Tiverton and Devon Astronomical Society - Lecture on On Orbit Manufacturing and Quantized Inertia

Arundal, Richard

https://pearl.plymouth.ac.uk/handle/10026.1/20649

All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author.
Introduction To
On Orbit Manufacture (OOM)
Introduction:
On Orbit Manufacture (OOM)

What is On Orbit Manufacture?

What Could Humanity Achieve By Having OOM Capability?

Top Level OOM Process

Example Mission & Product Walkthrough

Summary / Recap
What Is On Orbit Manufacture?

“Spacecraft building Spacecraft...In Space”

The aim of On Orbit Manufacture (OOM) is to manufacture space-qualified structural components; the current focus of work is on the capability to manufacture a strut.

Structural components (such as a strut) that are produced in space could then form part of a larger assembly (like a truss) and be attached to customer satellites which would also be in orbit.

OOM has many similarities to On Orbit Servicing (OOS), which considers functions such as repair, salvage, upgrade, refuelling and resupply.
What Is On Orbit Manufacture?

<table>
<thead>
<tr>
<th>Primary Capability</th>
<th>Primary Component</th>
<th>Secondary Component</th>
<th>Material</th>
<th>Tooling / System Concept</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small Parts & Tools</td>
<td>Bespoke Component Required</td>
<td>Panel / Shell / Membranes</td>
<td>Metallic Powder / Filament</td>
<td>3D Printing (ISS Payloads)</td>
</tr>
<tr>
<td>Maintenance / Upgrade Components</td>
<td>Structural Elements</td>
<td>Beams / Rods</td>
<td>Plastics</td>
<td>Moulding / Template / Adhesives</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Struts</td>
<td>Composite</td>
<td>Resin Curing</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Metals</td>
<td>Welding / Adhesives / Fasteners</td>
</tr>
</tbody>
</table>

On Orbit Manufacture (OOM)

Structures (Beyond Launch or Deployment Capability)
What Could Humanity Achieve By Having OOM Capability?

Infrastructure for Colonisation / Resource Acquisition

Support Capability (telescopes / antenna reflectors)

Interstellar Exploration
Infrastructure for Colonisation and/or Resource Acquisition

Image Source: www.deepspaceindustries.com
Plastic recycling is an opportunity to repurpose some of the waste on Earth to create useful structures in space.

Different structural components can be created using plastics but would need to withstand the space environment (where the product will be used).
Spacecraft Debris & Salvage

Spacecraft salvage has the potential to help with the growing space debris problem in Low Earth Orbit.

Collecting this “space junk” has had attention in recent years with concepts that include space harpoons and nets to retrieve objects and derelict spacecraft.

If space debris could be retrieved and then have useful components salvaged, this would be a good source of material for an OOM Facility.
Space mining has the potential to provide resources for OOM, but would require further processing facilities to make use of it such as a Moon base – Artemis mission.

Recent missions such as Osiris-Rex to Bennu have looked at exploring asteroids and there are concepts that are considering asteroid mining in order to acquire raw materials.

Image Source: The Space Journal
Lunar Aluminium from Regolith

XRF Analysis done by Washington State University’s Peter Hooper Geoanalytical Laboratory

Mineral component ratios can be changed and additives used to approximate specific Apollo samples.

