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mbedded tegratio ules and thel cations
esia alvs

by
Petros Dellaportas

This thesis deals with the development and application of numerical
integration techniques for use in Bayesian Statistics. In particular,
it describes how imbedded sequences of _positive (interpolatory
integration rules (P!IR's) obtained from Gauss-Hermite product rules
can extend the applicability and efficiency of currently available
numerical methods. - '

The numerical strategy suggested by Naylor and Smith (1982) is
reviewed, criticised and applied to some examples with real and
artificial data. The performance of this strategy is assessed from
the viewpoint of 3 criteria: reliability, efficiency and accuracy.

The imbedded sequences of PIIR's are introduced as an alternative and

an extension to the above strategy for two major reasons. Firstly,
they provide a rich class of spatially ditributed rules which are
particularly useful in high dimensions. Secondly, they provide a way

of producing more efficient integration strategies by enabling
approximations to be updated sequentially through the addition of new
nodes at each step rather than through changing to a completely new
set of nodes.

Finally, the improvement in the reliability and efficiency achieved by
the adaption of an integration strategy based on PlIIR's is
demonstrated with various ({llustrative examples. Moreover, it s
directly compared with the Gibbs sampling approach introduced recently
by Gelfand and Smith (1988).
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Chapter 1; erfcal methods avesian Statistics

1.1 e role o umerica te o Bavesian Statistic

1.1 troductio

A major impediment to many practical applications of Bayesian methods
is the difficulty in evaluating the various integrals required. This
has led to much research into numerical methods of integration for
Bayesian analysis on which this thesis is focussed. This chapter is
concerned with the description of the Bayesian paradigm, the technical
difficulties encountered in its practical application, the need for
its numerical implementation, and the numerical methods currently in
use. The remainder of this -section contains -a brief summary of -the -
Bayesian paradigm  highlighting the need for its numerical
implementation. The intention is to fix notation and introduce
definitions to be used in subsequent sections rather than to give
detailed account or mathematical rigour. For more details, some
standard textbooks are given as references throughout this section. In
section 1.2 we give a brief account of the extensively used quadrature
strategy introduced by Naylor and Smith (1982). See for examplé
Naylor and Smith (1988a,b). In section 1.3 we present other numérical
integration methods currently in use. In particular spherical rules
and Monte Carlo methods are outlined and their pra;tical diff}culties
are emphasised. Finally, we end this chapter with a brief description
of the'imbedded sequences of integration rules and a discussion of the

motivation for the researh work described in the rest of the thesis.




1,1,2 e Bavesia arad

Following Naylor and Smith (1982), we consider parametric statistical
models; given sample data x generated from the model we focus on the
parameter vector §' = (8,,...,0y assuminé that the model gives rise
to a well defined likelihood function 2(x;8) through which we receive
the information about @ from the data x. Choice of suitable
parametric models, of likelihood construction and interpretation are
issues of primary importance which have been discussed widely in the |
statistical literature. See for example Cox and Hinkley (1974),
Barnett (1982). Adopting a Bayesian approach we place probabilities
or plausibilities on various ¢ in the form of a known prior density
function p(8). The construction and interpretation of this prior has
been the subject of much debate in the literature. See for example
Barnett (1982), Cox and Hinkley (1974), Box and Tiao (1973), Berger

(1987). . -

Under the above assumptions Bayes' theorem can be applied to update
the prior density function via information of the data to obtain the

joint posterior density

pe/x) = 2(x; ) p(8)

(1.1)
2(x ) p(8)de
Ex -

where Ey is the k-dimensional Euclidean space.

The . posterior density as expressed in (1.1) is regarded as a complete
description of what is known about & from the prior information and

the data. It therefore provides the basis for inferences about 8.




If we are interested in a subset of §,

81 =(8,.8,....8) (1.2)

where I = (1,2,...,r) € (1,2,...,k),

then we can obtain the marginal posterior density of 8 simply EU

integrating over g7, the complement of # with respect to §. Thus, we

have
p(g1/%) = | p(g/x)d8T . (1.3)
Ex-r
Posterior expectations, such as posterior means variances or

covariances as well as predictive densities, can then be derived.
Many of the integrals required in Bayesian analysis can be written,

perhaps after an initial parameter transformation, in the form

Sp(a(g)) = | a@)e(x:8).p(g)dgy (1.4)
Eg-r

with appropriate choice of 1 and q(§) where S| is written as § if we

have r=k in (1.2).

For example, S(1) provides the normalising constant of the joint
posterior density; 5(8)/S(1) provides the posterior mean pu;

S(8-u)?2)/S(1) provides the posterior variance; S(p(y8))/5(1), where



p(y/8) 1is the density of the distribution of Ffuture data y, provides
the predictive density of y. In practice the need to evaluate the
integral (1.4), particularly in high dimensions, places a sérious
technical barrier to many applications. Aftempts to avoid or overcome

this technical barrier can usefully be classified as follows.
restriction of models to a suitably tractable class.
. analytic approximations (usually based on asymptotic theory)
numerical approximations (in;luding Monte-Carlo methods)

In the remainder of this section we give a brief overview of each of

these in turn.

1.1 es cted mode

If Q2(x;8) and p(gd) belong to exponential and conjugate family
respectively, the integral (1.4) can be evaluated analytically. For
more details and examples, see Lindley (1972), Cox and Hinkley (1974),
Box and Tiao (1973). However, the use of likelihood within the
exponential family and conjugate ©priors often represents an
unrealistically simplistic approach. Notable cases where this
approach fails are when censoring or group effects or outliers are
encountered in the data. Moreover, the choices of the population and
prior densities are very often restricted to particular parametric
families or are selected from an enriched family for reasons of

analytic convenience. This is an essential disadvantage because it




eliminates important benefits of the Bayesian approach and the

validity of the paradigm as described in (1.1)-(1.4).

1.1.4 alvtic a 0 at {ons

Analytic approximations based on asymptotic theory have received
considerable attention in the literature. In essence, the theory
shows that, under certain regularity conditions and for large samples,

the posterior distribution of § is approximately

N(3,D
where @ is the maximum likelihood vector and £~' has elements

-02¢ne(x;0)

i~z — | -
J 510 o3

These results, which resemble the asymptotic results for maximum
likelihood inference, lead to convenient approximate solutions to the
problem for large samples. For details of typical regularity
conditions see.Walker (1969), Le Cam (1970), Dawid (1970) and Heyde
and John%;n (1979). The major difficulty with solutions based on
asymptotic properties is that of checking the assumption of
approximate normality particularly when dealing with a complex,
multiparameter pr;blem. See Smith and Naylor (1987) for a case-study

illustration of the problem.



At the time of writing, the ultimate analytic treatment in Bayesian
analysis is.the method suggested by Tierney and Kadane (1986), see
also Kass et al. (1989) and Tierney et al. (1987). This requires the
evaluation of first and second derivatives of slightly modified
likelihood functions. Other asymptotic approximations of particular

interest are due to Johnson (1970), Lindley (1980).

The practical potential of the analytic methods depends clearly on the
contekt in which a particular task is to be performed. If we are
dealing with a specific application where the task is to be performed
repeatedly, an analytic approximation with a detailed analysis of its
accuracy is probably preferable to repeated use of numerical methods.
On the other hana, performing é detailed analytical study in an
one-off situation is unreasonable, if not beyond the scope of many
practitioners. This cpuld happen in a typical analysis problem in
which the statistician might have a restricted time for the analyiis.
This is where the need of a general purpose numerical Integration
strategy is called for. In addition, as Smith et al. (1985) point
out, all forms of analytic approximations require empirical validation
in specific areas of application and at present we need the numerical
approaches even for the purpose of judging the power of analytic

approximations,



1,1.5 Numerical methods

Numerical methods have recently been introduced to cope with the
analytic intractability which often occurs in Bayesian statistics.
Reilly (1976) gave an early éxample of numerical integration in
Bayesian analysis. He used a large number of grid points to evaluate
the function and approximated the integral needed as a summation of
point values. This crude method needs a very large number of function
evaluations, especially as the number of parameters Iincreases.
Moreover, the choice of location and size of grid is a subjective
process which may involve a considerable amount of labour and

computation.

Dagenais and Liem (1981) have described a procedure in which
univariate marginal densities can be approximated using successive
transformations of §, together with results of. the assumption of
asymptotic normality and additional transformations proposed by
Johnson.(1949). Subsequently, inferences about the original parameter

set are made by inverting all the transformations used.

Naylor and Smith (1982) introduced the first general purpose strategy
for numerical integration in Bayesian analysis wusing GCaussian
quadrature to evaluate efficiently integrals of the form (1.4) for a
wide range of problems. The method has been refined considerably (see
Smith et al (1985), Smith et al (1987)) since strategies coping with
multi-dimensional probl;ﬁs and graphical displays have been presented.
The method has been implemented by the Nottingham Statistics group
and a computer package called 'BAYESFOUR'. See Naylor and Shaw

(1985), (1988) for details. Section 1.2 is concerned with a brief




review of the method.

1,2 e fterative algorit o avlor and Smijt

A major breakth;ough towards the routine ‘implementation of the
Bayesian paradigm has been the iterative algorithm suggested by Naylor
and Smith (1982), The second chapter of this thesis contains ‘a
detailed description of the algorithm, but a brief summary is included

here.

The iterative quadrature strategy exploits the asymptotic normal form
of the likelihood and employs a transformation of the parameter wvector
to a parameter which has, at least approximately, . zero mean and
identity variance-covariance matrix. This transformation is achieved
through estimates of first and -second moments which in turn have -been
derived from previous iterations. In each iteration, approximations
to posterior moments and normalising constants can be calculated using
Gaussian product quadrature formulae. The iterative algorithm is
continued until stable answers are obtained for the required integrals

between successive iterations.

The method of Naylor and Smith opened a new field in the area of
Bayesian analysis making possible the calculation and reconstruction
of posterior joint or marginal densities with realistic statistical
models and prior distributions. It provided the user of the Bayesian
paradigm with the necessary tools to exploit the wide range of options
offered to him, such as model sensitivity and robust inference.

However, the above iteration scheme imposes several restrictions; it




requires an initial transformation of the parameters to normality, in
cases where the asymptotic assumptions are not valid. Moreover, when
the dimensions are high, (typically 5 or more), the Gaussian
quadrature formulae require an enormous number of function

evaluations.

1,3 Other numerical integration strategies

1,3,1 Spherical rules

Naylor and Smith (1982,1988b) have mentioned the possible use of
spherical rules in high dimensions where product rules are too
expensive. These rules are more economical than product rules in the
sense that, for given- a number of points, they -are of greéter

precision than product rules (see Naylor and Smith (1988b) table 1).

The spherical rules are based on the observation that, if we make the

transformation 8 to y where
61 = rcosyy_1Cosyk.2...cosyrcosyy
f2 = rcosyy_jcosyg._2...cosy¥ysingy

63 = rcosyy_jcosyy._2...sinfy

0 = rsindyp_y

- then we can write the integral (4) as a product of integrals of the

form




"
] cos(¥q) 1 (sinyj) i gy, =1, k-1

-

and

[ (r2y¢"! axp(-r2) dr

0

for some aj bj, c.
These rules, described in detail in Stroud (1971, sections 2.6,2.7),

have been embodied in 'BAYESFOUR' (see Naylor and Shaw (1985) ) for

k>4 in (1.4).

Intuitively, we might expect these spherical rules which reflect the

spherical symmetry of the posterior density function to perform better

than product rules. Unfortunately, there are certain limitations to
the use of spherical rules. There are few high precision rules
with positive weights. For instance, only rules up to degree seven

are used in BAYESFOUR (See Stroud (1971), page 317-319, rules Ej
:5-3 and E, :7-2). Another disadvantage of the spherical rules is
that marginal or joint posterior densities cannot readilyAgérived. A
way of overcoming fhis, is to mix integration stategies #s described
in Naylor and Smith (1989b, sect. 6). Hence, some parameters can be
treated using product rules while the other (nuisance) parameters are
dealt with by spherical rules. Of course, the choice of 'interesting’

and 'nuisance’' parameters can vary between iterations so marginal

summarisations can be derived for a large number of parameters.

10




1,3.2 Sam based methods

on
Another way to economize the number of function evaluations when

A

dealing with high dimensions in (1.4) is to adopt a Monte Carlo
approach. This method has been used extensively in the context of
Bayesian analysis over the last two decades. See Stewart and Johnson

(1972), Stewart (1979, 1983), Kloeck and van Dijk (1978), and van Di jk

and Kloek (1980, 1984), Shaw (1988). The general approach proceeds as

follows. Suppose it is possible to generate an i.i.d. sequence of
random variables (8,,85,---,8n) baving common density
h(g) > 0. The Monte-Carlo approach then approximates S (q(8)) in
(1.4) by

m
$(q(g)) - Z q(giIw(dy) .,

i=1
where w(gj) = Q(ﬁ;gi)-P(Qi)/h(gi)' The density h(g) is called the
importance function and the process of generating #; according to h is
called importance sampling. The efficiency of the method depends
clearly on the choice of a suitable importance function. Ideally,
h(g) should be chosen to resemble q(f§) and to allow the Gi's to be
genefated easily. See Hammersley and Handscomb (1964), and Rubinstein
(1981) for more details. In practice, it is possible to estimate
simultaneously many S5(q(8)) for different q(6) using the same sample
(8,,0,,...,8,). This is achieved by choosing h(§) to have a similar
shape with q(8) but with heavier tails, followed by the use of a
suitably ‘'uniform' configuration on points in the k-dimensional

hypercube,

11




A class of univariate distributions which provide a flexible set of
distributional shapes, and hence a family of 'suitable' densities h(#)

is given by Shaw (1986a). The problem of specification of 'uniform’

been.
configurations of points in the k-dimensional hypercube has studied by
N
Shaw (1988). Smith et al. (1987) and Naylor and Smith (1988b)

describe an iterative importance sampling strategy which has been
embodied in BAYESFOUR: this is recommended for use on all problems
with 9 or more parameters. See Naylor and Shaw (1985) for more

the
details on use of Monte Carlo methods in BAYESFOUR.

A
Considerable objectibns are made to Monte Carlo methods on the grounds
that they add random variation and ignore information such as the
position of the generated nodes. See Bacon-Shone's comments in the

discussion to van Di jk and Kloek (1985) and O'Hagan (1987).

Very recently, GCelfand and Smith -(1988) described -sampling-based
approaches to calculating marginal densities and Celfand et al. (1989)
described how the Gibbs sampler can be used effectively to obtain
inference summaries in a range of normal data models. Chapter 6 of
this thesis is devoted to applications of Gibbs sampling in the large
area of Generalised linear models. This includes, among other things,
comparisons with the numerical integration approaches. We present

here the basic steps of the Gibbs sampling approach.

The Gibbs sampler is a Markovian updating scheme for the convergence
of a dénsity, introduced by Geman and Geman (1984). Given a joint
posterior density p(8i1x), functional forms of the k univariate
conditional densities can be readily written down, at leagt up to

proportionality. 1If these densities are denoted by

12



p(81102,63,...,0k)

P(82|01,63,...,ek)

(1.5)
p{fk161.,82,...,8x)-
then the Gibbs sampling algorithm proceeds as follows: Choose initial
values for 02(0),83(0),....8k(0) and generate a value 81(1) from the
conditional density
p(01|02(0),83(0), ... ,0k(0))
Similarly, generate a value 82(1) from the conditional density
p(82161€(1),83€0),  _ ,0,(0))
and continue up to the value Ok(l) from the conditional
p(leﬂl(l),Oz(l),....Ok_l(l)).
Then, the new realisation of 8 given by Q(l) can be utilised and the

above process repeated, say m times, producing Q(m). Following Geman

and Geman (1984), under mild conditions,

d
8;(m) 5 8; . p(o;)

and therefore, for m large enough, Bi(m) can be regarded as a

simulated observation from p(6;), the marginal distribution of #&;.

13




Replication of the above process t times produces t sets of parameter
values, (ij(m),j—l,t), and thus for each element of # we obtain a
simulated sample with size t from its marginal density. Values for
this marginal density can be calculated using either a kernel density
estimate (see Silverman (1986) ) or by averaging over the conditional

density:

1 t
p(oy) = — L p(ajigj(m),
t j=1 :

where 0;' denotes the complement of ¢; in 8.

Proponents of the above iterative algorithm do not generally claim
that it competes with other methods in terms of effiqiency, but, it
provides a method which is simple to implement and which exploits
structural information given by (1.5). It has been demonstrated that
the method can be used successfully in otherwise numerically (and
analytically) intractable problems (see for example Gelfand
et al. (1989)). At the time of writing, it seems that potential
improvements are expected towards the direction of a general purpose
numerical routines for the implementation of the Bayesian paradigm
using the Gibbs sampler (see also Hills (1989) ,Smith and Gelfand

(1990) ).

1,4 Imbedded sequences o tegration rules

This thesis describes how imbedded sequences of positive interpolatory

integration rules (PIIR's), obtained from Gauss-Hermite product rules,

14



can be applied in Bayesian analysis. These imbedded sequences are

very promising for two major reasons. Firstly, they provide a rich
class of spatially distributed rules which are particularly useful in
high dimensions. Secondly, they provide a way of producing more

efficient integration strategies by enabling approximations to be
updated sequentially, by the addition of new nodes at each step rather
than by changing to a completely new set of nodes . Moreover, as
points are added successive rules change naturally from spatially
distributed non-product rules to product rules. This -feature is
particularly attractive when the rules are used for the evaluation of
marginal posterior densities. The basic theory of these rules is
described in chapters 3 and 4, and a suggested integration strategy is

proposed in chapter 5.

1.5 scussio - - -

.It is therefore surely no longer acceptable, neither from an
intellectual nor a public relations . perspective, simply to proclaim
and demonstrate, in the theoretical domain, the inevitability or
desirability of the Bayesian position without following the enterprise
through to provide the appropriate tools in the practical domain.

A.F.M. Smith (1988)

Vast amounts of research over the last decade have been directed
torwards the development of a general purpose software package for
Bayesian analysis which can be used routinely by data analysts.

Efficient methods of numerical integration and approximation have been

15




developed and these have been reviewed in this chapter. The technical
implementation clearly depends on the ability to calculate the forms
of integrals as in (1.4) for any given likelihood and prior

specifications.

These methods, however, all have their drawbacks; restricted model

choices for analytic approximations; lack of high-degree spherical
rules; choice of appropriate importance functions and sampling rules
for Monte Carlo methods; expensive and often impracticable
high-dimensional product inteération. It was therefore intended that
the research program should follow the avenue of Beveloping numerical
methods for Bayesian analysis which overcome some of these drawbacks.
In the following chapters, an extensive review of the relevant
literature in numerical integratiqq is carried out, and a new
quadrature strategy, based on imbedded sequences of positive

interpolatory integration rules (see section 1.4) is suggested.

16
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Chapter 2; Applications of the quadrature strategy of Naylor and Smith

2.1 Introduction

Widespread applications of the adaptive integration strategy
introduced by Naylor and Smith (1982) have been documented in the
literature, see Table 2.1. These illustrate the rich wvariety of
applications wich have been dealt with and the practical importance‘of
the strategy. Here we describe this strategy and review real

applications highlighting some of their important aspects.

In section 2.2 we give a detailed account of the adaptive integration
strategy. The following section then gives a simple application of
the iterative strategy using BAYESFOUR. This example introduced by

Reilly (1976) and was reanalysed by Naylor and Smith (1982).

Although it has been noted in the literature that the numerical
strategy can be applied in conjuction with analytic integration over a
subset of the parameter space, there is lack of published examples in
which this approach i{s used. In section 2.4 we illustrate using real
data a two parameter problem analysed using analytical and numerical

integration.

Finally, in section 2.5 of this chapter, we describe an experimental

examination of various properties of the numerical strategy of Naylor-

and Smith.

17



Table 2.1

Publications with applications of the method by Navlor

(1982

Reference

Naylor and Smith

Smith and Naylor

Smith et.al.

Grieve
Naylor
Lee
Marriot

Shaw

(1982)

(1983)
(1988a)
(1988b)

(1987)

(1985)

(1987)
(1987)
(1987)
(1987)

(1987a)

and Smith

Application area

Leukaemia data
Stanford Heart Transplant data
Regression with censored data

Clinical Chemistry

.Archeological data -

Haavelmo's consumption model
Directional disequilibrium model
3 parameter Weibull distribution
Probit analysis

Non-linear regression

Regression with propor. hazards
Bayesian alternativés to t-tests
Analysis of variance

Box Jenkins models

Spline logistic regression model

18
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2.2 e jterative guadrature strate 0 aylor and Smit 1982

2.2.1 ara 0 atio

The iterative quadrature strategy of Naylor and Smith (1982) exploits
the asymptotic normal form of the likelihood using, where appropriate,
parameter transformations to improve the asymptotic normality; for
example, a variance 0% can be reparameterised to Iogaz; a proportion p
(0<p<1) to log(p/(1-p)). See Hills (1989) for more details. The
asymptotic theory enables the argument of (1.4) to be expressed in

terms of the product

h(8) .n(8;e,L) (2.1)
where n(8;¢g,XL) 1s the d-dimensional normal density with mean ¢ and
covariance matrix X and where under appropriate conditions h(8) is a
suitable well behaved function. For assumed ¢ and I a linear

transformation of 8 to a d-dimensional wvector x Jleads to the

standardized form

. T
$(q(8)) = If = I F(x)e ™™ Z2dx .

This integral is amenable to approximation by standard quadrature

formulae of the form

19




m

Qf = ) wif(xy) (2.2)

fe=1
where w; are the weights and the x;'s are the nodes of the formula Q.

degree of precision

It is common in the numerical analysis context to test the power of an
integration formula such as (2.2) by referring to the 'degree' of the
formula or of the integration rule. Hence, before we proceed further

we state here the definition of the degree of the rule:

A rule of the form (2.2) is said to be a degree p (or precision p or
degree of exactness p) if is exact for all monomials of degree p or
d

a,
less (i.e. if it is exact for all monomials M x; ' with
i=

g a

L2 € p) and there is at least one monomial of degree pt+l for

which it is not exact.

We mention here that comparison of integration rules merely in terms
of their precision, as for example in Naylor and Smith (1988b, table
1), can be misleading. Rabinowitz and Richter (1969) note that
product rules can be equal or even superior to non-product rules with
higher degree. This happens because product rules of degree p can

d 'ai
can integrate all monomials with terms.ll.x; with a;<p and not only

i=1 1

n
these monomials for which £ aj <p. For more details, see Mantel and
i=1

Rabinowitz (1977) who give definitions of ‘'optimal' or ‘'minimal’

rules. Having given a brief outline of the general structure of the
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procedure we proceed to look at the one dimensional case in detail.
This is then followed by a detailed description of the generalisation

to d dimensions.

2,2.1.1 1-dimensional case

Using Gauss-Hermite quadrature rules, we can approximate univariate

integrals of the type

re-tzf(t) dt (2.3)
by

n

z wif (tyq) (2.4)

je=1
The error in this is given by

n! s«
E, - —— f(2m) (&),
20(2n)!

