The Late Cenomanian Anoxic Event;
implications for foraminiferal evolution.

by

Paul Niell Leary BSc.,DMS.

Thesis submitted in partial fulfillment for the Degree of Doctor of Philosophy to the Council for National Academic Awards.

Doctor of Philosophy
to
The Council for National Academic Awards

Research conducted at Plymouth Polytechnic.

September 1987.
The Late Cenomanian Anoxic Event; implications for foraminiferal evolution.

P.N. Leary

Abstract:
This study investigates the effect of the late Cenomanian Oceanic Anoxic Event (OAE) on the planktonic and benthonic foraminifera.

On the former, the OAE was the cause of major extinctions within the population, the return to pre-OAE oxygen levels permitting recolonization of the vacated niches. On the latter, the OAE caused extinctions but resulted in a low oxygen tolerant fauna which slowly evolved into the vacated niches on the post-OAE recovery of oxygen levels.

The changes in the foraminiferal populations have been integrated with changes in other marine organisms through the late Cenomanian.
Declaration:

This is to certify that the work submitted for the Degree of Doctor of Philosophy under the title "The Late Cenomanian Anoxic Event; implications for foraminiferal evolution" is the result of original work.

All authors and works consulted are fully acknowledged. No part of this work has been accepted in substance for any other degrees and is not being concurrently submitted in candidature for any other degree.

Candidate

P.N. LEARY

Research supervisor

Prof. M.B. HART
Thoughts for the day:

"Caw", said the Crow.
"Balls", said Milligan.
Spike Milligan, Puckoon.

"I am not French, I am Belgian."
Hercule Poirot, Agatha Christie.

"If a little knowledge is a dangerous thing, just think what a lot could do."
Senior tutor. In Porterhouse Blue, Tom Sharpe.

Art is bullshit,
Science is Art with numbers.
Anon.
Contents:

Title page...1
Abstract..2
Declaration...3
Acknowledgements...12
List of figures...14
List of text figures...17
List of text plates..18
List of enclosures..19

Chapter 1: Introduction and history of previous research...20

Chapter 2: Methods...23
2.1 Sampling..23
2.2 Sample processing..23
2.3 Residue examination.......................................25
2.4 Optical photomicroscopy..................................28
2.5 Scanning Electron microscopy............................28
2.6 X-ray photomicroscopy....................................28
Chapter 3: Description of localities

3.1 Introduction

3.2 The eastern Atlantic passive margin

3.3 South-east Devon

3.4 Southern England onshore Anglo-Paris Basin

3.5 The North Sea

Chapter 4: Systematic micropalaeontology

Introduction

Systematics

Superfamily Ammodiscacea Reuss, 1862

Family Ammodiscidae Reuss, 1862

Superfamily Lituolacea de Blainville, 1825

Family Lituolidae de Blainville, 1825

Family Textulariidae Ehrenburg, 1838

Family Trochamminidae Schwager, 1877

Family Ataxophragmiidae Schwager, 1877

Family Pavonitinidae Loeblich and Tappan, 1961

Superfamily Miliolacea Ehrenburg, 1839

Family Nubeculariidae Jones, 1875

Superfamily Nodosariacea Ehrenburg, 1838

Family Nodosariidae Ehrenburg, 1838

Family Polymorphinidae d'Orbigny

Family Glandulinidae Reuss, 1860

Superfamily Buliminacea Jones, 1875
Family Turrilinidae Cushman, 1927.........................91
Superfamily Globigerinacea Carpenter, Parker and Jones, 1862.................................91
Family Heterohelicidae Cushman, 1927.........................91
Family Planomaliniidae Bolli, Loeblich and Tappan, 1957.................................94
Family Rotaliporidae Sigal, 1958.................................96
Superfamily Cassidulinacea d'Orbigny, 1839................110
Family Pleurostomellidae Reuss, 1860.................................110
Family Alabaminidae Hofker, 1951.................................111
Family Osangulariidae Loeblich and Tappan, 1964.................................111
Family Anomaliniidae Cushman, 1927.................................112
Family Calcispherulidae Bonet, 1956.................................117
Incertae cedis...118

Chapter 5: Biostratigraphical implications, methods of basinal correlation and pre-Oceanic Anoxic Event palaeoenvironmental analysis.................................119
5.1 Previous work...119
5.2 Oceanic Anoxic Event...119
5.3 Goban Spur...119
5.3(i) Lithostratigraphy...119
5.3(ii) δ 13C isotope curve...121
5.3(iii) Macropalaeontological biostratigraphy.................................121
5.3(iv) Foraminiferal biostratigraphy.................121
5.3(v) Foraminiferal assemblage.......................122
5.4 B.P. 93/2-1..123
5.4(i) Lithostratigraphy.........................123
5.4(ii) δ13C isotope curve..............................123
5.4(iii) Macropalaeontological biostratigraphy....123
5.4(iv) Foraminiferal biostratigraphy.............123
5.4(v) Foraminiferal assemblage.....................125
5.5 Hooken Cliffs, Beer..................................125
5.5(i) Lithostratigraphy...............................127
5.5(ii) δ13C isotope curve.............................127
5.5(iii) Macropalaeontological biostratigraphy....129
5.5(iv) Foraminiferal biostratigraphy.............129
5.5(v) Foraminiferal assemblage.....................131
5.6 Shapwick Grange Quarry..........................131
5.6(i) Lithostratigraphy...............................131
5.6(ii) δ13C isotope curve.............................134
5.6(iii) Macropalaeontological biostratigraphy....134
5.6(iv) Foraminiferal biostratigraphy.............135
5.6(v) Foraminiferal assemblage.....................137
5.7 Introduction to the lithostratigraphy and
biostratigraphy of the mid-Cretaceous Chalk facies
of Southern England.................................137
5.8 White Nothe..140
5.11(iv) Foraminiferal biostratigraphy .. 166
5.11(v) Foraminiferal assemblage .. 167
5.12 BritOil 48/22-1 ... 170
5.12(i) Lithostratigraphy .. 170
5.12(ii) δ13C isotope curve .. 170
5.12(iii) Macropalaeontological biostratigraphy 172
5.12(iv) Foraminiferal biostratigraphy .. 172
5.12(v) Foraminiferal assemblage .. 172
5.13 Carbon isotope curve and stratigraphy 172
5.14 Rotaliporid population and eustacy 173
5.14(i) Relative dominance of rotaliporid population 174
5.14(ii) Distribution of rotaliporid species 174
5.14(iii) Size of the R. cushmani (Morrow) specimens 176
5.15 Benthonic foraminifera : bathymetric considerations 184

Chapter 6: The late Cenomanian Anoxic Event and the associated foraminiferal changes:

Dover, a case study ... 186

6.1 Introduction .. 186
6.2 The late Cenomanian Anoxic Event and the benthonic taxa 186
6.3 The late Cenomanian Anoxic Event and the planktonic taxa 191
Chapter 7: The late Cenomanian Anoxic Event and the
 evolution of the planktonic foraminifera...196

Chapter 8: Other faunal groups and the late Cenomanian
 Anoxic Event...205
 8.1 Introduction...205
 8.2 Macrofaunal changes...205
 8.3 Microfaunal changes...207
 8.3(i) Ostracods...207
 8.3(ii) Dinoflagellates...212
 8.3(iii) Nannoplankton...212
 8.4 Overview...217

Chapter 9: Implications of the study...220
 9.1 Biostratigraphical implications...220
 9.2 The late Cenomanian "Event" and Mass Extinctions...220
 9.3 Interpretation of the planktonic: benthonic ratios...222
 9.4 Investigation of orbital forcing...222
 9.5 The pattern of onshore to offshore in the
 evolution of shelf communities...223

References.

Plates.
Acknowledgements:

This research was funded by the Natural Environment Research Council and I would like to express my eternal gratitude for the opportunity this gave me. In addition, their support for attending conferences, particularly abroad, was most appreciated.

Similarly, I am much indebted to Professor Malcolm Hart for encouraging and guiding me through the three years. His tolerance and steadying influence will be long remembered.

The attention and interest of Dr. Bruce Tocher and Dr. Ian Jarvis was most welcome especially during discussions of the topic. Also the latters' help in the lithostratigraphy of the onshore sections proved invaluable.

I would like to express my thanks for the technical support provided, especially Spike Emmet with thin sections, Teresa Emmet with rock processing and Graham Mott with optical photomicroscopy. In addition, the efforts of the staff of Media Services cannot be ignored.

Many researchers around the world have kindly provided preprints and reprints. I cannot mention them all but the following are offered particular thanks:
Prof. O.R. Anderson, Prof. M. Arthur, Dr. M. Caron, Dr. Ch. Hemleben and Dr. H. Jenkyns.

I am also indebted to Dave Howard who kindly translated some Russian texts and to Dr. J. Harvey who provided the English framework of a few German papers.

The kindness and interest of some of my research colleagues will be long remembered.

Dr. P. Copestake (BritOil) kindly provided material from three wells in the southern and northern North Sea, as did B.P. (Dyce) from the Southern Irish Sea.

The willing help, with typing letters and manuscripts, of Marilyn was most appreciated.

Finally, I would like to make mention of "Pigdog" who battled with a word processor to prepare this manuscript and "The Boy", whose company was most enjoyable and I wish them every success in their chosen careers.

I offer my apologies to anyone I have omitted and beg their forgiveness.
List of figures.

Figure 1.1 Plot of DSDP Legs against designated categories.
Figure 3.1 Location of DSDP Leg 80, Site 551 and B.P.
 Borehole 93/2-1.
Figure 3.2 Location of Hooken Cliffs, Beer.
Figure 3.3 Location of Shapwick Grange Quarry.
Figure 3.4 Location of Dover.
Figure 3.5 Locality map of Eastbourne.
Figure 3.6 Locality map of Isle of Wight.
Figure 3.7 Locality map of White Nothe.
Figure 4.1 Height against width and number of chambers of
 Textularia chapmani Lalicker population from
 Dover.
Figure 4.2 Apical angle of marssonellid population from Dover.
Figure 4.3 Apical angle of marssonellid population from Dover.
Figure 5.1 Foraminifera from Goban Spur, Site 551, Leg 80.
Figure 5.2 Foraminifera from B.P. 93/2-1.
Figure 5.3 Foraminifera from Hooken Cliffs.
Figure 5.4 Details of foraminifera from Hooken Cliffs.
Figure 5.5 Isotope curves from Hooken Cliffs.
Figure 5.6 Foraminifera from Shapwick Grange Quarry.
Figure 5.7 Foraminifera of White Nothe.
Figure 5.8 Foraminiferal details from White Nothe.
Figure 5.9 Foraminifera from Compton Bay, Isle of Wight.
Figure 5.10 Foraminiferal details from Compton Bay, Isle of
Figure 5.11 Foraminifera from Eastbourne.
Figure 5.12 Foraminiferal details from Eastbourne.
Figure 5.13 Foraminifera from Dover.
Figure 5.14 Isotope curves from Dover.
Figure 5.15 Foraminiferal details from Dover.
Figure 5.16 Foraminifera from BritOil 48/22-1.
Figure 5.17 Planktonic population from selected sites.
Figure 5.18 X-ray of Rotalipora cushmani from Goban Spur.
Figure 5.19 X-ray of Rotalipora cushmani from White Nothe.
Figure 5.20 X-ray of Rotalipora cushmani from Isle of Wight.
Figure 5.21 X-ray of Rotalipora cushmani from Eastbourne.
Figure 5.22 X-ray of Rotalipora cushmani from Dover.
Figure 6.1 Late Cenomanian Anoxic Event and the benthonic and planktonic foraminifera.
Figure 7.1 Pre-late Cenomanian OAE foraminiferal populations and their ontogeny.
Figure 7.2 Schematic representation of evolutionary "micro-events" within the planktonic foraminiferal population during the late Cenomanian OAE.
Figure 8.1 Macrofossil changes through the Plenus Marl Formation (after Jefferies, 1963).
Figure 8.2 Ostracods from Dover.
Figure 8.3 Dinoflagellates from Dover.
Figure 8.4 Nannoplankton from Dover.
Figure 8.5 Diversities from Dover.
Figure 8.6 Abundances from Dover.
List of Text-figures.

Text-figure 2.1 X-ray cell.
Text-figure 4.1 Measured characteristics of *Textularia chapmani* Lalicker.
Text-figure 5.1 Measured parameters of *Rotalipora cushmani*.
Text-figure 7.1a Increase in test diameter with the addition of spines.

7.1b "Smoothing" of test outline in spiral view.
List of Text Plates

Text Plate 1 Top of the Abbots Cliff Formation, Eastbourne.
Text Plate 2 Abbots Cliff, Plenus Marls and Dover Formations, Compton Bay, Isle of Wight.
Text Plate 3 Plenus Marls and base of Shakespeare Cliff Member (Dover Formation), Abbots Cliff, Dover.
Text Plate 4 Plenus Marls and Shakespeare Cliff Formations, Gun Gardens, Eastbourne.
Text Plate 5 Basal beds of Shakespeare Cliff Formation and top of Plenus Marl Formation, Gun Gardens, Eastbourne.
List of enclosures.

Enclosure 1 Locality map.
Chapter 1: Introduction and History of Previous Research.

1.1 Overview of planktonic foraminiferal evolution.

Modelling of the evolution of planktonic foraminifera has advanced over the past decade in the light of developments in palaeoceanography coupled with a greater understanding of the ontogeny of extant species.

The three iterative radiations have variously been attributed to temperature (Cifelli, 1969; Frerichs, 1971), or the recolonization of deeper water niches (Hart, 1980a; Caron, 1983a), brought about by changes in palaeoceanographic conditions. Alternatively, they may be induced by extra-terrestrial influences (Smit, 1982), possibly on a regular basis (Raup, 1987).

1.2 The late Cenomanian Anoxic Event.

The late Cenomanian Anoxic Event saw world-wide water column stagnation (Jenkyns, 1980; Arthur et al., 1987; Schlanger et al., 1987) with a major change in the foraminiferal composition (Hart, 1985; Hilbrecht and Hoefs, 1986; Hart and Ball, 1987). The world-wide off-shore recovery of the Cenomanian - Turonian interval is poor (Figure 1.1), with only 14 of the 36 DSDP Legs encountering pre-Cenomanian sediments and yielding Cenomanian - Turonian rocks. Furthermore, only 4 of these contained well-preserved planktonic faunas. Leg 80, DSDP, forms one of the latter, with several metres of organic-rich laminated clays being recorded (Waples, 1985) and a rich planktonic assemblage (Graciansky et al., 1985).

The on-shore Cenomanian - Turonian succession is laterally
Figure 1.1 Plot of DSDP Legs against designated categories

Data compiled from DSDP Legs 1–95

Total number of Legs in data 36
persistant but with many facies overprints on the background carbonate deposition (Jarvis and Woodroof, 1984; Robinson, 1986), and as a result varies in its completeness and suitability for the study of the evolution of foraminifera (see Chapter 6). In the off-shore North Sea Basin, Cenomanian rocks are poorly represented in the Southern North Sea Basin whereas in the Northern North Sea Basin rocks of Cenomanian and Turonian age are well developed. Conversely, in the Northern Viking Graben there is little evidence of Cenomanian strata (Copestake, pers. comm.).

1.3 Foraminiferal studies.

Previous foraminiferal studies of the Pliens Marls (Jeffries, 1962), the Albian - Cenomanian (Hart, 1970; Carter and Hart, 1977) and Turonian (Owen, 1970; Hart and Weaver, 1977; Hart, 1982b) successions have been undertaken. Only the biostratigraphically important foraminifera from B.P. Well 93/2-1 have been documented (Williamson, 1979).

A study of nine sections across the Boreal Cenomanian - Turonian interval has been undertaken to look in detail at the late Cenomanian foraminiferal turnover.
2.1 Sampling.

At each locality the surface of the rock face was cleaned thoroughly to remove the surface weathered material, primarily to avoid the effects of decalcification on the tests. The size of each sample was between 0.5 and 1.0 kilogrammes. Each sample was placed in a plastic bag which was labelled inside and out, with the location of each recorded against a detailed lithological log. At all times the sampling equipment (hammer and trowel) were kept clean to avoid contamination from undesirable material.

The sample spacing is variable being carried out on a bed by bed basis. When bed thickness was greater than 1 metre a sample from both lower and upper portions was taken. Above and below the target area samples were collected at a 1 metre spacing.

The material provided by the Deep Sea Drilling Project was already in Plymouth Polytechnic; material from B.P and Britoil was requested by the author who had no control over its collection.

2.2 Sample Processing.

In keeping with other foraminiferal studies of chalk (Hart, 1970; Bailey, 1978), the processing technique depended on
the type of lithology:

(A) For rocks with a high clay content (marls).

The samples were broken with the fingers or, failing that, lightly with a hammer, into approximately 1 - 2 centimetre pieces, taking care not to crush the sediment. The pieces were dried for at least 24 hours in a ventilated oven at 60°C.

On removal from the oven, the hot dry samples were placed in a fume cupboard and soaked in white spirit for 2 - 4 hours. The white spirit was filtered off for re-use and the samples were immersed in distilled water, again for 2 - 4 hours. The disaggregated sample was filtered through a 63 μm mesh sieve, great care being taken to thoroughly remove the < 63 μm fraction. The residue was re-dried in an oven at 60°C and placed in a suitably labelled container.

Samples treated in the above manner were designated with the symbol O .

(B) For those rocks with a lower clay content the approach of Todd, Low and Mello (1965) was adopted.

The samples were broken as in (A), but then they were placed in a metal bowl containing a simmering solution of washing soda (2 heaped tablespoons of Na₂CO₃·10H₂O per 250 millilitres of distilled water), for 1 - 3 hours.
The solution was washed out through a 63 μm sieve along with the <63 μm fraction. As before the residue was dried and placed in a suitably labelled jar.

Samples so treated were designated □.

(C) Rarely, some samples were so heavily cemented that they defied disaggregation by methods (A) and (B). These were thin sectioned. At least six randomly orientated thin sections were obtained for each sample.

Samples thus treated were designated ☆.

For some samples all three techniques were used. The different techniques may be ranked in terms of the quality of results and thus preferentially

□ > ☆.

2.3 Residue Examination.

The dried residues were sieved through a nest of sieves containing 500μm, 250μm, 125μm meshes and a collecting tray.

The total faunal picks of the planktonic foraminifera were made from the 500μm and 250μm fractions. This included broken specimens where they formed more than half of an individual. This approach ensured no picking bias, as opposed
to the more common practice of selecting 300 specimens for biostratigraphical study. The latter is only free of bias when the sample is randomly picked.

In some cases total faunal picks resulted in over a thousand specimens from one sample. Despite the time-consuming nature of the work it was worthwhile in terms of the confidence levels that could be placed on subsequent interpretations.

From the >125μm fraction and collecting tray only representative faunal assemblages were taken, especially the gerontic forms of those not present in the top two fractions.

For the 500μm and 250μm fractions, the species present were sorted and the numbers of each were recorded. The relative percentage of the planktonic foraminifera were graphed at the generic level, with some subdivision into species for those of particular interest. (Figure 2.1).

Due to their very nature, thin sections were approached differently. For each, ten 10x power views were checked and the number of each planktonic species recorded. Thus, for each sample, the number of planktonic foraminifera from some sixty views was amassed. Thin section identification of planktonic foraminifera is poorly covered in the literature. In this study comparisons were made with Glaessner (1937), Pessagno (1967), Postuma (1971), and Fleury (1980).
Figure 2.1 Relative frequencies of selected Planktonic genera

Where \(n \leq 50 \) insufficient data
2.4 Optical Photomicroscopy.

Plane polarized photomicroscopy was performed using an Olympus Vanox Microscope and overhead mounted Olympus C-35 AD camera with Kodacolour CP135-36 film. For cross polarized photomicroscopy an Olympus Vanox polarising microscope was used with same film and camera attachment.

This arrangement provided the opportunity of maintaining a pictorial record of the faunal content. Each photograph was coded and a record kept.

2.5 Scanning Electron Microscopy.

The selected specimens were affixed to the stub with double sided tape. This was coated with approximately 10Å of Au. All pictures were taken using a Joel JSM\T-20 electron microscope. A record was kept of each photograph and a note made of the stub number, magnification, the identity of the specimen and its orientation.

2.6 X-Ray Photomicroscopy.

To facilitate the rapid and efficient biometric analysis of many planktonic specimens, they were X-rayed first and then analysed with an optical microscope. The technique was amended from Hedley (1951), Arnold (1982) and Be et al. (1969) as the Kodak films they advocated are not available in the U.K.
The specimens were photographed using a scanray Torrex 150 D X-ray machine with Mx5 high resolution film (9x12cm) and an exposure of 3.4 mA minutes (20kV) at a distance of 30cms. Specimens were lightly glued and orientated using a paint brush on a cell (Text Figure 2.1) and the source of the specimens recorded.

Text-figure 2.1

X-ray cell

0.5 cm. perspex

Cling film wrapped taut under one surface and affixed to the outer edge

Three cells were photographed at once with metal alphabet labels to avoid confusion. The processed cells were cut to a relevant size and positioned between two labelled glass slides. Optical microscopy was then performed using the same equipment as previously described in 2.4.
Chapter 3: Description of localities.

3.1 Introduction.

The spatial distribution of localities examined during the present study (Enclosure 1) shows that they form a transect from the eastern passive margin of the North Atlantic Ocean (Goban Spur, B.P 93\2-1) through to the clastic dominated and attenuated facies of South East Devon (Beer Stone Adit, Shapwick Grange Quarry), and onto the more marly facies of the Anglo-Paris Basin (White Nothe, Compton Bay, Eastbourne, Dover, BritOil 48\22-1).

As a result of both the marked facies variations and the contrast between studies of off-shore and on-shore material, three different lithostratigraphic schemes exist, (though the Plenus Marls is common to two). No standard lithostratigraphic framework is used for the material recovered by the Deep Sea Drilling Project.

3.2 The eastern Atlantic passive margin.

Structurally, the region is dominated by Mesozoic en-echelon listric normal faults associated with a period of extension (Graciansky et al., 1985), the South Celtic Sea Basin being separated by an extension of the Cornish Palaeozoic basement (Weighall, 1979).

Figure 3.1 shows the location of B.P borehole 93\2-1 (lat.50°57'19.8"N; long.06°46'56.5"W), which was drilled to a
Figure 3.1 Location of DSDP Leg80, Site 551 and BP Borehole 93/2-1

depth of 2,127m. The Cretaceous deposits commence at 266m and comprise a thick sequence of chalk (814m), which ranges from soft white micritic limestones to well-indurated micrites. At 1,110m the lithology shows a marked change to calcareous silty mudstones (35m) which are underlain by interbedded calcareous siltstones and mudstones and, at 1,150m by Wealden deposits (Williamson, 1979). Albian, Cenomanian and Turonian sediments are all represented. Above these is a hiatus which is overlain by Campanian and Maastrichtian deposits. The Cenomanian - Turonian boundary is placed at the top of the calcareous silty mudstones (op cit.). Side-wall core and ditch cutting samples were analysed from the Upper Cenomanian and Turonian.

Site 551, Leg 80 is located at lat. 48°54.64'N; long. 13°30.09'W (Figure 3.1), and was drilled to a depth of 3,887m. The lowest sediments were 4.1m of Late Cenomanian nannofossil chalk which rested unconformably on basaltic basement. These were overlain by 4.1m of black, organic rich, finely laminated shale which grades into pale green nannofossil chalk (2.1m) of early Turonian age. The overlying 31.6m of light grey nannofossil chalk was dated as Late Campanian and Maastrichtian in age, indicating that Upper Turonian - Upper Campanian sediments are absent (Graciansky et al., 1985; Ball, 1985) (see Figure 5.1.).

The syn-rift sedimentary sequences of the Goban Spur are considerably less complete than the more expansive deposits of the South Celtic Sea Basin (B.P 93\2-1). This may to some
extent be related to the positioning of the Goban Spur DSDP sites on the thinnest Mesozoic drape away from the fault escarpments.

3.3 South-east Devon.

The Cretaceous outliers of south-east Devon contain sediments of Albian-Cenomanian age (Hart, 1982a; Jarvis and Tocher, 1987). The Cenomanian sequence is highly attenuated and comprises a sequence of limestones punctuated by numerous hardgrounds (Jarvis and Woodruff, 1984; Jarvis and Tocher, 1983). As a consequence, a revised lithostratigraphic scheme has been erected which provides much more detail than the standard stratigraphy of the central Anglo-Paris Basin (Hamblin and Wood, 1976; Jarvis and Woodruff, 1984); see 3.4.

The thickest, most complete section is at Hooken Cliffs (Figure 5.3), where the Beer Head Limestone (Cenomanian) attains a thickness of 12.4m. Its uppermost unit, the Pinnacles Member, is a quartzose and glauconitic biomicrite with weakly developed nodular horizons, the top being the heavily indurated Haven Cliff Hardground. The overlying Connett's Hole Member of the Seaton Chalk (Turonian) is a nodular chalk containing abundant inoceramid debris with many incipient hardgrounds at its base (Figure 5.3). Access to Hooken Cliffs was limited because of dense undergrowth, but with the aid of a rope samples could be collected 2m into the Connett's Hole Member.

To the east, a working concern, Shapwick Grange Quarry
Figure 3.2 Location of Hooken Cliffs, Beer
(Figures 3.3, 5.6), exposes Upper Greensand, Beer Head Limestone (Cenomanian) and Seaton Chalk (Turonian), (Hart et al., 1979; Jarvis et al. in press). The Upper Greensand comprises yellow to light grey, occasionally trough cross-bedded, medium-coarse calcarenites which locally contain proportions of coarse quartz and glauconite sand. The top of the Upper Greensand is marked by the heavily mineralized Humble Point Hardground.

The Beer Head Limestone (70cm) is much reduced, compared to Hooken Cliffs, and the Humble Point Hardground is overlain by 35cm of strongly indurated yellow nodular micrite with scattered quartz sand and glauconite. This represents the Haven Cliff Hardground portion of the Pinnacles Member. The top surface of the Haven Cliff Hardground marks the base of the Seaton Chalk.

The Seaton Chalk (19m) consists of 0.5-1m thick weakly developed rhythms of alternating nodular and marly chucks. At its base, a 5cm thick moderately indurated nodular hardground is present above the Haven Cliff Hardground (op.cit.), Figure 5.6.

The high clastic component and laterally persistent and accreting hardgrounds are characteristic of the Cenomanian and lower Turonian of south-east Devon. This probably reflects the influence on sedimentation of the high Cornubian Massif to the north-east.
Figure 3.3 Location of Shapwick Grange Quarry
3.4 **Southern England onshore Anglo-Paris Basin.**

The Cenomanian (65+m) and Turonian (70+m) sequences of S.E England are considerably thicker (Jukes-Browne and Hill, 1903) than those further west and consist of soft white chocks with varying amounts of marl. The early tripartite subdivision of the Chalk Group has recently been revised (Mortimore, 1986; Robinson, 1986) and the relevant lithostratigraphic units, in ascending order, comprise the Abbots Cliff, Plenus Marl and Dover Formations. Four localities (Dover, Figure 3.4; Eastbourne, Figure 3.5; Isle of Wight, Figure 3.6; White Nothe, Figure 3.7) across the interval were sampled.

Only the top few metres of the Abbots Cliff Formation were sampled at all localities. These consist typically of rhythmically bedded chocks and marls (Text Plate 1), often displaying intense bioturbation.

The base of the Plenus Marls is marked by the sub-Plenus erosion surface which can be recognized throughout the Anglo-Paris Basin (Jeffries, 1962, 1963) (Text Plates 2 and 4). In most of the Basin the Plenus Marls consist of 8 distinct units which vary in thickness locally (Text Plates 3 and 4).

The Shakespeare Cliff Formation at Dover consists of finely bedded (0.2-0.3m) nodular chocks containing coarse bioclastic material at its base, expanding into more marly chocks (Text Plate 3). In contrast, the Shakespeare Cliff Formation to the West is more marly (Text Plate 5) throughout.
Figure 3.5 Locality map of Eastbourne
Figure 3.6 Locality map of Isle of Wight
Figure 3.7 Locality map of White Nothe
The Dover section is made up of a composite from Abbots and Shakespeare Cliffs.

3.5 The North Sea.

The high degree of lithostratigraphic resolution possible with on-shore sequences is not possible with off-shore material. A standard lithostratigraphic scheme operates in the North Sea (Deegan and Scull, 1977).

The relevant units comprise the Hidra Formation (Cenomanian), Plenus Marl Formation (Late Cenomanian) and Hod Formation (Turonian to Campanian). The Hidra - Plenus Marl formational boundary is marked by a distinctive higher gamma ray response, and the Plenus Marl - Hod formational boundary by a return to the lower gamma ray signature. The latter boundary may be more transitional than the lower one (Deegan and Scull, 1977).

The Sole Pit Basin contains over 1,000m of Upper Cretaceous chalk sedimentation (Hancock, 1983, 1984). BritOil well 48\22-1 is situated at lat.53°15'15"N; long.01°23'08"E (Enclosure 1), and yielded 86m of Upper Cretaceous carbonates. The weak gamma ray response shows that the Plenus Marl Formation is poorly developed at 121m (Figure 5.16). Washed and dried ditch cuttings were analysed from 50m either side of the Plenus Marl Formation.
Text Plate 1.

Top of Abbots Cliff Formation, Gun Gardens (Eastbourne), showing rhythmic sedimentation. The slight colour contrast in the marl highlighting the intense bioturbation.

The Estwing hammer is approximately 0.3m long.

Text Plate 2.

Abbots Cliff, Plenus Marl and Dover Formations, Compton Bay, Isle of Wight. The figure is pointing to the sub-Plenus erosion surface.

View looking east.
Text Plate 3.

Plenus Marls and base of Shakespeare Cliff Member (Dover Formation), Abbots Cliff, Dover. The more nodular chalks of the Shakespeare Cliff Member standing proud above the softer Plenus Marls.