General Mare Simulant
90% Basaltic Cinder, 10% Anorthosite

<table>
<thead>
<tr>
<th>Chemical Components (% Mass)</th>
<th>Lunar Soil 14163*</th>
<th>OPRL2N</th>
<th>% Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>47.30</td>
<td>47.35</td>
<td>0.05</td>
</tr>
<tr>
<td>TiO₂</td>
<td>16.08</td>
<td>14.97</td>
<td>-14.53**</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>17.80</td>
<td>17.40</td>
<td>-0.40</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>0.00</td>
<td>0.00</td>
<td>-0.00</td>
</tr>
<tr>
<td>FeO*</td>
<td>10.50</td>
<td>9.67</td>
<td>-0.83</td>
</tr>
<tr>
<td>MnO</td>
<td>0.10</td>
<td>0.16</td>
<td>0.06</td>
</tr>
<tr>
<td>Cr₂O₃</td>
<td>0.20</td>
<td>0.00</td>
<td>-0.20</td>
</tr>
<tr>
<td>MgO</td>
<td>9.60</td>
<td>8.10</td>
<td>-1.50</td>
</tr>
<tr>
<td>CaO</td>
<td>11.40</td>
<td>11.08</td>
<td>-0.32</td>
</tr>
<tr>
<td>Na₂O</td>
<td>0.70</td>
<td>2.83</td>
<td>2.13</td>
</tr>
<tr>
<td>K₂O</td>
<td>0.60</td>
<td>0.69</td>
<td>0.09</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>0.00</td>
<td>0.58</td>
<td>0.58</td>
</tr>
<tr>
<td>Sum</td>
<td>99.80</td>
<td>99.32</td>
<td>0.48</td>
</tr>
<tr>
<td>LOI %</td>
<td>0.00</td>
<td>0.07</td>
<td>-0.07</td>
</tr>
</tbody>
</table>

General Nearside Highland Simulant
70% Anorthosite, 30% Basaltic Cinder

<table>
<thead>
<tr>
<th>Chemical Components (% Mass)</th>
<th>Apollo 16*** Highland Samples</th>
<th>OPRL2N</th>
<th>% Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>45.10</td>
<td>47.89</td>
<td>2.79</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.60</td>
<td>0.52</td>
<td>-0.08</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>26.80</td>
<td>27.06</td>
<td>0.26</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>8.40</td>
<td>8.68</td>
<td>0.28</td>
</tr>
<tr>
<td>FeO*</td>
<td>0.22</td>
<td>0.06</td>
<td>-0.16</td>
</tr>
<tr>
<td>MnO</td>
<td>5.70</td>
<td>2.84</td>
<td>-2.86</td>
</tr>
<tr>
<td>Cr₂O₃</td>
<td>15.60</td>
<td>14.19</td>
<td>-1.41</td>
</tr>
<tr>
<td>MgO</td>
<td>0.43</td>
<td>2.43</td>
<td>2.00</td>
</tr>
<tr>
<td>CaO</td>
<td>0.14</td>
<td>0.25</td>
<td>0.11</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>0.10</td>
<td>0.20</td>
<td>0.10</td>
</tr>
<tr>
<td>Sum</td>
<td>100.09</td>
<td>99.12</td>
<td>0.97</td>
</tr>
<tr>
<td>LOI %</td>
<td>0.88</td>
<td>0.88</td>
<td>0.00</td>
</tr>
</tbody>
</table>

***Information from Table 7.15, Lunar Sourcebook. 16c Average composition of selected Stone Mountain and South Ray soils (64420, 64500, 64800, 65500, 65700, 66040, 66080) from the Apollo 16 site.

Source: Off Planet Research LLC 2021
Moon/Earth: Material Acquisition

Earth to Lunar Transit Orbit

Lunar to Earth Transit Orbit

Lunar Surface to Lunar Orbit (Aluminium)

Space Debris & Salvage (Recycle)

Earth Orbit

OOM Facility

Earth Orbit

Lunar Orbit

Moon

Lunar Refining Facility

Earth to Lunar Transit Orbit

OOM Material Transport

Material Transport
Imagine a core module of electronics and other systems for an antenna system. The outer case of the module also functions as a structural hardpoint and is the base of manufacture for the antenna reflector to form around.

