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ABSTRACT 

F L O W INJECTION AND MULTIVARIATE CALIBRATION 

TECHNIQUES FOR PROCESS ANALYSIS 

PAUL MACLAURIN 

The role of process analytical chemistry is summarised in chapter one with 

particular emphasis on a multidisciplinary approach and the instrumental 

requirements for on-plant analysis. These concepts are extended to process FIA, 

highlighting its potential for simultaneous multicomponent determinations. 

The development of an automated FIA monitor for the on-line determination of 

sulphite in potassium chloride brine is covered in the second chapter. Reaction 

stability is demonstrated and the results of on-plant validation and on-line trials 

are presented. 

The next chapter deals with the concepts of multivariate calibration. Direct 

multicomponent analysis, principal components regression and partial least 

squares regression are critically examined in practical spectroscopic terms and 

statistical terms. The relative predictive abilities of these techniques are 

compared in chapter four for the resolution of a multicomponent UV-visible 

spectrophotometric data set. 

Chapter five describes the development of an automated FIA-diode array system 

for the simultaneous determination of phosphate and chlorine. The implications 

of combining reaction chemistries and the influence of a number of calibration 

parameters are considered in detail. 

Finally, the jackknife is presented as a means of dimensionality estimation' and 

bias correction in PLS modelling. Data sets from the literature are analysed and 

the results compared with those obtaining using commercial software. 
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Chapter One 

Introduction 



1.1 PROCESS ANALYTICAL CHEMISTRY 

Interest in process analytical chemistry (PAC) has grown considerably in recent 

years, and with developments in instrumentation and procedures for on-line 

analysis, the number of reported process applications has risen accordingly. The 

desire to acquire information of a chemical nature about a manufacturing 

process can be attributed to economic and environmental reasons. The 

economic reasons are related to product quality and the optimal use of raw 

materials, labour, energy and time. The environmental reasons include concern 

for occupational hygiene, emission control and the wider environment 

[1,2,3]. The development of PAC is also demonstrated by the diversity of 

applications, the numerous measurement techniques that are now being used 

[4,5] and the launch of a journal devoted to the area [6]. 

Process control, the domain of chemical and process engineers, has traditionally 

relied on the measurement of physical parameters such as pressure, temperature 

and viscosity supplemented by the occasional chemical measurement; pH for 

example. More complicated chemical analysis would be carried out in 

centralised laboratory facilities by teams of highly trained technicians using 

expensive multi-tasking equipment. This would cover raw material testing, 

final product certification and intermediate stage analysis for non-continuous 

processes. Within such a fi-amework, samples are logged and stored until a 

sufficient number has accumulated to warrant carrying out a particular analytical 

procedure. The delay between sampling and the communication of a result can 

therefore run to a number of days and often represents a "post-mortem" rather 

than an interactive approach. 

In order to achieve the level of control needed to meet the increasingly high 

standards required in today's chemical manufacturing industry, much closer 

attention to chemical composition has to be maintained. To enable the 

collection of chemical information about dynamic chemical processes 



fundamental shifts in the philosophy underlying analytical procedures have 

resulted in PAC. PAC has developed as a sub-discipline of analytical chemistry 

but in practice it requires a multi-disciplinary problem-orientated approach [7]. 

The development of PAC has addressed the following issues; 

1. location of analysis, 

2. analysis fime, 

3. dependability, 

4. cost. 

One of the first steps towards reducing the delay between sampling and the 

generation of analytical information is to transfer analysis from the laboratory 

to the plant. The so-called "at-line" approach involves the installation of a 

laboratory instrument close to the process sampling point. Such instrumentation 

is generally less sophisticated and therefore less expensive than the 

instrumentation of a centralised facility and more amenable to operation by the 

process personnel. Information could then be accumulated quickly and with a 

greater frequency, thus providing the process control staff with a better picture 

of system performance. 

Laboratory based analysis has benefited enormously from the automation of 

instrumentation and procedures [8], and it is the automation of process 

sampling and analysis that distinguishes the "on-line" approach. The advantages 

of laboratory automation such as increased sample throughput and improved 

precision apply equally well to process monitoring and with the reduced 

analysis time associated with the process location, near real time chemical 

analysis is feasible. 

The on-line monitoring of process streams requires more than moving the 

laboratory equipment to the plant however [9]. I f an analytical procedure is 

to provide information for process control then the entire system, from sampling 



to communication of results, needs to be dependable. One of the most difficult 

aspects of developing an on-line monitor is the provision of an automated 

sampling system that will provide representative samples for extended periods 

of time. This tends to remain the responsibility of the process engineer but no 

less trivial is the development of rugged analysers suitable for long-term 

unattended operation. The analytical performance characteristics such as 

selectivity, sensitivity, accuracy and precision need to be addressed with the 

application in mind but the corrosivity of the atmosphere and other matrix 

effects of the sample also need to be considered. 

The cost of developing, installing, operating and maintaining such systems 

needs to be kept in the perspective of the value of collecting the process 

information. Savings can be made in terms of raw materials and labour but 

primarily non-financial justifications such as safety must also be considered. 

In addition, on-line analysers can be deployed in remote or hazardous locations 

and can operate on a 24-hour basis. 

Various spectroscopic approaches have been taken for on-line analysis. After 

the necessary modifications have been made to the instrumentation and a 

suitable sampling system installed, ultraviolet-visible (UV-vis), near-infi-ared 

(NIR), mid-IR and FT-IR instruments can be deployed for continuous 

monitoring; in fact, commercial process NIR systems are already available 

[10]. Moreover, apparently inappropriate techniques such as mass 

spectrometry, nuclear magnetic resonance spectroscopy and X-ray fluorescence 

spectroscopy have been developed for use in particularly problematic 

applications. It is often the case, however, that some kind of physico-chemical 

or mathematical selectivity enhancement must be incorporated into the 

procedure to ensure reliable results. High performance liquid chromatography 

(HPLC), for example, for UV-vis detection and multivariate calibrafion routines 

for NIR analysis. 