Thus the rule is exact if f(t) is a polynomial of degree 2n+l or less.
Moreover, the error will be small whenever the high order derivatives
of f(t) are sufficiently small. The nodes t; and the weights w; of
the rule (2.4) can be found in books or can derived using published
programs. See Stroud and Secfést (1966) for a list of nodés and

weights as well as a FORTRAN program to derive them.
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In Bayesian analysis we seek to evaluate integrals of the form

S(q(8)) = [m q(6)2(8/data)p(8)dé

-0

For the purposes of our explanation it is convenient to write the

above integral in the form
q(8) [ p(8)0e(8/data)exp((8-p)2/202) | exp(-(8-p)2/202)
where p and o2 represent the posterior mean: and variance of 8.

Asymptotic theory predicts that, under suitable conditions,

p(8)e2(6/data) is proportional to a normal density with mean p and

variance ¢2- Thus, the expression within [] should, under suitable
conditions, be a slowly varying function of ¢. Indeed, for exact
normality, the term within [] will be constant.

Transformation to an integral of the form (2.3) by putting
t—(B-y)//(Zaz) followed by application of (2.4) yields the

approximation

n

z mijq(fi) (2.5)

where

m{ = wiexp(tiZ)Jiap(ﬂi)ﬂ(ﬂi/data)
- (2.6)
0j = p + S20t
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The mj's, which involve perhaps time consuming evaluations of the
likelihood need only be evaluated once and can be applied to

approximate S${(q(.)) for various q(.).

Note that (2.5) yields the approximations to posterior expectations of

the form
51(q(8))
E(q(8)] = —— = I pja(&y), Lpj=1
S (L i i
where py = my / Img. The approximation of the expectations can be

regarded as an approximation which replaces continous posterior
distributions by a discrete distribution with probabilities

P1.P2,-.-,Pn at points 81’82,...,8n.

For illustrative purposes, we consider three posterior distributions:
(i) a standard normal distribution, (ii) a t-distribution with 3
degrees of freedom and (iiil) a lognormal distribution with scale and
shape parameters equal to 1. Expectations are then approximated by
expectations with respect to the discretised posterior distribution
(2.5). For the purpose of these illustrations the true values of the
mean and variance weré used for p and 02, Figure 2.2 illustrates the
discrete distributions obtained for each of the three examples as
derived from (2.6). An 8-point Gauss-Hermite formula was used for the
two former distributions and a 32-point formula for the latter. Note
that for the integration of the lognormal density function a
log-transformation of the parameter was applied to achieve normality.

Thus, the nodes and weights in (2.6) were replaced by
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my* = mjexp(t {2+p+ /20t ;)

Oi* = exp(8j)

Iteration over u and o

To use (2.5) we must specify p and ¢ in (2.6). The most commonly used
method is to give starting values to g and ¢ so that the normal

density is ‘close' to g(t). These wvalues may be the maximum
likelihood estimators as given in section 1.1.4, or may be any other
reasonable initial estimates. Then we can iterate on (2.5),
substituting into (2.6) estimates of p and ¢? taken as the posterior

mean and variance respectively, as given by (i) and (ii)

(i) p=5(8)/5(1) .

(i1) o2 = 5((0-p)2)/s(1)
and obtained using (2.5) based on previous values of m; and ;.
In practice, the iterative process begins by iterating within a coarse
grid of points and proceeds to the next step by changing u and o2

and/or using a finer grid. The iteration ends when the convergence is

satisfactory within and between each grid size(s).
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2.2.1.2 Multidimensiopal case

In cases where higher dimensions need to be considered, the method

can be extended using a Gauss-Hermite product rule,

[...[q(ﬁl,az,....Gk)ﬂ(81,82,...,ledata)p(ﬂl,ﬂz,...,Bk)dﬂlez...ﬂk =
(k) (2) (k) ~ (1) (2) (1)
= ): mik- .. z mg27 z mij1 q( €6§1.942,---,04k ) (2.7)

ik i2 il

(i (D . . . .
where mij aij can be found using (2.6), substituting the marginal
posterior mean and variance of g for u and ¢2. The number of nodes
can be different for different components of §. A further assumption
implicitly involved here is that of posterior independence. In

problems where this assumption is not reasonable, a transformation of
the parameters in § to a new, approximately orthogonal set of
parameters can be applied. This is achieved by applying the

transformation of the form

¥1 = 01
i-1

¢i_9i+ z ﬂij ¢j,i-2,...,k
j—l

with

Bij = -Cov (Gi,¢j|x) / Var(wjlx)
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FIGURE 2.1: Flowchart showing the oumerical Integration strategy
of Naylor and Saith (1982)
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The flowchart in figure 2.1 shows the essential steps in the iterative
strategy. At each stage of the algorithm the transformation is
recalculated and the updated posterior moments are used as a guide to
the convergence. A key feature of the approach is that the same nodes
and weights can be used to calculate normilising constants, marginal
density values and moments. This leads to considerable gains in

efficiency.

Naturally, the above approach works most efficiently for posterior
densities'which are very nearly normal. The regularity conditions
( Johnson (1970) ) indicate a class of problems for which the basic
assumption (2.1) is wvalid. In addition, these conditions are not
considered to be the 'weakest' assumptions under which we can achieve
such an expansion, and the method can have a theoretical justification
that produces satisfatory results for a wide range of problet;ls.
Moreover, in cases where no consistent_ convergence is recorded between
iterations, we can conclude the approximation (2.1) is inadequate.
Thus, the method provides a 'fail safe' system in that problems
outside the class for which the method is appropriate will not produce

satisfactory results.

For more than 5 or 6 parameters, the computational power needed to
apply the rule (2.5) is enormous. This happens because the number of
function evaluations increases rapidly in the use of Gauss-Hermite
product ruiles. In addition, these rules spend all previous function
evaluations when procceeding fram one rule to another one with higher
precision. BAYESFOUR uses Gauss-Hermite rules up to dimensi:on 6. In
higher dimensions, other facilities are used to overcome the problem

such as fixing some variables or mixing integration rules (see Naylor
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and Smith (1988b) ). These rules, however, require a very experienced

user and add more uncertainty when testing the convergence.

2.3 three dimensfonal example
We have already described, in section 1.1.5, the simple approach of
Reilly (1976). Here we use one of his examples to demonstrate the

Gauss-Hermite rules in higher dimensions.

The data in table (2.2) were generated by Reilly (1976, table 1) using

the non-linear regression model

Iny; = In(a+Bxj) + €

Table 2.2
Xi i
0 4.11
1 6.32
2 8.21
3 10.43
4 14.29
5 16.78
with o=5, =2 and errors €¢; = (i=1,2,...,6) being normally and

independently distributed with mean zero and variance o2,

29




Reilly considered the two parameter problem with known variance
(02=0.13982). Naylor and Smith (1982) used this example to compare
their strategy with Reilly's method, considering also the case where

02 is unknown. In the latter case, the three parameter problem with
8 - (a,8,02)

has a likelihood of the form
6

ol ) el 0 )]
-

0(x;8) = (2702)"3

Using an improper prior and a log-transformation of the variance o2 we
applied the iterative strategy illustrated in figure (2.1). The
analysis was carried out using BAYESFOUR with. maximum likelihood
estimators to obtain initial initial posterior means and covariance
matrix. In order to demonstrate the efficiency of the strategy the
aggregate measure A, described in Naylor and Shaw (1985), was used as
an objective measure of convergence. For a d dimensional parameter @
let'p(x), #ij, € and Pij denote respectively the normalising constant,
the posterior mean and the posterior standard deviation of the ith
component of §8, and the correlation between the ith and jth
component. The relative change in these quantities from the previous

to the current iteration .is represented by

p(l)(X) - p(o)(X)

ap(x) = '
P(o)(x)
(1) (0)
A#i = Hi ~KHi ,
#i(O)
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(1) (0}

g9i L | .
O

Ag; =
and soiy = o1,V oy

in which the superscripts (0) and (1) denote the previous and current

iterations. The aggregate measure A is then given by

1 d 1 d 1 d i-1
4 = 148p(x)1 + — I 18pjl + — I 1doj1l + — L L 14p;jl
m m 2 . :
i=l i=1 mc =2 j=1

where m is the number of elements of @8 for which moments were

calculated.

The convergence between steps being considered satisfactory when an
overall change A of less than 5% had been achieved. The analysis
summary from BAYESFOUR, given below, illustrates the convergence of
the posterior moments and the overall change (in percentage) in each
iteration. The analysis started with a grid of 4x4x4 points and
convergence criterion was satisfied after 4 iterations. This was
followed by further 2 iterations with a 53 rule, 2 with a 63 rule, 2

with a 73 rule and finally a single iteration using a 83 rule.

In each iteration, BAYESFOUR gives the current estimates of the
posterior means and variances of the three parameters, together with
their posterior correlations and the normalising constant, which is
denoted by p(x). The overall change A is given at the end of each
iteration. The full picture of the iterative algorithm is integrated
with the clear demonstration of the grid changes and the form of the

linear transformation that were used.
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TUE, 21 MAR 1989 @ 16:08:3¢6

Cutput summary file = ¢$2
Problem data file = re.dat

moment input file = re.maxulik
. Starting point supplied:
Parameter Set

alpha beta sigma*2
Posterior Means

3.99630 2.37920 -5.96940
Posterior Standard Deviations
0.179815 0.106457 0.577321

Posterior Correlations
alpha beta
beta -0.57869
sigma*2 0.0000 0.0000
Linear transformation used :
Operational parameters are
alpha beca_ 1 sigma*22

- T R AR M D D P S R A e T L S e e

Parameter space is partitioned into sub-spaces

Cartesian product rule on 3 dimensions
Spherical rule on 0 "
Monte-Carlo rule on 0 "
giving integration over 3 "
for a problem with } parameters

_Cartesian product grid size is : §X 4x 4
A linear transformation is applied to 3-1 parameters

P Y R R 2 YRR R R AR EERER R A A RR R ERE RS AR S A R R AL AL S EER R ERELSEEEAE S

Iteration Number 1

Linear transformation used :
Cperaticnal parameters are

alpha beta 1 sigma+22
pis) = 2.34093%% E 3
Parameter Set

alpha beta sigma~2
. Posterior Means
4.00882 2.37%86 -5.47310
Posterior Standard LDeviations
0.225120 0.133515 0.613208

Posterior Correlations
alpha beta

keata -0.5762

si*ma'z 0.005%3 J.9006

TRewww 65 4%-'1-1-q't"--'wctwtqtqvnvcr---c-v---c--v"'--tnatt--.vcov-tvncwtao-

-

[teraction Number 2
Linear transformation used
Cperational parameters are :
alpha beta 1 sigmar22
plz) = 2.4719310 E 3
Parametar Set

alpha beta sigma*2
Posterior Means

4.01072 2.37956 -5.36149
Posteriocr Standacd Deviations 32



0.252372 0.149377 0.663818
posterior Correlations
alpha beta
beta -0.5757
sigma*2 0.0230 0.0011

erwwn 16 PITEERR R R LS AR RS AR A AR AR ASRERLARALAAEEALE AL AA AL M AAALELELE

fteration Number 3

- - - = R = > = . ] o = = 0 > S e N D e W -

Linear transformation used
Operational parameters are :
alpha beta 1 sigma*22
plz) = 2.4875274 € 3
Parameter Set )

alpha beta sigma+*2
Posterior Means

4.01159 2.37962 -5.31892
Posterior Standard Deviations
0.266304 0.157555 0.674465
Posterior Correlations

algha bera

beta -0.5753

sigma~2 0.0362 0.0011

Treww S 9%'.it'.tt.-ttit'.'Iiitttcttttottitittttttt.tt.t.t't.Qttftnn'l'!t't"

Iteration Number 4

Linear transformation used
Operational parameters are

alpha beta 1 sigma*22
plz) = 2.4751959 £ 3
Parameter Set

alpha beta sigma*?2
Posterior Means

4.01178 2.37965 -5.29894
Posterior Standard Deviations
0.273310 0.161671 0.675368

Posterior Correlaticns
alpha bera

beta =-).5751

sigma~2 J.0433 0.0010

Tevew 2 aittiﬂtﬁtitt.I-'..ll'."'I'I"""IIQ'Q"....'.QI.I'QI.".I'I.""'I'

Iteration MNumber S

Changes:
. New grid
Parameter space is partiticned into sub-spaces
Cartesian product rule on 3 dimensions
Scherical rule on 0 "
Mente-Carlo rule on 0 "
giving intagration over 3 "
for a preblem with 3 paramecers

Cartesian producz grid size is : £ X 5 X 5
A linear transformation is applied to J-1 parameters
Linear transformation used :
Operational garamet2rs are
alpha . bera__ 1 sigma*22
plx) = 2.6795301 € 3
Parametar Set
alpha beta - sigma*2
Posterior Me2ans
4.01870 2.37948 -5.16683 33

-




Posterior Standard Deviations
0.266093 0.157258 0.758834
Posterior Correlations

alpha beta
beta -0.5757
sigma*2 0.0313 0.0020

AERAR 12'sitt--ttlttttttﬁtiﬁqtkttl-t-tqtt'ttt'tltittlt.ttttﬁtttlttttttttnttt.n -

Iteration Numbec 6

Linear transformation used :

Operational parameters are .
alpha beta_ 1 sigma=~22
plz) = 2.6677575 E 3
Parameter Set

alpha beta sigma*2
Posterior Means

4.01869 2.37948 . =5.36838
Posterior Standard Deviations
0.266084 0.157192 0.774210

Posterior Correlations
alpha beta

beta -0.5760

sigma*2 0.0283 0.0019

rywAw 1 3%."."""i..I."'I'.l'l"'."vtt'.'.i.".ll"'."'II"'.'I.'I'I"'

Iteration Number 7

Changes:
‘lew grid
Parameter space is partitioned into sub-spaces
Cartesian product rule on - 3 dimensions
Spherical rule on 0 “
Monte-Tarlo rule on 0 "
giving integration aver 3 "
for a problem with 3 paramaters
Cartesian product grid size is : X 86X 6
A linear transformaticn is acglied to 3-1 carameters
Linear transformation used
Jperational parameters are
alpha bara_ 1 sigma*22
glz) = 2.5731878 E 3
Parameter Set
alpha beta sigma~2
Posterior Means
4.01072 2.37956 -5.29693
Fosterior Standard Deviations
0.282426 0.16677 0,.738570
Posterizr Corraelations
alpha beta
teta -0.5750
sigma*2 0.0532 0.001%
IR R RN ] 8.6%".'...Q.'....q’..--'..'lll'l"'l"ll.’.ﬁ‘!!'t't'.""".l.t"l."'

iteracion Number 8
Linear transformation used :
Cperational parameters are
alpha bera 1 sigma*22
plz} = 2.55065139 E 3
Parametar Set
alpha teca sigma*2 34
Posterior Means




4.01704 2.37959 -5.28310
Posterior Standard Deviations
0.287806 0.169905 0.743151

Posterior Correlations
alpha beta

beta -0.5747

sigma*2 0.0557 0.0013

ARTREN 2_1%'t'tltttttw*iitil'tw"qtt.tﬂ*tct'l'ltit'ttttttttttlittt--t:.’rtt'lt

Iteration Number 9

Changes:
New grid
Parameter space is partitioned into sub-spaces
Cartesian product rule on 3 dimensions
Spherical rule on 0 "
Monte-Carlc rule on 0 "
giving integration over 3 "
for a problem with 3 parameters
Cartesian product grid size is : 7 X 717X 7
A linear transformation is applied to 3-1 parameters
Linear transformation used :
Operational parameters are
alpha beta__ 1 sigma*22
p(z) = 2.6581454 E 3
Parameter Set
alpha beta sigma*2
Posterior Means
4,02128 2.37951 ~5.32822
Posterior Standard Deviations
0.28411%¢ "0.167621 0.781747
Posterior Correlations
alpha beta
beta -0.5749
sigma*2 0.0479 0.0020
LA R XN} 6.4%..""'.'I-'II".'Q'.Q"l'.""'."l".'l'."'..Ill'.""'('.'t"ll
iteration Number 10
Linear transformation used :
Operational parameters a:ze
alpha beta__ 1 sigma~22
pl:) = 2.6542192 E 3
Faramatar Set
alpha beta sigma*2
Fostarior Means
4.92131 2.37951 -5.32808
Posterior Standard Deviations
0.293898 0.137160 0.782588
FosTarior Correlations
alpha beta
beta -0.5750
sigma*2 0.0463 0.0020
rexww 0_2%--.-.ttttq..co.tqtartctt!-'vtvto---qttqtq---ta.ttq-.'co.q-c--"----
Iteration Numker 1l
Changes:
lew gri<
Parameter space is partiticned inte sub-spaces
Cartesian product cule on 3 dimensions
Spherical rule on 0 "
Mont=-Carlo rule on 0 ®
giving integration over s 3 "
for a problem with J parameters




Cartesian product grid size is : 8 X 8 X 8

A linear transformation is applied to 3-1 parameters
Linear transformation used :
Operational parameters are :

alpha beta__ 1 sigma*22
p(z) = 2.5999045 E 3
Parameter Set
alpha beta sigma+~2
Posterior Means

4.01953 2.37955 -5.29503
Posterior Standard Deviations
0.292821 0.17267¢6 0.772798

Posterior Correlacions
alpha beta

beta -0.5742

sigma~*2 0.0640 0.0017

LA A A J 4‘2%.""".."l"'."l"""’t.l’ﬁttﬁt.l".'ﬂ"l"""'l"."'I"’."I"'

Iteration Numkber 12

. QUIT .
Total time Elapsed (min:sec) 30:11.00
CPU (sec) 2.00
Integration time Elapsed (min:sec) 1: 0.00
CPU (sec}) 0.00

TUE, 21 MAR 1989 8 16:11:14
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2.4 umerica edictio or the two parameter Weibull distributijo

2.4.1 Introduction

In order to demonstrate how the numerical integration strategy can be
applied in conjuction with analytic integration over a component of
the parameter space we consider as an example the two parameter
Weibull distribution. Over recent years, this distribution has become
one of the most widely used lifetime models. Moreover, the Bayesian
approach to prohlems involving Weibull distributions has been applied
in many recent papers. Sotand (1969), Cavanos and Tsokos (1973),
Papadopoulos and Tsokos (1976) and Evans and Nigm (1980) all used
Bayesian methods in their analysis. More recently, Chen, Hill and
Greenhouse (1985) use Bayesian methods in their analysis of survival
data on Cancer patients. The papers by Achcar (1984)-and Achcar,
Brookmeyer and Hunter (1985) describe a Bayesian analysis, based on a
Weibull model, applied to medical follow-up studies. Smith and Naylor
(1987) compare maximum likelihood estimation with Bayesian estimates

for the parameters of the Weibull distribution.
We consider here the two parameter Weibull distribution with p.d.f.

6,-1 -0,x

p(x/ﬁ) = 8,0,x e , x>0

Given lifetest data, x, on n items with r failures at times

Xy2Xg,e..,Xp and n-r right censored observations at times

Xp4q1Xp4ar--+,Xp the likelihood function is given by
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r . )
e/ = 0,70,F [ [ x;] ~ e TIT ,6,,0,50 . (2.8)

This form of likelihood is valid providing the censoring mechanism is
independent and non-informative (see Kalbfleisch and Prentice (1980),
Ch.5). Given a prior distribution on f' (6, ,0,) we consider the
numerical evaluation of posterior expectations required in a wide
range of practical applications. In particular in section 2.4.3 we
consider the numerical evaluation of prediction bounds for future
lifetimes, whilst in section 4 we consider the posterior distribution
of median lifetime. These posterfor expectations are more meaningful

to practitioners than the moments of 81 and 8;.

Details of the numerical method are presented in section 2.4.2. This

method assumes that integration over the scale parameter, ¢ can be

15
performed analytically. Numerical integration of ‘the shape parameter,
6,, then leads to a convenient representation of posterior
expectations in terms of expectations with respect to a discrete

distribution over §&,. This discrete distribution is obtained by

application of the method of Naylor and Smith (see section 2.3).

2.4.2 Eva!uation'of Posterior Expectations

In general suppose that we need the posterior expectation of q{(#@)
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00 00

dé, | e(g/xyp(Q)q(g)de,

‘0 ‘o

E[q(8)/x] =

~00 o0
dé, 2(8/x)-p(8).do,

‘o ‘o

For example, with
Mg‘yez

q(8) = e

we have the predictive probability that the minimum

lifetimes exceeds y. With

ace) = (en2/8,)"/%2

we have the posterior density of median lifetime.

(2.9)

(2.10)

of M future

(2.11)

For a useful range of priors many of the posterior expectations (2.9)

required in practical applications can be expressed in the form

E[q(8)/8,,x]).e*(8,/%).p(0,)dE,
. -0
E{q(8)/x] = —
0*(8,/x)P(6,)d0,
‘0

where the conditional posterior expectation

E(a(g)/0,.%) = rE[q<g>/e..e,l.pw./e,.x)da,

a
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and the integrated likelihood x prior

O*(8,/x) = [mﬂ(ﬁ/g)P(0|/32)d0, (2.14)

can be obtained analytically.

The expression (2.12) can then be treated numerically as a posterior
expectation in one dimension. Indeed Q*(Bz/f), being an integrated
likelihood % prior, will be asymptotically normal in form which means
that the Causs-Hermite formulae should provide efficient

approximations.

Soland (1969) effectively wuses the representation (2.12) with a
discretisation of p(8,) to approximate the .integral. This method was
applied by Evans and Nigm (1980) for the approximation of lower
prediction bounds on the minimum of M future lifetimes. The

difficulty with Soland's method is the specification of an appropriate

discretisation. The search for a suitable choice may be very time
consuming. An attractive feature of the method, however, is that,
like the application of Gauss-Hermite rules, it leads to an

expectation with respect to a discrete approximétion to the posterior

distribution of #,, so that (2.12) is approximated by the sum

S
'Z Pi E{q(g8)/0, = 8,i.%] (2.15)

i=1
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S
where P; 2 0 (i=1,2,...,5) and Z Py = 1.

The same abscissas, 6,;, and weights, Pj, can then be used repeatedly

for different q(8)'s.

Our approach, is to apply the method of Naylor and Smith after a log
transformation to improve the approximate normality and avoid wastage

caused by negative points.‘ Putting ¢ = 2né in (2.12), yields

d

E(q(8)/0 ,e¥,x].2%(8 ,=eP/x) .P(8 ,=e¥) ePdyp
Jeo A

E[q(8)/x] - (2.16)

00

ex (8 ,=e?/X)P(8 ,=eP)ePdp

<

Application of the n-point Gauss-Hermite formulae to (2.16) then - -

yields adﬁpproximation of the form (2.15) with

.. = e#+/§.0.ti
21

and

> ti?+0,4
/2.a.wi e .Q*(@zi/xl.p(ezi)
Pi =

n
z 2.0.w; eti2+a’i.Q*(Ozi/ﬁ)-P(azi)

where t; and w; are the abscissas and weights of the Causs-Hermite
formulae. As with Soland's method, the 6,;'s and P;'s can be used
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repeatedly with different q(8)'s.