The hammer is approximately 0.3m long.
PhD Thesis by

We have given the above thesis the Document Supply Centre identification number:

D 80811

In your notification to Aslib please show this number, so that it can be included in their published Index to Theses with Abstracts.

Theses Office
Text Plate 4.

Plenus Marls and Shakespeare Cliff Formations, Gun Gardens, Eastbourne. The figures' head marks the level of the sub-Plenus erosion surface. The basal beds of the Shakespeare Cliff Formation are of a more marly facies than at Dover (Text Plate 3).
Text Plate 5.

Basal beds of Shakespeare Cliff Formation and top of Plenus Marl Formation, Gun Gardens, Eastbourne. Note the more marly former as opposed to Dover.

Figures' head marks base of Shakespeare Cliff Formation.
Chapter 4: Systematic micropalaeontology.

For the purposes of this study the basic classification framework of Loeblich and Tappan (1964) has been followed. Minor generic and specific alterations are recommended and are highlighted at the appropriate points in the text.

All groups have been viewed as moving populations and thus many previously established species are viewed as ecophenotypic variations. Where possible, this has been acknowledged but the high degree of subgeneric subdivision in the literature, especially for the Nodosariidae, has meant the adoption of a "local" taxonomy.

The occurrence of each species is listed as a set of the appropriate samples, the exact position of which may be determined by consulting the relevant sedimentary log.

Unlike the previous foraminiferal studies (Hart, 1970; Owen, 1970) with their emphasis on taxonomic relationships, in this study lists of references are kept to a minimum. If a previous published list of references is thought relevant, it is cited.

The taxonomic revision proposed by the European Working Group on planktonic foraminifera (Robaszynski and Caron, 1979) has largely been adopted. Any evolutionary relationships are covered in Chapters 6 and 7.
Order FORAMINIFERIDA Eichwald, 1830
Suborder Textulariina Delage and Herouard, 1896
Superfamily Ammodiscacea Reuss, 1862
Family Ammodiscidae Reuss, 1862
Subfamily Ammodiscinae Reuss, 1862

Genus Ammodiscus Reuss, 1862
Genotype Ammodiscus infimus Bornemann, 1874

Ammodiscus cretaceus (Reuss), 1845
Pl. 1, Figs 1-7.

1845 Operculina cretacea Reuss, p. 35, pl. 8, figs. 64, 65.
1860 Cornuspira cretacea (Reuss); Reuss, p. 177, pl. 1, fig. la, b.
1934 Ammodiscus cretacea (Reuss); Cushman, p. 45.
1946 Ammodiscus cretaceus (Reuss); Cushman, p. 17, pl. 1, fig. 35.

Occurrence: B.P. 93/2-1,6,9; SGQ 7,18; WND 1,2,13,14,19,20,22;
CBI 1,4-6,8,17,26,32,35,36; EGG 1,11-15,18,20,25,26,31,32; ABC 4,
9,11,13,19; AKS 8,12,13; BritOil 48/22-1 3-16,18.
Remarks: A. cretaceus shows some small variation in outline from
circular to ovoid. The number of whorls may be between 6 to 11 but
usually number 8.

Superfamily Lituolacea de Blainville, 1825
Family Lituolidae de Blainville, 1825
Subfamily Lituolinae de Blainville, 1825

Genus Ammobaculites Cushman, 1910

Genotype Spirolina agglutinans D'Orbigny, 1846

Ammobaculites sp.a

Pl. 1, Fig. 8.

Description: The chambers increase moderately in size around the initial planispiral portion of the test but only slightly in the latter uniserial portion. The sutures are markedly depressed. The rounded terminal aperture is large.

Occurrence: WND 10,11; CBI 1,2.

Remarks: The chambers in the uniserial portion of the test may be moderately inflated.

Genus Haplophragmium Maync, 1952

Genotype Haplophragmium aequale Reuss, 1860

Haplophragmium aequale Reuss

Pl. 1, Figs. 9-12

1866 Haplophragmium aequale Reuss, p.218, pl.11, fig.2a.
1946 Haplophragmium aequale Reuss, ten Dam, p.570, pl.87, figs.3-4.

Occurrence: B.P. 93/2-1 1,4,7; WND 1; CBI 5.

Remarks: A very rare species which shows much variation. The later
uniserial portion may be moderately to markedly compressed.

Subfamily Placopsilininae Rhumbler, 1913

Genus Subbdelloidina Frentzen, 1944

Genotype Subbdelloidina haeusleri Frentzen

cf. Subbdelloidina sp.a

Pl.1, Fig. 13

Description: Test finely agglutinated, well rounded chambers with depressed sutures. The chamber size varies slightly.

Occurrence: CBI 4.

Remarks: Only one specimen was found the aperture of which was indistinct.

Family Textulariidae Ehrenburg, 1838

Subfamily Textulariinae Ehrenburg, 1838

Genus Textularia Defrance in de Blainville, 1824

Genotype Textularia sagittula Ehrenburg, 1839

Textularia chapmani Lalicker

Pl. 1, Figs 14,15

Pl. 2, Figs 1-14

Pl. 3, Figs 1-8
1935 *Textularia chapmani* Lalicker, p.13, pl.2, figs.8,9.

1962 *Textularia chapmani* Lalicker; Jefferies, pl.78, fig.23.

Occurrence: B.P. 93/2-1 2,7; WND 11,19; CBI 2,12-18; EGG 9-14, 16,17; ABC 8-14; BritOil 48/22-1 8,9.

Remarks: The sutures may be markedly to moderately depressed. The number of chambers varies from 10-15. The aperture may be deep or narrow but is predominantly the former. *T. chapmani* has been recorded from the rocks of Albian - Cenomanian and Lower Turonian age (Jefferies, 1962; Hart, 1970; Owen, 1970) in southern England. Occasionally, a smaller form, *T. minuta* Berthelin, has been associated with *T. chapmani*, in the Plenus Marls (Jefferies, 1962), in the Gault Clay (Hart, 1970). The distinguishing feature of *T. minuta* being its small size.

A study of the textularid population from Dover, measuring the height and width, (Text Figure 4.1),

![Text-figure 4.1 Measured characteristics of *Textularia chapmani* Lalicker](image)

and counting the chambers, shows that there is no simple relationship. The populations from ABC 9-11 show a systematic
Figure 4.1 Height against width and number of chambers of *Textularia chapmani* Lalicker population from Dover.
linear trend with an increase in size with chamber addition. The populations from ABC 12-14 are too small to show any trend but all the forms are the corresponding size for their respective number of chambers as the specimens from ABC 9-11. Except for one specimen from ABC 13 which exhibits the size equivalent to eleven chambers but possesses thirteen.

Thus the smaller forms, referred to as *T. minuta* are probably immature forms, though there is some evidence of dwarfism in ABC 13. A further study of larger populations and from other localities would be required to completely elucidate any relationships.

Importantly, the moving population does exhibit a reduction in size and a lowering in population numbers.

Subfamily Pseudobolivininae Wiesner, 1931

Genus **Pseudobolivina** Wiesner, 1931

Genotype **Pseudobolivina antarctica**

Pseudobolivina sp.a

Pl. 3, Figs 9-10.

Description: Test is coarsely agglutinated, with only the last two chambers tending towards the uniserial form. The test is moderately twisted. The chambers increase moderately in size along the test and the sutures are slightly depressed. The aperture is subrounded, slightly raised and terminally positioned.
Occurrence: Goban Spur 5/2 13-17

Remarks: P. sp.a only appears in one sample and in very small numbers.

Family Trochamminidae Schwager, 1877
Subfamily Trochammininae Schwager, 1877

Genus Trochammina Parker and Jones, 1859
Genotype Nautilus inflatus Montagu, 1801

Trochammina depressa Lozo, 1944
Pl. 3, Fig. 11.

1944 Trochammina depressa Lozo, p.552, pl.2, figs 4-5.
1970 Trochammina depressa Lozo; Owen, p.45, 46, pl.3, figs 14-16.

Occurrence: B.P. 93/2-1 2; WND 11; CBI 2,4.
Remarks: T. depressa was only found in small numbers.

Family Ataxophragmiidae Schwager, 1877
Subfamily Verneuilininae Cushman, 1911

Genus Pseudospiroplectinata Gorbenko, 1957
Genotype Pseudospiroplectinata plana Gorbenko

Pseudospiroplectinata plana Gorbenko
Pl. 3, Figs 12-17.
1957 Pseudospiroplectinata plana Gorbenko, p.879, text fig.1,a-c.

1970 Pseudospiroplectinata plana Gorbenko; Owen, p.87-88, pl.9, fig.1-2.

Occurrence: WND 2-6,8,9; CBI 1,10,15; BGG 2-7; ABC 7,8.

Remarks: The initial chambers may be in the same plane as the rest of the test or offset at an angle of 40°. The test is not always totally planar but may be slightly twisted. The number of chambers in the later uniserial portion of the test varies greatly. The aperture may be ovate to subrounded.

Genus Tritaxia Reuss, 1860
Genotype Textularia tricarinata Reuss, 1844

Tritaxia macfadyeni Cushman

Pl. 4, Figs 1-13.

1936 Tritaxia macfadyeni Cushman, p.3, pl.1, fig.6a-b.

1948 Tritaxia macfadyeni Cushman; Williams-Mitchell, p.48, pl.8, fig.2.

1953 Tritaxia macfadyeni Cushman; Barnard and Banner, p.195, pl.7, fig.2a-b.

Occurrence: Goban Spur 6/2 70-72, 26-29; 6/1 30-33; 5/2 13-17; 5/1 101-106; BSA 1; WND 1,2,4,6,10; CBI 1,4,5,8-10; BGG 1,2,4,7-9; ABC 1,2,4,5,7,8.
Remarks: *T. macfadyeni* varies in the number of chambers present in the late stage, uniserial portion, of the test, though most specimens have 3-4 chambers. In addition, these chambers may not be added along the same axis, forming a twisted test.

Tritaxia pyramidata Reuss

Pl. 4, Fig. 3.

1862 *Tritaxia pyramidata* Reuss, p.32, fig.9a-c.

1928 *Tritaxia pyramidata* Reuss; Franke, p.138, fig.18a-c.

1948 *Tritaxia pyramidata* Reuss; Williams-Mitchell, p.98, pl.8, fig.5a-c.

1950 *Tritaxia pyramidata* Reuss; ten Dam, p.12-13.

1953 *Tritaxia pyramidata* Reuss; Barnard and Banner, p.195, pl.7, fig.1a-b.

Occurrence: B.P. 93/2-1 1; BSA 4; WND 1-11; CBI 1-11; EGG 1-10; ABC 1-6; BritOil 48/22-1 8.

Remarks: *T. pyramidata* is very distinctive and forms the dominant proportion of the *Tritaxia* population until its extinction when *T. tricarinata* takes over.

Tritaxia tricarinata (Reuss) Reuss, 1860

Pl. 5, Figs. 1-7.

1844 *Textularia tricarinata* Reuss, p.215.

1845 *Textularia tricarinata* Reuss; Reuss, p.39, pl.8, fig.60.
1860 *Tritaxia tricarinata* (Reuss); Reuss, p.228, pl.7, figs 1,2.

1937 *Tritaxia dubia* (Reuss); Cushman, p.26, pl.4, figs 1-4.

1953 *Tritaxia tricarinata* (Reuss); Barnard and Banner, p.193, pl.8, fig.1a-e, text fig.3a-j.

1966 *Tritaxia tricarinata* (Reuss); Butt, p.171, pl.1, fig.1.

Occurrence: Goban Spur 5/2 13-17; BSA 6; SGQ 8,9,12-17,19,20,23; WND 14; CBI 11,17,26,28; EGG 11-17; ABC 5-9,19; AKS 1.

Remarks: Through the Plenus Marls the overall test form of *T. tricarinata* varies (Pl.5, Figs.1-7), with a decrease in the concavity of the test sides and a general rounding of the overall test. Banner and Desai (1985) postulate the phylogenic relationship of *T. pyramidata* - *T. tricarinata* but the populations over this interval indicate that they are distinct, although it is possible that this is manifested in specimens from older rocks.

Tritaxia tricarinata var. *jongmansi*

Pl. 5, Figs. 8-15.

1946 *Tritaxia compressa* Schijfsma, (non Egger 1899-1900), p.33, pl.1, fig.5a-b.

1950 *Tritaxia jongmansi* Schijfsma (nom. nov. for *T. compressa* Schijfsma (1946)), p.43.

1953 *Tritaxia jongmansi* Schijfsma; Barnard and Banner, p.195-196, pl.8, fig.2a-b, text fig.3k-l.

Occurrence: BSA 10,11; WND 19,21-29; CBI 29,31,34,35; EGG 25,
Remarks: *T. tricarinata* var. *jongmani* differs from *T. tricarinata* by the abrupt termination of the test giving it a wider test approximately three-quarters of the way down.

Subfamily Globotextulariinae Cushman, 1927

Genus *Arenobulimina* Cushman, 1927

The arenobuliminid group has received much attention. The European Albian lineages were established as *A. chapmani* Cushman giving rise to *A. frankei* Cushman, *A. truncana* (Reuss), *A. obliqua* (d'Orbigny) and *A. advena* (Cushman) in a late Albian radiation. This scenario was confirmed, with minor extinctions and no evolutionary radiations through the Cenomanian, except for the development of *A. preslii* (Reuss) from *A. advena* just below the Plenus Marls (Carter and Hart, 1977).

The differentiation of simple interiored forms (under *Arenobulimina* s.s) and those with partitions (under *A. (Voloshinoides)*) (Barnard and Banner, 1980), has not been adopted as partitions are difficult to differentiate and their development appears highly variable.

Genotype *Bulimina preslii* Reuss, 1846

Arenobulimina advena Cushman, 1936

Pl. 6, Figs 5-8.
1936 *Hagenowella advena* Cushman, p.43, pl.6, fig.21a-b.

1969 *Arenobulimina advena* (Cushman); Gawor-Biedowa, p.86-90.

1977 *Arenobulimina advena* (Cushman); Carter and Hart, p.14, pl.2, fig.4.

Occurrence: Goban Spur 6/2 26-29; B.P. 93/2-1 1-4, 6, 8; BSA 5; WND 1-5, 7-10; CBI 1, 2, 5, 6, 9, 10; EGG 1, 3, 5, 6; ABC 1, 2, 4, 6, 7; BritOil 48/22-1 1, 2, 10, 11, 13.

Arenobulimina bulletta (Barnard and Banner)

Pl. 6, Figs 1-4.

1980 *Arenobulimina* (Voloshinoides) *bulletta* (Barnard and Banner), p.408-410, pl.3, figs 1-6; pl.6, figs 14-20.

Occurrence: ABC 1.

Remarks: *A. bulletta* is highly distinctive because of its large size and bullet-like test shape. Its appearance is spasmodic and its relationship to the *A. advena* - *A. preslii* plexus is unclear.

Arenobulimina preslii (Reuss)

Pl. 6, Figs 9-10.

1845 *Bulimina preslii* Reuss, p.38, pl.13, fig.72.

1934 *Arenobulimina preslii* (Reuss); Cushman and Parker, p.29, pl.5, figs 12-13.
Occurrence: B.P. 93/2-1 10-12; CBI 32,34-36; EGG 22,30-34; AKS 2; BritOil 48/22-1 19.

Remarks: This morphotype with a flattened apertural face and inflated chambers is characteristic of the early Turonian (Owen, 1970).

Arenobulimina sp.a
Pl. 6, Figs 11-12.

Description: Test is small and coarsely agglutinated, the chambers increase rapidly in size giving the test an inflated subtriangular appearance. The aperture is small and depressed.

Occurrence: BSA 3-5; WND 3-5,8; CBI 5-10; EGG 2-4,13; ABC 4.

Remarks: A. sp.a occurs as a minor portion of the A. advena population but is very small in comparison. It may well be a variant of that population or the megalosperic form of A. advena (Carter and Hart, 1977).

Genus Dorothia Plummer, 1931

Genotype Gaudyrina bulleata Carsey, 1926

Dorothia gradata (Berthelin)
Pl. 6, Figs 13-14.

1880 Gaudrina gradata Berthelin, p.24, pl.1, fig 6a-b.
1937 *Dorothia gradata* (Berthelin); Cushman, p.74, pl.8, fig 5a-b.

1950 *Dorothia gradata* (Berthelin); ten Dam, p.16.

1970 *Dorothia gradata* (Berthelin); Hart, p.110-111, pl.5, figs 1-2.

Occurrence: WND 1-11; CBI 1-6, 8-10; EGG 1-7; ABC 1.

Remarks: It is only present in very small numbers and forms a minor portion of the benthonic population.

Genus Marssonella Cushman

Genotype *Gaudyrina oxycona* Reuss, 1860.

Marssonella sp.a

Pl. 7, Figs 1-8.

Description: The initial portion of the test is sub-triangular passing into a sub-ovate form in cross-section. The sutures are depressed.

Occurrence: WND 11-19; CBI 11-18; EGG 9-17; ABC 8-14.

Remarks: *M. sp.a* forms a major portion of the marssonellid population within beds 2-8 of the Plenus Marl Formation.

Marssonella trochus (d'Orbigny) 1840

Pl. 7, Figs 9-16.

Pl. 8, Figs 1-2.

1840 *Textularia trochus* d'Orbigny, p.45, pl.4, fig 25-26.

1937 *Marssonella oxycona* (Reuss); Cushman, p.58, pl.6, fig 6-7, 16.
Occurrence: Goban Spur 6/2 70-72; B.P. 93/2-1 7,8; BSA 7-8; WND 2,12,14,16,23,24; CBI 2-4,6,11,14,16-18,22,24; EGG 2,10,14,16,19, 22,26,27,29; ABC 2,3,5,8,9; AKS 6,10,11,13; BritOil 48/22-1 4,14, 19.

Remarks: The distinction of *M. trochus*, *M. turris* and *M. oxycona* is largely based on the apical angle: *M. oxycona* with an angle>45° and *M. turris* with an angle<45°, (Owen, 1970). This is a function of the rate of increase in chamber height with respect to width as they are added around the test, *M. trochus* being distinguished by the development of slight concavity when viewed in side view. The closeness between these forms has been noted (Barnard and Banner, 1953; Hart, 1970), with their synonymy under *M. trochus*.

A scanning electron microscopy study was made of the marssonellid population from Dover. For each specimen the maximum apical angle was measured, as not all specimens were circular in cross-section and plotted against the outcrop (Figure 4.2), and an apical angle frequency was constructed (Figure 4.3). Figure 4.3 shows that the subdivision of the marssonellid population on the basis of the apical angle is artificial and that the apical angle of the population varies consistently through the section. The "early" forms in each population possess a narrow apical angle, with the development of the population the apical angle increases and decreases as the population wanes. It indicates that there may be several periods of recolonization of the niche after vacation (Figure 4.2).

M. trochus has precedent over *M. turris* and *M. oxycona*
Figure 4.2 Apical angle of Marssonellid population from Dover
Figure 4.2 Apical angle of Marssonellid population from Dover (cont.)
Figure 4.3 Apical angle of Marssonellid population from Dover
but to note the relevant dominance of each morphotype it is
proposed to place M. turris and M. oxycona as varieties of M.
trochus.

Marssonella. trochus var. oxycona
Pl. 8, Figs 7-9.
Pl. 9, Figs 11-16.

1860 Gudryina oxycona Reuss, p. 229, pl. 12, fig. 3.
1937 Marssonella oxycona (Reuss); Cushman, p. 56, pl. 6, figs 6-7.

Occurrence: Goban Spur 6/2 70-72; 5/2 13-17; B.P. 93/2-1 2-4, 6, 7,
9, 11-15; BSA 10-13; SGQ 8, 9, 12-17; WND 1-3, 5, 6, 8, 22, 23, 25, 26, 28;
CBI 4, 10, 14, 16, 18, 19; BGG 2, 3, 14, 15, 19, 22, 26, 27, 30, 33, 34; ABC 1-3,
5, 6, 11, 12, 21; AKS 1, 5, 6, 9-11; BritOil 48/22-1 12.

Marssonella. trochus var. turris
Pl. 8, Figs 3-6.
Pl. 9, Figs 1-10.

1840 Textularia turris d'Orbigny, p. 46, pl. 4, figs 22, 28.

Occurrence: Goban Spur 5/2 13-17; B.P. 93/2-1 1-3, 5, 6, 11-14;
BSA 3-8, 10, 11; SGQ 7, 8; WND 1-10, 13, 15-29; CBI 2-6, 8, 10-14, 18-23,
24; BGG 1-5, 11-15, 17, 19-26, 28, 29, 31-34; ABC 1-3, 5, 8-14, 19, 21;
AKS 1, 3-5, 7, 9-13; BritOil 48/22-1 1, 2, 5, 7, 9, 11, 13, 14, 16.
Genus *Eggerellina* Marie, 1941

Genotype *Bulimina brevis* d'Orbigny, 1840

The specific subdivision of *Eggerellina* in the mid-Cretaceous has proved problematic, with consistent morphotypes through the Albian-Cenomanian and Turonian but with a proliferation of forms in the Plenus Marls (Carter and Hart, 1977). Carter and Hart (1977) placed emphasis on this short term proliferation and interpreted all the forms as ecophenotypic variations of *E. mariae* ten Dam. As this study is primarily concerned with the late Cenomanian the approach of Owen (1970) has been adopted.

Eggerellina brevis (d'Orbigny) var. *conica* Marie

Pl. 10, Figs 1-6.

1941 *Eggerellina brevis* (d'Orbigny) var. *conica* Marie, p.34, pl.7, fig.70.

1970 *Eggerellina brevis* (d'Orbigny) var. *conica* Marie; Owen, p.63-64, pl.5, figs 6-9.

Occurrence: Goban Spur 6/2 70-72; B.P. 93/2-1 8; WND 3,5-8,14-16; CBI 2-6,10-13,15-18; BCG 9,10,12,14; ABC 1-3,5,7-12.

Remarks: *E. brevis* (d'Orbigny) var. *conica* Marie occurs in very large numbers in some samples from the Plenus marls. The variability in the size and shape of the aperture noted by Owen (1970), has been borne out in this study.
Eggerellina mariae ten Dam, 1950

Pl. 10, Figs 7-9.

1950 Eggerellina mariae ten Dam, p.15-16, pl.1, fig.17.

Occurrence: B.P. 93/2-1 1,4-8; WND 3,6,8,11,13-17; CBI 1-2,6, 11-14,16-20; BCC 4,5,10-14,16; ABC 1-3,5-7,9-12; BritOil 48/22-1 7,9.

Eggerellina murchisoniana (d'Orbigny), 1840

Pl. 10, Figs 10-11.

1840 Bulimina murchisoniana d'Orbigny, p.41, pl.4, fig.15.

1953 Eggerellina intermedia (Reuss); Barnard, in Barnard and Banner, p.203.

1970 Eggerellina murchisoniana (d'Orbigny); Owen, p.64-65, pl.6, figs 1-4.

Occurrence: ABC 10,11.

Remarks: E. murchisoniana only occurs in small numbers when present.

Subfamily Valvulininae Berthelin, 1880

Genus Plectina Marsson, 1878

Genotype Gaudyrina ruthenica Reuss, 1851
Plectina mariae (Franke)
Pl. 11, Figs 1-2.

1928 Gaudyrina ruthenica Reuss var. mariae Franke, p.146, pl.13, fig.15a-b.

1937 Plectina ruthenica (Reuss) var. mariae (Franke); Cushman, p.106, pl.11, fig.15.

1970 Plectina mariae (Franke); Owen, p.84-86, pl.9, figs 4-7, text fig.32.

Occurrence: B.P. 93/2-1 6-8; BSA 3; WND 3-10; CBI 1-6,9,10; EGG 2,4-9; ABC 1-3; BritOil 48/22-1 15,16,17.

Remarks: The variability in the size, shape and position of the aperture as noted by Owen (1970), has been borne out in this study.

Plectina cenomanana (Carter and Hart)
Pl. 11, Figs 13-14.

1970 "Plectina" sp.21, sp. nov. Hart, p.114, pl.5, fig.12.

1977 Plectina cenomanana Carter and Hart, p.12-13, pl.2, fig.9.

Occurrence: WND 3,6,7,10,12; CBI 2-7; EGG 1,5-10; ABC 5,7,8.

Remarks: P. cenomanana occurs after the disappearance of P. mariae. It may be an ecophenotypic variation of the latter, but has been noted from lower in the Cenomanian (zones 11-13 of Carter and Hart, 1977).
Subfamily Ataxophragmiinae Schwager, 1877

Genus Ataxophragmium Reuss, 1860

Genotype Bulimina variabilis d'Orbigny, 1840

Ataxophragmium depressum (Perner) 1892

Pl. 12, Figs 1-11.

1892 Bulimina depressa Perner, p.55, pl.3, fig.3a-b.

1964 Ataxophragmium depressum (Perner); Loeblich and Tappan, p.C283, fig.191.3,4.

Occurrence: B.P. 93/2-4; BSA 4,6; WND 1; CBI 1,4,9,10; BCG 8; ABC 3,5-8.

Remarks: A. depressum first appears in the very top of the Abbots Cliff Formation with small and rare specimens, increasing rapidly both in the size of the specimens and abundance in bed 1 of the Plenus Marls to disappear at the top of bed 1.

Family Pavonitinidae Loeblich and Tappan, 1961

Subfamily Pfenderininae Smout and Sugden, 1962

Genus Pseudotextulariella Barnard, in Barnard and Banner.

Genotype Textulariella cretosa Cushman, 1932
Pseudotextulariella cretosa (Cushman), 1932
Pl. 13, Figs 1-3.

1926 Textulariella cretosa Cushman, p.97, pl.11, figs 17-19.
1953 Pseudotextulariella cretosa (Cushman); Barnard (in Barnard and Banner), p.198, fig.6b-c.
1977 Pseudotextulariella cretosa (Cushman); Carter and Hart, p.23, pl.2, fig.12.

Occurrence: B.P. 93/2-1 2; BSA 1,3,5,6; BritOil 48/22-1 6-8,10, 11,13.

Remarks: P. cretosa is particularly common in the lower levels of the Cenomanian (Hart, 1970; Carter and Hart, 1977). It only occurs in very small numbers in the Upper Cenomanian and the specimens were much smaller than those described (op cit.).

Suborder Miliolina Delage and Herouard, 1896
Superfamily Miliolacea Ehrenburg, 1839
Family Nubeculariidae Jones, 1875
Subfamily Quinqueloculininae Cushman, 1917

Genus Quinqueloculina d'Orbigny, 1826
Genotype Serpula seminulum Linne, 1758

Quinqueloculina antiqua Franke
Pl. 13, Figs 4-5.

1891 Miliolina venusta Karrer; Chapman, p.9, pl.9, figs 5-6.
1928 *Miliolina (Quinqueloculina) antiqua* Franke, p.126, pl.11, fig.26.

Occurrence: B.P. 93/2-1 6; WND 4; CBI 17,19,20,22,24,32; EGG 5; BritOil 48/22-1 15,16.

Remarks: *Q. antiqua* occurs in very small numbers when it is present.

Suborder Rotaliina Delage and Herouard, 1896

Superfamily Nodosariacea Ehrenburg, 1838

Family Nodosariidae Ehrenburg, 1838

Subfamily Nodosariinae Ehrenburg, 1838

Genus Nodosaria Lamarck, 1812

Genotype Nautilus radicula Linne, 1758

Nodosaria sp.

Pl. 13, Figs 6-15.

Description: The chambers may be rounded, or flush, with depressed or indistinct sutures. The chambers may increase slightly in size in both width and length on addition. The aperture may be radiate and well-developed, but many forms possess indistinct apertures or with subordinate rays.

Occurrence: Goban Spur 6/2 70-72; 6/2 26-29; B.P. 93/2-1 2,9; WND 1,2,5,6,8; CBI 1,2,5,6,10,12,14,16,17; EGG 3-7,11,14; ABC 3-5, 8,10; BritOil 48/22-1 2.
Remarks: The variability in test size, chamber addition, sutures, chamber shape and the development of the aperture affords little systematic subdivision of N. sp.a.

Genus *Astacolus* De Montfort, 1808

Genotype *Astacolus crepidulatus* De Montfort, 1808

Astacolus sp.a

Pl. 14, Figs 1-2.

Description: The test is slightly compressed with a sub-triangular terminal chamber. The sutures are moderately depressed and subtended at around 40° to the test. The aperture is well-developed with equal rays.

Occurrence: CBI 13; EGG 10,13; ABC 4,8.

Genus *Dentalina* Risso, 1826

Genotype *Nodosaria (Dentaline) cuvieri* d'Orbigny, 1826

Dentalina sp.a

Pl. 14, Figs 3-6.

Description: The chambers increase moderately in size on addition, dominantly lengthways as opposed to width. The sutures are strongly depressed and at 90° to the test.

Occurrence: CBI 7,8; EGG 6; ABC 4.
Remarks: D. sp.a is markedly smaller than D. sp.b and D. sp.c.

Dentalina sp.b
Pl. 14, Figs 7-15.

Description: The chambers are slightly longer than wide giving the test an elongate appearance. The chambers vary in their relative increase in size on addition. The sutures are moderate to well-depressed. The apertural region may be rounded to sub-angular with an equi-ray aperture.

Occurrence: WND 3; CBI 1,3,5,6,8,10,12,14; BGG 3,5,7,11-14; ABC 5, 7-10.

Remarks: D. sp.b is more common than D. sp.a and D. sp.c and formed the dominant morphotype in the Dentalina population.

Dentalina sp.c
Pl. 14, Figs 16-18.

Description: The chambers increase moderately in size on addition, with well-rounded form on the more arcuate side of the test. The sutures are subtended at a low angle (15°- 20°) to the test and are moderately depressed. The aperture is well pronounced radiate.

Occurrence: WND 2; CBI 1,2,6,8,10,12,18; BGG 5,13-15; ABC 8.

Genus Frondicularia Defrance in d'Orbigny, 1826
Genotype Renulina complanata Defrance, 1824
Frondicularia cordai Reuss, 1844
Pl. 15, Fig. 1.