Continuous monitoring systems [11] permit a derivatisation stage to be 

included prior to detection without disturbing the continuous output. This is in 

contrast to chromatographic techniques which immediately preclude continuous 

analysis. The frequency of the intermittent output is dependent on the speed of 

the chromatography; some HPLC separations can be quite time consuming 

whereas gas chromatography can, for some applications, produce a very rapid 

response. Continuous flow analysis (CPA) [11] and flow injection analysis 

(FIA) [12,13] are ftirther examples of intermittent techniques, neither of 

which rely on a chromatographic separation but present some form of the 

process stream to the detector. 

The concept of on-line analysis can be extended still further to "in-line" and 

"non-invasive" analysis as defined by Callis et al. [2]. Chemical sensors which 

can be placed directly inside process pipework remove the need for sampling 

and a system that requires no direct contact with the process stream represents 

the ultimate process monitor. The most obvious in-line sensor is the pH 

electrode; rugged versions of which are used in chemical processing. Many 

other types of sensor are available but have yet to be used routinely due to their 

poor long-term reliability. Spectroscopic techniques have also been developed 

for in-line analysis, whereby some form of optrode may be placed in-situ and 

connected to a remote spectrometer by fibre-optics. Furthermore, multiplexing 

allows numerous optrodes to be monitored by a single spectrometer. This can 

be taken one stage fiirther, whereby optical windows are incorporated in process 

pipework, allowing non-invasive spectroscopic analysis in the NIR region for 

example. Other examples of non-invasive analysis include IR emission, X-ray 

absorption and acoustic emission analysis. 

The final approach taken to solving a process analysis problem should be 

carefiilly considered. Ideally, a working party consisting of an analytical 

chemist, a process chemist and an electrical/electronic engineer should consider 

the following issues: 



1. Analysis objectives; 

i . purpose, 

i i . analyte/s, 

i i i . frequency, 

iv. delay. 

2. Economic justification. 

3. Analytical feasibility; 

i . accuracy, precision and sensitivity, 

i i . selectivity and matrix interference, 

i i i . instrumental reliability. 

Potential analysis procedures should be subjected to rigorous laboratory and 

plant validation trials and the instrumentation provided with ample technical 

support after installation. Routine maintenance schedules should be 

implemented to ensure minimum dovvn-time and enable effective control. 

1.2 PROCESS FIA 

FIA is now widely accepted as a laboratory tool for routine analysis and 

research [14,15,16]. It is taught as an integral part of courses in 

analytical chemistry, has been the subject of five major international conferences 

[17,18,19,20,21], has four monographs devoted to its theory and 

applications [10,11,22,23] and a dedicated periodical; the Journal of FIA 

[24]. FIA is an unsegmented flow technique. This is in contrast to CFA 

(such as the Technicon AutoAnalyzer™ system) which relies on air bubble 

segmentation as a means of keeping successive samples apart. The essence of 

FIA is controlled dispersion, enabling reproducible mixing of sample and 

reagents without excessive dilution, to produce measurable transient signals 

proportional to analyte concentration. Dispersion in CFA is minimised by air 

bubbles which create a series of isolated reaction chambers where homogeneous 

mixing produces steady state signals. Due to non-segmentation and 



heterogeneous mixing FIA offers a number of distinct advantages over CFA, 

notably; 

1. short response time, 

2. improved reproducibility, 

3. greater versatility, 

4. less complex instrumentation. 

These advantages are particularly pertinent within the context of PAC, where 

the near real time pseudo continuous output achievable with FIA systems is of 

particular importance. The suitability of FIA for process monitoring and control 

was first reported in 1982 [25] and several papers discussing its potential 

followed [26,27,28,29,30,31,32,33]. The merits o f . process 

FIA are summarised below: 

1. Fast response, 

2. High sample frequency, 

3. Rugged and dependable hardware, 

4. Ease of automation and self-calibration, 

5. On-line sample treatment capabilities, 

6. Low reagent consumption, 

7. Compatibility with liquid process streams, 

8. Stay clean properties, 

9. Wide range of established laboratory methods, 

10. Low operational and maintenance costs. 

Microcomputer control of FIA components is shown in Fig. 1.1 and illustrates 

the collection and manipulation of data and the communication of information 

to a central process computer. Long-term accuracy is maintained by the 

incorporation of self-calibration procedures and diagnostic routines can monitor 

precision and instrument performance. Due to the low reagent consumption 

capability of FIA large vessels of potentially hazardous chemicals do not have 

to be accommodated and with stable reagents then long-term unattended 
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Figure 1.1 Schematic diagram of a process FIA system 

operation is possible. The use of 

"reagent injection" manifolds 

[ 3 4 , 3 5 ] c a n r e d u c e 

consumption still further; this is 

pa r t i cu la r ly useful when 

expensive reagents are required. 

Man i fo ld s implici ty is a 

prerequisite for process FIA and 

Fig. 1.2 illustrates the reagent 

injection approach within this 

framework along with the concept 

of continuous monitoring systems 

[11] or completely continuous 

flow analysis [36]. 

3. 
R 

Despite the obvious potential of 

process FIA the number of 

practical on-line applications 

discussed in the literature remains 

Figure 1.2 Process FIA manifolds: 
1. Sample injection. 
2. Reagent injection. 
3. Continuous flow. 
S, sample; C, carrier; R, reagent; I , 
injector; D, detector 



Table 1.1 Applications of Process FIA 

Field Analysis References 

Sulphide in DIPA 28 

Chemical solution 

production Azo compounds 30.37 

Sulphates and phosphates 38 

in effluents 

Phosphate 38 

Water quality Nitrate 39,40,41,42 

monitoring Ammonia 43 

Fluoride 44 

Aluminium 45 

FDH and L-LeuDH 46 

L-phenylalanine - 47 

Biotechnology Glucose, lactic acid and 48 

protein 

Protein 49 

Cellulase activity 50 

Glucose, ammonium and 51 

protein 

very small. This can be attributed, in part at least, to problems of industrial 

confidentiality [52], The applications that have been reported can be divided 

into three distinct areas as listed in Table 1.1. Although their numbers are few, 

these examples demonstrate some of the salient features of process FIA; 

particularly its flexibility for monitoring diverse analytes. The ability of process 

FIA to deal with harsh sample matrices has been proven by the analysis of dye 

production liquors [30,38] and fermentation broths [47-52], and long term 

application has been demonstrated with a nitrate monitor that has been operating 

8 



continuously in a remote site for several years [40]. Possibly the greatest 

interest in process FIA has been shown in the field of biotechnology; this is 

demonstrated by the proceedings of the Anabiotec meetings [53,54], a 

special issue of the Journal of Biotechnology [55] and, most recently, an 

extensive review article [56]. 