A base module could be relatively small (especially compared to an OOM antenna reflector) and could be stored within the OOM facility (perhaps as part of a supply mission or a customers payload that has been collected.)
Greater Payload Capability

(Telescopes / Antenna Reflectors)
Antenna Interface Module (i.e. electronics, etc)

Framework assembled gradually as each strut is manufactured

This process could theoretically be continued until the desired shape and size has been reached (within structural limitations)

OOM Example Product: Antenna Reflector Frame
Top Level Technology Roadmap

- OOM Concept & Requirements
 - Manufacturing Method
 - Material Handling
 - Validation & Quality Method
 - Laboratory Prototype & Integrated Demonstration

Candidate Payload for On Orbit Demonstrator Flight → Near Term Full OOM Capability → Long Term Full OOM Capability

Futuristic Capability
OOM of World Ships

Module

Link Structure

Manufacture and Assembly of Modules

Assembled World Ship
Mission Concept: OOM Stage
Builds and Rendezvous

OOM Facility

Partial Assembly Travels to Next Facility

Multiple Assemblies
Merge & Continue Mission

OOM Facility

OOM Materials Source

OOM Facility

OOM Materials Source
Mission Concept:
OOM During Voyage

1st Stage OOM Facility

OOM Module

Material Resupply

Material Resupply

OOM Materials Source (Outpost)

OOM Materials Source (Outpost)

Material Resupply & Mission Continue as Required
OOMSAT (OOM System Architecture Tool)

Scenario No. 1 Small Spacecraft (i.e. Micro-Satellite)

<table>
<thead>
<tr>
<th>PPI. ID</th>
<th>Parameter Title</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>[PPI-1-1]</td>
<td>S/C Wet Mass (kg)</td>
<td>50</td>
</tr>
<tr>
<td>[PPI-1-2]</td>
<td>S/C Freight % Allocation</td>
<td>80</td>
</tr>
<tr>
<td>[PPI-1-3]</td>
<td>Material Density (kg/m³)</td>
<td>2710</td>
</tr>
<tr>
<td>[PPI-1-4]</td>
<td>Desired Pipe Length (mm)</td>
<td>1000</td>
</tr>
<tr>
<td>[PPI-1-5]</td>
<td>Outside Pipe Diameter (mm)</td>
<td>25</td>
</tr>
<tr>
<td>[PPI-1-6]</td>
<td>Pipe Wall Thickness (mm)</td>
<td>3</td>
</tr>
<tr>
<td>[TSP-1]</td>
<td>Spacecraft Propulsion ISP</td>
<td>1000</td>
</tr>
<tr>
<td>[TSP-2]</td>
<td>Total Delta V Required (km/s)</td>
<td>10</td>
</tr>
<tr>
<td>[SFWR-1]</td>
<td>Approx Cost of Propellant per kg</td>
<td>125</td>
</tr>
<tr>
<td>[SFWR-2]</td>
<td>Manuf. Plant Operating Cost Per Yield ($)</td>
<td>2750</td>
</tr>
</tbody>
</table>
Logistics Parameter Results & Analysis (1/3)
Logistics Parameter Results & Analysis (2/3)

[TSP-1] ISP (Specific Impulse) Vs [PPI-2-11] Product Yield

- [PPI-2-11] Potential Product Yield from S/C Freight Allowance
Logistics Parameter Results & Analysis (2/3)

- **[PPI-2-11]** Potential Product Yield from S/C Freight Allowance

- Linear ([PPI-2-11] Potential Product Yield from S/C Freight Allowance)
Propulsion and OOM Freight Logistics

• The challenge of moving around OOM Freight in space is significant
• Refuelling and Engine Efficiency (Specific) Impulse
• Spacecraft Volume % dedicated to propulsion takes up valuable freight cargo
• A potential opportunity of propulsion...Quantised Inertia (QI)

Dr Mike McCulloch will now present the theory behind QI
Talk for TivAS, Devon

Dr Mike McCulloch, University of Plymouth, UK.

February 2023

Inertia?
Quantised inertia
Evidence for QI
Propellant-less Thrust
Conclusions
My Background

BSc in physics at the University of York, UK.

1995.
PhD in Ocean Physics at Liverpool University.

Scientist at the UK Met Office, Bracknell & Exeter.

2008-now.
Lecturer in Geomatics (the maths of positioning in space) at Plymouth University.