1844 Frondicularia cordai Reuss, p.302.
1970 Frondicularia cordai Reuss; Hart, p.136, pl.9, fig.12.

Occurrence: EGG 2,11; ABC 5.
Remarks: F. cordai is extremely rare in the sections studied but is more common in the early Cretaceous (Hart, pers. comm.).

Frondicularia gaultina Reuss, 1860
Pl. 15, Fig. 2.

1860 Frondicularia gaultina Reuss, p.194, pl.5, fig.5.
1970 Frondicularia gaultina Reuss; Hart, p.136-137, pl.9, fig.13.

Occurrence: WND 13,24; CBI 2,9,11,14; EGG 10,13; ABC 3,21; AKS 3, 8,9,13.
Remarks: F. gaultina was recorded only in the Middle to Upper Albian clays by Hart (1970) and is very rare in the late Cenomanian.

Frondicularia sp.a
Pl. 15, Figs 3-4.
Description: The test is gradually tapering with the new chambers widening along their length. The sutures may be very prominent.
Occurrence: WND 5,10,13,14; CBI 36; BGG 5,6,8; AKS 11.
Remarks: In keeping with the other representatives of the genus, F. sp.a is very rare.

Genus Lagena Walker and Jacob in Kanmacher,1798
Genotype Serpula (Lagena) sulcata Walker and Jacob,1798

Lagena sp.a
Pl. 15, Figs 5-6.
Description: The test is nearly spherical and highly perforate. The aperture is placed on a thick, gradually tapering neck.

Occurrence: Goban Spur 6/2 70-72

Genus Lenticulina Lamarck, 1804
Genotype Lenticulites rotulata Lamarck, 1804

Lenticulina ovalis (Reuss) 1845
Pl. 15, Figs 7-9.

1845 Cristellaria ovalis Reuss,p.34,pl.12,fig.19,Pl.13,fig.62.
1941 Lenticulina ovalis (Reuss);Marie,p.99,pl.9,fig.103.

Occurrence: AKS 6.
Remarks: L. ovalis is most distinctive because of its large proloculus leading to uninflated chambers giving it a pyramidal
form. It may well be an extreme form of the *L. rotulata* var. b population.

Lenticulina rotulata var. a

Pl. 15, Figs 10-11.

Pl. 16, Figs 1-6.

Description: The swept back sutures are slightly thickened and raised forming slightly concave chambers. This produces a slight squaring of the chambers in peripheral view.

Occurrence: BSA 3, 4; WND 1-3, 6, 10, 12, 25; CBI 1, 2, 4, 9, 10, 12, 14-16; EGG 1, 2, 4, 7; ABC 1, 3-10; AKS 5, 11-13; BritOil 48/22-1 6.

Remarks: The raised ribs and squaring of the chambers distinguishes *L. rotulata* var. a from *L. rotulata* var. b. In addition, the latter is predominantly thinner when viewing the apertural face.

Lenticulina rotulata var. b

Pl. 16, Figs 7-12.

Pl. 17, Figs 1-12.

Description: The test surface is smooth with a smooth periphery. The degree of enrollment of the test varies considerably as does the height to width ratio. The angle of the test at the periphery is predominantly narrow forming a slight keel.

Occurrence: Goban Spur 6/2 70-72; 26-29; 6/1 30-33; 5/2 13-17; B.P. 93/2-1 1, 4, 8-10; BSA 5, 6, 8, 10, 12; SCQ 8, 12-17, 19-21, 23; WND 1-25; CBI 1-22, 24-26, 28, 30-32, 34-36; EGG 1, 2, 4-11, 13, 14, 16-19, 22,
Remarks: The variability of *L. rotulata* var. *b* would allow the erection of many "species" but such a subdivision would confuse the characters contained within the population.

Lenticulina rotulata var. *c*

Pl. 17, Figs 13-14.

Description: The test is smooth, with a smooth periphery. The test is slightly unrolled.

Occurrence: B.P. 93/2-1 1,5,8,9,12; BSA 8; WND 9,10; CBI 10,12,13; EGG 8; AKS 13.

Remarks: *L. rotulata* var. *c* contains all the features of *L. rotulata* var. *b* but is so unrolled as to warrant separation from the latter.

Lenticulina sp.a

Pl. 18, Figs 1-3.

Description: The test is small with a poorly developed keel. The chambers are markedly depressed giving the test a corrugated appearance.

Occurrence: Goban Spur 5/2 13-17; 5/1 101-106; 76-78.

Remarks: *Lenticulina sp.a* is very distinctive and the specimens present are all of the same size.
Genus Marginulina d'Orbigny, 1826
Genotype Marginulina raphanus d'Orbigny, 1826

Marginulina sp.a
Pl. 18, Figs 4-5.

Description: The sutures are strongly depressed and are subtended to the test at an angle of 40°. The chambers are moderately inflated.

Occurrence: SGQ 14.

Remarks: M. sp.a is very rare in the sections studied.

Genus Marginulinopsis Silvestri
Genotype Marginulinopsis densicostata Thalmann, 1937

Marginulinopsis acuticostata Reuss
Pl. 18, Figs 6-8.

1845 Cristellaria acuticostata Reuss, p.36.
1985 Lenticulina (Marginulinopsis) acuticostata (Reuss); Ball, p.241, pl.5, fig.8.

Occurrence: BritOil 48/22-1 7,8.
Genus *Neoflabellina* Bartenstein

Genotype *Flabellina rugosa* d'Orbigny, 1840

Neoflabellina sp.a

Pl. 19, Fig. 9.

Description: Chambers increase moderately in size on addition with less pronounced sutures in last portion of test.

Occurrence: WND 14; ABC 10

Remarks: *N. sp.a* is very rare and only occurs in the upper levels of the Plenus Marls.

Neoflabellina sp.b

Pl. 18, Figs 10-12.

Description: Chambers increase gradually in size and are moderately inflated. Test is markedly compressed.

Occurrence: 93/2-1 14,15; ABC 10.

Remarks: The specimens recovered were poorly preserved.

Genus *Pandaglandulina* Loeblich and Tappan

Pandaglandulina sp.a

Pl. 18, Figs 13-16.

Description: Chambers are narrow with slight inflation towards their bases, this gives the test a "bullet-like" appearance.
Occurrence: BGG 11; ABC 5.
Remarks: P. sp.a is very rare and forms a very low proportion of the nodosariid population when it is present.

Genus Planularia Defrance in Blainville, 1824
Genotype Peneroplis auris Defrance in Blainville, 1824

Planularia? sp.a
Pl. 19, Fig. 1.
Description: The chambers are indistinct but appear to be of consistant size on addition.

Occurrence: WND 15; CBI 11; ABC 10.
Remarks: P? sp.a is very rare.

Genus Vaginulina d'Orbigny
Genotype Nautilus legumen Linne, 1758

Vaginulina costulata var.a
Pl. 19, Figs 2-4.

1842 Vaginulina costulata Roemer,p.273,pl.7B,fig.3.
1966 Vaginulina costulata Roemer;Butt,p.173,pl.1,fig.11.
1970 Vaginulina costulata Roemer;Owen,pp.129-131,pl.15,fig.5.
Description: The test is broad with curved sides and thin raised sutures which are subtended at an angle of 40°-50° from the periphery.

Occurrence: WND 1, 8-11, 13, 14; CBI 2, 5, 6, 10-14; EGG 2, 4, 5, 7-12, 16; ABC 5, 7.

Remarks: Some slight variation in the degree of broadness of the test is present.

Vaginulina costulata var.b

Pl. 19, Figs 5-7.

1970 *Vaginulina costulata* Roemer; Owen, pp. 129-131, pl. 15, figs 1-3.

Description: The test is very elongate, the chambers may not be completely in contact with all of the previous one giving the test a "stepped" appearance.

Occurrence: WND 7, 12; CBI 3, 5, 10, 11, 13; EGG 2, 4, 8, 10, 11; ABC 8; BritOil 48/22-1 7, 11, 13.

Vaginulina costulata var.c

Pl. 19, Figs 8-10.

Description: The test is broad with strongly raised sutures. The peripheries are straight and the aperture is raised on a circular neck.
Occurrence: WND 6,10,13; CBI 9-11; EGG 1,2,5,8,11,16; ABC 9,10.

Vaginulina costulata var.d
Pl. 19, Fig. 11.

1970 *Vaginulina costulata* Roemer; Owen, pl. 15, figs 6-7.

Description: The sutures are predominantly raised and aligned at an angle of 50 to the periphery. The chambers have, to a varying degree, short aligned striations.

Occurrence: WND 2; EGG 6; ABC 9.

Family Polymorphinidae d'Orbigny, 1839
Subfamily Polymorphininae d'Orbigny, 1839

Genus *Eoguttulina* Cushman and Ozawa, 1930
Genotype *Eoguttulina anglica* Cushman and Ozawa, 1930

Eoguttulina? sp.a
Pl. 19, Fig. 12.

Description: The chambers show rapid expansion on addition.

Occurrence: WND 5,7; CBI 1,2,4; EGG 4.

Remarks: *E? sp.a* is extremely rare and the preservation of the
specimens is poor, thus little comment is possible.

Subfamily Ramulininae Brady, 1884

Genus Ramulina Jones and Wright, 1875

Genotype Ramulina laevis Jones and Wright, 1875

Ramulina aculeata (d'Orbigny), 1840

1840 Nodosaria (Dentalina) aculeata d'Orbigny, p.13, pl.1, figs 2-3.

The morphotypes figured under R. aculeata vary considerably (Cushman, 1936) with little apparent intergrading. Thus the morphotypes encountered in this study have been placed within the framework of R. aculeata but each separate one has been described.

Ramulina aculeata form a
Pl. 19, Figs 14-16.

1950 Ramulina fusiformis Khan, p.272, pl.2, figs.1-2.

1970 Ramulina fusiformis Khan; Owen, pp.140-141, pl.16, figs 10-12.

Description: The test is elongate with broad stolons. The test surface is variously ornamented with randomly positioned pustules.

Ramulina aculeata form b
1970 *Ramulina aculeata* (d'Orbigny); Owen, pp. 139–140, pl. 15, fig. 9.

Description: Bulbous tests with randomly positioned pustules, the stolon opens out to form a wide neck.

Ramulina aculeata form c

Pl. 20, Fig. 1.

Description: Bulbous test with rapidly tapering stolons and coarse pustular ornament.

Ramulina aculeata form d

Pl. 20, Figs 2–3.

Description: Bulbous test with thin circular stolons which may be added obliquely to the line of the test.

Ramulina aculeata form e

Pl. 20, Fig. 4.

Description: Thin test with stolons formed by slight narrowing of the test. The ornament is poorly developed.

Ramulina aculeata form f

Pl. 20, Figs 5–6.

Description: The test is bulbous which gently tapers to wide stolons. The ornament is very coarse and randomly positioned.
Occurrence of R. aculeata; BSA 7; CBI 2,3,5,9-11; BGG 4-6; ABC 1-3,5; BritOil 48/22-1 10,15.

Family Glandulinidae Reuss, 1860
Subfamily Glandulininae Reuss, 1860

Genus Tristix Macfadyen
Genotype Rhabdogonium liasinum Berthelin, 1879

Tristix excavatum (Reuss)
Pl. 20, Figs 7-8.

1862 Rhabdogonium excavatum Reuss, p.91, pl.12, fig.8a-c.
1970 Tristix excavatum (Reuss); Hart, pp.167-168, pl.14, fig.11.

Description: The test is elongate with a slight tapering, the faces are flush or slightly concave.

Occurrence: CBI 4; BGG 3,10,13.

Subfamily Oolininae Loeblich and Tappan, 1981

Genus Oolina d'Orbigny, 1839
Genotype Oolina laevigata Galloway and Wissler, 1927
Oolina sp.a

Pl. 20, Figs 9-12.

Description: Test ovate to sub-ovate with the aperture on a large pronounced neck.

Occurrence: B.P. 93/2-1 4,5,7; BSA 7; ABC 3.

Remarks: The shape of the test varies slightly and there may be a micro-ornament on the test surface.

Superfamily Buliminacea Jones, 1875

Family Turrilinidae Cushman, 1927

Subfamily Turrilininae Cushman, 1927

Genus Praebulimina Hofker, 1953

Genotype Bulimina ovulum Reuss, 1844

Praebulimina sp.a

Pl. 20, Figs 13-16.

Description: The chambers are elongate and moderately bulbous with depressed sutures. The aperture is very small.

Occurrence: B.P. 93/2-1 5,8,9; SGQ 8,13.

Remarks: All the specimens of P. sp.a were small.

Superfamily Globigerinacea Carpenter, Parker and Jones, 1862

Family Heterohelicidae Cushman, 1927
Subfamily Guembelitriinae Montanaro Gallitelli, 1957

Genus Guembelitria Cushman

Genotype Guembelitria cretacea Cushman, 1933

Guembelitria cenomanica (Keller)

Pl. 21, Figs 1-10.

1935 Guembelina cenomanica Keller, p. 547-8, table 3, figs. 13, 14.
1940 Guembelitria harrisi Tappan, p. 115, pl. 19, fig. 2a-b.

Occurrence: Goban Spur 6/2 70-72; 6/1 30-33; SCA; B.P. 93/2-1
4, 6, 8; BSA 7, 8; SQQ 2, 9, 12, 13, 17, 23; WND 2-5, 7-15; CBI 2-5, 7-11,
13, 14, 17; EGG 2, 3, 6-8, 11-13; ABC 1, 2, 4, 6.
Remarks: There is some variation in the development of the apertural lip with some forms exhibiting thicker more robust lips. The extent of pustule ornament is highly variable but in most forms it is absent on the last formed chamber. Keller incorrectly illustrates G. cenomanica on table 3, figures 13, 14 as Reussia spinulosa.

Genus Guembelitriella Tappan

Genotype Guembelitriella graysonensis Tappan

Guembelitriella sp.a

Pl. 21, Fig. 11.

Description: The latter stage of randomly positioned chambers is
comprised of moderately inflating chambers. The ornamentation is the same as for *G. cenomanana* and the early triserial stage is identical to the equivalent portion of test development of *G. cenomanana*. *G. sp.a* occurs in a population of *G. cenomanana* and thus may well be an aberrant or ecophenotypic variant of the latter.

Occurrence: SGQ 14; ABC 1.

Subfamily Heterohelicinae Cushman, 1927

Genus *Heterohelix* Ehrenburg, 1843

Genotype *Spiroplecta americana* Ehrenburg, 1844

Heterohelix globulosa (Ehrenburg)

Pl. 22, Figs 14-16.

1840 *Textularia globulosa* Ehrenburg, p.135,pl.4,figs 2b,4b,5b,7b,8b.

1967 *Heterohelix globulosa* (Ehrenburg);Pessagno,p.260,pl.87,figs 5-9,11-13.

Occurrence: Goban Spur 5/1 76-78; B.P. 93/2-1 11; SGQ 8; CBI 21, 22,24,26,32-36; EGG 33,34; ABC 21; AKS 1,12.

Remarks: *H. globulosa* is very close to *H. moremani* (Cushman) in that transitional forms exist within the heterohelixid population. These comprise forms with moderately inflated chambers and less pronounced depressed sutures.
Heterohelix moremani (Cushman)

Pl. 22, Figs 1-13.

1938 *Guerbelina moremani* Cushman, p.10, pl.2, figs 1-3.

1967 *Heterohelix moremani* Cushman; Pessagno, pp.260-1, pl.89, figs 1-2.

Occurrence: Goban Spur 6/2 70-72, 26-29; 6/1 30-33; 5/1 76-78, 7-10. B.P. 93/2-1 4,11; BSA 3-7; SQQ 2,3,7-9,10-21,23; WND 2-6,11-13,15, 16,21; CBI 1-5,7-14,16,17; EGG 2,3,5,7; ABC 1,3,4,6-12,14,21; AKS 1-4,6.

Remarks: *H. moremani* forms the bulk of the late Cenomanian heterohelixid population. The ornamentation varies considerably though much of the "heaviest" ornament may be due to post-depositional syntactical overgrowth of calcite.

The heterohelixid population exhibits a progressive change in ornamentation (Pl.22), the pre-OAE population shows random pustules that may be concentrated on single chambers or the earlier portion of the test. The post-OAE population yields morphotypes of *H. moremani* and *H. globulosa* but with varying degrees of costae. These consist of orientated lines of pustules to well-developed costae running the length of the test.

Family Planomaliniidae Bolli, Loeblich and Tappan, 1957

Genus *Globigerinelloides* Cushman and ten Dam, 1948
Genotype *Globigerinelloides algeriana* Cushman and ten Dam, 1948.

Globigerinelloides bentonensis (Morrow)

Pl. 23, Figs 1-5.

1934 *Anomalina bentonensis* Morrow, p. 201, pl. 30, fig. 4a-b.

1977 *Globigerinelloides bentonensis* (Morrow); Carter and Hart, pp. 27-8, pl. 1, fig. 11; pl. 2, figs 19-20.

Occurrences: Goban Spur 6/2 70-72, 26-29; 5CCA; B.P. 93/2-1 5; BSA 7; SGQ 17(?); WND 3, 6, 18, 21-28; CBI 7; EGG 4, 8-10, 14.

Remarks: The size of *G. bentonensis* varies, with the extremes illustrated (Pl. 22, Figs 1-5), this has been noted many times (reviewed Carter and Hart, 1977). The low numbers found means that little comment can be made on the relative merits of *G. caseyi* and *G. bentonensis*.
Family Rotaliporidae Sigal, 1958

Subfamily Hedbergellinae Loeblieh and Tappan, 1961

Genus Favusella Michael, 1973

Genotype Globigerina washitensis Carsey

Favusella washitensis (Carsey)

Pl. 25, Fig. 2.

1926 Globigerina washitensis Carsey, p.44, pl. 7, fig. 10.

1985 Favusella washitensis (Carsey); Caron, p. 45, fig. 25, no. 25, 26a-b.

Occurrence: SGQ 6, 7.

Remarks: F. washitensis was only recorded from Shapwick Grange Quarry and identified in thin section.

Genus Hedbergella Bronniman and Brown

Genotype Anomalina lorneiana d’Orbigny var. trocoidea

Gandolfi

The genus Whiteinella Pessagno has not been adopted in this study as many of the forms are of a transitional nature (H. delrioensis - H. aprica - "H". archaeocretacea) and many of the generic characters are not completely developed. In particular, the
wide umbilicus and portici. Thus these forms have been designated under "Hedbergella".

"Hedbergella" aprica (Loeblich and Tappan)
Pl. 23, Figs 6-8.

1961 Ticinella aprica Loeblich and Tappan, p.292,pl.4,figs 14-16.
1979 Whiteinella aprica (Loeblich and Tappan); Robaszynski and Caron, pp.157-160,pl.32,figs la-c,2a-c.

Occurrence: Goban Spur 5/2 13-17; 5/1 101-106, 76-78, 7-10; B.P. 93/2-1 12,14; BSA 9-13; SGQ 7-11,15-23; WND 2,4-12,22; CBI 3-5,7,9,10,19,20,22,24,32,33; EGG 5,8,9,11-17,19,20,28-31,34; ABC 2,3,5-14,16,21; AKS 1,2,3,4,6,7,10,12; BritOil 48/22-1 16-19.

Remarks: "H". aprica is represented in the pre-OAE hedbergellid population but the specimens are smaller than H. aprica sensu stricto with a slightly higher trochospire. Post-OAE H. aprica sensu stricto is prevalent with a large umbilicus and low trochospire. "H". aprica is probably the precursor to "H". archaeocretacea (Pessagno).

"Hedbergella" archaeocretacea (Pessagno)
Pl. 23, Figs 9-12.

1967 Whiteinella archaeocretacea Pessagno,p.298,pl.51,figs 2-4; pl.54,figs 19-25;pl.100,fig.8.
1979 Whiteinella archaeocretacea Pessagno; Robaszynski and Caron, pp.161-168,pl.33,figs la-c,2a-c,3a-c;pl.34,figs la-c,2a-c.
Occurrence: Goban Spur 5/2 13-17; 5/1 101-106, 76-78, 7-10; BSA 9-11; SGQ 15-17, 19, 20; WND 22; CBI 24, 25, 28, 30, 32-35; BGG 27, 32-33; ABC 21; AKS 1-4, 6, 7, 10, 12; BritOil 48/22-1 19.

Remarks: The development of "H". archaocretacea from "H". aprica stock is rapid. The delicate portici are poorly preserved (if present in the first place). The ornament is comprised of randomly positioned pustules, though to some extent they are concentrated along the periphery.

Hedbergella delrioensis (Carsey)
Pl. 24, Figs 1-11.

1926 Globigerina cretacea d’Orbigny var. delrioensis Carsey, p. 43.
1937 Globigerina infracretacea Glaessner, p. 28.
1977 Hedbergella delrioensis (Carsey); Carter and Hart, p. 35, pl. 4, figs 1-3.

Occurrence: Goban Spur 6/2 70-72, 26-29; 6/1 30-33; 5CCA; B.P. 93/2-1 1, 6-15; BSA 1, 2-8, 10, 11; SGQ 1, 3, 6-9, 1-13, 15-22; WND 1-12, 14, 16; CBI 1-19; BGG 1-6, 8-11, 13, 14, 20, 26; ABC 1-14, 19, 21; AKS 1, 2, 4, 6; BritOil 48/22-1 1, 4, 5-7, 11-13, 15, 16, 19.

Remarks: H. delrioensis exhibits variability in chamber size, their rate of increase and ornament. In some individuals the ornament is concentrated on the umbilical surface of the first formed chambers of the last whorl. The pustules may be coalesced into thin stringers
which are very broadly aligned parallel to the periphery. The density and distribution of pores varies but no systematic analysis has been undertaken. *H. delrioensis* forms the "middle" morphotype in the variability of the hedbergellid population (in terms of height of trochospire, test size and chamber shape).

"Hedbergella" brittonensis Loeblich and Tappan
Pl. 23, Figs 13-14.

1934 *Globigerina cretacea* d'Orbigny; Morrow, p.198, pl.30, figs 7, 8, 10a-b.
1977 *Hedbergella brittonensis* Loeblich and Tappan; Carter and Hart, pp.31-2, pl.4, figs 13-15.

Occurrence: Goban Spur 6/2 70-72, 26-29; 6/1 30-33; 5/1 7-10; B.P. 93/2-1 4, 5, 8; BSA 3-7; SGQ 8, 11, 15-17, 19, 20, 23; WND 3, 4, 10; CBI 9-11, 13, 14, 16; BGG 19, 20, 22, 25, 27, 30; ABC 3-5, 7, 9, 21; AKS 2, 4, 13; BritOil 48/22-1 5, 10, 12, 13, 16.

Remarks: *H. brittonensis* forms a minor part of the hedbergellid population when present. It exhibits considerable variation in size, but each sample population is consistent.

Hedbergella planispira (Tappan)
Pl. 24, Figs 12-14.

1940 *Globigerina planispira* Tappan, p.12, pl.19, fig.12.
1977 *Hedbergella planispira* (Tappan); Carter and Hart, pp. 36-37, pl. 4, figs 4-6.

Occurrence: B.P. 93/2-1 2, 4, 5, 9; SGQ 17, 18; CBI 4, 14; ABC 8, 11, 12; BritOil 48/22-1 2-10, 12, 13.

Remarks: *H. planispira* is not a constant part of the hedbergellid population but when it is present it forms a major part. This implies that *H. planispira* is an ecophenotypic variant of the standing hedbergellid stock possibly related to *H. delrioensis*.

Hedbergella simplex (Morrow)

Pl. 25, Fig. 1.

1934 *Hastigerinella simplex* Morrow, pp. 198-199, pl. 30, fig. 6a-b.

1977 *Hedbergella amabilis* Loeblich and Tappan; Carter and Hart, pp. 29-30, pl. 3, figs 22-23.

1979 *Hedbergella simplex* (Morrow); Robaszynski and Caron, pp. 145-150, pl. 29, figs 1a-c, 2a-c, 3a-c; pl. 30, figs 1a-c, 2a-c.

Occurrence: B.P. 93/2-1 3, 4, 5, 7; BSA 6; WND 15, 17, 18, 22; CBI 9-11, 13, 14, 16; ABC 8.

Remarks: In a similar manner to *H. planispira*, *H. simplex* does not form a consistent component of the hedbergellid population and thus it may also be an ecophenotypic variant.

Genus *Helvetoglobotruncana* Reiss, 1957
Genotype *Globotruncana helvetica* Bolli

Helvetoglobotruncana helvetica (Bolli)

Pl. 25, Figs 11-14.

1945 *Globotruncana helvetica* Bolli, p.226, pl.9, figs 6-8, text-fig.1 (9-12).

1977 *Praeglobotruncana helvetica* (Bolli); Carter and Hart, pp.39-40, pl.3, figs 16-17.

1979 *Praeglobotruncana helvetica* (Bolli); Robaszynski and Caron, pp.39-42, pl.46, figs 1a-c, 2a-c.

1985 *Helvetoglobotruncana helvetica* (Bolli); Caron, p.60, fig.30, nos. 7.8a-c.

Occurrence: Goban Spur 5/1 76-78, 7-10; B.P. 93/2-1 15; SGQ 15, 16, 19, 23; CBI 36.

Remarks: The N.W. European *H. helvetica* is not as well developed in terms of size of test and flattening of the spiral surface as forms described from lower latitudes. This may be the result of it being towards the limit of its distribution.

Helvetoglobotruncana praehelvetica (Trujillo)

Pl. 25, Figs 3-10.

1960 *Rugoglobigerina praehelvetica* Trujillo, pp.340-341, pl.49, figs 6a-c.
1979 **Praeglobotruncana praehelvetica** (Trujillo); Robaszynski and Caron, pp. 43-46, pl. 47, figs 1d, 2c.

1985 **Helvetoglobotruncana praehelvetica** (Trujillo); Caron, p. 60, fig. 30, nos. 9a-c, 10a-c.

Occurrence: Goban Spur 5/2 13-17; 5/1 101-106, 76-78, 7-10; BSA 9, 11-13; SQQ 17, 18; WND 19, 21-26; CBI 23, 24, 27-32, 35, 36; EGG 23-26, 28-30, 33; AKS 7-10, 12.

Remarks: *H.* praehelvetica is thought to be the ancestor of *H.* helvetica (Bolli) (Hart and Bailey, 1979) with which the author agrees. Thus the differentiation between the two species is equivocal.

Genus Praeglobotruncana Bermudez

Genotype Globorotalia delrioensis Plummer

Praeglobotruncana delrioensis (Plummer)

Pl. 26, Fig. 1.

1931 **Globorotalia delrioensis** Plummer, p. 199, pl. 13, fig. 2a-c.

1977 **Praeglobotruncana delrioensis** (Plummer); Carter and Hart, pp. 38-39, pl. 4, figs 22-24.

1979 **Praeglobotruncana delrioensis** (Plummer); Robaszynski and Caron, pp. 29-32, pl. 43, figs 1a-c, 2a-c.

Occurrence: B.P. 93/2-1 1; SQQ 6.

Remarks: The differentiation of the species within **Praeglobotruncana**
based on the height of the trochospire (progressively increasing through \textit{P. delrioensis} - \textit{P. stephani} (Gandolfi) - \textit{P. gibba} (Klaus)) has been shown to be fallacious Klaus, (1960), as intermediate forms are found between all three morphotypes. Unfortunately, Klaus did not illustrate the position of the forms against time, as such a treatment would have shown that the increase in the height of the spire (and size) was a developing feature within the moving population.

\textbf{Praeglobotruncana gibba} Klaus

Pl. 26, Figs 2-3.

1960 \textit{Praeglobotruncana stephani} var. gibba Klaus, p.306, text-fig.1.
1979 \textit{Praeglobotruncana gibba} Klaus; Robaszynski and Caron, pp.33-38, Pl.44,figs.1a-c,2a-c; Pl.45,figs.1a-c.2a-c.

\textbf{Occurrence: Goban Spur 6/2 70-72, 26-29; 6/1 30-33; SGQ 7.}
\textbf{Remarks:} \textit{P. gibba} forms the end member of the \textit{P. delrioensis} - \textit{P. stephani} - \textit{P. gibba} plexus. \textit{P. gibba} has a restricted development across the Anglo-Paris Basin (see Chapter 7) and thus forms the least significant portion of the population.

\textbf{Praeglobotruncana stephani} (Gandolfi)

Pl. 26, Figs 4-10.

1942 \textit{Globotruncana stephani} Gandolfi, p.130, pl.3, figs 4-5; pl.4, figs
1977 *Praeglobotruncana stephani* (Gandolfi); Carter and Hart pp. 40-41, pl. 4, figs 16-21.

1979 *Praeglobotruncana stephani* (Gandolfi); Robaszynski and Caron, pp. 47-50, pl. 48, figs la-c, 2a-b, 3a-b.

Occurrence: Goban Spur 6/2 70-72, 26-29; 6/1 30-33; B.P. 93/2-1 1, 7, 8, 11; BSA 5-7; SQQ 7, 8, 12, 15, 16, 19; WND 1-5, 7, 9-12, 14, 16-19; CBI 1-18; EGG 1-6, 8-12, 19; ABC 1, 2, 4-9, 11, 12; BritOil 48/22-1 9-16.

Remarks: *P. stephani* forms the middle morphotype in the *P. delrioensis - P. stephani - P. gibba* plexus. It is ubiquitous across the sections studied (Chapter 5) and thus forms the bulk of the praeglobotruncanid population.

Genus *Dicarinella* Porthault

Genotype *Globotruncana indica* Jacob and Sastry, 1950

Dicarinella algeriana (Caron)

Pl. 27, Figs 1-3.

1966 *Praeglobotruncana algeriana* (Reuz); Caron, pl. 2, fig. 5a-c.

1979 *Dicarinella algeriana* (Caron); Robaszynski and Caron, pp. 57-60, pl. 50, figs 1a-d, 2a-d.

