridge, U.K.) were used to merge reagent streams. Microporous tubing (W.I . Gore 

Ltd) was used to remove air bubbles from the dead volume of the SPE column. The solid 

phase extraction was achieved using a self packed Omnifit chromatography column (length 

50 mm; diameter 5 mm). The column was packed with 50 mg of Isolute aminopropyl solid 

phase extraction sorbent (International Sorbent Technology, Mid Glamorgan, U.K.). The 

SPE column was attached to a Rheodyne two position, six port sample injection valve 

[5020] (Rheodyne, Bensheim, Gemiany) and another valve of the same type was used as a 

sample injection valve. Chemiluminescence emission was measured using a CamSpec CL-

2 detector (Cambridge Instruments, Cambridge, U.K.) containing a low power, 12 V side 

window Hamamatsu photomultiplier tube with a quartz flow cell (length of 12 cm, with a 

volume of 120 j iL) . The signal from the detector was acquired using a multiftinctional 

DAQ-700 data acquisition / digital I/O card (National Instruments, Berkshire, U.K.) 

attached to a laptop computer. Peaks were integrated using self written analysis software 

(see Analysis2.VI details in Fig. 4.27). 

4.2.2.2 Automated on-line SPE-FI-CL manifold 

Reagent and SPE solvent pumps were Minipuls 3 (Gilson, Villiers-le-Bel, France) 

peristaltic pumps and a 12 V peristaltic pump [MS/CA4-E/8-100C] (Ismatec, Weston-

super-Mare, U.K.) was used as a sample pump. Ismaprene pump tubing (Ismatec) was used 

to propel all reagents and carrier streams. 0.75 mm i.d. poly(tetrafluoroethylene) manifold 

tubing (Fisher Scientific, Loughborough, U.K.) was used, and T-pieces (Omnifit Limited, 

Cambridge, U.K.) were used to merge reagent streams. The autosampler was a 5 port, 4 

position electric rotary valve (11526) purchased from Omnifit Limited (Cambridge, U.K.). 

The sample injection valve (6 port, 2 position [C22-3716EH]), SPE solvent selector valve 
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(11 port, 10 position [C25-3710EMH]), and column selector valve (10 port 2 position 
[C22-3716EH]) were Cheminert microactuated valves (Valco Instruments, Switzerland). 
On-line solid phase extraction columns comprised of 5 mm i.d. chromatography columns 
(Omnifit Limited, Cambridge, U.K.) packed with 50 mg of Isolute aminopropyl SPE 
sorbent (International Sorbent Technology). Al l pumps and valves were switched using 
TTL logic controlled with the DAQ-700 card. LabVlEWrw software (National 
Instruments) was used to provide a graphic user interface for the data acquisition and TTL 
input/output as described in Section 4.3.2. For a schematic diagram and a description of the 
system see Section 4.2.3.2. 

4.2.2,3 Electronics 

A photograph of the internal wiring for the automated system is shown in Fig. 4.2, and an 

electronic circuit diagram is shown in Fig. 4.3. 
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Figure 4.2: Interior of the on-line SPE-FI-CL system. 
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A l l devices (except the sample pump) were controlled directly using 5 V, 1 mA TTL lines 

on the DAQ card. The sample pump, however, was not TTL compatible, therefore a 

Darlington pair transistor (TIP141) was used in order to draw current from an external 

power source, in order to enable control using TTL logic (see Fig. 4.4) . A rheostat was 

also introduced in order to allow the speed of the pump to be controlled. 

+ 12 V 2.5 A Pump 
Supply voltage 

Pump 
Supply voltage 

TTL Signal 

0 V 

5.6 kQ 

Figure 4.4: Circuit for a Darlington pair transistor to control the sample pump using 
T T L logic. 

4.23 P R O C E D U R E S 

4.2,3J Manual on-line SPE-FI-CL procedure 

A schematic diagram of the manual SPE-FI-CL manifold designed is shown in Fig. 4.1. 

Al l chemiluminescence reagents were pumped continuously. 

Conditioning / Washing 

Valve A is used to measure the required volume of conditioning solvent being pumped by 

pump 1. Valve A is then switched and an air stream attached to pump 1 is used to propel 

the solvent through the SPE column attached to valve B. This procedure is repeated for all 

the conditioning / washing solvents. 

Loading 

The sample (diluted to 25% with heptane) is loaded in the same way as the conditioning 

solvent. This process is repeated 4 times in order to preconcentrate the required amount of 

sample onto the column. 
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Elution 

When valve B is switched the carrier stream (90 / 10 acetonitrile / water) travels through 

the SPE column to elute the desired analyte. 10 cm of microporous tubing is used to 

prevent the air bubble that is present in the injection valve from entering the detector. 

ConditioniDg Washing 
2 X 200 nL methanol 200 nL heptane 
2 X 200 toluene 200 nL toluene 
2 X 200 | iL heptane 200 nL dichloromethane 

Loading Elution 
4 X 200 (iL (25 % dodecylamine in 10% water / 90% acetonitrile 
sample / 75 % heptane) 

4,2.3.2 A utomated on-line SPE-FI-CL procedure 

A schematic diagram of the four steps involved in the automated on-line SPE-FI-CL is 

shown in Fig. 4.5. A description of each step in the automated on-line SPE-FI-CL 

procedure is given below. 

Step J: Sample loop filling / column 1 conditioning / column 2 eluting 

Liitially the autosampler is switched to the position of the sample to be analysed and the 

sample injection valve is set to the load position. The sample pump is then activated to fill 

the sample loop. When the loop is completely filled with sample, the pump is switched off. 

Whilst this is happening, each of the conditioning solvents is pumped though the solvent 

selector valve for a predefined length of time in order to condition the SPE sorbent. 

Column 2 is being eluted in parallel with column 1 conditioning in order to reduce the time 

required to perform a series of analyses 
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Step 2: Column I loading / column 2 eluting 

The solvent selector valve is switched to the sample position and the SPE solvent pump is 

activated forcing the sample in the sample loop through column 1. As with step 1, column 

2 is still eluting. 

Step 3: Column J washing / column 2 eluting 

Each of the wash solvents is pumped through column 1 for a predefined length of time 

using the solvent pump. Whilst this is happening the sample loop is being washed with 

heptane. 

Step 4: Column 1 eluting / column 2 conditioning 

The column switching valve is now switched, resulting in column 1 undergoing elution, 

and column 2 commencing its conditioning, loading and washing cycle. The timing of each 

of these steps is shown in Table 4.2. 

Table 4.2: Timing of the automated SPE events. 
Time / s Process 

0 Switch SPE solvent sector valve to position 10 (w^ler) 
Switch autosampler to position 1 (heptane) 
Switch sample injection valve from inject to load 
Turn on sample pump 
Turn on SPE solvent pump 

18 Turn off sample pimip 
Switch autosampler to desired sample position 
Turn on sample pump 

34 Turn off sample pump 
Switch sample injection valve from load to inject 

60 Switch SPE solvent selector valve to position 1 (methanol) 
120 Switch SPE solvent selector valve to position 2 (toluene) 
132 Switch SPE solvent selector valve to position 3 (heptane) 
144 Switch SPE solvent selector valve to position 4 (sample) 
189 Turn off SPE solvent pump 

Switch SPE solvent selector valve to position 3 (heptane) 
Turn on SPE solvent pump 
Switch sample injection valve from inject to load 

204 Tum off SPE solvent pump 
Switch SPE solvent selector valve to position 2 (toluene) 
Tum on SPE solvent pump 

219 Tum off SPE solvent pump 
Switch SPE solvent selector valve to position 5 (dichloromethane) 
Tum on SPE solvent pump 

234 Switch SPE solvent selector valve to position 6 (air) 
294 Switch column selector valve 

Tum off SPE solvent pump 
Repeat all steps for the next sample 
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4.3 RESULTS AND DISCUSSION 

4.3.1 ON-LINE S O L I D PHASE E X T R A C T I O N 

On-line solid phase extraction has many advantages over off-line SPE. The primary reason 

for incorporating SPE on-line is the ability to fully automate the analytical process. 

Automated off-line systems exist, however automation is generally achieved by the use of 

robots (HofBrian et al., 1996) which are very expensive and not readily portable. Another 

advantage of on-line SPE is that the entire extract is analysed, whereas with off-line SPE a 

sub-sample of the extract is taken for analysis. The sensitivity of analysis wi l l be greater i f 

the entire extract is used. With an automated on-line SPE system, small volumes can be 

measured out very accurately. An SPE procedure can therefore be scaled down by using a 

smaller sorbent bed and less solvent, thus reducing the cost of extraction and reducing the 

amount o f waste that is generated. Flow injection with on-line solid phase extraction has 

been applied to various detection systems, including the analysis of pseudoephedrine in 

aqueous samples using capillary electrophoresis (Chen and Fang, 1997), the determination 

of lead in water samples by flame atomic absorption spectrometry (Naghmush et al., 1995; 

Sooksamiti et al., 1996), the detection of phenols in waters and waste waters using 

spectrophotometic detection (Song et al., 1997), Fourier transform infrared determination 

of caffeine in soft drinks (Daghbouche et al., 1997) and the determination of 

bromofenoxim in water samples using electrochemical detection (Svegl et al., 1996). Al l of 

these techniques using flow injection with on-line soHd phase extraction have been applied 

to relatively simple aqueous matrices. As yet there are no publications describing flow 

injection with on-line SPE being applied to more complex organic matrices such as diesel 

fuels. 
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C O N S T R U C T I O N O F A MANUAL S P E - F I - C L MANIFOLD FOR T H E 

D E T E C T I O N O F D O D E C Y L A M I N E IN AN O R G A N I C MATRIX 

In order to determine whether flow injection with on-line SPE was a viable possibility for 

the extraction of dodecylamine from non-aqueous matrices, a manual on-line SPE system 

was constructed as shown in Fig. 4.1. In terms of chemiluminescence chemistry, the 

manifold was essentially the same as that used in Chapter 2. However in this case the 

sample loop in the 6 port injection valve was replaced with a self packed SPE column 

containing 50 mg of aminopropyl SPE sorbent. A second injection valve was used to 

measure precise volumes of SPE solvent as described in Section 4.2.2.1. Table 4.2 

describes the solid phase extraction procedure used to extract dodecylamine from heptane. 

Peaks generated from the manual on-line SPE-FI-CL system are shown in Fig 4.6 and a 

calibration graph is shown in Fig 4.7, As with off-line solid phase extraction with FI-CL 

detection, heptane blanks gave a small positive CL response. This is again presumably 

caused by small amounts of the wash solvents present in the eluent. However, since all 

samples and standards are extracted using the same procedure, this systematic error has no 
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Figure 4.6: Example peaks for manual on-line S P E - F I - C L manifold (left to right = 10, 
0, 20, 30, 40, 50 mg L"' DDA in heptane). 
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Figure 4.7: Calibration graph for the manual on-line S P E - F I - C L manifold (DDA 
samples were prepared in heptane). 

effect on quantification. The peak shapes obtained were unusual (see Fig 4.6). This is due 

to channelling of the sorbent resulting in multiple paths for the eluent to pass through. For 

this reason peak area, and not peak height was used for the response. A good linear 

response was obtained (R^ = 0.994) for dodecylamine samples in heptane in the range 0 -

50 mg L"V The reproducibility was also good (RSD of 8.5% (n=3) for a 40 mg L"' sample). 

Each sample required 7.5 minutes to undergo extraction and analysis, therefore 8 samples 

h"' could be analysed. 

The complexity of the manual system demanded considerable care on the part of the 

operator. A large number of time critical operations were needed to complete each 

extraction and an error in any one of them resulted in the entire extraction having to be 

repeated. A fully automated system was therefore designed and constructed to eliminate 

such demands and potential errors. 
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4.3.3 DESIGN O F T H E A U T O M A T E D S P E - F I - C L M A N I F O L D 

A manifold diagram for the automated on-line system is shown in Fig. 4.5 and photographs 

of the manifold and the entire system are shown in Figs, 4.8 and 4.9. When designing the 

automated on-line system, two columns were incorporated in a ten port valve instead of the 

single column in a six port valve that was used in the manual system. This had the 

advantage that one column could be eluting whilst the other was loading, thus doubling the 

rate of sample throughput. 

As previously stated, automation allows very accurate and precise volumes to be pumped. 

For this reason it was decided that instead of measuring the volumes of conditioning and 

washing solvents using the sample loop (as had been done for the manual system), the 

conditioning and washing solvent were pumped for a known length o f time that was 

calibrated for the desired volume of solvent, i.e. time based rather than volume 

introduction of solid phase extraction solvents. 

In the manual system the samples were eluted by forward flushing the column, however, 

when this was tried using the automated system with real diesel samples, the columns were 

found to be insufficiently clean after each extraction procedure. An example of this is 

shown in Fig. 4.10. The baseline was observed to increase after each injection and the 

analyte peak therefore was masked by components from previous injections being eluted 

together with the dodecylamine. To solve this, the system was reconfigured so that the 

columns were backflushed during elution. An aqueous conditioning step was also 

introduced to ensure as much of the diesel matrix was removed between each injection as 

possible. Example peaks incorporating backflushing and the aqueous conditioning step are 

shown in Fig 4.11. A steady baseline was obtained and regular, reproducible peak shapes 

(and areas) resulted. 
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Figure 4.8: A photograph of the on-line S P E - F I - C L Manifold. 
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Figure 4.9: A photograph of entire on-line S P E - F I - C L monitor. 
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Figure 4.10: Brazilian diesel fuel peaks with columns forward flushing and no 
aqueous column conditioning. 
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Figure 4.11: Brazilian diesel fuel peaks with back flushing. 
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After the column had been loaded and washed, air was pumped through the column in 

order to remove as much of the wash solvent from the column as possible. When the 

elution solvent was pumped through the column the air was pushed out and travelled 

through the detector, resulting in a disturbance in the CL response prior to each sample 

being detected as shown in Fig 4.12. This air bubble disruption was however the same size 

for each sample and could therefore be distinguished from the analyte peak by ignoring the 

first 67.5 seconds of the sample elution during data acquisition. 
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Figure 4.12: Typical peaks from the automated on-line S P E - F I - C L system. 

In order to automate the system a complex programme was required to control the timing 

of each switching event and to acquire data. LabVIEW was chosen for the reasons 

discussed below. 

134 



Chapter 4: Desien and performance of an automated FI -CL system with on-line SPE 

4.3.3.1 Lab VIEW overview 

LabVEEW graphical programming language is similar to other high level windows 

programming environments such as BASIC or Pascal, but with one major difference in that 

Lab VIEW has no written text-based code. Al l programs are created in block diagram fomi 

in the graphical language G. A program written in LabVIEW is called a virtual instrument 

(VI), and may contain many sub-Vis which are analogous to procedures in BASIC or 

Pascal. 

LabVIEW Vis have two parts, the first of which is the front panel, which is the interactive 

part of the program. Virtual controls, switches and indicators are displayed on the front 

panel, which should mimic actual controls on a real instrument. The second part of a V I is 

the block diagram which contains the underlying program structure. Controls, indicators 

and sub-Vis are all linked together using 'Svires" to indicate data flow within the program. 

Much like a traditional programming language, LabVIEW contains libraries and examples 

for all simple tasks, such as basic mathematics or file input / output. LabVIEW, however, 

also includes extensive libraries for more complicated tasks such as data acquisition, serial 

communication and data analysis. Amongst the data analysis libraries included in 

LabVIEW are some useful scientific analysis tools, for example, fast Fourier transforms, 

signal smoothing, curve fitting, graph drawing and peak recognition. LabVIEW also has 

the advantage of being able to be run on a number of different platforms, meaning that 

programmes written in the Windows version of LabVIEW should be transferable to the 

DOS or Macintosh versions. 

LabVIEW's wide functionality has resulted in it becoming widely used in analytical 

chemistry. The most common use has been for data acquisition and logging, which is a 
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very complex task in a traditional programming language such as C or Pascal. LabVIEW 

has built in code for connection to a wide range of external interfaces such as serial, 

parallel, GPIB and national instrument DAQ interfaces (Borer et al., 1992; Krauss et al., 

1999). Data has been acquired from a range of analytical instruments with LabVIEW 

including NMR (Belmonte et al., 1998), near infrared spectrophotometers (Claps et al., 

2001), GC-MS and flame AAS (Burden and Petzold, 1999; Zhou et al.. 1998). LabVIEW 

can also output to all of the different types of interface, meaning instrument control and 

automation can become simple tasks. Flow injection is very amenable to automation, and a 

number of LabVIEW automated FI systems have been developed. One such system 

involved the control of on-line ultrasonic filtration with charge coupled device (CCD) 

detection (Wang et al., 2000). Automated FI systems with UV detection have been 

developed for both nitrate (Coles et al., 2000) and phosphate (Hanrahan et al., 2001) 

monitoring in rivers. 

Another usefril feature of LabVIEW available to the analytical chemist is image 

recognition. Image recognition has been used to provide non-subjective colorimetric 

analysis of 96-well microplates using a CCD camera to acquire the images for analysis 

(Byrne et al., 2000). 

Mathematical algorithms that are embedded into LabVIEW help to make programming 

more simple. The fast Hartley transform has been used for the deconvolution of analytical 

peaks in electroanalytical data (Economou et al., 1996). Multivariate curve resolution in 

LabVIEW has been applied to the identification of explosives with ion mobility 

spectrometry (Buxton and Harrington, 2001). 
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4.3.3.2 VI Programming Glossary 

llrxicatofl 

>t]| 

12-0 Afrayl 

LocdVwabb 

Controls correspond to front panel objects (e.g. 

switches) that can be altered on the front panel. 

Indicators do not have the thick surround. They are used 

to display the values of variables. 

Thick green data lines contain path information for file 

input / output. 

Signed integers are denoted by I followed by the 

number of bits contained in the variable. An 8 bit 

variable can have any value between -128 and +127. 

Unsigned integers do not have any magnitude. An 8 bit 

variable would therefore contain values between 0 and 

255. 

Boolean variables can only have two values. They are 

either true or false. 

Single or double variables are floating point numbers, 

and must be used i f a variable is not an integer. 

Strings contain alpha-numeric information that cannot 

be stored in numeric variables, for example file names. 

One dimensional arrays are denoted by thick lines. 

Multi-dimensional arrays are denoted by two thin lines. 

Arrays are used to bundle data of the same type 

together. 

Clusters of mixed data types are denoted by thick pink 

dashed lines. 

Local variables are variables that can be written to, or 

read from anywhere in a particular VI without the need 

for wiring. 
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® Global Variable 

Case Structure 

NJ 

m 17 

For Loop 

While Loop 

Sequence Structure 

Global variables are variables that have the same 

properties as local variables, however they can be read 

or written to from more than one V L 

The case structure is equivalent to an If...Then...Else 

statement in a 'traditional' programming language. The 

question mark on the left must be wired to a comparison 

function such as > < = e/c. If the comparison is true, 

then everything in the true box is executed. If the case is 

not true, then everything in the false box is executed. 

The for loop is a structure that will execute everything 

in the structure a predefined number of times. The 

number of iterations of the loop is defined by the 

number that is wired to the N in the top comer of the 

loop. The number of the current iteration of the loop can 

be read from the I in the bottom left hand comer of the 

loop. 

The while loop executes the code in the loop while a 

condition is true. Conditions commonly used are < > = 

> < etc. and must be wired to the green circular arrow in 

the bottom right hand comer of the loop. The iteration 

number of the loop can be read from the I in the bottom 

left hand comer of the loop. 

Conventional programming languages execute code line 

by line in sequence. LabVTEW executes all code 

together. Sequences are used to allow parts of a 

program to be executed in a particular order and contain 

ftames. Each fiame contains code, and each fi^e is 

executed in sequence. 
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43.4 DESCRIPTION O F T H E SUBROUTINES F O R C O N T R O L AND DATA 
C A P T U R E 

For this work, the program written to control the system contains many levels of sub Vis. 

A simple way of visualising all of the sub Vis used in the program is by viewing the VI 

hierarchy window as shown in Fig. 4.13. Each box corresponds to a se|>arate VI. The links 

indicate where a sub VI is called from another VI. 

Hieiaichy Window 

p 
C O « f l C | 1 ^ 4 rrjt 

I r r o r 

Am4 

Figure 4.13: VI Hierarchy 

The front and back panels are shown in Figs. 4.14 and 4.15 respectively. Each of the 

switching valves and pumps shown on the front panel corresponds to real valves and 
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Figure 4.15: LabVIEW back panel (diagram) for monitor. 
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pumps in the automated system. When the real objects are switched, the corresponding 
virtual objects are also switched to show what position each object is in. 

"Read Autosampler.Vr' (see Fig 4.16) is used to read the position of the autosampler 

valve. Digital input lines 6 and 7 on the DAQ card are read by the V I . The autosampler 

position is reported in binary coded decimal (BCD) with line 6 being the least significant 

bit. Each autosampler position is correctly identified except position 4, which is identified 

as position 0 due its BCD code being 100, and since only 2 input lines are being used this 

must therefore be corrected. 

jRedd Positiofil 

1 

Figure 4.16: Read Autosampler. VI 

"Switch Autosampler.Vl" (see Fig 4.17) reads the position of the autosampler valve using 

"Read Autosampler. VF' and compares it with the desired position. I f the two values are the 

same, then the V I ends. I f they are not the same, then the TTL output from the DAQ card 

to the valve is switched from high to low, then back to high causing the valve to step one 

position. This process is repeated until the read position matches the desired position. A 

400 ms delay is incorporated in the VI to give the program time to read the TTL lines. 
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;etP(»ibon| 

pead PosiionI 

m 
Figure 4.17: Switch Autosampler.VI 

r ^ o | o . i | g q i 

5 . 

J I U 
g g H n H g H-

'^Switch 6 or 10 way valve.VP (see Fig 4.18) is used to switch either the 10 port column 

selector valve or to switch the 6 port sample injection valve. The desired position (write 

position) is compared with the current position of the valve (read from line 0 for 10 port 

valve, or from line 1 for the 6 port valve). I f the two values are not the same, then I T L line 

(6 for the 10 port, and 5 for the 6 port) is switched from low to high for 50 ms and then 

switched back to low. A 500 ms delay is incorporated to allow time for the computer to 

read the valve position. 