2.4.3 edictio ounds e e es

In this section we consider the problem of computing prediction bounds
for future lifetimes. Suppose we have lifetest data, x, giving a
likelihood of the form (2.8) and that there are M future lifetimes,

Y,,...,Yy, following Evans and Nigm (1980), we consider the evaluation

1
of the lower 100v% prédiction bound for the shortest lifetime Y(q,.
In reliability analysis this problem occurs with series system of M
identical components with lifetimes Y,,...,Yy. Y(l) then represents
the life of the system. To illustrate the methodology we consider the
three examples in Table 2.3; originally from Lawless (1973), which
featured in the paper of Evans and Nigm (1980).

Table 2.3

The three examples considered by Lawless (1973).

Future Test Censorin
Example |batch ¥ |batch Failure times t imes 8
size (M) size
1 40 0.9 10 }50.5, 71.3, 84.6, 103.8
98.7, 103.8
2 100 0.9] 23 17.88, 28.92, 33.00, -
41.52, 42.12, 45.60,
48.48, 51.84, 51.96,
54.12, 55.56, 67.80,
68.64, 68.64, 68.88,
84.12, 93.12, 98.64,
10512, 105.84, 127.92,
128.04, 173.40
3 500 0.8] 3 45.952, 54.143, 65.440 -
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In these examples predictions are made dangerously far beyond the
domain of previous experience. In the most extreme case, example 3,
predictions about the minimum of 500 lifetimes are made on the basis
of a sample of size 3! As far as the application of the Gauss-Hermite
formula is concerned, these examples aré ill-conditioned in the sense
that the integrands required are dominated by q(g/a,,f) rather than
the integrated likelihood x prior Q*(ﬂz/f). This difficulty is
exace?bated by the restrictions on the range of the prior distribution
of @,. Thus, although these examples are rather unrealistic and
involve very extreme predictions, they should serve as a good test of

the Gauss-Hermite formulae as applied here.
Let Yy be the lower y100% prediction bound for the minimum y 1) of M

future lifetimes. The problem of evaluating Yy is equivalent with

solving the eqhation -
Ply > yy/x] = ¥ ' (2.17)
Following Evans and Nigm (1980) and taking a prior of the form
P(0,/0;) <« 8,7
we have

n n r
P(6,/0,,x) = 8,T! exp[-8I z xiaz] [ z xiez] / (r)

Also
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E[P(y>y,/%X.0,]] = [wP[Y>Y7/3.-9;]-P[9,/9z.§]d9.
0

.82 r
] . (2.18)

[ Ix;

in02+My782
The approximate solution to (2.17) can be found Itefatively by taking
the expectation of (2.18) with respect to the discrete approximation

obtained using the Causs-Hermite formula. Priors (i) and (ii), below,

of Evans and Nigm (1980) were used.
. 1
(i) P(8,) = 5% ) 0<48,<25

(ii) P(0,) a 8,° e f2 0<0, <25

The maximum likelihood estimate of 67 and its asymptotic variance were -
used as starting values for the adaptive integration strategy.
Although in practice the ’'normal' procedure would be to apply the
strategy to approximate the posterior mean and variance and then solve
the equation (2.17) using the final approximation, we present the
solution to (2.17) at each stage in the strategy. In particular we
applied a four point rule and continued wupdating g and o to
convergence and then solved 2.12 iteratively. The results are

presented in table 2.4.

44




Approximate

lower prediction bounds and overall

Table 2.4

three examples of Lawless (1974)

Example 1

SOLAND'S
EXACT -

Example 2

4

5
6
7
8

SOLAND'S
EXACT

CO0OODOOO0OO0OOOOODO0OO0OO0O0

co

OO O00O0O

o O

Prior (i)

POINTS PREDICTION BOUND

.228263E+02
.225832E+02
.225008E+02
.225004E+02
.224676E+02
.224674E+02
.224624E+02
.224624E+02
.224610E+02
.224610E+02
.224606E+02
.224606E+02
.224605E+02
.224605E+02
.224605E+02
.224605E+02
.224604E+02

.22462E+02
.22460E+02

= NNAENNON == ONN=O&W

Prior (i)

POINTS PREDICTION BOUND

.25759E+0

.25687E+01
.25668E+01
.25668E+01
.25662E+01

.2357E+01
.2566E+01

~ = 00 = N

a
.68E-02
.86E-02
.65E-03
.81E-04
.91E-03
.12E-05
.14E-04
.68E-06
.07E-04
.17E-08
.67E-05
.89E-09
.89E-06
.47E-10
.81E-14
.57E-14
.64E-06

.80E-03
.91E-02
.16E-04
.09E-05
.31E-04

changes (A) for the

(e} i1

PREDICTION BOUND A
0.395505E+02 5.36E-03
0.395046E+02 2.07E-02
0.394911E+02 1.01E-03
0.394911E+02 1.23E-03

2.95E-04

0.394872E+02

= 3 = 3 3 3

T 3 3 3 2

0.39283E+02
0.39487E+02

(25 points)

Prio if
PREDICTION BOUND A
0.43851E+01 1.41E-03
0.43790E+01 1.31E-02
0.43775E+01 4_03E-04
0.43775E+01 3.40E-06
0.43771E+401 . 3_46E-04
0.5313E+01 (25 points)
0.4377E+01
(0.4357E+01) |
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Example 3

Prior (i) Prior (i1}

POINTS PREDICTION BOUND A PREDICTION BOUND A
4 0.192434E+02 5.25E-02 0.222142E4+02 2_72E-02
5 0.180045E+02 1.20E-02 0.220889E+02 2.38E-02
6 0.188687E+02 4.27E-02 0.221707E+02 1.41E-03
8 0.185277E+02 2.87E-02 0.221707E+02 S5.94E-04
10 0.183622E+02 7.20E-02 0.221357E+02 6.43E-05
12 - 0.123020 0.221352E+02 1.68E-05
12 0.183999E+02 5.30E-03

14 0.184148E+02 9.34E-03 0.221356E+02 3.08E-04
16 0.184266E+02 1.67E-02 "

20 0.184148E+02 5.20E-02 "

24 0.184429E+02 S5.71E-02 "

25 0.184448E+02 4.67E-03 "

SOLAND'S 0.18433E+02 0.22120E+02 (with 25 points)

EXACT 0.18433E+02 0.22136E+02

The aggregate measure A has been defined in section 2.3 and it is
given at the end of each iteration of BAYESFOUR. The exact results
given by Evans and Nigm were verified using the Legendre method with
64 points - in example 2 (prior (ii)) a typing error must have occured
(.4357 instead of .4377) - the results indicate that the Naylor-Smith
method applied here is faster and more efficient than Soland’'s method,
except in the case of the third example (with prior (i)) where
Soland's method performs slightly better than the iterative algorithm

of Naylor and Smith.

We recall here that the above algorithm requires satisfactory
convergence of the normalising constant and the posterior mean and
variance, expressed by A, within each grid size, and subsequent
convergence between the grid sizes before the completion of the
iterative process and the calculation of the prediction bounds. With
only one exception, in example 3, we always moved to to the next grid

size, as suggested from the small size of A. In section 2.5.3.2 we
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will re-examine the same Weibull examples and we will argue that to
update of the maximum likelihood estimates as applied in this section

is probably not always the best strategy to be adopted.

2.4.4 Posterior Dist ution of Media et {me

In many practical situations it is difficult to attach a meaningful
interpretation to the parameters ¢, and 8, of the Weibull distribution
and for practical purposes it is often desirable to focus on some
function of &, and 6, which has a meaningful interpretation.
Quantiles of the distribution and, in particular, the median are
;nalytically convenient. Achcar (1984), in a medical application,
focuses on the median lifetime in a study of survival data on 38

cancer patients. These data are given in Table 2.5.

Table 2.5

Survival times (days) of 38 patients.

FAILURES CENSORED
182 81 64 216 374 216 227 237 799 786 754 723

229 264 97 53 361 214 158 75 661 600 561 527
62 147 146 130 67 87 169 201
510 543 38 18 15 193

Achcar (1984) wuses a log Normal approximation to the posterior
distribution of median survival time. The shape parameter of the

Weibull distribution being obtained by taking the mode from its
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marginal posterior density. We use the Gauss-Hermite method to derive
the posterior distribution of the median survival time assuming a
non-informative prior for the shape parameter. The two different

approximations are compared graphically.

Following Achcar (1984) and taking a locally uniform prior for é,, the

conditional posterior distribution of 8, given 0, is

n p n g_r™
6,Fexp(-6, ini 2].(ini 2)
-1 -1

P(0,/62.%) = T(r+1)

The median survival time m, take

m = (2n2/6,)'/%2

then has the conditional posterior distribution

p(m/8,,x) = SC+ %z . exp(-S) / r!

n X
where S = 0n2 . z [ poret ]

Taking the prior p(4,) o 1/8, the posterior distribution of median m
is approximated by the sum (2.14). This posterior density, together

with the approximation given in Achcar (1984) is shown in Figure 2.3.

We can see that the approximation with Gauss-Hermite method gives more
"pessimistic" results, in the sense that the lower tail area of

Gauss-Hermite approximated density is heavier; for example, using the
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2.5 erformance the uss-He te tegratio ule

2.5.1 Introductjon

It is common to assess numerical methods according to three criteria:

(i) reliability: how often is the method successful
(ii) efficiency: how much effort (computer time) was required to
produce the result.

(iii) accuracy: how close is the computed answer to the true answer

In this section, we will try to assess the strategy of Naylor and
Smith using the above criteria. In particular, the reliability will
be connected with the sensitivity to kurtosis and to the robustness of
pertubations in centering and scaling; ‘the efficiency to the wastage

‘ a s » s = - - . '
of function evaluations and to the effect of the mispecification in

A
the mean and variance.

2,5,2 Reliabilit

2.5.2.1 Theoretical background

Laurie (1985) notes that to define reliability, one requires a
definition of success and a measurable set of problems. Let us assume
that the Naylor and Smith algorithm is succesful if the posterior

kernel can be approximated by a polynomial x Normal. This, in turn
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implies that convergence is achieved in a m-point quadrature rule Qg

in (2.1), hopefully with m not very large.

Before we proc eed to the set of problems to test reliability, we need
to mention the vital role of the initial transformation which can make
the posterior Kkernel to be close to Normality. See Smith et al.
(1985,1987) Shaw (1988, chapter 10) and Hills (1989). Thus, a 'badly
behaved' example can be transgrmed to a 'well behaved' one using a

A
suitable transformation.

Keeping in mind the previous point, we shall try to sketch the set of
problems which can indicate whether we may or may not expect success
in the Naylor and Smith method. We may say that a posterior kernel is
'well behaved' if it is unimodal, not too skew, continous, with light
tails. On the other hand, the posterior kernel is 'badly behaved' if
the parameter space is. restricted _and this leads to 'wastage! _of
integration points in regions of zero posterior density; or if the
posterior density is multimodal. This may occur, for example, in
mixture models (see Titterington et. al. (1985) ) or when the prior
and the likelihood are in conflict; or if any other awkward situations

occur, for example if the posterior variance does not exist.

Of course, none of the above criteria alone guarantee 'good' or 'bad’
behaviour of the kernel. - However, they serve as possible kernel
features which might indicate possible 'success or failure of the

method.

b
7 .
We proceedhdescribing the work presented in a Ph.D. thesis by Shaw

(1988) concerning the convergence of the Naylor and Smith adaptive
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strategy. Shaw 1{llustrated this strategy using a number of case
studies but also experimentised with some artificial examples to draw
conclusions about its behaviour. His main results are outlined

below.

For a given posterior density p(8) where g denotes a d-dimensional’
vector of parameters, the steps (iii) to (v) in figure 2.1 define an
iterated map T: X-X where XERdx(O,w;;(-l,1)d(d'1)/2 corresponding to d
means, d variances and d(d-1)/2 correlations estimated in (v). If the
map T for an n-point Gauss quadrature rule Q, in (2.1) is denoted by
Tn., the Naylor and Smith strategy suggests to iterate using T, up to
the point where T,(g,L) - (#,Z). Then, we proceed to another map Tp,

m>n, and check whether T (u,Z) = (#,L) = Tp(g.D).

Shaw notes that a fixed point (gg,Lp) can be stable if for all points
(#,.L) in some neighborhood of .(uqg,Zg) limAIk(g,g) = (pg.Lg) as ko=,
Otherwise (ug,Zg) is unstable. A point (u,L) is periodic if Tk(g,g) -

(#,L) for some integer k>0.

In practice, for a Causs quadrature rule Q,f, we may have any one of
the above situations (stable, unstable or periodic point) or any
combination of them. There is also the chance of having a chaotic
behaviour without any fixed points, Thus, the Naylor and Smith
algorithm can converge, diverge, or converge to a limit cycle rather
to a point, However, by increasing m, we expect to have a single

fixed point which will converge to the true value of (u,I).

As far as the one-dimensional case is concerned, Shaw shows that if

the posterior density p(8) is log-concave and proper, that is if
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logp(afi+(1-a)83) > alogp(fy) + (l-a)logp(83) for all 81.02¢R, ce(0,1)

and

p(8)df < =

b—s

then the map T3(p,d) has exactly one fixed point, which in turn
implies that we expect good behaviour in unimodal densities with

moderately light tails.

2.5,2,2 Sensitivity to Kurtosis

GCiven a distribution with mean p and variance ¢2?, the standard fourth

moment coefficient of kurtosis is given by

E(x-p)?
o = =gk -3

This is often regarded as a measure of tail heaviness of a
distribution relative to that of a normal distribution or as a measure

of peakedness near the centre of a distribution.

A class of exponential power distributions can be written in the

general form

x-8 2/(1+6) ]

, =0 < X < o 2.19
" ( )

P(x10,p,8) = kp~'exp [ -4 |

where
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k"-r[l+%—£]21+i(l+6),p>0, -m< f# <o, -1 <1

This is a member of a class of symmetric distributions which includes
Normal (B=0) together with other distributions with various values of
"the coefficient of kurtosis. (See Box and Tiao (1973), pl156-160).

The coefficient of kurtosis for a given value of B is given by

F[g(l+ﬁ)]l‘[%(l+6)] ;

TR T

and can take values from -1.2 (8=-1) to 3 (f=1).

The class (2.19) was used here to investigate the performance of 1-D
Causs-Hermite integration rules as described in section 2.2.1, over a
range of values of kurtesis. Varying the values of B in (2.20) we
integrated (2.19) using Causs-Hermite method with 4, 6 and 8 points.
Given the exact value of the integrand, c, and the approximation for

each method, a, the relative error

Lo S8 (2.21)

of the normalising constant and the posterior variance were calculated

and plotted against the coefficient of kurtosis as given in (2.20).

The results are illu;trated in figures 2.4 and 2.5. In each case, the
correct initial values were given to the mean and variance in (2.17).
The results indicate that with adequately large grid the method -
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performs very well over a quite large range of coefficients of
kurtosis. It is worth noting the sensitivity of the method when using
a 3-point grid, where with g4=-1 produces a very good approximation.to
the normalising constant, much better than the 8-point formula. This
is of course justified because three points are too few especially for
a density extremely flat around its center. This fact might also be
the reason that Naylor and Shaw (1985) suggest an initial grid with 4

points in BAYESFOUR.

2.5.3 icienc

2.5.3.1 olce of sca and ber of nodes

The efficiency of the quadrature is measured in terms of the number of
function evaluations required. Occasionally the processing time is
used instead, and, as Davis and Rabinowitz (1984,p.423) comment, each
measurement has its disadvantage; the former does not take into
account the auxiliary computations included in the program and the

latter is machine dependent.

The method introduced by Naylor and Smith (1982) discards all previous
function evaluations when moving from one iteration to another. This,
in general is considered a serious drawback, especially recently where
the adaptive integrators have become very popular. éee C.de Boor

(1971) Piessens et. al.{1983) and Elhay and Kautsky (1987).

Let us now assume that for a map TM there exists a stable point. This
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shall

stable point is not the true value of the vector (g,L) in as much as
2.9.3%.3

Q,f is only an approximation to If. In particular, in section A e
examine: an example in which the map T32(u,d) was initialised with the
correct value (0,3) to converge to the wrong value (0,2.55).
Therefore, the 'small grid' first iterations may move the vector (u,I)
away from its true value, and in addition all computér labour is spent
without any feedback. We feel that the important question to be set

is whether or not scaling is that important to ‘'deserve' all this

labour.

In the discussion of the paper by Kass et.al. (1988) Naylor points out
that Succesful use of Gauss-Hermite quadrature rules depends more on
choice of scaling than on number of points. In the same discussion,
however, Shaw notes that Causs Hermite integration is actually quite

robust to pertubations in centering and scaling.

In general, this problem depends on the nature of the integrand. Our
experience indicates that ., especially when the wvariance s
overestimated the Naylor and Smith method is quite robust, We also

believe that iterations within small grids decrease the efficiency of
the algorithm. We note that the decrease in efficiency occurs, not
only due to the wasted function evaluations, but also because of the
user's time wasted through moving through different menus to alter the

quadrature rule.
In chapter 5 we propose a strategy which we believe increases the

efficiency of the Naylor and Smith strategy and at the same time keeps

a more flexible option as far as the need of scaling is concerned.
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2,5.3.2 The Weibul] example revisjted

In section 2.4 we considered the two parameter Wejbull distribution to
demonstrate the application of the numerical integration strategy of
Naylor and Smith (1982) in conjuction with analytic integration over
the‘scale parameter &1 in (2.5). In relation to our comments in
section 2.5.3.1 concerning the question of the use of rescaling and
recentering, we re-analyse here the same examples keeping the mean and
the variance constant over all grid sizes. These-values were taken as
the maximum likelihood estimates. Table 2.6 presents the results

using the same priors as in 2.4.3

Iable 2.6

Approximate lower prediction bounds for the three examples of Lawless
(1977)

Example 1

: METHOD PRIOR (1) PRIOR (1i)
G-H with 2 points 0.224416E+02 0.397863E+02
G-H with 3 points 0.227451E+02 0.395346E+02
C-H with 4 points 0.224783E+02 0.395025E+02
G-H with 5 points 0.224932E+02 0.394930E+02
G-H with 6 points 0.224653E+02 0.394872E+02
G-H with 7 points 0.224653E+02 "
G-H with 8 points 0.224642E+02 : "
CG-H with 9 points 0.224642E+02 "
G-H with 10 points 0.224614E+02 "
G-H with 11 points 0.224614E+02 n
G-H with 12-points 0.224605E+02 n
G-H with 13 points 0.224605E+02 "
G-H with 14 points 0.224604E+02 . N
SOLAND'S with 25 points 0.22462E+02 0.39283E+02
EXACT 0.22460E+02 0.39487E+02
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Example 2

METHOD PRIOR (1) PRIOR (2)
G-H with 2 points 0.26668E+01 0.44850E+01
G-H with 3 points 0.25789E+01 0.43890E+01
G-H with 4 points 0.25718E+01 0.43820E+01
G-H with 5 points 0.25674E+01 0.43781E+01
G-H with 6 points 0.25664E+01 0.43773E+01
SOLAND'S with 25 points 0.2357E+01 0.5313E+01
EXACT 0.2566E+01 0.4377E+01

(0.4357E+01)

Example 3

METHOD PRIOR (1) PRIOR (2)
G-H with 2 points 0.164749E+02 0.218449E+02
G-H with 3 points 0.203372E+02 0.223968E+02
G-H with 4 points 0.176519E+02 0.219863E+02
G-H with 5 points 0.192492E+02 0.222143E+02
G-H with 6 points 0.182016E+02 0.221005E+02
G-H with 8 points 0.184074E+02 0.221287E+02
G-H with 10 points 0.185011E+02 0.221352E+02
G-H with 12 points 0.185060E+02 0.221363E+02
G-H with 14 points 0.184856E+02 "
G-H with 16 points 0.184549E+02 -
G-H with 20 points 0.184536E+02 "
G-H with 24 points 0.184380E+02 "
G-H with 25 points 0.184380E+02 "
G-H with 64 points 0.184417E+02 "
SOLAND'S with 25 points 0.18433E+02 0.22120E+02
EXACT 0.18433E+02 0.22136E+02

Comparing the results with them of table 2.4, we can see that
rescaling and recentering does not increase the efficiency of the
Gauss Hermite integration rule. |In fact, the results in table 2.6 are
slightly better in some cases. Of course, these one dimensional
examples cannot provide a definite conclusion, but, they can serve as
an indication to support the robustness of the integration rules to
perbutation of mean and wvariance, Our belief is, and it will be
emphasised again in chapter 5, that in ‘well-behaved' Kkernels the
maximum likelihood estimates provide good <choices for use in
Gauss-Hermite integration rules and repeated change of their values
results in loss of efficiency.
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s
2 3.3 speCjfication of mean and variance

A

As pointed out in section 2.2.1, one of the key features of the
iterative strategy is the initial specification ;f the mean and the
variance in (2.6). Moreover, {F a linear transformation is to be
applied in higher dimensional cases, a covariance matrix could be used
initially for the stage (ifi} in figure 2.1. In cases where the
maximum likelihood estimates are available, they offer wvery good
initial starting wvalues. See section 2.4 for an one-dimensional
example where the initial maximum likelihood estimates achieve very
good approximatfons to normality. There are however cases where the
maximum likelihood estimates are not readily derived and we need to
start the iteration strategy with some first crude approximations. We
performed some experiments to test .the sensitivity of the approach .in

such cases.

Initially, we tried integrating g(x)=exp(-x2/2) with an 8-point Causs
Hermite rule varying the mean and the variance. When the correct value
of the mean and variance are used, the proper value of the integral,
(/2x=2.5066) must be approximated exactly. In figure 2.6 the
different graphs illustrate the behaviour of the norma:lising constant
for a given variance when the mean is misspecified. It is evident
that in cases of uncertainty about the variance, a larger value is
preferable. This remark has been also made by Naylor (1982).