Occurrence: Goban Spur 6/2 70-72, 26-29; 6/1 30-33; 50CA; 5/2 13-17;
5/1 101-106, 76-78, 7-10; B.P. 93/2-1 12; BSA 5-7; SQG 8,14-16,19,20,23; WND 9,11,14-18,22,23,25,28; CBI 4,5,14-18,20,21, 25,26,32; BGG 5,9-14,19,20,30,32,33; ABC 3-8,10,11,21; AKS 1-5,8; BritOil 48/22-1 18.

Remarks: The differentiation of the early forms of D. algeriana from P. stephani is problematical as the development of the keels is very variable with many forms showing only two poorly differentiated keels.

Dicarinella hagni (Scheibnerova)

Pl. 27, Figs 4-10.

1962 *Globotruncana hagni* Scheibnerova, pp.219-221, text-fig.6a-c.

1979 *Dicarinella hagni* (Scheibnerova); Robaszynski and Caron, pp.79-86, pl.56, figs 4a-c; pl.57, figs 1a-c, 2a-d.

Occurrence: Goban Spur 6/2 70-72, 26-29; 6/1 30-33; SCCA; 5/2 13-17; 5/1 101-106, 76-78, 7-10; B.P. 93/2-1 5,7,8,10,12; BSA 7,12; SQG 8, 14-16,19-21,23; WND 9,11,13-19,22,23; CBI 7-27; BGG 6,9,21,24,25, 28,31-33; ABC 3,6,7,9-14,21; AKS 2-12; BritOil 48/22-1 18,19.

Remarks: *D. hagni* exhibits variability in the shape of the chambers and the degree of spacing between the keels. The early forms have indistinct closely spaced keels.

Dicarinella imbricata (Mornod)

Pl. 27, Figs 11-12.
1950 *Globotruncana imbricata* Mornod, p. 589, text-fig. 5, 3a-d.

1979 *Dicarinella imbricata* (Mornod); Robaszynski and Caron, pp. 87-92, pl. 58, figs 1a-c, 2a-d; pl. 59, figs 1a-c, 2a-c.

Occurrence: Goban Spur 6/2 70-72, 26-29; 6/1 30-33; 5CCA; 5/2 13-17; 5/1 101-106, 76-78, 7-10; SGD 8, 9, 14-16, 19-21; WND 9, 11, 13-19; CBI 7-10, 13-17, 25-27, 36; BSG 6, 12-15, 27; ABC 10-12, 14; AKS 2-5, 8-10, 12; BritOil 48/22-1 18, 19.

Remarks: *D. imbricata* is derived from *D. hagni* by the development of offset keels.

Genus Marginotruncana Hofker, 1956

Genotype Rosalina marginata Reuss, 1845

Marginotruncana marginata (Reuss)

Pl. 28, Figs 1-4.

1845 *Rosalina marginata* Reuss, p. 36, pl. 8, figs 54a-b, 74a-b.

1979 *Marginotruncana marginata* (Reuss); Robaszynski and Caron, pp. 107-114, pl. 63, figs 1a-c, 2a-d; pl. 64, figs 1a-c, 2a-d.

Occurrence: AKS 9, 10, 12.

Remarks: *M. marginata* is very rare in this study and the umbilical thickenings are poorly developed. The designation of *M. marginata* used is the one established by Robaszynski and Caron, 1979, though
there may well be some confusion in the neotype they adopted from Jirova (1956) between M. marginata and M. canaliculata (Reuss) (Bailey, 1978).

Marginotruncana sp. cf. M. sigali (Reichel)
Pl. 28, figs. 5-8.

1950 Globotruncana (Globotruncana) sigali Reichel, pp. 610-612, text-figs 5-6, pl. 16, fig. 7.
1979 Marginotruncana sigali (Reichel); Robaszynski and Caron, pp. 141-146, pl. 72, fig. 1a-c, 2a-b; pl. 73, fig. a-f.

Occurrence: SQQ 20; CBI 36.
Remarks: M. sp. cf. sigali is extremely rare in this study and the specimens small and poorly preserved which makes its identification problematical.

Subfamily Rotaliporinae Sigal, 1958

Genus Rotalipora Brotzen, 1942
Genotype Rotalipora turonica = Globorotalia cushmani
Morrow, 1934

The rotaliporid population shows variation in its relative percentage of the planktonic population across the sections studied. In addition, the relative dominance of the component species within the rotaliporid population and the size of specimens varies. This is
detailed and discussed in Chapter 5.

Rotalipora appenninica (Renz)

Pl. 28, Fig. 9.

1936 **Globotruncana appenninica** Renz, p.13, text-fig.2.

1979 **Rotalipora appenninica** (Renz); Robaszynski and Caron, pp.59-64, pl.4, figs 1a-c, 2a-c, 3a-c; pl.5, figs 1a-c, 2a-c, 3a-c.

Occurrence: SGQ 7; BritOil 48/22-1 8.

Remarks: *R. appenninica* is rare and is only present from Shapwick Grange Quarry. The specimens were identified in thin section. The forms present show very poor keel development.

Rotalipora cushmani (Morrow)

Pl. 28, Figs 10-14.

Pl. 29, Figs 1-3.

1934 **Globorotalia cushmani** Morrow, p.199, pl.31, figs 2a-b, 4a-b.

1977 **Rotalipora cushmani** (Morrow); Carter and Hart, pp.41-44, pl.2, fig.18; pl.4, figs 7-9.

1979 **Rotalipora cushmani** (Morrow); Robaszynski and Caron, pp.69-74, pl.7, fig.1a-c; pl.8, figs 1a-c, 2a-c.

Occurrence: Goban Spur 6/2 70-72, 26-29; 6/1 30-33; B.P. 93/2-1 1,6; BSA 1,4-7; SGQ 8; WND 1-13; CBI 1-13; BGG 1-5,8-12; ABC 1-10;
BritOil 48/22-1 11,13-16.

Remarks: *R. cushmani* forms the dominant part of the rotaliporid population and increasingly so into the Anglo-Paris Basin (see 5.14).

Rotulipora deeki (Franke)

Pl. 29, Figs 4-6.

1925 *Rotulipora deeki* Franke, pp. 90-91, text-fig. 7a-c.
1979 *Rotulipora deeki* (Franke); Robaszynski and Caron, pp. 75-80, pl. 9, figs 1a-c, 2a-c; pl. 10, figs 1a-c, 2a-c.

Occurrence: Goban Spur 6/2 70-72, 26-29; 6/1 30-33.

Remarks: *R. deeki* forms the minor portion of the rotaliporid population and significantly only from Goban Spur.

Rotulipora greenhornensis (Morrow)

Pl. 29, Figs 7-9.

1934 *Globoquadratia greenhornensis* Morrow, p. 199, pl. 39, fig. 1.
1977 *Rotulipora greenhornensis* (Morrow); Carter and Hart, pp. 44-45, pl. 4, figs 10-12.
1979 *Rotulipora greenhornensis* (Morrow); Robaszynski and Caron, pp. 85-90, pl. 12, figs 1a-c, 2a-c; pl. 13, figs 1a-c, 2a-c.

Occurrence: Goban Spur 6/2 70-72, 26-29; 6/1 30-33; B.P. 93/2-1
Remarks: *R. greenhornensis* decreases in influence as part of the
rotaliporid population into the Anglo-Paris Basin (see 5.14).

Rotalipora sp. cf. R. reicheli Mornod

Pl. 29, Fig. 10.

1950 Globotruncana (Rotalipora) reicheli Mornod, p. 583, fig. 5
(lVa-c), fig. 6(1-6), pl. 15, figs 2a-p, 3-8.

1979 Rotalipora reicheli Mornod; Robaszynski and Caron, pp. 99-106,
pl. 16, fig. la-c; pl. 17, fig. la-c; pl. 18, figs la-c, 2a-c.

Occurrence: Shapwick Grange Quarry 5.

Remarks: *R. sp. cf. R. reicheli* is only present in thin section. The
specimens are very low trochospired, with angular chambers and are
poorly preserved thus their identification is problematical.

Superfamily Cassidulinacea d'Orbigny, 1839

Family Pleurostomellidae Reuss, 1860

Subfamily Pleurostommelinae Reuss, 1860

Genus **Pleurostomella** Reuss, 1860

Genotype **Dentalina subnodosa** Reuss, 1851

Pleurostomella subnodosa (Reuss)
Pl. 29, Figs 11-14.

1851 Dentalina subnodosa Reuss, p. 24.

1964 Pleurostomella subnodosa (Reuss); Loeblich and Tappan, C275-276, pl. 594, fig. la-b.

Occurrence: Goban Spur 5/1 101-106.

Remarks: The degree of inflation of the chambers on addition varies slightly, but the population from Goban Spur is of a consistent size.

Family Alabaminidae Hofker, 1951

Genus Gyroidina d'Orbigny

Genotype Gyroidina orbicularis Cushman, 1927

Gyroidina sp.a

Pl. 29, Figs 15-16.

Description: The test increases moderately in size on chamber addition. The periphery is well-rounded in cross-section but in umbilical view there is a slight angle between chambers.

Occurrence: Goban Spur 6/2 70-72.

Remarks: G. sp.a is only found from Goban Spur and forms a very small part of the benthonic assemblage.

Family Osangulariidae Loeblich and Tappan, 1964
Genus *Gyroidinoides* Brotzen, 1942

Genotype *Rotalina nitida* Reuss, 1844

Gyroidinoides parva (Khan)

Pl. 30, Fig. 1.

1898 *Rotalina soldanii* d'Orbigny var. *nitida* Reuss; Chapman, pp. 9-10, pl. 2, fig. 2a-c.

1970 *Gyroidinoides parva* (Khan); Hart, pp. 208-209, pl. 22, figs 5-7.

Occurrence: WND 4; CBI 7; ABC 2,5; BritOil 48/22-1 13,16.

Remarks: *G. parva* only forms a very small part of the benthonic population when present.
Family Anomaliniidae Cushman, 1927
Subfamily Anomaliniinae Cushman, 1927

Genus Gavelinella Brotzen, 1942
Type species Discorbina pertusa Marsson, 1878

Gavelinella baltica Brotzen
Pl. 30, Figs 2-7.

1942 Gavelinella baltica Brotzen, p.50,pl.1,fig.7.
1977 Gavelinella baltica Brotzen; Carter and Hart, p.46,pl.1, figs 36-38.

Occurrence: B.P. 93/2-1 5; SGQ 3,6; WND 2,3,5,8,9,11; CBI 2,4-6, 9; EGG 1,2,4,6,8; ABC 1-3,5-8; BritOil 48/22-1 4.

Remarks: G. baltica is very distinctive and is usually noticeably larger than G. cenomanica (Brotzen) and G. intermedia (Berthelin) with which it occurs. It is derived in the early Cenomanian from G. intermedia (Carter and Hart, 1977).

Gavelinella berthelini (Keller)
Pl. 30, Figs 8-11.

1967 *Gavelinella berthelini* (Keller); Fuchs, p. 336, pl. 18, fig. 8a-c.

Occurrence: B.P. 93/2-1 1-3, 5-8, 10-12, 14, 15; BSA 4, 6, 7, 8, 10-12; SGQ 8-18; WND 11, 12, 14, 16-21; CBI 11-24, 26-28, 34-36; EGG 10-22, 24-26, 28-34; ABC 2-4, 6, 7, 9, 11-21; AKS 1-9; BritOil 48/22-1 11, 14-16, 18-19.

Remarks: *G. berthelini* has a much larger boss than *G. reussi* (Khan) from which it is derived. These species form a more significant part of the gavelinellid population than alluded to by others (e.g. Hart and Swiecicki, 1987). *G. tourainensis* Butt is thought to be an ecophenotypic form of *G. berthelini*.

Gavelinella cenomanica (Brotzen)

Pl. 30, Figs 12-15.

1942 *Cibicioloides* (*Cibicides*) *cenomanica* Brotzen, p. 54, pl. 2, fig. 2a-c.

Occurrence: B.P. 93/2-1 1-3, 5-9; BSA 3; WND 1-10; CBI 1-6, 8-9; EGG 1, 2, 4-9; ABC 2-6, 8; BritOil 48/22-1 1-3, 5-8, 11, 13, 14, 16.

Remarks: The degree of development of the umbilical rim is variable.
Gavelinella intermedia (Berthelin)

Pl. 31, Figs 1-3.

1880 Anomalina intermedia Berthelin, p.67, pl.4, fig.14a-b.
1977 Gavelinella intermedia Berthelin; Carter and Hart, p.48, pl.1, figs 33-35.

Occurrence: Goban Spur 6/2 70-72; B.P. 93/2-1 1-8; BSA 3,4,6; SGQ 8; WND 1-11; CBI 1-6,8-10; BGG 1,2,4-9; ABC 1-11; BritOil 48/22-1 1,2,4-8,11-17.

Remarks: G. intermedia forms the major part of the pre-OAE gavelinellid population.

Gavelinella reussi (Khan)

Pl. 31, Figs 4-5.

1863 Rosalina complanata Reuss var. Reuss, p.86, pl.11, fig.3a-c.
1970 Gavelinella reussi (Khan); Hart, pp.213-214, pl.23, figs 7-9.

Occurrence: Goban Spur 6/2 70-72; B.P. 93/2-1 1-2; BSA 3,4; WND 1,3-13; CBI 1-12; BGG 1,2,4-11; ABC 1,3,4,6,10-14; BritOil 48/22-1 1-3,5,8,9,11-13,17.

Remarks: G. reussi is the ancestor of G. berthelini.
Genus Lingulogavelinella Malapris, 1965

Genotype Lingulogavelinella albiensis Malapris, 1965

Lingulogavelinella globosa (Brotzen)
Pl. 31, Figs 7-9.

1942 Anomalainoides globosa Brotzen, p. 58, pl. 2, fig. 6a-c.
1977 Lingulogavelinella globosa (Brotzen); Carter and Hart, p. 49, pl. 1, figs 12-14.

Occurrence: B.P. 93/2-1 4, 8, 9, 11, 12, 14; BSA 5-8, 10-12; SQQ 8, 9, 12-15, 18; WND 1-7, 10-16; CBI 1-3, 5, 7-19; BGG 6-20, 28, 31-34; ABC 3, 6-9, 11-AKS 4, 8, 9; BritOil 48/22-1 12, 14.

Remarks: L. globosa shows a rapid increase in size and numbers after the extinction of G. baltica, G. intermedia and G. cenomanica.

Lingulogavelinella aumalensis (Sigal)
Pl. 31, Figs 10-11.

1952 Anomalina aumalensis Sigal, p. 27, text-fig. 26.
1970 Lingulogavelinella aumalensis (Sigal); Owen, pp. 200-201, pl. 30, figs 10-12.

Occurrence: B.P. 93/2-1 10-12; WND 23-29; CBI 18, 20, 24, 26, 29, 32,
Incerti ordinis

Family Calicispherulidae Bonet, 1956

Genus Pithonella Lorenz, 1902

Pithonella ovalis (Kaufmann)

Pl. 31, Figs 12-13.

1865 Lagen ovalis Kaufmann, p. 196-197, text-fig. 107a-b.
1902 Pithonella ovalis (Kaufmann); Lorenz, pp. 13-14, pl. 9, fig. 2.
1976 Pithonella ovalis (Kaufmann); Bein and Reiss, p. 85, pl. 1, figs 3-8; pl. 2, figs 1-6.

Remarks: P. ovalis is sporadically present but occurs in great numbers when present.

Description: Calcareous (?) spheres with chipped (striated) surface.

Pl. 31, Figs 14, 15.

Occurrence: 93/2-1 1090'.

Remarks: The exact composition has not been established. The
randomly oriented striae may well be post-depositional damage.

Incertae cedis

Description: Calcareous subconical protruberance formed by the cementation of small calcareous (?) grains.

Pl. 31, Fig. 16.

Occurrence: Abbots Cliff 9.

Remarks: It only appears in ABC9 but in large numbers (>30).
Chapter 5: Biostratigraphical implications, methods of basinal correlation and pre-Oceanic Anoxic Event palaeoenvironmental analysis.

5.1. Previous work.

Previous biostratigraphical studies of the Cenomanian and Turonian of southern England (Hart, 1970, 1982b; Owen, 1970; Carter and Hart, 1977), have integrated the planktonic and benthonic foraminifera. In addition, the European Working Group on Foraminifera has established a series of Cretaceous planktonic foraminiferal zones (Robaszynski and Caron, 1979). Comparison with the above has been made in this study.

5.2. The existence world-wide of organic-rich shales of late Cenomanian age is well documented (see Schlanger et al., 1987, for a recent review). This Cenomanian - Turonian Oceanic Anoxic Event is marked by a positive excursion in the $\delta^{13}C$ curve due to the preferential extraction of ^{12}C by marine plankton whose organic components were not recycled because of enhanced organic carbon burial (Arthur et al., 1987).

5.3. Goban Spur (Figures 3.1 and 5.1).

5.3(1). Lithostratigraphy.
<table>
<thead>
<tr>
<th>Species</th>
<th>0.5</th>
<th>1.0</th>
<th>2.0</th>
<th>2.5</th>
<th>3.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arenobullimella advena</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eggerellina brevis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gavellinella intermedia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gavellinella reussi</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gyroldo sp. a</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lagena sp. a</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lenticulina rotulata var. b</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marssonella trochus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marssonella trochus var. oxyconae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nodosaria sp. a</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trilaxia macfadyeni</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lenticulina sp. a</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marssonella trochus var. turris</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pseudobolivina sp. a</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tritaxia tricusata</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pleurostomella subnodosa</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Planktonic

- Dicarinella algeriana
- Dicarinella bagni
- Dicarinella imbricata
- Globigerinelloides bentonensis
- Guembilithra canomana
- Hedbergella brittonensis
- Hedbergella derioensis
- Heterohelix moremani
- Praeglobotruncana globa
- Praeglobotruncana stephani
- Rotallpora cushmani
- Rotallpora deeki
- Rotallpora greenhornensis
- "Hedbergella aprca"
- "Hedbergella archaeocretacea"
- Helvetoglobotruncana praehelvetica
- Heterohelix globulosa

Benthonic

- Praeglobotruncana gibba
- Praeglobotruncana stephani
- Praeglobotruncana stephani
- Praeglobotruncana stephani

Number of specimens

- 1000
- 500
- 250
- 100
- 50
- 25
- 10

Figure 5.1 Foraminifera from Goban Spur, Site 551 Leg 80
The basal sedimentary sequence recovered from the Goban Spur (DSDP Leg 80), has been described by Graciansky et al. (1985). It comprises 4.1m of nannofossil chalk (Core 6; Figure 5.1), which underlies an unknown thickness of poorly recovered, partially laminated black shale. This, in turn, is overlain by a further 4.1m of nannofossil chalk (Core 5; Figure 5.1).

5.3(ii). 13C isotope curve.

The total org.C curve from the Goban Spur shows a marked deflection (Arthur et al., 1987), but it is not shown against a lithological log, thus its exact position cannot be illustrated.

5.3(iii). Macropalaeontological biostratigraphy.

No fragments of any macropalaeontological fauna were recorded (Graciansky et al., 1985).

5.3(iv). Foraminiferal biostratigraphy.

The presence of _R. cushmani_ and _R. greenhornensis_ in Core 6 (figure 5.1), is taken to confirm a late Cenomanian age for this part of the succession, while the occurrence of _H. praehelvetica_ and _H. archaeocretacea_ in Core 5 (Figure 5.1), indicates an early Turonian age (Graciansky et al., 1985; Hart, 1985, 1987b).
5.3(V). Foraminiferal assemblage.

The planktonic foraminiferal assemblage is dominated by rotaliporids (R. cushmani 45%; R. greenhornensis 15%; R. deecki 3%), with praeoglobotruncanids/dicarinellids (29%) and hedbergellids (8%) comprising the remainder. The differentiation of the praeoglobotruncanid and dicarinellid population is problematical as many of the forms are transitional. The planktonic assemblage shows little change in the relative proportion of these three populations prior to the OAE. During this interval the benthonic population forms a very small part (<2%) of the gross foraminiferal population. It is comprised of a limited assemblage which show a marked size consistency within their respective populations (Figure 5.1).

The post-OAE population shows less consistency in its overall composition. The lower samples (5CCA and 5\2 79-81, Figure 5.1) yield low population numbers (<200 specimens). The specimens are pitted, indicating the effects of carbonate dissolution. Although the overlying population is constant (praeoglobotruncanid/dicarinellid, 65-70% and hedbergellid 30-15%), the number of specimens contained in each sample varies considerably (>1,200 to <75). This implies that even though the number of specimens is small, it can still provide an accurate picture of the relative proportions of the
population. As in the pre-OAE population, the post-OAE benthonic foraminifera form a small percentage of the total (3-10%).

5.4. **B.P 93/2-1** (Figure 5.2).

5.4(i). **Lithostratigraphy.**

The succession studied consists of 35m of chalk limestone overlain by 80m of hard chalk limestone, for which no detailed lithological logs or downhole logs were available. The seventeen samples comprised both sidewall core and ditch cuttings.

5.4(ii). **δ13C isotope curve.**

There is no δ13C isotope curve available from B.P 93/2-1 (Copestake, pers. comm.).

5.4(iii). **Macropalaeontological biostratigraphy.**

No macropalaeontological fauna was recorded from the interval under discussion (Williamson, 1979; Copestake, pers. comm.).

5.4(iv). **Foraminiferal biostratigraphy.**

The presence of *R. cushmani* and *R. greenhornensis* places samples 2-8 (Figure 5.2) within the top of *R. cushmani*
Foraminifera from BP 93.2-1

Calcareous Nannofossils

<table>
<thead>
<tr>
<th>Species</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arenobulimina advena</td>
<td></td>
</tr>
<tr>
<td>Eggerellina mariae</td>
<td></td>
</tr>
<tr>
<td>Gavelinella berthelini</td>
<td></td>
</tr>
<tr>
<td>Gavelinella ceromanica</td>
<td></td>
</tr>
<tr>
<td>Gavelinella intermedia</td>
<td></td>
</tr>
<tr>
<td>Gavelinella reussi</td>
<td></td>
</tr>
<tr>
<td>Haplophragmium aequale</td>
<td></td>
</tr>
<tr>
<td>Lenticulina rotulata var. b</td>
<td></td>
</tr>
<tr>
<td>Lenticulina rotulata var. c</td>
<td></td>
</tr>
<tr>
<td>Marssonella trochus var. turris</td>
<td></td>
</tr>
<tr>
<td>Tritaxia pyramidata</td>
<td></td>
</tr>
<tr>
<td>Marssonella trochus var. oxycona</td>
<td></td>
</tr>
<tr>
<td>Nodosaria sp. a</td>
<td></td>
</tr>
<tr>
<td>Pseudotextularia cretosa</td>
<td></td>
</tr>
<tr>
<td>Textularia chapmani</td>
<td></td>
</tr>
<tr>
<td>Trochammina depressa</td>
<td></td>
</tr>
<tr>
<td>Ataxophragmium depressum</td>
<td></td>
</tr>
<tr>
<td>Gyroidinoides parva</td>
<td></td>
</tr>
<tr>
<td>Lingulogavelinella globosa</td>
<td></td>
</tr>
<tr>
<td>Oolina sp. a</td>
<td></td>
</tr>
<tr>
<td>Gavelinella baltica</td>
<td></td>
</tr>
<tr>
<td>Praebulimina sp. a</td>
<td></td>
</tr>
<tr>
<td>Ammodiscus cretaceus</td>
<td></td>
</tr>
<tr>
<td>Plectina mariae</td>
<td></td>
</tr>
<tr>
<td>Quinqueloculina sp. cf. Q. antiqua</td>
<td></td>
</tr>
<tr>
<td>Marssonella trochus</td>
<td></td>
</tr>
<tr>
<td>Eggerellina brevis</td>
<td></td>
</tr>
<tr>
<td>Arenobulimina praehilii</td>
<td></td>
</tr>
<tr>
<td>Lingulogavelinella auralensis</td>
<td></td>
</tr>
<tr>
<td>Neoflavellina sp. b</td>
<td></td>
</tr>
<tr>
<td>calcisphere ?</td>
<td></td>
</tr>
</tbody>
</table>

Non-calcareous Foraminifera

<table>
<thead>
<tr>
<th>Species</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hedbergella delrioensis</td>
<td></td>
</tr>
<tr>
<td>Praeglobotrunacana delrioensis</td>
<td></td>
</tr>
<tr>
<td>Praeglobotrunacana stephani</td>
<td></td>
</tr>
<tr>
<td>Rotaliopora cusimani</td>
<td></td>
</tr>
<tr>
<td>Hedbergella planispira</td>
<td></td>
</tr>
<tr>
<td>Hedbergella simplex</td>
<td></td>
</tr>
<tr>
<td>Dicarinella hagni</td>
<td></td>
</tr>
<tr>
<td>Guembelitria cenomana</td>
<td></td>
</tr>
<tr>
<td>Hedbergella brittonensis</td>
<td></td>
</tr>
<tr>
<td>Hedbergella planispira</td>
<td></td>
</tr>
<tr>
<td>Globigerinelloides bentonensis</td>
<td></td>
</tr>
<tr>
<td>Rotaliopora greenhornensis</td>
<td></td>
</tr>
<tr>
<td>Marginotruncana sp. indet.</td>
<td></td>
</tr>
<tr>
<td>Heterohelix globulosa</td>
<td></td>
</tr>
<tr>
<td>Dicarinella aigeriana</td>
<td></td>
</tr>
<tr>
<td>"Hedbergella" aprica</td>
<td></td>
</tr>
<tr>
<td>Helvetoglobotrunacana sp. cf. H. helvetica</td>
<td></td>
</tr>
<tr>
<td>Pithonella ovallis</td>
<td></td>
</tr>
</tbody>
</table>

Number of Species

- 0
- 10
- 20
- 30

Figure 5.2
i.z. and this is in agreement with Williamson (1979). Furthermore, the occurrence of benthonic species such as G. cenomanica, G. intermedia and G. baltica with forms of the G. reussi - G. berthelini plexus is consistent with this (Carter and Hart, 1977; also see 5.7-10). The Marginotruncana sp. indet. in sample 9 is probably caved. "H". archaeocretacea was not recorded but the presence of H. sp. cf. helvetica in sample 15 places that sample, at least, within the H. helvetica i.z.

5.4(v). Foraminiferal assemblage.

The marked diversity change between samples 8-10 is consistent with the changes recorded onshore (see 5.5-11), notably with the loss of G. cenomanica, G. intermedia, G. baltica, the Eggerellina population, P. mariae and the increased dominance of L. globosa and G. berthelini and the appearance of A. preslii. This interval contains the thin "calcareous mudstone" which is probably equivalent to the Plenus Marl which cover much of the Anglo-Paris Basin to the east (see 5.7-10). The gamma ray log was not available to investigate any possible deflection as exemplified by the offshore Plenus Marl Formation (Deegan and Scull, 1977).

5.5. Hooken Cliffs, Beer (Figures 3.2, 5.3-5).
5.5(i). **Lithostratigraphy.**

The sequence examined comprises the upper 2.5m of the Beer Head Formation and the lower 2m of the Seaton Chalk Formation (Jarvis and Woodroof, 1984), and is locally the thickest representation. The Beer Head Limestone Formation consists of a number of well-indurated hardgrounds superimposed on detritus-rich limestones, the most prominent of which are used to delimit a number of members. The Humble Point Hardground, a massively indurated intraclastic hardground with a strongly phosphatized and glauconitized surface, marks the summit of the Little Beach Member. This is overlain by the Pinnacles Member: 2.3m of poorly indurated yellowish-grey glauconitic limestones with a weakly developed limonic nodular hardground (Haven Cliff Hardground), at its summit, (op cit. Jarvis et al., in press).

The overlying Connett's Hole Member (the basal member of the Seaton Chalk Formation), has weakly indurated limestones at its base passing up into chalks containing little detritus. In all, thirteen samples were examined from this succession (Figure 5.3).

5.5(ii). $^{87} \text{C}$ isotope curve.

The $^{87} \text{C}$ isotope (and oxygen isotope) curve (Figure 5.5) exhibits a marked excursion at the limonic nodular hardground within the Pinnacles Member which is comparable
Figure 5.4 Details of foraminifera from Hooken Cliffs

Foraminiferal assemblages

Foraminiferal & dinoflagellate cyst assemblages

Stage

Proportions of planktonic genera

Sample (FD)

Number of species

Number of specimens

Stage

0

100

0

100

0

20

40

0

100

200

300

0

1

2

3

4

5

6

7

8

9

10

11

12

13

Planktonic:benthonic ratio

Hedbergella

Praeglobotruncana/Dicarinella

Rotulipora

Planktonic

Benthonic

Foraminifera

Dinoflagellate cysts

Isotope excursion
with other late Cenomanian records (Arthur et al., 1987), (see Figure 5.13 for detailed basin correlation).

5.5(iii). Macropalaeontological biostratigraphy.

The base of the Turonian in N.W. Europe is defined on ammonites and inoceramid bivalves, Watinoceras spp. and Mytiloides sp. cf. M. opalensis (sensu Kaufman non Bose), (Birkelund et al., 1984). These have been recorded from immediately above the Haven Cliff Hardground (Wright and Kennedy, 1981), and thus it marks the base of the Turonian in S.E. Devon (Wright and Kennedy, 1981; Jarvis and Tocher, 1983; Jarvis and Woodroof, 1984; Jarvis et al., in press). In addition, the assemblage also contains reworked ammonites of the Neocardioceras juddii zone (latest Cenomanian).

5.5(iv). Foraminiferal biostratigraphy.