I have published 26 papers proposing quantised inertia & two books →
The problem: Galaxies Spin Faster than Physics Predicts

So they should fly apart inertially, but don’t!
(Zwicky, 1933, Rubin, 1980)
Counter Evidence for Dark Matter

1. Renzo’s rule, speed follows the light, see Lelli et al. (2016).

2. Milgrom’s ‘break’ implies new dynamics not matter (Milgrom, 1999).

3. Globular clusters cannot contain DM, yet show similar anomalies.

4. Wide binaries cannot contain DM, yet show similar anomalies.

5. The cusp-core problem. CDM predicts galactic centres wrongly.

6. No direct evidence, after 40 years of searching.

7. Not falsifiable, you can look forever for more exotic versions.
Inertia has never been understood, just assumed: “Things keep going in a line…”

Surely we need a reason why speed is constant.

Inertial mass is not due to a Higgs field: only explains the mass of quarks (0.1%).

I’ve proposed a new model for inertia combining relativity & quantum mechanics →
Horizon damps energised Unruh field to the left Object pushed back against its acceleration

Object accelerating right

Unruh radiation (Quantum mechanics)

Horizon damps energised Unruh field to the left Object pushed back against its acceleration

Unruh Radiation was Confirmed Last Year

Lynch et al., 2021 looked at radiation emitted by high energy positrons decelerating in a silicon crystal:

They showed the spectrum of heat radiation emitted was identical to that predicted by Unruh radiation →

Experimental Observation of Acceleration Induced Thermality (Unruh Radiation)
Quantised Inertia At Low Acceleration

For objects with very low acceleration the Rindler horizon goes behind the cosmic horizon.

No horizon asymmetry – no inertia!

\[m' = m \left(1 - \frac{2c^2}{a\Theta}\right) \]

Just What We Need For Galaxies!

So they should fly apart inertially, but don’t!
(Zwicky, 1933, Rubin, 1980)
Derivation of QI from Uncertainty.

Start by considering one Planck mass accelerating to the right. Δp is inversely proportional to Δx.

\[
\Delta p \Delta x \geq \frac{\hbar}{2} \quad \quad \Delta p \geq \frac{\hbar}{2\Delta x}
\]

\[
F = \frac{dp}{dt} = \frac{dp}{dx} \frac{dx}{dt} = c \frac{dp}{dx}
\]

Assume Δx = distance to a horizon (QI)

\[
F = c \left(\frac{2\hbar}{\Theta/2} - \frac{\hbar}{c^2/a} \right) \frac{l_P/2}{l_P}
\]

\[
F = -\frac{\hbar}{c l_P} \left(1 - \frac{2c^2}{a\Theta} \right) = ma
\]

McCulloch, M.E., 2016. Quantised inertia from relativity and the uncertainty principle. EPL, 115, 69001 (updated)
It’s Quantised Inertia, not Dark Matter. The Smoking Gun:

Galaxy rotations becomes odd beyond this radius as the cosmic horizon breaks long Unruh waves: quantised inertia.

$$m' = m \left(1 - \frac{2c^2}{a\theta} \right)$$

$$\lambda \sim \frac{8c^2}{a}$$
Testing Quantised Inertia with 153 Galaxy Rotations

QI predicts galaxy rotation without dark matter & without adjustable parameters

\[v^4 = \frac{2GMc^2}{\Theta} \]

If We Understand Inertia Then We Can Control It

Horizon drives: a propellant-less alternative to rocket launches

Applied Cosmology. DARPA Project, 2018-Now.

I was contacted by DARPA. I applied for funding & was awarded $1.3M

Project aims to demonstrate scalable thrust from QI in the lab.
Capacitor plate thickness = 10-60µm
Plate diameter = 2.5cm

Figure 2: Experiment setup

Susceptibility to electronic artefacts or tension of cables?
Normally, in QI, an **accelerated electron** would see more Unruh radiation in front (**red**, no horizon damping) and less behind (**yellow**, Rindler horizon damping), so it would have inertia, ie: be pushed back.

Because of the damping of the capacitor plates (**grey**) the normal gradient is reversed and now there are more Unruh waves behind the electron (**blue area**) so the electron gets an extra kick forward which is translated to the anode.