A typical example of heavy tailed distribution is a t-distribution with

three degrees of freedom. In our next arctificial example, we tested
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Iterative method with 8-point formula

VARIANCZ

.3000000000D0+01
.24416551530+01
.22903359910+01
.22485904850+01
.2236960980D+01
.2233710846D+01
,2232801672D+01
.2232547278D+01
.2232476092D+01
.2232456171D+01
.2232450597D+01
.22324490370+01
.2232448600D+01
.2232448478D+01
.22324484440+01
.22324484340+01'
.2232448431D+01

COO00DO0COOCOCOOOOO0ODO

PCS.VARIANCE

0.2441655153D0+01
0.2290335991p+01
0.22485904850+01
0.22369602800+01
0.22337108460+01
0.2232801672D0+401
0.2232547278D+01
0.2232476092D+01
0.2232456171D+01
0.22324505970+01
0.22324490370+01
0.2232448600D+01
0.223244384780+01
0.2232448444D+01
0.22321484340+01
0.2232448431D+01
0.2232448431D0+01

COO0OO0C0DO0OO0OQOOOO0OOODODOO

NOR.CONSTANT

.2605811122D+01
.2647776824D+01
.2657023085D0+01
.2659388240D+01
.26600322270+01
.2660211029D+01
.2660260954D+01
.2660274916D401
.2660278823D+01
.2660279916D+01
.2660280222D+01
.2660280307D+01
.2660280331D+01
.2660280338D+01
.26602803400+01
.2660280341D+01
.2660280341D+01

[terative method with 32-point formula

VARIANCE

.3000000000D+01
.26477828800+01
.2624702691D+01
.2623048790D+01
-2622929515D+01
.2622920909D+01
.26229202880+01
.2622920244D+01
.2622920240D+01

OO0 QQOOCO0OCO

TABLE 2.7:

POS.VARIANCE .

.26477828800+01
.2624702691D+01
.26230487900+01
.2622929515D0+01
.26229209090+01
.2622920288p+01L
.2622920244D+01
.26229202400+01
.26229202400+01

DOO0OOO0OO0O0COO0

True mean: O
True variance: 3

CO0OoO0OO0O00O
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NOR .CONSTANT

.27190281100+01
.27192065870+01
.2719210173D+01
.2719210393D401
.27192104090+01
.27192104100+01
.27192104100+01
.2719210410D0+01
.2719210410D0+01

Mispecification of mean and variance

POS .MEAN

-0.8215650382D~14
-0.1243449788D-13
-0.1199040867D-13
-0.1731947918D-13
-0.4440892099D-15
-0.7549516567D~14
-0.6217248938D-14
-0.1132427485D-13
~0.1154631946D-13
-0.1554312234D-13
-0.2176037128D-13
-0.1265654248p-13
-0.9769962617D~14
-0.1532107774D-13
-0.14210854720-13
-0.7105427358D-14
-0.1021405183D-13

POS.MEAN

-0.1136590821D-13
-0.2423061751D-13
-0.2343958361D~-13
-0.1637578961D~13
-0.26673108170-13
-0.2524369602D-13
-0.2178812686D-13
-0.1905420266D-13
-0.1600108934D-13



the iterative strategy of Naylor and Smith (1982) to g(t)=[1+(:-c2/3)]'2
starting with the correct mean 0 and variance 3. Ewven though the
convergence of the normalising constant was close to the correct value
(2.7206989) it is extraordinary tha; the iteration convergences to the
wrong values of the variance even though we started with the proper
values and despite the fact that we used a high precision rule of 32
points. The results are shown in table 2.7. Thus, we have an example
where a very high precision rule converges to a value substantially
different from the actual value. With the added complexity of working
in high dimensional cases, a quite experienced user might be needed
for the judge of whether and how we should proceed in the different

steps of figure 2.1.

2,5.4 Accuracy

The accuracy of Naylor and Smith algorithm is assessed when checking
for convergence between two different quadrature rules Q, and Q) with
n<l in (ix) in the flowchart of Ffigure 2.1. Implicitly, by moving

from a map T? to a map T! we use the properties of Causs-Hermite rules

1imQpf = I (2.22)
M-

which holds if, for all sufficiently large values |xt, f(x) satisfies

the inaquality
1F(x)1 ¢ exp(x2)/1x11*P  for some p>0

" see Davis and Rabinowitz (1984, p.227) and Uspensky (1928). To make
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use of (2.22) we also assume that there is a unique stable point in
map TP and no unstable or periodic points. Naturally, we also assume

that if this holds for for the map TP it also holds for the map Tl.

The way to assess the accuracy of a quadrature rule is wusually
achieved by checking the absolute or relative error between “two
successive estimations. In BAYESFOUR this can be done by using the
aggregate measure 4,(see section 2.3), or by assessing the convergence

of each of the elements of vector (u,L) separately.

In practice, the accuracy of Naylor and Smith algorithm is closely
related to its reliability. If the method is successful, we expect
good accuracy and we can normally detect good accuracy through a rapid

convergence.
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Chapter 3: Imbedded [ntegration rules

3.1 Introduction

We consider integrals of the form

b
I(kf) = J k(x)f(x)dx , > a<bgw (3.1)
a

where k(x) is such that I1(kf) exists for a family of functions which
includes P,, the set of all polynomials of degree ¢ n. We are

interested in approximating I(kf) by interpolatory integration rules

(I1IR's) of the form

n .
Quf = z anf(xjn) . (3.2)
J=1
where the set of points X; = { Xjn’ j=1,...,n } is specified in
advance and the weights %in j=1,...,n are interpolatory. If the

weights Win are positive, such rules are called positive interpolatory

integration rules (PlIR's).

The degree of such rules is n-1, in the sense that it can integrate

exactly all the mononomials of .degree n-1 or less. If the set X, is
optimally chosen, the rule (3.2) can be of degree 2n-1. Such rules
are called integration rules of Causs type. For example, by putting

k(x) = exp(-xz), a=-o, beewoin (3.1), and using X, the zeros of the
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Hermite polunomials of degree n (see Davis and Rabinowitz
(1984, p.34), the rule (3.2) is the Gauss-Hermite rule (2.4) used in
the Naylor and Smith (1982) numerical integration strategy. The
weights wjp and points Xjp for the Gauss-type integration rules can be

found in books, for example Stroud and Secrest (1966).

In the sequence (Quf} of Gauss-formulae, for different wvalues of n,
the respective node sets X, = [xj,j=1,...,n} do not have any points in
common, except the mid-point, which is a node when n is odd. This is
a serious drawback of the approach, because proceeding from a
computation of Quf to Quf with m>n almost all previous function

evaluations are discarded.

Sequences, in which the nodes of a given rule form a subset of the
nodes of its successor, overcome this drawback and are the particular
concern of this chapter. Essentially, there are_two ways .in which
such sequences can be obtained: either by the addition of nodes to an
existing rule to form an extended rule, or by taking subsets of nodes
from an existing rule to form an imbedded rule. If, in the above
procedures, the derived sequences have as a highest degree rule a
Gauss-type rule, the integration rules obtained are called Gauss-based

integration rules (CBIR's).

Historically, the subject of this chapter emanates from Kronrod
(1964). Motivated by a desire to estimate economically the error in
the classical Caussian quadrature formula, he proposed to extend the
n-point GCauss quadrature rule to a (2n+l)-point quadrature rule by
inserting n+l additional points and making the extended quadrature

rule have maximum degree of exactness. This early work of Kronrod has
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led to a vast amount literature in the field of numerical analysis,

extending and refining the GBIR's,

An important feature of these rules is that they provide a sequence of
approximations Iin which previous function evaluations are exploited
when proceeding from one approximation to another. They also provide
a means of measuring an estimation error in the quadrature formula.
It is not surprising, therefore, that such rules are used in nearly

all well known automatic quadrature routines.

This chapter concentrates on the applications of the one-dimensional
imbedded sequences of rules. Their properties and potential
applications in Bayesian analysis are the subject of section 3.2. We
shall adopt a similar notation to that of Rabinowitz et al. (1987),
our mafin reference in this area. Other relevant references in the
numerical analysis field are Davis and Rabinowitz (1984, p.106-109,
426), Atkinson(1978, p.243-248), and the reviews given by Monegato

(1979) and Gautschi (1988).

In section 3.3, we present a recent development in this area namely
the imbedded sequences of positive interpolatory rules. We believe
that these rules are particularly promising in Bayesian analysis.
Artificial and real examples are used for the illustration of these

methods in section 3.4.
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3,2 GCauss-based sequences o terpolato integration rules
3,2.1 Patterso e

Patterson (1968a) proposed the use of sequences of interpolating
integration rules based on subset of certain Gauss and Lobatto
integration points. In these sequences, each rule is an extension of
the previous rule in that it uses all the points of the previous rule,
or equivalently, each rule is imbedded in its successor. Such a

sequence is also called an imbedded sequence.

In his paper, Patterson started with a n-point rule, n = 2F+l, with
the points denoted by Xj» j=1,....n, Xp < Xp-, < ... < Xx,. He then
formed the subsets

§{ = {x j-1;2,;..,2r"+1} = - i=1,2,:...,r (3.3)

27i(j-1)+|:

by successively deleting alternative points from the previous subset.
Therefore, the points in §;-S;4, Interlace those of S;+1, i.e. between
any two points of Sj,1 there is a point of §;-Si,,. Figure 3.1
represents the subsets §;, i=1,2,...,6 for the case of n=65. For each
of the subsets S;, Patterson computed the weights Wi j=1,2,...,i
needed for the calculation of Qjf in (3.2) using numerical integration

of the Lagrangian interpolating coefficients, given by

i - s

Lg(x) = " X=X , Xj € 5; : (3.4)
J=o XX
j2k
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-% 2
of sufficiently high order. 1If, for example, k(x) = e X" ae-w and b=»

in (1), then the weights needed for the calculation of Q,f in (3.2)
using a pre-assigned set of nodes S, as in (3.3) would be obtﬁined as

described below:

The Lagrangian interpolating polynomial p(x) of degree n-1 for a

function f(x) given at the points x,, i = 1,...,n is given by

n .
F(x) = p(x) = z Li(x) F(x;),

i=1

where L;(x) is given in (3.4), and is the unique member of the set of

polynomials of degree <n with this property. Therefore, we have

Jm e-xzf(x) dx = [m_e-x2p(x) dx =

n

n
—-x?
=re X }: Lij(x) f(x;) dx = z win £(x) ,

- j=1 i=»

with

r -xz
Win = e Li(x) dx (3.5)

and thus the weights are given by (3.5) using a Gauss-Hermite formula

with n/2 points when n is even and (n+1)/2 points when n is odd.

In his paper, Patterson (1968a) used a Gauss-Legendre rule with a=-1,
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b=1, k(x)=1 in (3.1). It -{urned'_out. that all the weights are
positive, ie. the resulting rules ‘are all positive interpolatory
integration rules (Pl[R'si. 'We shali be mainly interested in these
rules, because negative weights .are un-attractive from the Statistical
viewpoint. Shaw (1987b) notes .that thé negative sign in the weights
might cause the embarrassing posslbility.of estimating the normalising
constant to be negative, that general rounding error can occur in the
calculation of the posterior expectatiphs, and that theoretical bounds
on the error o% the approximation of (3.1) and (3.2) often involve the
expression Liwj,l, which can be large if'the weights w;, are. not all

the same sign. Additionally, the interpretation of approximations to

expectations with respect -to a discrete distribution breaks down if"

the weights are negative.

Our conjecture was that any Gauss rule would be a positive integration
rule, and this was encouraged by Davis and Rabinowitz (1984, ppl09)
where it has been commented that ‘experience has shown these weights
to be ponnegative'. However, as it can be seen from tables 3.1, 3.2
and 3.3 in the Ga;ss-Hermit; case, at least two (symmetric) negative
weights appeared in the new subsets on the n-weights set, where
n=17, 33 or 65. These weights were calculated using (3.5); where
the nodes were calculated using a FORTRAN program -by Stroud and
Secrest (1966). The possibility that these negative weights resulted

from rounding error during their computation was investigated. This

involved the application of a quadruple precision program.

A further difficulty with Patterson's method is that it uses
extraordinarily widely dispersed nodes for small numbers of points.

For example, if we apply a 65 point final precision formula to
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FIGURE 3.1
GRAPHICAL DISPLAY OF PATTERSON METHOD
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TABLE 3.1: Weights derived using a 17-point final
precision Patterson formula

J POINTS

0.1867313055540-01 -0.1167666097400-02 -0.
0.1097099123560+00
0.1559169358380+01
0.109709912356D+00

-0.J16766609740D-02

0.1735107589780+401
0.186731305564D-01

5 POINTS

9 POINTS

1644985053960-04
.4046264727240-03
.T141171701460-02
.3554326891420+00
.104652977597D+01
.3554326891420+00
.7141171701460=-02
.404626472724D-03
.1644985051960-04

oo Ccooco

COQ0OOOOCOOOOOOoOOCOOD

17 POINTS

-458057886809D~-10
-4977078981620-07
-7112289139450-05
.2986432866950-01
.5067349957610-02
.4092003414810-01
-1726482976700+00
-4018264694690+00
-530917937623D+00
.4018264694690+00
-1726482976700+00
.4092003414810-01
-506734995761D-02
.298643286695D-03
+7112289139450-05
-4977078981620-07
-458057886809D-10

TABLE 3.2: Weights derived using a 33-point final
precision Patterson formula

J POINTS

5 POINTS

0.8421269872990-02 -0.166093905063D-02

0.175561131082D+01

0.5347219475110-01

0.842126987299D-02 0.1663831339170+01

0.5347219475110-01

~0.166093905068D-02

$ POLINTS

-0.2960801243890-04 -0,
.2654148949920-07
.4774566714870-06
.4491984768500-05
-158976380585D-04
.1531146599780-02
.717323056234D-01
-427420359341D0+00
-7670463468990+00
.42742Q3593410+00
.717323056234D-01
+3531146599780-02
.158976380589D0~04
-449398476856D~-05
.477456671477D-06
-265414894998D-07
.438312898995D0-09

0.9635395176570-03
-0.110409328811D-01
0.2225422242080+00
0.134757340490D+01
0.222542224208D+00
-0.1104093288110-01
0.9685395176570-03
-0.296080124389D-04
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Co0OOoOO0OCOOoOO0OO0OOO

17 POINTS

4383128990040-09

31 POINTS

.1153316213000-22
.165709470130D-13
.240778567955D-15
.9434814153790-13
.147398093694D-10
.112892224711D-08
-4807745617840-07
.1237693366550-05
.204236840508D-04
.2254427705950-03
-171845463776D-02
.9265689970660-02
.3598798231850-01
.102065079846D+00
.2134939311330+00
.3315520007490+00
.3837852665150+00
.3315520007490+00
.2134939311330+00
.102069079846D+00
.3598798231850-01
.9265689970660-02
.1713454637769-02
.225442770595D-021
.2042368405080-04
.1237693366550-05
.4B0774551784D-07
.112892224711p-08
.147398093694D-10
.943481415879D-13
.240778567955D-15
.1657094701300-18
.1153316213000-22



TABLE 3.3: Weights derived using a 65-point final
precision Patterson forrmula

3 POINTS

0.393179541004D-02
0.17645902540)D+012

5 POINTS

-0.802647213856D-03
0.2621701456040-01

0.393179843004D0-02 0.1721625116190+01

0.2621701456040-01
-0.802647213858D0-03

9 POINTS

-0.200776103569D-04
0.7732398393740-03
-0.9510185722550-02
0.122954438632D+00
0.154405904062D+01
0.1229544196320+00
~0.951019572255D0-02
0.7732398393740-03
=-0.2007761035690~04

17 POINTS

~0.338388971102p-08
0.2842249407510-06
-0.5956161162260-95
0.636588761375D-04
-0.4394905302540-03
0.2235407413350-02
-0.114850506654D0-03
0.3521802458950+00
0.106461525963D+01
0.352180245895D+00
=0.1148505066530~03
0.2235407413350-02
=0.439490530254D=-03
0.636588761376D-04
~0.595616116226D=05
0.284224940751D~06
~0.3383889711010-08
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33 POINTS

=0.315735284154D-18
0.7013867817620-16
-0.373128562687D=14
0.547502660032p-13
-0.146520593496D-11
0.1555817664880-10
~0.121727456221p-09
0.736980458233D-09
-0.2655974395290-08

. 0.1)68656589100-06

0.806055687314D-05
0.2602928463155-03
0.423970301316D-02
0.3613935080770-01
0.164599570891D+00
0.4065021355990+00
0.548955373300D0+00
0.4065021355950+00
0.164599570881D+00
0.361193508077D-01
0.4239703013160-02
0.2602082846316D-03
0.8060556873240-05
0.136865658968D~06
~0.265597437118D-08
0.736980460674D-09
~$.1217274555540-09
0.1555817670740~10
~0,146520592590D-11
0.947502665298D0-13
=0.373120558299D-14
0.7033867879440-16
-0.3157552807900-18

65 POINTS

0.825161079872D-49
0.270767584009D-43
0.509628446545D-19
0.2854184863900-35
0.495258625501D-32
0.396328698479D-29
0.1705911561070-26
0.4376574194870-24¢
0.72015610789120-22
0.8022218700400-20
0.6307891040970-18
0.361819961854D~16
0.155466357219D-14
0.511391748167D-13
0.131125161063D-11
0.266086534778D-10
0.432865615344D-09
0.570738293276D-08
0.615779622143D-07
0.5480456035000-06
0.405224939101D-05%
0.2504534262010-04
0.1300829157290-01
0.5703989665370-03
0.2119981630630-02
0.670140453658D-02
0.1806943211150-01
0.4166110876170-01
0.8230016336920-01
0.1395261394820+00
0.203250574154D+00

'0.2%46288118520400

0.274478226558D+00
0.2546288118%2D0+00
0.2032505741540+00
0.139526139482D+00
0.8230016336%20-01
0.4166110876170-01
0.1806943311130-01
0.670140453658D+02
0.2119981630650~-02
0.5703999665170-02
0.1300829157290-03
0.25045)4262810-04
0.4052249391010-0S
0.348045603500D0-06
0.6157796221430-07
0.35707582922760-08
0.432065615344D0-09
0.266096534778D-10

0.1J1125161063D-11,

0.511)91748167D-11
0.1554661572190~14
0.361819961854D-16
0.6307691040970-18
0.8022210700400-20
0.7301610789120-22
0.4376974194870-24
0.1705911581070-2§
0.3961286984790-29
0.455258625501D-32
0.285418486350D-35%
0.58962B446545D-39
0.2707675840030-41
0.825161079872D~-49



integrate a normal density, then a 3 point formula gives one node at
the mean and two nodes well over 10 standard deviations away from the
mean! Clearly, though the formulae will integrate a normal density
exactly, it will be influenced to a great extent by the behaviour of
the distribution in the extreme tails. For example, the formula gives
grossly incorrect values when applied to a heavy tailed distribution.
In a t-distribution with 3 degrees of freedom, a 3 point formula gives
a normalising constant equal to 0.33 . 1043 ( this should be compared

with the correct value of 2.721 ).

Rabinowitz et al. (1987) in slightly different contéxt make this
comment and point out that the nodes in the subsets are far away from
the sets corresponding to the Gauss rules with the same number of
peints.. To overcome the above difficulty and to eliminate the
negative weight, we developed a pseudo-Patierson method. ' The method
was constructed-from a final high-accuracy rule-of n = 2i-1 points, in
a similar way to Patterson method. Starting now with n = 2i-1 points
new subsets are created by successively striking out every second
point starting from the first points. The new subsets of a n = 2i-1

point formula will then have the form

Si = (%1 =1.2,....2F7'-1} i=1,2,...,r-1

Figure 3.2 represents the subsets of a 63-point formula. Comparing it
with Figure 3.1 (Patterson's .original method) we note that the new
method is built with podes more concentrated around the mid-point, but
using one step less than Patterson's method. The weights were
calculated for subsets of nodes from the 15 point and 31 point final

precision rules. In the former case all weights were positive but,
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TABLE 3.4

Weights of the subsets of 15-point final precision

Patterson~-type (pseudo-Patterson)

3-POINTS

0.819210342477D-01
0.160861178240D+01
1 0.819210342477D-01

in the latter case some negative weights occurred.

CO0000O0

T-POINTS

.228636956632D-03
.247879730213D-02
.3305235829410+00
.110599181650D+01
.330523582941D+00
.24978797302130-02
.228636956632D-03
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formula

QOO O0OO0OO0O0OOODOOOOC

15-POINTS

.152247580425D-08
.105911554771D-05
.100004441232D-03
.277806884290D-02
.307800338724D-01
,158488915795D+00
.4120286874980+00
.564100308725D+00
.412028687498D+00
.158488915795D+00
.307800338724D-01
.277806884290D-02
.100004441232D-03
.105911554771D-05
.152247580425D-08

See table 3.4.



3,.2.2 Experiments wit atterson type rules

Having found the weights for some Patterson and pseudo-Patterson
sequences, we used the class of exponential power distributions
described in section 2.5.1 to test their behaviour over a range of
distributions with different coefficients of kurtosis. The Patterson
sequence based on a 17-point final precision formula and the
pseudo-Patterson based on a 15 point final precision formula were
examined using the graphical dispiay of figure 3.3-3.6. The plots
represent the relative error aqainst the coefficient of kurtosis (see

(2.20) and (2.21) ).

The figures 3.3 and 3.4 confirm our remarks in previous section and
verify that the pseudo-Patterson method is clearly much better than
Patterson's method and achieves small relative errors for
distributions which are 'close' to the Normal (kurtosis close to 0).

The small number of steps in two methods however, does not permit

- convergence checks, and therefore prevents any further <clear

conclusions being drawn.

3.2 3 Causs-Kronrod-Patterso ules

The imbedded Gauss based sequences of Patterson (1968a) attracted
little interest in the numerical analysis literature, perhaps because
simultaneously and in the same journal, Patterson published another
paper (1968b) in which he introduced the Gauss-Kronrod-Patterson
(G-K-P) sequence of integration rules, which received a considerable

amount of attention in subsequent years. These rules, are more
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RELATIVE ERROR

RELATIVE ERROR

FIGURE 3.3

RELATIVE ERROR OF NORMILISING CONSTANT
IN A PSEUDO—-PATTERSON METHOD
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RELATIVE ERROR

RELATIVE ERROR

RELATIVE ERROR OF POSTERIOR VARIANCE
IN A PSEUDO—-PATTERSON METHOD
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accurate than GBIR rules and in addition are open-ended, whereas in
the GBIR sequences one has to specify the base (final) rule in
advance. This explains the neglect for the GBIR rules, and the
concentration on developments of G-K-P rules (eg. Piessens and
Branders (1974), Monegato (1978)) and automat ic algorithms
(eg. Piessens (1973), Patterson (1973)) were published. The basic
theory and development of these (G-K-P) rules are outlined below

-a recent survey can be found in Gautschi (1987).

The original idea behind the G-K-P rules came from Kronrod (1965), who
considered (3.1) for the case a=-1, b=1, He showed how an n-point
Gaussian quadrature formulae may be augmented by a set of nt+l nodes to
yield quadrature formulae of degree 3n+l if n is even and 3n+2 if n is
odd. The problem can be expressed then as an approximation of (3.1)

by
aj f(xj) + 'Z Bi F(&;) (3.6)

where the xi's are the nodes of an n-point Caussian quadrature

formula.

We want to determine the additional nodes £; and the weights ay. and 3y
so that the degree of precision of (3.6) is maximal. It is known that
the nodes £; must be the =zeros of the polynomial pnh;1(x%) which

satisfies

b
J Prn(X)pns1 (x)xkdx = 0 k=0,1,...,n (3.7)
a
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where p,(x) is the Legendre polynomial of degree n. Kronrod (1965)
gave a simple method for the computation of ¢p1(x). Patterson
(1968b) expanded pp4+1(x) in terms of Legendre polynomials and derived
a sequence of quadrature formulas by iterating the process described
in (3.6) and (3.7). He considered the Gauss-Legendre, rule and

starting with a 3-point rule reached a 127-point rule.