A number of developments in laboratory FIA practice are directly relevant to 

process analysis. These include further use of membrane separation techniques 

[28,44,57] for gas analysis [58,59] and preconcentration [60], novel 

approaches to calibrafion [61,62,63], and the combination of sequential 

injection [64] with sinusoidal flow [65,66]. With the sinusoidal flow 

pump the concept of constant flow is replaced by variable but reproducible 

nonlinear flow created by a cam-driven, computer controlled piston. Among the 

advantages for process applications are the simplicity of construction, absence 

of pump-tubing and check valves, pulseless flow, and the capability of handling 

aggressive liquids. Sequential injection for zone penetration is achieved by 

using a simple selector valve, which, in combination with the sinusoidal flow 

pump, offers a single line manifold suitable for a number of analyses without 

the need for physical reconfiguration. 

Another area to be exploited for laboratory analysis is that of simultaneous 

multicomponent determinations by FIA, whereby several analytes in the same 

sample are measured fi"om a single injection [67]. Although this is possibly 

the best demonstration of the capacity and versatility of FIA [33], it is yet to be 

applied in process analysis. 

1.3 SIMULTANEOUS IVLULTICOIMPONENT FIA 

Simultaneous determinations in FIA were reviewed in 1984 by Luque de Castro 

and Valcarcel [68] and the fi-amework for classification described therein is 

still generally applied. FIA techniques for speciation were reviewed in 1986 



[69] and the term simultaneous, as opposed to sequential, was clarified in 

terms of multidetection and multideterminations [67]. 

The methodology for multideterminations by FIA was divided into two groups; 

conventional FIA and those methods based on differential kinetics. In spite of 

some innovative procedures being available [70,71,72], the very nature 

of kinetic determinations renders them unsuitable for continuous monitoring, 

particularly in a process environment, and are not considered here. Of the 

conventional FIA methods for multicomponent analysis those most suited to 

process applications utilise simple manifolds, stable chemistries, and, ideally, 

only one detection system and injector. 

An elegant approach has been exploited by Townshend and co-workers for the 

speciation of iron [73] and cerium [74], and the simultaneous determination 

of anions [75,76]. This type of manifold, shown in Fig. 1.3, allows the 

splitting of a single sample injection for different treatments followed by 

remerging and detection. The problem of irreproducibility of splitting was 

circumvented by placing the pumps after the splitter. The speciation studies 

gave the concentration of the lower oxidation state from the untreated stream 

and the utilisation of a Jones reductor column in the other stream gave total 

analyte concentration. Binary mixtures of nitrate/chloride and nitrate/sulphate 

were resolved using a suppressor column in one stream. Detection was 

achieved via the iron(III) / thiocyanate complex after displacement of 

thiocyanate from an anion-exchange microcolunm. The concept of sample 

splitting has also been applied to binary [77,78,79,80,81,82,83] 

and ternary multideterminations [84] using inmiobilised enzyme reactors. 

Various injection techniques have been used to produce doublet peaks for 

multideterminations, including internally coupled valves [85,86,87,88], 

sandwich techniques [89,90], and reversed injector loading [91]. 

Whitman et al. [92] used minimal dispersion and the inherent absorbance of 

10 



MC DC 

Figure 1.3 General manifold design for stream splitting; I , injection valve; 
P, pump; MC, micro column; DC, delay coil; D, detector. 

aqueous nickel(II) for its simultaneous determination with iron(II) (detected via 

the thiocyanate complex), thus eliminating the need for stream splitting or multi-

injection. Trojanowicz and Spunzar-Lobinska [93] recently developed a low-

cost multi-light emitting diode (LED) detector to determine aluminium and zinc. 

Electroanalytical systems have been less widely applied to multideterminations. 

Three interesting applications, however, are the voltammetric determination of 

phenolic compounds [94], an investigation into Kalman filtering for improved 

resolution [95], and the use of amperometry for the simultaneous enzymatic 

determination of glucose and ascorbic acid [96]. 

Muhidetection systems greatly enhance the capabilifies of FIA to perform 

multideterminations and offer a number of advantages for process analysis. A 

multidetection system is a single device capable of recording a number of 

analytical signals simultaneously, examples of which include; electrochemical 

sensor arrays, multi-LED devices (as discussed above) and photodiode-array 

spectrophotometers (PDA). 

PDAs have been commercially available since 1979 and are a product of the 

11 



revolution in microprocessor 

technology [97]. The principle 

of "reverse-optics" is illustrated in 

Fig. 1.4, where it can be seen that 

after passing through the sample 

polychromatic light is dispersed 

onto a diode-array. This is in 

direct contrast to conventional 

spectrophotometry in which 

monochromatic light passes 

through the sample to a 

Grating 

Diode-
array 

Sample 

Source 

photomultiplier. The advantages Figure 1.4 Schematic diagram of PDA 
of the PDA arrangement over optical arrangement. 

conventional scanning spectrophotometers can be summarised as: 

1. Rapid acquisition of complete UV/visible spectra, 

2. Mechanical simplicity, 

3. Wavelength resettability, 

4. Measurement statistics. 

The linear diode-array is made up of a number of photodiodes positioned in 

series on a silicon crystal. Light impinging on a diode causes the capacitor to 

which it is connected to discharge and the extent to which it needs recharging 

is proportional to the light intensity. The diodes are multiplexed to allow 

simultaneous measurement and a holographic grating ensures that small portions 

of the spectrum selectively impinge on each diode. This arrangement allows the 

collection of an entire UV/visible spectrum in as little as one tenth of a second. 