McCulloch, 2021. Thrust from Symmetric Capacitors using Quantised Inertia. Research Gate

Observational data from Becker and Bhatt (2018)
Experimentum Crucis – Rindler Horizons are Real!

The thrust is towards the anode (+).

When a metal baffle (grey) is inserted into the blue area, the thrust is equal and opposite.

If the baffle is moved beyond the calculated point of the Rindler horizon (the vertical black line) the force is again towards the anode.

This is direct proof the cause is quantised inertia.

Applied Cosmology!
Quantized Inertia
Horizon Engine Development & Laboratory Setup
May-Feb 2023
QI Capacitor Force Equation & Relationships

\[F = \frac{0.00014IA}{d^2} \]

Notes:
- Larger capacitor build
- Improved Kapton dimensions allowing for larger dielectric and hence larger capacitor area

Next Area to Improve:
- Dielectric Edge Protection
- Balance / Scale Consistency

Notes:
- Larger capacitor build
- Improved Kapton dimensions allowing for larger dielectric and hence larger capacitor area

Next Area to Improve:
- Dielectric Edge Protection
- Balance / Scale Consistency
QI Test Chamber V1 (Non Vacuum)

Revised Quantised Inertia Test Chamber

• Wooden frame to avoid any undesired conduction
• Adjustable height Rigid bus bars suspended for anode / cathode conductors linked to the QI electronics module
 • End stage connectors using typical wires to link with the QI capacitor
• QI Capacitor rests upon 3U CubeSAT superstructure (and also to add distance from digital scale in case of electromagnetic interference)
Initial Capacitor Stack Design – Jun 2022

- Copper Layer
- Aluminium Layer
- Dielectric Layer
- Aluminium Layer
- Copper Layer

- Vacuum Sealed Bag
- Solder
- Apply Silica sealant for wire entry in vacuum bag
QI Capacitor “Toastie”

21st Sep 2022:

“Toastie V3” is composed of 2 x (160 x 160 mm) pieces of Perspex Acrylic (4 mm thick). Masking tape is used on one side to form a temporary “hinge” and 3 mm holes drilled in the centre of each piece to allow access for conductor wires.
Phase 1 – "CubeSAT" Superstructure Stand Concept

- To get into a positive future thinking mindset, the proposed "stand" should resemble a future 3 Unit CubeSat mission (i.e. 3U)

- Each unit is 100 x 100 x 100 mm, therefore a 3U is 300 x 100 x 100 mm

- As this is a concept superstructure model, actual CubeSat dimensions may vary, but I have made assumptions that with a 5 mm frame thickness, a working volume within each unit is 90 x 90 x 90 mm

- Mike has calculated that a minimum of 150 mm is ideal to minimise / eliminate electrostatic effects, but increasing this to 200 mm gives a factor of safety margin.

- This therefore implies that the QI electronics should ideally fit within a 90 x 90 x 90 mm volume envelope. Utilising 1U of volume therefore also provides the desired >200 mm clearance from the bottom of the stack to the top
Invertible capacitor stack with T shaped rigid conductors that “stand” in the Ga-In-Sn reservoirs.

These reservoirs then have anodic / cathodic conductors that are routed away (so that the QI electronics module can be connector accordingly to them)
25th September 2022 – New 25um Kapton Sheet for Dielectric
Capacitor damage of bullet holes observed during P1-X103. Likely suspect cause is due to heated pockets of air creating bubbles in the air gap between capacitor layers which then eventually rupture.
2nd Oct 2022 Engineering Improvements

Current Setup (as of Feb 2023)

The lightbulb suspended from above is used to illuminate and preheat the capacitor stack (we aim for approx. 50 degrees). The lightbulb SHOULD BE REMOVED prior to testing to avoid electromagnetic interference / attraction from the capacitor stack (and therefore give spurious scale readings).

Note however that this is the SURFACE temperature we observe (using a thermal laser gun reader) so at this stage the internal temperature is unknown.

We have also noted that “overheating” can lead to premature capacitor breaking.
Quantised Inertia Test Results (Up to 2023)
Thrusts of up to 10mg are being regularly seen and reverse on flipping the capacitor.