Unfortunately, the zeros of pp,1(x) in (3.7) are not necessarily real,
and the construction of the G-K-P sequence is ﬁot always possible.
Nor is the positivity of the wéights ensured. For the particular case
of k(x) = exp(-xz) with am-w, b=x in (3.1), (Gauss-Hermite case),
Ramsky (1974) notes that extensions of the type (3.6) exist only for
n=1,2,4. Monegato (1976) confirms these results experimentally, and
proves-them in a paper two years later (1978). Finally, Elhay and
Kautsky (1984) <compute a new G-K-P type sequence of imbedded
quadratures for Gauss-Hermite case. The sequence consists of formulae
with 2, 5, 9 and 17 nodes with two (symmetric) negative weights
appearing in the 17-point formula. It, therefore, seems that the

G-K-P sequences are unsuitable for use in statistical analysis.

3.3 mbedded sequences o ositive terpolatin integration

Nearly twenty years after the first GBIR sequence was constructed by
Patterson (1968a), Rabinowitz et al. (1987) published a paper which
considered GCBIR rules with positive weights. These rules are

preferable to the original GBIR rutes, primarily because they contain
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positive integration rules in Caus; Hermite case, and also because
when progressing from one rule to its successor fewer points are
added. This is the case because the number of points increases
arithmetically rather than geometrically, which was the case in GBIR
rules. This latter property gives the user the flexibility to use a
larger final-precision number of points, compared with GCBIR rules, and

to monitor the convergence of the integral more often.

We consider again integrals of the form (3.1) which can be
appr&ximated by interpolating integration fules (1IR's) of the form
(3.2), where the set of points.Xn - {xjn: j=1,...,n) is specified in
advance and therefore this IIR is said to be based on X,. We recall
here that a I[IR is called positive IIR (PIIR) if all weights rjn in
(3.2) are positive, and that a rule Qmf is imbedded in Qnf if X, © X.

We state now theorem 1 as given in Rabinowitz et al (1987):

Theorem 1: Given any PIIR Q,f based on a set X, there exists a finite
sequence of PIIR's, (Qngf; k=1,...,m<k) such that Qn,f = Qnf and such

that Qnif . is of precision ng-2 for k=1,...,m-1.

The theorem guarantees that, if we are dealing with a symmetric
situation, as for example in Gauss-Hermite case, where the weight
function k(x) = e—x’ in (3.1) is symmetric about 0, we can construct a
sequencé of PIIR's starting with a final high-precision set of points
Xnh and dropping each time two (symmetric) points. The interpolating
weights for each subset ;f Xp can then be calculated with the same
method which used by Patterson (1968a) and described earlier in this
section. The FORTRAN package IQPACK is specially written to evaluate

weights of interpolatory quadratures with prescribed nodes. See
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Kautsky and Elhay (1982) and Elhay and Kautsky (1987) for more
details. These we]ghts need be calculated only once, stored, and used
each time, as indicated by Naylor and Smith (1982). Assuming that we
start using 2 nodes when n is even and 3 nodes when n is odd, we need
to store for each n a set of (ntl)/2 nodes (due to symmetry) and
(n-1)/2 sets of weight%, corresponding to each increase in he number
of nodes by one. For example, with a 16-point final precision base
rule we need to store 8 (symmetric) nodes and 8 sets of weights, and
for a 17-point final precision sequence we need to store 9 nodes (8

symmetric and the mid-point) and 8 sets of weights.

Rabinowitz "et.al. (1987) tested different sequences of PIIR's in
various situations. We describe here the more interesting
(experimental) results concerning the convergence of the sequences of
PlIR's. Thgir suggestion 1is to stop and accept the current
approximation if the results of two (or more conservatively three)
successive approximations agree to within desired accuracy. This
convergence is not to the true value of the integrand but to the final
precision based sequence. It is however generally true that when
rapid convergence occurs, it will be to the true value of the
integral. Thus, a general strategy would be to start with a high
accuracy based rule . |In their paper, Rabinowitz et.al. start with
a 36-point Gauss-Hermite rule to demonstrate the convergence of the

imbedded sequence of a PIIR.

The problem of the false convergence is, of course, inevitable. This
phenomenon is well known to numerical analysts, see for example Lyness
(1983), Davis and Rabinowitz (1984, p.421-424), Laurie (1985), and

therefore, it is worthwhile to keep this in mind in the context of the
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application of these methods in Bayesian analysis. We will discuss

this matter extensively in chapter 5.

3.4 Applications of imbedded sequepces of PIIR's in 1 dimension
3,4,1 Rea s of the W am ectjon 2.4

A PIIR sequence as_described in chapter 4 for the Gauss-Hermite case
was constructed and applied to the Weibull example of (section 2.4),
We chose a 16 point final precision formuia, and the PIIR sequence was
found as described in Rabinowitz et al. (1987). Having then chosen
the initial rule, we dropped a point each time and we computed the
interpolatory weights for the resulting se; of points using (3.5).

The indices of the points in the order in which they were removed are
8,6,7,5,4,3,2,1. (3.8)

Note that reading from right to left the sequence gives the indices of
the points in the order of building up a (k+1)-point PIR from a

k-point PIR.

The lower 90% prediction bound was calculated using the method
described in (2.4.3), and for a bétter demonstration of the method,
was plotted against the number of function evaluations rather than the
number of points -see figures 3.7-3.12, Having applied the
Gauss-Hermite method with 4, 6 and 8 points it is therefore assumed

that when an 8-point formula is used, . 4+6+8=18 function evaluations
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have been performed.

The results indicate that the PIIR's give very poor initial
approximation, but converge reasonably fast. The advantage of PIIR's
over the pseudo-Patterson (and of course the Patterson) method is
clear in that convergence can be monitored more easily due to the
larger number of steps. We note, that the sequence of PIIR's used for
these examples is only one of many sequences which can be derived from
a 16 point base rule, and that the optimal (or near-optimal) sequence
is difficult to define. 1In general the choice is dependent mainly on-

the nature of the integrand.

3.4.2 An artificial example jpvolving one dimension

Naylor (1982, Section 3.3.2) presented an artificial example for the
demonstration of the adaptive itefative scheme as described by Naylor
and Smith (1982). He considered an exponential distribution with
p.d.f.

p(x18) = g=1'e %/ x>0, 48>0

which, for a sample of size n = 5 with sample mean 1 gives a

likelihood function of the form
2(x10) = §-3e-s/0

The prior density was taken as
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p(f) « 87!

Nayler (1982) applied the adaptive iterative scheme of Naylor and
Smith (1982) after a log transformation. Starting wvalues for the
iteration were obtained using maximum likelihood estimates. In order
to demonstrate the effectiveness of PIIR sequences we applied two such
sequences obtained from a 16 point Gauss-Hermite rule and a 36 point

Gauss-Hermite rule.

With the 16 point rule a sequence of imbedded rules was obtained by
successively deleting, in size order, symmetric.nodes 8, 6, 7, 5, 4, 3
and 2. With the 64 point rule a sequence of imbedded rules was
obtained by successively deleting symmetric nodes 1!8, 14, 17, 16, 12,
15, 10, 13, 8, 11, 9, 7, 6, 5, 4, 3 and 2. The results together with

those taken from Naylor (1982) are given in Table 3.5.

From Table 3.5 it can be seen, that in this particular example, the
imbedded integration rules perform extremely well. The approximations
from the two sequences of PIIR's show superior convergence after 16
function evaluations than the adaptive integration rule does after 126
function evaluations. Of course this is a particularly well behaved
example, but it does illustrate that in some cases where good initial
estimates are available sequences PIIR's provide an attractive
alternative to the adaptive integration rules of Naylor and Smith

(1982).
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TABLE 3.5

omparison of Adaptive [ntegratjon Strategy wit equences
(a) Reszults from Naylor (1982)
Iteration | Crid Size Cuz. no. of Normallzing Mean Var{ance
functlon - constant x 10?
svaluat fons ’
o' 6 6 7.700
1 6 12 7.674
2 3 18 7.674
3 8 24 7.674 1.2478 0.4831
4 ? 31 7.681
3 7 38 7.682
[ 7 43 7.682 1.2478 0.4977
9 8 H 61 7.619 1.2492 | o0.3061
12 9 96 7.680 1.2496 | 0.5111
1 10 l 126 7.680 1.2497 | 0.5144

(b) Resulzs obtained by applying a stequence of P1IR's based on a
16 point rule

No. of Cenerators || Cum, no. of Normalizing Mean Yariance
function constant x 10?
evaluatiaons

- , - -3 - f— s90¢ — | 1.0242 | 0. 0435
bl 4 7.863 1.2356 0.4178
3 6 7.744 1.2358 0.4015%
4 1.671 1.2455 | 0.4760
s 10 7.430 1.2491 0.5021
6 12 7.680 1.2498 0.5148
7 14 7.680 1.2500 0,3194
3 16 7.680 1.2500 0.5207

{c) Results obrained by applying & sequence of PIIR's based on a
32 point rule

No. of Cenerators || Cum. no. of Norwalizing Mean Verlance
funct {en constant x 10?
evalustions

1 1 9.09s 1.0108 0.0204
2 4 8. 310 1.2447 0.5823
k| [ 7.695% 1.2361 0.4710
4 | 7.695 1.2363 0.4693
b1 10 7.670 1.2503 0.4974
6 12 7.692 1.24370 0.5044
? 14 1.877 1.2501 0.3%152
8 16 1.680 1.2498 0 5167
9 18 71.680 1.2500 0.5190
10 10 7.680 1.2500 0.5202
11 2 7.680 1.2500 0.5200
12 r1) 7.680 1.2500 0.5204
13 26 _1.580 1.2500 0.5207
14 23 7.680 1.2500 0.5208
15 30 1.5680 1.2500 9.5208
16 n 7.680 1.2500 0.5208
17 34 7.680 1.2500 0.5208
18 J 36 7.680 1.2500 | o.s5108

True posterfor mean = 1.2500 and vgélance - 0.5208




Chapter 4: Mu dimensiona tegration rules

4.1 Introduction

In chapter 2 we described the CGaussian product formulae which have
been used by Naylor and Smith (1982) for the approximatioﬁ of
d-dimensional integrals. In this chapter, ‘ we consider the
construction and application of imbedded sequences of multidimensional

PIIR's which can be derived in the same manner as the one-dimensional

sequences of PIIR's described in chapter 3.

The application of conventional numerical methods to Bayesian analysis

is unfortunately not an easy task, especially in our context of

multidimensional integration over the high dimensional space
exploiting properties of product rules, The reason is simple.
Traditionally, the numerical analysts focussed on efficient

integration rules, and made objective comparisons using the degree of
precision of each rule (see section 2.2.1). Thus, rules which
achieve maximum precision with least number of function evaluations
(sometimes called optimal rules) attracted much of the research
interests and therefore the (sub-optimal!) Gauss-product rules were
disregarded. There is no paper that we are aware of which contains
any discussion of the product rules in connection with the special
propertie; .which make them fully symmetric integration rules. Yet
this 1is the basic property which we exploit to produce imbedded

sequences of rules.

This chapter reviews the basis properties of multidimensional fully
symmetric integration rules. Adopting a similar notation to our main
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reference paper by Rabinowitz et al (1987), we presemt, in the next
section, some basic definitions concerning Iintegration rules and, in
particular,. fully symmetric integration rules, The exploitation of
the special properties of these fully symmetric rules will enable the
construction of imbbeded sequences of multidimensional PIIR's in
section 4.3, and, their application on some high dimensional Bayesian

analysis In section 4.4.

More details concerning the connection between the numerical analysis

and the Bayesian statistics will be given in chapter 5.

The imbedded sequences of integration rules dealt with in this chapter
are obtained -from Gauss-Hermite product rules with the same number of
points in each dimension. These rules are appropriate because they
are fully symmetric integration rules. The general class of fully
symmetric integration rules have received a considerable amount of
attention in the numerical analysis literature; see, for example,
Lyness (1965), McNamee and Stenger (1967), Rabinowitz and Richter
(1969), Mantel and Rabinowitz (1977), Keast and Lyness (1979) and Cenz
(1986). This section gives the basic definitions of Ffully symmetric
integration rules and some of their important properties. We - begin

with definitions of fully symmetric points, sets and functions.

Two points x and y of the n-dimensional Euclidean space E™ are said to
be fully symmetric, denoted x .~ ¥, if y can be obtained "from x by

permutation and/or changes in sign of the coordinates of x. In
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passing we note that the relation '.' is an equivalence relation and
in any equivalence class there are at most nl!2M points. A subset of
points F,SEM, is called a fully symmetric set if x ¢ F, and x ~ ¥y
implies y e Fp. A function g is said to be fully symmetric if
g(x) = g(y) whenever x . y. Examples of fully symmetric sets are the
n-dimensional unit sphere, the n-dimensional unit cube and the entire

space. We consider integration rules of the form

m

[f = I_ Cen J k(x)f(x)dx = z wif(Xj,,Xj2,.--Xjn) = Quf (4.1)
. Rn

i=1

in which the set of nodes are fully symmetric and the weight function
comprises a fully symmetric function defined on the set of nodes.
Such fully symmetric integration rules can be completely specified by
a set of M generators y;, i=1,2,...,M, (the unique representatives of
an - equivalence class) and the corresponding weights wi(M)
(i=1,2,...,M). Each of the M generators y; defines a fully symmetric
set of nodes {x:x.yj} with the same weight wi(M). Thus, a fully

symmetric integration rule can be written in the form
Quf - z wj (M) Z f(xi) (4.2)
S

where I denotes the sum over all fully symmetric points which can be
FS

obtained from y;.

Table 1 gives the types of three dimensional generators and their
corresponding number of points in their representative FS set. Thus,

in three dimensions, Qmf will have the form
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BLE 4,1

Types of three-dimensional generators.

93

Iypes Generators Number of points
in a set
(0,0,0) (0,0,0) 1
(,0,0) (a;,0,0) i=1,...,k, 6
(8,8,0) (8§.8;,0) i =1,...,k, 12
(v.3,0) (vi.6i,.0) i=1,..:,k, 24
(e, e,€) (ej.eq, 690 1 =1,...,Kk, 8
(£,§,n) (F3.85.ng) i =1,...,kg 24
(8,p,2) (8i.,0,x5) i =1,...,kg 48
Ko
Qnf = z wi,of(0,0,0) +
{=1

k, k,

i=1 FS i=1 FS

k, ka
+ z Wig z f(yj.,6;,0) + z Wia z Flej,ej,€4)

i=1 FS i=1 FS

kg K
+ Z Wis Z F(Ei.8i,ng) + z Wi z HCEIN TR YD)

fe1 FS - i=1 FS




where i kj = m .
J=o

It is notable that Gauss-Hermite product rules with the same number of
points in each dimension are fully symmetric. The number of
generators in such a rule can readily be derived using a combinatorial
argument. For a d dimensional rule with n non-negative points in each
dimension, the number of generators i{s given by M = “+d'1Cd. Thus,
for example, a 55 product rule can be expressed as a fully symmetric

rule with M = 3+5‘1C§ = 21 generators.

Two particularly important properties of the fully symmetric

integration Qmf rule are as follows.

(i) If f is a monomial containing an odd power of a coordinate

variable then Quf = If = 0.

(ii) If f is a monomial with only even powered coordinates then If
and Qmf depend only on the exponents and not on the ordering

of the coordinates,.

It is clear from (i) that if a fully symmetric integration rule is
exact for all monomials up to degree 2k it is exact to-degree 2k+1.

Moreover, (ii) provides a means of deriving the weights from a set of

m generators specified in advance. GCiven m generators we obtain
weights wi(m) (i=1,2,...,m) which integrate exactly m monomials of the
form

b= xdndz L xid J1 222 ... 3 g2 0. (jj even)
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Following Rabinowitz et al (1987) we adopt an ordering of the
monomials in which 51 precedes ;h if the degree of 5i is less than 55
or in cases where gi and ;5 are of the same degree ;iprecedes 55 if
for the first p(p=1,2,...) on which jp and kp differ jp < kp. For

example, in three dimensions this results in the ordering 1, x?, x2x2,

4 29242 4,2 6
X7, X{X3X35, XTX3, X7,

Given a set of m < M generators (which without loss of generality we
denote by ¥,.¥;.,...,¥n) defining as imbedded rule we obtain weights

wi(m) by solving the system

m
Yowm ) onde-de,  e-i2 .m0
f=1 AXij
and making the rule exact for the first m' monomials. These m'
monomials being the first which give a unique set of weights. Note

here that m' > m if the first m monomials lead to a dependent system

of equations.

4,3 Construction of Imbedded Integratiopn Rules

Rabinowitz et al (1987) gave the following theorem.

Theorem_2: Given an integration rule with M generators and positive
weights which is exact for the first M monomials, then there exists a
rule- with M-1 generators and non-negative weights which is exact for

the first M-1 monomials.
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Theorem 2 guarantees the existence of at least one sequence of M
imbedded rules. Furthermore, (4.3) provides the basis for an
algorithm for obtaining sequences of imbedded rules by working from an
M-generator base rule and creating sequentially M-1, M-2, ..., 1
generator imbedded rules. We wili use this theorem to construct an
imbedded sequence of PIIR's based on a product Gauss-Hermite rule. As
we remarked in the previous section, this rule satisfies all
conditions to be converted from (4.1) to (4.2), but the solution of
(4.3) in this case 1is a quite complicated problem and its

implementation requires the adoption of a specific strategy.

The weights in a Gauss-Hermite product rule can be readily obtained by
multipling the corresponding one dimensional weights. However, we
must construct a system of linear equations of the form (4.3) in order
to derive the imbedded sequence of integration rules. The solution of.
(4.3) with all points of the product rule serves as a check on the
algorithm before we proceed creating i%bedded rules. The construction
and solution of (4.3) with the full set of generators in.the base rule

is the first step of our strategy.

We noted in chapter 2 that d-dimensional Causs-Hermite product rules

with n points in each dimension can integrate all monomials with terms
d a;
igl x{ ! with a; ¢ p (i=1,2,...,d). We also remarked in the previous

section that the number of generators for that rule is'M+d'1Cd = M,
where m denotes the number of non-negative points in each dimension.
It is simple té show that the number of monomials that this rule can
integrate is 2WHd-1cd>M. Our task is to find the first M monomials
which make the matrix of coefficients of the system (4.3)
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non-singular. In addition, it is known (see for example Davis and
Rabinowitz (1984) ) <that this system has a unique solution.

Therefore, these first M monomials give a unique set of weights.

When this is accomplished, the next step is to drop one generator (or,

equivalently, one column of the matrix of coefficients of the system

(4.3) ) and try to solve the system of M-1 equations. Following

Rabinowitz et al (1987) our strategy for obtaining an M-1 generator
imbedded rule from an M generator rule is to drop the most expensive
generator (ie. the one which generates most poinfs) which leads to a
positive rule. In this case, care must be taken when we try to find
the set of the M-1 independent equations which make the matrix
nonsingular: we do not want to integrate monomials with higher degree
and omit monomials with less degree. Our strategy therefore is to
find the first M-1 monomials which make the matrix of coefficients of
the system nonsingular. Similarly, we proceed for the construction of

M-2,M-3,...,2 generator imbedded rules.

A numerical algorithm to implement the above is as follows:

(1) Create an ordered list of monomials that the full product rule

can integrate exactly using the ordering described above.

(11) Derive the RHS of (3) using the formula
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8—8

o« ®© .
I ... I x%'lx%iz... xﬁl"exp(-x%+x%+...+xz Ydx1dxy. . .dxn -
- .

-

= [(11+1/2) T(ig+1/2)...T(iy+1/2)

(111) Derive a system (4.3) produced by the Fist M monomials as they
are ordered in (i). Start solving the system using total pivoting
with scaling to avoid round-off errors. ( For more details in these
methods see Steinber (1974) or Atkinson (1978) ). If the matrix is
singular, the total pivoting will stop when the first kj; diagonal

elements are non-zero and the last (bottom) M-kj rows zero.

(1v) Remove the last M-k; equations of the sysfem and replace them

from the equations derived of the M+I.M+2....,M+k1‘h monomials, as
aced .

theynordered in (i). continue the total pivoting starting from the

k+1th row,

(v) Repeat step (iv), say i times, until k=M. Then, solve the

system and check whether the solution produces the Gauss-product

weights for verification of the method.

For the M-1,M-2,...,2 generator rule, we remove each time from the
system of equations one generator starting from the most expensive and
try to solve the (M-1)x(M-1),(M-2)x(M-2),...,2x2 system of equations.
If the solution produces a set of positive weights we stop and proceed
to the next rule. Otherwise we try to remove the next most expensive

generator.

One important factor of the strategy is that we are able to record in
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each step the exponents of the last monomial integrated exactly by the
rule. We can therefore ' judge' the power of each imbedded rule
because we know that at least all monomials ordered before that can be
integrated exactly by the rule. Of course, there are more monomials
integrated exactly which have been ordered after the last one and have
been removed during the above numerical algeorithm. In the next

section we will specify exactly which are these monomials.

Even though the fully symmetric rules were used in the past to produce
integration rules with specifled accuracy, (or degree of precision),
the above remarks indicate that sequences of PIIR's can be used to
produce rules which lie between two rules of precision, say, p-2 and
P. In the context of numerical analysis, certainly the reason for
constructing rules of specified accuracy 1is concerned with the
comparison of different methods. However, we believe that these rules
are potentially useful, especially 'in"a Bayesian analysis, since they
fill a gap by providing a rich class of positive integration rules

over the d-dimensional space.

We need to mention that in contrast with the linear algebra context,
the matter of 'zero elements' in a numerical solution of a large
system of linear equations requires considerable amount of attention.
We specified a 'tolerance', which is a adequately smail number (say
0.le-6) which could serve as the smallest positive number. The
sensitivity of our solution was tested repeatedly and we found that
the algorithm is very stable in the sense that it produces same

solution over a wide range of tolerance.

An alternmative way to work out steps (iii) and (iv) above is to use
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procedures (see, for example NAG (1987) ) which can calculate the
number of non-zero singular values and thus the number of independent
equations in the system (or, equivalently, the rank of the system).
The way to proceed with this method is to start with two rows and add
one row at a time, calculating the new rank at each stage. If the
rank does not Increase by one, then that row is not needed. This
method of course has the disadvantage that it is not theoretically
founded: Theorem 2 guarantees the existence of an imbedded sequence of
PIIR's starting from the large rule and dropping one generator at a
time. The reverse procedure could create the unfortunate problem of
having to stop at a point where the sequence does not produce a
positive rule. However, this method can serve as a way to derive some

PIIR's In cases where the whole sequence is not needed.

Using the above algorithm , we have produced imbedded sequences of
PIIR's based on-53-93,133-55,57,59 Causs-Hermite product rules. In
the next section we illustrate how these sequences can produce

efficient results within the Bayesian framework.