K>/fite PosiTionl 

18 

S Bead P o t t o i 

DUpUlne 
Tj»i Tj»i 

Figure 4.18: Switch 6 or 10 way valve.VI 

"Read multiport valve.VF' (see Fig 4.19) reads the position of the 10 port valve in BCD 

from lines 2 to 5 of the DAQ card. Line 2 is the least significant bit. Each multiport valve 

position is correctly identified except position 10, which is identified as position 0 due to 
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its BCD code being 10000 and only 4 input lines are being used. This must therefore be 
corrected. 

L I N I 

Figure 4.19: Read multiport valve.Vi 

"Switch multiport valve.VI" (see Fig 4.20) reads the position of the valve using "Read 

multiport valve.VF', and compares it with the desired value. I f the values are not the same 

then TTL output line 4 is switched from low to high and held for 50 ms, then returned to 

low. A 150 ms delay is incorporated to allow time for the computer to read the TTL line. 

Figure 4.20: Switch muitiport vaive.Vl 

"Total read.Vr (see Fig 4.21) is used to display the position of the column switching 

valve, the sample injection valve, the multiport (solvent selector) valve and the 
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autosampler. This V I works in the same way as all the other read Vis except that in this 
case the whole input port is read, and each valve position is calculated from this. 

[Valve 
B I G 

Figure 4.21: Total Read.VI 

"Sample run.VI" (see Fig 4.22) introduces timed events into the program. When the time 

(set on the front panel of "Sample run.VI") for a particular event is equal to the elapsed 

time then that part of the V I is executed. A l l events and their corresponding times are 

shown in Table 4.2. 
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- 4 [4 

I H I i B i l 
rTUBft-fcri 

Figure 4.22: Sample run.VI 

The section of the main VI shown in Fig 4.23 is used to update all of the display indicators 

on the front panel. "Total read.Vl" is used to read the positions of all o f the valves, and 

global variables are read to identify whether pumps are switched on or off. The front panel 

objects are updated every 500 ms. 

116 

ICokjmi okjmn SwHchng Vatve] 

•On/oH 

# 5 P E Solvent PUTH - ( > [ ™ ] | U T ^ 

Figure 4.23: Front panel display update. 
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The autosampler position is set with the part of the main V I shown in Fig 4.24. I f the 
autosampler mode is set to manual, then the front panel control 'manual autosampler 
position' will control the autosampler position. However, i f the autosampler mode is Auto, 
then an injection is made with the autosampler position in position 1. This is repeated for 
the required number of replicates as specified on the front panel. Positions 2 and 3 are then 
injected with the required number of replicates. Position 4 (sample) is continually injected 
until the stop button is pressed. 

unba d feplical 

^anjpte fun vi| 

SAMP 

Figure 4.24: Autosampler program 

The data collection function of the main V I , shown in Fig 4.25 is used for data acquisition 

and file output. The LabVIEW built in V I , " A I sample channels.VF" is used to capture the 

analogue signal from the PMT. This is then displayed on the short and long term displays. 

Create data string V I takes this signal and adds the date and time to it and converts this to a 

tabulated string followed by a carriage return. This string is written to a file using the 

LabVIEW pre-prepared V I , "Write Characters to File.VI". This is continually repeated 

with a delay that is set on the front panel to allow the time between reads to be varied. An 

example of data generated in this way is shown in Table 4.3. 
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Fienafnel 
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Time Logged! 
hofttefml 

0 

Figure 4.25: Data collection 

Table 4.3: Example of data output format 
Date Time Output Voltage 
21/09/2000 9:26:47 PM 0.080566 
21/09/2000 9:26:47 PM 0.06958 
21/09/2000 9:26:47 PM 0.062256 
21/09/2000 9:26:47 PM 0.058594 
21/09/2000 9:26:48 PM 0.056152 
21/09/2000 9:26:48 PM 0.054932 
21/09/2000 9:26:48 PM 0.05249 
21/09/2000 9:26:48 PM 0.050049 

'Turge.VF' (see Fig 4.26) is the first sub V I to be run. The user is prompted as to whether 

the solvent lines need to be purged (to remove air bubbles). I f purging is required, then 

each of the sample lines is purged in sequence, and also each of the SPE solvent lines is 

purged in sequence. 
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E " a -
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• 

Figure 4.26: Purge.VI 

Analysis2.VI (see Fig 4.27) loads data from files saved with the automated system and put 

the data into an array. The user of the program defines the starting point (red cursor) and 

end point (yellow) for integration as well as the position of the baseline (blue). A new 

array is then created containing only the data to be integrated, and the baseline value is 

subtracted from all of the elements in the array prior to integration. 
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Figure 4.27: Analysis2.VI front and back panels. 

4.3.5 A N A L Y T I C A L PERFORMANC E O F T H E A U T O M A T E D ON-LINE 

SPE-FI C L S Y S T E M 

The solid phase extraction procedure used in the on-line system is shown in Table 4.4. The 

volumes of the conditioning solvents were increased, as real diesel samples were to be 

analysed. Al l samples were diluted to 25 % in heptane to reduce their viscosity. 

150 



Chapter 4: Desien and performance of an automated FI -CL system with on-line SPE 

Table 4.4: Automated on-line solid phase extraction parameters. 
Conditioning Washing 
1 mL H 2 O 60 s 0.25 mL heptane 15 s 
1 mL methanol 60 s 0.25 mL toluene 15 s 
0.25 mL toluene 15 s 0.25 mL dichloromethane 15 s 
0.25 mL heptane 15 s Drying 60 s 
Loading Eluting 
800 ^ L (25% Diesel or heptane / 75% 10% Water / 90% Acetonitrile 
Heptane) 45 s 

A calibration in the range 0-50 mg L'* DDA in heptane was carried out using the 

automated on-line system and the calibration graph is shown in Fig 4.28. Similar results 

were obtained for the automated system as for the manual system (R^ of 0.9936 and 0.9927 

respectively). The errors were slightly larger in the automated system (RSD of 13 % 

compared to 8.5 % for a 40 mg L"' DDA solution) which was probably due to the extra 

conditioning step with water which was introduced in order to ensure the column was fully 

cleaned between each sample injection. 

35 n 
y = 0.6376x-2.0025 

= 0.9927 

DDA concentration / mg L"' 

Figure 4.28: Automated on-line SPE F I - C L calibration graph (errors = 3s). 
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The limit of detection for dodecylamine was 2.9 mg L * (measured using 3 times the error 

in the blank, n=3). This was well below the target of being able to determine 

concentrations of 40 mg L"*. The heptane blank gave produced a slight negative peak, 

suggesting that all of the wash solvent had been removed by pumping air through the 

column for 60 s before elution. 13 samples h * could be analysed, giving a marked 

improvement in throughput compared with the manual system. 

4,3.6 D E T E R M I N A T I O N O F D O D E C Y L A M I N E IN D I E S E L F U E L S USING 

T H E AUTOMATED ON-LINE SPE-FI - C L S Y S T E M 

Each of the diesel samples (Brazilian, SNV, Hamburg, Stanlow and Swedish) and heptane 

that were analysed in Chapter 2 were analysed again using the automated on-line SPE-FI-

CL system. The solid phase extraction procedure was as described in Table 4.4. A standard 

40 mg L"' DDA sample was injected after every six samples to ensure the CL response was 

stable. As in Chapter 3, "FF" samples refer to fiilly formulated fiiels (spiked with the 

additive package with a DDA concentration of 40 mg L"'), "40" samples refer to samples 

that have been spiked with 40 mg L ' ' DDA without the additive package, and "0" samples 

refer to base fuels containing no DDA or additives. 

The results for the on-line samples are shown in Fig. 4.29. A l l of the base ftiels gave CL 

responses equivalent to < 8 mg L"' DDA. and all of the spiked samples gave responses 

equivalent to > 17.7 mg L"' DDA. The samples spiked with 40 mg L * DDA and the 

additive package displayed a similar trend with the recovery decreasing as the sulphur 

level increased. The exception was SNV which had less sulphur than the Brazilian 

samples, but lower recoveries, displaying the same trend as the off-line results. The reason 

for the lower recovery for SNV was probably due to more of its sulphur content being 
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present as sulphonic acids, which are most effective at binding to the dodecylamine, as 

described in chapter 3. 

F F Brazil 

FF SNV 

F F Hamburg 

F F Stan low 

F F Swedish 

F F Heptane 

40 Brazil 

40 SNV 

40 Hamburg 

40 Stanlow 

40 Swedish 

40 Heptane 

0 Brazil 

OSNV 

0 Hamburg 

0 Stanlow 

0 Swedish 

0 Heptane 

10.0 0 0 10.0 200 3O0 40.0 5O0 

Measured DDA concentration / mg L ' 

Figure 4.29: Results for automated on-line SPE (error bars represent ±2s (n=3)). 

4.3.7 COMPARISON O F R E S U L T S OBTAINED USING O F F - L I N E SPE 

W I T H R E S U L T S OBTAINED USING T H E A U T O M A T E D ON-LINE 

S Y S T E M 

Results obtained using the on-line and off-line systems are compared in Figure 4.30 and a 

linear regression plot is shown in Fig 4.31. A reasonable correlation was obtained between 

the on-line and off-line results (R^ of 0.8104). The recoveries were generally slightly 
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higher for the off-line samples except for the spiked Hamburg samples and the fully 

formulated heptane sample. The on-line and off-line results were compared using a /-test 

(see Section 3.3.5). The corresponding t value for this number of degrees of freedom with 

95 % confidence is 4.3. A table of the calculated Mest values for the on-line and off-line 

SPE results is shown in Table 4.5. I f the results were significantly different, then the 

magnitude of the /-values would be greater than 4.3. Al l the calculated values were lower 

than this, showing that there is no significant difference between the on-line and off-line 

SPE results at the 95 % confidence level. 

Table 4.5: t-test comparison of the on-line and off-line SPE results. 

Fuel 
Pooled estimate of the 

standard deviation (s) / mg L'* 
Calculate 

H 
Heptane 0.83 3.54 

Swedish 0.74 2.42 

Stanlow 2.31 1.35 

Hamburg 3.21 2.11 

SNV 3.12 2.38 

Brazilian 1.16 3.61 

Fully formulated heptane 4.76 1.05 

Fully formulated Swedish 3.87 0.55 

Fully formulated Stanlow 3.29 0.22 

Fully fomiulated Hamburg 2.39 0.29 

Fully formulated SNV 9.18 1.74 

Fully formulated Brazilian 5.00 0.79 

A /-test comparison of the on-line SPE-FI-CL results for f i i l ly formulated fuels with those 

of the base fuels is shown in Table 4.6. A l l of the / values were greater than 4.3 except 

SNV, showing that statistically the results were significantly different for all of the base 

fuels than for the fully formulated fuel (with the exception of SNV). The reason SNV 

could not be differentiated was owing to the large error in the measurement of its fully 
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formulated sample. The reproducibility for this sample could possibly be improved by 

increasing the conditioning times to ensure the column is fully cleaned prior to analysis. 

Table 4.6: /-test comparison of results obtained from the fully formulated fuels with 
those obtained from their respective base fuels, 

Pooled estimate of the mean (s) 
Fuel / mg L"' t-value 

Fully formulated heptane 2.37 14.96 

Fully formulated Swedish 1.04 36.68 

Fully formulated Stanlow 0.67 40.54 

Fully formulated Hamburg 1.58 16.94 

Fully formulate SNV 5.95 2.50 

Fully formulate Brazilian 3.00 6.80 

4.4 CONCLUSIONS 

The specific conclusions of the work carried out in this chapter are as follows: 

1. The manual on-line solid phase extraction FI-CL system gave a good calibration for 

dodecylamine standards in heptane over the range 0 - 50 mg L'", (R^=0.9936) with 

good reproducibility ( 8.5 % for a 40 mg L * DDA sample(n=3)). Analysis times 

were approximately 7.5 minutes, allowing up to 8 samples to be analysed per hour. 

2. LabVIEW is an excellent software environment for instrument control and data 

processing and provides flexibility for further development and refinement o f the 

SPE instrumentation. 

3. SPE can be incorporated on-line into FI-CL detection to provide a fully automated 

system. The automated on-line SPE-FI-CL manifold gave comparable results to the 

manual system (R^=0.9927) with acceptable reproducibility (13 % for a 40 mg L"' 
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DDA sample). Analysis times were shorter than for the manual system allowing 13 

samples per hour to be analysed. 

4. Results using on-line solid phase extraction showed no significant difference from 

those obtained using off-line SPE (at the 95 % confidence level). 

5. Results obtained using the on-line SPE-FI-CL system showed that all results were 

significantly different (at the 95 % confidence level) for fully formulated fuels 

when compared with results for the base fuels (except in the case of SNV diesel 

fuel due to the poor reproducibility for this sample). 
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DETERMINATION OF GLYCOLS USING F I - C L 

5.1 INTRODUCTION 

Additive formulations with poly-alcohol functionalities such as Paramin 655 (P655) shown 

in Fig 5.1, are commonly used as lubricity agents in diesel fuels. P655 consists of mono-, 

di- and tri-esters of linoleic acid and glycerol in a carrier oil and the mixture is typically 

dosed in diesel fuel at a concentration of 150 mg L 

Figure 5.1: Structures of mono-, di- and tri-esters of glycerol and linoleic acid which 
comprise the additive Paramin 655 (P655). 

As with the detection of detergents in diesel fuels (see Chapter 2) the determination of 

lubricity agents in fuels using portable field instrumentation is desirable. Poly-alcohols in 

simple matrices can be determined using many different analytical methodologies. High 

performance liquid chromatography with pulsed electrochemical detection can be used to 

detect and separate alcohols (Johnson and LaCourse, 1990), but HPLC requires a high 

pressure pump and therefore is not appropriate for fully portable instrumentation. Gas 

chromatography with flame ionisation detection can also be used for the separation and 

detection of alcohols (Leary, 1983), but again GC is not readily adapted to portable 

instrumentation, as gas bottles are needed which are heavy and GC instrumentation is not 
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very robust. Another method for the determination of alcohols is based on the conversion 

to alkyl nitrite using NaN02, which can then be detected by near UV spectrophotometry 

(Leenson, 1997). This has the advantage of being readily portable, however, UV 

spectrophotometric instrumentation requires a light source, whereas chemiluminescence 

detectors do not require this additional component. Various flow injection 

chemiluminescence methods are available for the detection of alcohols and a summary of 

these is shown in Table 5.1. 

Table 5.1: Chemiluminescence reactions that have been used for the determination of 
alcohols. 

Alcohol L.O.D. Reaction Reference 

Ethanol 4 % (v/v) Oxidation of ethanol by hypochlorite / 
H2O2 

(Lu et a!., 1993) 

Ethanol 1 % (v/v) Oxidation o f ethanol by acidified 
potassium permanganate using Fe(II) as 
catalyst. 

(Montalvo and 
Ingle, 1993) 

Polyphenols, 
monophenols 
and sugars 

Peroxyoxalate / perylene detection of 
H2O2 produced fi'om the reaction of 
poly-alcohols with imidazole at 80°C. 

(Nozaki et al., 
1995) 

Ethanol 0.01 % (v/v) Luminol detection of H2O2 produced by 
the oxidation of ethanol by alcohol 
oxidase. 

(Danet et al., 
1997) 

Ethylene 
glycol 

0.5 [xM Non CL reaction of ethylene glycol with 
periodate competing with the CL 
reaction of periodate in the presence of 
pyrogallol and hydroxylamine. 

(Evmiridis, 
1989) 

Chemiluminescence can be obtained from alcohols by oxidising them with hypochlorite 

and hydrogen peroxide (Lu et al., 1993), although this method is only useful at high 

concentrations and has a detection limit of 4 % (v/v). The oxidation reaction of alcohols 

using acidified permanganate (Montalvo and Ingle, 1993) has the same problem, with a 

detection limit of 1 % (v/v). This reaction also requires reagents to be prepared in 95 % 

nitric acid, which is undesirable in a flow system. Another method (Nozaki et al., 1995) 
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uses the peroxyoxalate CL reaction to detect hydrogen peroxide produced fi-om the mixing 

of alcohols with imidazole. Production of hydrogen peroxide requires mixing to take place 

at 80°C, which is a disadvantage for portable instrumentation. A further method for the 

detection of ethanol using FI-CL is by detecting the hydrogen peroxide produced when 

ethanol reacts with alcohol oxidase (Danet et al., 1997). This is an enzymatic reaction that 

is specific to ethanol, and is therefore not suitable for poly-alcohols such as those 

comprising P655. 

A simple flow injection system utilising a chemiluminescence reaction has been applied to 

the determination of poly-alcohols in a laboratory environment (Evmiridis, 1989). 

Potassium periodate reacts with pyrogallol to produce visible light. Periodate also reacts 

with alcohols, and so the two reactions are in competition with one another, resulting in 

less chemiluminescence when alcohol is present. This reaction has good sensitivity (an 

L.O.D. of 0.5 (iM for ethylene glycol) and should therefore be suitable for the purposes of 

determining poly-alcohols using simple portable instrumentation. In order to analyse 

petroleum based fuel samples using the aqueous CL reaction and to remove all matrix 

interferences, solid phase extraction is also needed. 

This chapter describes the optimisation of the pyrogallol / periodate FI-CL method as 

applied to the determination of a simple poly-alcohol (ethylene glycol) and the adaptation 

of this method for the detection of P655 in its carrier oil . A solid phase extraction 

procedure to extract P655 fi*om a simple non-polar matrix {i.e. heptane), used as a model 

system to demonstrate the feasibility of applying the method to diesel fuel, is also 

described. 
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5.2 EXPERIMENTAL 
5.2.1 R E A G E N T S 

AnalaR grade butan-l-ol, butan-2-ol, propan-2-ol, acetone, potassium periodate and 

potassium dihydrogen phosphate were obtained from Merck (Poole, Dorset, U.K.). 

Dichloromethane (Hipersolve grade), ethanol (Hipersolve grade), ethyl acetate 

(Hipersolve), sodium hydroxide (reagent grade) and hydroxylammonium chloride 

(Spectrosol grade) were also obtained from Merck. Ethylene glycol (Puriss grade) was 

purchased from Fluka (Gillingham, Dorset, U.K.), pyrogallol (2,6-dihydroxyphenol 

analytical grade) was obtained from Riedel-de Haen, and HPLC grade acetonitrile and 

methyl t-butyl ether were obtained from Rathbums (Walkerbum, U.K.). Water used was 

analytical reagent grade (18.2 MQ cm ") deionised water from an Elgastat UHQ 11 system 

(Elga Ltd., High Wycombe, Bucks., U.K.). Solid phase extraction columns were Isolute® 

200 mg aminopropyl obtained from International Sorbent Technology (Mid Glamorgan, 

U.K.). 

A 1 M NaOH solution was prepared by dissolving 40 g of NaOH in 1 L of water. Buffer 

solutions were prepared by dissolving 13.6 g of potassium dihydrogen phosphate 

(KH2PO4) in 900 mL of water and adjusting the pH with addition of 1 M NaOH solution 

until the pH reached the desired value. The solutions were then made up to I L with water. 

1X10'^ M potassium periodate (KIO4) stock solutions were prepared by dissolving 23 g in 

1 L of phosphate buffer with the required pH. Stock solutions of 1X10'^ M pyrogallol were 

prepared by dissolving 1.261 g in I L of the phosphate buffer o f the required pH. Stock 

solutions of 1X10"^ M hydroxylammonium chloride (HONH3CI) were prepared by 

dissolving 0.695 g of hydroxylamine in I L of the buffer solution. Al l other solutions were 

prepared by serial dilutions of the above stock solutions. A l l solutions containing 
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pyrogallol were prepared daily and stored in amber glassware. A l l other reagents were 

found to be stable for a number o f weeks (periodate stock solutions were stored in the 

dark). 0.5 M stock solutions of ethylene glycol were prepared by dissolving 15.52 g in 

500 mL of phosphate buffer at the required pH. 

5.2.2 INSTRUMENTATION 

Minipuls 3 (Gilson, Villiers-le-Bel, France) peristaltic pumps were used for both the 

sample and reagent streams. 1.02 mm i.d. Ismaprene pump tubing (Ismatec, Weston-super-

Mare, U.K.) was used to propel all reagent and carrier streams through 0.75 mm i.d. 

(PTFE) manifold tubing and T-pieces (Omnifit, Cambridge, U.K.). The sample injection 

valve (6 port, 2 position [C22-3716EH] cheminert microactuated valve) was obtained from 

Valco Instruments (Switzeriand). Chemiluminescence emission was measured using a 

CamSpec CL-2 detector (Cambridge Instruments, Cambridge, U.K.). Reagent streams 

were mixed using an intemal T-piece fitted in the CamSpec detector immediately in front 

of the flow cell as shown in Fig. 5.2. 

C L detector 

Mixing point 

Reagent 
stream 1 

Reagent 
stream 2 

Waste 

Figure 5.2: Diagram of the flow cell. 

The signal from the detector was acquired using a multifunctional DAQ-700 data 

acquisition / digital I/O card (National Instruments, Berkshire, U.K.) attached to a laptop 
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computer. LabVIEW® software (see Section 4.3.2) was used to acquire the signal and to 

operate the switching valve. A charge coupled device (CCD) detector was used with a 

liquid nitrogen cooled (256 x 1024 pixels) chip and a 270M imaging spectrograph 

(Instruments SA) to record CL emission spectra (see Section 2.2 for details). A Carlos-

Erba high resolution gas chromatograph (HRGC) with an on-column injector and fitted 

with a flame ionisation detector was used for the analysis of solid phase extracts. A J&W 

Scientific DB-5 column was used and 1 ^ L sample volumes were injected. A Hewlett 

Packard GC-MSD fitted with a mass spectrometric detector was also used to analyse solid 

phase extracts. This was fitted with a DB-5 column and l ^ L sample volumes were injected 

using a septum injector. 