10mg is 0.1mN.

We heat the capacitor with 1W so we have a thrust to power ratio of 0.3 N/kW.

This is 15 times better than ion drives, without fuel!
Initially comparison with QI was erratic (Jul-Sep, phase 1).

With the implementation of shielding, galinstan, Vitrek the results improved (phase 2).

With the addition of heating to >50degC results are now close to QI predictions (phase 3).
Comparison with QI & Other Tests

For the last few tests, which have included a better heating systems (as good as B&B’s) we have results that are consistent with QI (see the line).

They also agree with the earlier test of B&B.
Given the predicted formula we should have more thrust with less separation, d, and more with more plate area (A).

$$F = \frac{0.00014IA}{d^2}$$

The black line shows the prediction for the heated 4x4 cm, 16 um capacitor. The data (black/blue dots) are close. The orange line shows the higher prediction for the 4x4 cm, 8 um plates. There is also reasonable agreement.

However, the larger plates (10cm, yellow) should produce more thrust...
Buoyancy forces due to heating of air pockets have been excluded by flipping the capacitor.

Body forces were mostly excluded by the galinstan.

The radiation pressure (force) from a 42 W bulb is $F = P/c = 0.014$ mg. Observed = 10 mg

The force due to the Earth’s magnetic field is $F = \text{Current} \times \text{length} \times \text{Mag field strength}$

$F \sim 10^{-6} \times 0.15 \times 1 \sim 1.5 \times 10^{-7} N$. Observed = 0.0001 N

An electrostatic force was identified and subtracted from runs 106-150.
The other results were not affected.

Magnetic interactions between wires have been calculated to be way too small.
Comparison with Dawn Ion-Drive Spacecraft

Its ion drive produced **90 mN**

Weight = 9 kg + 425 kg propellant = **434 kg**

Needed **2100 W** of power.

0-60 mph (27 m/s) in 1-2 days

We have seen ~**0.1 mN** (10mg) at Plymouth

Weight ~ **3 kg**, no propellant just a 3U cubesat.

Needs 1W.

0-60 mph (27 m/s) in 10 days
Applications of QI

Satellite station keeping and OOM

Lighter satellites to launch (no fuel)

Flying cars, all-electric aircraft.

Structures that hover.

Easier, cheaper, safer, silent launch.

Inertial damping – no whiplash

Energy from the vacuum.

Interplanetary trips become easier/cheaper (100 AU = 2 years)

Interstellar trips possible in a human lifetime (propellant-less thrust)
QI Enables a Trip to Proxima Centauri in ~10 Years

SAFE-400 fission reactor = 512 kg, provides 100 kW (T. Taylor)
QI Horizon Drive = 5 kg, provides 10 N/kW
Camera, shield, antennae = 50 kg
Total = 567 kg (654 kg at 0.5c)

The force produced = 1000 N
The acceleration = F/m = 1.6 m/s^2 (+SR)

Acc’ of 1.6 m/s^2 → 0.5c in 3 years
Distance travelled is 0.7 light years
Travel for 2.8 light years at 0.5c, 5.6 years
Decelerate symmetrically
Time to Proxima ~ 11.6 years (Earth time)
~ 10.6 years (ship time)
Conclusions

Quantised inertia is the first mechanistic model for inertial mass.

It predicts galaxy rotation without dark matter.

It is the first lab-testable cosmology.

Offers a thrust application, good for OOM.

Enables interstellar travel in a human lifetime.

Lab tests have shown thrust (probably!).

The next stage is as yet unclear…

Any questions? My email is mike.mcculloch@plymouth.ac.uk
My blog and book are called ‘Physics from the Edge’.
Summary

• Opportunities for Manufacturing Infrastructure In Space
• Significant Engineering Challenges Remain
• Opportunity for efficient propulsion via Quantised Inertia (QI)
• Testing at University of Plymouth for QI effects
• Ongoing developments!