4.4 operties of the imbedded sequences

4.4.1 Related results [} umerical analysis theo

The idea of dropping a node from an one-dimensional Gauss-quadrature
formula was suggested by Berntsen and Espelid (1984) and Laurie
(1985). This idea was applied to circular symmetric planar regions by

Cool and Haegemans (1987) and to the cube by Bernten and Espelid
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(1988). Rabinowitz et al. (1987) investigated the existence of such
rules with certain optimal properties, and recently Cools and
Haegemans (1989) and Coocls (1989) have explored further properties and
presented a method for the construction of multidimensional imbedded

rules, based on Iinvariant theory and ideal theory.

Even though the theoretical work by Cools and Haegemans (1989) is a
theoretical generalisation of the work we presented in section 4.3, it
is worthwile describ?ng here some properties of the imbedded sequences
of PIIR's obtained from the Gauss-Hermite product rules. We have
mentibnéd in' section 2.2.1 that the product rules are relatively
'strong' in the sense that they can integrate mdny more monomials than
other rules with the same degree. This is a very important property
which we generalise here for the whole sequence of the imbedded rules

derived in section 4.3,

Suppose we have an n-dimensional Gauss—Hermité product rule of degree
2m-1, Then the nodes are based on the zeros of the Hermite
polynomials of degree m, say Hp(x) (see David and Rabinowitz (1984).
Let Hm(xj) be the Hermite polynomials on Xjs j=1,2,...,n and X a

poelynomial of degree < m. Then, the following result holds:
Result 1: If an integration rule based on the roots of Hm(xj) is
exact for all polynomials of degree £ deg(X) + m-2, then the rule is

also exact for Xxjm.

Proof': Hm(XJ) - xjm + ¢(Xj), where ¢ is a polynomial of degree £ m-2.

Let If be the integral of the function f as defined in (4.1). Then,

101



[XHm(Xj) - 0 for each X (see Engels (1980), p. 239)

Thus,

[Xxjm - -lX¢(xJ)

Let Q be an integration rule based on the Hermite—points: then

QMHy(xj) = 0 = OXx ™ = -Qx&(x))

Consequently, if the integration rule is exact for all polyomials ‘of
degree £ deg(X) + deg(®d), then it is also exact for XXJm because

QXx T = ~QXB(xj) = -IXB(x)) = IXx;D

J J

As an example, consider the case n=2:

Choose X=1, then we have that if the formula is exact for all
monomials of degree 4 m-2, then it is also exact for x;™ and x)M.

Choose X=x1ixzj- 1+ j<4m. Then if the formula is exact for all
polynomials of degree £ m-2+i+j, then it is also exact for xjMix,J

and xpixpmti.
Result 1 is useful because it enables us to obtain a precise picture

of the power of each rule by examining the monomials that are

integrated exactly by it.
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4.4.2 Practical error estimation

In the second edition of the book by Davis and Rabinowitz (1984) there
is a section on practical error estimation containing references to
several papers on the topic. The error analysis associated with
quadrature rules is usually based on a study of the derivative of the
argument. See for example Engels (1980), chapter 3. A more practical
approach is to compare approximations obtained by different rules.
Imbedded sequences of integration rules have an important role to play
in this area because of their attractive property to 'overlap' on the

set of nodes they use.
Let If and Quyf denote the Integral and an M-quadrature integration
rule of the function f as given in (4.1) and (4.2) respectively. We
are interested in producing estimates of the error

Ef = If - Qf.
Normally an estimate for Ef is produced by applying two quadrature

rules Qy and Q, with M>L, and an estimate of the error in the

approximation given by Qy is given by

Eyf = 1Qyf - Q.f) (4.4)
The hope is that

11f - Quf1 £ Eyf (4.5)

which in turn guarantees that the quadrature routine is reliable.
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However, because the approximation (4.2) and the error estimate (4.4)
are based on only a finite number of function values, they are not
completely reliable. In practice one does not know that Quf is more

accurate than Q. f, even if Qy has a higher degree than Q.

The assumption behind the expression (4.4),see De Boor (1971), Iis

that

Eyf = 11f - QLf1 > 11f - Qyi (4.6)
IfF (4.6) is satisfied, then (4.5) would be satisfied.

Another important concept In the discussion of error estimation was

introduced by Lyness (1965). He defined Null rules of degree L as

NL=-Qu - Q - : - (4.7)

If we apply Np on any polynomial of degree less or equal to L, the
result will be =zero. Very often the the error estimate (4.4) is
scaled by some factor AN in order to balance reasonably between
efficiency and reliability. It is then easy to prove that MEf is also
equal to the difference of two integration rules of the same degree as

the original ones:

AEFf = AQyF - AQLf = Quf - (AQuf + (1-M)QLf) = Quf - Q' yf

where Q'yf is a linear combination of Quf and Qf and therefore of

degree equal to the degree of Q.
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The question which is of great importance, relates to the choice of a
suitable A, or, different values of A that will provide a set of Null
rules. In section 5.6- we will dicuss the importance of the
integration of such rules in the proposal of our infegration scheme

for Bayesian analysis.

4.5 ustrat{ve example

4,5.1 A S-dimepsiopal imbedded sequence of PIIR's

The data in Table 4.2 were analysed by Grieve (1987) who applied a
Bayesian analysis using a Weibull regression model with proportional
hazards. Using the same notation as Grieve (1987) the time to tumour,

t, has p.d.f.

p(t/8,p) - ptP“eZﬁ exp[-tPeZQ] , t >0, (4.8)

where p is the shape parameter of the Weibull distribution, z a row
vector of covariates and B8 a column vector of regression coefficients.
For the analysis of the data in Table 2 z = (z4.2,,2,,2,) is defined

as follows:

z, =1 for all mice;

z, =1 for mice in the vehicle control group and 0 otherwise;
z, =1 for mice in the test substance group and 0 otherwise;
z, =1 for mice in the positive control group and 0 otherwise.
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TAELE 4.2

Photocarcinogenjety data from Grieve (1987)

I 11 [ IV
Irradiated control Vehicle control 8-MOP Positive control
Mouse Week of Week of Mouse Week of Week of Mouse Week of Week of Mouse Week of Week of
no. death tumour no. death tumour no. death tumour no. death t umour
(censoring (censoring (censoring (censoring
tIme) time) time) time)

1 12 l 32 ! 22 1 27
2 17 2 27 2 20 2 18
K] 2] R 23 3 10 3 22
4 25 4 12 4 28 4 13
3 11 5 18 5 19 5 18
6 20 6 410 6 15 6 29
7 27 7 40 7 12 7 28

8 30 8 38 8 35 8 20
9 13 9 29 9 35 9 16
10 12 10 30 10 10 10 22
11 21 11 10 11 22 11 26
12 20 12 32 12 18 12 19

13 23 13 40 13 24 13 29

id 25 14 40 14 12 14 10
15 23 15 40 15 40 15 17
16 29 16 410 16 40 16 28
17 ' 35 17 25 17 31 17 26
18 40 18 30 18 24 18 12
19 31 19 37 19 37 19 17
20 36 20 27 20 20 26

29




Following Grieve (1987), and considering the n+m = 80 times in Table 2
as ordered in such a way that the first n=65 times t,,ty,...,t, are
uncensored and the last m=15 times, t,4,,tp4z,---,tn4m, are censored

(ie. corresponding to deaths) the likelihood function can be written

n - n+m .
2¢(8,p/data) = [ i pt? Verﬁ ] [ T exp[—tgezlﬁ] ]
J=1 J=1
where Zj denotes the vector of covariates for the jth mouse,

An initial imbedded PIIR sequence based on a 53 proéuct rule has been
derived (see table 4.3) and applied to the above example starting with
maximum likelihood estimates and the associated asymptotic covariance
matrix. The results obtained from the full PIIR sequence are shown
for illustrative purposes in figures 4,1-4.11, They indicate that the
sequence converge; rapidly, ;nd as a result it éan be used to save a
considerable number of function evaluations. In next chapter we shall
discuss how a proposed numerical integration strategy based on this

sequence of PIIR's could be applied in this example.
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TABLE 4.3: Imbedded sequence of PIIR's obtained from

a 55 Gauss=-Hermite based rule

Ho of No of Sum of Exponencs of

‘Stap Gener’s Generators points points last monomial
1 2 0.000Q0000 0.0000000 0.0000000 0.0000000 0.0000000 L 1 :
¢.0000000 90.0000000 0.0000000 ¢.0000000 2.0201829 10 11 20000
2 1L 0.000Q000 0.9585725 0.9585725 0.9985725 2.0201829 320 Ji 2200090
] 1 0.0000000 0.0000000 0.9585725 0.9985725 0.9585725 a0 41l 40000
4 L 0.0000000 2.0000000 0.0000000 0.0000000 0.9585725 10 421 22200
5 1 0.0000000 0.000N000 0.0090000 2.0201829 2.0201829 40 461 12000
3 1 0.9585723 0.9585725 0.9585725 0.9535725 0.958572% 32 491 22220
? 1 2.9201829 2.0201329 2.0201829 2.0201829 2.0201829 32 $25 1226060
3 L 1).930004) 0.0000000 0.0000900 0.7535725 0.9535725 40 S63 1402930
3 v 0.0000009 0.0C00000 0.0000000 0.9535725 2.0201829 80 545 e 22:2
19 L 9.0000000 0.0000000 2.0201929 2.0201829 2.0201829 80 725 422209
1t L 0.-2000000 0.9585725 0.9585729 0.9585725 0.9585725 30 205 4 42C0
12 1 0.9535725°0.2S85725 0.9585725 0.9585725 2.0201829 160 -9865 42222
13 1 0.900000Q 2.0201829 2.0201829 2.0291829 2.0201329 30 1045 44220
i3 1 0.000000C 0.73000000 9.9585725 0.93585725 2.0201829 240 - 12835 44222
L5 1 0.0000000 0.9585725 0.9585725 2.020L829 2.0201329 480 L7865 4 4222
13 L .3589729 0.958572% 0.9585725 2.0201829% 2.020182% Ja2o 2985 {4424
L7 1 9.0000000 0.90000070 0.9585725 2.0201822 2.0201329% 240 2325 4 4422
13 1 0.9000000 0.958572% 2.0201829 2.0201829 Z.0201829 129 2645 4 43 432¢Q
19 1 1.9%99729 0.9$95725 2.0201929 2.0291829 2.0201829 329 2965 44442
29 1 0.9%35723 2.42C1829 2.¢201829 2.02013929% 2.02013829 149 JiL25 4 4 4 14
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FIGURE 4.2
Convergence of posterior mean of b,
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FIGURE 4.4

Convergence of posterior mean of b,
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FIGURE 4.6

Convergence of posterior mean of b,
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Convergence of posterior mean of p
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4 2 T=-dime ona bedded sequence o 's

Lawless (1982, p.337) presented a set of data which is reproduced here
in table 4.4. This consists of survival times in months and regressor
variables for 65 multiple myeloma patients and it is a subset from a
more comprehensive set given by Krall et al. (1975). The problem is
to relate survival times for multiple myeloma patients to a number of

prognostic variables. These prognostic variables are:

x1 Logarithm of a blood urea nitrogen measurement at diagnosis
x2 Hemoglobin measurement at diagnosis

X3 Age at diagnosis -
¥4 Sex : 0, male; 1, female

X5 Serum calcium measurement at diagnosis
Asterisks denote censoring times.

We used the model (4.8) to analyse these data, the 6-dimensional

vector z being defined in this case as follows:

zg = 1 for all patients
zy = x1-§1

Z2 = X2-R2

Z3 = X3-X3

Z4 = X4

Z§ = Xg-X5
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We used the maximum likelihood values as our initial estimates and we
applied the sequence of PIIR's based on a 57 Gauss Hermite product
rule. The convergence of the posterior mean and variance vectors are
illustrated in figures 4.12-4_.25. Comparatively with the previous
example the convergence is- more rapid and the saving in computer
labour can be really worthwile. As with the previous example, it
sufficed to illustrate in this section the efficiency of the sequence
of PIIR's. We shall examine the same data in the next chapter,

following the description of our proposed strategy.




for multiple myeloma patients

TABLE 4.4: Survival times and regressor variables

t Y X2 Xy t x, X, Xy  x,
| 2218 94 67 0 6 1.230 112 49 |
| 1930 120 38 0 320 1322 106 46 0
21519 98 81 0 35 1114 70 48 0
30 1748 11375 0 37 1602 110 63 0
2 1301 5. 37 0 a1 1000 102 69 O
o154 6.7 46 | 42 ].146 50 70 1
50 2236 100 so0 51 1.568 717 74 0
S 1.681 6.5 T4 0 52 1.000 101 60 |
6  1.362 90 77 0 $4 1.255 90 49 0
6 2114 102 1 ) 58 1204 121 42 |
& 1113 Y7 &0 0 66  1.447 6.6 59 0
6 1315 104 67 | 67 1322 128 S2
7 197 95 48 0 88 1176 106 47 |
7 1041 5.1 6l I 89 1322 140 63 0
701176 114 3 92 1431 11.0 58 |
Yy 1.724 82 55 0 4* 1935 102 S9 0
1 L4 130 61 0 4* 1924 100 49 |
1 12300 120 43 0 7* 1114 124 48 I
1 1301 132 65 0 7* 1532 102 81 .0
bl 1.508 725 10 0 8* 1.079 99 57 |
I .07 9.6 5i P 12 1146 116 46 I
13 0.778 55 60 1 11* 1613 140 60 0
14 1398 146 66 -0 12 1.398 88 66 |
15 1602 106 70 0 13*  1.663 49 71 1
16 1.342 90 48 0 16* 1.146 130 55 0
16 1.322 8.8 62 | 19° 1322 130 59 |
17 1230 100 53 0 19 1322 108 69 |
17 1591 1.2 68 0 18* 1230 73 82 1
18 1.447 75 65 1 41 1756 128 72 0
19 1079 144 SI 0 53* LII4 120 66 O
I9 1.255 7.5 60 1 57*  1.255 12.5 66 0
24 1.301 14.6 56 | 77 1.079 14.0 60 0
25 1LO00 124 67 0O

116



FIGURE 4.12

Convergence of posterior mean of b,
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FIGURE 4.14

Convergence of posterior mean of b,
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Convergence of posterior variance of b,
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Convergence of posterior mean of b,
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Convergence of posterior variance of b,
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Convergence of posterior mean of b,
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Convergence of posterior mean of b,
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FIGURE 4.22

Convergence of posterior mean of b,
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Convergence of posterior variance of b,
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S5, A ications o bedded sequences of PIIR's {n Bavesian Analysis

5.1 umerica tegration strate

In this chapter we describe the use of imbedded sequences of PIIR's
for the improvement of the adaptive integration strategy of Naylor and

Smith (1982). Two main threads are discussed.

First, the use of imbedded sequences of PIIR's to provide a useful
so;rce of spatially distributed positive integration rules for ﬁse in
five dimensions and upwards. These rules can be incorporated into the
existing Naylor and Smith adaptive strategy to fill the gaps between
the low precision spherical rules and the very expensive Gauss-Hermite

product rules.

Secondly, the use of imbedded sequences of PIIR's to improve the
adaptive integration strategy of Naylor and Smith. This involves
incorporating a facility to work through a sequence of imbedded rules
monitoring convergence after at each stage and changing to a sequence
with a different location and spread only when it is deemed necessary.
We propose a strategy based on the following steps. Of course, the
initial parameter transformation and the possible orthogonalising

transformation should also be incorporated within this strategy.

(1) Start the iterative strategy by selecting an appropriate base
rule.. In general, this will be larger than that used in the adaptive
integration strategy of Naylor and Smith (1982) -typically 5 or more

points in each dimension.
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(11) Apply an imbedded sequence of PlIR's and check the convergence
after each approximation. If in the early steps there is evidence of
considerable mispecification of the vector (g,L) stop and iterate

again starting with the updated elements of (g,%).

(111) If the convergence in the sequence of PIIR's is rapid, then
there is good indication that convergence is to the proper value of
the integrand. This may well happen when the initial value of
(u,L) is not close to the posterior vector (g',g') but the integrand
is "well behaved”; see section 2.5.4. In such cases we suggest the
completion of the sequence and the derivation of the marginal
densities. Of course, the option of verification wusing new
approximations to (u,L), possibly with a larger base rule is
available, espécially when the initial rule is of low precision. Our
experience though, coincides with that of Rabinowitz et. al. (1987)
who reported that their experiments (in one dimension) show that if
rapid convergence is achieved with a PIIR sequence then in general

this will be to the true value of the integrand.

(iv) If the convergence is slow, we suggest that there are two
4

possible causes for this: mispecification of the wvector (ug,I) or a
A .

"badly behaved" posterior kernel. Therefore, wupdating the vector

(#,L) 1is recommended. [f the {teration does not . improve the

convergence, then we may come to the conclusion that the assumptions

are invalid. An increase in the size of base rule may overcome the

problem, but a question arises -provided that we started with a large

enough number of base rule- whether it is useful to proceed with an

doubt ful and expensive procedure or to use existing information from
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the posterior distribution (for example, characteristics such as
kurtosis or skewness) and use an importance sampling integration, see
Shaw(1988a,b). An interesting issue arises here, whether i; is
possible to use existing information to make a (possibly better than
the Initial) transformation of the parameter space. This remains a

matter for future research.

We note that the strategy proposed above is in essenc<e an extension of
the {terative strategy embodied in BAYESFOUR, at least as far asg
product rules are concerned. The important point is that we apply the
product rule by proceeding through a sequence of imbedded rules. The
information in the sequence of approximations is used to enable us to
stop early or diagnose convergence problems. In the standard
BAYESFOUR strategy the full product rule is used, effectively moving
to the end of the sequence without exploiting any information about

the development of the approximations.

In the remainder of this chapter, we shall demonstrate the efficiency
of the above strategy via real examples. When it 1is possible,
comparisons with the currently available method of section 2.2 wijll be
made. However, we feel that use of an interactive adaptive algorithm
is very much subjective, and numerical illustrations could be
misleading. In most examples, it suffices to illustrate the option of
stopping relatively early without using all generators, and how the
convergence behaviour can provide information on whether an increase

in size of base rule is desirable.
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5.2 The 1-dimensional examples of section 2,4 revisited

In section 2.4, we demonstrated how the Gauss-Hermite rule can be more
efficient than Soland's method. In our examples, we used the maximum
likelihood estimates as initial wvalues for the wvector (p,0), and
illustrated the efficiency of the integration rule by comparing the
number of function evaluations needed to up to the convergence to the
true value. Following the Naylor and Smith (1982) method, the way to
approach this particular problem would be to iterate between and
within grid size(s). We argue in this section that an imbedded

sequence of PIIR's can produce useful information more efficiently.

We chose a 36-point Causs-Hermite final precision rule as our initial
PIIR. We hope in advance that this rule is large enough to provide
efficient approximation to the integrand (2.12), maybe after some

transformation of (u,I). o

The imbedded sequence of section 3.4.2 was used to produce successive
estimates of the posterior vectors (u,L), and consequently of the
prediction bounds for future lifetimes. We make the implicit
assumpt ion that convergence of the vector (u,r) implies convergence of
the probability bound. Tables 5.1-5.3 contain the results of the PIIR

sequence and figures 5.1-5.6 illustrate them graphically.

In the firgt two examples rapid convergence is achieved within the
sequence of the PIIR. The convergence is to the true value, in
accordance with our remarks 1in section 5.1, Example 3 is a
particularly badly behaved example, for the reasons already ﬁentioned

in section 2.4. The convergence is slower in this example, but
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TABLE 5.!

Convergence of lower prediction bounds: Exzample 1

Ho of points

q
6
8

10

12

14

16

18

20

22

24

26

28

30

32

34

36

Convergence

No of points

4

6

8
10
12
14
16
18
20
22
24
26
28
30
32
34
36

£22.
22.
22.
22.
22.
22.
22.
22.
22.
22.
22,
22.
22.
22.
22.
22.
22.

NN NNDONNNNNNNODNDNDND N

prior (i)

6202149149
4752570666
4794575144
4726103142
4642702381
45608467189
4610449498
4603842710
4604278882
4604881856
4604614396
4604472323
4604433675
4604423201
4604420800
4604420355
4604420298

TABLE 5.2

lower prediction bounds:

prior (i)

46584237628
.571602075686
.37170578173
.56672456904
.56639244308
.56615339468
-56612633119
-56611390018
-56610894168
.56610954492
-56610901586
.56610889736
.56610887500
.56610887135
.56610887096
.56610887093
.56610887093
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39.
9.
39.
39.
39,
39,
39.
39.
39.
39.
39.
39.
39.
39.
39.
39.
39.

E

I N - - Y- Y -y

prior (ii)

1725502631
5017764965
5022994633
4891424601
4872090199
4868499414
4867726786
4867307658
4867234200
4867256654
4867244697
4867241635
4867241102
4867241018
4867241012
4867241011
4867241011

xample 2

prior (ii)

.26778796217
.38178302767
.38188694312
.37757288453
.37731686234
.37715551223
.37713940334
.37713314447
-37713090598
.37713115046
-37713096930
.37713093549
.37713093030
.37713092960
.37713092961
.37713092962
-37713092962



TABLE 5.3
Convergence of lower prediction bounds: E:ample 3

No of points prior (i) prior (ii)

4 20.0054998079 22.2793217019

6 17.8540087948 21.991370084856

8 17.6938657228 22.0004909801
10 18.6938237240 22.1593960625
12 18.248195Q0220 22.11359588655
14 18.5049346964 22.1407018109
186 18.4381989262 22.1357805291
18 18.4512340637 22.1367613822
20 18.4396385034 22.1361378323
22 18.4384731948 22.1360813988
24 18.4377465701 22.13605888190
26 18.4377293443 22.1360602004
28 18.4377015500 22.1360601156
30 18.4376920991 22.1360601126
32 18.4376888776 : 22.1360601120
34 18.4376879361 22.1360601119
35 18.4376877217 22.1360601119

TABLE 5.4

Prediction bounds for example 3 with prior {i)

Results updating the posterior mean and variance

No of points First iteration Second iteration

4 20.0569529782 19.5590237432
6 19.1622926720 19.1681122196
8 19.1411405873 19.1473957968
10 18.2781875060 18.3072448533
12 18.7450233636 18.7254772579
14 18.3845533347 18.3964856778
16 18.4541753325 18.4544927342
18 18.4339520166 18.4362926335
20 18.4424482458 18.4419137941
22 18.4438783529 18.4431172032
24 18.4435278094 18.4424717722
26 18.4431554803 18.4420349541
28 18.4430067931 18.4418497428
30 18.4429459792 18.4417730099
32 18.4429234778 18.4417440343
34 18.4429161691 18.4417344005
36 18.4429142665 18.4417318173
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Convergence of lower prediction bounds
+ Example 2 with prior (i)

238
236
2-54 1
2:52 4
2:50
z.‘a-
246 T T T T T T ™ 1

"] 3 10 13 20 25 30 35 40

Number of poinis
FIGURE 5.4
Convergence of lower prediction bounds
Example 2 with prior (ii)

4:-40
4-38 - = .\. - : -
4-36
4-34 1
4-32 4
4:30 4
4-28
4:26 T T T Y T T T 1

o 5 10 13 0 23 30 33 40

Number ol painis

131



Lower prediction bounds
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FIGURE 5.5
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improves after 14 or 16 function evaluations to produce rapid
convergence towards the end of the sequence. Comparatively, the
sequence of PIIR's produces the slowest convergence in the third
example with prior (i), and this is the only example where the

sequence does not converge to the true value of the integrand.