The elimination of the need for monochromatic light renders the PDA 

mechanically very simple and reliability is improved due to the minimal use of 

moving parts. This has the added attraction of improving confidence in the 

resettability of wavelength and because a number of measurements can be taken 

quickly then a statistical measure of data quality can be made at each 

12 



wavelength. 

The speed with which PDAs can acquire and store multiwavelength data is 

particularly important for the monitoring of dynamic systems such as FIA and 

HPLC [98,99]. They are widely used in routine HPLC analysis where 

multivariate analysis of the column eluent allows peak purity checks to be 

made. Furthermore, commercial software is available from some instrument 

manufacturers for statistical selectivity enhancement, aimed particularly at the 

pharmaceutical industry. PDAs have been less widely used as detectors for FIA 

although their fiiU-spectrum capabilities are complimentary to the rapid and 

highly reproducible sample treatment and delivery features of automated FIA. 

Their combination offers a great deal in terms of versatility and simplicity for 

simultaneous multicomponent determinations and the removal of matrix 

interferences. A schematic representation of a typical FIA-PDA arrangement 

is shown in Fig. 1.5. 

The first applications of the FIA-PDA combination were reported in 1986 for 

chemical equilibrium studies [100], and for the simultaneous determinations 

of copper(II) and iron(II) using a 1:10 phenanthroline/neocuproine mixed 

GP.I.O. 
INTERFACE 

FLOW 
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MANIFOLD 

SERIAL 
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PHOTO-DIODE 
ARRAY 

DETECTOR 

MASS 
STORAGE 

PERSONAL 
COMPUTER 
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Figure 1.5 Schematic diagram of a typical FIA-PDA system, 
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reagent [101] and the enzymatic determination of ethanol and acetaldehyde 

[102]. For the simultaneous determinations, the wavelengths of maximum 

absorbance of the reaction products were monitored and the results were 

calculated with due consideration of synergistic effects. The monitoring of 

wavelengths away fi-om lambda max and a series of wavelengths around lambda 

max were shown to aid dilution and amplification methods for the determination 

of nitrate [102]. These techniques were further studied for the 

formaldehyde/pararosaniline/sulphite system [ 103]. Mixed reagents and 

absorbance maxima were also used for the simultaneous determination of iron 

and copper in blood serum [104]. Examples of simultaneous determinations 

using a single indicator reaction have been reported for aromatic isomers after 

diazo-coupling [105], iron(II) and copper(II) with PAN-7S [106], 

iron(III) and aluminium(III) as oxinates [107], and nickel(II) and zinc(II) 

with PAN [108]. 

1.4 R E S E A R C H O B J E C T I V E S 

The general aim of this research was to investigate the potential of FIA for the 

on-line analysis of chemical parameters in process streams. 

The particular aims were as follows: 

1. To develop a single analyte FIA procedure to plant specifications and 

prove the system reliability with on-line trials. 

2. To evaluate the most appropriate FIA approaches to simultaneous 

multideterminations for process analysis. 

3. To investigate the potential of recent developments in quantitative 

chemometrics. 

4. To develop a simultaneous multi-analyte FIA procedure suitable for on­

line process monitoring. 
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Chapter Two 

On-line FIA 
determination of 

sulphite 



2.1 INTRODUCTION 

Potassium hydroxide is an important intermediate in the manufacture of 

potassium salts in the chemical and agricultural industries. It has traditionally 

been produced by the electrolysis of potassium chloride brine using the mercury 

cell process but recent developments in cell technology have led to the 

commissioning of a membrane electrolysis facility. This has advantages in 

terms of power consumption and environmental impact. 

Imperial Chemical Industries have been producing KOH at the Castner Kellner 

Works on Merseyside since the 1950s. This new plant has been built to replace 

existing facilities and meet the increased demzmd for KOH liquor both in the 

UK and overseas. The plant, opened in 1989, is designed to produce 75,000 

tonnes of 50% KOH and 24,000 tonnes of chlorine per annum. It operates as 

a single unit for KOH production; comprising KCl resaturation/purification, 

electrolysis and caustic evaporation. The chlorine and hydrogen produced by 

the plant are moved to other areas of the works for treatment and distribution. 

Potassium chloride (muriate of potash) is the basic raw material and major cost 

for the process. It is transported by road from the main sources of supply in 

Cleveland (UK), France and Germany. Because of the high cost of the raw 

material, a resaturation process is employed whereby weakened brine is 

strengthened by redissolving KCl. A schematic diagram of the KOH plant is 

shown in Fig. 2.1. 

The process can be divided into three main areas: 

1. Brine Purification. 

Depleted chlorinated KCl brine is adjusted to pH 2 and fed into the tops 

of towers where air is drawn upwards to remove most of the chlorine. 

Any remaining chlorine is removed by adjusting the pH to 10.5 and the 

addition of potassium sulphite. The dechlorinated weak brine is passed 
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Figure 2.1 Schematic diagram of the KOH plant. 

up through a 'bed' of potassium chloride where it is resaturated and then 

through filters to remove insolubles. The brine is then fed through ion 

exchange columns to remove soluble contaminants, particularly the group 

I I metals. 

2. The Cellroom. 

25.5% m/v high purity KCl brine and 28% m/v KOH, each at 

approximately 70°C, are fed into the respective sides of each cell. A 

high current is passed through the liquors producing 32% m/v KOH, 

chlorine, hydrogen and 18% m/v KCI brine. 

3. Caustic Evaporation. 

The 32% m/v KOH is passed through heat exchangers and evaporators 
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Figure 2.2 Schematic diagram of the membrane electrolysis cell. 

to strengthen the liquor to 50% m/v KOH before pumping away to 

storage. 