5.2.3 P R O C E D U R E S 

5.2.5.7 Optimisation of a CL manifold for the detection ofperiodate 

The manifold described in the literature (Evmiridis, 1989), which is shown in Fig. 5.3, was 

optimised to achieve the greatest sensitivity for the detection of a 1X10"^ M solution of 

KIO4 in buffer solution. The parameters optimised were pyrogallol concentration, 

hydroxylamine concentration, pH and flow rate. When the pH was optimised the buffer 

was systematically varied for all solutions including the periodate sample matrix. A 40 | iL 

sample injection loop was used throughout. 

5.2,3.2 Recording of the emission profile 

A continuous flow system was used to record the emission profile for this reaction. The 

background signal was recorded with buffer solution as the carrier stream, and 1X10"^ M 

potassium periodate solution replacing the carrier stream when the emission profile was 
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Figure 5.3: F I - C L manifold for the determination of periodate in buffer solution (Evmiridis, 1989). 
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being recorded. The emission was recorded for 500 s and the resulting output was 
exponentially smoothed using Microsoft Excel 2000. 

5.2.3.3 Determination of alcohols using the FI-CL manifold 

Calibration graphs for ethanol and ethylene glycol were recorded using the optimised flow 

injection manifold. The manifold was altered to allow a constant stream of periodate as 

shown in Fig 5.4. A potassium periodate solution with a concentration of 1X10"̂  M in 

buffer was used as the carrier stream. Samples of ethanol and ethylene glycol were 

prepared in buffer solution and sample injection volumes of 40nL and 100 jiL were both 

evaluated. 

5.2. J . 4 Solvent effects 

40 | i L of various solvents (methanol, ethanol, propan-2-ol, butan-l-ol, butan-2-ol, acetone, 

acetonitrile, dichloromethane and methyl-t-butyl ether) were injected into the manifold 

shown in Fig 5.4 with 1x10"^ M KIO4 in buffer acting as the carrier stream, in order to 

determine their effects on the CL response. 

5.2.3.5 Gas chromatographic validation of solid phase extraction 

GC-MS 

A Hewlett Packard GC-MSD was used with the following temperature program: Injection 

at 50°C with no temperature hold, 10°C min"' temperature ramp to 200°C, temperature 

ramp of 5°C min"' fi-om 200 - 300°C and a hold at 300°C for 10 minutes. Masses were 

recorded in the range 1-850 D. 
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GC-FID 

Gas chromatographic conditions for measurement of P655 using flame ionisation detection 

were as follows; temperature programme: 250°C held for 5 minutes, 10°C / min up to 

340°C with 10 minute hold. 1 | i L sample volumes were injected directly onto the column. 

Recoveries were measured against standards prepared in the same solvents. 

5.23.6 Optimisation of the solid phase extraction ofP655 in heptane 

Elution solvent selection 

In order to find a suitable elution solvent for P655 in heptane, a solid phase extraction 

cartridge was conditioned and loaded as shown in Table 5.2. 4 mL aliquots of heptane, 

toluene, dichloromethane, acetonitrile and methanol were subsequently passed through the 

column to determine which solvent would be the best to elute P655 from heptane. The 

resulting aliquots were analysed used GC-FID to measure the recovery in each elution. 

Table 5.2: Solid phase extraction procedure to determine a suitable elution solvent for 
P655 in heptane. 

Step Volume / mL Solvent 

Conditioning 1 4 Acetonitrile 

2 4 Toluene 

3 4 Heptane 

Loading 4 5 1000 mg L*' P655 in heptane 

Eluting 5 4 Heptane 

6 4 Toluene 

7 4 Dichloromethane 

8 4 Acetonitrile 

9 4 Methanol 
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Acetonitrile elution profile 

To optimise the volume needed to elute P655 into acetonitrile, the solid phase extraction 

procedure shown above was repeated, however this time 0.5 mL aliquots of acetonitrile 

were used as the elution solvent and, once again, the eluents were analysed by GC-FID. 

The solid phase extraction procedure used is shown in Table 5.3. 

Table 5.3: Solid phase extraction procedure to determine the elution volume needed 
to elute P655 with acetonitrile. 

Step Volume / m L Solvent 

Conditioning 1 4 Acetonitrile 

2 4 Toluene 

3 4 Heptane 

Loading 4 2 1000 mg L"' P655 in heptane 

Washing 5 2 Heptane 

6 2 Toluene 

Eluting 7 0.5 Successive 0.5 mL aliquots of 
acetonitrile 

5.2.5.7 Choice of elution solvent compatible with FI-CL detection 

The manifold shown in Fig 5.4 was modified by the addition of a solvent line in order to 

allow samples of ethylene glycol in various solvents to be injected into the system. 1% 

ethylene glycol samples in pH 8.5 buffer, ethyl acetate and methanol were injected into a 

carrier stream containing the same solvent using the manifold shown in Fig. 5.5. The aim 

here was to evaluate whether any useful signal could be obtained for poly-alcohols in each 

particular solvent using the Fl-CL system. 
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5.2.3,8 Optimisation of the modified FI-CL manifold for the detection of ethylene 

glycol in acetonitrile 

The modified manifold (Fig. 5.5) was optimised for the determination of ethylene glycol in 

acetonitrile. Acetonitrile was used as the carrier solvent, and the parameters optimised 

were pH, flow rate, pyrogallol concentration and hydroxylamine concentration. 0.1 % (v/v) 

solutions of ethylene glycol were injected into the system in all cases. 

5.2.3.9 Analysis ofP655 extracts 

Solid phase extracts of P655 were prepared using the procedure shown in Table 5.3 

(conditioning: 4 mL acetonitrile / toluene / heptane, washing: 2 mL heptane / toluene) with 

the exception that 4 mL samples of P655 in heptane in the range 2500 - 100000 mg U ' 

(0.25-10%) were loaded, and samples were eluted using 4 mL of acetonitrile. The same 

loading and elution volumes were used so that no preconcentration occurred. 

5 .3 R E S U L T S AND DISCUSSION 

5.3.1 CHEMILUiWINESCENCE EMISSION F R O M T H E O X I D A T I O N OF 

PYROGALLOL 

The oxidation reaction of polyhydroxy phenols (such as gallic acid) with hydrogen 

peroxide and formaldehyde was discovered in 1905 (Trautz and Schorigin, 1905) and was 

shown to cause the emission of red light. The emission was thought to be either directly 

from excited singlet oxygen molecules or indirectly from excited organic molecules (F*) 

generated from an energy transfer reaction with excited singlet oxygen molecules (as 

shown in Equations 5.1 and 5.2) 
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('02*)2 + F - » 2 ^ 0 2 + F ' (5.1) 

F ' - > F + /?i /(l ight) (5 .2) 

A proposed melhod for the formation of singlet oxygen molecules (*02*) is shown in Fig. 

5.6. In step (1) pyrogallol is oxidised by hydrogen peroxide / oxygen to a 

hydroxybenzoquinone, which in step (2) polymerises in the presence of oxygen to produce 

a polymer of unknown structure and an excited singlet oxygen molecule. Step (3) is in 

competition with step (2) and also results in the formation of a singlet oxygen molecule. 

Periodate has been shown to react in the same way as hydrogen peroxide with pyrogallol 

(Evmiridis, 1987). The oxidation of 2,6-dimethoxypyrogallol by periodate (Sklarz, 1967) 

has been shown to generate a variety of products which are shown in Fig. 5.7. It has been 

proposed that the oxidation of pyrogallol by periodate produces similar conjugated organic 

species (Evmiridis, 1987) which can act as fluorophores for chemiluminescence emission. 

HO-, O2, HOO, O2-

(I) 

• Polymer + 'O,* 

H o a 
( 4 ) X fast 

"O. S 9 HO /? I? 

Figure 5.6: Proposed mechanism for the Trautz-Schorigin reaction, where R = H for 
pyrogallol and COOH for gallic acid (Evmiridis, 1987). 

172 



Chapter 5: Determination of elvcols usins FI-CL 

The pyrogallol oxidation reaction has a variety of analytical applications including the 

detection of glucose, fructose (Evmiridis et al., 1999), cobalt(II) (Cannizzaro et al., 1999), 

chromium(ni) (Nakano et al., 1993), permanganate, cerium(IV), periodate, hypochlorite, 

peroxide (Evmiridis et al., 1998) and polyhydroxyl compounds (Evmiridis, 1987). 

H 3 C - 0 

H 3 C - 0 O - C H . 

O - C H 
OH 

H 3 C - 0 O - C H 

H , C - 0 O - C H 

O - C H , 

Polymer 

H 3 C - O 

Figure 5.7: Products identified f rom the reaction of periodate with 2,6-
dimethoxylphenol (Evmiridis, 1987).(Sklar2, 1967) 

The detection of poly-alcohols using the pyrogallol CL reaction can be achieved using its 

competing reaction with periodate, which lowers the concentration of the oxidant. The 

removal of periodate from the pyrogallol CL reaction produces a suppression of the 

chemiluminescence response, which is directly proportional to the amount of poly-alcohol 

present. Dihydroxy compounds and hydroxy-ketones wi l l react with periodate as shown in 

Fig. 5.8 

1 0 , -

OH OH O O 

1 0 4 -

OHO " ^ 0 

HO 

O 

Figure 5.8: Reaction of hydroxy compounds with periodate (Skiarz, 1967). 

173 



Chapter 5: Determination of slvcols usins FI-CL 

Periodate has been also been shown to react with secondary mono-alcohols to produce 

aldehydes (Evmiridis, 1989). Both the mono- and di- esters components of P655 (shown in 

Fig. 5.1) should therefore cause a suppression of the pyrogallol CL reaction. In order to 

detect small changes in periodate concentration (brought about by the competing reaction 

with alcohols) by chemiluminescence, the FI manifold and reaction conditions were 

optimised to maximise the sensitivity for periodate detection. 

5.3.2 OPTIMISATION OF A CL M A N I F O L D FOR T H E D E T E R M I N A T I O N 

OF PERIODATE 

The pyrogallol CL reaction (Evmiridis, 1987) was univariately optimised (using the 

manifold shown in Fig. 5.3) for the determination of periodate (A 1X10"^ M solution was 

used for the optimisation). The ranges used and the optimum conditions for each parameter 

are shown in Table 5.4, and optimisation graphs for each parameter are shown in Fig. 5.9. 

The reaction has negligible background chemical noise, and therefore peak height (and not 

signal/noise ratio) has been reported. 

Table 5.4: Optimum conditions for the determination of periodate. 

Parameter Condition used whilst 
optimising other 

parameters 

Lower 
L imi t 

Upper 
L imi t 

Optimum 
Condition 

Pyrogallol 
concentration / M 

1X10"^ 1X10"* 1X10"^ 1X10'^ 

Hydroxyl amine 
concentration / M 

1X10"^ 1X10"* 1X10"^ 1X10*^ 

pH 8.0 7 10.5 9.5 

Flow rate / mL min'' 1.5 0.5 2.25 1.25 

The rate of the pyrogallol oxidation reaction is relatively fast and therefore the greatest 

sensitivity was found when the reagents were mixed as close to the point of detection as 
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possible {i.e. with no reaction coil prior to detection). With the mixing point so close to the 

point of detection (as shown in Fig. 5.2), changing the overall flow rate of the reagents 

would not be expected to have a significant influence on the sensitivity. Maximum CL 

emission was found at 1.25 ml min** and although the effect of the flow rate was relatively 

small, this was selected as the optimum flow rate. 

Increasing the pyrogallol concentration increased the CL emission up to a maximum value 

of IXIO*^ M . With concentrations greater than this the emission sharply decreased due to 

quenching (self absorption) by the pyrogallol or one of the oxidation products. 

Hydroxylamine concentration also reached a maximum at 1X10'"' M . It has been proposed 

that enhanced CL produced by hydroxylamine is due to the product of the reaction between 

pyrogallol and hydroxylamine acting as a sensitiser (Evmiridis, 1987). This explains why 

an equimolar amount of hydroxylamine and pyrogallol is needed to produce maximum CL. 

When the concentration of hydroxylamine is greater than the concentration of pyrogallol 

there wil l be excess hydroxylamine present that has not reacted with pyrogallol. When this 

happens the free hydroxylamine reacts immediately with periodate to produce N2O and 

iodine, explaining why a reduction in the sensitivity was seen when the concentration of 

hydroxylamine was greater than that of the pyrogallol (1X10"^ M), The pH was found to 

have little effect in the range 8.0 to 9.5 (when all reagents were buffered at the same pH). 

The CL emission profile for the pyrogallol reaction was measured using a continuous flow 

system (see Fig.5.10). Maximum emission was observed at 560 nm, which is significantly 

different to the reported emission maximum of 630 nm for pyrogallol in the presence of 

hydrogen peroxide and fonnaldehyde (Biswas and Dhar, 1931). 
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500 525 

Raw Spectrum 

Spectrum with 0.9 
smoothing (offset) 

550 575 600 

Wavelength / nm 

625 650 

Figure 5.10: C L emission spectrum from the oxidation of pyrogallol. 

This suggests that there is a different reaction mechanism and that emission is far more 

likely to be coming indirectly from reaction products rather than from direct emission from 

excited singlet oxygen. 

Examples of periodate peaks are shown in Fig. 5.11, which demonstrate good 

reproducibility and excellent baseline stability. A calibration graph for potassium periodate 

is shown in Fig. 5.12. 

1X0-^ M 

9X0-^ M 
8X0 ^ M 

7X10-'M 

6X0 ' M 
5X0 ' M 

4X10"'M 

IXO-^M 

Time 
I 1 
2 min 

Figure 5.11: Periodate peaks from the optimised F I - C L manifold (1X10^ - 1X10'^ M) 
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Figure 5.12: Calibration graph for potassium periodate using the optimised F I - C L 
manifold. 

The calibration graph for potassium periodate was linear in the range 8X10"*- 6X10"^ M 

(R^ = 0.9983). At higher concentrations the graph levelled out due to reagent consumption. 

By expanding the baseline, the limit of detection for periodate was found to be 8X10"^ M 

(S/N =3). 

5.3.3 DETERMINATION OF ALCOHOLS USING T H E FI -CL M A N I F O L D 

In order to determine alcohols using suppression of the pyrogallol CL reaction, periodate 

(the oxidant) was added to the carrier stream (which had previously been pH 9.5 phosphate 

buffer only) and samples (in pH 9.5 phosphate buffer) were injected into this (see Fig 5.4). 

Examples of suppressed CL peaks are shown in Fig. 5.13. Calibration graphs for ethylene 

glycol and ethanol are shown in Fig. 5.14. 
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Time 2 min 

IT 

Figure 5.13: Ethylene glycol suppressed C L peaks. 

The baseline noise level is much greater than previously shown. Previously, there was 

negligible background signal, so pulses in the reagent pumping (slightly altering the 

reagent concentrations in the reaction mixture) would have little effect. With this 

suppressed system there is a large background signal, and therefore pulses from the pumps 

cause variations in the chemiluminescence signal. 

Limits of detection for ethylene glycol in pH 9.5 phosphate buffer (3 times the baseline 

noise) were 5X10"* M for a 100 ^ L sample injection and 2X10"^M for a 40 ^iL injection. 

The 100 ^ L sample loop gave a better calibration (R^ = 0.9909), however RSDs were 

much larger than for the 40 j iL sample loop (3 % and 0.2 % respectively for a 5X10"'* M 

ethylene glycol sample), most likely due to poorer mixing of the periodate stream. Limits 

of detection for ethanol were 1.3X10'^ M and 8X10^ M (for 40 and 100 ^lL sample loops 

respectively). RSDs were again generally higher for the larger sample loop (6 % and 9 % 

for 40 and 100 j iL sample loops respectively). For greater sensitivity, (which was more 

important than really low RSDs) a 100 \xL sample loop was used in all further experiments. 
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Limits of detection were lower for ethylene glycol than for ethanol, which was as expected, 
due to the dual alcohol functionality present in ethylene glycol. 
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Figure 5.14: Calibration graphs for (a) ethylene glycol and (b) ethanol (error bars 
3s). 
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5.3.4 S O L V E N T E F F E C T S 

The additive P655 is present in a carrier oil which is immiscible with water. In order to 

analyse it using FI-CL, a solid phase extraction procedure is again required. However, any 

solvent that is used as an extraction solvent in SPE must be compatible with the FI-CL 

reaction. I f the extraction solvent suppresses all of the chemiluminescence then it is not 

possible to measure anything in the extract. For this reason the effect o f various solvents 

was determined by directly injecting solvents into the FI-CL manifold. The effects of these 

solvents on the CL signal are shown in Fig. 5.15. 

As can be seen above, all of the alcohols suppressed the CL reaction (as expected). They 

are therefore of no use as extraction solvents in solid phase extraction. Acetonitrile had the 

least effect on the CL signal and was therefore the most promising solvent for the 

extraction. 
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Figure 5.15: Effect on baseline of various solvents using the manifold shown in Fig 5.4 
with 1X10"^ M KIO4 as carrier. 
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5.3.5 G C V A L I D A T I O N O F SPE 

Analysis of P655 can be performed using GC-MS (Forbes, 2000) as shown in Fig. 5.16. 

The temperature limit for this GC analysis was 380°C, however an expensive (and non

standard) high temperature GC column is needed to elute the di- and tri- ester components. 

When using a standard GC-MS fitted with a typical column (DB-5) that has an upper 

temperature limit of 340°C only the mono-ester component can be detected (see Fig. 5.17). 

The GC-MS is however able to resolve 2 distinct mono-esters, with the structures shown in 

Fig. 5.18. 

c o CL 

mono di 

Temperature limit 
for typical GC 

column (340°C) 

' • • ' J, • • • ' J. 1 — I — r — 1 — 1 — r - i - 1 -1—r 
r I r 

Time / minute 

Figure 5.16: GC-MS of P655 diesel additive in carrier oil. Temperature program: 
lOC^C held for 0 minutes, 8°C / minutes up to 380^C held for 20 minutes, detection 
using an FID (Forbes, 2000). 
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Figure 5.17: GC-MS Chromatogram of P655 using DB-5 column with temperature program: Injection at 50"C, 10°C / minute 
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Figure 5.18: Left structure of peak at 22.975 mins (9,12-octadecadienoic acid (Z, Z)-, 
2,3-dihydroxylpropy ester), right structure of peak at 23.071 mins (9-octadecenoic 
acid (Z)-, 2-hydroxy-l- (hydroxymethyl) ethyl ester). 

GC-FID was used for the development of a solid phase extraction procedure. A typical 

GC-FID chromatogram for P655 in heptane solution is shown in Fig. 5.19. The column 

used also had a temperature limit of 340°C, and so (as with the GC-MS) only the mono-

ester could be seen. 

Figure 5.19: G C - F I D chromatogram of 1000 mg L ' ' P655 in heptane (temperature 
program 200''C for 5 mins, lO '̂C / min up to 300**C). 

5.3.6 OPTIMISATION O F T H E S O L I D PHASE E X T R A C T I O N O F P655 IN 

H E P T A N E 

Using sequential 4 mL elutions of solvents with increasing polarity, an elution profile can 

be constructed. Fig. 5.20 shows elutions (measured by GC-FID) from an SPE column 

loaded with 4 mL of P655 solution (1000 mg L'* in heptane). Toluene with a solvent 

polarity of 0.29 was not strong enough to elute any of the P655, while dichloromethane 
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(polarity of 0.39) was strong enough to elute some of the P655 (76 % in 4 mL), Using a 

greater volume of solvent would have eluted more P655, however, a robust SPE method 

should be able to elute the desired component in a small volume to allow preconcentration, 

therefore a stronger elution solvent was needed. Acetonitrile (polarity of 0.65) eluted 95 % 

of the P655, which is an acceptable level of recovery, and no more P655 was recovered in 

the methanol elution. Acetonitrile was therefore shown to be a suitable solvent for this 

procedure. 

at 
% 
at 

Figure 5.20: Sequential 4 mL solid phase extraction eluents (sample loaded was 100 
mg L"' P655 in heptane). 

4mL of ethyl acetate, which has a similar polarity to that of acetonitrile (0.62 and 0.65 

respectively) was also used to extract P655 using the same conditioning and loading 

conditions as above. 93 % recovery was obtained, showing that ethyl acetate was also 

suitable as an extraction solvent for P655. 
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In order to optimise the elution volume required to extract P655 into acetonitrile, 

sequential elutions of 0.5 mL acetonitrile were analysed by GC-FID, the results of which 

are shown in Fig. 5.21. 94 % of P655 was extracted into 1 mL o f acetonitrile, and no 

further significant improvement in recovery level was produced by using larger volumes. 

0.5 1 1.5 

Acetonitrile elution volume / mL 

Figure 5.21: Elution profile for P655 with acetonitrile as elution solvent. 

5.3.7 C H O I C E O F E L U T I O N S O L V E N T C O M P A T I B L E W I T H F I - C L 

D E T E C T I O N 

Ethyl acetate, acetonitrile and methanol all have the solvent strength to extract P655 using 

solid phase extraction. However i f extracts are to be analysed using the Fl manifold, the 

extraction solvent must be compatible with flow injection. For this reason, samples of the 

model poly-alcohol (ethylene glycol) were made up in each of the extraction solvents and 

these were injected into a carrier stream consisting of the same solvent (see Fig 5.5) to 

determine their effect on the response. Ethyl acetate in pH 8.2 buffer was injected in a 

carrier stream of the same buffer for comparison. The effects are shovm in Fig. 5.22. 
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Figure 5.22: Measured suppression of a 1 % solution of ethylene glycol in various 
solvents using matched solvents as the carrier stream (errors bars = 3s). 