As we mentioned in our proposed strategy in section 5.1, we argue that
if the convergence is rapid, an iteration updating the vector (u,o)
within the same grid size should not be recommended. In fact, the
irregularities in the early steps of the PIIR sequence in example 3
only signifies the bad behaviour of the integral. However, for
illustrative purposes and reasons of objectivity, we applied two more
iterations updating the vector (g,0). The results are shown in table
5.4. Indeed, the imbedded sequence produces poorer results compared
with the Ffirst iteration, and the rate of convergence does not

improve.

Thus, these examples illustrated that the imbedded sequence of the
36-point Gauss-Hermite based PIIR produced efficient results, simple
to interpret and quite informative as far as the behaviour of the

integrand is concerned.
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5,3 Two three-dimensional examples

5,3,1 Reanalvsis of Stanford Hea apsplant Data

We consider here a three dimensional parameter model which was used by
Turnabull et. al. (1974) to describe data from the Stanford heart
transplant program and was referred by them as the Pareto model. This
model was used by Naylor and Smith (1982), Tierney and Kadane (1986)
and Kass et. al. (1988) for the demonstration of their method.
Furthermore, the latter paper involved some useful comments and
questions in the discussion followed, concerning the way Naylor and
Smith method should be applied. See section 2.5.4 for details.
Therefore, our consideration of the problem here will be in exactly
the same way as in the previously cited papers, for ease of

comparison.

In the Stanford heart transplant program, out of the 82 patients who
accepted in the program, 30 of them did not receive a heart
transplant. However, these 30 patients do not form control group
since their selection was by circumstances beyond of the control of
the experiment, such as early death or recovery. The Pareto model
views individual patients in the nontransplant group- as having

lifetimes following the exponential density

p(t/p) = pe~Pt

The mean ¢ of the above exponential density is assumed itself to be a

random varfable drawn independently for each patient from a gamma
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distribution with density of the form
A
A p) = = (Ap)P-1 e=X¢p . 5 250.
ple/M.p) = Fpy () e P

For an individual transplant patient the lifetime distribution is
taken to be exponential with mean 7o in place of o. Clearly the

transplant is effective in prolonging life if r<l.

The marginal density for the future lifetimes of a candidate if no

transplant were performed is given by

®

p
p(t) = J p(t/p)ple/N,pldp = ()\E:)l
0

In this way the resulting llkelihood function of the parameter vector

8 = (r,\,p) is

n N m
p P
1(x;8) -."1 —pq.'f—)\p)\ I« =2— )P 1 2L p*l
i= (Mxi) i=1 AMx Jj= (k+yj+rzj)

M
(= )P
Jj=m+1 A+yj+12j
where the xj are the survival times in days of the N=30 non-transplant

patients, n=26 of whom died, and Yj zj are the times to transplant and

survival times, respectively, for the M=52 transplant patients, m=34

of whom died.

Naylor and Smith (1982) and Tierney and Kadane (1986) used an improper

uniform prior on the parameter vector § of the form
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p(8) = constant for r,x,p > o

- 0 otherwise

They also mentioned the possible integration over the p parameter
analytically, but for illustrative and comparative purposes they have
chosen to work with the full three-parameter likelihood. As has been
already mentioned, we shall adopt the above approaches to faciliate

the comparison of the methods.

Naylor and Smith (1982) nofed.that a run over a series of 53 grids
failed to show satisfactory convergence whereas a final convergence
was achieved between 83 and 103 grids. Their results also suggested
that different order of orthogonalising transformations (which
correspond to different transformations of the parameter space)
produce different convergence rates, so we adopt here the ‘optimum'

parameter order (p,A,7) for our transformations.

The interesting point in the Turnbull et al. data is that the use of
maximum likelihood based approximations can be misleading, especially
for A\. See comments in the paper by Naylor and Smith (1982), and by
Tierney and Kadane (1986). It is therefore important to see how an
imbedded sequence of a PIIR can handle a situation in which the

initial vector (u,L) is mispecified.

Using the algorithm of section 4.3 we produced an imbedded sequence of
PIIR based on a 93 Gauss-Hermite product rule. This sequence consists
of 5+3'1C3 = 35 generators. We used as initial wvalues for the

parameter vector (u,rX) the maximum likelihood estimates. (We note
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here two misprints in Naylor and Smith (1982) paper, the s.d. of p is
0.1 instead of 1.1 and the correlation of A and r is -0.18 instead of
-0.46). In figures 5.7—5.13 we fllustrate the convergence of the
posterior mean and variance of 8, in two different situations. The
first iteration (black squares in figures 5.7-5.13) denotes the
initial sequence based on the maximum- likelihood estimates and the
associated covariance matrix. We can see that the imbedded sequence
gives an early information about the mispecification of the initial
estimates. It also provides a sequence of estimates with a lot of
' jumps’. _Thus, even if we do not stop early and we we use all
generators In ;he sequence, the behaviour of the convergence indicates
that some assumptions might be invalid or that the initial estimates

might be far away from the posterior parameter vector.

In the same figures, we illustrate the last iteration sequence which
represents the behaviour of the posterior mean and variance vectors
when a convergence is achieved within the 93 product rule. The rapid
convergence of the sequence indicates that the results do not need a
further verification: an increase to the 103 grid will produce the

same results, within a tolerance error (aggregate measure A=0.022).

Adopting the suggestion of Rabinowitz et al. (1987) and stopping if
three. successive approximations show convergence, we applied the
strategy of section 5.1 using A<.03 as our criterion for convergence.
The initial imbedded sequence based on the 93 Gauss-product rule
showed convergence after 277 function evaluations. With three more
iterations updating the mean and the covariance matrix, convergence
both within the imbedded sequences between sequences with different

(u,L)'s occurred after a total of 4x277= 1108 function evaluations.
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Normalising conslant

FIGURE 5.13

Convergence of normalising constant
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If marginal densities are needed we could add 277 more points to end

up with a full product rule including 1560 function evaluations.

The same convergence criterion (A<0.03) was also used for a BAYESFOUR

run in the same problem. Starting with a 43 Gauss Hermite product

rule, 16 iterations were needed ending up in 83 product rule and a

total of 2730 Ifunction evaluations (6x43+4x53+3x63+2x73+1x83).

Moreover, If we consider that one more iteration is normally needed in
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BAYESFOUR to verify the convergence, the total number of function
evaluations would be 2730+93=3459. We remark here that such
verification is not needed in the imbedded sequence of PIlIR's: The
behaviour of the sequence is the factor which guards against false

convergence.

We re-iterate that the strategy based on imbedded sequences leads to a
93 product rule positioned and centered appropriately after 1560
function evaluations whilst the standard Naylor-Smith strategy leads

to an 83 product rule after 2730 function evaluations.

3,2 e exam 0 ection 2.3 revisited

The three dimensional example .of section 2.3, Reilly (1976), is a.
particularly badly behaved example. In the demonstration of BAYESFOUR
in section 2.3 we have chosen as our criterion for convergence to be
A<0.05. Convergence occurred after 11 iterations, but interest lies
in the issue of false convergence. Indeed, the increase of grid size
decrea#es A, but very slowly. Even after 173 grid sizes the posterior
moments have not stabilised, A not being less than 0.02, In fact,
such behaviour is expected given the restrictions on the parameter
space imposed by the model (section 2.3), and the small sample size

(n=6).

It is interesting to explore the behaviour of the imbedded sequence of
PIIR's used in such badly-behaved example. The imbedded sequence of
section 5.3.1 was applied again and figures 5.14-5.20 describes the

behaviour of the integration rules. In a similar way as in figure 5.2,
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the black squares denote the values obtained in the first iteration
based on the maximum likelihood estimates, whereas the white squares
denote the values at the last iteration. An interesting feature in
figure 5.14-5.20 is that the Jjumps in the values of the posterior
expectations and the normalising constant do not vanish even in the
last iteration, There 1{is therefore information from the imbedded
sequence which otherwise would have been lost if a straight

Causs-product rule was used.

In fact, detailed investigation of this particular problem showed that
one or more generators with nearly all their nodes making the
likelihood zero are added at a particular point. It was initially
thought that this happened because of the specific choice of the
imbedded sequence of PIIR's: we remarked in section 4.3 that there
are many imbedded sequences that can be derived based on a Gauss
product rule. Thus, we derived another sequence of PIIR's, changing
slightly the algorithm of section 4.3, hoping that a sequence which
will include all the badly placed nodes in the early steps will
produce a good convergence at the late stage of the sequence.
Unfortunately, this was not possible, as the convergence always being

influenced by such nodes.

Models with such badly behaved integrands are often considered as
being of great interest, and thus the information derived from the
sequences of PIIR's is valuable, if, however, not yet specifically
determined. It is noted in section 2.5 that badly behaved integrands
are in any case difficult to handle by numerical integration
techniques, and so the identification of such irregularities can be of

considerable use.
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FIGURE 5.18
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5,4 A S5-dimensional example

In section 4.4.1, we used a 5-dimensional example to illustrate an
imbedded sequence of a PIIR. CGrieve (1987), assuming an improper
locally wuniform prior p(4,p) = constant, applied the adaptive
integration strategy of Naylor and Smith (1982) to obtain the marginal
posterior densities of p and the regression coefficients. This
involved starting with maximum likelihood estimates and the associated

asymptotic covariance matrix using a 435 grid. Convergence was

- achieved after 9 iterations ending with a 62 x 53 grid.

Adopting the suggestion of Rabinowitz et al (1987) and stopping if
three successive approximations show convergence, we applied the
strategy of section 3.1 wusing A<0.001 as our criterion for
convergence. An initial imbedded PIIR sequence based on a 53 product
rule converged after 805 function evaluations. This represents a
considerable saving on the full product rule with 55 = 3125 peints.
The posterior moments were updated within the same sequence of PIIR's
and convergence to the same values occurred with a further 805 points.
The convergence is very rapid as can be seen from figures 4.1-4.11,
and according to the strategy of section 5.1, we can stop and
construct marginal densities. As a matter of interest, we moved to a
63 point PIIR where convergence both within the imbedded sequence of
the PIIR and between the two PIIR's was achieved after a further 5056
function evaluations. Thus convergence between and within PIIR's
occured after a total of 6666 function evaluations compared with the
minimum 13294 we estimate were used by Crieve. Note that, if
marginal densities were needed, we could add 6 more generators to end

up with a- full product rule and readily derived marginals, or, when
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convergence occured within the sequence, we could create a mixture of
integration rules (for example any combination of product,spherical or

PIIR) in a manner similar to Naylor and Smith (1988b).

5.5 7-dimensional example

The computation labour required for the application of Gauss-Hermite
product rules in more than six dimensions is enormous. For this
reason, the BAYESFOUR user guide (Naylor and Shaw (1985) suggests that
spherical or Monte Carlo rules should be used when the parameter space
exceeds six, Indeed, BAYESFOUR does not contain any seven dimensional

Gaussian rules.

In figures 4.12-4.25 we {llustrated how the 7-dimensional example
given in Lawless (1982, p.337) can be handled using an imbedded
sequence of PIIR's. That illustration really serves as an example
where any of the positive rules based on the 57 Gauss-Hermite product
rule could be wused to fill the gap in the positive integration
catalogue: The currently available integration rules for 7 dimensions
are the 7-degree spherical rule with 452 points (Stroud (1971),
pp 317-319, rule E,: 7-2) and the 47 GCauss Hermite product with 16384
points. Thus, rules taken from the sequence of the imbedded sequence
of the 57 Gauss-product rule really serve as intermediate integration
rules due to their important property to lie between two rules of
specific degree (section 4.6). Moreover, ever&:hough the degree of
these rules is less than 7, Result 1 of section 4.4.1 indicates that
these are very powerfull in terms of the number of monomials they can

integrate,
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Returning to the actual statistical problem, in such experiments
interest lies in the marginal densities of the parameter vector §.
Figures 4.12-4.25 illustrate that one iteration on a 75 sequence
enables us to jﬁdge the behaviour of the integrand, and, according to
the remarks of section 5.1, no further iterations are needed because
the convergence is rapid. Howevér, this can be considered as an
'expensive' approach, because the final Gauss-product rule requires
57=78125 function evaluations. An alternative approach would be to
stop In the middle of the integration rule and, using the current
estimates of the posterior moments, cohstruct_the marginal densities
using mixtures of integration rules. Depending on how expensive or
cheap these rules are, the former or latter approach may be more
efficient. Other integration rules chosen from an imbedded sequence
of PIIR's can be used in such mixtures. For example, rules taken from
the 5° based imbedded sequence of section 4.5 can be combined together
a 42 product rule. |In this particular example, the first approach was

chosen. The marginal densities are illustrated in figures

5.21-5.22,

Figure 5.5 suggests that patients with higher blood wurea nitrogen
measurement at diagnosis (variable zy) have longer survival times.
It also provides some evidence that exponential distribution could be

appropriate instead of the Weibull (shape parameter p).
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FIGURE 5.21

Marginal densities
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apte : e Gibbs sam a oach

6,1: Introduction

In section 1.3.2 we described how the Gibbs sampler can be used as a
method for calculating marginal posterior densities, accordingrto the
description of Gelfand and Smith (1988). Up to the time of writ ing,
this method has already been succesfully applied by Clayton (1989),
Zeger and Karim (1989), GCelfand et al. (1989,1990), Racine-Poon et al.
(1990). Such a remarkable ﬁumber of published applications over such
a short time, reflects the enormous potential of the Gibbs sampler.
Any thesis in the general area of the implementation of Bayesian
paradigm produced at this time would be incomplete without at least
one chapter devoted to Gibbs sampling. Consequently, in this chapter,
we will take a close look in the implementation details of the method,
we will describe how it c¢an be applied in the large family of
Generalised linear models (Nelder and Weddierburn (1972) ), and finally
we will demonstrate it using the proportional hazards models used in
sections 5.4 and 5.5. It is hoped that the importance of the work
presented here will compensate for the disjointing effect on the

thesis.

In the sequel, we will follow the notation as section 1.3.2.
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6,2: Sam o onditional densities

The GCibbs sampler involves drawing random samples from all full

conditional densities of the form
_p(ollﬂj,j#i). (6.1)

Often the likelihood and prior forms specified in Bayesian analysis,
lead to standard distributions in (6.1), typically normals or gammas.
See for example Gelfand and Smith (1988), Gelfand et al.(1989). In
these cases standard algorithms are available to generate random
variates, see for example the books from Ripley (1987) or Devroy
(1986). In other cases, a more general purpose random number
generating procedure has been suggested (Celfand and Smith (1988),
Gelfand et al. (1989,1990) ), the ratio of uniforms, see Ripley
(1987). However, this method- requires at least two, and. possibly
three, numerical maximisations. Given that a standard maximisation
routine requires on average at least seven to eight function
evaluations, the ratio of uniforms method can be very inefficient. In
general, it is appropriate for badly behaved density functions where

alternative sampling techniques are not readily available.

Another general purpose method, which is found to be wvery usefull in
practice, is : "re jection sampling", see Ripley (1987). The
probability density function we need to sample from, p(8) say, needs
only to be specified up to a constant of proportionality. To obtain a
sample from p(8), choose a probability density function g(#) and a

constant c>»1 such that
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p(8) < cg(8) for every 6 in the domain of p

Then, generate two independent random variates & from g(.) and u from
a Uniform (0,1). Let T=cg(8)/p(8). [If uT£l accept @ as a random
variate from p(.). Otherwise generate another ¢ and u and repeat the

process until the condition is satisfied.

The above method requires a dominating density g(.), called envelope
function, a simple method for generating a random variate from it, and
knowledge of the constant c. lﬁ general, careful study of p(.) can
result in a suitable choice of g(.) and c. .ln addition, a
maximisation of p(.) or of p(.)/g(.), preferably analytical but often

numerical, is normally required.

The efficiency of the above rejection sampling procedure can be
improved through the "squeezing" method, see. for example Ripley

(1987). This proceeds as follows:

Choose g,=g and ¢ as the rejection sampling method above, and also
another function g; such that gi4p(f) for all 6 in the domain of p.
Generate a random variate ¢ from g, and independently u from a
Uniform (0,1). Then proceed as follows:

I1f u £ g1(8)/g,(8) then accept 8 else

I1f u £ p(6)/gy(8) then

accept @
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The function p(8) is therefore squeezed between g (8) and g,(#) and
the calculation of the ratio p(8)/gy(8) is avoided when u<p(8)/g,(8).
The more closely g,(8) and gj(8) 'squeeze' p(8), the less often

evaluations of p(8) are required.

Returning to the application of Gibbs sampling, rejection sampling has
often been used for sampling from full conditional densities as in
(6.1). Zeger and Karim (1990), suggest choice of «cg(8) as
clN(O*,czdg*), where 0* and 03* are the maximum likelihood estimates
of the conditional density p(olloj,j:i), given the current simulated
values of Bj,jxi. The constants ci and cp are chosen so that the
modes of the full conditional p and cg(.) are equal, and c3 is large
enough, say c2=2. If the maximum likelihood estimates cannot be found
analytically, Zeger and Karim apply a numerical maximisation over the
full conditional to determige c1, and then choose c3>1 "to be certain
the approximating Gaussian function covers the true posterior ... over

the range in which 6 is likely to occur”.

Racine-Poon et al. (1990) use the same enve lope function
clN(B*;czag*). They proceed one step further than Zeger and Karim by
specifying c2 analytically, maximising the function h(8)=p(8)/g(8).
However, they note that such an envelope function can only be used
when p(f#) is log-concave. If this is not true, they wuse an

alternative envelope function based on maximisation of p(8).

Clayton (1989)and Forster (1990) use a histogram or a polygon as an

envelope function.

All the above approaches are based on the study of the form of p(.),
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and consequently on the application of various devices to obtain the
envelope function g(.) and the constant c. While such wvariate
generation techniques are proved to be efficient, they are ad hoc, and

depend on the mathematical background and insight of the designer.

6.3: Rejection sam o og-concave densit unct jons

An important class of density functions which we shall consider in the
remainder of this chapter is the class of log-concave density
functions. This class includes many common probability density
functions. See Gilks and Wild (1990) or Devroy(1986, p.287) for a
list of such densities. We begin with a formal definition of what is
meant by log concavity. This is followed by description of a
specified rejection sampling method for dealing with log concave

density functions.

A function f on RN is called <concave if it is a twice continously
differentiable real valued function on an open convex set C in R", and

its Hessian matrix

a2f
He = (Hjj(0)), H;j(8) = ——— (81,...,0p)
aaiaej
is negative semi-definite for every @eC. If the Hessian matrix is
negative definite, the function f is called strictly concave. A

function f on R™ is log-concave if logf is concave on its support.

n
The log-cocavity of a density function enables us to use general
N
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purpose algorithms for the generation of random variates. These
methods, in general, require knowledge of the position of the mode.
Devroye (1986, p.287-309) presents a clear account of many available

methods for sampling from log-concave density functions.

Recently, Gilks and Wild (1990), proposed a method for sampling from

‘any log-concave wunivariate probability density function, called

"Adaptive rejection sampling”. Their suggested algorithm is based on
" __;-lb.

the remark that, any concave function, say f, can be bound by a

piece-wise~linear upper and lower bounds (hulls), constructed using

tangents at, and chords between, evaluated points on the domain of

f(.). The detalled algorithm is as follows:

Assume that we need to generate random variates from the probability
density function p(8)=exp(L{8)). Suppose that L(8) and L'(8) have
been evaluated at k _ordered points 0q,09,...,0k, let
Tk = [94.i=1,...,k], and denote the upper and lower hulls uy(8) and
2 (8) respectively. Assume also that the mode of L(8) lies between 6,
and 6y, and that L(8) is twice continously differentiable on a real
interval (a,b), where a and b can be -« or o, and the second

derivative must be non-positive throughout (a,b). Define

Sk(8) = exp(ur(8)) / Sexp(uy(8')da’

and proceed according to the following algorithm:
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Repeat until desired number of points have been sampled
Sample 6 from Si(#) and independently u from Uniform (0,1)

1f u £ exp( 2(8)-ug(8) ) then

Accept ¢
Else
If u £ exp ( L(8)-ur(6) ) then
Accept §
Else
Re ject @
Endif
Add 8 to Ty, increament Kk, relabel the members of Ty
Endif
End Repeat

The Adaptive rejection sampling has two important advantages. compared
with other existing general purpose methods for generating independent
observations from a probability density function. First, numerical
maximisation is not needed, so it is more efficient. Second, it is
adaptive in the sense that when more points are rejected in the
rejection sampling algorithm, the probability of rejection is
decreasing for the next random variate sampled from the envelope
function. This happens because with the addition of more points the
density function is more close to the upper and lower functions used
to 'squeeze' it. Moreover, even though the GCibbs sampling normally
requires only samples of size one from each conditional density, the
adaptive rejection sampling can be wutilised in speciaf cases to
exploit this second advantage and therefore to offer large gains in

efficiency. See section 6.5 for more details.
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6,4: log-concavity and Generalised ear models

Generalised linear models, introduced by Nelder and Wedderburn (1972),
include a large class of useful statistical models. [In this section
we Investigate the potential use of Gibbs sampling as means of making
inferences about the parameters in a generalised linear model. In
particular, we intend to use the adaptive rejection sampling technique
introduced by Gilks and Wild (1990), so our main interest lies on the

log-concavity of the likelihood function.

Let the data consist of a vector of responses y of length n, and a nxp
matrix of regressors Z of known constants. The responses y are
assumed to be a realisation of a vector of random variables X
independently distributed with means g. Generalised linear models are

characterised by the following structure.

(i) The distribution of the responses is assumed to belong to a

natural exponential family

f(y18) = exp[ (8y-b(8)) / a(p) + c(y,p) ]

for some functions a(.),b(.) and c(.), for a natural parameter §.
Many parametric density functions belong to this family, for example

Binomial, Normal, Poisson, Gamma,

(ii) The matrix Z influences y via a linear combination n=2Z8, where §
is a p-dimensional parameter vector and 3 is a vector termed the

linear predictor.
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(iii) The linear predictor 5 is related to the mean u of ¥ by a a link
function g, such that nj=g(p;), i=1,...,n. Of special importance are
the natural link functions, which occur when 6=Z8, for the natural

parameter 8.