Thankyou for listening – Happy to take questions!
Questions & Discussion
APPENDIX ADDITIONAL OOM & QI SLIDES
OOMSAT Algorithm

OOMSAT Build V.1
OOMSAT – Basic Spacecraft Scenario

<table>
<thead>
<tr>
<th>Scenario No.</th>
<th>1</th>
<th>Small Spacecraft (i.e. Micro-Satellite)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPI. ID</td>
<td>Parameter Title</td>
<td>Default Value</td>
</tr>
<tr>
<td>[PPI-1-1]</td>
<td>S/C Wet Mass (kg)</td>
<td>50</td>
</tr>
<tr>
<td>[PPI-1-2]</td>
<td>S/C Freight % Allocation</td>
<td>80</td>
</tr>
<tr>
<td>[PPI-1-3]</td>
<td>Material Density (kg/m^3)</td>
<td>2710</td>
</tr>
<tr>
<td>[PPI-1-4]</td>
<td>Desired Pipe Length (mm)</td>
<td>1000</td>
</tr>
<tr>
<td>[PPI-1-5]</td>
<td>Outside Pipe Diameter (mm)</td>
<td>25</td>
</tr>
<tr>
<td>[PPI-1-6]</td>
<td>Pipe Wall Thickness (mm)</td>
<td>3</td>
</tr>
<tr>
<td>[TSP-1]</td>
<td>Spacecraft Propulsion ISP</td>
<td>1000</td>
</tr>
<tr>
<td>[TSP-2]</td>
<td>Total Delta V Required (km/s)</td>
<td>10</td>
</tr>
<tr>
<td>[SFWR-1]</td>
<td>Approx Cost of Propellant per kg</td>
<td>125</td>
</tr>
<tr>
<td>[SFWR-2]</td>
<td>Manuf. Plant Operating Cost Per Yield ($)</td>
<td>2750</td>
</tr>
</tbody>
</table>
Current Research Outputs

OOMSAT:
On Orbit Manufacture
System Architecture Tool

1st Iteration OOM Concept
System Level Design for a Potential OOM Facility

OOM Capability
Manufacturing Techniques & Processes For Space

Opportunities
What Future Work Is There
OOMSAT: Tier 1 Calculation Algorithm (Build V.1)
OOMSAT: Tier 1: Parameter Impact - Increases

<table>
<thead>
<tr>
<th>Mission Cost Increase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freight Spacecraft Mass</td>
</tr>
<tr>
<td>Expected increase in mission cost due to freight S/C mass increases. This systemically applies as a larger spacecraft has a higher volume of spacecraft subsystem associated costs and being larger, can also transport more freight material for manufacture. This larger material volume then impacts on the manufacture process timings and cost, hence the expected increases.</td>
</tr>
</tbody>
</table>

| **ISP (Specific Impulse)** |
| A significant jump in yield potential is mostly seen in the lower ISP ranges (200 to 600). After this, the yield potential still increases but the ratio is reduced, suggesting that there are diminishing returns after 600 ISP. Therefore, it could be considered that the greatest ratio for ISP / Yield is between 600 to 1200 ISP, where the yield is at least 10 products higher than the previous ISP band. |