The presence of R. cushmani (samples 1, 4 and 5) and R. greenhornensis (sample 5), places these within the top of the R. cushmani i.z., this in agreement with Hart (1970) and Carter and Hart (1977). The presence of "H". archaeocretacea (samples 9, 10, 11), places these within the H. archaeocretacea i.z. of Robaszynski and Caron (1979) which is in agreement with Hart and Weaver (1977), though they did not record any planktonics from the lowermost Connett's Hole Member.
Figure 5.5 Isotope curves from Hooken Cliffs
5.5(v). **Foraminiferal assemblage.**

The foraminiferal assemblage (Figure 5.3) is impoverished compared to the basinal facies to the east (see 5.7-10), and the preservation of the specimens very variable, with many broken and exhibiting intense dissolution (particularly samples 3, 6 and 8). The intense induration of some of the samples, especially those associated with hardgrounds, only permitted analysis of the foraminifera using thin sections. Thus no measurement of the relative proportions of each species was possible.

The foraminiferal assemblage is comparable to that recorded from a laterally equivalent sequence in a large isolated stack (the Pinnacles), by Carter and Hart (1977).

The foraminiferal assemblage shows a slight drop in diversity up the sequence (Figure 5.4), and a low specimen count for each sample except for one (sample 7), and this is due to an increase in the numbers of H. delrioensis with the appropriate change in the planktonic : benthonic ratio (Figure 5.4).

5.6. **Shapwick Grange Quarry** (Figures 3.3, 5.6).

5.6(i). **Lithostratigraphy.**

Shapwick Grange Quarry exposes the Upper Greensand, the Beer Head Limestone and the lower part of the Seaton Chalk
The Upper Greensand comprises 7m of yellow-light grey calcarenites which locally contain high proportions of quartz and glauconite sand. The sequence also contains prominent chalcedonic cherts at the base and in the middle of the sequence (Figure 5.6).

Two nodular hardgrounds with glauconitized surfaces occur in the succession. The lower one is found between the chert levels and the other forms the top of the Upper Greensand. The latter has been called the Small Cove Hardground in the comparable succession in the Beer area (Jarvis and Woodroof, 1984).

The Beer Head Limestone is strongly attenuated (60cm.), and two beds may be recognized. The lower one (25cm.) is comprised of intensely indurated light grey, quartz-rich micritic limestone. The structure of the bed is very complex, exhibiting many phases of sedimentation, bioturbation, cementation, reworking, mineralization, encrustation and boring (Jarvis et al., in press). These characteristics are diagnostic of the Humble Point Hardground (top of the Little Beach Member) in severely attenuated successions (Jarvis and Woodroof, 1984; Jarvis et al., in press).

The Humble Point Hardground is overlain by 35cm. of strongly indurated nodular micrites containing occasional quartz sand. Its surface is uneven and has pebble intraclasts plastered upon it. This is representative of the Haven Cliff
Figure 5.6 Formanitria from Shapwick Grange Quarry
Hardground which is the top of the Pinnacles Member (Jarvis and Woodroof, 1984; Jarvis et al., in press). The surface of the Haven Cliff Hardground marks the base of the Seaton Chalk.

The Seaton Chalk Formation (20m) consists of two moderately indurated hardgrounds at its base overlain by ~1m thick weakly developed rhythms of alternating poorly nodular and marly chalks. Nodular flints are associated with an omission surface developed 20m above the base of the Seaton Chalk Formation. The uppermost 6m of section consists of marly chalks including a second prominent semitabular flint and two weakly developed nodular hardgrounds. The sequence is comparable to the Connett's Hole Member (Jarvis and Woodroof, 1984; Jarvis et al., in press).

5.6(ii). 6 13C isotope curve.

There are no isotope curves available for this section.

5.6(iii). Macropalaeontological biostratigraphy.

Shapwick has yielded many diverse and biostratigraphically important ammonite assemblages (Hamblin and Wood, 1976; Wright and Kennedy, 1981; Kennedy et al., 1982; Wright and Kennedy, 1984), that are usually associated with hardground surfaces.

An assemblage of Stoliczkaia dispar (d'Orbigny) and
species of *Callihoplites* and *Discohoplites* were recorded from the "Upper Greensand" (Hamblin and Wood, 1976), providing a definite late Albian *S. dispar* zone age for the top of the Upper Greensand, though the exact position of this fauna was not made against a lithological log. They were later positioned (Wood, in Hart et al., 1979), 1.5m above the tabular cherts, placing them within the Small Cove Hardground. These ammonites are now thought to have come from 1m above the tabular cherts from a fine sand unit just below the Small Cove Hardground (Wood, pers. comm.).

From immediately above the Humble Point Hardground (base of the Pinnacles Member), *Euomphaloceras euomphalum* (Sharpe) and *Calyoceras naviculae* (Mantell) have been recorded belonging to the early late Cenomanian *Calyoceras guerangeri* zone (Wright and Kennedy, 1981).

Ammonites of the latest Cenomanian *Neocardioceras judii* zone have been recorded as some of the intraclasts welded to the surface of the Haven Cliff Hardground (Wright and Kennedy, 1981; Kennedy et al., 1982).

An assemblage of earliest Turonian *Watinoceras* spp. occurs in the nodular hardground at the bottom of the Seaton Chalk.

5.6(iv). *Foraminiferal biostratigraphy.*

A foraminiferal study of the greensand yielded a very
poor fauna of Patellina trochiformis (Shacko), Arenobulimina sp. cf. A. obliqua (d'Orbigny), Arenobulimina sp. cf. A. depressa (Perner) and Marssonella oxycona (Reuss) from just below the chert beds (Hart et al., 1979). The assemblage did not permit a finer biostratigraphical resolution than an Albian - Cenomanian age (op. cit.).

The Small Cove Hardground has yielded R. reicheli and Favusella washitensis (Figure 5.6). The presence of the former indicates that part of the sediment within the hardground is of an early Cenomanian age (Robaszynski and Caron, 1979). In addition, its association with F. washitensis is comparable to other local clastic dominated sequences of early Cenomanian age, e.g. Wilmington (Hart, 1970; Carter and Hart, 1977; Hart, 1983). Thus it implies the Small Cove Hardground contains sediment of Pounds Pool Member equivalent even though it is not present as a unit at Shapwick.

The presence of R. appenninica within the Humble Point Hardground infers an early to middle Cenomanian age (Robaszynski and Caron, 1979) for part of that unit. The nodular hardground at the base of the Seaton Chalk yielded T. tricarinata, G. berthelini and L. globosa, a characteristic early Turonian benthonic assemblage (Owen, 1970; Carter and Hart, 1977; see 5.7-10). Also present are a small number of G. intermedia and Rotalipora sp. cf. R. cushmani which are characteristic of the Cenomanian. These specimens are very
poorly preserved and heavily pitted. The rotaliporids are neanic and this, coupled with their poor preservation, makes their identification problematical. These specimens are probably reworked.

These features of downworking through burrowing and reworking on top of the hardground surfaces causes intermixing of the fauna and thus negates against biostratigraphical resolution.

The presence of *H. helvetica* 12 m from the base of the Connett's Hole Member, infers an early-middle Turonian age (Robaszynski and Caron, 1979). "H*. archaeocretacea is not recorded from below the sample containing *H. helvetica* which may be the result of the poor recovery of such delicate planktonic species from highly nodular chalks such as those found at the base of the Connett's Hole Member.

5.6(v). **Foraminiferal assemblage.**

The foraminiferal assemblage, in keeping with Hooken Cliffs (5.5(v)), is very poor when compared to the diversity of the most basinal sections (5.8-11).

5.7. **Introduction to the lithostratigraphy and biostratigraphy of the mid-Cretaceous Chalk facies of southern England.**

The mid-Cretaceous lithostratigraphy of the Chalk
facies of the Anglo-Paris Basin in southern England has received much attention (Phillips, 1818, 1821; Jukes-Browne and Hill, 1903, 1904; Jefferies, 1962; Hancock, 1976; Mortimore, 1986; Robinson, 1986). All workers recognized the Plenus Marl (Robinson, 1986), and for the purpose of this study, which only covers this short interval, one lithostratigraphic scheme has been adopted (see 3.4).

The studied interval covers the Abbots Cliff Chalk Formation (part), Plenus Marl Formation and the Dover Chalk Formation (part). Only the top of the former, the Chapel-le-Ferne Member is covered in this study and consists of bioturbated chalks with occasional marl seams. The base of the Plenus Marl Formation is marked by an erosion surface (Jefferies, 1962), the sub-Plenus erosion surface, and the overlying Plenus Marl Formation consists of eight distinct beds numbered 1-8, the relative thicknesses of which may vary. The Dover Chalk Formation consists of a variety of lithologies: white chalk, calcarenitic chalk, nodular chalk and intraclastic chalk with occasional flints. Well-developed marl seams occur throughout the Formation (Robinson, 1986). It consists of three members: the Shakespeare Cliff, Aycliff and Akers Steps Members. The Shakespeare Cliff Member may consist of very nodular chalks with incipient hardgrounds at its base (Melbourn Rock facies) (Robinson, 1986).

The Cenomanian - Turonian boundary is proposed on
ammonites as the base of the *Pseudaspidoceras flexuosum* zone (Birkelund *et al.*, 1984), although this is a tethyan form. In Europe, the appearance of a *Watinoceras coloradoense* zone ammonite assemblage is used (Wright and Kennedy, 1981; Kennedy *et al.*, 1982; Kennedy, 1984), although the subspecies *W. coloradoense coloradoense* (Henderson) is absent in Europe.

The associated inoceramid fauna is useful. The base of the *P. flexuosum* zone is marked by the appearance of *Mytiloides opalensis sensu* Kauffman non Bose in America and a widespread appearance of early *Mytiloides* throughout the Tethyan and Boreal realms (Kauffman *et al.*, 1977; Birkelund, 1984; Hancock, 1984). Thus, because of the poor ammonite records in the onshore basinal sections, the inoceramid faunal change is a good Turonian indicator (Jefferies, 1963; Kennedy and Wright, 1981; Woodroof, 1981).

The foraminiferal zones previously proposed (Williams-Mitchell, 1948; Carter and Hart, 1977), use an integrated benthonic and planktonic scheme. The latter is particularly well-suited to correlation of the more basinal facies of the Anglo-Paris Basin. This study covers the upper level of zone 13 and all of zone 14, *sensu* Carter and Hart, 1977. Zone 14 coinciding with the Plenus Marl Formation (op cit.). Carter and Hart (1977) did not consider the whole of the succession above the Plenus Marl Formation. Owen (1970), established a series of local planktonic assemblage zones
through the Turonian based upon relative abundances and occurrence. These have been coupled with the international zones proposed by Robaszynski and Caron (1979), and combined with locally significant benthonic species (Hart, 1982b).

White Nothe (Figures 3.7, 5.7, 5.8).

5.8(i). **Lithostratigraphy.**

The sequence at White Nothe comprises 10m of the top of the Abbots Cliff Formation, 3.6m of the Plenus Marl Formation and 15m of the Dover Chalk Formation of which the first 1.5m is not exposed (Figure 5.7).

The Abbots Cliff Formation consists of 1m-0.5m marl-marly chalk rhythms with their frequency increasing up the succession. There are occasional flints towards the base.

All eight beds (*sensu* Jefferies, 1963) of the Plenus Marl Formation are present, with beds 1-4 being well represented, comprising 2.5m of the 3.6m unit.

The base of the Dover Chalk Formation is not exposed. The overlying sequence is composed of thinly bedded nodular chalks with incipient hardgrounds passing into nodular chalk-marl rhythms the thickness of which varies from 0.75m-1.75m. Nodular chalks become dominant towards the top of the sequence.
Figure 5.7 Foraminifera from White Nothe
Figure 5.7 Foraminifera from White Nothe (cont.)

- Ammodiscus cretaceus
- Geopetalinae berthelini
- Lenticulina rotulata var. b
- Marsouinella trochus var. turris
- Turritella tricornata var. jongsensi
- Marsouinella trochus var. oxycona
- Lingulogavelinella aumaiensis
- Marsouinella trochus
- Frondicularia gauttina
- Lenticulina rotulata var. a
- Helvetoglobotruncana praeshelvetica
- Globigerinoides bentonensis
- Heterohelix moremani
- Dicarinella algirana
- Dicarinella hagni
- "Hedbergella aprica"
- "Hedbergella archaeocretacea"
- "Hedbergella simplex"
5.8(ii). δ^{13}C isotope curve.

There is no δ^{13}C isotope curve available for White Nothe.

5.8(iii). Macropalaeontological biostratigraphy.

The base of the M. sp. cf. M. opalensis zone appears to be 2.8m above bed 8 of the Plenus Marls (Woodroof, 1981).

5.8(iv). Foraminiferal biostratigraphy.

The presence of *R. cushmani* (samples 1-13), and *R. greenhornensis* (samples 1-3, 5, 10-12), places the lower part of the sequence, up to the top of bed 3 (Plenus Marls), within the top of the *R. cushmani* i.z. "H". archaeocretacea is rare (samples 22, 26), and definitely places the early portion of the Dover Chalk Formation within the "H". archaeocretacea i.z.. Early forms of the *H. praehelvetica* - *H. helvetica* plexus also occur (samples 19, 21-26) in this interval.

5.8(v). Foraminiferal assemblage.

The numbers of the foraminiferal population recovered varies considerably across the interval (Figure 5.8) which is a result of the interaction of benthonic diversity, planktonic diversity and preservation.

Within the Abbots Cliff Chalk Formation (samples 1-9), the population varies around 150 specimens (minimum), and 340
specimens (maximum) per sample, but shows a marked drop at the summit of the unit (sample 9) to 105 specimens. The planktonic diversity remains constant but the benthonic diversity largely mirrors the population numbers. The planktonic : benthonic ratio shows a gradual decrease (through samples 1-8) but a slight increase at the top (sample 9). Within the planktonic population the rotaliporid component shows a steady decline (samples 1-4) with a small recovery (samples 5-7) and a complex change (samples 8 and 9). The praeglobotruncanid/dicarinellid population remains constant and no planktonic or benthonic species becomes extinct throughout.

The Plenus Marl Formation, in contrast, shows major changes in diversity, population numbers and the relative numbers of planktonic and benthonic specimens. Bed 1 shows a significant increase in numbers (550 specimens) with an increase in benthonic diversity, though there is a slight decline at the top of bed 1. The planktonic diversity remains the same as from the Abbots Cliff Chalk Formation but the planktonic : benthonic ratio is very high, with the planktonic population forming 80% of the total. Within the planktonic population the rotaliporid component is high (75%) but declines slightly through the bed. At the top of bed 1 A. advena, D. gradata, G. cenomanica, G. intermedia, G. baltica, T. macfadyeni, A. depressum and P. plana disappear.
Through beds 2-8 the benthonic diversity declines as does the number of specimens recovered, from 340-120. The planktonic : benthonic ratio decreases up these beds with the planktonic population forming as little as 10% of the total population. Within the planktonic population, the decline in the rotaliporid component (started in bed 1) continues with R. cushmani disappearing at the top of bed 3. Unlike the Abbots Cliff Chalk Formation the praeglobotruncanid/dicarinellid component becomes the dominant component of the total population. The benthonic population becomes dominated by an assemblage of L. rotulata var.b, G. berthelini, L. globosa and T. chapmani, the latter disappearing in bed 7. The specimens from beds 4 to 8 show pitted tests indicative of dissolution, the intensity of which is most marked in the tests of the planktonic species.

The decline in the total number of specimens continues into the Dover Chalk Formation except for one sample (no. 22). At the base of the Formation, the population is totally dominated by benthonic specimens. There is a slight increase in the planktonic influence (samples 22 and 23), mainly dicarinellids, which accounts for the increased number specimens from these samples. There are not sufficient number of planktonic specimens to warrant a detailed breakdown of the population.
5.9. Compton Bay, Isle of Wight (Figures 3.6, 5.9, 5.10).

5.9(i). Lithostratigraphy.

The sequence comprises 9.75m of the Abbots Cliff Formation, the Plenus Marl Formation (4.2m) and 24.2m of the Dover Chalk Formation (Figure 5.9). The sequence dips steeply to the N.W. and is complicated by faulting in the Dover Chalk Formation (Text Plate 2).

The Abbots Cliff Formation consists of bedded chalk marl - marl rhythms of variable thickness, 0.5 - 2.0m, though mostly they are >1m. Intense bioturbation is discernable where there is sufficient lithological contrast.

The Plenus Marl Formation (Text Plate 2), is well-developed with all eight beds present. The sub-Plenus erosion surface is poorly developed compared to Eastbourne (5.10(i)) and Dover (5.11(i)).

The base of the Dover Chalk Formation is marked by 2m of pebbly hardgrounds with a minor detrital component of shell debris. Above this is a sequence of chalk marls with the occasional well-developed marl. At 6.5m above bed 8 there is a prominent discontinuous sponge-rich hardground. The sequence is incomplete (11.5m above bed 8) because of strong local faulting. Apart from the thin nodular hardgrounds at the base
<table>
<thead>
<tr>
<th>Ammodiscus cretaceus</th>
<th>Arenobulimina advena</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atemphragmium depressum</td>
<td>Dentalia sp. c</td>
</tr>
<tr>
<td>Dentalia sp. c</td>
<td>Dentalia sp. c</td>
</tr>
<tr>
<td>Dorothia gravata</td>
<td>Eoguttulina sp. a</td>
</tr>
<tr>
<td>Eoguttulina sp. a</td>
<td>Frondicularia guttata</td>
</tr>
<tr>
<td>Galeaellina cenomanica</td>
<td>Galeaellina intermedia</td>
</tr>
<tr>
<td>Galeaellina russii</td>
<td>Lenticulina rotulae var. b</td>
</tr>
<tr>
<td>Lingulogavelinella globosa</td>
<td>Merasonella trochus var. turrise</td>
</tr>
<tr>
<td>Plectina merlia</td>
<td>Pseudodeshplacesiella plane</td>
</tr>
<tr>
<td>Tritaxia macrodentalis</td>
<td>Tritaxia pyramidalis</td>
</tr>
<tr>
<td>Ammobaculites sp. a</td>
<td>Ammobaculites sp. a</td>
</tr>
<tr>
<td>Eoguttulina brevis</td>
<td>Galeaellina baltica</td>
</tr>
<tr>
<td>Galeaellina baltica</td>
<td>Lenticulina rotulae var. a</td>
</tr>
<tr>
<td>Merasonella trochus</td>
<td>Nodosaria sp. a</td>
</tr>
<tr>
<td>Nodosaria sp. a</td>
<td>Plectina cenomanica</td>
</tr>
<tr>
<td>Ramulina acuta</td>
<td>Textularia chapmani</td>
</tr>
<tr>
<td>Trochammina depressa</td>
<td>Vaginolina costulataform a</td>
</tr>
<tr>
<td>Vaginolina costulata form a</td>
<td>Vaginolina costulata form b</td>
</tr>
<tr>
<td>Merasonella trochus var. oxyconae</td>
<td>Tritix excavatus</td>
</tr>
<tr>
<td>Arenobulimina sp. a</td>
<td>Haplophragmium elegans</td>
</tr>
<tr>
<td>Dentalia sp. a</td>
<td>Gyralidaceae pera</td>
</tr>
<tr>
<td>Gyralidaceae pera</td>
<td>Vaginolina costulata form c</td>
</tr>
<tr>
<td>Vaginolina costulata form c</td>
<td>Lenticulina rotulae var. c</td>
</tr>
<tr>
<td>Merasonella sp. a</td>
<td>Planulina sp. a</td>
</tr>
<tr>
<td>Planulina sp. a</td>
<td>Tritaxia tricornata</td>
</tr>
<tr>
<td>Astecotus sp. a</td>
<td>Astecotus sp. a</td>
</tr>
<tr>
<td>Quinqueloculinella antiqua</td>
<td>Lingulogavelinella sumalensis</td>
</tr>
<tr>
<td>Globigerinelloides bentoniensis</td>
<td>Hedbergeilla deltoicnsis</td>
</tr>
<tr>
<td>Hedbergella deltoicnsis</td>
<td>Heterohelix moremani</td>
</tr>
<tr>
<td>Praeglobotruncana stephadii</td>
<td>Rotalipora cushioni</td>
</tr>
<tr>
<td>Rotalipora cushioni</td>
<td>Guembelitria cenomanica</td>
</tr>
<tr>
<td>Guembelitria cenomanica</td>
<td>Rotalipora greenhornensis</td>
</tr>
<tr>
<td>Rotalipora greenhornensis</td>
<td>Dicarinella algeriana</td>
</tr>
<tr>
<td>Dicarinella algeriana</td>
<td>"Hedbergella aprica"</td>
</tr>
<tr>
<td>"Hedbergella aprica"</td>
<td>Hedbergella tenuispina</td>
</tr>
<tr>
<td>Hedbergella tenuispina</td>
<td>Dicarinella hagai</td>
</tr>
<tr>
<td>Dicarinella hagai</td>
<td>Dicarinella imbricata</td>
</tr>
<tr>
<td>Dicarinella imbricata</td>
<td>"Hedbergella brittonensis"</td>
</tr>
<tr>
<td>"Hedbergella brittonensis"</td>
<td>Hedbergella simplex</td>
</tr>
<tr>
<td>Hedbergella simplex</td>
<td>Heterohelix globosa</td>
</tr>
<tr>
<td>Heterohelix globosa</td>
<td>Helvotoglobotruncana praehelvetica</td>
</tr>
<tr>
<td>Helvotoglobotruncana praehelvetica</td>
<td>"Hedbergella archaeospectaculata"</td>
</tr>
</tbody>
</table>

Figure 5.9 Foraminifera from Compton Bay, Isle of Wight
Figure 5.9 Foraminifera from Compton Bay Isle of Wight (cont.)

- Lenticulina rotulata var. b
- Marssonella trochus var. turris
- Antimodiscus cretaceus
- Gevalinella berthelini
- Lingulogeivalinella sumalensis
- Marssonella trochus
- Marssonella trochus var. oxycone
- Tritaxia tricornata
- Tritaxia tricornata var. jongmansii
- Arenobulimina praelii
- Quinqueloculina antiqua
- Frondicularia sp. a

- Dicarinella algariana
- Dicarinella hagni
- Dicarinella imbricata
- Helvetoglobotruncana praehelvetica
- Hedbergella archaeocretacea
- Heterohelix globulosa
- "Hedbergella spivka"
- Helvetoglobotruncana helvetica
- Marginotruncana sigill
of the Dover Chalk Formation, it is considerably less nodular and pebbly than the sequences to the east, particularly Dover.

5.9(ii). \$13C curve.

There is no \$13C isotope curve available for this section.

5.9(iii). Macropalaeontological biostratigraphy.

The base of the M. sp. cf. M. opalensis zone is 3.1m above the base of the Dover Chalk Formation (Woodroof, 1981).

5.9(iv). Foraminiferal biostratigraphy.

The presence of R. cushmani (samples 1-13), and R. greenhornensis (samples 2, 3 and 10), places the lower part of the sequence up to the top of bed 3 (Plenus Marls), within the top of the R. cushmani i.z.. "H". archaeocretacea appears in the basal beds of the Dover Chalk Formation (samples 21, 22, 24-26, 28, 30-32, 34-36), and places up to sample 36 within the "H". archaeocretacea i.z.. The presence of H. helvetica (samples 36, 37), places these within the H. helvetica i.z..

5.9(v). Foraminiferal assemblage.

The number of the foraminiferal population recovered varies considerably across the interval (Figure 5.10) which is a result of the interaction of benthonic diversity, planktonic
Figure 5.10 Foraminiferal details from Compton Bay Isle of Wight
diversity and preservation.

Within the Abbots Cliff Chalk Formation (samples 1-8), the population varies around 140 specimens (minimum) and 360 (maximum) per sample, but the population shows an increase at the top of the unit. The planktonic diversity remains constant but the benthonic diversity mirrors the population numbers. The planktonic : benthonic ratio shows a gradual decrease up the sequence (samples 1-7) with a sudden increase at the summit (sample 8). Within the planktonic population, the rotaliporid component forms much less than 50% of the total population. It decreases at the base of the section (samples 1-4), shows a small recovery (samples 5, 6) and then a decrease at the summit (samples 7, 8). The praeoglobotruncanid/dicarinellid population forms around 5-35% of the total population. Major changes occur in the hedbergellid population.

The Plenus Marl Formation, in contrast, shows major changes in diversity, population numbers and the relative numbers of planktonic and benthonic specimens. Bed 1 shows a significant increase in the numbers of specimens (~460), although it is declining towards the middle of the bed. The benthonic diversity, in contrast, increases through the bed. The planktonic diversity remains the same as for the Abbots Cliff Chalk Formation and the planktonic : benthonic ratio remains as high as for the top of the Abbots Cliff Chalk
Formation, with around 55% planktonics.

5.10. Eastbourne, Gun Gardens (Figures 3.5, 5.11, 5.12).

5.10(i) Lithostratigraphy.

The succession at Eastbourne is expanded compared to Dover (5.11(i)), White Nothe (5.8(i)) and the Isle of Wight (5.9(i)) (Jefferies, 1962; Carter and Hart, 1977; Woodroof, 1981). It comprises 10.5m of the top of the Abbots Cliff Chalk Formation, the Plenus Marl Formation (8.3m) and 37m of the Dover Chalk Formation. Although towards the top of the sequence part of the Dover Chalk Formation is inaccessible (Figure 5.11).

The Abbots Cliff Formation comprises <0.5-1.0m chalk marl- marl rhythms which exhibit a high degree of bioturbation (Text Plate 1).

The Plenus Marl Formation is significantly thicker, at 8.3m, than to the east (Dover) and west (Compton Bay, White Nothe), with a prominent sub-Plenus omission surface.

The Dover Chalk Formation comprises 5-6m of slightly nodular chalks and marl seams at its base passing into marl chalks with prominent marl seams. Towards the top of the
Figure 5.1.1. Fossiliferous Zones from Eastbourne (cont.)
sequence there are very occasional locally developed incipient hardgrounds. These chalks are much more marly than the nodular, pebbly chalks of the Melbourn Rock facies at Dover (5.11(ii)).

5.10(ii). 613C isotope curve.

There is no 613C isotope curve available for Eastbourne.

5.10(iii). Macropalaeontological biostratigraphy.

The M. sp. cf. M. opalensis zone appears 4m from the base of the Dover Chalk Formation (Woodroof, 1981). The expansion in the sequence is displayed by the inoceramid zones, here the M. sp. cf. M. opalensis zone is 18m thick whereas to the west it is 3m thick (Compton Bay) and to the east 4.8m thick (Dover op cit.). A detailed study of this fauna is in progress (by Gale and Wood, Gale pers. comm.).

5.10(iv). Foraminiferal biostratigraphy

The presence of R. cushmani (samples 1-5, 7-11) and R. greenhornensis (sample 8), places the lower part of the sequence up to the top of bed 3 (Plenus Marls) within the uppermost part of the R. cushmani i.z. "H" archaeocretacea first appears in the basal levels of the Dover Chalk Formation (samples 20, 24, 30-32 and 34) and places up to sample 33.
within the "H". archaeocretacea i.z.. H. helvetica appears in sample 33 and places the very top of the sequence within the H. helvetica i.z..

5.10 (V). Foraminiferal assemblage.

The number of the foraminiferal population recovered varies considerably across the interval (Figure 5.12), which is a result of the interaction of benthonic diversity, planktonic diversity and preservation.

Within the Abbots Cliff Chalk Formation (samples 1-7), the population varies between 280 specimens (maximum) and 105 specimens (minimum) per sample. The planktonic diversity remains constant but the benthonic diversity mirrors the population numbers. The planktonic : benthonic ratio decreases in the base of the sequence (samples 1-3), increases slightly again (samples 4-6) only to decrease sharply at the top of the unit (sample 7). Within the planktonic population the rotaliporid component forms much less than 50% of the total population. It decreases at the base of the section (samples 1-3), shows a small recovery (sample 4), then a decline (sample 5) to zero (sample 6) to recover at the summit of the unit, (sample 7). The praeglobotruncanid/dicarinellid population forms around 5-25% of the total population. Major changes occur in the hedbergellid population.
Figure 5.12 Foraminiferal details from Eastbourne
The Plenus Marl Formation, in contrast, shows major changes in diversity, population numbers and the relative numbers of planktonic and benthonic specimens. Bed 1 shows a significant increase in the number of specimens (~440), although it declines towards the middle of the bed. Benthonic diversity decreases through the bed. The planktonic diversity continues level as from the Abbots Cliff Chalk Formation. The planktonic : benthonic ratio increases dramatically with over 80% planktonic specimens. Within the planktonic population, the rotaliporid component continues the increase started in the top of the Abbots Cliff Chalk Formation, rising to 60% of the total. At the top of bed 1 G. baltica, D. gradata, T. macfadyenii, G. intermedia, P. mariae, A. depressum, G. cenomanica all disappear.

Through beds 2-8 the benthonic diversity shows a steady decline, with major fluctuations, as does the total number of specimens from 320 to under 200. The planktonic : benthonic ratio decreases up the succession with the occasional anomalous increase: bed 6 (sample 14) and the bottom of bed 8 (sample 16). Within the planktonic population the rotaliporid component declines, with R. cushmani disappearing in the middle of bed 3 (sample 11). Unlike the Abbots Cliff Chalk Formation, the praeglobotruncanid/ dicarinellid component becomes the dominant proportion of the planktonic population. The benthonic population becomes
dominated by an assemblage of *L. rotulata* var. *b*, *G. berthelini*, *L. globosa* and *T. chapmani*. The specimens from bed 8 (samples 16, 17) exhibit pitted tests indicative of dissolution.

The decline in the total number of specimens continues into the Dover Chalk Formation though the benthonic diversity shows a moderate recovery. The assemblage is dominated by benthonics with a low planktonic : benthonic ratio. The number of planktonic specimens recovered was generally very low and in many cases there were not sufficient specimens to warrant a detailed breakdown of the planktonic population. All the specimens exhibit pitted tests indicative of dissolution.

5.11. **Dover** (Figures 3.4, 5.13, 5.14, 5.15).

5.11.(i) **Lithostratigraphy.**

The succession comprises the top of the Abbots Cliff Chalk Formation, the Plenus Marl Formation (2.5m), and 22m of the Dover Chalk Formation (Figure 5.13).