When pH 8.2 buffer was used as the sample matrix / carrier stream a S/N ratio of 13 was 

measured (for 1 % ethylene glycol). No signal at all was observed when methanol was 

used as the carrier. This is expected, as methanol, having by its very nature alcohol 

ftinctionality, reacts with all of the periodate present resulting in no CL reaction. Methanol 

was therefore not suitable as a carrier solvent for this reaction. A suppression of the CL 

response was obtained when ethyl acetate was used as the sample matrix and carrier (S/N = 

1.6). The reproducibility was however not particularly good in this case (RSD of 8 %, n = 

5). A greater sensitivity was obtained for acetonitrile than for ethyl acetate (S/N = 3.6) and 

the reproducibility was also much better (RSD of 0.8 %. n = 5). Acetonitrile was therefore 

determined to be the most applicable solvent for solid phase extracts that are to be analysed 

using this Fl-CL manifold. 
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5.3.8 OPTIMISATION O F T H E M O D I F I E D F I - C L M A N I F O L D 

The modified manifold shown in Fig. 5.5 was optimised for the detection of the poly-

alcohol ethylene glycol in acetonitrile, with acetonitrile as the carrier. The optimisation 

graphs shown in Fig. 5.23 display the same trends that were seen with the unmodified 

manifold. The pH, however, was found to be more critical and the maximum sensitivity 

was obtained at pH 8,5, 

When the solvents were being used as the carrier the signals measured contained a high 

degree of noise. Air bubbles were produced at the point where the solvent (carrier) stream 

mixed with the periodate stream. An example of this is shown in Fig. 5.25. The bubbles 

were dissolved oxygen in acetonitrile, which has been reported to come out of solution 

when acetonitrile is mixed with water (Freeman, 1999). The air bubbles caused positive 

spikes in the CL signal. Ultrasonication for 30 minutes reduced the bubbles, however, to 

fully eliminate the problem, helium sparging or fitting a debubbling device inline would be 

required. Time on this project, however, was limited and did not permit these 

modifications. A temporary solution was to use a larger sample loop (lOOjiL) so that the 

samples had relatively long lifetimes compared with air bubble spikes. 

5.3.9 ANALYSIS O F P655 EXTRACTS 

The solid phase extraction procedure described in Section 5.2.3.9 (conditioning: 4 mL 

acetonitrile / toluene / heptane, loading 4 mL P655 in heptane, washing: 2 mL heptane / 

toluene, elution 4 mL acetonitrile) was used to extract samples containing P655 from 

heptane in the range 2500 - 100000 mg L ' ' (0.25-10% m/v). The extracted acetonitrile 

solutions were analysed using FI-CL, and example flow injection peaks are shown in 

Figs. 5.24 and 5.25. 
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Figure 5.24: Example F I - C L peaks of P655 acetonitrile extracts (samples loaded in 
heptane in the range 0 - 15000 mg L ' = 0 - 1.5% mix). 

As can be seen in Fig 5.24, the peaks appear to be very noise but a major advantage of 

acquiring signals digitally on a computer is the ability to 'zoom in ' on a particular peak. 

An enlargement of 3 replicate injections of a sample are shown in Fig 5.25. When the 

peaks are enlarged a clear difference can be seen between the baseline and the peaks. This 

was sufficient to allow useful quantitative information to be obtained and demonstrates the 

enhanced information recovery available with automated digital data collection. 

An excellent calibration was obtained from P655 extracts over the range 0-150 mg / 10 mL 

extract in spite of the noisy signal and is shown in Fig. 5.26. The limit of detection 

(measured by taking 3 times the predicted error in blank (Miller and Miller, 1993)) for 

P655 extracts in acetonitrile was 8.6 mg in 10 mL = 860 mg L"' 0.086 % (m/v). This 

L.O.D. is not particularly sensitive, however, no preconcentration was used for these 

samples. The linear range for P655 was 0 to 150 mg in 10 mL (0 - 1.5 % ) . At higher 
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concentrations the calibration levels o f f due to all of the KIO4 being used up (see Fig. 

5.27). 

Spikes 
due to ai 
bubble 

noise 

> 0.11 

Lx)wer ^ 
noise level Baseline £ 0.08 

0.07 
Air bubble spike 

superimposed 
upon peak 

I4.-04:50 14:0533 14:06:16 14^)7^)0 

Time 

Figure 5.25: Peak height measurement for P655 extracts using F I - C L (a 1.5yo m/v 
sample is shown). 

y = 0.0296x + 2 . I2I4 

= 0.9965 

40 60 80 100 

Massof P655 in l O m L / m g 

120 140 

Figure 5.26: Acetonitrile extracts of P655 measured using F I - C L in the range 0-L5 % 
m/v (error bars = 3s). 
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200 400 600 
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Figure 5.27: Extraction of higher concentrations of P655 in heptane (in the range 2-10 
% m/v), error bars = 3s. 

The limit of detection of 860 mg L"' is significantly higher than the desired detection limit 

of 150 mg L"', however, these results were obtained using no preconcentration (4 mL was 

loaded and the extraction volume was 4 mL). With a larger sample volume being loaded, 

and using a smaller elution volume (1.5 mL), this reaction should be able to achieve 

detection limits of the order needed to detect P655 in diesel fuel. Further improvement 

could be also achieved by additional optimisation of the manifold design. Nonetheless the 

manifold shows that P655 can be quantitatively determined in a non-aqueous matrix using 

its suppressive effect on the CL emission from the periodate / pyrogallol oxidation 

reaction. 

192 



Chapter 5; Determination of elycols usinc FI-CL 

5.4 CONCLUSIONS 

The specific conclusions from the research discussed in this chapter are: 

1. Flow injection incorporating the pyrogallol oxidation chemiluminescence reaction 

with periodate can be used to determine potassium periodate in pH 9.5 buffer over 

the range 8X10*^-6X10*^ M (R^ = 0.9983) with a limit of detection of 8X10*^ M (3 

times the baseline noise). 

2. Using the adapted FI-CL manifold described in this chapter, ethylene glycol and 

ethanol can be determined with limits o f detection of 2X10"* M and 8X10*^ M 

respectively. 

3. The solid phase extraction procedure described in this chapter (conditioning: 4 mL 

of acetonitrile / toluene / heptane, loading: P655 in heptane, washing: 2 mL heptane 

/ toluene, elution: 1.0 mL acetonitrile) can extract P655 fi^om an organic matrix 

(heptane) with recovery rates of 94 %. 

4. Acetonitrile extracts of P655 in heptane can be detected using F I incorporating the 

suppressed pyrogallol oxidation CL reaction with a limit of detection of 0.086 % 

(m/v) = 860 mg L ' ' . Preconcentration would however be required to achieve 

detection limits below 150 mg L'* which would be necessary for the determination 

of P655 in diesel fuels. 
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6 GENERAL CONCLUSIONS AND SUGGESTIONS FOR 

FUTURE WORK 

6.1 GENERAL CONCLUSIONS 

In addition to the specific conclusions listed at the end o f each chapter, the following 

general conclusions can be made from the work described in this thesis. 

1. Flow injection with peroxyoxalate / sulphorhodamine 101 chemiluminescence 

detection is a very sensitive, rapid and reproducible method for the determination 

of dodecylamine in acetonitrile / water mixtures. Up to 80 samples per hour could 

be analysed and DDA was measured with a detection limit o f 190 jig L"*. The 

response was linear over the range 0.1 - 50 mg L"' (R^ = 0.9979) with RSDs 

typically < 4%. This reaction is therefore suitable for determining the additive in 

diesel fuel. The following indigenous diesel components have been shown to 

interfere strongly with this reaction: aniline, /7-cresol, hexanoic acid, and indole 

(>1, >300, >I00 and >1 mg L"' caused a suppression equal to that of 5 mg L"' 

DDA). Solid phase extraction is therefore needed prior to detection. 

2. Solid phase extraction allows dodecylamine to be extracted into acetonitrile / water 

mixtures that are compatible with FI-CL using aminopropyl SPE columns. The SPE 

procedure used involves conditioning with 5 mL of each of methanol, toluene and 

heptane, loading with 25 % sample in heptane, washing with 2 mL of each of 

heptane, toluene and dichloromethane and elution with 2.5 mL of 90 / 10 
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acetonitrile / water. Greater than 92 % recoveries can be obtained from 

dodecylamine samples in heptane, and at least 75 % recoveries for all samples of 

diesel fuel spiked with an additive package containing dodecylamine at 40 mg L*'. 

Gas chromatography can be used as a reference method to validate SPE procedures. 

3. Lab VIEW is an ideal software platform for graphical programming that can be used 

to control instrumentation such as pumps and valves and can also be used to 

acquire data from an analogue output. Constructing an on-line solid phase 

extraction FI-CL system offers the advantages of reducing analysis time (compared 

with off-line SPE with FI-CL detection), reducing the chance o f entailing operator 

errors and simplifying the whole procedure. Throughput was 8 samples per hour for 

the manual on-line SPE manifold and 13 samples per hour for the automated dual 

column on-line SPE manifold. A reasonable correlation was obtained between off

line and on-line solid phase extraction with FI-CL detection (R^ = 0.8104) for 

heptane and four base fuels (Swedish, SNV, Stanlow and Brazilian) that were 

unspiked, spiked with 40 mg L ' ' DDA or with the fully formulated additive 

package. 

4. The pyrogallol oxidation chemiluminescence reaction can be used for the detection 

of periodate. Poly alcohols such as ethylene glycol and the lubricity additive P655 

can also be determined using their competing reaction with periodate and its 

suppression of the CL emission. P655 can be extracted from heptane into 

acetonitrile with a recovery of 94 %. The limit o f detection for P655 using solid 

phase extraction without preconcentration and FI-CL detection is 860 mg L"'. 
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6.2 SUGGESTIONS FOR FUTURE WORK 

1. The prototype field monitor has demonstrated that FI-CL with on-line SPE can be 

frilly automated and applied to the determination of specific additives in fully 

formulated diesel fiiels. However in order for this automated system to be usefril as 

a routine field instrument for use in the petrochemical industry {e.g. at the filling 

station forecourt) it would need to be re-engineered to meet the demands of 

industrial safety requirements and the absence of mains power. This would need to 

be followed by extensive field trials and used by non-experts to ensure reliable long 

term operation. 

2. In order to develop an SPE-FI-CL system capable of determining P655 at levels 

typically present in diesel friels {i.e. 150 mg L"') the solid phase extraction 

procedure would need to be adapted to incorporate preconcentration to significantly 

lower the detection limit. This could be achieved by increasing sample loading and 

decreasing the elution volume and further optimisation o f the elution protocol. The 

use of other solid phases such as cyano, alumina, fluorosil. and diol could also be 

investigated. The problem of air bubbles discussed in Section 5.3.8 could be 

address by introducing an in-line de-bubbler to the FI-CL manifold. The manifold 

could also be fiirther adapted to allow on-line solid phase extraction as with the 

DDA system. Diesel samples spiked with P655 would then analysed using the 

optimised on-line SPE-FI-CL system. 
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extraction, as with the DDA system. Diesel samples spiked with P655 would then 

analysed using the optimised on-line SPE-Fl-CL system and validated in a similar 

manner to the dodecylamine method. 

3. The potential of FI-CL has been demonstrated for the detemiination of specific 

additives (DDA and P655) in diesel fuels. However for more generic applications, 

other additives would need to be targeted. For example, the reduction of nitrates to 

nitrite followed by the derivatisation reaction by hydrogen peroxide with luminol 

detection (Mikuska et al., 1995), as described in Section 1.4.1.2, could potentially 

be adapted for quantifying the cetane improver ethyl hexyl nitrate. 

4. In order to better understand the nature of the amine catalysed peroxyoxalate / 

sulphorhodamine 101 reaction, fundamental studies on the reaction mechanism and 

kinetics could be undertaken. This would help to improve understanding of the 

specific roles of interfering species such as indoles, cresols, organic acids and 

anilines within this reaction, and may enable a further refinement of the SPE 

procedure in order to remove the most significant sources of interference from the 

eluted sample. 
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ABSTRACT: This paper reviews the literature on analytical applications of fiow injection (FI) techniques with chemiluminescence 
(CL) detection from 1995-1999. The focus is on the application of FI-CL to the quantitative determination of specific analytes in real 
sample matrices. Therefore, entries have been tabulated under the most appropriate application area, ie pharmaceutical, 
environmental, foods and beverages and biomedical, as defined by the matrix that has been analysed. Each table lists analytes 
alphabetically and gives details of the exact sample matrix, the limit of detection (as reported in the original paper) and comments on 
the CL reaction used. Copyright © 2001 John Wiley & Sons, Ltd. 

KEYWORDS: flow injection; chemiluminescence; pharmaceutical; environmental; foods and beverages; biomedical 

INTRODUCTION 

Flow injection (FI) is now wel l established as an 
excellent technique for rapid, automated, quantitative 
analysis that combines on-line chemical and physical 
sample treatment wi th a range o f f low-through detection 
systems in an enclosed, continuous f l o w environment. It 
is particulariy well-suited to monitoring transient light 
emission from liquid phase chemiluminescence ( C L ) 
reactions due to the rapid and reproducible mixing o f 
sample and reagent in close proximity to the detector. 

FI has been used to investigate the fundamental 
chemistry o f C L reactions, to optimize post column 
reaction conditions for l iquid chromatography and to 
quantify analytes in relatively clean or synthetic matrices. 
In the last 5 years (1995-1999, the period covered by this 
review) however, there has been a notable increase in the 
application o f F l - C L to the analysis o f real sample 
matrices (1-227). This has been achieved by a combina
tion o f more sophisticated on-line sample treatment, eg 
the use o f solid phase reagents to preconcentrate selected 
analytes and/or to remove the sample matrix, and the use 
o f more inherently selective C L reactions. For an 
historical perspective on the development o f F l - C L the 

•Correspondence to: P. J. Worsfold, Department of Environmental 
Sciences. Plymouih Environmental Research Centre, University of 
Plymouth, Drake Circus, Plymouth PL4 8AA. UK. 
Coniract/gnmi sponsor Shell Research Ltd, UK. 
Contract/grant sponsor British Council, UK. 
Contract/grant sponsor MAST Programme of the EU; conunct/grani 
number MAS3-CT97-0I43. MEMOSEA. 

reader is referred to two previous reviews (228, 229) that 
cover the periods late 1970s-mid-1992 and 1991-mid-
1995, respectively. 

In v iew o f this development, and to make the review 
more directly useful for analytical problem solving, 
papers have been classified by generic application area 
and analytes have been listed alphabetically wi th in each 
category. The application areas are pharmaceutical 
(Table 1), environmental (Table 2), foods and beverages 
(Table 3) and biomedical (Table 4) and a group o f papers 
in which the matrix has not been specified (Table 5). A l l 
l imits o f detection ( L C D s ) are quoted as reported in the 
origial paper. 

CHEMILUMINESCENCE REACTIONS 

I f one looks al the range o f chemistries used i n F I - C L 
systems it is clear that variants o f the luminol reaction are 
the most popular, but there are also a significant number 
o f papers that utilize the oxidiz ing power o f permanga
nate and ce r ium(IV) . There are also several references to 
1,10-phenanthroline, gallic acid/pyrogallol, lucigenin 
and peroxyoxalate. Other reagents that have been used 
include ruthenium(II) , periodate, T C N Q , fluorescein and 
quercetin. The relatively small number o f reactions 
involv ing peroxyoxalate is in marked contrast to the 
situation in l iquid chromatography ( L C ) and is related to 
the fact that the major i ty o f F I - C L applications involve 
aqueous matrices. 

This review does not cover the use o f C L detection 

Copyright © 2001 John Wiley & Sons, Ltd. 



REVIEW P. Fletcher et al. 

Table I . Pharmaceutical applications 

Analyte Sample matrix Reaction L O D 
Reference 
number 

Amidopyrine 

Analgin 

Analgin 

Ascorbic acid 

Ascorbic acid 

Ascorbic acid 

Ascorbic acid 

Ascorbic acid 

Ascorbic acid 

Ascorbic acid 

Aztreonam, penicillin G, 
cephalothin, 6-amino-
penicillanic acid, 7-
aminocephalosporanic 
acid, panipencm, 
latamoxef and 
faropenem 

Denzocaine, butacaine, 
butoform, procaine, 
tetracaine 

Captopril 

Cefadroxil monohydrate 

Ciprofloxacin 
hydrochloride 

Co(ll) 

Codeine 

Dopamine 

Injection solutions 

Pharmaceutical 
preparations 

Tablets 

Vitamin C tablets and 
multivitamin 
capsules 

Pharmaceutical 
samples and tablets 

Pharmaceutical 
samples 

Tablets 

Pharmaceutical 
preparations 

Pharmaceuticals and 
blood 

Tablets 

Aqueous 

Pharmaceutical 
preparations 

Pharmaceutical 
preparations 

Pharmaceutical 
preparations and 
biological fluids 

Tablets and capsules 

Eye lotions 

Pharmaceutical 
samples 

Aqueous 

Dopamine, adrenaline and Injection solutions 
isoprenaline 

Ergonovine maleaie Pharmaceutical 
preparations 

Furosemide Tablets 

Glutathione and cysteine Aqueous 

Formaldehyde-acidified potassium 
permanganate CL 

Auto-oxidation of analgin in the presence 
of Tween 80 with rhodamine 6G as a 
sensitizer immobilized on a 
cation-exchange column 

Ce(lV)-sulphuric acid CL with rhodamine 
6G as a sensitizer 

Luminol-Fe(Il)-Na2B407-potassium 
hydroxide CL 

Luminol-K7[Cu(I06)2]-potassium 
hydroxide CL 

Lucigenin CL with ascorbic acid in a basic 
medium, enhanced with iron(ll l) and 
Brij 35 

Luminol-sodium hydroxide-hydrogen 
peroxide CL 

Luminol-potassium periodate-ascorbic 
acid CL 

Potassium hcxacyanoferrate(lll)-lurninol 
CL 

Inhibition of luminol-hexacyanoferTaie(lll) 
CL (immobilized on an anion-exchange 
resin column, elution with sodium 
phosphate) 

Luminol-hydrogen peroxide CL with 
hexacyanoferrate(lll) and 
hexacyanoferrate(ll) as catalysts 

Acidic permanganate CL 

Cerium(lV)-sulphuric acid CL 

Potassium permanganate-sulphuric acid 
CL with quinine as sensitizer 

Cerium sulphate-sulphuric acid-NajSOj 
CL 

Lophine-Co(II)-hydrogen peroxide CL 
enhanced with hydroxylammonium 
chloride 

Permanganate-polyphosphoric acid CL 

Inhibition of the Iucigenin-Fe(ll)-Brij 
35 CL reaction 

Treatment with EDTA-Reincche's salu 
Detection using luminol-hydrogen 
peroxide CL 

Potassium hexacyanoferrate(llI)-5odium 
hydroxide CL enhanced using 
hexadecylpyridinium chloride 

Ce(IV>-suIphuric acid chemiluminescence, 
sensitized by rhodamine 6G 

Ce(IV)-hydrocortisone CL 

3 X lO'^mol/dm^ (1,2) 

0.15mg/L (3) 

0.02 Mg/mL (4) 

0.2 ng/mL (5) 

1.5 X l O - V o l W (6) 

2 X 10 ' 'mol/dm^ (7) 

8.6 X lO-'mol/dm^ (8) 

0.8 ng/mL (9) 

4 X IO**mol/dm^ (10) 

5.5 X l O - W m L (11) 

100.60.40,20,4 ,2 , (12) 
1 and 1 ng 
respectively (5 pL 
injection) 

30 ng/mL, 20 ng/mL, (13) 
30 ng/mL, 40 ng/ 
mL and 3 ng/mL, 
respectively 

2 X IQ- 'mol/dm^ (14) 

0.05ng/mL (15) 

0.27 mg/L (16) 

4.5 X I0-*'mol/dm^ (17) 

2 X IO"^mol/dm^ (18) 

2 X lO- 'moVdm^ (19) 

4 ng/mL. 20 ng/mL (20) 
and 16 ng/mL, 
respectively 

0.07 ng/L (21) 

2.2 X lO- 'mol/dm^ (22) 

2 X 10"''mol/dm^and (23) 
1.4 X lO-^'mol/dm^ 
respectively 

Copyright © 2001 John Wiley & Sons. Ltd. Luminescence 2001; 16:1-23 
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Table I continued. 