A schematic representation of the membrane cell is given in Fig. 2.2. KCl brine 

is fed into the anode compartments of the cell and KOH solution into the 

cathode compartments. Under the influence of the current which passes 

between the electrodes through the liquors and the membrane, chlorine gas is 

liberated at the surface of the anode. Potassium ions are transported through the 

chemically inert and selective membrane to the cathode. As hydrogen is 

liberated at the cathode the resultant hydroxy! ions balance the flux of potassium 

ions, leaving the cell as strengthened KOH. The membrane serves as a physical 

separator, preventing the mixing of chlorine and hydrogen gases, and the brine 

and potassium hydroxide. Some back migration of caustic into the anolyte 

compartment does occur however, leading to a small loss in current efficiency. 

The cell room consists of 30 FM21 SP cells arranged in two rows of 15. Each 

cell consists of 60 titanium anodes and 60 nickel cathodes arranged alternately 
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with membranes sandwiched between. Each membrane has an active 

electrolytic area of 0.21 m^. The membrane, manufactured by Du Pont, is 

Nafion 430, which is a perfluorosulphonic acid polymer reinforced with a PTFE 

mesh. 

During brine purification, potassium sulphite is added to the recirculating brine 

as a chlorine scavenger. This in turn leads to an increase in the sulphate 

concentration according to the equation: 

S03^-(aq) + Hfi{\) + Cl^ig) 2H^(aq) + 2Cl (aq) + SO.^Xaq) 

Residual chlorine is removed to maintain the efficiency of the ion exchange 

resin but the increased sulphate level necessitates a continual brine purge. As 

discussed earlier, potassium chloride is very expensive and the purge needs to 

be kept to an absolute minimum. Any increase in sulphate concentration is 

directly proportional to the rate of potassium sulphite addition, therefore 

continuous monitoring of the sulphite concentration would allow closer control 

and hence a lower purge rate. A system capable of measuring sulphite in the 

process liquors on a near-real time basis is therefore required with the following 

specifications. 

Plant specification: 

Analyte; sulphite 

Dynamic range; 1-20 mg r* 
Matrix; 18 % m/m potassium chloride 

Temperature; 70-80 °C 

pH; 11-12 

Response time; 15 min 

Accuracy; ± 10 % 

Precision; ± 5 % 

Maintenance; <1 h per week 
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In addition to the above application, sulphite is widely used as an antioxidant 

in the pharmaceutical and food industries, and as an oxygen scavenger in water 

for steam generation and in paper pulping. There are several reported methods 

for the determination of sulphite, principally by spectrophotometry 

[ 1 0 9 , 1 1 0 , 1 1 1 , 1 1 2 , 1 1 3 , 1 1 4 ] , a m p e r o m e t r y [ 1 1 5 , 1 1 6 ] , 

potentiometry [117], chromatography [118,119], enzymatic analysis 

[120] and chemiluminescence [121]. Several of the above laboratory 

based methods use flow injection analysis (FIA) techniques for sample treatment 

and presentation to the detector [113-116,121]. 

As discussed in section 1.2, spectrophotometric FIA is particularly suitable for 

process monitoring and this chapter describes the development and validation 

of an FIA monitor to meet the specification listed above. 

2.2 E X PE R BMEN TA L 

Reagents 

Al l solutions were prepared in distilled, de-ionised water and all reagents were 

of AnalaR grade (Merck) unless otherwise indicated. A 1000 mg 1* sulphite (as 

SOj^') stock solution was prepared by dissolving 1.5743 g of sodium sulphite 

(dried for 2 h at 105°C) in 1 1 of 1 x 10'̂  mol dm'' ethylenediaminetetraacetic 

acid (EDTA) (0.3722 g of EDTA sodium salt dissolved in 1 1 of water). 

Appropriate dilutions of this stock solution were made in water, 20 % m/v 

standard potassium chloride and potassium chloride brine for the respective 

calibrations. Sulphite is readily oxidised during the preparation of aqueous 

solutions and hence, prior to use, the concentration of stock solutions was 

determined iodimetrically. A solution containing an excess of iodine was 

acidified with hydrochloric acid, the sulphite solution was added carefully with 

stirring. The remaining iodine was titrated with sodium thiosulphate [122]. 

Solutions of 2,2'-dinitro-5-5'-dithiodibenzoic acid (DTNB) (Aldrich) were 
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prepared by dissolving an appropriate amount in ethanol (5 ml 1"' of solution) 

and diluting with pH 6.9 buffer. The pH 6.9 buffer was prepared by dissolving 

3.55 g of disodium hydrogen orthophosphate and 3.41 g sodium dihydrogen 

orthophosphate in 1 1 of water. The pH 9.9 buffer was prepared by dissolving 

19.07 g of disodium tetraborate decahydrate (borax) and 2.0 g of sodium 

hydroxide in 1 1 of water. The pH 11.7 buffer was prepared by dissolving 3.80 

g of trisodium phosphate (BDH; general purpose reagent) in 1 1 of water. A l l 

pH adjustments were made using hydrochloric acid and sodium hydroxide of 

various concentrations. 

Instrumentation 

A schematic diagram of an automated FIA monitor is shovm in Fig. 1.1. The 

FIA manifolds were made with 0.8 mm i.d. polytetrafluoroethylene (PTFE) 

tubing (Anachem) with PTFE T-pieces for stream merging. The absorbance 

was monitored by a spectrophotometer (LKB Ultrospec II) fitted with an 18 | i l 

silica flow cell with a path length of 1 cm (Hellma), and the analogue output 

relayed to strip chart recorder (Chessel BD 40 04). Injections (20 | i l ) were 

made via a 12 V solenoid-activated injection valve (Chemlab Instruments) and 

standard/sample selection controlled by a 2-way 12 V solenoid valve (Lee). 