The Abbots Cliff Chalk Formation consists of weakly rhythmic marly chalks of decimetre scale alternations of friable marl and indurated chalk (Jukes-Browne and Hill, 1903; Kennedy, 1969; Carter and Hart, 1977), though at the top the rhythms are very poorly developed and the spacing increased.
Figure 5.13 Foraminifera from Dover (cont.)
In addition, a small number of prominent marls are present.

The Plenus Marl Formation at Dover is the thinnest, at 2.5m, of the four onshore basinal sections studied (see 5.8(i), 5.9(i), 5.10(i)). The sub-Plenus erosion surface is well developed with the dark grey clay-rich marls infilling a suite of burrows (Thalassinoides, Chondrites and Planolites) within the underlying chalk marl. Beds 1-4, at 1.85m, are well represented, whilst beds 5, 6 and 8 are reduced.

The overlying Dover Chalk Formation shows a marked change in facies from the clay-rich marl of the Plenus Marls to highly nodular intraclast-rich chalks with well indurated hardgrounds in the basal 1.2m. This latter, the Melbourn Rock facies, is particularly well represented at Dover and contains abundant limonite-stained chalk pebble intraclasts and coarse calcarenite shell debris, particularly comminuted inoceramid and echinoderm tests. Further up the sequence the nodularity of chalks decreases and a few prominent marls are present.

5.11(ii). 813C isotope curve.

The carbon stable isotope signature (Figure 5.14) shows a marked excursion in 813C value through the Plenus Marl Formation and the Melbourn Rock facies of the Dover Chalk Formation. It shows a 813C enrichment from the background level of 2.5-3 0/00 (PDB) to a maximum of 4.6 0/00 (PDB) in bed 8 of the Plenus Marl Formation. The enrichment shows a
Figure 5.14 Isotope curves from Dover (Corson, et al.)
Figure 5.14 Isotope curves from Dover (cont.)
more rapid ascent through the Plenus Marls than descent through the first 2m of the Melbourn Rock facies (Carson, pers. comm.).

5.11(iii). Macropalaeontological biostratigraphy.

The presence of a Sciponoceras fauna in the basal hardgrounds of the Melbourn Rock at Dover suggests that the hardgrounds lie within the uppermost Cenomanian Neocardioceras djudii zone (Wright and Kennedy, 1981). A Watinoceras fauna has been recorded from Merstham (op cit.) which indicates that the higher beds of the Melbourn Rock are within the Turonian W. coloradoense zone. In addition, Upper Cenomanian Inoceramus pictus Sowerby are common in the basal hardgrounds and Mytiloides appears immediately above them (Woodroof, 1981). Thus this inoceramid faunal change is used to define the base of the Turonian, at 2.3m above the top of bed 8, Plenus Marl Formation.

In addition, the Turonian nannofossil marker Quadrum gartneri appears (sample 20, Figure 8.4) just above this level (Cooper, pers. comm.).

5.11(iv). Foraminiferal biostratigraphy

The presence of R. cushmani (samples 1-10), and R. greenhornensis (samples 1, 3, 7 and 8), place the lower part of the sequence up to bed 3 (Plenus Marls) within the upper
part of the *R. cushmani* i.z.. "H". *archaeocretacea* appears in the basal part of the Dover Chalk Formation (samples 21-25, 26, 27, 30, 31, 33), and places up to sample 35 within the "H". *archaeocretacea* i.z.. The presence of *H. helvetica* (samples 35, 36, 38-40) places these samples within the *H. helvetica* i.z..

5.11(v). Foraminiferal assemblage.

The number of the foraminiferal population recovered varies considerably across the interval (Figure 5.15), which is a result of the interaction of benthonic diversity, planktonic diversity and preservation.

Within the Abbots Cliff Chalk Formation (samples 1-6), the population varies between 310 specimens (maximum) and 55 (minimum) per sample. The planktonic diversity remains constant but the benthonic diversity largely mirrors the population numbers, with a marked drop in sample 4. The planktonic : benthonic ratio increases in the base of the sequence (samples 1-3), recovers and decreases (samples 4 and 5), to recover at the top of the unit (sample 6). Within the planktonic population the rotaliporid component forms much less than 50% of the total population. It decreases at the base of the sequence (samples 1, 2), decreases (sample 5) and recovers (sample 6). The *praeglobotruncanid/dicarinellid*
Figure 5.15 Foraminiferal details from Dover.
component remains constant and major changes occur in the
hedbergellid population.

The Plenus Marl Formation, in contrast shows major
changes in diversity, population numbers and the relative
numbers of planktonic and benthonic specimens. Bed 1 shows an
increase in the number of specimens (~250). The benthonic
diversity declines through the bed. The planktonic diversity
continues on the same level as from the Abbots Cliff Chalk
Formation. The planktonic : benthonic ratio is high with
around 75% planktonics. Within the planktonic population the
rotaliporid component continues the increase started in the
top of the Abbots Cliff Chalk Formation, rising to over 60% of
the total. At the top of bed 1 T. macfadyeni, G. baltica, A.
advena, A. depressum, P. plana, R. greenhornensis, G. cenomana
and G. intermedia all disappear.

Through beds 2-3 the benthonic diversity shows a
steady decline, as does the total number of specimens, from
190 to 40 with a slight increase in bed 4 (sample 11). The
planktonic : benthonic ratio shows a sharp decrease and
remains steady at around 75% of the total population. Within
the planktonic population the rotaliporid population declines
sharply, with R. cushmani disappearing in the middle of bed 3
(sample 10). Unlike the Abbots Cliff Chalk Formation, the
praeglobotruncanid/dicarinellid component becomes the dominant
portion of the planktonic population. The benthonic population
becomes dominated by an assemblage of *L. rotulata* var., *G. berthelini*, *L. globosa* and *T. chapmani*. The specimens from beds 4 to 8 show pitted tests indicative of dissolution, the intensity of which is most marked in the tests of the planktonic species.

The decline in the total number of specimens continues into the Dover Chalk Formation as does the benthonic diversity. The assemblage is dominated by benthonic taxa with a moderate planktonic : benthonic ratio. The number of planktonic specimens recovered was generally very low and in many cases there were not sufficient specimens to warrant a detailed breakdown of the planktonic population. All the specimens exhibit pitted tests indicative of dissolution.

5.12. *BritOil 48/22-1*. (Enclosure 1, Figure 5.16).

5.12(i). **Lithostratigraphy.**

The succession comprises some 66 m of limestone of which approximately 62 m is part of the Hildra Formation. The position of the Plenus Marl Formation is problematic and the gamma ray deflection is poor, probably occurring at around 126 m downhole (Copestake, pers. comm.).

5.12(ii). **δ13C isotope curve.**

There is no carbon isotope curve available for BritOil
Arenobullina edwardsi
Gavelinella ctenomenica
Gavelinella intermedius
Gavelinella reussi
Lenticulina rotula var. b
Marssonella trochus var. turris
Nodosaria sp. a
Ammodiscus cretaceus
Gavelinella baltica
Marssonella trochus
Ataxophragmium depressum
Lenticulina rotula var. a
Pseudotextularia cretacea
Eggerellina mariae
Marginellina scuticostata
Vaginina costulata var. b
Textularia chapmani
Tritaxia pyramidal
Ramulina aculeata
Gavelinella berthelini
Lingulogavelinella globosa
Marssonella trochus var. oxycona
Gyrodinaoides parra
Plectina mariae
Guinquelucellina antiqua
Arenobullina prealli
Tritaxia tricornata var. jongmansi
Hedbergella delrioensis
Hedbergella plantispira
"Hedbergella brittonensis"
Rotellina appenninica
Praeglobotruncana stephani
Rotellina cushmani
Rotellina greenhornensis
"Hedbergella aprica"
Dicarinella algeriana
Dicarinella hagni
Dicarinella imbricata
"Hedbergella archaeoecreatae"

Figure 5.16 Foraminifera from BritOil 48/22-1
5.12(iii). *Macropalaeontological biostratigraphy.*

No macrofossils have been recorded from BritOil 48/22-1 (Copestake, pers. comm.).

5.12(iv). *Foraminiferal biostratigraphy.*

The first appearance downhole of *R. cushmani* occurs in sample 19 and thus the top of the *R. cushmani* i.z. is at 124m downhole.

5.12(v). *Foraminiferal assemblage.*

Only the sequence from the base of the *R. cushmani* i.z. has been studied in detail (samples 14-22). The number of specimens shows a steady decline from 180 (maximum) to 50 (minimum) per sample. The planktonic : benthonic ratio is low until sample 19 when the planktonics become dominant, forming at least 80% of the total population thereafter. Within the planktonic population the rotaliporid component is low, always less than 10%. *R. cushmani* disappears in sample 19. After sample 19 the praeglobotruncanid/ dicarinellid component becomes the dominant part of the planktonic population.

5.13. *Carbon isotope curve and stratigraphy.*

Carbon isotope curves have been used for correlation...

The carbon isotope curve at Beer Stone Adit (figure 5.5), shows a marked excursion, at the limonitic hardground within the Pinnacles Member, in the $\delta^{13}C$ value from 2.00$\%$ (PDB) to just over 4.00$\%$ (PDB). The larger value from the chalk matrix, lower values provided by intraclasts contained within the hardground (Carson, pers. comm.).

The carbon isotope curve from Dover (Figure 5.14), shows an excursion through the Plenus Marl Formation from a background level of 2.5-3.0 $\%$ (PDB) to a maximum of 4.6 $\%$ (PDB) in bed 8 of that unit (Carson, pers. comm.). Thus the limonitic hardground at Beer is equivalent to at least the Plenus Marl Formation.

G. intermedia disappears at the top of bed 1 (Plenus Marls) and *R. cushmani* disappears in the base of bed 4. Their recovery from the top of the limonitic hardground at Beer, (sample 6), suggests intense reworking of material in the Beer Stone Adit sequence, which is also borne out by the ammonites on the top of the Haven Cliff Hardground (5.5(iii)).

The rotaliporids possess the "deep water" features (Hart, 1980a; Caron, 1983a; Hart, 1985; Hart and Ball, 1986) of
low trochospire, well-developed keels and supplementary apertures. Their distribution in the boreal realm is restricted (Carter and Hart, 1977). The rotaliporid population in the sections studied varies in its relative dominance within the planktonic population, the distribution of species and the size of the individuals within each population.

5.14(i). Relative dominance of rotaliporid population.

Within the total planktonic population the rotaliporid component varies. In Goban Spur, the rotaliporids consistantly form more than 60% of the total planktonic population. In contrast, in the basinal sections of the Anglo-Paris Basin, the rotaliporid component is variable and gradually decreases in its presence eastwards (through White Nothe, Isle of Wight, Eastbourne, Dover). In all these sections the rotaliporid component rises in bed 1 of the Plenus Marl Formation (Figure 5.17).

5.14(ii). Distribution of rotaliporid species.

R. deeccki was only recorded from Goban Spur where it forms a very small part (3%) of the total planktonic population. *R. greenhornensis* is more prevalent, forming 15% of the total planktonic population at Goban Spur but it is more sporadically distributed in the Anglo-Paris Basin sections. *R. cushmani* is found in all sections until its
Figure 5.17 Planktonic population from selected sites

- Eastbourne
- Dover
- Goban Spur
- White Nothe

OAE: OCEANIC ANOXIC EVENT
P.M.: Plenus Marls
disappearance at the top of bed 3, Plenus Marl Formation (Figures 5.1, 5.17).

5.14(iii). Size of the *R. cushmani* specimens.

During ontogeny, extant planktonic foraminifera add chambers and progressively sink in the water column until the test is vacated during gametogenesis (Be *et al.*, 1966; Be and Anderson, 1976; Spindler *et al.*, 1979; Be, 1980; Be *et al.*, 1983). Thus the relative proportions of neanic to gerontic individuals of deeper water forms is a measure of depth. The greater the number of gerontics, the deeper the water.

For each sample the individuals of the *R. cushmani* population were measured (see section 2.6 for method). The parameters taken (Text Figure 5.1) were the maximum distance across the test from the penultimate chamber of the last whorl (b) and the maximum distance across the test from the first chamber of the last whorl (a). The last chamber was not measured because in some specimens it was slightly inclined
Figure 5.18 X-ray of *R. cushmani* from Goban Spur
Figure 5.19 X-ray of *R. cushmani* from White Nothe
Figure 5.20 X-ray of R. cushmani from Isle of Wight
Figure 5.21 X-ray of *R. cushmani* from Eastbourne
Figure 5.22 X-ray of *R. cushmani* from Dover
umbilically and thus such a measurement would have produced a spuriously short width.

Goban Spur:

The *R. cushmani* population at Goban Spur shows a population with test sizes of up to $60-65 \times 10^{-5} \text{ m}$ (figure 5.18).

White Nothe:

Within the Abbots Cliff Chalk Formation (samples 1-9), the maximum test size is variable but just achieves a value greater than $50-53 \times 10^{-5} \text{ m}$. In bed 1 of the Plenus Marl Formation (sample 10 and 11), the maximum test size increases dramatically but decreases through beds 2 and 3 (Figure 5.19).

Isle of Wight:

Within the Abbots Cliff Chalk Formation the maximum test size is variable and is rarely above $50-53 \times 10^{-5} \text{ m}$. In bed 1 of the Plenus Marl Formation the maximum test size increases to $59-63 \times 10^{-5} \text{ m}$ and remains high in bed 2 but decreases very slightly into the top of bed 3 (Figure 5.20).

Eastbourne:

Within the Abbots Cliff Chalk Formation the maximum test size is variable but slightly more than in White Nothe, Isle of Wight and Dover. In bed 1 of the Plenus Marl Formation there is a significant increase in test size reaching a maximum of $60-63 \times 10^{-5} \text{ m}$. This high value is maintained through bed 2 but declines markedly in bed 3 (Figure 5.21).

Dover:
Within the Abbots Cliff Chalk Formation the maximum test size is variable but does not achieve a value greater than $40-42 \times 10^{-5}$ m. In bed 1 of the Plenus Marl Formation there is a modest increase to $40-42 \times 10^{-5}$ m which is maintained through bed 2 but declines sharply in bed 3 (Figure 5.22).

The four sections produce a composite picture with three main features:

(i) the water depth decreases from west to east.

(ii) the lower part of the Plenus Marl Formation, particularly bed 1, is a deep water facies.

(iii) the rate of change in water depth appears rapid marked by the sharp change in maximum test size.

A late Cenomanian transgression has been recognized on the Falklands Plateau (Sliter, 1976), in Poland (Marcinowski, 1974), in northwest Europe (Hancock and Kaufmann, 1979), on the Russian Platform (Naidin, 1983) and globally (Cooper, 1977; Matsumoto, 1980; Morner, 1981; Vail et al., 1977; Haq et al., 1987).

An increased sample resolution from the Abbots Cliff Chalk Formation would permit a more detailed appraisal of any water depth changes. This approach would also permit the differentiation of phases within a planktonic foraminiferal biozone and also whether sea level changes are gradual (sensu
Hancock and Kaufmann, 1979), or sharp (sensu Vail et al., 1977).

5.15. **Benthonic foraminifera: bathymetric considerations.**

The limited distribution of certain genera across the shelf and onto the continental shelf of extant benthonic foraminifers has long been recognized (Bandy and Annal, 1957; Valentine and Mallory, 1965; Bandy and Chierici, 1966; Frerichs, 1970), and the Cretaceous bathymetric distribution of benthonic foraminifers (Sliter and Baker, 1972) of southern California show several features with increasing depth: increase in agglutinated foraminifera, lowering diversity and abundance.

Goban Spur, in contrast to the other sections, yielded a high rotaliporid component compared to the rest of the planktonic population including *R. cushmani*, *R. greenhornensis* and *R. deecki*, indicative of a deeper water assemblage (5.14).

The associated benthonic assemblage only forms 3% of the total population (5.3(v); Hart, 1987b), also indicative of a deeper water assemblage. The presence of any well-preserved calcareous forms infers that the assemblage has not been affected by the lysocline. It also shows several other differences from the other sections:

1. a restricted diversity of *T. macfadyeni*, *L. rotulata* var. *a*, *G. reussi*, *G. intermedia*, *A. advena*, *N. sp.a*, *E.*
brevis, M. trochus, M. trochus var. oxycona, Pseudobolivina sp.a, Lagena sp.a, Gyroidina sp.a and Lenticulina sp.a. The last four species being restricted to Goban Spur.

(ii) all the forms show a low size variability.

Thus these features of low benthonic diversity and size variability, dominance of rotaliporids and high planktonic : benthonic ratio suggest a deep bathyal water assemblage.
Chapter 6: The late Cenomanian Anoxic Event and the associated foraminiferal changes: Dover, a case study.

6.1. Introduction.

The late Cenomanian sea level rise (see 5.14), brought a high-stand on the continental shelf coupled with an expansion in the oxygen minimum zone (Jenkyns, 1980; Hart, 1985; Schlanger et al., 1987; Arthur et al., 1987): this adversely affected both the planktonic and benthonic foraminifera. The rise in the oxygen minimum layer may be positioned using the carbon isotope curve (Schlanger et al., 1987; Arthur et al., 1987). The details of this change may best be discerned by looking at the most expanded section against the carbon isotope curve, for example Dover.

At Dover, (see 5.11 (ii)), the δ^{13}C enrichment occurs gradually through the Plenus Marl Formation, reaching its peak in bed 8, then slowly declining to its background level at 2.5m from the base of the Dover Chalk Formation (Figure 5.14).

The changes in the foraminiferal population characterized by lowering of diversity, extinction and dwarfism. The changes in the planktonic and benthonic populations are not coeval and are thus reviewed separately.

6.2. The late Cenomanian Anoxic Event and the benthonic taxa.

The benthonic assemblage shows a steady decrease in diversity (Figure 5.13) up the Plenus Marl Formation, together with
a change in species composition:

(i) at the top of bed 1, G. baltica, G. intermedia, G. cenomanica, A. advena, P. plana, T. pyramidata, T. macfadyeni, P. mariae become extinct.

(ii) through beds 2-8 the assemblage comprises M. trochus, M. trochus var. turris, M. trochus var. oxycona, E. mariae, E. brevis, L. rotulata var. a, L. rotulata var. b, G. reussi, G. berthelini, L. globosa, Nodosaria sp. a, A. cretaceus, Marssonella sp. a, T. chapmani and T. tricarinata.

Within the marssonellid population the dominant morphotype is M. trochus var. turris which is characterized by an equal rate of growth in width and height of new chambers, giving the test straight sides in side view. Also associated with this is the aberrant M. sp. a which is only found from beds 2-8 and the two basal hardgrounds of the Shakespeare Cliff Member.

Within the eggerellinid population E. brevis becomes dominant over E. mariae. The former is characterized by a squat test as opposed to the more elongate test of the latter. Thus, the smaller chamber growth indicative of E. brevis may represent a stunted form of E. mariae.

The only representative of the genus Tritaxia recorded from this interval is T. tricarinata which is subtriangular with triserial growth. This form is smaller than the tritaxid population from below of T. pyramidata and T. macfadyeni and thus may represent a dwarf ecophenotype of these forms.
The textularids first appear in bed 2 in this study with *T. chapmani*, the population of which shows a reduction in size through beds 2-8, though only one specimen shows a smaller height than it should for the number of chambers (Figure 4.1). Though dwarfism is not conclusive, the population does display a reduction in the number of specimens recovered and their size through beds 2-8.

Within the nodosarids, the assemblage is dominated by *L. rotulata* var.a and *L. rotulata* var.b, the former only being present to the top of bed 3. Though the number of specimens recovered decreased towards the top of bed 8, the specimen size remained consistant. Although *N. sp.a* was evident in bed 2, it was not recorded from the other beds.

The gavelinellid population shows a marked change with the dominance of the *G. reussi* - *G. berthelini* plexus. These characteristic forms with a flattened umbilical surface and a variably developed boss on the spiral surface are notably smaller than the *G. baltica*, *G. intermedia*, *G. cenomanica* population they replace. Coupled with *G. berthelini*, *L. globosa* becomes prevalent, though the specimens of this species are slightly smaller in the last three beds of the Plenus Marl Formation.

(iii) through the Shakespeare Cliff Member (Dover Chalk Formation), the benthonic diversity remains low but does show a small recovery towards the top of the sequence. *A. preslii*, *T. tricarinata* var. *jongmansi*, *L. aumalensis* and *L. rotulata* var.c augment the benthonic assemblage well above the horizon where the
§13 C level returns to its background value. Thus although the oxygen depleted waters have receded, the benthonic assemblage shows a poor recovery.

Oxygen deficient benthonic foraminiferal assemblages have been recognized in the Devonian (Gutschick and Wuellner, 1983); in the Nigerian (Nyong and Ramanathan, 1985), the Brazilian (Mello et al. in press), and the English (Hart and Bigg, 1981) Cretaceous; in the Miocene and Pliocene of the Mediterranean (Katz and Thunell, 1984); in the Recent sediments of the southeastern Pacific Ocean (Ingle et al., 1980), and from Jurassic to Holocene levels (Bernhard, 1986).

Nyong and Ramanathan (1985), recorded a late Cenomanian anoxic benthonic assemblage of Gavelinella sp., Gabonita sp., and Ammobaculites subcretacea from the Calabar Flank, S.E. Nigeria. This shows some similarity with a limited fauna dominated by gavelinellids. The specimens were not illustrated or described so no detailed comparison of the gavelinellid populations is possible.

The late Cenomanian anoxic (Arthur et al., 1987) benthonic assemblage (Hart and Bigg, 1981) from across the "Black Band" in Lincolnshire, (England), was very poor. Although the sequence is not as complete as Dover, the assemblage shows many similarities. G. cenomanica and G. intermedia disappear below the anoxic event, whilst L. globosa and G. tourainensis (= G. reussi - G. berthelini plexus) occur across it. The "Black Band" itself (the peak of the
$\text{S}13$ C enrichment (Arthur et al., 1987)), only yielded A. cretaceus (Hart and Bigg, 1981), although Glomospira sp., T. chapmani and Haplophragmoides sp. have also been recorded (Martinez-Rodriguez and Crump, 1987; Brasier, pers. comm.)

A Cenomanian anoxic benthonic assemblage from the Mancos Shelf (New Mexico) yielded Gavelinella dakotensis, Neobulimina cadadensis, Dentalina basisplanata, Citharina kochii and Lenticulina sp. (Bernhard, 1986). The tests were small to medium sized with little ornamentation on the nodosarids. This assemblage is similar to the one recorded at Dover with small Lenticulina spp. and G. dakotensis. G. dakotensis is very similar to G. reussi with a flattened test and a small boss on the spiral side.

From the Sergipe Basin, Brazilian margin, a late Cenomanian anoxic benthonic community comprised of Lingulogavelinella thalmanniformis, G. berthelini, Dentalina sp. and Gabonella spp. has been recorded (Mello et al., in press). The Gabonella spp. and L. thalmanniformis exhibit dwarfism but the nodosarids show little size reduction and ornamentation (Koutsoukos, pers. comm.). This assemblage is very similar to the one recorded at Dover with smooth Lenticulina spp., G. berthelini and elongate nodosarids.

Thus the late Cenomanian anoxic benthonic community may be characterized by forms of the G. reussi - G. berthelini lineage, smooth Lenticulina spp. and Nodosaria spp. or Dentalina spp. with the addition of regional forms such as L. globosa and Textularia chapmani (Europe) and L. thalmanniformis and Gabonella spp. (South
Atlantic).

G. reussi is present in the pre-OAE fauna and proliferates rapidly into the form G. berthelini after the extinction of G. baltica, G. cenomanica and G. intermedia. Thus the G. reussi - G. berthelini plexus is probably tolerant of low levels of dissolved oxygen as is Lenticulina rotulata var.b which is also present in the pre-OAE fauna. In contrast, Textularia chapmani is only present during the anoxic event and may represent a specialist form tolerant of low levels of dissolved oxygen.

There is a general relationship between feeding habits and test morphology (Jones and Charnonk, 1985) in extant benthonic foraminifera. In addition, their microhabitats have been recognized (Frankel, 1974; Severin, 1983; Kitazato, 1984; Corliss, 1985; Jones, 1986) within the sediment profile and this has been applied to fossil communities (Severin, 1983; Jones and Charnock, 1985). The assemblage from Dover may be characterized:

EPIFAUNAL: Ammodiscus, Trochammina, Gyroidinoides, Gavelinella, Lingulogavelinella, Ramulina, Lenticulina.

INFAUNAL: Textularia, Eggerellina, Tritaxia, Ataxophragmium, Vaginulina, Dentalina, Plectina, Pseudospiroplectinata, Marssonella, Arenobulimina.

6.3. The late Cenomanian Anoxic Event and the planktonic taxa.
The planktonic foraminifera show a gradual increase in diversity, reaching a peak at the top of bed 1, Plenus Marl Formation. There follows a steady decline through the succeeding beds of the Formation, reaching its nadir in the base of the Shakespeare Cliff Member: this clearly mirrors the δ^{13}C curve.

The peak in diversity at the top of bed 1 is coincident with the increasing water depth, (see 5.14). The rotaliporid component decreases with the rising oxygen minimum zone, finally disappearing at the top of bed 3, with *R. greenhornensis* disappearing before *R. cushmani* (Hart, 1985; Figure 5.13), at a δ^{13}C value of 3.5 - 4.0 $\%$ (PDB) which is below the maximum value of 4.0 - 4.5 $\%$ (PDB) reached in bed 8. In the Muhlberg section (West Germany), *Rotalipora cushmani* disappears at a δ^{13}C value of 3.8 $\%$ (PDB) (Hilbrecht and Hoefs, 1986). After the loss of the rotaliporids, the dicarinellids assume dominance but the number of specimens recovered becomes very low in bed 6 which remains the case through into the first 2m of the Shakespeare Cliff Member. The planktonic diversity slowly increases to reach its pre-OAE value.

There is no statistical difference between the empty tests of extant planktonic foraminifera in the basal anoxic waters of the Gulf of Mexico and the population in the overlying surface waters, although there may be some incipient dissolution of the spinose forms (Penrose and Kennet, 1979). Thus as the assemblage at Dover contains a hedbergellid population across the anoxic event, which are the thinnest walled planktonics, the assemblage is not
significantly altered by dissolution.

The evolutionary relationships are covered in Chapter 7.

Thus the sequence of foraminiferal changes may be shown (Figure 6.1) at punctuated intervals with the expansion in the oxygen minimum zone:

Bed 1: Plenus Marls (Figure 6.1 A). Rise in sea level, rich benthonic community and planktonic assemblage, O₂ minimum zone not affecting the shelf.

Bed 2: Plenus Marls (Figure 6.1 B). Benthonic community impoverished but planktonic community stable (with slight loss of rotaliporids). O₂ minimum zone upon the shelf but only affecting the basal waters.

Bed 4: Plenus Marls (Figure 6.1 C). Poor benthonic community and loss of rotaliporids. O₂ minimum zone moved onto the shelf and part of the way up into the water column.

Bed 8: Plenus Marls (Figure 6.1 D). O₂ deficiency tolerant benthonic taxa established and very low planktonic count. O₂ minimum zone expanded to its fullest extent up the water column.
Late Cenomanian Anoxic Event and the benthonic and Planktonic foraminifera
Figure 6.1

BED 4
PLENUS MARLS

increasing water depth?

expansion in O₂ minimum zone

BED 8
PLENUS MARLS

expansion in O₂ minimum zone reaches its peak

Late Cenomanian Anoxic Event and the benthonic and planktonic foraminifera
Chapter 7: The late Cenomanian Anoxic Event and the evolution of the planktonic foraminifera.

The distribution of mid Cretaceous foraminifera in northwest Europe has been noted (Hart and Bailey, 1979), and the effect of oceanic anoxic events on foraminiferal evolution (Hart, 1980a; Caron, 1983a; Caron and Homewood, 1983; Hart, 1985; Hart and Ball, 1986; Arthur et al., 1987).

The rise in the oxygen minimum zone caused the extinction of the rotaliporids and initially the decimation of the planktonic population, with very low planktonic numbers recorded. The post OAE saw the re-establishment of the surviving taxa and a period of explosive evolution of forms adapted to capitalise on the deeper water niche vacated by the rotaliporids. The pre-late Cenomanian OAE foraminiferal population had developed through the Albian and most of the Cenomanian to produce well differentiated tripartite groups based upon test architecture of Hedbergella spp., Praeglobotruncana spp. (and some "early dicarinellids") and Rotalipora spp. (Figure 7.1). These three different morphotypes were adaptations to a progressively deeper water niche for gametogenesis (Hart, 1980a; Caron and Homewood, 1983), in the gerontic portion of their lifecycle (Figure 7.1). A consequence of a deeper water position for gametogenesis was a decrease in the frequency of gametogenesis. Thus the rotaliporids were the most susceptible to a rise in the oxygen minimum zone.
Pre late Cenomanian OAE foraminiferal populations and their ontology.

amended from Caron & Homewood (1983)
The extinction of the rotaliporids followed the pathway $R. \text{deeki}(?)$, then $R. \text{greenhornensis}$, then $R. \text{cushmani}$ (Hart, 1985: see 6.3). $R. \text{deeki}$ and $R. \text{greenhornensis}$ being restricted to deeper water assemblages than $R. \text{cushmani}$. The pre-OAE globotruncanid population contains forms with two faintly developed keels (especially on the initial chambers of the last whorl) with a lower trochospire. On the demise of the rotaliporids, these forms rapidly increase in both numbers and keel definition, thus obtaining a more pronounced dicarinellid aspect. This population includes $D. \text{algeriana}$, $D. \text{hagni}$ and $D. \text{imbricata}$, although the keels of the latter are only slightly offset around the whorl and are very close to the keel configuration of $D. \text{hagni}$. In addition, the differentiation of $P. \text{stephani}$ and $D. \text{algeriana}$ is problematical as in many cases the keels are poorly separated, if at all. Within the hedbergellid population there is a slight proliferation of forms with $H. \text{planispira}$, $H. \text{aprica}$ and $H. \text{brittonensis}$ increasing their numbers. Both praeglobotruncanids/dicarinellids and hedbergellids exhibit a sharp drop in numbers coupled with the continued gradual rise in the $\delta^{13}C$ level (and rising oxygen minimum zone). With the waning of the $\delta^{13}C$ level there are four important developments:

(i) the appearance of "H. archaeocretacea". $H. \text{archaeocretacea}$ is derived from the $H. \text{aprica}$ group and is a rapid development: many of the specimens show poorly developed peripheral pustules and umbilical structures (Figure 7.2).
(ii) the appearance of *H. praehelvetica*. Some specimens within the *H. delrioensis* group during the anoxic event show very low trochospires, these develop with the waning of the anoxic event into the wider umbilical, trochospired form of *H. praehelvetica*. However, their absolute numbers are low (Figure 7.2).