Analyte Sample matrix Reaction L O D 
Reference 

number 

hlydrochlorothiazide 

Hydrogen peroxide, 
glucose and ascorbic 
acid 

Imipramine 

Imipramine and 
chlorpromazinc 

isoniazid 

Isoniazid 
Levodopa 
Medazepam 
Menadione sodium 

bisulphite 
Mctholrexale 

Morphine, sinomenine 
and codeine 

Naltrexone 

Naproxen 

Paracetamol 

Penicillamine 

Perphenazine 
Persaniin 

Phenothiazines 

Prednisone acetate 

Progesterone and 
hydrocortisones 

Promethazine 
hydrochloride 

Pyridoxine hydrochloride 
Reserpine 

Riboflavine 

Rutin 

Rutin 

Salicylamide 

Sodium nitroprusside 

Pharmaceutical 
preparations and 
tablets 

Pharmaceuticals 

Tablets 

Urine 

Pharmaceutical 
formulations 

Pharmaceuticals 
Tablets 
Drug formulations 
Injection solutions 

Injection solutions 
and tablets 

Pharmaceutical 
preparations and 
tablets 

Pharmaceutical 
preparations 

Pharmaceutical 
preparations 

Pharmaceutical 
formulations 

Pharmaceutical 
preparations 

Drug formulations 
Phanmaceutical 

preparations and 
tablets 

Pharmaceutical 
preparations and 
biological fluids 

Tablets 

Aqueous 

Tablets 

Tablets 
Injection solutions 

Injection solutions 
and tablets 

Sophora japonica L 
(traditional Chinese 
medicine) 

Traditional Chinese 
medicines 

Human urine and 
pharmaceutical 
formulations 

Pharmaceuticals 

Ce(lV)-sulphuric acid CL, sensitized by 
rhodamine 6G 

LuminoMiydrogen peroxide-potassium 
periodate CL (indirect CL using glucose 
oxidase for the detection of glucose) 

Imipramine-glyoxal-potassium 
permanganate CL 

Acidified permanganate CL 

1.5 X 10"^mol/dm^ 

3 X IO-^mol/dm^ 
0.08 Mg/mL and 
6 x 10-^mol/dm^ 
respectively 

12 ng/mL 

5 X I0"^moi/dm^and 
2 x 10-*mol/dm^ 
respectively 

5mg/L Inhibition of the luminol-hydrogen 
peroxide-potassium hexacyanoferrate(111) 
reaction 

Mn(ll>-luminol-potassium periodate CL 
Acidified permanganate CL 
Potassium permanganate-sulphuric acid CL 
Ce(IV)-menadione sodium bisulphite CL 2 x lO""* pg/mL 

30 ng/mL 
62 Mg/L ^ 
1.85 X IO-*mol/dm^ 

Permanganate-H2S04-formaldehyde CL 3.4 x 10~^mol/dm^ 

Treated with EDTA-Reineche's salt. 
Detected with luminol-hydrogen 
peroxide CL 

Acidified permanganate CL 

Cc(IV)-sulphuric acid CL 

Inhibition of the luminol-hydrogen 
peroxide-potassium hexacynoferrate(III) 
reaction 

Ccrium(lV)-sulphuric acid CL with 
quinine as sensitizer 

Acidified permanganate CL 
Sodium hypochlorite CL with Triton 

X-lOO as enhancer 

Cerium(IV)-acid CL with rhodamine B 
as a sensitizer 

Na2S03-ammonium eerie sulphate-
sulphuric acid CL 

Cerium(IV)-cysteine-sulphuric acid CL 
sensitized by the analyte 

Potassium permanganate-oxalic acid CL 

60 ng/mL, 70 mg/mL 
and 600 ng/mL 
respectively 

2.5 ng/mL 

15 ng/mL 

2.5 pg/mL 

15pmol (50 pL 
injection) 

50 mg/L 
11 ng/mL 

0.01-0.1 Mg/mL 

31 Mg/L 

0.10 Mg/mL 

3.5 X lO'^ 'g/mL 

6 Mg/mL 
0.3 Mg/mL 

Luminol-hydrogen peroxide CL 
Permanganate-hydrogen peroxide-H6P40i3 

CL 
Acidified potassium permanganate-sodium 62 ng/mL 

dithionite CL 
Luminol-potassium hexacyanoferrate CL 6.7 X 10-^g/mL 

Sodium hypochlorite-rutin-semicarbazide 13 pg/L 
hydrochloride CL 

Acidified potassium permanganate CL 

Luminol-hydrogen peroxide CL 

30 ng/mL 

9 X IQ-^moi/dm^ 

(24) 

(25) 

(26) 

(27) 

(28) 

(29) 
(30) 
(31) 
(32) 

(33) 

(34) 

(35) 

(36) 

(37) 

(38, 39) 

(40) 
(41) 

(42) 

(43) 

(44) 

(45) 

(46) 
(47) 

(48) 

(49) 

(50) 

(51) 

(52) 

Copyright © 2001 John Wiley & Sons, Ltd. Luminescence 2001;16:1-23 
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Table 1 continued. 

P. Fletcher ei al. 

Reference 
Analyte Sample matrix Reaction L C D number 

Tannic acid Chinese gall Inhibition of luminol-hydrogen peroxide- 9 X 10"'mo!/dm^ (53) 
(traditional Cu(II) CL 

(53) 

medicine) 
Tetracyclines Commercial Acidic permanganate CL with octylphenyl 0.4-0.6 Mg/mL (54) 

formulations polygylcol ether as sensitizer 
0.4-0.6 Mg/mL (54) 

Tetracyclines Phamiaceutical Cerium(IV)-sulphuric acid CL with O.025-O.25nmol (55) 
preparations quinine as sensitizer (50 ^ L injection) 

Tetrahydropalmatine Pharmaceutical Acidified potassium permanganate-sodium 3.2 ng/mL (56) 
preparations and dithionite CL 
tablets 

Thiamine nitrate Tablets Potassium hcxacyanoferTate(Ill)-sodium 2.0 X IO~^mol/dm^ (57) 
hydroxide—uranine CL 

(57) 

Tiopronin Pharmaceuticals Ce(lV)-sulphuric acid CL using rhodamine 1 X lO'^mol/dm^ (58) 
6G and quinine as fluorophores 

(58) 

Tiopronin Pharmaceuticals Cerium(IV)-sulphuric acid CL with quinine 3.4 X 10-^mol/dm^ (59) 
as a sensitizer 

Vitamin Injection solutions Na2S20j-potassium permanganate-sodium 58 ng/mL (60) 
and tablets polyphosphate CL 

(60) 

Tabic 2. Environmental applications 

Reference 
Analyle Sample matrix Reaction LOD number 

Acclaldchyde 

As 

As(ll l) 

ChationeHa antiqua (red 
tide phytoplankton) 

Chlorine 

Co(II) 

Co(II) 

Co(n) 

Co(II) and Cr(l l l ) 

Co(II)and Ni( l l ) 

Cr(l l l ) 

River/waste water 

Ores and rocks 

Geochemical samples 

Aqueous 

Tap water 

Seawater 

River, sea and tap 
water 

Sea water and river 
water 

Mineral waters 

Hair 

Tap water 

Gallic acid-hydrogen peroxide-sodium 
hydroxide CL 

Dissolution with HCI. Reduction o f As(V) 
to As( l l l ) using potassium iodide-
ihiourea followed by luminol-hydrogen 
peroxide-Cr(III) CL detection 

Sample mixed with K2Cr207-H2S04 
followed by luminol-hydrogen peroxide 
CL 

2-Methyl-6-(p-methoxyphenyl>-3,7-
dihydroimidazo[ 1,2-a]-pyra2in-3-one-
superoxide CL 

Luminol is immobilized on an anion 
exchange resin column. Sodium 
hydroxide is passed through the column 
to clute luminol, which is mixed with a 
sample stream to produce CL 

Preconceniration using 8-quinolinol 
immobilized on 8HQ-MAF and CL 
detection using gallic acid-hydrogen 
peroxide 

Luminol chemiluminescence enhanced 
with COzfa) 

Quercetin-hydrogen peroxide-potassium 
hydroxide reversed flow injection C L 

Cetyltrimethylammonium bromide-
hydrogen peroxide-luminol CL 

Microwave digestion in HNO3 and 
hydrogen peroxide. Detection using 
alizarin purple-ethanol cetyltrimethyl
ammonium bromide-potassium 
hydroxide 

Hydrogen peroxide-luminol CL 

0.31 ng/mL 

3.4 X 10"* mol/dm^ 

1 X 10"'^ mol/dm^ 

2 X 10^ cells/mL 

8 X IQ-'^g/mL 

0.62 ng/L 

5 X 10"'^ mol/dm^ 

0.1 ng/mL 

10 pg/mL and 
12 pg/mL 
respectively 

0.1 Mg/mL 

0.5 Mg/mL 

(61) 

(62) 

(63) 

(64) 

(65) 

(66) 

(67) 

(68) 

(69) 

(70) 

(71) 
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Table 2 continued. 

Analyte Sample matrix Reaction LOD 
Reference 

number 

Cr<lll) and Cr(Vl) 

Cr(III) and Cr(VI) 

Cr(l l l ) and Cr(VI) 

Cr(Vl) 

Cu (complexed) 
Cu(ll) 

Cu(Il) 

Cyanide 

Cyanide 

Fe (dissolved) 

Fe(ll) 
Fe(ll) 

Fed!) 

Fe(ll)and Fe(III) 

Fe(II)and Fe(lll) 

Fe(ll) and hydrogen 
peroxide 

Fe(Il) and total Fe 

Fe(ll) and total Fe 

Waste water 

Natural waters 

Waste water 

Waste water 

Sea water 
Hair 

Natural waters 

River water 

Tap and waste water 

Sea water 

Fe and Mn (dissolved) Underground water 

Natural waters 
Treated waters 

Hair 

Sea water 

Natural waters 

Rain water 

River and sea water 

Human hair and 
natural waters 

Reduction to Cr(III) using hydrogen 
peroxide followed by detection with 
luminol-hydrogen peroxide CL 

On-line oxidation o f Cr(Ill) to Cr(Vl) on a 
Pb02 column followed by quercetin-
hydrogen peroxide-potassium hydroxide 
CL 

Reduction using copper-coated zinc 
followed by luminol-hydrogen peroxide 
CL detection 

CL produced by luminol and hexacyano-
fermte(ll) (immobilized on an anion-
exchange resin column, eluted with 
sodium phosphate) 

1,10-Phenanthroline-hydrogen peroxide CL 
Luminol-potassium permanganate 

immobilized onto D201*7 anion-
exchange resin. Elution with sodium 
hydroxide to react with Cu(II) to produce 
CL 

Immobilized luminol-cyanide are eluted 
with NajPOa and mixed with the 
sample-sodium hydroxide for CL 
detection 

Sulphite generated by the reaction of 
cyanide and sodium thiosulphate 
catalysed by immobilized rhodanese 
reacts with immobilized sulphite oxidase 
and produces sulphate and hydrogen 
peroxide, which is detected with luminol 
and peroxidase 

Luminol immobilized on Amberlyst resin 
with copper immobilized on D151 resin. 
CL is produced with cyanide 

Preconcentration with TSK-8HQ, followed 
by detection with luminol-hydrogen 
peroxide CL 

Luminol-potassium periodate CL 

Luminol-hydrogen peroxide CL 
O-phenanihroIine-luminol-potassium 

periodate CL (reversed flow-injection) 
Lucigenin-sodium hydroxide CL with 

cetyltrimethylammonium bromide as 
sensitizer 

Preconcentration with 8-HQ, followed 
by detection with luminol CL 

Fe(lll) reduced to Fc(ll) with Cu-coated 
Zn. Luminol immobilized on an anion-
exchange resin. Eluted with sodium 
hydroxide for CL detection 

Oxygen-peroxyoxalate CL 

Preconcentration on Amberlite XAD-4 
fiinctionalized by N-hydroxyethylethyl-
ethylenediamine groups followed by 
brilliant sulphoflavine-hydrogen 
peroxide CL detection 

Luminol-hydrogen peroxide CL enhanced 
with cationic surfactant teiradecyl-
tri methyl ammonium bromide 

< 1 0 - ' mol/dm^ 

1 ng/mL 

2.3 X 10"^ mol/dm^ 

0.014 pg/mL 

1 X 10" ' ° mol/dm^ 
0.2 ng/mL 

1.3 X 10"^ mol/dm^ 

1.2 X 10"* mol/dm^ 

2 X l O - ' g / m L 

2.2 X 10"" mol/dm^ 

3 X 10"*'pfi/mL and 
5 X lO-WmL 
respectively 

2 X 10"''mol/dm^ 
3 ng/L 

2 pg/mL 

4 X 1 0 " " mol/dm^ 

0.4 ng/L 

< l X 10" ' mol/dm^ 

0.80 nmol/L and 
0.36 nmoI/L, 
respectively 

(72) 

(73) 

(74) 

(75) 

(76) 
(77) 

(78) 

(79) 

X 10-
and ] 

' mol/dm-* 
X l O ' ^ m o l / 

(80) 

(81) 

(82) 

(83) 
(84) 

(85) 

(86) 

(87) 

(88) 

(89) 

(90) 

dm , respectively 
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Table 2 continued. 

Analyte Sample matrix Reaction L O D 
Reference 

number 

Heterosigma carierae (red Aqueous 
tide phytoplankton) 

Hg(ll) 

Hydrazine 

Hydrazine 

Hydrogen peroxide 

Hydrogen peroxide 

Hydrogen peroxide 
Hydrogen peroxide 

Hydrogen peroxide 

Hydrogen peroxide 

Hydrogen peroxide 
Hypochlorite 

Ir(IV) 

Mn 

Mn(l l ) 

Mn(l l ) 

Mn(ll) 
Nitrite 

Nitrite 

Oxygen (dissolved) 

Ozone 
Pb(ll) 

Pb(ll) 

Phosphate 

Environmental waters 

Drinking water 

Air 

Rain water 

Snow water 

Sea water 
Rain water 

Rain water 

Air 

Sea water 
Tap water 

Ores and rocks 

Human hair 

Potable water 

Natural waters 

Sea water 
Natural waters 

Drinking water and 
food 

River and lap water 

Treated waters 
Natural waters 

Waste water 

Natural waters 

2-Methyl-6-(p-methoxyphenyl)-3,7-
dihydroimidazo[ 1,2-a]-pyrazin-3-one 
(MCLA>-superoxide CL 

Cu(II)-luniinol-sodium hydroxide-
potassium hexacyanoferTate(II) CL 

CL produced from N-bromosuccinimidc 
in alkaline medium with dichloro-
fluorescein as sensitizer 

Absorption in sulphuric acid followed by 
luminol-potassium periodaie-sodium 
hydroxide CL 

Octylphenyl polyglycol ether-acidic 
potassium permanganate CL 

Potassium periodate-potassium carbonate 
CL 

Co(II)-luminol CL 
Immobilized Co(II) and luminol are eluted 

with NaS04. CL is produced in the 
presence of hydrogen peroxide 

Luminol and Co(II) are immobilized on 
a strongly basic anion-exchange resin 
and a weakly acid cation-exchange resin. 
respectively. Reagents are eluted by 
hydrolysis for CL detection. 

Hydrogen peroxide diffusion scrubbed. 
Detection with l,r-oxalyldi-imida2oIe-
peroxyoxalate CL 

Co(lI)-hydrogen peroxide-luminol CL 
Oxidation of indole in propan-2-ol with 

hydrogen peroxide 
Potassium hydroxide-hydrogen peroxide-

Tween-80 CL 
Sample ashed and dissolved in acid. 

Detected using l2-luminol CL 
7,7,8,8-Tetracyanoquinodimethane 

oxidation with Eosin Y as sensitizer 
Immobilized luminol and IO4" eluted with 

Na3P04 for CL with Mn(II) 
Luminol-hydrogen peroxide CL 
Nitrite reacts with hydrogen peroxide to 

form peroxynitrite, which produces CL 
with luminol 

Luminol-l2 (produced from potassium 
iodide in acid) CL 

Reaction with MnS04-iodine-potassium 
iodide-ammonia to form a precipitate 
that is dissolved in H2SO4-H3PO4. 
Detection with luminol-sodium 
hydroxide 

Luminol-ozone CL using gas diRusion FIA 
Lucigenin-hydrogen peroxide-sodium 

hydroxide CL enhanced with ethanol 
Pb(ll) replaces Fe(II) from an EDTA 

complex. Fe(II) reacts with luminol-
sodiimi hydroxide to produce CL 

Hydrogen peroxide produced from the 
reaction o f immobilized pyruvate oxidase 
with phosphate is detected using 
luminol-horseradish peroxidase CL 

1 X 10^ cclls/mL 

0.33 pg/mL 

5 X 10" ' mol/dm^ 

2 pg/m^ 

6.0 X lO- 'mol /dm^ 

5 X l O - ' m o l W 

1.06 X 10"^ mol/dm^ 
3.5 X 10"^ mol/dm^ 

1.2 X 10"* mol/dm^ 

3.4 ppbv 

4.2 X 10 - ' °mol /dm^ 
5 Mg/mL 

I I pg/L 

0.1 ng/mL 

4.5 pg/mL 

1 X 10"^g/mL 

2.9 X 10"" mol/dm^ 
1 X 10"'mol/dm^ 

1.6 ng/mL 

0.412 mg/L 

8 pg O3 L 
0.1 pg/mL 

20 ng/L 

7.4 X 10"^ mol/dm^ 

(91) 

(92) 

(93) 

(94) 

(95) 

(96) 

(97) 
(98) 

(99) 

(100) 

(101) 
(102) 

(103) 

(104) 

(105) 

(106) 

(107) 
(108) 

(109) 

(110) 

(111) 
(112) 

(113) 

(114, 
115) 
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Table 2 continued. 

REVIEW 

Analyte Sample matrix Reaction LOD 
Reference 
number 

Phosphate 

Phosphate 

Phosphate 

Phosphate 

Phosphorus 

Drinking water 

River water 

River water 

Natural waters 

Natural waters 

Polyaromatic hydrocarbons Organic (hexane or 
acetonitrile) 

Sb(Ill) Ores and rocks 
Sulphite Tap water 

Sulphite and sulphur 
dioxide 

Sulphur dio.xide 

Sulphur dioxide 

Sulphur dioxide 

V(IV) 

V(V) 

Volatile phenols 

Zr(lV) 

Water and air 

Air 

Air 

Air 

Tap water 

Geochemical and 
hair samples 

Polluted waters 

Rocks and ores 

Phosphate ion-dependent pyruvate oxidase 1.6 x 10" mol/dm* 
reaction produces hydrogen peroxide 
which is detected using luminol CL 
catalysed by Artbromyces ramosus 
peroxidase 

Immobilized pyruvate oxidase G producing 9.6 x 10"^ mol/dm* 
hydrogen peroxide for luminol CL 
detection 

Maltose phosphorylase, mutarotase, and I x 10"* mol/dm^ 
glucose oxidase immobilized on N -
hydroxysuccinimide beads with 
Arthromyces ramosus peroxidase-
luminol CL detection 

Purine nucleoside phosphorylase and 3.9 x I0~® mol/dm' 
xanthine oxidase immobilized on amino-
propyl-controlled pore glass beads 
convert phosphate to hydrogen peroxide 
for peroxyoxalate-rhodamine B CL 
detection 

Conversion to phosphomolybdic acid using 36 pg/mL 
HCI04-ammonium molybdate with 
luminol-sodium hydroxide CL detection 

Peroxyoxalate-hydrogen peroxide CL 0.6-79 pg/mL 

O.I ng/mL 
0.01 mg/L 

1 X lO- 'mol /dm-

K2Cr207-luminol-sodium hydroxide CL 
Auto-oxidation sensitized by rhodamine 

60 (immobilized on cation exchange 
resin) enhanced with Tween 80 

Luminol immobilized on an anion 
exchange column. Luminol is eluted by 
hydrolysis for CL detection 

Adsorption using triethanolamine followed 4.1 x 10"^ mol/dm** 
by Ru(2.2'-bipyridyI)3^-*--S03^--K2S208 
CL 

Absorption on triethanolamine followed by 7 x 1 0 " ' ° mol/dm^ 
Tris( 1,10-phenanthroline)ruthenium-

potassium periodate CL 
Adsorption using triethanolamine followed 2.5 x 10"^ mol/dm^ 

by Ru(2.2'-bipyridyl)3^-^-S03^--
potassium permanganate CL 

Potassium dichromate-potassium iodide- 7 x I 0 " ' ° mol/dm^ 
sodium hydroxide-luminol CL 

Luminol and hexacyanoferTate(II), are both 5.4 x 10""* ng/cm^ 
immobilized on an anion-exchange resin 
column, and are eluted with phosphoric 
acid to produce CL 

Quenched p-chlorobenzenediazonium 
fluoroborate-hydrogen peroxide CL 

Luminol-hydrogen peroxide CL 

0.015 - 0 . 0 3 Mg/mL 

30 pg/L 

(116) 

(117) 

(118) 

(119) 

(120) 

(121) 

(122) 
(123) 

(124) 

(125) 

(126) 

(127) 

(128) 

(129) 

(130) 

(131) 

with other flow systems, eg L C , C L immunoassay labels 
or elecirogenerated C L . There are also a l imited number 
o f F I - C L papers (not tabulated) in which unstable 
oxidants have been used by electrochemical generation 
o f the reagent wi th in the F l manifold (230-236). 