The above family includes some very well known models. For example
for the normal distribution and the natural link function g(u)=p we
obtain the classical 1linear regression model. For the Poisson
distribution, the natural link functiop g(p)=log(pu) gives rise to the
log-linear Poisson model which can be used, for example, in the
analysis of multidimensional contigency tables. When the responses
follow the binomial distribution with mean #, the 1link functions
g(x)=logit(x), g(r)-t'l(t) and g(r)=log(-log(l-x)) yield the logistic,

probit and the complementary log-log model respectively.

Now interest lies on the log-likelihood function. L of a certain
generalised tinear model. Maximum likelihood estimators are
frequently used to estimate the vector 8 of coefficients of the linear
combination ZB8, see for example McCullagh and Nelder (1989). These
methods rely heavily on the asymptotic properties of the maximum
likeltihood estimators as the sample size n of observations tends to
infinity. In particular, certain regularity conditions have been
given by different authors which guarantee, at least for natural link
functions, weak consistency and asymptotic normality of the maximum
likelihood eétimators, see for example Haberman (1977) and Fahmeir and
Kafmann (1980). Among others, these regularity conditions assume that
the Fisher information matrix is positive definite. This assumption

is of great importance because, in the case of natural link functions,
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the Hessian and the information matrix coincide, see Nelder and
McCul lagh (1989, p.-43), and therefore log-concavity of the

log-likelihood is automatically implied.

Unfortunately, the above result cannot be generalised for non-natural
link functions. However, Wedderburn (1972) provides a series of
special caes in which he proves log-concavity of the 1ikelihood

function. Hs results are summarised as follows:

Normal; L is strictly concave only in the case of the natural link
function, g=id.

,Gamma; Strict log-concavity is attained for g(u)=log(p) and g(u)=pX
(-14x<0). It is assumed here that y;20 for every i, i=1,2,...,n.
Poisson; L is strictly concave for g(u)=log(u) and g(u)=pX (0<£x<£1).
For the link function g(u)=p the log-likelihood is strictly concave if
yi>0 for every I, and concave for any value of y;.

,Binomial: The logistic, probit and complementary log-log models
defined .above attain strict log-concavity of the likelihood function.

L is also strictly concave for the link functions g(u)=u, and

g(py=sin~1 /.

An interesting point should be made here. Wedderburn (1972) shows
that for the logistic, brobit and complementary log-log models, the
maxXimum likelihood estimators are guaranteed to be finite only when
O0<y;<mj for every i, where yj is the number of positive responses out
of m; trials, In addition, for the last two link functions, g(u)=p
and g(p)—sin‘llp, the finitiness of the maximum likelihood estimates
is not guaranteed. However, in the Bayesian context, the prior

distribution should overcome this problem yielding a well behaved
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posterior density. Consequently, the difficulties which arise in the
maxXimum likelihood estimation approach do not occur when a Bayesian

approach with a suitable prior is adopted,

The application of the adaptive rejection sampling method described in
section 6.3 requires the log-cocavity of the full conditional
distributions. We have shown that for certain cases of GCeneralised
linear models the likelihood is log~concave. We remark that this
statement implies log-concavity of the full conditional likelihood
because, from definition, the Hessian matrix is negative semi-definite
so all its diagonal elements are non-positive. Before we proceed to
investigate the log-concavity of full joint conditional densities, we
include in the special cases of Generalised linear models another

large family of models.

We ibu exponential and extreme wvalue: These distributions can be
used for modelling censored survival data in which the response
variate 1is the lifetime of a component or the survival time of a
patient, see Kay (1977), Aitkin and Clayton (1980). The link function
is the same as for log-linear Poisson models, g(u)=log(p), except that
there is a fixed intercept (offset) included in the linear predictor.
It is straightforward to prove that for each of the abovg
distributions wused for proportional hazards models, the full
conditional likelihood is concave. First, note that the likelihood

under the Weibull model is given by

L(8,p/data) = [ _ﬁ ptg_iezjﬁ ] [ ?ﬁm pxp[—tgezjﬁl ] (6.2)
j= j=
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where tj,j=l,...,n and tj,j=n+1,...,m denote the uncensored and
censored lifetimes respectively, p is the shape parameter of the

Weibull distribution (p>0), and-gj,j-l,...,m is the vector of

covariates for the jth case. Then simple manipulation yields

3200gL

S - -z zkayj ¢ 0, for a parameter B, 1gkgp, (6.3)
aﬁkz j

d3200gL

——— = -n/p? - L(logtd2u; <O

3p2

where ]oguj - plogtj+gjﬁ .

Thus (6.3) pguarantees log-convavity under the Weibull model.
Furthermore, note that (6.2) holds also for the exponential model,
being .in fact a special case of the Weibull with p=1. Finally, the
transformation u=e® in (6.2) yields the extreme value distribution, so

log-concavity is readily shown for this model too.

According to the Bayesian paradigm, a prior density function is placed
on every parameter which, combined with the information from the data
obtained through the likelihood functioq, yields the posterior
distribution. Therefore, the full conditional posterior log-density
function is derived as’ a sum of the full conditional log-likelihood
and the logarithm of the prior density function. Consequently, if the
prior density function is log-concave, the full posterior conditional

will be log-concave, as a sum of two log-concave functions (see

Rockafellar (1972).
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In cases where the prior is not log-concave, a sampling-resampling
technique described in Smith and Gelfand (1990) can be adopted,

see also Stephens and Smith (1990): Assume that we need to sample
from a function py(8), but a sampling technique is not readily
available, Furthermore, suppose that samples from another function
p2(8) are available, say #61,...,0,. Then calculate wij=p1(8i)/p2(8;)
and qi=wj/Iwj. Draw a 6* from the discrete distribution over

*

[61.,...,85] with oprobability masses qj on &;. Then 6 is

approximately distributed according to p3.

Thus, the requirements for the -adaptive rejection sampling are
fulfilled for certain -and in fact, most common- Generalised linear
models wunder any prior density specifications. Gibbs sampling is
therefore applicablie for making inferences about the parameters of

interest, when a Bayesian approach is adopted.

6.5;: Optimising Gibbs algorithm

One of the major advantages of the adaptive rejection algorithm
introduced by Gilks and Wild (1990), is that it very efficient when
samples are drawn repeatedly. In fact, GCilks and Wild report that in
general the number of evaluations needed for a sample of size n
increases approximately in proportion to the cube root of n. However,
for the Gibbs sampling, only samples of size 1 are required in each
iteration, and consequently this gain of efficiency can not be
utilised. However, in this section we will demonstrate how, in some
special cases, we can make use of this property of the adaptive

rejection sampling and speed up the Cibbs sampling algorithm.
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The model used in section 5.4 is a proportional hazards model of the
type (6.2), with all covariates Zj being zero or one. Suppose that we
wish to apply the Gibbs sampling (Celfand and Smith (1988)) to make
inferences about the parameters p and ﬁi,i-l,...,4. For the
implementation of Gibbs sampling algorithm, independent observations
must be available from each full conditional density. First note that
the full conditional for the shape parameter of the Weibull

distribution p is given by

n n p m+m P4 Brzji
p(pif.data) = p ([ tj) M exp(-tj ]I (e ) ) (6.4)
j=1 j=1 k=1
and samples from (6.4) are not readily available. The conditional

(6.4) is however, according to section 6.4, log-concave, and adaptive

re jection sampling can be used to_sample from it.

The conditional densities for the parameters in the linear predictor

ZB are given by

m+Hn zij Wj zij
p(Bi1Bp 0#i.p,data) = | (agjdy ) “exp(—yij¥ ) (6.5)
j=1
where ajj = ptjP'1 [l exp(Bkzjk)

k#i

Yij = Pt

vi = exp(Bj)




1, jgn
W3 ==
. 0, j>n

Noting that the regressors matrix Z contains only 0 or 1, (section

4.5.1), (6.5) can be written as

p(Bi1Bg, p2i.p,data) « ¥iAexp(-By)

o+
where A=T1I ziw
[T

m+n
B —'Z YijZji

(6.6)

Therefore, samples from (6.6) can be drawn simply sampling from a

gamma density Ga(A+1,B), using well known methods, see Ripley_(1987),

and then trasforming the sampled variates ¢{ > logy; = By.

A closer look of (6.5) reveals an interesting fearure which can be

used to speed up the sampling procedure. Suppose that a sample of

size 1 was drawn from

p(Bi1Bg=by ¢xi.p=p)

and, according to the Gibbs sampling algorithm,

another sample of size 1 needs to be obtained from

P(B11B8g=bg gzj.p=p").
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Both (6.7) and (6.8) are of the form (6.6), simply substituting ¢; by

exp(fij). Let

'yij - tjp n exp(bkzjk)
k#i

and

vii = tiP [ exp(bgziy)
! J k#i !

Then, instead of sampling from (6.8), we can generate an independent

observation from (6.7), say by, and apply the transformation
bj » by + log( I vij2zji / L vijzji ) = by
J J

Then, simple manipulation shows that b; is a indepentend observation
drawn from (6.8). Consequent ly, the above argument allows us, during
the Gibbs sampling algorithm, to sample repeatedly from the same
conditional density and then simply rescaling the sampled variates
according to the updated values of the other parameters. This is a
great advantage if a method such the adaptive rejegtion sampling is to
be used, according to our comments at the end of section (6.3). The
gain in the efficiency in the above example will be demonstrated in

the next section.
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6.6: ustartjive examples

6 1: opo ona azards mode

In this section we analyse in this section the proportional hazards
model (6.2), adopting the Gibbs sampling approach. The full
conditional densities are given by (6.4) and (6.5), and cannot be
simplified to allow sampling from any known density function.
Conéequently, we adopt the adaptive rejection sampling introduced by
Gilks and Wilk (1990) to s;mple from the full conditionals. These
conditionals are log-concave according to section 6.4, so the

requirements for adaptive rejection sampling ar fulfilled.

Gibbs sampling (section 1.3.2) requires initial values for all but one

. ’4!

parameter. We gave initial values to the parameteres f;,i=1,.
taken from the maximum likelihood estimates. These initial wvalues
have been also given to the application of the imbedded sequences of
PIIR's for the same example, see section 5.5. Thus, comparisons of

the two methods can be made on fair grounds.

At each iteration of the Gibbs sampling, adaptive rejection sampling
from every conditional density requires (at least) two points which
can be used as initial points for the construction of upper, using
tangents, and lower, us;ng chords, bounds. .These initial points were
taken as the sample mean : one standard deviation, where‘the sample
moments were calculated from the previous iteration of Cibbs sampling.
In cases where the two initial points did not lie to each side of the

mode of the conditional density, additional points were supplied.
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Gibbs sampling converged after 70 iterations, using 500 replications
in each iteration. The resulting marginals, closely resemble the
marginals derived from the imbedded sequences of PIIR's. In figures
6.1-6.7, we illustrate the marginals derived with the imbedded
sequences of PIIR's in the analysis of section 5.5, and the marginals
from the Gibbs sampling after 60 and 70 {terations. Note that the
marginals -do not exactly coincide. In fact, in gome cases there are
differences even between the two marginals derived with the Gibbs

sampling approach.

The differences in the marginals in figures 6.1-6.7 might imply that
the Gibbs sampling has not converged after 70 iterations. While the
matter of convergence is currently a difficult problem, different ways
have suggested to overcome it, Gelfand‘and Smith (1988) suggest the
use of Q-Q plots or graphical comparison of marginals, derived at
regural intervals during iterations. Following this avenue, Gelfand
et al. (1990) suggest comparing marginals derived every 5 iterations.
Foster (1990) uses as indicators sample moments. All these methods
can provide an informal assesment of the convergence, and in fact,
while not being rigorously justified, they should normally be
reliable. In our example, we checked the marginals and the sample
moments every 10 iterations. We believe that, the discrepancies
between the marginals are justified by the fact that they are
constructed from a finite sample, and that oscillations of the sample
moments around the true posterior moments should be expacted.
Moreover, the inferences made in section 5.5 do not change because of
these discreﬁancies, at least for this partiéular example. It is also

noteworthy that the differencies in inferences drawn from Gibbs
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FIGURE 6.1

Posterior marginals for bg
dashed: 70 iterations
----- dotted: 60 itcrations
N solid: PIIR

=3 -a -3

FIGURE 6.2

Posterior marginals for b,

dashed: 70 itcrations
dotted: 60 itcrations
solid: PIIR

FIGURE 6.3

Posterior marginals for b,

dashed: 70 iterations
dotted: 60 iterations
solid: PIIR

FIGURE 6.4

Posterior marginals for b,

dashed: 70 itcrations
dotted: 60 iterations
solid: PIIR

-0.05 0.00
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FIGURE 6.5

Postenor marginals for b,

dashed: 70 iterations
dotted: 60 iterations
solid: PIIR

FIGURE 6.6

Posterior marginals for b5

dashed: 70 itcrations
dotted: 6@ iterations
solid: PIIR

0.0 0.2

FIGURE 6.7

Posterior marginals for p

\ solid: PIHR

dnshed:i:IO }lhrad_ons
dotted: 60 iterations

0.75 1.00 1.25
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sampling and from the numerical Integration are of minor importance

when compared with maximum likelihood estimation inferences.

Another reason for the mgrginal descrepancies might be the high
correlation between the shape parameter p and the parameter vector of
regressors f. A linear orthogonalising transformation of the type
used in numerical integration strategies, see section 2.2.1.2, can be
applied, but this still remains a matter of future research. Another
policy to overcome this problem has been suggested by Zeger and Karim
(1989). They propose multiple samples from highly correlated
Qariableé. Thus, in our example, for each sampled variate for g, we

might sample 10 variates for p.

An average of 3.94 function evaluations were used for the sample of
size one from each conditional density. Our initial starting points
for the adaptive rejection sampling_were very poor, giving average

function evaluations for each conditional ;t the first iteration 4.16.
This is a considerable gain in the efficiency compared with other
black-box sampling techniques, for example ratio of uniforms, which
requires at least two numerical maximisations spending on average for

each one 7.5 function evaluations.
Of course, comparisons with numerical integration techniques should

not be made only in terms of the efficiency. A more general

comparison will be made in the next section.
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6.6.2: A specilal case o roportiona azards model

We discuss in this section the details of the application of the
special proportional hazards model described in section 6.5. We
recall that during the Gibbs sampling, this special case allows for
each of the regressor parameters to be sampled only from one
conditional distribution, rather than differrent conditionals. We
applied the data of section 4.5.1 which, were analysed using imbedded

sequences of PIIR's in section 5.4.

Convergence was achieved after 150 iterations using 500 replications.
Comparisons of illustrative marginals and sample moments were made
every 50 iterations. The constructed marginal densities are shown in

figure 6.8,

A normal application of adaptive rejection sampling_ for each of the 4

conditional densities of the regressor parameters fj,i-1,...,4, whould

require, as in section 6.6.1, on average 3.94 function evaluations.
Consequently, for the whole analysis, and for these particular 4
parameters, an approximate total of 500x150x4x3.94=1182000=1.2 million
function evaluations would be required. Table 6.1 shows the function

evaluations required when the algorithm is optimised wusing the

algorithm described in section 6.5.

It is clear that the gain of the efficiency is outstanding, the
optimised algorithm requiring only 493 function evaluations, compared
with approximately 1.2 million function evaluations needed for a usual

application of adaptive rejection sampling.
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FIGURE 6.8

Marginal densities

r 1= L T T
-18 -16 -4 -12 -10 -8 -6 -4

Table 6.1: Function evaluations for 4 regressor parameters

Iteration number Total function evaluations for 4 parameters
1 99
2 124
3 141
4 156
5 169
10 205
20 ‘ 255
30 301
40 : 322
50 346
100 440
150 ' 493
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6.7;: Discussion

There are at least 4 different approaches for the implementation of
the Bayesian paradigm: Numerical integration strategies, analytic
approximations, Monte Carlo integration techniques and the Gibbs
sampling approach. The main part of this thesis investigated
numerical integration strategies, but, the current chapter. considered
application of Gibbs sampling as an ailternative way to make Bayesian
inferences. Inevitably, this section will concentrate on comparisons

between the two approaches.

Suppose that a user, experienced or unexperienced, faced with an
analytically intractable or tedious problem, wishes to choose a
general purpose implementation technique to make use of the Bayesian

paradigm.

If a numerical integration technique is to be employed, the user has
to provide the functional forms of the likelihood and the prior.
Then, a close look of the parameters of interest should reveal whether
or not parameter transformations are necessary to satisfy assumptions
of normality. If these transformations need to be made, the user must
supply the Jacobian matrix of these transformations. Tﬁen, a chosen
numerical integration strategy requires an Interactive implementation
by the user. This involves mainly choice of integration rules and
decision making concerning the convergence of -the numerical
approximations. Furthermore, choice of the order of orthogonalising
parameters must be constantly_ made, depending on which are the

parameters of 'interest.
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Gibbs sampling approach requires the functional form of full
conditional density functions, at least up to a -constant of
proportionality. In addition, the Cibbs sampling user must provide a
way to generate independent observations from each of the
conditionals. This might involve use of sophisticated sampling
techniques which in turn might require numerical maximisations or
functional Forms of the derivatives of conditionals. Then, the Cibbs
sampling updating scheme offers the flexibility of batch run: The user
must provide only once the number of replicates and the number of
iterations, and, given that these numbers are adequately large, can
simply obtain desired posterior marginal or predictive density

functions.

The different philosophy of the two methods is evident. The numerical
integration strategies, attacking the problem directly, evaluate high
dimensional integrals using sophisticated techniques based on certain
assumptions. Transformat ion-choice before the implementation of the
problem, must be followed with assumption-checking by means of an
interactive running. On the other hand, Gibbs sampling attacks the
problem indirectly, in the sense that integrals are not calculated,
The asumptions for implementing an inference problem are weaker, and
after the initial choice of a sampling technique, the system |is

fail-safe, in the sense that, convergence will be eventually obtained.

The difference between the two approaches would not be so evident, if,
for every possible problem, proper transformations could be obtained
and a numerical integration approach was possible. However, at the
time of writting, certain models such as hierarchical models or models

with multimodal posterior densities seem to be unsolvable with
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numerical integration techniques. Therefore, it is important to note
that the two techniques do not always overlap at the range of possible

applications.

The numerical integration strategies are limited in their
applicability in cases where the number of parameters is relatively
small. In fact, even with the current speed of computers, numerical
integration does not seem able to cope with more than ten parameters.
On the other hand, Gibbs sampling, exploiting the ability to be
implemented via  batch jobs, can provide answers to very

high-dimenéional problems.

Note however, that GCibbs sampling cannot compete with numerical
integration in terms of efficiency, the yardstick taken either the
nunmber of function evaluations or the computer running time.
Consequently, for low-dimensional problems where the assumptions of
approximate normality are satisfied, the numerical integration is the
most suitable approach. For example, the proportional hazard models
analysed repeatedly in this thesis, are classical examples where a
numerical integration stategy provides the fastest and most easily

obained results,

Before choosing a strategy to implement the Bayesian paradigm, the
potential user of either the above methods, must keep in mind that, at
least at the time of writting, numerical integration and Gibbs
sampling overlap minimaly in respect to the range of problems in which
they should- be applied. Dimensionality, need for initial
transformations and efficiency must all taken into consideration

before a decision is made.
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7, Criticisms and future researc

This section outlines possible topics for future research together
with some extensions of previous sections. The essence of the
material presented in the thesis, regarded not only as a topic for
theoretical self-gratification, but, also as an aid to increasing the

diversity of creative statistical thinking, will be criticised.

Even though research in the applications of numerical integration
techniques in Bayesian analysis started one decade ago, it seems that
progress in this field has passed its peak (1982-1985) and has slowed
down in recent years, Among other things, this could be explained
from an apparent inability to provide software to the four potential
users (Smith (1988)): The Bayesian research statistician, the
non-Bayesian research statistician, the broadly-focussed applied

statistician and the student.

A major drawback of the integration techniques described in this
thesis is the need for an initial parameter transformation (see
section 2.5.4). Progress towards overcoming this drawback has been
made by the work of Hills (1989), but much remains to be done. An
ideal scheme would be one in which transformations were made
automatically. Given that the Naylor and Smith algorithm contains two
iterative procedures (between and within grid size), it is
questionable why, for a given grid size, the only information updated
relates to mean vector and the covariance matrix, and not to other
information which might possibly a more appropriate parameter
transformation. An interesting idea would be to use prior information

from previous function evaluations in order to choose a parameter, \
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say, which will produce a parameterisation ) (6)=p, for a family of
distributions ¢ with p close to normal, or at least more 'symmetric’

than 6.

According to our results in sections 2.5.2 and 3.4, Shaw's results
described in section 2.5.3, and following the discussion and our
proposals in sections 2.5.4 and 5.1 respectively, it is doubtful that
updating the mean vector and the covariance matrix is the best policy
to achieve maximum efficiency. We believe that, in most cases, the
behaviour of the imbedded sequencé of PIIR's is a good indication for
deciding whether or not rescaling and/or reloéation should be
performed. However, until this takes the form of a formal (and
hopefully, automatic) decision-making criterion, support of one or

other opinion becomes problematic.

Similarly, consider the related problem of error estimation. If the
error (4.5) can be estimated more accurately, a decision can be made
as far as relocation and rescaling are concerned. The problem here is
that, by adding some nodes to the integration rule, in a sense we
subtract some terms from the error in (4.1). Unfortunately, these
terms can not be estimated, and therefore the meaning of the aggregate
measure A (section 2.3) is more or less unjustified. Appropriate
choice of a null rule, or a set of null rules (section 4.4.2) could

possibly help in this direction.

All available numerical integration rules ultimately possess the same
danger: the situation where convergence is not achieved however much
the grid size 1is increased. A general purpose multidimensional

integration package may then possibly be adopted, but its efficiency
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will be very low because it would not exploit the asymptotic behaviour
of the posterior density. The use of Monte Carlo methods (section

1.3.2) seems the best available policy at the present time.

The above problems, together with the proposed solutions, give a
curreﬁt status of the research and the potential applications of the
numerical integration 'in Bayesian Statistics. It has been noted
indirectly in section 2.5.4, and needs highlighting in the epilogue of
the thesis, that it seems that at the moment of writing only the first
potential user among tﬁe 4 mentioned above <can |use numérical
integration techniques in Bayesian analysis. This happens because
only an expert user can overcome the above problems using his
judgement obtained from his experience. We would like to believe,
however, that the solution of the above problems will lead to more
general adoption of numerical integration in Bayesian analysis.

The revolution of information technology in 1980's has led to the
world of the user-friendly, easy to implement, computer packages.
While the advances in this field are being achieved with enormous
speed, their influence on the rest of the science is becoming more and
more apparent. If the philosophically sound Bayesian framewo}k is to
be proclaimed in the world of active statistical thinking, it has
certainly to be adjusted In this sociological framework (see Smith
(1984),(1987) ). The work of this thesis has targeted this area, but
the danger remains that if the problems mentioned earlier in this
section do not produce a satisfactory answer, the social currents will
isolate the potential users of numerical integration techniques to the
first amongst the four users mentioned above: The Bayesian research

statistician.
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