(iii) further differentiation of the dicarinellids. Within the dicarinellid population the species-specific features become more acute. The *D. algeriana* stock show well separated and stepped keels. *D. imbricata* and *D. hagni* groups show a moderate increase in the size of the specimens, lower trochospires and an increase in the angle of the keels of the former (Figure 7.2).

(iv) the heterohelicid population. The pre-OAE heterohelicid population is dominated by the *H. moremani* group; with the waning of the oxygen minimum zone the more expanded chambered forms of the *H. globulosa* group appear derived from the former. In addition, nearly all the heterohelicid population is now striate, with variably developed thin costae on the tests. In some cases, these are concentrated on the first formed chambers of the test (Figure 7.2).

The proposed phylogenetic relationships of mid-Cretaceous planktonic foraminifera have variously placed emphasis on such features as apertural position, height of the trochospire and the presence/absence of keel(s). Bandy (1961),
Figure 7.2

BED 4.5
PLENUS MARLS

rotaliporids just become extinct

rising O₂ minimum zone

proliferation of early dicarinellids into partially vacated deep water niche

Hedbergella spp.

Praeglobotruncana spp.

BED 8
PLENUS MARLS

O₂ minimum zone reaches its shallowest level

Hedbergella spp. (only small number of specimens recovered.)

Shakespeare Member

Hedbergella spp. ○ H. praehelvetica

Praeglobotruncana spp.

'H.' archaeocretacea

O₂ minimum waned

differentiation of dicarinellids

Schematic representation of evolutionary 'micro events' within the planktonic foraminiferal population during the late Cenomanian OAE
placed much emphasis on the presence of keels and suggested that
the rotaliporid group gave rise to the globotruncanids in the
late Cenomanian and that *H. helvetica* was derived from *P. delrioensis*. In contrast, Neagu (1969), derived the
globotruncanids from the praeglobotruncanids in the middle to
late Turonian. Wonders (1980), agrees with this but states that
only *D. algeriana* crossed the Cenomanian - Turonian boundary and
that the hedbergellids gave rise to the whiteinellids.
Similarly, Banner (1981), proposed that the praeglobotruncanids
gave rise to the dicarinellids in the early Turonian. This,
largely, was proposed by Caron (1983b), with the
praeglobotruncanids being the ancestral stock of the
dicarinellids and the whiteinellids deriving from the
hedbergellids. In addition, she proposed that the
helvetoglobotruncanids were an early Turonian offshoot of the
hedbergellid stock.

This study proposes that the dicarinellids were derived
from the praeglobotruncanids, in broad agreement with Neagu
(1969), Wonders (1980), Banner (1981) and Caron (1983b), but
that it occurred twice in the late Cenomanian.

The presence of the more specialist deep water
rotaliporids prior to the OAE restrained the development of the
praeglobotruncanid population. The formers' demise, with the
rising oxygen minimum zone, facilitated rapid dicarinellid
proliferation, both prior to the shallowest position of the zone
and on its waning. Equally, the rapid appearance of
"*H*. archaeocretacea" was a deep water strategy. Its initial
success past the moving praeglobotruncanid / dicarinellid population may be due to the increased frequency of gamatogenesis of the surface-dwelling hedbergellids.

A common test morphology (Text-Figure 7.1) of low trochospire, peripheral test thickening (lines of pustules, 1-2 keels), and wide differentiated (supplementary apertures and infraliminal accessory apertures) umbilical regions is shown by Rotalipora spp., H. archaeocretacea and Dicarinella spp. This movement towards a keeled disc shape has several repercussions for the test:

(i) increase in test mass.

(ii) increase in surface area:volume ratio.

(iii) movement in the centre of gravity.

The physical analysis of empty tests of extant species shows that the co-efficient of resistance (θ) increases as the test approximates more towards a disc (McNown and Malaika, 1950; Lipps, 1979). (The larger planktonic foraminifera are inappropriate for the application of Stokes Law, (Lipps, 1979)).

The strategic secretion of calcite around the periphery in the form of keels shows several important features:

(i) it is remarkably consistent within a stable population (Rotalipora spp.).

(ii) thicker, more substantial keel(s) on the initial chambers of the last whorl weakening progressively around the periphery.

The keels may possibly be the remains of concentrated spine bases which would result in an extended disc shape but with a much lower increase in overall test mass (Text Figure
7.1a). In addition, the thicker spines on the initial chambers of the last whorl would tend to maintain a regular overall outline in spiral view (Text Figure 7.1b).

Text figure 7.1(a)

Increase in test diameter with addition of spines

Text figure 7.1(b)

Smoothing of test outline in spiral view

This configuration would greatly increase the co-efficient of resistance (θ), but only if the test were orientated perpendicular to the direction of motion of the test. There is no evidence of the orientation of the tests of extant foraminifera in the water column (Hemleben, pers. comm.). Whatever the physical interactions of the test and the sea water, the role of the ectoplasm has yet to be assessed properly. The increase in the surface area:volume ratio may cause transport problems of nutrients through the ectoplasm and endoplasm but the opening of the chambers to the umbilicus results in the minimal distance between the individual chambers and the ectoplasm, the so-called MinLOC (sensu Brasier, 1982, 1986). The development of supplementary apertures and infralaminal accessory apertures facilitates this. The latter
may be a protective adaptation for the wide open umbilicus.
Chapter 8: Other faunal groups and the late Cenomanian Anoxic Event.

8.1. Introduction.

Some of the macrofaunal changes across the Cenomanian - Turonian boundary in England have been documented (Jefferies, 1963; Kennedy and Wright, 1981; Woodroof, 1981). Some microfaunal changes have been investigated (ostracods: Kaye, 1964; Weaver, 1981, 1982; dinoflagellates: Clarke and Verdier, 1967; nannoplankton: Crux, 1980, 1982) but several detailed studies are as yet unpublished (ostracods: Horne, pers. comm.; dinoflagellates: Tocher, pers. comm.; nannoplankton: Cooper, pers. comm.).

8.2. Macrofaunal changes.

The macrofaunal assemblages found through the Plenus Marl Formation (Figure 8.1), as exemplified by Merstham, show several important features (Jefferies, 1963). The benthonic community exhibits a marked faunal change at the top of bed 1 and subsequent reduction in diversity through the successive beds (2-8), with a particularly low faunal count from the top of bed 3. In addition, there is no aragonitic macrofauna recorded from beds 4 to 8 (Jefferies, 1963), and the ammonite record is very poor (Kennedy and Wright, 1981). This implies some dissolution of the fauna, also evident in the foraminifera tests (see 5.8(v), 5.9(v), 5.10(v), 5.11(v)), and ostracod valves (see 8.3(i)). Although the degree of dissolution is not very intense: the presumably most susceptible thin walled
Figure 8.1 Macrofossil changes through the Plenus Marl Formation (after Jefferies 1963)

Macrofossils (Ammonites excepted)

Aragonite fossils

Lower diversity than bed 7

Low diversity brachiopod population

High abundances of a small number of brachiopods.

Same diversity but lower abundance

Different but diverse brachiopod population.

Marked faunal change.

Large and common oysters.

Abundant and diverse brachiopod population.

Echinoids becoming rarer.

0 ft.

1

2

3

4

5

6

7

Plenus Marl from Merstham
planktonic foraminifera are still preserved. The early Turonian benthonic fauna is characterized by only a small number of morphotypes, relatively small individual size and is dominated by suspension feeders such as Orbirhynchia and inoceramids (Woodroof, 1981).

8.3. Microfaunal changes.

(i) ostracods:

The ostracods from the Cenomanian of England have been described by Weaver (1981, 1982). The ostracod assemblage through the Cenomanian - Turonian succession at Dover is dominated by platycopids with the rest of the fauna comprised of podocopids (Figure 8.2) (Horne, pers. comm.). The former exhibit a drop in absolute numbers after bed 1 but not an appreciable drop in diversity. Their absolute numbers continue to decline through the successive beds (2-8) and only begin to recover about 1.5m above bed 8 of the Plenus Marl Formation (Horne, pers. comm.). In contrast, the podocopids show a dramatic decline in diversity through beds 1-8 of the Plenus Marl Formation, particularly at the tops of beds 1 and 4 (Figure 8.5, 8.6). These extinctions resulted in only three podocopids surviving into the overlying Dover Chalk Formation. The post-OAE ostracod population remains poor both in abundance and diversity well into the Dover Chalk Formation (Horne, pers. comm.). The durability of the platycopid population through the OAE in contrast to the podocopids may be due to their ontogenetic strategy of retaining neanics within the carapace for three instars prior to release into the
Figure 8.2 Ostracods from Dover

<table>
<thead>
<tr>
<th>Stage</th>
<th>Formation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cenomanian</td>
<td>Abbots Cliff Chalk</td>
</tr>
<tr>
<td></td>
<td>Capel-le-Ferne Member</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Samples</th>
<th>Number</th>
<th>Descriptions</th>
</tr>
</thead>
</table>

(after Jarvis et al. in press)
Figure 8.2 Ostracods from Dover (cont.)

(after Jarvis et al. in press)
Figure 8.3 Dinoflagellates from Dover

Cenomanian

<table>
<thead>
<tr>
<th>Abbots Cliff Chalk</th>
<th>Plenus Marl</th>
<th>Dover Chalk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capel-le-Ferne Member</td>
<td></td>
<td>Shakespeare Cliff Member</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Scale (ft)</th>
<th>Number of Specimens</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5 - 1.0</td>
<td></td>
</tr>
<tr>
<td>1.0 - 1.5</td>
<td></td>
</tr>
<tr>
<td>1.5 - 2.0</td>
<td></td>
</tr>
<tr>
<td>2.0 - 2.5</td>
<td></td>
</tr>
</tbody>
</table>

Lithology

- Cribrostomum callistion
- Labirenysta calymyctes
- L. deflecta
- Oligosphaeridium prolisetoprae
- Cribrostomum? octocamer
- Exxosphaeridium bittanum
- Frana granulos
- Oligosphaeridium albertonense
- Cortega calidrella
- Heterosphaeridium beneficentum
- Axelfordia delienceral
- Elkesania eicosides
- Exxosphaeria ptochepus
- Oligosphaeridium pappus
- Exxosphaeridium phegrophaeus
- Exxosphaeridium ramosulum
- Exxosphaeridium sp. C
- Exxosphaeridium corticosum
- Exxosphaeridium sp. A

(Notes: Scales are not drawn to a common size)

(after Jarvis et al. in press)
Figure 8.3 Dinoflagellates from Dover (cont.)
(after Jarvis et al. in press)

Turonian
DOVER CHALK
Shakespeare Cliff Member

Number of specimens

Note: cysts are not drawn to a constant scale.
environment. A high proportion of Cytherella specimens in bed 4 and the higher parts of the Plenus Marl show dissolution effects, with valves displaying rough, etched surfaces in contrast to their normal smooth appearance.

(ii) dinoflagellates:

The dinoflagellate cysts across the Cenomanian - Turonian boundary have been investigated from the Isle of Wight (Clarke and Verdier, 1967). The dinoflagellate cyst assemblage from the late Cenomanian - Turonian succession at Dover (figure 8.3), exhibits a drop in diversity just below the sub Plenus erosion surface, recovering to its initial level in bed 3 of the Plenus Marl Formation (Tocher, pers. comm.) (Figure 8.5, 8.6). After bed 3, the diversity declines rapidly to zero at the top of bed 8. The dinoflagellate cysts reappear 3.5m above bed 8 and slowly recover in diversity to reach the pre-OAE level in the late Turonian (op cit.). The absence of cysts in the Melbourn Rock facies is probably not a preservational phenomenon but a true reflection of the devastation of the dinoflagellate encysting population (Tocher, pers. comm.), because their decline begins within the Plenus Marl Formation.

(iii) nannoplankton;

The nannoplankton population across the late Cenomanian - Turonian boundary succession at Dover shows a marked decline in beds 7 and 8 of the Plenus Marl Formation, with some extinctions at these levels (Figures 8.4, 8.5, 8.6). The diversity continues to decline to its lowest level in the
Figure 8.4 Nannoplankton from Dover

(after Jarvis et al. in press)
Figure 8.4 Nannoplankton from Dover (cont.)

Turonian
DOVER CHALK
Shakespeare Cliff Member

(after Jarvis et al. in press)
Figure 8.5 Diversities from Dover

Isotope stratigraphy

Benthonic diversity

Planktonic diversity

(after Jarvis et al. in press)
Figure 8.6 Abundances from Dover

(after Jarvis et al. in press)
second incipient hardground of the Melbourne Rock facies (Dover Chalk Formation). The nannoplankton diversity rapidly increases after the waning of the OAE with the proliferation of several new species (Cooper, pers. comm.).

8.4. Overview.

The pattern of macrofaunal and microfaunal changes may be summarized sequentially as:

(i) Just below the sub-Plenus erosion surface-
 loss of small number of dinoflagellate species.

(ii) bed 1, Plenus Marls-
 high diversity of benthonic foraminifera, ostracods, benthonic macrofauna.

(iii) top bed 1-
 extinction of some benthonic foraminifera, ostracods (podocopids), decline in macrofaunal diversity.

(iv) beds 2-3 -
 poor benthonic macrofauna
 continued decline in benthonic foraminifera.

(v) top bed 3-
 extinction of rotaliporids
 initial decline in dinoflagellate cyst diversity.

(vi) bed 4-
 rapid decline in dinoflagellate cyst diversity
 continued decline in benthonic foraminifera and low ostracod diversity.

(vii) beds 5-8 -
planktonic and benthonic foraminifera,
ostracods and dinoflagellates reach lowest diversities
nannoplankton diversity begins decline
macrofauna poor.

(viii) top bed 8-
δ13C value reaches its peak
very low dinoflagellate numbers and diversity
planktonic and benthonic foraminifera diversities low
ostracod diversity very low, limited benthonic macrofauna

(ix) within first metre of Melbourn Rock facies-
dinoflagellates absent
nannoplankton diversity at its lowest
benthonic and planktonic foraminifera,
ostracod and benthonic macrofaunal diversities very low.
δ13C value begins to wane.

(x) subsequent 20m of Dover Chalk Formation-
δ13C value quickly returns to background level
benthonic macrofauna and foraminifera,
ostracod diversities recover but to lower than pre-OAE values
planktonic foraminiferal diversity recovers
dinoflagellates reappear but with lower than pre-OAE diversity and abundance.

Thus it is evident that the rising oxygen minimum zone adversely affected the benthos prior to the deeper
water planktonics (rotaliporids) and then subsequently the shallow water planktonics (praeglobotruncanids, hedbergellids, dinoflagellates and nannoplankton).
Chapter 9: Implications of the study.

The use of deep water planktonic foraminifera for biostratigraphy limits their use in onshore sections (e.g. Rotalipora spp, "H". archaeocretacea). In addition, the OAE means there is a gap between the extinction of the rotaliporids and the development of "H". archaeocretacea and this results in an unrefined biostratigraphic interval. The identification of biostratigraphically useful planktonic foraminifera in thin section from burrows within hardgrounds of attenuated sequences, such as Shapwick Grange Quarry (Chapter 5.6 (iv)), permits the dating of infilling events during the formation of these omission surfaces. Thus the detailed sampling of the burrow phases may allow the more accurate dating of the down-moved, though subsequently eroded, overlying sediment. The measurement of the size of tests within the rotaliporid population permits the analysis of eustatic changes across the Anglo-Paris Basin (Chapter 5.14 (iii)). Thus the detailed sampling of the sequences within the R. cushmani i.z. and the measurement of the specimens would provide data on the most subtle eustatic movements. These changes could be utilised to delimit the R. cushmani i.z..

9.2. The late Cenomanian "Event" and Mass Extinctions.

Major faunal turnovers (mass extinctions) have received
much attention, notably the Cretaceous - Tertiary "event". A periodicity in extinction of 26 m.y has been recognized (Fischer and Arthur, 1977; Raup and Sepkoski, 1984; Raup, 1985; Sepkoski and Raup, 1986; Raup, 1987), with the late Cenomanian comprising one of these important "events". The idea of a meteor impact for the terminal Cretaceous faunal turnover (Alvarez et al., 1980), has led to the assertion of an extraterrestrial cause for the others (Raup, 1986), and the "Nemesis" death star to account for the regularity.

This detailed late Cenomanian faunal study indicates that the extinction of marine biota depended on their relative niche with respect to the rise in the oxygen minimum zone. The very sequential nature of the extinctions, from benthonics (foraminifera, ostracods, macro-organisms) to deep water planktonics (rotaliporids), to shallow water planktonics (dinoflagellates then nannoplankton), argues heavily against the impact theory induced by the proximity of "Nemesis". The details of other Cretaceous faunal turnovers are not completely integrated but some conclusions may be drawn. In the Aptian, deep water planktonic foraminifera were not present but there were extinctions within the benthonic foraminiferal population (Hart et al., 1981), and the hedbergellids pass into the Albian. At the K-T boundary the benthonic foraminifera undergo extinctions and only the thin-walled "hedbergellid" population cross the boundary (Hart, 1981). In addition, the K-T boundary shows a marked drop in species diversity within the dinoflagellate cyst assemblage (Hansen, 1977), with only
the cosmopolitan forms passing across the boundary (Tocher, pers. comm). Thus the similarities in the three events are apparent but the relative position of the faunal changes for each group need to be established.

9.3. Interpretation of the planktonic : benthonic ratios.

The ratio of planktonic : benthonic foraminifera may be utilised to make estimates of depths of deposition of sedimentary rocks (Grimsdale and Morkhoven, 1955). These have been used in the Cretaceous to map eustacy (Barr, 1961; Diver, 1968; Flexer and Starinsky, 1970; Hart and Carter, 1975; Bailey, 1978; Hart, 1980). Whilst P:B ratios are important and useful under stable marine conditions, the very poor post-OAE benthonic fauna (in all groups - macro-organisms, foraminifera and ostracods - Chapter 8.3(i) and 8.4), means that they must be used with caution during, at least, the early Turonian, to avoid spuriously deep water depth values.

9.4. Investigation of orbital forcing.

The recognition of orbital forcing as a mechanism for the formation of sedimentary\palaeontological cycles has developed over the last hundred years (Croll, 1875; Berger et al., 1984). Cretaceous rhythms have received much attention (Barron et al., 1985; Arthur et al., 1986; Herbert and Fischer, 1986). For the optimal biotic changes the Cenomanian strata are more suitable for study since the OAE radically reduced the
benthonic diversity (foraminifera, ostracods, macro-organisms) found in most of the Turonian strata.

9.5. **The pattern of onshore to offshore in the evolution of shelf communities.**

Community trophic analysis of late Cretaceous shelf faunas indicates that major ecological innovations appeared in nearshore environments and then expanded outward across the shelf at the expense of older community types (Jablonski et al., 1983), due to the differential extinction rates of onshore as opposed to offshore clades, or from differential origination rates of new ecological associations or evolutionary novelties in nearshore environments (op cit.). The rising oxygen minimum zone would account for the extinctions of the specialist offshore species with the surviving nearshore forms evolving into the vacated niches on the waning of the oxygen minimum zone.
References:

du syndual de la Gruyere (Prealpes Medranes, Suisse).
Revue de Micropaleonologie, 9, (2), 68-93.

Caron, M. (1983a). La speciation chez les Foraminiferes
planctiques: une réponse adaptée aux constraintes de
l'environnement. Zitteliana, 10, 671-676.

Caron, M. (1983b). Taxonomie et phylogenie de la

Bolli, H.M., Saunders, J.B., Perch-Nielsen, K. (Eds.).
Plankton Stratigraphy. 17-86. Cambridge Univ. Press.

planktic foraminifers. Marine Micropalaeontology, 7,
453-462.

Carsey, D.O. (1926). Foraminifers of the Cretaceous of
Central Texas. Texas University Bulletin, 2612, 1-56.

Chapman, F. (1891-8). The Foraminifera of the Gault of

Plate 1.

1. *Ammodiscus cretaceus* (Reuss)
lateral view, S6Q18, x200

2. *Ammodiscus cretaceus* (Reuss)
lateral view, ABC5, x100

3. *Ammodiscus cretaceus* (Reuss)
lateral view, ABC5, x150

4. *Ammodiscus cretaceus* (Reuss)
lateral view, ABC14, x100

5. *Ammodiscus cretaceus* (Reuss)
lateral view, ABC14, x150

6. *Ammodiscus cretaceus* (Reuss)
lateral view, ABC19, x150

7. *Ammodiscus cretaceus* (Reuss)
lateral view, ABC11, x100

8. *Ammobaculites sp.a*
lateral view, CBl 2, x35

9. *Haplophragmium aequale* (Reuss)
whole specimen, lateral view, CBl 5, x35

10. *Haplophragmium aequale* (Reuss)
initial coil of test, lateral view, CBl 5, x100

11. *Haplophragmium aequale* (Reuss)
terminal chamber of test, apertural view, CBl 5, x100

12. *Haplophragmium aequale* (Reuss)
terminal chamber of test, apertural view, CBl 5, x100

13. *Subbelloidina sp.a*
lateral view, CBl, x150

14. *Textularia chapmani* (Lalicker)
side view, ABC9, x75

15. *Textularia chapmani* (Lalicker)
apertural view, ABC9, x150
Plate 2.

1. *Textularia chapmani* (Lalicker) lateral view, ABC9, x100
2. *Textularia chapmani* (Lalicker) apertural view, ABC9, x200
3. *Textularia chapmani* (Lalicker) lateral view, ABC9, x150
4. *Textularia chapmani* (Lalicker) lateral view, ABC9, x150
5. *Textularia chapmani* (Lalicker) apertural view, ABC9, x200
6. *Textularia chapmani* (Lalicker) apertural view, ABC9, x150
7. *Textularia chapmani* (Lalicker) lateral view, ABC9, x100
8. *Textularia chapmani* (Lalicker) close-up of aperture, ABC9, x350
9. *Textularia chapmani* (Lalicker) lateral view, ABC9, x100
10. *Textularia chapmani* (Lalicker) apertural view, ABC9, x200
11. *Textularia chapmani* (Lalicker) apertural view, ABC10, x200
12. *Textularia chapmani* (Lalicker) lateral view, ABC10, x200
13. *Textularia chapmani* (Lalicker) apertural view, ABC11, x150
14. *Textularia chapmani* (Lalicker) lateral view, ABC11, x100
Plate 3.

1. *Textularia chapmani* (Lalicker) apertural view, ABC11, x200

2. *Textularia chapmani* (Lalicker) lateral view, ABC11, x200

3. *Textularia chapmani* (Lalicker) apertural view, ABC11, x150

4. *Textularia chapmani* (Lalicker) lateral view, ABC11, x150

5. *Textularia chapmani* (Lalicker) lateral view, ABC13, x200

6. *Textularia chapmani* (Lalicker) apertural view, ABC13, x200

7. *Textularia chapmani* (Lalicker) lateral view, ABC14, x100

8. *Textularia chapmani* (Lalicker) apertural view, ABC14, x150

9. *Pseudobolivina* sp.a lateral view, Goban Spur 5/2 13-17, x100

10. *Pseudobolivina* sp.a apertural view, Goban Spur 5/2 13-17, x150

11. *Trochammina depressa* (Lozo) lateral view, B.P 93/2-1, 1116, x200

12. *Pseudospiroplectinata plana* (Gorbenko) lateral view, ABC7, x75

13. *Pseudospiroplectinata plana* (Gorbenko) lateral view, ABC7, x75

14. *Pseudospiroplectinata plana* (Gorbenko) lateral view, ABC7, x75

15. *Pseudospiroplectinata plana* (Gorbenko) close-up of initial coil, ABC7, x75
Plate 3 cont'd:

16. *Pseudospiroplectinata plana* (Gorbenko)
lateral view, incomplete specimen, ABC8, xl00

17. *Pseudospiroplectinata plana* (Gorbenko)
close-up of aperture, ABC8, x350
Plate 4.

1. *Tritaxia macfadyeni* (Cushman) lateral view, Goban Spur 6\l 30-33, x100

2. *Tritaxia macfadyeni* (Cushman) lateral view, Goban Spur 6\l 30-33, x150

3. *Tritaxia macfadyeni* (Cushman) oblique apertural view, Goban Spur 6\l 30-33, x200

4. *Tritaxia macfadyeni* (Cushman) lateral view, Goban Spur 6\l 30-33, x150

5. *Tritaxia macfadyeni* (Cushman) lateral view, Goban Spur 6\l 101-105, x150

6. *Tritaxia macfadyeni* (Cushman) oblique apertural view, Goban Spur 6\l 101-105, x350

7. *Tritaxia macfadyeni* (Cushman) lateral view, Goban Spur 6\l 101-105, x150

8. *Tritaxia macfadyeni* (Cushman) close-up of test wall, Goban Spur 6\l 101-105, x500

9. *Tritaxia macfadyeni* (Cushman) lateral view, Goban Spur 6\l 101-105, x150

10. *Tritaxia macfadyeni* (Cushman) oblique apertural view, Goban Spur 6\l 101-105, x200

11. *Tritaxia macfadyeni* (Cushman) close-up of aperture, Goban Spur 6\l 101-105, x750

12. *Tritaxia macfadyeni* (Cushman) lateral view, ABC7, x50

13. *Tritaxia macfadyeni* (Cushman) lateral view, ABC7, x50

14. *Tritaxia pyramidata* (Reuss) lateral view, ABC6, x150

15. *Tritaxia pyramidata* (Reuss) lateral view, ABC6, x50
Plate 4 cont'd

16. *Tritaxia pyramidata* (Reuss) oblique apertural view, ABC6, x75
Plate 5.

1. *Tritaxia tricarinata* (Reuss) Reuss
 lateral view, ABC5, x150

2. *Tritaxia tricarinata* (Reuss) Reuss
 lateral view, ABC5, x150

3. *Tritaxia tricarinata* (Reuss) Reuss
 lateral view, ABC6, x150

4. *Tritaxia tricarinata* (Reuss) Reuss
 lateral view, ABC7, x150

5. *Tritaxia tricarinata* (Reuss) Reuss
 lateral view, ABC20, x200

6. *Tritaxia tricarinata* (Reuss) Reuss
 lateral view, ABC21, x150

7. *Tritaxia tricarinata* (Reuss) Reuss
 close-up of test wall, ABC21, x350

8. *Tritaxia tricarinata* var. *jongmansii*
 lateral view, AKS12, x75

9. *Tritaxia tricarinata* var. *jongmansii*
 lateral view, AKS9, x75

10. *Tritaxia tricarinata* var. *jongmansii*
 lateral view, AKSc, x75

11. *Tritaxia tricarinata* var. *jongmansii*
 lateral view, AKSc, x100

12. *Tritaxia tricarinata* var. *jongmansii* (incomplete specimen)
 lateral view, AKS H, x75

13. *Tritaxia tricarinata* var. *jongmansii*
 lateral view, AKS H, x75

14. *Tritaxia tricarinata* var. *jongmansii*
 lateral view, AKS11, x75
Plate 5 cont'd

15. *Tritaxia tricarinata* var. *jongmansi*
lateral view, AKS9, x75
Plate 6.

1. Arenobulimina bulletta (Barnard and Banner) lateral view, ABC1, x100
2. Arenobulimina bulletta (Barnard and Banner) lateral view, ABC1, x100
3. Arenobulimina bulletta (Barnard and Banner) oblique apertural view, ABC1, x100
4. Arenobulimina bulletta (Barnard and Banner) close-up of aperture, ABC1, x200
5. Arenobulimina advena (Cushman) lateral view, ABC7, x100
6. Arenobulimina advena (Cushman) apertural view, ABC7, x100
7. Arenobulimina advena (Cushman) lateral view, ABC7, x75
8. Arenobulimina advena (Cushman) lateral view, ABC8, x100
9. Arenobulimina preslii (Reuss) lateral view, AKS7, x200
10. Arenobulimina preslii (Reuss) lateral view, AKS1, x200
11. Arenobulimina sp.a lateral view, ABC5, x200
12. Arenobulimina sp.a apertural view, ABC5, x150
13. Dorothia gradata (Berthelin) lateral view, ABC1, x150
14. Dorothia gradata (Berthelin) oblique apertural view, ABC1, x150
Plate 7.

1. *Marssonella* sp. a
 apertural view, ABC9, x200

2. *Marssonella* sp. a
 lateral view, ABC9, x100

3. *Marssonella* sp. a
 lateral view, ABC9, x100

4. *Marssonella* sp. a
 apertural view, ABC10, x200

5. *Marssonella* sp. a
 lateral view, ABC9, x100

6. *Marssonella* sp. a
 apertural view, ABC9, x200

7. *Marssonella* sp. a
 lateral view, ABC10, x150

8. *Marssonella* sp. a
 close-up of test wall, ABC10, x500

9. *Marssonella* trochan d'Orbigny
 lateral view, ABC9, x150

10. *Marssonella* trochan d'Orbigny
 close-up of test wall, ABC9, x500

11. *Marssonella* trochan d'Orbigny
 lateral view, ABC9, x100

12. *Marssonella* trochan d'Orbigny
 lateral view, ABC9, x150

13. *Marssonella* trochan d'Orbigny
 lateral view, ABC10, x150

14. *Marssonella* trochan d'Orbigny
 lateral view, ABC12, x200

15. *Marssonella* trochan d'Orbigny
 lateral view, ABC16, x200
Plate 7 cont'd

16. *Marssonella* *trochus* d'Orbigny
lateral view, ABC20, x200
Plate 8.