PHARMACEUTICAL APPLICATIONS 

The high sensitivity o f F I - C L has attracted considerable 
interest for the analysis o f pharmaceutical samples (Table 
I ) using a variety o f oxidants. The luminol-hydrogen 
peroxide reaction, wi th and without K7Cu(I06)2, has 
been used for the measurement o f ascorbic acid in tablets 
(6, 8), morphine, sinomenine and codeine in tablets and 
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Table 3. Food and beverage applications 

Analyte Sample matrix Reaction LOD 
Reference 

number 

3,4-Dihydroxybenzoic 
acid 

Aceialdehyde 

Amino acids 

Ascorbic acid 
Ascorbic acid 

Ascorbic acid 

Ascorbic acid 
Ascorbic acid 

Carbohydrates 
Choline 

Citric acid 

Ethanol 

Free L-malate 

Glucose and fructose 

Glycerol 

Hydrogen peroxide 

L-lactaie 

Nitrite 

Sulphite 
Sulphite 

Sulphite 

Sulphite 

Tannic acid 

Wines 

Alcoholic beverages 

Food 

Beverages 
Mung bean sprouts, 

tomato and 
cucumber skins 

Fruit juices 

Vegetables 
Vegetables 

Aqueous 
Cabbage 

Non-alcoholic 
beverages 

Beer 

Wines 

Aqueous 

Wines 

Fermented liquors 

Food samples 

Water and food 

Sugar 
Beers and wines 

Wines 

Sugar 

Hop pellet samples 

Inhibition o f the luminol-hydrogen 
peroxide-Co(II) CL 

Gallic acid-hydrogen peroxide-sodium 
hydroxide CL 

Cu(II) amino acid complex formation, 
catalysis o f the luminol-hydrogen 
peroxide and o-phenanthroline-hydrogen 
peroxide CL systems 

Oxidation with permanganaie-acid 
Lum ino l-Fe( 11 >-Na 2 B40T-potass i um 

hydroxide CL 

Luminol and potassium permanganate 
immobilized on resins in a glass column. 
Fluent mixed with sodium hydroxide 
to produce CL 

Acidified permanganate-luminol CL 
Inhibition of the CL produced from luminol 

and ferricyanide (immobilized on an 
anion-exchange resin column, eluled 
with sodium phosphate) 

Acidified permanganate/Mn(II) CL 
Luminol-Co(ll) detection o f hydrogen 

peroxide produced from an immobilized 
choline oxidase column 

Reduction o f Fe(III) to Fe(II) with citric 
acid followed by luminol CL detection 

Production of hydrogen peroxide using 
alcohol oxidase followed by luminol CL 

Malate dehydrogenase/reduced 
nicotineamide adenine dinucleotide 
oxidase co-immobilized on polymer 
beads to produce hydrogen peroxide for 
detection using luminol-hexacyano-
ferrate(III) CL 

Pyrogallol-hydroxylamine hydrochloride-
periodate CL 

Glycerol dehydrogenase and N A D H 
oxidase are co-immobilized on 
poly(vinyl alcohol) beads to produce 
hydrogen peroxide, which was detected 
using luminol-hexacyanoferTate(llI) CL 

Peroxyoxalaie CL in an emulsion of ethyl 
acetate, non-ionic surfactant polyoxy-
ethylene(20) sorbitone monolaurate 
(Tween 20) and water 

Immobilized L-lactate oxidase to produce 
hydrogen peroxide for luminol-horse-
radish peroxidase-!uminol CL detection 

Luminol-l2 (produced from potassium 
iodide in acid) CL 

Ru(2,2'-bipyridyl)32+-S03^'-K2S208 CL 
Auto-oxidation sensitized by rhodamine 

6G (immobilized on cation exchange 
resin) enhanced with Tween 80 

Na2COr-NaHC03-Cu(II) CL with a gas 
dif5ision module 

Ru(2,2'-bipyridyl)3^'^-S03^"-potassium 
peroxide CL 

Inhibition o f luminol-hydrogen peroxide-
Cu(II) CL 

2.7 X 10-'' mol/dm^ 

0.31 ng/mL 

pmol 

5 X 10" ' mol/dm^ 
0.2 ng/mL 

5Mg/L 

0.1 Mg/mL 
5.5 X 10-^ Mg/mL 

1 X 10"** mol/dm^ 
1 X 10" ' mol/dm^ 

0.1 Mg/mL 

0.01% (v/v) 

8 x 10"* mol/dm^ 

Not reported 

7 X lO"** mol/dm^ 

1 X 10-*'mol/dm-

1 X 10-^mol/dm^ 

1.6 ng/mL 

4.1 X 10"^ mol/dm^ 
0.03 mg/L 

5 X 10" ' mol/dm^ 

2.5 X I 0 - * mol/dm^ 

9 X lO- 'mol /dm^ 

(132) 

(61) 

(133) 

(134) 
(5) 

(135) 

(136) 
( I I ) 

(137) 
(138) 

(139) 

(140) 

(141) 

(142) 

(143) 

(144) 

(145) 

(109) 

(125) 
(146) 

(147) 

(127) 

(53) 
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Table 4. Biomedical applications 

Analytc Sample matrix Reaction LOD 
Reference 

number 

Acetylcholine and choline Rat brain tissue 

Acetylcholine and choline Culture media 

Adcnosine-5'-triphosphate Aqueous 

i-Chymotrypsin. trypsin 
and a commercial 
protease 

Amino acids 

Amino acids 

Amino acids, polyamines, 
and salicylic acids 

Bilirubin 

Branched-chain L-amino 
acids 

Catecholamines 

Chloroicn-acycline 

Cholesterol 

Cholesterol 

Cr(lll) 
Cu(ll) 
D-amino acids 

D-glucose and 3-hydroxy-
butyrate 

Dopamine 

Aqueous 

Aqueous 

Aqueous 

Aqueous 

Aqueous 

Plasma 

Plasma 

Urine 

Human serum 

Blood serum 
Urine 
Serum 

Human plasma 

Serum 

Biochemical samples 

Following sample preparation, injection 
into stream, passed through two reactors 
containing acetylcholinesterase and 
choline oxidase immobilized on glass 
beads. Detection using Co(II)-luminol 
CL 

Production of hydrogen peroxide using an 
immobilized enzyme reactor followed 

by detection with luminol-Co(II) CL 
enhanced using sodium dodecylsulphate 

Alkaline phosphatase from Escherichia coli 
(immobilized) is used to produce 
hydrogen peroxide for detection with 
luminol-heteropoly acid 

Immobilized tripeptide and isoluminol-
Co(ll)-hydrogen peroxide CL 

Inhibition of the lucigenin-Co(ll) reaction 

Ninhydrin-hydrogen peroxide-Cu(II) or 
Co(II) CL 

Unsaturated complex of Cu(II) and organic 
ligands enhanced 1,10-phenanthroline-
hydrogen peroxide-<TMAB CL 

N-bromosuccinimide or sodium 
hypochlorite CL 

Leucine dehydrogenase and NADH oxidase 
are co-immobilized on aminated 
poly(vinyl alcohol) beads to produce 
hydrogen peroxide which is detected 
using luminol-hexacyanoferrate(lll) CL 

Imidazole-catalysed decomposition by 
catecholamines producing hydrogen 
peroxide which is detected using 
peroxyoxalaie CL 

Copper sulphate-hydrogen peroxide-
ammonium carbonate-cetyltrimethyl-
ammonium bromide CL 

Cholesterol oxidase immobilized on amine-
modified silica gel in a column is used to 
produce hydrogen peroxide. Luminol and 
ferricyanide are co-immobilized on an 
anion-exchange column for CL detection 

Hydrogen peroxide produced from an 
immobilized cholesterol oxidase column 
is detected using luminol-Co(Il) CL 

Luminol-hydrogen peroxide CL 
Hydroxylamine-fluorescein-hydroxide CL 
Immobilized enzyme column reactor with 

peroxyoxalate CL detection 
Two enzyme reactors, one containing 

glucose dehydrogenase and N A D H 
oxidase, the other containing 3-hydroxy-
butyrate dehydrogenase and NADH 
oxidase, co-immobilized on beads to 
produce hydrogen peroxide for detection 
using luminol-hexacyanoferrate(lll) CL 

Imidazole-peroxyoxalaie CL 

600 and 500 fmol, 
respectively 

1 X 10"^ mol/dm^ 

1 X 10"*mol/dm^ 

2.7 X 10"' 'mg/L, 
4 X 1 0 - ^ m ^ L 
and 2 x 10"^ 
mg/L respectively 

1 X 10"^-2 X lO"'^ 
mol/dm^ 

4.2 X 10-'-9.2 X 
10"* mol/dm^ 

2.7-90 pmol 

1.75 Mg/mL 

3 X 10"' mol/dm^ 

Not reported 

4 X 10"*mol/dm^ 

5 X 1 0 " V m L 

0.1 mg/L 

0.01 pg/L 
0.5 pg/L 
0.4-30 pmol (10 pL 

injection) 
1 X 10-^ mol/dm^ 

and 1 X IQ-'^moi/ 
dm^, respectively 

lOnmol (20 pL 
injection) 

(148) 

(149) 

(150) 

(151) 

(152) 

(153) 

(154) 

(155) 

(156) 

(157) 

(158) 

(159) 

(160) 

(161) 
(162) 
(163) 

(164) 

(165) 
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Table 4 continued. 

Analyte Sample matrix Reaction LOD 
Reference 
number 

Fe(IIO 

Glucose 

Glucose 

Glucose 

Glucose, acelylcholine 
and choline 

Glycerol-3-phosphatc 

Hydrogen peroxide 

Iodide 

L-alanine, 2-oxoglutarate 
and L-glutamaie 

L-valinc, L-leucine and 
L-iso leucine 

Lysine and glucose 

Lysine and ornithine 

Polyphenols, monophenols 
and sugars 

Porphyrins 
Proteins 

Proteins 

Pyruvate 
Serotonin and related 

indoles 

Blood 

Rabbit fluid and 
blood 

Biochemical samples 

Plasma 

Urine 

Aqueous 

Human serum 

Urine 

Cell cultivation media 
of mammallian 
cells 

Plasma 

Aqueous 

Aqueous 

Not reported 

Aqueous 
Bovine serum 

albumin, human 
serum albumin, 
human y-globulin, 
and egg albumin 

Bovine serum 
albumin, human 
serum albumin, 
y-globulin, and egg 
albumin 

Blood serum 
Aqueous 

Luminol and potassium hexacyano-
ferrate(II) ore immobilized on a D20I 
anion exchange column. Elution with 
NazSOj. Detection with sodium 
hydroxide 

Microdialysis followed by reaction in an 
immobilized glucose oxidase reactor to 
produce hydrogen peroxide, detected 
with luminol-hexacyanoferrate CL 

K7[Cu(I06)]2-luminol-sodium hydroxide 
CL 

Immobilized pyranose oxidase produced 
hydrogen peroxide for reaction with 
luminol in a flow cell containing 
immobilized peroxidase 

Production of hydrogen peroxide using 
immobilized glucose oxidase or 
acetylcholine esterase-choline oxidase 
followed by peroxyoxalate CL 

Glycerol-3-phosphate oxidase immobilized 
on controlled pore glass. Detection with 
luminoI-Co(II) CL 

3-Propyl-7,8-dihydropyridazino[4,5-g] 
quinoxaline-2,6,9( 1 H)-trione 

Conversion to iodine by potassium 
dichromate followed by detection with 
luminol-Co(II)CL 

Sample passed through reactor containing 
alanine aminotransferase and glutamate 
oxidase immobilized on sieved porous 
glass beads before passing into a flow 
cell containing NaHC03-luminol-Co(ll) 
immobilized peroxidase from 
Arthromyces ramosus for CL detection 

Leucine dehydrogenase, NADH oxidase 
and peroxidase are co-immobilized 
covalenlly on tresylate-hydrophilic vinyl 
polymer beads in a flow cell. NAD^ and 
luminol used to produce CL 

Immobilized lysine oxidase and glucose 
oxidase producing hydrogen peroxide 
with luminol-Co(lI) CL detection 

Immobilized lysine oxidase producing 
hydrogen peroxide with luminol-
Co(II) CL detection 

Imidazole-peroxyoalate CL 

Peroxyoxalate-hydrogen peroxide CL 
Cu(II>-proteins complexes catalyse 

luminol-hydrogen peroxide 

7Mg/L 

I X 10-^mol/dm^ 

0.18 ng/mL 

3 X lO-'mol/dm^ 

3 X IQ-'moI/dm^ 
and 5 X 10'^ mol/ 
dm"*, respectively 

5 X 10"' mol/dm^ 

1.3pmol ( I O Q m L 
injection) 

lOMg/L 

2 X IQ-^mol/dm^ 
5 X lO-'-mol/dm^ 
and 1 X 10"^ mol/ 
dm^, respectively 

1 X 10"^ mol/dm^ 

A X lO-Snd 7 X 
10-'mo!/dm\ 
respectively 

4 X 10"' mol/dm^ 

Not reported 

0.1 Mg/L 
0.03-0.05 Mg/mL 

1,10-Phenanthroline-hydrogen peroxide- 0.02 ^ig/mL 
Cu(II) cetylirimethylammonium bromide 
CL 

(166) 

(167) 

(168) 

(169) 

(170) 

(171) 

(172) 

(173) 

(174) 

Acidified permanganate-quinine CL 
Potassium permanganate-sulphuric 

acid CL 

0.8 Mg/mL 
2 X 10"^-

10'" 
" -1 .5X 
mol/dm^ 

(175) 

(176) 

(177) 

(178) 

(179) 
(180) 

(181) 

(182) 
(183) 
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Table 4 continued. 

REVIEW 

Analyte Sample matrix Reaction LOD 
Reference 
number 

Scrum 3-hydroxybutyrate Semm 

Sulphated bile acids 

Tryptophan 
Uric acid 

Uric acid 

Uric acid 

Vanilmandelic acid 

Urine 

Tissue 
Urine 

Urine 

Aqueous 

Urine 

Two immobilized enzymes, 3-hydroxy- Not reported 
butyrate dehydrogenase and NADH 
oxidase producing hydrogen peroxide, 
detection with luminol-hexacyanoferrate 
CL 

Production of hydrogen peroxide using 
multistep enzymatic reactions with 
detection using luminol CL 

CeriiuTi(IV)-sulphuric acid CL 
LuminoI-K7[Cu(l06)2j-potassium 

hydroxide CL enhanced with 
polyhydroxy compounds 

Acidic permanganate CL with octylphenyl 0.055 ng/mL 
polygylcol ether as a sensitizer 

Inhibition of luminol-potassium periodate 
Mn(II) CL 

Lummol-hexacyanoferrate(III) CL 

X 10"' mol/dm^ 

0.1 Mg/mL 
7.2 X 10"^ mol/ 

dm^ 

1.8 X lO-'g/mL 

2 X lO"** mol/dm-

(184) 

(185) 

(186) 
(187) 

(188) 

(189) 

(190) 

injection solutions (34), pyridoxide in dietary sources, eg 
peanuts, yeast, lemons, tomatoes and apples (46), 
niiroprussidc in injection solutions (52) and rurin in 
traditional Chinese medicines (49). Some catecholamines 
(dopamine, adrenaline, isoprenaline) have been deter
mined by the same reaction after treatment with 
Reineche's salt (20). Addition of potassium periodate to 
the luminol stream has been proposed for the determina
tion of ascorbic acid (9) and isoniazid (29) in pharma
ceutical preparations and glucose (after treatment with 
glucose oxidase) (25). Ascorbic acid has also been 
determined by the luminol-hydrogen peroxide reaction 
in the presence of iron(II) in vitamin C tablets, multi
vitamin capsules, mung bean sprouts, tomatoes and 
cucumber skin, with recoveries of 96-105% (5). The 
presence of hexacyanoferrate in the reaction mixture 
allowed measurement of ^-lactam antibiotics via gen
eration of hydroxy and superoxide radicals (12). Ascorbic 
acid has also been determined using hexacyanoferra-
te(III) instead of hydrogen peroxide (10). Inhibition of 
luminol CL has been applied to the determination of 
ascorbic acid in vitamin pills and vegetable extract tablets 
(with good agreement with iodimetry) (11), isoniazid 
(28) and paracetamol (37). Tannic acid in Chinese gall 
has been determined by its inhibition of the copper(II)-
catalysed luminol-hydrogen peroxide reacrion (53). 

A variety of other oxidants in acidic and alkaline 
media have been investigated for drug analysis using F I -
CL. Potassium permanganate in acidic media, with or 
without CL enhancers or promoters, has been used for the 
determination of amidopyrine (1,2), benzocaine, pro
caine and other local anaesthetics (13), cefadroxil (15), 
codeine (18), imipramine (26,27), levodopa (30), 
medazepam (31), methotrexate (33), naltrexone (35), 
perphenazine (40), promethazine (45), reserpine (47), 

salicylamide (51), tetracyclines (54) and tcirahydropal-
matine (56) in pharmaceutical preparations. Al l gave 
good recoveries and agreement with official or standard 
analytical methods. Initiation of CL reactions in acidic 
media has also be achieved using cerium(IV) for the 
determination of analgin (4), captopril (14), furosemide 
(22), hydrochloihiazide (24), naproxen (36), penicilla
mine (38, 39), phenothiazines (42), tetracyclines (55) and 
tiopronin (58, 59). 

The CL reaction of cerium(lV) with sulphite has been 
used for excitation by energy transfer to ciprofloxacin 
(16) and prednisone acetate (43). CL also occurs i f 
sulphite is substituted by a mercapto-compound, such as 
glutathione or cysteine, and the reaction is sensitized by 
hydrocortisone (23), while the reaction with glutathione 
and energy transfer has been used to determine 
progesterone and hydrocortisone in human serum by 
standard additions (44). Menadione sodium bisulphite 
has been determined in injection solutions by release of 
sulphite and reaction with cerium(IV) and the results 
were in good agreement with a standard specirophoto-
metric method (32). Similarly the reaction of permanga
nate with dithionite has been used to determine 
riboflavine (48) and with thiosulphate to determine 
vitamin Be (60). 

Potassium hexacyanoferrate(III) in alkaline solutions 
has been used for the determination of ergonovine 
maleate in synthetic pharmaceutical preparations (with 
good agreement with the official method) (21) and 
thiamine (57). Alternatively, sodium hypochlorite can be 
used for initiation of CL reactions in alkaline media for 
the assay of persarin in injection solutions and tablets 
(41). Rutin has been measured in Chinese traditional 
medicines by the hypochlorite-semicarbazide CL system 
(50). 

Copyright © 2001 John Wiley & Sons, Ltd. Luminescence 2001:16:1-23 



12 REVIEW P. Fletcher ei al. 

Table 5. General/unspecified applications 

Analyte Sample matrix Reaction LOD 
Reference 
number 

2,4-Dinitrophenylhydrazine Aqueous/propan-2-oI Potassium permanganate-formic acid CL 
with rhodamine B as sensitizer 

4-(5',6'-Dimethoxybenzo- Dimethyl sulphoxide 
thiazolyl) phthalhydra-
zlde 

Al(lll), Zn(II), Cd(ll), and 1.4-Dioxane 
In(lll) 

Benzaldehyde 

Co(II) 

Cu(II) 

Fe(II)and Fe(lll) 

FedOand Fc(Ml) 

Fe(Ill) 

Hydrogen peroxide 
Hydrogen peroxide 

Hydrogen peroxide 

Hydrogen peroxide 

Hydrogen peroxide 

Hydrogen peroxide 

Hydrogen peroxide, 
pyrogallol, and 
a-thioglycerol 

Benzyl alcohol 

CI , Br , NO-, , NO3 , Aqueous 
S04^-

Aqueous 

Aqueous 

Aqueous 

Aqueous 

Aqueous 

Heterocyclic compounds Acetonitnle 

Horseradish peroxidase Aqueous 

Hydrogen peroxide Aqueous 

Aqueous 
Aqueous 

Aqueous 

Not reported 

Aqueous 

Aqueous 

Aqueous 

4-(5',6'-Dimethoxyben20thiazoIyl) phthal-
hydrazide-hydrogen peroxide-potassium 
hexacyanoferTate(III) CL 

Derivalisation with y-hydroxyquinoline 
followed by peroxyoxalate-hydrogen 
peroxide CL detection 

Gallic acid-hydrogen peroxide-sodium 
hydroxide CL 

N-(^-carboxypropionyI) isoluminol 
immobilized on a resin is replaced by 
anions releasing isoluminol which reacts 
with hydrogen peroxide and potassium 
hexacyanoferrate(III) producing CL 

1,10-Phenanthroline-hydrogen peroxide-
Co(ll) CL with the cationic surfactant 
cetyltrimethylammonium bromide 

Peroxyoxalate chemiluminescence with 
3-aminof1uoranthene as fluorophore and 
imidazole as catalyst 

On-line liquid-liquid extraction into 
chloroform followed by Fe(III) complex 
formation with 8-quinolinol and 
detection with luminol-hydrogen 
peroxide-cetyltrimethylammonium 
chloride 

Reduction of Fe(III) to Fe(II) using 
Cu-coated zinc followed by luminol CL 
detection 

1,10-Phenanthroline-hydrogen peroxide-
sodium hydroxide CL with the cationic 
surfactant zephiramine 

Peroxyoxa late-hydrogen peroxide-3-2 
aminofluoranthrene CL 

Luminol-hydrogen peroxide CL enhanced 
with sodium tetraphcnyl borate 

Flow-cell reactor containing immobilized 
horseradish peroxidase is used to mix the 
sample with luminol to produce CL 

Luminol-potassium periodate CL 
Immobilized luminol and Co(II) are 

removed from a column by hydrolysis 
and CL is detected 

Horseradish peroxidase-sol-gel immobi
lized on a glass plate. Luminol CL 
detection 

Pcroxyoxalate CL with perylene as a 
fluorophore 

Peroxyoxalate CL with immobilized 3-
aminoperylene or 3-aminofluoranthene 
as fluorophore 

Peroxyoxalate CL with immobilized 2-
(4-hydrazinocarbonylphenyI)-4,5-
diphenylimidazole as fluorophore 

Periodate-polyhydroxyl compounds in acid 
medium producing CL, enhanced with 
carbonate 

5 X lO-'^moI/dm^ (191. 
192, 
193) 

1.3 X 10"" mol/dm^ (194) 

20-70Mg/L (195) 

4.4 X 10-^mol/dm^ (196) 
8.0 X 10"'- (197) 
1.4 X lO'^^mol/dm' 

Spg/L (198) 

Not reported (199) 

5 ng/mL (200) 

2.7 X lO-'^mol/dm^ (201) 
and 3.5 x 10"'° 
mol/dm^, 
respectively 

0.1 Mg/L (202) 

Not reported (203) 

6 X 10""* mol/dm^ (204) 

lOpmol (205) 

3 X 10'*mol/dm^ (206) 
4 X 10-*mol/dm^ (207) 

8 X lO'^mol/dm^ (208) 

1 X I0"'mol/dm^ (209) 

3 X 10"'®mol/dm^ (210) 

I X 10"^mol/dm^ (211) 

5 X 10-'mol/dm^ (212) 
5 X 10"^ mol/dm^ 
and 1 X 10 ^ mol/ 
dm^, respectively 
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Analytc Sample matrix Reaction LOD 
Reference 

number 

Hypo.xanthine Aqueous 

Indole, indole-3-acetic acid Aqueous 
and tryptophan 

Lophine 

Luminol and lucigenin 

Oxovanadium(lV) 
acetylacetonaie 

Potassium permanganate, Aqueous 
Ce(IV), potassium 
periodatc, NaOCl and 
hydrogen peroxide 

Dimethyl formamide/ 
methanol 

Aqueous 

Chloroform 

Pyrogallol 

Pyrogallol 

Sulphite 

Uric acid, phenacyl 
alcohol, cortisone, 
ascorbic acid, 
corticosterone, 
glutathione, cysteine, 
fructose, glucose and 
creatinine 

V(IV) 

V(IV) and Fe(ll) 

Yb(III) 

Zn(ll) 

Aqueous 

Aqueous 

Aqueous 

20% Acelonilrile/ 
80% HjO 

Aqueous 

Aqueous 

Chemical reagents 

Aqueous 

Production of hydrogen peroxide from a 
xanthine oxidase bioreactor followed by 
Artheromyces ramosus peroxidase-
luminol CL 

Hydrogen peroxide-Fe(III)-sodium 
hydroxide CL 

Lophine-Co(ll)-hydrogen peroxide CL 
enhanced with hydroxylammonium 
chloride 

CL produced by adding luminol and 
lucigenin solutions to magnesium oxide 
and barium oxide powders, respectively 

Luminol-cety I trimethy lammonium 
chloride (in chloroform/cyclohexane) 

Pyrogallol CL 

Lucigenin-hydroxylamine hydrochloride-
sodium hydroxide CL 

Oxidation of pyrogallol by N-bromo-
succinimide in alkaline media, enhanced 
with hydroxylammonium chloride and 
cety I trim ethyl ammonium bromide 

Cerium(IV)-acidified permanganate CL 
with cyclyoctyiamine as sensitizer 

Luminol CL with hexacyanoferTate(in) 
and hcxacyanoferrate(ll) as catalysts 

On-line liquid-liquid extraction into 
chloroform followed by cety I trimethy 1-
ammonium-luminol CL 

Lucigenin adsorbed on non-functionalized 
silica gel used a solid phase CL reagent 
with potassium hydroxide 

Quenching of the Cr(II)-Iuniinol-hydrogen 
peroxide CL 

I , I O-Phenanthroline-hydrogen peroxide-
sodium hydroxide CL with the cationic 
surfactant trimethylsteary I ammonium 
chloride 

I X lO"** mol/dm' 

3 X 10"" mol/dm^ 
and 3 x 10"'^ 
mo I/dm', 
respectively 

0.1 ng/mL 

3 X 10-
3.5 X 10-^mol/ 
dm^ 2.5 X 10-" 
mol/dm', 6.1 x 
lO""* mol/dm' and 
4.5 X 10"" mol/ 
dm' 

4.5 X 10 
respectively 
)'^g/mL 

2 X 10"' mol/dm' 

5.4 X 10"' mol/dm' 

l.7pmoI, 3.0pmol, 
4.0 pmol, 
6.0 pmol, 
16.0 pmol, 
55.0 pmol, 
62.0 pmol, 
0.6 nmol, 1.5 nmol 
and 15.0 nmol, 
respectively 
(10 nL injection) 

50 ng/mL 

0.7 pg/L and 0.8 pg/ 
L, respectively 

3 X 10"* mol/dm' 

2.3 X 10~^ mol/dm' 

(213) 

5.5 X 10-'mol/dm\ (214) 
6.1 X IQ-^mol/ 
dm', and 5 X 10"' 
mol/dm', 
respectively 

72 fmol (20 pL 
injection) 

(215) 

(216) 

(217) 

(218) 

(219) 

(220) 

(221. 
222) 

(223) 

(224) 

(225) 

(226) 

(227) 
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The auto-oxidation of analgin in Tween 80, in the 
presence of rhodamine 6G as sensitizer, to generate CL 
emission has been used for its determination in 
pharmaceutical preparations (3). Lucigenin CL has been 
used to determine ascorbic acid (7) and inhibition of the 
iron(ll)-catalysed reaction can be used to measure 
dopamine (19). Cobalt(ll) has been determined in eye 
lotions by the hydroxylammonium chloride-sensitized 
reaction with lophine and hydrogen peroxide (17). 