Associated increase in mission cost was expected, due to the reduced fuel mass required (and therefore spacecraft subsystem budgets increase, therefore increasing the CER model cost calculations.) The total manufacture time increased in line with product yield, as expected (more products = more process time). |
<table>
<thead>
<tr>
<th>Parameter Impact</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increase in Delta V</td>
<td>As the S/C system payload % budgets remain fixed and as the Delta V increases, more fuel is required and therefore reduces the mass (and volume) of the other subsystems, which therefore drives down costs. With the current OOMSAT build (V1 Mar 2022), it can therefore be considered that the cost of propellant offsets the cost of having more permanent, expensive subsystems.</td>
</tr>
<tr>
<td>Increase in Product: Pipe / Tube Length</td>
<td>Increases in product length has an expected overall reduction in cost, product yield and manufacture time. Significant time savings can be achieved in manufacture processes such as validation and quality checking. The yield reduction is expected because the products are "larger" and therefore each item uses more of the available material. The operational cost also sees expected decreases because of the reduced number of products that requires manufacture. In this iteration of the OOMSAT, timing per product is calculated.</td>
</tr>
<tr>
<td>Increase in Spacecraft Freight Payload Mass %</td>
<td>Expected decrease in mission cost as payload mass % increases due to the structure of the OOMSAT calculation for spacecraft subsystems. At this iteration of the OOMSAT, the freight payload system is not explicitly modelled and is considered as a simpler entity compared to other, more expensive S/C subsystems. Therefore, by virtue of increase freight mass %, this reduces available mass for the S/C subsystems and therefore cost. A linear increase in yield and therefore manufacture time was also expected - more freight payload = more product manufacture opportunity and therefore longer total manufacture time.</td>
</tr>
</tbody>
</table>
The OOM Logistics (OOMLOG) is the first application that is run during the Tier 1 OOMSYNC algorithm. Its purpose is to calculate the potential mass allocation of an OOM Freight spacecraft in terms of propellant, subsystems and OOM material freight. It also provides an approximate price / value of the product vs the freight characteristics. It achieves this as a combined function of:

- required Delta V for the spacecraft journey
- associated propulsion requirements for the freight spacecraft
- OOM product specifications
- The operating cost of the manufacturing plant
Research Roadmap

Phase 1
- OOM Concept & Requirements
- Material Handling
- Validation & Quality Method
- OOM Payload

Phase 2
- Spacecraft Subsystems (Inc. Robotics)
- Space Environment
- Mission & OOM Product
- OOM Space Segment

Phase 3
- OOMSAT

Candidate OOM Mission Specification
Mission Specification Example 1

Mission Scenario:
Earth orbiting facility to create telescope frame in situ

- **Manufacturing Method:** Laser Welding and Cutting Only
- **Material Handling:** Material Stored in Spool Format
- **Validation & Quality Method:** NDT Only
- **Spacecraft Subsystems:** Fully autonomous, 500 W Power, 100 kg Mass Limit
- **Space Environment:** OOM to be conducted external to spacecraft
- **Mission & OOM Product:** LEO @ 250 km, Manufacture Struts to Assemble Telescope Frame

OOMSAT

Candidate OOM Mission Specification
Mission Specification Example 2

Mission Scenario:
Lunar orbiting facility with secondary facility on surface to mass produce casted products (using lunar regolith molds)

Manufacturing Method:
Casting and Mass Production: 100 Units PCM

Material Handling:
Material Stored as Ingots / Recycled Space Debris

Validation & Quality Method:
NDT, Visual and Rework Capability

OOM Payload

Spacecraft Subsystems:
Fully autonomous 5000 W Power 2.5 T Mass Limit

Space Environment:
OOM to be conducted internal to spacecraft and on Lunar Surface

OOM Space Segment

Mission & OOM Product:
Lunar Orbit With Secondary Facility for Lunar Regolith Processing of Cast Molds

Candidate OOM Mission Specification
OOMSAT Development Example

1st Generation:
Arbitrary Input:
Payload Mass = 100 kg

2nd Generation:
Derived Input:
Payload Mass = 100 kg
- Manufacture Sys.
 Derived Input: 70 kg
- Validation Sys.
 Derived Input: 20 kg
- Mat. Handling Sys.
 Derived Input: 10 kg

3rd Generation:
Derived Input:
Payload Mass = 100 kg
- Manufacture Sys.
 Derived Input: 70 kg
- Validation Sys.
 Derived Input: 20 kg
- Mat. Handling Sys.
 Derived Input: 10 kg

Note: Generations could continue to N° with each new generation layer deriving its predecessors parameter.
Manuf. Method Efficiency Drivers

Manufacturing Efficiency %

Manufacturing Method
- Power Required
- Manuf. Process
- Manuf. Plant Mass & Volume
- Product Geometry

Material Handling
- Material Storage Volume
- Material Transfer Methods

Validation
- Validation Plant Mass & Volume
- Validation Method
- Power Required