Sample, reagent and carrier streams were propelled by two peristaltic pumps 

(Ismatec Mini S-820) with poly(vinyl chloride) (PVC) pump tubing 

(Labsystems). 

The system was controlled by single board microcomputer (Control Universal) 

as described by Clinch [123] and Benson [124]. Data acquisition and 

data output was achieved by incorporating additional cards into the system. The 

individual cards are described below: 

1. Control and data processing: EuroBEEB with 6502 8-bit 2 MHz 

microprocessor and 8 Kb RAM or 16 Kb EPROM. 

2. Data Storage: CU-MEM Selecta with 32 Kb RAM for the storage of 
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raw data. 

3. Signal capture: CUBAN-12A 16 channel analogue to digital converter 

with 13 bit accuracy and 1 mV resolution. 

4. Output: JOBBER interface enabling data output to VIEWLINE, a 24 

character by 2 row liquid crystal display, and RACKPRINT, a 24 

character per line miniature impact printer. 

Control software was written in MosB4, an extended version of BBC BASIC 

language and details of the software protocols are given in the procedures 

section. 

Spectral measurements and kinetic studies were carried out using a diode array 

spectrophotometer (Hewlett Packard 8451 A) fitted with a 1 cm pathlength silica 

cuvette. A thermostatically controlled, heated water bath (Grant W14) was used 

for the temperature effect study. 

Sample presentation to the on-line monitor was facilitated by a 1 1 constant head 

device. This was plumbed into the process stream via a length of polypropylene 

pipe, thus ensuring a continuously replenished real-time supply of the process 

liquor. 

Procedures 

Batch experiments 

In all experiments the response corresponds to the addition of a 3.0 ml aliquot 

of sample solution (0.0 or 16.7 mg 1' of SOj^ ) to 0.3 ml of DTNB solution (4.0 

g r'; 24-fold concentration excess). The sample solution was added directly to 

the cuvette containing the DTNB reagent positioned in the spectrophotometer 

sample holder and measurement started immediately at 412 nm. 

Automated laboratory analysis 

The FIA manifold for the laboratory analysis (shovwi in Fig 2.3) used a pH 9.9 
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borax-sodium hydroxide buffer. The sensitivity of this system to sample pH 

was investigated by analysing standard solutions of 10 mg 1* of sulphite in 

water and in 20 % m/v potassium chloride solution adjusted to various pH 

values. The effect of sample temperature was studied by analysing a standard 

solution of 10 mg I * of sulphite in 20 % m/v potassium chloride solution at pH 

11.0 maintained at various temperatures in a thermostated water-bath. 

Sensitivity to potassium chloride concentration was determined by analysing 

standard solutions of 10 mg 1' of sulphite prepared in potassium chloride 

solutions covering the range 0-20 % m/v at pH 11.0. 

water 

pH 9.9 buffer— 

brine 

20nlDNTB 
(ISKloWdm^) 

ml min 

Figure 2.3 Flow injection manifold for the determination of sulphite in 
high ionic strength potassium chloride brine. 

Development software was written for control and data processing in a form that 

facilitated operator interaction. This ensured that modifications to the sampling 

frequency, data acquisition mode and data treatment could be implemented from 

a general program. 
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On-line analysis 

The modified 4-line manifold used for on-line analysis is shown in Fig. 2.4, 

water 

pH 9.9buBer — 

water 

brine 

20M 1DNTB 
(2.5X laVoIdm') 

ml min 

Figure 2.4 Modified flow injection manifold for the on-line determination 
of sulphite in high ionic strength potassium chloride brine. 

The control software was developed for unattended operation. This incorporated 

a triplicate standard analysis every 60 min and a triplicate sample analysis every 

15 min. Each sulphite concentration was calculated by ratioing each mean 

sample response to the preceding mean standard response. This ensured that 

every result was automatically calibrated to the standard response measured at 

the most 60 min beforehand, thus compensating for any signal drift. 

A l l hardware control was achieved via a series of commands communicated 

through the serial output of the EuroBEEB card. The events were timed to 

maintain the reproducibility of the system protocol allowing sufficient time for 

sample and standard flushing to reduce any memory effects. 

The CUBAN-12A A/D card was configured to capture the signal generated by 

the spectrophotometer and after conversion the digital data was stored in the 

23 



CUMEM RAM. Upon completion of data collection and storage a peak find 

algorithm was activated. This processed the raw data, isolated the baseline and 

peak maximum absorbances and computed the difference be^veen them as the 

peak height. In an attempt to minimise the gathering of spurious data, the 

algorithm was designed to use a rate of change of absorbance function to locate 

the peak maximum. This enabled differentiation of the analytical signal from 

spikes due to entrained air. In addition, the precision of the triplicate analysis 

was monitored and a relative standard deviation of >5 % led to the result being 

discarded and the analysis cycle repeated. 

Upon completion of every 15 min analysis cycle, the time, sulphite 

concentration and relative standard deviation were down-loaded to the local 

printer and visual display via the JOBBER card. 

2.3 R E S U L T S & DISCUSSION 

Reaction chemistry 

Of the available spectrophotometric procedures for the analysis of sulphite, the 

methods based on /7-rosaniline [108] and 1,10-phenanthroIine [109] are 

particularly sensitive to sample pH and were considered inappropriate for 

development. The methodology described by Humphrey et al offered 

greater tolerance to pH however and, fiirthermore, had been successfully 

developed into a laboratory-based FIA procedure [112]. The reagent used was 

an organic disulphide; 2,2'-dinitro-5-5'-dithiodibenzoic acid (DTNB). Sulphite 

reacts quantitatively with DTNB to produce a chromophoric thiolate species, 2-

nitro-S-mercaptobenzoic acid, as shown overleaf. 

Batch experiments 

While the DTNB reaction had been shown to be more tolerant to pH than the 

/7-rosaline and 1,10-phenanthroline reactions, initial studies indicated some 

variance at higher pH. For the analysis of aqueous sulphite standards a pH 6.9 
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buffer was found to be adequate but the process liquor is in the range pH 11-12 

and a buffer of higher pH was considered more appropriate. Experiments 

conducted using a pH 11.7 buffer indicated that precise pH control in alkaline 

media is much more important than in neutral solutions. 