ENVIRONMENTAL APPLICATIONS 

FI-CL methodologies have been applied to wide ranging 
analyses of environmental samples, as detailed in Table 
2. Here these are categorized according to the type of 
sample matrix analysed, ie aquatic (natural waters, 
drinking water and wastewaters), geological, atmo
spheric and biological (human hair). 

Natural, potable and waste waters 
Mcial ion determinations comprise the majority of 
published FI-CL applications for aqueous environmental 
samples. Many of these are based on the luminol reaction, 
which is catalysed by certain metal ions. Examples 
include the determination of cobalt(II) at sub-picomolar 
levels in river, sea and tap water (67) and of copper(lI) at 
nanomolar levels in naUjral water samples (78). Co-
balt(II) and chromium(lll) in admixtures have been 
monitored via their catalytic effect on the reaction of 
luminol-hydrogen peroxide-cetyltrimethylammonium 
bromide. Initially, both ions are determined and then 
cobalt is masked with EDTA and chromium is measured. 
The procedure has been used in the analysis of mineral 
water, with recoveries of 94-105% (69). Luminol CL has 
been used to detect iron(Il) and iron(lll) at nanomolar or 
subnanomolar levels in seawater (81,86), natural fresh-
waters (83, 87, 90), groundwater (82) and treated waters 
(84). Similar methods have measured chromium(lll) at 
pan-per-billion levels in tap water (71), and both 
chromium(lll) and chromium(Vl) at nanomolar levels 
in wastewaters (72,74-75). Modified luminol-based 
methods have also been used to determine mercury(ll) 
at part-per-billion levels in natural waters (92), manga-
nese(ll) at sub-nanomolar levels in seawater (107), 
lead(n) at part-pcr-tiHllion levels in wastewaters (113), 
and vanadium(IV) at nanomolar levels in tap water (128). 
The chcmiluminescence reaction between 1,10-phenan-
throline and hydrogen peroxide has been applied to the 
determination of copper complexation in seawater (76), 
while cobali(II) in seawater has been determined using 
methods involving both gallic acid-hydrogen peroxide 
(66) and quercetin-hydrogen peroxide-potassium hydro
xide (68). The latter reaction has also been applied to 
determinations of chromium(IIl) and chromium(Vl) in 

natural waters (73). Iron(II) in rainwater has been 
determined using peroxyoxalate CL (88), and iron(ll)/ 
total iron have been measured in river water and seawater 
using brilliant sulphoflavine-hydrogen peroxide CL (89). 
A CL method based on the oxidation of 7,7,8,8-
tetracyanoquinodinodimethane has been used to measure 
manganese(I!) in drinking water (105), and the reaction 
between lucigenin, hydrogen peroxide and sodium 
hydroxide has been applied to the determination of 
lead(n) in natural waters (112). 

As shown previously, a number o f CL reactions are 
based on the oxidative properties of hydrogen peroxide. 
FI-CL methods have therefore proved highly suitable for 
determining low levels of dissolved hydrogen peroxide in 
natural waters. Nanomolar levels have been detected in 
rainwater using methods based on either the octylphcnyl 
polyglycol ether-potassium permanganate (95) or co-
balt(l l)-l""i 'nol (98,99) reactions. The latter method has 
also been applied to nanomolar and sub-nanomolar 
determinations of hydrogen peroxide in seawater 
(97, 101), while a periodate-potassium carbonate CL 
method has been used to measure nanomolar levels in 
melted snow (96). 

FI-CL methods have been used to determine a range of 
dissolved inorganic molecular and anionic species in 
aqueous samples. Free chlorine has been measured at 
part-per-billion levels in tap water using a luminol CL 
method (65), and modified luminol methods have been 
used to determine cyanide at nanomolar levels in river 
(79), tap and wastewaters (80). Sub-micromolar levels of 
hydrazine in drinking water have been determined with a 
CL method based on n-bromosuccinimide (93). Hypo
chlorite ions have been measured in tap water using CL 
generated by the oxidation of indole by hydrogen 
peroxide (102). Variants of the luminol reaction have 
been applied to the determination of nanomolar levels of 
nitrite in natural (108) and potable (109) waters, and to 
the determination of phosphorus and phosphates at 
micro-nanomolar levels in natural freshwaters (114-
115, 117-120) and drinking water (116). Sulphite in tap 
water has been measured using an auto-oxidativc CL 
method, sensitized with rhodamine 6G (123). Dissolved 
oxygen has been quantified at part-per-million levels in 
river and tap waters using a luminol-sodium hydroxide 
CL method (110), while a gas diffusion method based on 
lirniinol-ozone CL has been applied to the measurement 
of part-per-billion levels of dissolved ozone in treated 
waters (111). 

Determinations of a small number of organic/biologi
cal parameters using FI-CL methods have been reported. 
Aceialdehyde has been measured at part-per-billion 
levels in both natural and wastewaters using a gallic 
acid-hydrogen peroxide CL method (61). Similar levels 
of volatile phenols present in polluted waters have been 
determined using a hydrogen peroxide-/7-chlorobezene-
diazonium fluoroborate CL reaction (130). FI-CL 
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methods have also been used to identify the presence of 
two strains of red tide phytoplankion in natural waters 
(64,91), with a CL reaction based on 2-methyl-6-(;7-
meihoxyphenyl)-3,7-dihydroimidazo(l,2-alpha)-pyra-
2in-3-one and superoxide used in each case. 

Geological samples 
FI-CL methods have been reported for the determina
tions of five elements in a variety of geological/ 
geochemical samples. Trace levels of arsenic(lll) in 
geochemical solutions have been determined using a 
luminol-hydrogen peroxide CL reaction (63), while a 
similar method incorporating prior reduction of ar-
senic(V) to arsenic(III) has been applied to the measure
ment of total arsenic in acidic extracts of rocks and ores 
(62). Picogram levels of iridium(IV) have been deter
mined using a hydrogen peroxide-potassium hydroxide 
CL reaction (103), and a luminol method incorporating 
potassium dichromate and sodium hydroxide has been 
applied to the measurement of pari-per-billion levels of 
aniimony(III) in mineral extracts (122). Variants of the 
luminol reaction have also been applied to the determina
tions of vanadium(V) and zirconium(lV) in geochemical 
samples. The former uses luminol and hexacyanoferra-
le(II) as immobilized reagents on an anion-exchange 
column (129), while the latter uses the frequently applied 
luminol-hydrogen peroxide reaction (131). 

PAHs in solvent-extracted atmospheric particulate sam
ples. 

Human hair 
Analysis of human hair samples can often provide useftil 
indications of the body*s intake of a range of chemical 
species, either through diet or by environmental ex
posure. The determination of trace metals in human hair 
samples using FI-CL has been reported in several papers. 
Part-per-billion levels of cobalt and nickel have been 
measured in microwave-digested samples by utilizing 
their catalytic effect in the CL reaction of alizarin purple-
ethanol cetyltrimethylammonium bromide-potassium 
hydroxide (70). Similar levels of copper(II) have been 
determined using the luminol-potassium permanganate 
reaction, with these reagents initially immobilized on an 
anion-exchange resin, then eluted with sodium hydroxide 
(77). Iron(Il) in hair has been determined using both the 
lucigenin-sodium hydroxide (85) and the luminol-
hydrogen peroxide (90) CL reactions, either of which 
are capable of nanomolar/part-per-trillion detection 
limits when sensitized with caiionic surfactants. Manga
nese has been measured at part-per-billion levels using an 
iodine-luminol CL method (104), and part-per-million 
levels of vanadium(V) have been determined with a CL 
method based on the luminol-hexacyanoferrate(II) reac
tion (129). 

Atmospheric samples 
Four FI-CL applications have been reported for the 
determination of micromolar to sub-nanomolar levels of 
sulphur dioxide in air and sulphite in aqueous solution. 
Three of these methods used trieihanolamine for initial 
adsorption, followed by CL reactions involving either 
ruthenium (2,2'-bipyridyl)3/potassium persulphate (125), 
Tris(l,10-phenanthroline) ruthenium-potassium perio-
daie (126) or rxithenium (2,2'-bipyridyI)3-potassium 
permanganate (127). The fourth method was based on 
luminol CL, with luminol initially immobilized on an 
anion exchange column, then eluted by hydrolysis (124). 
Trace levels of hydrazine in air have been determined 
using a CL method based on the luminol-potassium 
periodate-sodium hydroxide reaction, following initial 
absorption of hydrazine in sulphuric acid solution (94). 
Part-per-billion levels of gaseous hydrogen peroxide 
have been measured with a method based on 1,1'-
oxalyldi-imidazole-peroxyoxalatc CL and incorporating 
a diffusion scrubber (100). The peroxyoxalate-hydrogen 
peroxide CL reaction has also been used in the 
determination of a range of polycyclic aromatic hydro
carbons (PAHs) at part-per-billion levels in synthetic 
hexane and acetonitrile solutions (121). This method of 
detection, in combination with chromatographic separa
tion, could also prove suitable for the determination of 

FOOD AND BEVERAGE APPLICATIONS 

This has been an area of considerable development in 
recent years. The bioluminescence reaction involving 
firefly luciferase has been used to monitor bacterial 
contamination of foods but CL reactions have also been 
used to quantify species such as ascorbic acid, sulphite 
and carbohydrates in alcoholic beverages and a variety of 
foods (Table 3). 

Ascorbic acid 
Various FI-CL systems have been used to determine 
ascorbic acid in vegetables and non-alcoholic beverages, 
with detection limits in the range 0.2 ng/L-5.5 mg/L. The 
oxidation of ascorbic acid by permanganate-produced CL 
(134) and results compared well with spectrofluorimeiric 
and titrimetric methods, but transition metals, sorbitol 
and mannitol interfered. The inhibition of the CL reaction 
between hexacyanoferrate(lll) and luminol can also be 
used for the detection of ascorbic acid. This reaction can 
be performed with (11) or without (5) the reagent being 
immobilized on an anion exchange column. The CL 
reaction between luminol, permanganate and sodium 
hydroxide has also been used for the determination of 
ascorbic acid and, as with the previous reaction, the 
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reagent can be used with (135) or without (136) reagent 
immobilization on an anion exchange column. Manga-
nese(II) and copper(II) interfered when present at five
fold excess. 

Sulphite 
A variety of CL reactions have been used for the 
determination of sulphite in diverse matrices, including 
sugar, beers and wines with sub-micromolar limits of 
detection. Chemiluminescence produced from tris(2,2'-
bipyridyl)ruthenium(II) in the presence of either K2S2O8 
(125) or ICMn04 (127) was used to quantify sulphite in 
sugar and sulphur dioxide in air (absorbed in triethano-
lamine) with interference from copper(II) and EDTA. 
Sulphite (detection limit 30pg/mL) has also been 
determined in beers and wines using the auto-oxidation 
of sulphite sensitized by rhodamine 60 in the presence of 
Tween 80 surfactant micelles (146), with interference 
from sulphite, nitrite and ascorbic acid. This is a good 
example of the increasing trend to add surfactants to 
enhance CL emission by providing a protective environ
ment for the reaction. FI-CL has been used to determine 
sulfite in wines using the NaHC03-sodium carbonate-
copper(ll) CL reaction (147). The manifold incorporated 
a gas diffusion module to enhance selectivity and remove 
physical interferences but iodide, cobalt(II), nickel(II), 
and sulphite interfered at two-fold excess. 

acid interfered. Ethanol in beer can be indirectly 
determined by the enzymatic generation of hydrogen 
peroxide using alcohol oxidase (140). L-Cysteine inter
ference was removed by prior complexation with 
copper(II). L-Malate (141), glycerol (143) and L-laciate 
(145) have all been indirectly detected using immobilized 
enzyme reactors to produce hydrogen peroxide, followed 
by luminol detection. Nitrite can be detected in foods by 
reaction with KJ (109) to produce I2, which then reacts 
with luminol. Iron(II), copper(lI), A s 0 4 ^ " and SbO-,^" 
interfere. Tannic acid (53) has been determined in hop 
pellets, using the lumino-peroxide reaction with a 
copper(II) catalyst, and hydrogen peroxide has been 
measured in fermented liquors (144) using bis-(2,4,6-
trichlorophenyl)oxalate and perylene chemilumi
nescence. The latter method has been applied to the 
determination of L-glutamic acid in culture media. 
Acetaldehyde has been determined using gallic acid-
hydrogen peroxide-sodium hydroxide chemilumi
nescence (61), but formaldehyde, cobalt(I!), manga-
nese(II), silver(l), cadmium(II), lead(II) and permanga
nate all interfered. Amino acids have been detected in 
food (lysine) and serum (phenylalanine) using both the 
luminol-hydrogen peroxide and o-phenanthroline/hydro-
gen peroxide reactions (133). 

BIOMEDICAL APPLICATIONS 

Carbohydrates 
Chcmiluminescence is produced when carbohydrates are 
oxidized by acidified potassium permanganate (137). 
Glucose, galactose, fructose, arabinose, xylose, lactose 
and sucrose have all been detected over the linear range 
lO'^'-lO"'mol/dm^. The oxidation of pyrogallol by 
periodatc has been used for the detection of carbohy
drates (142) with a detection limit for hexose of 20 \x%. 
An interesting aspect of this method was the use of 
differential CL reaction kinetics to allow the resolution of 
binary mixtures of glucose and fructose. 

Other analytes 
Luminol chemiluminescence has been used for a variety 
of other analytes in food and beverages, including 3,4-
dihydroxybenzoic acid (132), choline (138) citric acid 
(139), ethanol (140), L-malate (141), glycerol (143), 
L-lactate (145), nitrite (109) and tannic acid (53). 3,4-
Dihydroxybenzoic acid (protocatechuric acid) (132) has 
been measured in wines using CL produced by the 
oxidation of luminol with hydrogen peroxide, with 
cobalt([l) as a catalyst. Citric acid in orange drinks 
(139) has also been determined using the luminol 
reaction. Iron(III) is reduced by citric acid to iron(II), 
which can then be detected with luminoL but ascorbic 

A particularly wide variety of analytes have been 
determined by enzymatic conversion to produce hydro
gen peroxide, which is then quantitatively detected by the 
luminol or peroxyoxalate reactions (Table 4). 

The luminol reaction has been used for the measure
ment of hydrogen peroxide generated from acetylcholine 
and choline after passing the sample through two 
consecutive columns containing immobilized acetylcho
linesterase and choline oxidase (148, 149). Similarly, 
ATP has been determined with immobilized alkaline 
phosphatase (150) and glyceroI-3-phosphaie with im
mobilized glycerol-3-phosphate oxidase (171). Branched 
chain L-amino-acids have been determined in human 
plasma, with recoveries in the range 98-102%, by 
passing the analyte solution through an enzyme reactor 
column containing leucine dehydrogenase and NADH 
oxidase (156) or by introducing the solution, mixed with 
luminol and NAD"*", into a spiral flow cell onto which 
leucine hydrogenase, NADH oxidase and peroxidase 
have been immobilized (175). Cholesterol has been 
monitored by passing the sample through immobilized 
cholesterol oxidase (159, 160) and L-alanine, a-keioglu-
tarate and L-glutamate determined with immobilized 
alanine aminotransferase and gluiamate oxidase (174). 
Glucose has been monitored in subcutaneous tissue fluid 
and blood of rabbits after passing through immobilized 
glucose oxidase (167), in plasma by flowing through 
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immobilized pyranose oxidase (169), in mixtures with 3-
hydroxybutyrate by passing through two NADH oxidase 
enzyme reactors containing glucose dehydrogenase and 
3-hydroxybutyrate dehydrogenase (164), and in mixtures 
with lysine by passing through immobilized glucose 
oxidase to measure glucose and through lysine oxidase to 
measure lysine (176). The same principle has been 
applied to the measurement of lysine and ornithine (177). 
On-line co-immobilized 3-hydroxybutyrate dehydrogen
ase and NADH oxidase has been used for the measure
ment of 3-hydroxybutyrate in serum, with very good 
agreement with other accepted analytical methods (184). 
Hydrogen peroxide can also be produced from sulphated 
bile acids by passing through a column of bile acid 
sulphate sulfaiase and 3/?-hydroxysieroid dehydrogenase 
(185). o£-Chymoirypsin, trypsin and a commercial 
protease have been determined by passing through a 
mini-column containing immobilized isoluminol (151). 

Catecholamines can be measured in plasma by 
imidazole conversion to hydrogen peroxide prior to the 
peroxyoxalate CL reaction (157). D-Amino acids in 
plasma have been determined with good agreement with 
a colorimetric method by flowing through a specific 
enzyme reactor containing o-amino acid oxidase before 
peroxyoxalaie CL detecUon of hydrogen peroxide (163). 
Incubation of dopamine with imidazole at 60°C for 
30 min in the dark generated hydrogen peroxide, which 
was then introduced into a FI analyser for peroxyoxalate 
CL detection (165). Glucose or choline and acetylcho
line, separated by a cation exchange column, have been 
determined in urine by conversion to hydrogen peroxide 
via a glucose oxidase reactor or a choline oxidase-
acetylcholine esterase reactor, respectively (170). Com
pounds containing an alcoholic or phenolic hydroxyl 
group (polyphenols, monophenols and sugars) have been 
determined by mixing with imidazole and heating to 
80°C prior to peroxyoxalaie detection of hydrogen 
peroxide (178). 

Several other reactions have also been used for 
biomedical applications of FI-CL. Amino acids have 
been determined by complexation with cobalt(II) and 
inhibition of the lucigenin CL reacrion (152), by the 
inhibiting effect of cobalt(II) complexes or enhancing 
effect of copper(II) complexes on the ninhydrin-hydro-
gen peroxide CL reaction (153) and by their effect on the 
I,IO-phenanthroline/copper(II)-hydrogen peroxide CL 
reaction (154). Chlorotetracycline has been assayed in 
urine, with recoveries of 98.8-101.1% by its effect on the 
copper(Il)-ammonium carbonate-cety I tri methyl ammo
nium bromide-hydrogen peroxide CL reacrion (158). 
Proteins have been monitored via the catalytic effect of 
copper(H) complexes on the luminol (180) or phenan-
throline (181) CL reaction with hydrogen peroxide and 
porphyrins have been measured in urine via the 
peroxyoxalate-hydrogen peroxide reacrion (179). 

Chromium(III) has been determined in urine, blood 

serum and hair by its catalytic effect on the luminol-
hydrogen peroxide CL reaction. The method was 
validated by analysing a certified reference material 
and recoveries were within the range 89-115% (161). 
Copper(II) in serum has been determined with recoveries 
of 94-97% by its effect on the hydroxylaminc-fluor-
escein CL reaction (162) and iron(III) in blood has been 
monitored by its effect on the luminol reaction and the 
results showed good agreement with those obtained by 
flame AAS (166). Iodide in urine can be monitored after 
oxidation to iodine with dichromate and measurement by 
the cobaIt(II)-catalysed luminol reacrion (173). The 
luminol reaction with K.7[Cu(l06))2 has been used for 
determining glucose (168) and uric acid (187), while 
vanilmandelic acid has been determined by its enhance
ment effect on the luminol-hexacyanoferTate(IlI) CL 
reacrion, with an excellent detection limit (190), and uric 
acid has been measured in urine by its inhibiting effect on 
the luminol-periodate reaction, with results comparable 
with those obtained by spectrophotometry (189). 