1. *Marssonella trochar* d'Orbigny
 CBI 14

2. *Marssonella trochar* d'Orbigny
 WND 21

3. *Marssonella trochar* var. *turris*
 WND 1

4. *Marssonella trochar* var. *turris*
 WND 15

5. *Marssonella trochar* var. *turris*
 WND 25

6. *Marssonella trochar* var. *turris*
 WND 25

7. *Marssonella trochar* var. *oxycona*
 CBI 21

8. *Marssonella trochar* var. *oxycona*
 CBI 28

9. *Marssonella trochar* var. *oxycona*
 WND 23
Plate 9.

1. *Marssonella trochus* var. *turris*
lateral view, ABC10, x150

2. *Marssonella trochus* var. *turris*
lateral view, ABC10, x200

3. *Marssonella trochus* var. *turris*
lateral view, ABC11, x100

4. *Marssonella trochus* var. *turris*
lateral view, ABC14, x150

5. *Marssonella trochus* var. *turris*
lateral view, ABC14, x100

6. *Marssonella trochus* var. *turris*
lateral view, ABC14, x150

7. *Marssonella trochus* var. *turris*
lateral view, ABC16, x150

8. *Marssonella trochus* var. *turris*
lateral view, ABC20, x200

9. *Marssonella trochus* var. *turris*
lateral view, ABC20, x150

10. *Marssonella trochus* var. *turris*
lateral view, ABC21, x200

11. *Marssonella trochus* var. *oxycona*
lateral view, ABC3, x200

12. *Marssonella trochus* var. *oxycona*
lateral view, ABC2, x100

13. *Marssonella trochus* var. *oxycona*
lateral view, ABC2, x200

14. *Marssonella trochus* var. *oxycona*
lateral view, ABC12, x200

15. *Marssonella trochus* var. *oxycona*
lateral view, ABC20, x200
Plate 9 cont'd

16. *Marssonella trochus* var. *oxycona*
 lateral view, AKS12, x150
Plate 10.

1. *Eggerellina brevis* (d'Orbigny)
apertural view, ABCl, x200
2. *Eggerellina brevis* (d'Orbigny)
lateral view, ABC2, x150
3. *Eggerellina brevis* (d'Orbigny)
apertural view, ABCl, x100
4. *Eggerellina brevis* (d'Orbigny)
lateral view, ABCl, x150
5. *Eggerellina brevis* (d'Orbigny)
apertural view, ABCl, x200
6. *Eggerellina brevis* (d'Orbigny)
apertural view, ABC9, x150
7. *Eggerellina mariae* ten Dam
lateral view, ABCl, x150
8. *Eggerellina mariae* ten Dam
apertural view, ABCl, x200
9. *Eggerellina mariae* ten Dam
close-up of aperture, ABCl, x500
10. *Eggerellina murchisoniana* (d'Orbigny)
lateral view, ABCl, x200
11. *Eggerellina murchisoniana* (d'Orbigny)
apertural view, ABCl, x200
Plate II.

1. *Plectina mariae* (Franke)
lateral view, ABC1, x150

2. *Plectina mariae* (Franke)
lateral view, ABC1, x100

3. *Plectina mariae* (Franke)
lateral view, ABC1, x150

4. *Plectina mariae* (Franke)
lateral view, ABC1, x150

5. *Plectina mariae* (Franke)
oblique apertural view, ABC1, x200

6. *Plectina mariae* (Franke)
oblique apertural view, ABC1, x200

7. *Plectina mariae* (Franke)
oblique apertural view, ABC1, x150

8. *Plectina mariae* (Franke)
oblique apertural view, ABC1, x200

9. *Plectina mariae* (Franke)
close-up of initial portion of test, ABC1, x350

10. *Plectina mariae* (Franke)
lateral view, ABC2, x150

11. *Plectina mariae* (Franke)
close-up of test wall, ABC2, x350

12. *Plectina mariae* (Franke)
lateral view, ABC2, x200

13. *Plectina cenomana* Carter and Hart
lateral view, ABC5, x150

14. *Plectina cenomana* Carter and Hart
oblique apertural view, ABC5, x200
Plate 12.

1. *Ataxophragmium depressum* (Perner)
 lateral view, ABC3, x200

2. *Ataxophragmium depressum* (Perner)
 apertural view, ABC3, x200

3. *Ataxophragmium depressum* (Perner)
 oblique apertural view, ABC6, x150

4. *Ataxophragmium depressum* (Perner)
 lateral view, ABC5, x150

5. *Ataxophragmium depressum* (Perner)
 lateral view, ABC7, x150

6. *Ataxophragmium depressum* (Perner)
 oblique apertural view, ABC7, x150

7. *Ataxophragmium depressum* (Perner)
 lateral view, ABC7, x150

8. *Ataxophragmium depressum* (Perner)
 lateral view, ABC7, x150

9. *Ataxophragmium depressum* (Perner)
 lateral view, ABC8, x150

10. *Ataxophragmium depressum* (Perner)
 lateral view, ABC8, x150

11. *Ataxophragmium depressum* (Perner)
 apertural view, ABC8, x150
1. **Pseudotextulariella cretosa** Cushman BSA1

2. **Pseudotextulariella cretosa** Cushman apertural view, BritOil 48\22-1 490', x100

3. **Pseudotextulariella cretosa** Cushman lateral view, BritOil 48\22-1 490', x150

4. **Quinqueloculina antiqua** Franke lateral view, B.P 93\2-1 1108', x200

5. **Quinqueloculina antiqua** Franke lateral view, B.P 93\2-1 1090', x200

6. **Nodosaria** sp.a apertural view, ABC3, x350

7. **Nodosaria** sp.a lateral view, ABC3, x50

8. **Nodosaria** sp.a apertural view, ABC4, x500

9. **Nodosaria** sp.a lateral view, ABC4, x75

10. **Nodosaria** sp.a apertural view, ABC4, x350

11. **Nodosaria** sp.a lateral view, ABC4, x75

12. **Nodosaria** sp.a lateral view, ABC8, x100

13. **Nodosaria** sp.a apertural view, ABC8, x350

14. **Nodosaria** sp.a lateral view, ABC11, x75

15. **Nodosaria** sp.a apertural view, ABC11, x350
Plate 14.

1. Astacolus sp.a
 lateral view, ABC5, x100
2. Astacolus sp.a
 oblique apertural view, ABC5, x350
3. Dentalina sp.a
 lateral view, ABC5, x50
4. Dentalina sp.a
 oblique apertural view, ABC5, x350
5. Dentalina sp.a
 oblique apertural view, ABC8, x500
6. Dentalina sp.a
 lateral view, ABC8, x75
7. Dentalina sp.b
 lateral view, ABC7, x75
8. Dentalina sp.b
 lateral view, ABC7, x75
9. Dentalina sp.b
 oblique apertural view, ABC7, x350
10. Dentalina sp.b
 lateral view, ABC8, x75
11. Dentalina sp.b
 oblique apertural view, ABC8, x350
12. Dentalina sp.b
 lateral view, ABC8, x75
13. Dentalina sp.b
 oblique apertural view, ABC8, x750
14. Dentalina sp.b
 oblique apertural view, ABC8, x350
15. Dentalina sp.b
 lateral view, ABC8, x75
Plate 14 cont'd

16. *Dentalina* sp.c
 oblique apertural view, ABC9, x350

17. *Dentalina* sp.c
 lateral view, ABC9, x75

18. *Dentalina* sp.c
 close-up of test wall, ABC9, x750
Plate 15.

1. Frondicularia cordai Reuss
 lateral view, ABC5, x35

2. Frondicularia gaultina Reuss
 lateral view, ABC3, x35

3. Frondicularia sp.a
 lateral view, CBl 36, x35

4. Frondicularia sp.a
 lateral view, S6Q18, x100

5. Lagena sp.a
 lateral view, Goban Spur 5\1 30-33, x150

6. Lagena sp.a
 apertural view, Goban Spur 5\1 30-33, x150

7. Lenticulina ovalis (Reuss)
 lateral view, AKS6, x100

8. Lenticulina ovalis (Reuss)
 apertural face, AKS6, x100

9. Lenticulina ovalis (Reuss)
 lateral view, AKS6, x100

10. Lenticulina rotulata var.a (Lamarck)
 lateral view, ABC1, x50

11. Lenticulina rotulata var.a (Lamarck)
 apertural face, ABC1, x75

12. Lenticulina rotulata var.a (Lamarck)
 close-up of aperture, ABC1, x350
Plate 16.

1. *Lenticulina rotulata* var. a (Lamarck)
lateral view, ABC2, x150

2. *Lenticulina rotulata* var. a (Lamarck)
apertural face, ABC2, x150

3. *Lenticulina rotulata* var. a (Lamarck)
lateral view, ABC3, x100

4. *Lenticulina rotulata* var. a (Lamarck)
apertural face, ABC3, x100

5. *Lenticulina rotulata* var. a (Lamarck)
lateral view, AKS3, x100

6. *Lenticulina rotulata* var. a (Lamarck)
apertural face, AKS3, x100

7. *Lenticulina rotulata* var. b (Lamarck)
lateral view, ABC1, x100

8. *Lenticulina rotulata* var. b (Lamarck)
apertural face, ABC1, x100

9. *Lenticulina rotulata* var. b (Lamarck)
lateral view, ABC1, x150

10. *Lenticulina rotulata* var. b (Lamarck)
apertural face, ABC1, x150

11. *Lenticulina rotulata* var. b (Lamarck)
lateral view, ABC2, x150

12. *Lenticulina rotulata* var. b (Lamarck)
apertural face, ABC2, x100
Plate 17.

1. *Lenticulina rotulata* var. b (Lamarck)
apertural face, ABC3, x100

2. *Lenticulina rotulata* var. b (Lamarck)
lateral view, ABC3, x100

3. *Lenticulina rotulata* var. b (Lamarck)
apertural face, B.P 93\2-1 1120', x200

4. *Lenticulina rotulata* var. b (Lamarck)
lateral view, B.P 93\2-1 1120', x200

5. *Lenticulina rotulata* var. b (Lamarck)
lateral view, AKS1, x200

6. *Lenticulina rotulata* var. b (Lamarck)
apertural face, AKS1, x200

7. *Lenticulina rotulata* var. b (Lamarck)
lateral view, AKS2, x150

8. *Lenticulina rotulata* var. b (Lamarck)
apertural face, AKS2, x150

9. *Lenticulina rotulata* var. b (Lamarck)
apertural face, AKS2, x150

10. *Lenticulina rotulata* var. b (Lamarck)
lateral view, AKS2, x200

11. *Lenticulina rotulata* var. b (Lamarck)
apertural face, AKS7, x150

12. *Lenticulina rotulata* var. b (Lamarck)
lateral view, AKS7, x150

13. *Lenticulina rotulata* var. c (Lamarck)
lateral view, B.P 93\2-1 1120', x100

14. *Lenticulina rotulata* var. c (Lamarck)
apertural face, B.P 93\2-1 1120', x100
Plate 18.

1. *Lenticulina* sp.a
 lateral view, Goban Spur 5\2 13-17, x200

2. *Lenticulina* sp.a
 close-up of apertural face, Goban Spur 5\2 13-17, x750

3. *Lenticulina* sp.a
 apertural face, Goban Spur 5\2 13-17, x200

4. *Marginulina* sp.a
 lateral view, B.P 93\2-1 1090', x150

5. *Marginulina* sp.a
 oblique apertural view, B.P 93\2-1 1090', x500

6. *Marginulinopsis acuticostata* (Reuss)
 lateral view, BritOil 48\22-1 490', x200

7. *Marginulinopsis acuticostata* (Reuss)
 apertural view, BritOil 48\22-1 490', x350

8. *Marginulinopsis acuticostata* (Reuss)
 lateral view, BritOil 48\22-1 490', x200

9. *Neoflabellina* sp.a
 lateral view, ABC10, x75

10. *Neoflabellina* sp.b
 lateral view, B.P 93\2-1 1090', x200

11. *Neoflabellina* sp.b
 oblique apertural view, B.P 93\2-1 1090', x350

12. *Neoflabellina* sp.b
 close-up of aperture, B.P 93\2-1 1090', x750

13. *Pandaglandulina* sp.a
 lateral view, ABC4, x100

14. *Pandaglandulina* sp.a
 apertural view, ABC4, x350

15. *Pandaglandulina* sp.a
 lateral view, ABC4, x100

16. *Pandaglandulina* sp.a
 apertural view, ABC4, x350
Plate 19.

1. *Planularia?* sp.a
 lateral view, ABC10, x100

2. *Vaginulina costulata* Roemer form a
 lateral view, ABC7, x50

3. *Vaginulina costulata* Roemer form a
 lateral view, of aperture, ABC7, x200

4. *Vaginulina costulata* Roemer form a
 lateral view of initial portion of test, ABC7, x200

5. *Vaginulina costulata* Roemer form b
 lateral view, ABC8, x50

6. *Vaginulina costulata* Roemer form b
 lateral view, ABC9, x50

7. *Vaginulina costulata* Roemer form b
 lateral view, ABC9, x50

8. *Vaginulina costulata* Roemer form c
 lateral view, ABC7, x75

9. *Vaginulina costulata* Roemer form c
 close-up lateral view of aperture, ABC7, x150

10. *Vaginulina costulata* Roemer form c
 close-up lateral view of aperture, ABC9, x75

11. *Vaginulina costulata* Roemer form d
 oblique lateral view, ABC8, x50

12. *Eoguttulina?* sp.a
 lateral view, CBl 1, x150

13. *Ramulina aculeata* (d'Orbigny) form a
 lateral view, ABC1, x100

14. *Ramulina aculeata* (d'Orbigny) form a
 lateral view, ABC3, x150

15. *Ramulina aculeata* (d'Orbigny) form a
 close-up of test wall, ABC3, x350
Plate 19 cont'd.

16. *Ramulina aculeata* (d'Orbigny) form a lateral view, ABC8, x200

17. *Ramulina aculeata* (d'Orbigny) form b lateral view, ABC1, x150

18. *Ramulina aculeata* (d'Orbigny) form b oblique apertural view, ABC1, x200
Plate 20.

1. *Ramulina aculeata* (d'Orbigny) form c
 lateral view, ABC3, x100

2. *Ramulina aculeata* (d'Orbigny) form d
 lateral view, ABC5, x150

3. *Ramulina aculeata* (d'Orbigny) form d
 lateral view, ABC5, x150

4. *Ramulina aculeata* (d'Orbigny) form e
 lateral view, ABC9, x75

5. *Ramulina aculeata* (d'Orbigny) form f
 lateral view, AKS11, x150

6. *Ramulina aculeata* (d'Orbigny) form f
 lateral view, AKS11, x200

7. *Tristix excavatum* (Reuss)
 lateral view, CBl 4, x50

8. *Tristix excavatum* (Reuss)
 apertural view, CBl 4, x100

9. *Oolina sp.* a
 lateral view, ABC3, x200

10. *Oolina sp.* a
 oblique apertural view, ABC3, x200

11. *Oolina sp.* a
 lateral view, ABC3, x200

12. *Oolina sp.* a
 oblique apertural view, ABC3, x200

13. *Praebulimina sp.* a
 lateral view, B.P 93\2-1 1035', x500

14. *Praebulimina sp.* a
 initial portion of test, B.P 93\2-1 1035', x500
Plate 20 cont'd

15. Praebulimina sp.a
lateral view, B.P 93\2-1 1035', x500

16. Praebulimina sp.a
oblique apertural view, B.P 93\2-1 1035', x500
Plate 21.

1. **Guembelitria cenomanana** (Keller)
 lateral view, Goban Spur 6\l 124-126, x750

2. **Guembelitria cenomanana** (Keller)
 lateral view, Goban Spur 6\l 124-126, x750

3. **Guembelitria cenomanana** (Keller)
 last portion of test, Goban Spur 6\l 124-126, x1000

4. **Guembelitria cenomanana** (Keller)
 lateral view, ABC1, x750

5. **Guembelitria cenomanana** (Keller)
 lateral view, ABC1, x750

6. **Guembelitria cenomanana** (Keller)
 last portion of test, ABC4, x750

7. **Guembelitria cenomanana** (Keller)
 lateral view, ABC4, x500

8. **Guembelitria cenomanana** (Keller)
 lateral view, ABC1, x500

9. **Guembelitria cenomanana** (Keller)
 lateral view, ABC1, x500

10. **Guembelitria cenomanana** (Keller)
 lateral view, AKS2, x750

11. **Guembelitriella sp.a**
 lateral view, ABC1, x500
Plate 22.

1. Heterohelix moremani (Cushman)
lateral view, Goban Spur 6\1 124-126, x500

2. Heterohelix moremani (Cushman)
lateral view, Goban Spur 6\1 124-126, x750

3. Heterohelix moremani (Cushman)
lateral view, Goban Spur 6\1 124-126, x500

4. Heterohelix moremani (Cushman)
oblique apertural view, Goban Spur 6\1 124-126, x500

5. Heterohelix moremani (Cushman)
close-up of initial portion of test, Goban Spur 6\1 124-126, x1500

6. Heterohelix moremani (Cushman)
lateral view, ABC1, x350

7. Heterohelix moremani (Cushman)
lateral view, ABC1, x500

8. Heterohelix moremani (Cushman)
lateral view, ABC1, x350

9. Heterohelix moremani (Cushman)
lateral view, ABC4, x750

10. Heterohelix moremani (Cushman)
lateral view, ABC4, x500

11. Heterohelix moremani (Cushman)
lateral view, ABC2, x500

12. Heterohelix moremani (Cushman)
lateral view, ABC2l, x750

13. Heterohelix moremani (Cushman)
lateral view, AKS1, x500

14. Heterohelix globulosa (Ehrenburg)
lateral view, ABC20, x750

15. Heterohelix globulosa (Ehrenburg)
lateral view, AKS8, x350
Plate 22 cont'd

16. *Heterohelix globulosa* (Ehrenburg)
 Close-up of ornament, AKS8, x1000
Plate 23.

1. *Globigerinelloides bentonensis* (Morrow) umbilical view, ABC4, x500
2. *Globigerinelloides bentonensis* (Morrow) spiral view, ABC4, x500
3. *Globigerinelloides bentonensis* (Morrow) umbilical view, Goban Spur 6\170-72, x500
4. *Globigerinelloides bentonensis* (Morrow) apertural view, Goban Spur 6\170-72, x500
5. *Globigerinelloides bentonensis* (Morrow) spiral view, Goban Spur 6\170-72, x500
6. "*Hedbergella" aprica* (Loeblich and Tappan) umbilical view, SQQ11, x200
7. "*Hedbergella" aprica* (Loeblich and Tappan) spiral view, SQQ11, x200
8. "*Hedbergella" aprica* (Loeblich and Tappan) EGG23
9. "*Hedbergella" archaeocretacea* (Loeblich and Tappan) umbilical view, SQQ15, x200
10. "*Hedbergella" archaeocretacea* (Loeblich and Tappan) apertural view, SQQ15, x200
11. "*Hedbergella" archaeocretacea* (Loeblich and Tappan) spiral view, SQQ15, x200
12. "*Hedbergella" archaeocretacea* (Loeblich and Tappan) Cbl 26
13. "*Hedbergella" brittonensis* (Loeblich and Tappan) SQQ15
14. "*Hedbergella" brittonensis* (Loeblich and Tappan) WND 15
Plate 24.

1. *Hedbergella delrioensis* (Carsey)
 apertural view, Goban Spur 5\1 7-10A, x200

2. *Hedbergella delrioensis* (Carsey)
 close-up of aperture, Goban Spur 5\1 7-10A, x500

3. *Hedbergella delrioensis* (Carsey)
 umbilical view, Goban Spur 5\1 7-10A, x200

4. *Hedbergella delrioensis* (Carsey)
 spiral view, Goban Spur 5\1 7-10A, x150

5. *Hedbergella delrioensis* (Carsey)
 oblique peripheral view, Goban Spur 5\1 7-10A, x200

6. *Hedbergella delrioensis* (Carsey)
 umbilical view, Goban Spur 5\1 7-10A, x200

7. *Hedbergella delrioensis* (Carsey)
 close-up of umbilical area, Goban Spur 5\1 7-10A, x500

8. *Hedbergella delrioensis* (Carsey)
 spiral view, Goban Spur 5\1 7-10A, x200

9. *Hedbergella delrioensis* (Carsey)
 peripheral view, ABC1, x200

10. *Hedbergella delrioensis* (Carsey)
 close-up of periphery, ABC1, x350

11. *Hedbergella delrioensis* (Carsey)
 SQQ6

12. *Hedbergella planispira* (Tappan)
 oblique spiral view, B.P 93\2-1 1035', x200

13. *Hedbergella planispira* (Tappan)
 spiral view, B.P 93\2-1 1035', x200

14. *Hedbergella planispira* (Tappan)
 umbilical view, B.P 93\2-1 1035', x200
Plate 25.

1. *Hedbergella simplex* (Morrow) BSA 10

2. *Hedbergella wasnitensis* (Casey) SGQ6

3. *Helvetoglobotruncana praehelvetica* (Trujillio) spiral view, B.P 93\2-1 1030', x200

4. *Helvetoglobotruncana praehelvetica* (Trujillio) oblique apertural view, B.P 93\2-1 1030', x350

5. *Helvetoglobotruncana praehelvetica* (Trujillio) close-up of periphery, B.P 93\2-1 1030', x750

6. *Helvetoglobotruncana praehelvetica* (Trujillio) BSA 11

7. *Helvetoglobotruncana praehelvetica* (Trujillio) CBI 17

8. *Helvetoglobotruncana praehelvetica* (Trujillio) CBI 31

9. *Helvetoglobotruncana praehelvetica* (Trujillio) CBI 26

10. *Helvetoglobotruncana praehelvetica* (Trujillio) EGG 25

11. *Helvetoglobotruncana helvetica* (Bolli) AKS11

12. *Helvetoglobotruncana helvetica* (Bolli) spiral view, B.P 93\2-1 1090', x200
Plate 25 cont'd.

13. *Helvetoglobotruncana helvetica* (Bolli)
 peripheral view, B.P 93\2-1 1090', x200

14. *Helvetoglobotruncana helvetica* (Bolli)
 oblique peripheral view, B.P 93\2-1 1090', x350
Plate 26.

1. Praeglobotruncana delrioensis (Plummer)

2. Praeglobotruncana gibba Klaus
 SGQ7 Little Beach Member

3. Praeglobotruncana gibba Klaus
 apertural view, Goban Spur 6\l 30-33, x150

4. Praeglobotruncana stephani (Gandolfi)
 SGQ7 Pinnacles Member

5. Praeglobotruncana stephani (Gandolfi)
 spiral view, Goban Spur 6\l 30-33, x200

6. Praeglobotruncana stephani (Gandolfi)
 apertural view, Goban Spur 6\l 30-33, x200

7. Praeglobotruncana stephani (Gandolfi)
 umbilical view, Goban Spur 6\l 30-33, x200

8. Praeglobotruncana stephani (Gandolfi)
 spiral view, Goban Spur 6\l 30-33, x150

9. Praeglobotruncana stephani (Gandolfi)
 peripheral view, Goban Spur 6\l 30-33, x200

10. Praeglobotruncana stephani (Gandolfi)
 spiral view, Goban Spur 6\l 30-33, x200
Plate 27.

1. Dicarinella algeriana (Caron) umbilical view, Goban Spur 5\1 76-78, x150
2. Dicarinella algeriana (Caron) apertural view, Goban Spur 5\1 76-78, x200
3. Dicarinella algeriana (Caron) spiral view, Goban Spur 5\1 76-78, x110
4. Dicarinella hagni (Scheibnerova) spiral view, Goban Spur 5\1 76-78, x150
5. Dicarinella hagni (Scheibnerova) apertural view, Goban Spur 5\1 76-78, x100
6. Dicarinella hagni (Scheibnerova) close-up of keels, Goban Spur 5\1 76-78, x350
7. Dicarinella hagni (Scheibnerova) apertural view, Goban Spur 5\1 76-78, x200
8. Dicarinella hagni (Scheibnerova) spiral view, Goban Spur 5\1 76-78, x150
9. Dicarinella hagni (Scheibnerova) CBI 34
10. Dicarinella hagni (Scheibnerova) WND28
11. Dicarinella imbricata (Mornod) peripheral view, Goban Spur 5\1 76-78, x200
12. Dicarinella imbricata (Mornod) spiral view, Goban Spur 5\1 76-78, x200
Plate 28.

1. **Marginotruncana marginata** (Reuss)
 umbilical view, AKS10, x150

2. **Marginotruncana marginata** (Reuss)
 apertural view, AKS10, x200

3. **Marginotruncana marginata** (Reuss)
 spiral view, AKS10, x200

4. **Marginotruncana marginata** (Reuss)
 spiral view, AKS10, x150

5. **Marginotruncana sp. cf. M. sigali** (Reichel)
 spiral view, AKS12, x100

6. **Marginotruncana sp. cf. M. sigali** (Reichel)
 apertural view, AKS12, x150

7. **Marginotruncana sp. cf. M. sigali** (Reichel)
 spiral view, AKS12, x100

8. **Marginotruncana sp. cf. M. sigali** (Reichel)
 peripheral view, AKS12, x150

9. **Rotalipora appenninica** (Reuz)
 S3Q7

10. **Rotalipora cushmani** (Morrow)
 umbilical view, Goban Spur 6\1 30-33, x150

11. **Rotalipora cushmani** (Morrow)
 apertural view, Goban Spur 6\1 30-33, x150

12. **Rotalipora cushmani** (Morrow)
 spiral view, Goban Spur 6\1 30-33, x150

13. **Rotalipora cushmani** (Morrow)
 spiral view, Goban Spur 6\1 30-33, x150

14. **Rotalipora cushmani** (Morrow)
 umbilical view, Goban Spur 6\1 30-33, x150
Plate 29.

1. Rotalipora cushmani (Morrow) BSA 6
2. Rotalipora cushmani (Morrow) CBL 10
3. Rotalipora cushmani (Morrow) WND 11
4. Rotalipora deecki (Franke) umbilical view, Goban Spur 6\1 30-33, x100
5. Rotalipora deecki (Franke) apertural view, Goban Spur 6\1 30-33, x200
6. Rotalipora deecki (Franke) spiral view, Goban Spur 6\1 30-33, x150
7. Rotalipora greenhornensis (Morrow) umbilical view, Goban Spur 6\1 30-33, x150
8. Rotalipora greenhornensis (Morrow) apertural view, Goban Spur 6\1 30-33, x150
9. Rotalipora greenhornensis (Morrow) spiral view, Goban Spur 6\1 30-33, x150
10. Rotalipora sp. cf. reicheli Mornod S6Q.5
11. Pleurostomella subnodosa (Reuss) lateral view, Goban Spur 5\2 13-17, x150
12. Pleurostomella subnodosa (Reuss) close-up of aperture, Goban Spur 5\2 13-17, x150
13. Pleurostomella subnodosa (Reuss) lateral view, Goban Spur 5\2 13-17, x100
14. Pleurostomella subnodosa (Reuss) close-up of aperture, Goban Spur 5\2 13-17, x500
Plate 29 cont'd

15. Gyroidina sp.a
 apertural view, Goban Spur 6\1 30-33, x350

16. Gyroidina sp.a
 lateral view, Goban Spur 6\1 30-33, x350
Plate 30.

1. Gyroidinoides parva (Kahn) lateral view, ABC2, x200

2. Gavelinella baltica Brotzen oblique apertural view, ABC2, x150

3. Gavelinella baltica Brotzen lateral view, ABC1, x100

4. Gavelinella baltica Brotzen lateral view, ABC2, x100

5. Gavelinella baltica Brotzen oblique apertural view, ABC2, x100

6. Gavelinella baltica Brotzen close-up of test wall, ABC2, x500

7. Gavelinella baltica Brotzen lateral view, ABC2, x150

8. Gavelinella berthelini (Keller) apertural view, ABC12, x200

9. Gavelinella berthelini (Keller) umbilical view, ABC12, x200

10. Gavelinella berthelini (Keller) oblique apertural view, ABC13, x200

11. Gavelinella berthelini (Keller) lateral view, ABC14, x200

12. Gavelinella cenomanica (Brotzen) lateral view, ABC1, x150

13. Gavelinella cenomanica (Brotzen) oblique apertural view, ABC4, x150

14. Gavelinella cenomanica (Brotzen) lateral view, ABC4, x100
Plate 30 cont'.

15. Gavelinella cenomanica (Brotzen)
close-up of umbilical thickening, ABC4, x200
Plate 31.

1. Gavelinella intermedia (Berthelin) lateral view, B.P 93\2-1 1050', x200

2. Gavelinella intermedia (Berthelin) apertural view, B.P 93\2-1 1050', x200

3. Gavelinella intermedia (Berthelin) apertural view, B.P 93\2-1 1050', x350

4. Gavelinella reussi (Kahn) lateral view, ABC4, x200

5. Gavelinella reussi (Kahn) apertural view, ABC4, x200

6. Gavelinella reussi (Kahn) lateral view, ABC4, x200

7. Lingulogavelinella globosa (Brotzen) apertural view, SQQ8, x200

8. Lingulogavelinella globosa (Brotzen) lateral view, SQQ8, x150

9. Lingulogavelinella globosa (Brotzen) lateral view, SQQ8, x200

10. Lingulogavelinella aumalensis (Sigal) oblique apertural view, AKS15, x200

11. Lingulogavelinella aumalensis (Sigal) lateral view, AKS15, x200

12. Pithonella ovalis (Kauffmann) AKS8, x750

13. Pithonella ovalis (Kauffmann) AKS7, x750

14. Calcareous (?) sphere B.P 93\2-1 1090', x350
Plate 31 cont'd.

15. Calcareous (?) sphere
 B.P 93\2-1 1090', x1000

16. Cemented calcareous (?) spines
 ABC9, x100