JD 1.0 

0 10 20 30 
Time/s 

Figure 2.5 Response profiles for the reaction of DT>fB: A, pH 6.9 buffer; 
B, pH 11.7 buffer; C, pH 6.9 buffer + 10 mg 1' sulphite; and D, 
pH 11.7 buffer + 10 mg 1' sulphite. 

As can be seen in Fig. 2.5, the reaction profile is significantly affected by 
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increasing the pH of the reaction medium from pH 6.9 to pH 11.7. The ultra­

violet spectrum (200-800 nm) of DTNB in pH 11.7 buffer is very similar to that 

of the thiolate anion (the monitorand of the DTNB-sulphite reaction), suggesting 

cleavage of the DTNB sulphur-sulphur bond at high pH in the absence of 

sulphite. It is known that aromatic disulphides, particularly nitro-substituted 

aromatic disulphides, are susceptible to cleavage in alkaline conditions [125, 

126], yielding the corresponding thiolate anion and sulphinic acid. The 

molar extinction coefficient calculated in terms of the thiolate anion was found 

to be in agreement (e=l3500 I mol * cm *) with that previously reported, thus 

confirming cleavage of the DTNB sulphur-sulphur bond to yield the thiolate 

anion in a 1:1 ratio. 

9 2.0 

< 1.0 

20 40 60 
Time/s 

100 120 

Figure 2.6 Response profiles for the cleavage of the DTNB sulphur-sulphur 
bond: A, pH 10.9; B, pH 11.5; C, pH 11.8; D, pH 12.1; E, pH 
12.5; and F, pH 12.8. 

The effect of pH on cleavage of the DTNB sulphur-sulphur bond in the absence 

of sulphite was ftirther investigated over the pH range 10.9-12.8. Fig. 2.6 

shows that at pH 10.9 there is no significant increase in absorbance with time 

but at a higher pH the rate of cleavage is significantly affected by very small 
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pH changes. For on-line analysis it is therefore necessary to buffer the sample 

stream to pH 10.9 or below in order to minimise this cleavage. 

Automated laboratory analysis 

Calibration 

Calibration data are presented in Table 2.1 for sulphite in water, 20 % m/v 

potassium chloride standard solution and potassium chloride brine (obtained 

fi-om ICI Chemicals & Polymers). A sample injection fi-equency of 60 samples 

h * was used throughout and ten replicate analyses of each solution were made. 

The results indicate good correlation in the range 0.1-20 mg 1"' of sulphite. 

Table 2.1 Calibration data for sulphite in aqueous media. 

Sulphite 

Cone, 

mg 1-' 

Matrix (/j=10) Sulphite 

Cone, 

mg 1-' 
Water KCl (20 % m/v) KCl brine 

Sulphite 

Cone, 

mg 1-' 
A U RSD % AU RSD % A U RSD % 

0 0.050 1.0 0.059 3.3 0.056 4.2 

5 0.228 0.4 0.251 0.8 0.237 0.7 

10 0.409 0.6 0.442 0.9 0.417 0.6 

15 0.555 0.5 0.616 0.3 0.584 0.7 

20 0.716 0.3 0.777 0.4 0.743 0.4 

Linear regression data. 

(«=5) Water KCl (20 % m/v) KCl brine 

Slope 0.033 0.036 0.034 

Intercept 0.060 0.069 0.063 

Correlation 
coefficient 

0.9992 0.9993 0.9996 
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pH stability 

Owing to the sensitivity of the reaction to pH, the effect of sample pH on the 

response of the system was investigated for standards in water and in 20 % m/v 

potassium chloride. The results given in Table 2.2 reveal that below pH 12.0 

there is no significant variability in response and that above pH 12.0 only a 

slight increase in signal is observed. The manifold is therefore suitable for 

process applications because the pH of the sample stream rarely exceeds 12.0. 

Table 2.2 Effect of sample pH on system response for 10 mg 1* standard 

sulphite solutions prepared in water and 20 % m/v KCl («=5). 

Matrix Sample pH Mean signal (AU) RSD (%) 

6.6 0.297 0.6 

9.5 0.289 0.4 

Water 10.4 0.293 1.0 

11.2 0.298 0.3 

11.9 0.299 0.7 

12.2 0.311 0.4 

5.6 0.423 0.5 

10.4 0.422 0.4 

KCl 10.8 0.423 0.5 

(20 % m/v) 11.4 0.427 0.9 

12.1 0.435 0.9 

12.5 0.436 0.5 

Temperature stability 

The temperature of the KCl brine on plant is maintained in the range 70-80 °C 

and with its transfer and holding in the constant head device, the temperature 

of the abstracted sample may vary considerably. This could have a significant 

effect on the rate of reaction but the results given in Table 2.3 show that any 

temperature effect is eliminated by sample dilution in the FIA manifold. 
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Table 2.3 Effect of sample temperature on system response for a 10 mg 1' 

standard sulphite solution in 20 % m/v KCl at pH 11.0 (/i=5). 

Sample temp. (°C) Mean signal (AU) RSD (%) 

25 0.463 0.4 

35 0.464 0.3 

45 0.463 0.6 

55 0.466 0.1 

70 0.470 0.2 

90 0.462 0.5 

95 0.468 0.7 

Ejfect of potassium chloride concentration 

Comparison of the calibration 

data for water, 20 % m/v 

potassium chloride standard 

solution and potassium 

chloride brine, suggests that 

the potassium chloride 

concentration has an effect on 

sensitivity. This is confirmed 

in Fig. 2.7, which reveals the 

increased response for a 10 

mg r' standard sulphite 

solution with increasing 

potassium chloride concentration. This is thought to be due to an increased rate 

of reaction with increased ionic strength. However, the process stream contains 

18 % m/m potassium chloride, which corresponds to the region exhibiting the 

least variation in response, and small changes in process ionic strength wil l 

therefore have minimal effect. 