Serum glucose has been assayed by the CL reaction of 
hydrogen peroxide with 3-propy!-7,8-dihydropyrida2ino-
[4,5-g]quinoxaline-2,6,9(lH)-trione, which is a luminol-
related compound (172) Acidic permanganate has been 
used as a chemiluminogenic reagent for the determina
tion of pyruvate in serum (182), serotonin and related 
indoles (183) and uric acid (188). Tryptophan has been 
found to exhibit CL by the action of cerium(IV) (186), 
while bilirubin generates CL by reacrion with N-
bromosuccinimide or sodium hypochlorite (155). 

GENERAL/UNSPECIFIED APPLICATIONS 

A number of published FI-CL methodologies have 
involved the analysis of synthetic aqueous or organic 
solutions, but either no real sample application has been 
specified or the applicarion is not one that easily fits into 
the categories described above. However, in most cases 
the analytes of interest and the CL chemistries concerned 
are similar to those described in the preceding sections, 
so with little or no adaptation these methods should be 
equally applicable to analyses of such real sample 
matrices. Details of these methods are summarized in 
Table 5. 

The majority of these methods have been applied to 
determinations of metal ions or hydrogen peroxide. 
Aluminium(IIf), zinc(ll), cadmium(U) and indium(li), 
for example, have all been measured at part-per-billion 
levels in a 1,4-dioxane matrix using peroxyoxalaie-
hydrogen peroxide CL (195), while ytterbium(III) has 
been measured at nanomolar levels in chemical reagents, 
owing to its quenching effect on the chromium(IIl)/ 
luminol-hydrogen peroxide CL reaction (226). Luminol-
hydrogen peroxide CL methods incorporating immobi
lized horseradish peroxidase have been used to determine 
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both hydrogen peroxide (205) and horseradish peroxidase 
(204) at picomolar and femtomolar levels, respectively. 
A number of organic analyies have also been measured, 
in both organic and aqueous media. Two examples are 
2,4-dinitrophenylhydrazine and benzaldehyde. The for
mer has been measured at sub-nanomolar levels in 
aqueous-propan-2-ol solution, using a CL method based 
on the potassium permanganate-formic acid reaction 
sensitized with rhodamine B (191-193), while the latter 
has been determined in a benzyl alcohol medium with a 
gallic acid-hydrogen peroxide-sodium hydroxide CL 
method (196). Other reported methods worthy of mention 
here include a luminol CL reaction catalysed with 
hcxacyanoferrale, which has proved suitable for the 
measurement of nanomolar levels of fructose, glucose 
and creatinine, and picomolar levels of uric acid, 
phenacyl alcohol, cortisone, ascorbic acid, corticoster-
one, glutathione and cysteine (223), and a method based 
on pyrogallol CL that has been applied to sub-millimolar 
determinations of potassium permanganate, cerium(IV), 
potassium periodatc, sodium hypochlorite and hydrogen 
peroxide (218). 

CONCLUSIONS 

The major trend in the last 5 years has been the significant 
increase in the application of Fl -CL reactions to real 
sample matrices. A survey of all FI literature has shown 
that CL is now the fourth most commonly used detector 
for FI applications (after UV/visible, fluorescence and 
ampcrometry). This popularity is due to the attractions of 
rapid and reproducible mixing of sample and reagents 
and the ability to perform on-line chemical and physical 
sample treatment. With regard to CL chemistries, the 
recent trend has been to modify well known CL reactions 
to suit particular applications rather than to develop novel 
CL reactions. 
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Abstract 

The design and deployment of an in situ flow injection (FI) monitor for high temporal resolution monitoring of phosphate 
in the River Fromc, Dorset, UK, is described. The monitor incorporates solenoid, self-priming micropumps for propul
sion. solenoid-operBted switching valves for conuolling the fluidics and a miniature CCD spectrometer for full spectrum 
(200-1000 nm) acquisition and operates in a graphical programming environmem. A tangential filtration unit is attached to 
the sample inlet line to remove suspended paniculate matter and prevent blockage of the micropumps and valves. Detection 
(at 7lOnm) is based on molybdenum blue chemistry with tin(Il) chloride reduction. The deieclion limit is 0.67 p,M PO4 
and the linear range can be adjusted by using different wavelengths for deieclion. Pump noise is eliminated by subtraction 
of the signal al a non-absorbing wavelength (447 nm). Data from an intensive (sample every 30 min) field trial on the River 
Frome performed in October 2000 are presented, and the implications of the data for refining an export coefficient model for 
phosphorus from the catchment are discussed. © 2001 Elsevier Science B.V. All rights reserved. 

Keywords: Flow injection; Eumiphicatton; Solenoid 

1. Introduction 

Phosphorus export (loading) into catchmenls from 
both point and diffuse sources can result in euirophica-
lion, i.e. an enrichment of nutrients, which can in turn 
lead to an increase in biomass and primary productiv
ity within aquatic communities [1,2]. Eutrophication 
of natural waters has become a subject of increasing 
public concern which, in the European Union, has 
been recognised by legislation selling O.l m g l ~ ' PO4 
as an indicator level for possible problematic algal 
growth in rivers [3]. An assessment of water quality 

•Corresponding author. Tel.: 4-44-1752-233006; 
fax: -^44-1752-233009. 
E-mail address: p.wor5foId@plymouth.ac.uk (P.J. Worsfold). 

is an essential prerequisite for the implementation of 
successful management strategies for minimising the 
likelihood of eutrophication. Phosphorus loading is 
an important factor in this assessment and is often the 
best indicator of the nutrient status of receiving wa
ters. Models have been implemented to predict nutri
ent loads and their sources and sinks [4-7] and for this 
study a simple export coefficient model for the River 
Frome, Dorset, UK, was constructed. The annual and 
seasonal total phosphorus (TP) loads were predicted 
as the sum of the export of phosphorus from each nu
trient source [8]. However, the transfer of phosphorus 
from land and its concentration in catchmenls such as 
the River Frome are strongly influenced by rainfall. 

There are extensive data on instantaneous (grab 
sample) phosphorus concentrations in rivers but very 

0003-2670/0l/S - see front matter © 2001 Elsevier Science B.V. AH rights reserved. 
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little information thai shows short-term changes in 
phosphorus concentration occunring, for example, 
immediately before, during and after a rain event. 
Consequently, field instrumentation capable of acquir
ing high quality analytical data with good temporal 
resolution, i.e. every 15-30 min, would be a use
ful development in its own right [9,10]. In addition 
such data are essential for building improved mod
els for predicting the transport and biogeochemical 
behaviour of phosphorus in catchments. 

This paper describes the design and deployment of 
an in situ flow injection (FI) monitor for high tempo
ral resolution monitoring of phosphorus in the River 
Frome. The monitor incorporated a miniature diode 
array deiecior, self-priming micropumps and elec
tronic switching valves for controlling the fluidics. 
Analytical performance, in the laboratory and in the 
field, is presented and the influence of the data on an 
export coefficient model for phosphorus in the Frome 
caichmem considered. 

2. Experimental 

2.1. Reagents 

All solutions were prepared in ultra-pure water 
(Elga Maxima®, 18.2 MQ) and all reagents were of 
AnalaR (or equivalent) grade and purchased from 
BDH Merck, unless otherwise stated. Al l containers, 
bottles and glassware used during this study for ma
nipulating and storing reagents, samples and standards 

were first cleaned overnight with numeni free deter
gent (Neuiracon®, Decon Laboratories), rinsed three 
times with ultra-pure water and soaked in 10% (v/v) 
HCI for ai least 24 h. A l l were then rinsed three times 
with ultra-pure water and dried at room temperature. 

2.7.7. Flow-injection manifold 
The optimum concentrations for the two phos

phorus reagent streams were: ammonium molybdaie 
solution ( 1 0 g l ~ ' ammonium molybdate in 35 m i l " ' 
sulphuric acid), and tin(IJ) chloride solution (0.2 g 1"' 
tin(n) chloride and 2 g l ~ ' hydrazinium sulphate in 
28mll~* sulphuric acid). Working standard solu
tions in the range of 0.8-8.0 \iM PO4 were prepared 
by dilution from a 3 mM stock solution (0.4393 g 
of oven dried potassium dihydrogenorthophosphaie 
diluted to 1000 ml with water). The carrier stream 
was ultra-pure water. 

2.7.2. Batch method 
The three reagents used for batch determination 

were: ammonium molybdate (15 g diluted to 500 ml 
with water), ascorbic acid (5.4 g diluted to 100 ml) 
and potassium antimonyl tartrate (0.34 g diluted to 
500 ml). Working standard solutions in the range 
0.3-12.0 p,M PO4 were prepared by dilution from a 
3 m M stock solution (0.4393 g of oven dried potas
sium dihydrogenorthophosphate diluted to 1000 ml). 

2.2. Flow injection (FI) manifold 

The manifold used is shown in Fig. 1. It consisted 
of four solenoid-operated self-priming micropumps 
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0.86 
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•> Waste 
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Fig. 1. FI manifold for the determination of PO4 in freshwaiers. 
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(Bio-Chem Valve series 120SP12-25, PD Marketing, 
Chichester, UK) connected to solenoid-operated PTFE 
switching valves (Bio-Chem Valve series 075T12-32, 
PD Marketing) with PTFE tubing (0.8 mm i.d.)- The 
fluidics and the operation of the system are dis
cussed in detail in Section 3.1. An Ocean Optics 
PSD-1000 miniature fibre-optic spectrometer (Anglia 
Instruments Ltd., Cambridge, UK) consisting of 
two 1024 element linear CCD arrays was used for 
detection. The master channel (UV-VIS range), with 
600lines m m " ' blazed at 300nm, enabled a spectral 
range of 200-700 nm. The slave channel (VIS-NIR 
range), with 600 lines m m " ' blazed at 750 nm, en
abled a specu-al range of 500-lOOOnm. The light 
source was a miniature halogen lamp (LS-1 Ocean 

Optics Inc.). Data communication was performed us
ing a type I I PCMCIA DAQ-DIO-24 card (NaUonal 
Instruments Corp., Berks, UK) and a Toshiba Satellite 
4030 CDS notebook PC (Toshiba Information Sys
tems Ltd., Surrey, UK). Automation of the manifold 
and data acquisition was controlled using an in-house 
graphical program (LabView^^ 5.0, National Instru
ments Corp.). A schematic diagram of the complete 
system is shown in Fig. 2. 

2.3. Field study site 

The River Frome rises on the North Dorset Downs 
near Evershot and flows into Poole Harbour in the 
Southwest of the UK. The most important geological 
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Fig. 2. Schematic diagram of the complete FI system for POA determination with an insert showing ihe P V C flow cell incorporating I mm 
acrylic optical fibre cables. 
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formaiion is chalk, which comprises nearly 50% of the 
414 k m ' caichmeni [ I I ] . Land use in the calchmeni is 
predominately permanent grassland, dairying or stock 
rearing, cereals and natural wetlands. The hydrology 
of the Frome catchment is dominated by a highly re
active aquifer passing beneath the lower catchment 
and Poole Harbour. River flow is dependent on upper 
reach streams and groundwater levels and drains into 
Poole Harbour. UK. 

2.4. Procedures for field trial 

A 3 day high temporal resolution campaign was 
undertaken on the River Frome at the Environment 
Agency gauging station, East Stoke (grid reference 
SY866867). River water was pumped up a vertical 
height of 2 m into the filtration unit, incorporating 
a 0.45 Jim cellulose acetate filter (0.47 mm o.d.), 
using a rotary pump (Cole-Parmer 7532-02). Calibra
tion was performed each morning and evening using 
0.8, 1.5, 4.0, 6.0 and 8.0 M-M PO4 standards, with a 
4.0 p.M standard injected after every fourth or fifth 
river sample as a quality control ( Q C ) sample. Cali
bration was then adjusted according to the Q C result. 
The sampling cycle was configured to sample every 
30min. Samples for batch analysis were collected 
in 125 ml HOPE sample bottles (Nalgene®) at the 
same time as sample was introduced into the FI mon
itor. Bottles were first rinsed twice with filtrate then 
filled with approximately 50 ml aliquots of sample. 
Samples were then preserved with 0.1% (v/v) chloro
form, labelled, placed in resealable plastic bags and 
stored at 4°C in the dark. Upon return to the labora
tory (within 6-12h), samples were allowed to warm 
to room temperature and then analysed immediately 
for PO4 using a Beckman DU-8 spectrophotometer 
according to the method of Eisenreich et al. [12]. 

3. Results and discussion 

3.1. Instrument design 

Previous field R systems have typically incorpo
rated solid-state detection based on light-emitting 
diodes (LEDs) and photodiodes, peristaltic pumps 
and text-based software. Such solid-state detection 
is limited in that it can only provide an integrated 

response over the spectral bandwidth of the LED 
(typically 20-30 nm). In addition, peristaltic pumps 
require frequent recalibration and maintenance as 
well as regular replacement of pump tubing. The use 
of text-based software allows instrument control, but 
is difficult to use and has limited data acquisition and 
processing capabilities. The instrumentation reported 
here therefore provides major advantages in terms of 
spectral acquisition and signal processing, component 
reliability and ease of operation. 

A prototype instrument, used to determine nitrate 
in the River Frome, has been previously reported [13]. 
The current instrument has several design modifica
tions to improve reliability for field use. Firstly, the 
conventional quartz flow cell was replaced by a rigid, 
in-house 20 mm bore PVC flow cell incorporating 
1 mm acrylic fibre optical cables (see Fig. 2 insert). 
Secondly, an on-board tangential flow filtration unit 
[14] was incorporated to prevent blockage of the mi-
cropumps (a limitation of the original design) and 
thereby significantly extend operating lifetime and 
reliability in the field. In addition, the system was 
housed in a secure, impact resistant IP67 rated poly
carbonate box (FIBOX. Finland) for adequate protec
tion during field use and the software was modified 
to allow for replicate analyses and in-field adjustment 
of the calibration. 

The self-priming micro pumps and miniature 
solenoid valves provided a viable alternative to peri
staltic pumps. Fig. 3 shows the fluidic layout of the 
FI automation injection sequence. Switching valves 
were set to normally open — common (NO/COMM) 
when de-energised and to normally closed — com
mon (NCVCOMM) when power was supplied to the 
valves. The advantages of the system are low mainte
nance (and therefore potentially longer deployments) 
and electronic control of the flow rates. The two 
drawbacks are the additional pulsing of the microp-
umps compared with peristaltic pumps and their 
susceptibility to blockage from paniculate matter. 
The first problem was overcome by using the spectral 
capability of the detector to subtract the signal at a 
non-absorbing wavelength and the second problem 
by incorporation of the tangential flow filter. 

The phosphorus R manifold was based on a pub
lished design [15] but the limit of detection was im
proved to meet the needs of the study site (annual 
variability of 1-4 j i M PO4) [9,15]. This was achieved 
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Fig. 3. Fluidics of ihe auiomalcd FT monitor for PO4 deiemiination. Switching valves were set to normally open — common (NO/COMM) 
when de-energised and to normally closed — common (NC/COMM) when power was supplied 10 the valves. 

by increasing the sample volume from 40 to 130^,1 
and monitoring the phosphomolybdenum blue species 
produced ai 710nm (instead of 690 nm). 

3.2. Laboraiory FI calibration 

The FI determination of PO4 was based on the 
standard reaction with acidic molybdate to form 
12-molybdophosphate, which was then reduced to 
form an intensely coloured molybdophosphate blue 
species [16]. Five phosphate standards covering the 
range 0.8-8.0 \xM PO4 gave linear calibration graphs 
(r^ > 0.998), with a gradient of 0.0043 absorbance 
j i M " ' and an intercept of —0.009 absorbance. The 
relative standard deviations (R.S.D.) for these stan
dards were typically in the range of 0.0-1.3% {n — 3) 
and the limit of detection (calculated from the mean 
of the blank plus three times the standard deviation 
of the blank) was 0.67 j i M PO4. A l l measurements 
were made al 7IOnm (>.max) an l̂ processed by sub

tracting the absorbance at a non-absorbing reference 
wavelength (447 nm). Fig. 4a and 4b compare the sin
gle (7IOnm) and dual wavelength (710-447nm) FI 
responses for the standards and clearly demonstrates 
the success of using the non-absorbing wavelength 
to remove the effect of pulsations caused by the 
micropumps. 

The linear calibration range was extended to 0.8-
50ji.M PO4 by reducing the sample volume in
jected from 130 to 9 0 j i l and monitoring at 650 nm 
(selected as the wavelength giving 50% of maximum 
absorbance at 710 nm). This gave a linear calibra
tion graph (r^ = 0.994, n = 6) with a gradient of 
0.0034 absorbance j i M " ' and an intercept of 0.009 
absorbance. Good reproducibility was also observed 
throughout the range, with R.S.D.s typically <3.0% 
(n = 7). This shows thai the linear range can easily 
be adjusted in the field to suit local conditions and 
changing circumstances, e.g. storm events. For this 
deployment, 710-447 nm with a sample loop volume 
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Fig. 4. (a) Single wavelength (7I0nni) and (b) dual wavelength (715-447nm) scan of a POi calibration series (0.8-8.0(iM). 

of 130 M-l was considered the best measurement proto
col for the levels typically found in the River Frome in 
October. The addition of the QC (4.0 f i M PO4) after 
every fourth or fifth sample allowed for correction of 
drift arising from, e.g. changes in air temperature. 

3.3. River Frome field study (October 2000) 

A comparison of the data for the three field cal
ibrations (1-3 October 2000) is given in Table I . 
Reproducibility for replicate injections of standards 
was typically <4.0% R.S.D. (n = 3) and the pooled 
data (between batch) also showed R.S.D. of <4.0%, 
with a linear correlation coefficient (r^) o f 0.997. The 
QC sample was analysed 15 times over the 3 day 

period and the results were all within 3.7% (range 
3.81-3.95 M-M PO4), showing that external factors 
did not significantly affect the response. Fig. 5 shows 
the diurnal PO4 concentration profile over the course 
of the 3 day monitoring campaign, during which the 
monitor ran continuously after initial installation ex
cept for deliberate stoppages for the calibrations and 
subsequent changes of filter in the tangential flow 
filtration unit. The environmental significance of the 
data is discussed in Section 3.5. 

3.4. Intercomparison study 

An intercomparison study between the FI 
instrument and the batch method on 30 samples was 
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Table 1 
Table of field calibration data for PO* obtained during the field deployment on the River Frome. 

Day I Day 2 Day 3 Pooled Data 

IPOa] (nM) (;i = 3) Mean R.S.D. (%) Mean R.S.D. (%) Mean R.S.D. {%) Mean R.S.D. (%) 
absorbance (n = 3 ) absorbance (/I = 3 ) absorbance in = 3 ) absorbance (n = 3 ) 

0.8 0.0027 2.7 0.0021 3.7 0.0019 1.5 0.0020 2.6 
1.5 0.0040 6.0 0.0049 2.3 0.0040 2.7 0.0043 3.7 
4.0 0.0121 0.9 0.0135 4.3 0.0I2I 0.8 0.0126 2.0 
6.0 0.0168 1.0 0.0181 0.7 0.0166 2.3 0.0172 1.3 
8.0 0.0260 1.6 0.0276 2.0 0.0257 1.9 0.0263 1.8 

0.993 0.993 0.998 0.998 0.995 0.995 0.997 0.997 
Gradient (absorbance, J L M " ' ) 0.0038 0.0038 0.0043 0.0O43 0.0038 0.0038 0.0038 0.0038 
Intercept (absorbance) 0.0003 0.0003 -0.009 -0.009 0.0004 0.0004 0.0007 0.0007 

undertaken. Samples were analysed immediately us
ing the FI monitor (range 4.74-5.13 p,M P04)and also 
collected manually, stored and analysed later (within 
8h) using the batch method (range 4.75-5.34 j i M 
PO4). A paired r-tesi showed no significant differ
ence at P = 0.05 (the critical value of I/I was 1.96 
and the calculated value of I/I was 0.88). This means 
that data acquired using the field instrumentation can 

be directly compared with historical data acquired 
using the batch method and can therefore also be 
incorporated into the export coefficient model. 

3.5. Effect of FI data on the export coefficient model 

The export coefficient model for the Frome catch
ment [8] predicted a TP load of 26,100 kg per year, 
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Fig. 5. Time scries plot of PO4 concentration obtained over a 3 day sampling campaign on ihe River Frome in October 2000. 
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compared with an observed (measured) load of 
23,400 kg per year for 1998. Data for the observed 
load were obtained from manually collected samples 
(four per month) analysed in the laboratory using 
the batch method. The concentration data were inte
grated with flow data from the same sampling point 
and the observed annual load determined. Due to the 
variation in number of days between measurements, 
the loads were calculated on a time interval basis and 
aggregated to obtain the annual load. The observed 
load for 1998 was 11% less than the predicted load, 
due in port to the lack of resolution of the manual 
sampling programme, which meant that insufficient 
samples were collected during periods of peak river 
How (when phosphorus loads are at their highest). 

During the 3 day deployment, and for 10 days 
prior to that, it remained dry and therefore it is not 
surprising that Fig. 5 does not show major changes 
in PO4 concentration. Nonetheless the difference be
tween the highest and lowest concentrations of PO4 
observed would have resulted in an annual difference 
of 770 kg in an aggregated calculation which, assum
ing a constant ratio of TP to PO4 of 1.6:1.0 [8] , is 
equivalent to 1230 kg TP. It is reasonable to assume 
that over the lifetime of a rain event the PO4 concen
tration will fluctuate much more rapidly and that this 
data will have significant leverage on the aggregated 
observed annual load. The above hypothesis will 
be tested during future deployments but this paper 
demonstrates the feasibility of acquiring the necessary 
high temporal resolution data using FI based field 
instrumentation. 

4. Conclusions 

The n field monitor described is effective and 
reliable for measuring PO4 in freshwaters, with a 
detection limit of 0.67 j i M and the ability to respond 
to changes in environmental conditions by adjusting 
the wavelength used for detection. The addition of the 
tangential flow filtration unit prevented blockage of 
the micropumps seen in earlier deployments, which 
allowed extended and uninterrupted introduction of 
samples. The monitor can sample with high tempo
ral resolution (every 30min) which is necessary to 
measure short-term changes in PO4 concentration. In 

addition, the acquired data can be used to refine the 
export coefficient model for phosphorus loading in the 
Frome catchment. 
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