^0.3 

10 
(KCl] (% m/v) 

20 

Figure 2.7 Effect of potassium chloride 
concentration on the response. 
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On-line analysis 

Calibration 

A 16 h continuous trial of the manifold and software using a 10 mg 1* sulphite 

standard solution produced a mean response of 0.452 A.U. with a relative 

standard deviation (RSD) of 0.46% (/7=16). Analysis of a simulated sample 

solution gave a mean concentration of 15.85 mg 1*' with an RSD of 0.51% 

(/2=64). This concentration was subsequently confirmed by iodimetric analysis. 

Preliminary on-line trials revealed that the sulphite concentration in the process 

liquor was outside the linear range of the proposed method (0.1-20 mg 1'). In 

order to extend the linear range, the absorbance of the thiolate anion was 

measured at increasing wavelengths from 412 nm (the wavelength of maximum 

absorbance). Measurement at 500 nm extended the linear range from 0.5 to 40 

mg r* with a subsequent reduction in sensitivity to 0.139 A.U. for a 40 mg 1' 

standard. The linear range could not be extended further in this manner owing 

to the poor signal-to-noise ratio observed at higher wavelengths. Furthermore, 

it was not possible to increase the DTNB concentration because of its limited 

solubility. It was therefore necessary to dilute the sample ftirther prior to 

analysis. This was achieved on-line by modifying the FIA manifold as shown 

in Fig. 2.4. Calibration data for the modified manifold covering the range 3-200 

mg r* are presented in Table 2.4. Sulphite can be determined over the range 3-

200 mg 1' and the response is linear for the concentration range 3-100 mg 1' 

(«=5, r=0.9999). 

Validation of the on-line method 

Results from the on-line method were validated against the standard iodimetric 

procedure over an 8 h period. A portion of the process liquor was abstracted 

from the constant head device every 15 min to coincide with the analysis cycle 

of the monitor. Three hours into the trial, the addition of potassium sulphite 

solution to the process stream was increased, slowly and in a step-wise manner, 

over a period of 2.5 h. After the trial had been in progress for 5.5 h, the rate 
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Table 2.4 Calibration data for the on-line determination of sulphite in 20 % 

m/v KCl at pH 11.0(^2=10). 

Concentration (mg 1') Mean signal (AU) RSD (%) 

0 0.015 2.9 

25 0.038 2.6 

50 0.063 -

75 0.088 0.9 

100 0.112 0.8 

150 0.150 0.6 

200 0.177 0.7 

130 

0)120 h 

9110 h 

o 90 

Q- 80 

Time/h 
Figure 2.8 Method comparison study: solid line, monitor response; and 

squares, off-line iodimetric results. 
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of sulphite addition was 

reduced to its original level 

and then rapidly increased 

and reduced again over a 1 

h period. It can be seen 

from Fig. 2.8 that the 

corresponding changes in 

sulphite concentration are 

closely followed by the 

monitor and by the 

iodimetric procedure. Fig. 

2.9 shows the regression of 

the monitor response on the 

results of the standard 

iodimetric analysis. The 

results in Table 2.5 reveal 

no observable systematic error. 

130 

70 80 90 100 110 120 
lodlmetric analysis/mg 1"̂  

130 

Figure 2.9 Regression of the flow injection 
results on the off-line iodimetric 
results. 

Table 2.5 Regression data fi-om Fig. 2.9 

Slope Intercept Correlation coefficient 

0.990 ±0.031 0.64 ± 2.94 0.9964 

Extended on-line trial 

Fresh reagents were prepared weekly and details of reagent consumption are 

given in Table 2.6. The response to a standard sulphite solution (62.3 mg 1*) 

over a 1 week operating period (168 triplicate determinations) was 0.084 A.U. 

with an RSD of 2.1%. Peristaltic pump tubing was replaced after 14 days, and 

in 21 days of continuous on-line use only one failure was reported (owing to 

blockage of the injection valve). 
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Table 2.6 Reagent consumption over a 7 day period (672 analyses). 

Reagent Consumption (1) 

De-ionised water 10.8 

pH 9.9 buffer 5.4 

DTNB reagent 1.4 

Sulphite standard 0.9 

m 
Figure 2.10 Analogue output of 10 h on-line monitoring of the process 

liquor. 

A plot of the analogue output from the monitor is shown in Fig. 2.10 and 

emphasises changes in the process sulphite concentration relative to the constant 

response due to the standard. Fig. 2.11 shows the monitor output over the 

period of the 21 d on-line trial. The sharp increase in concentration at 

approximately 400 h corresponds to a temporary plant shut-down, during which 

time sulphite addition was maintained. 
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Figure 2.11 Results of a 21 day on-line trial. 

The overall performance characterisfics of the proposed monitor are summarised 

in Table 2.7. It can be seen that the system meets all of the criteria set out in 

the original plant specification and boasts modest purchase and operational 

costs. 

Table 2.7 Performance characterisfics and specificafions. 

Parameter Plant specificafion Proposed monitor 

Over-all accuracy + 10 % ± 3 % 

Precision ± 5 % ± 1 % 

Response time 15 min. < 5 min. 

Dynamic range 1-20 mg 1' 0.1-100 mg 1' 

Maintenance < 1 hr. week'' 30 min. week"' 

Running costs - <£1.00 day-' 

System costs - £6,500 
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2.4 CONCLUSIONS 

The proposed FIA monitor has been shown to meet plant specifications for the 

on-line determination of sulphite in a real chemical processing environment. 

The reaction chemistry has been shown to be sufficiently stable in terms of the 

pH, temperature and potassium chloride strength of the process liquor. 

Moreover, the on-line performance of the system has been validated with an off­

line standard procedure and the instrumentafion reliability has been 

demonstrated with a 21 day trial. 
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Chapter Three 

Multivariate 
calibration techniques 



3.1 INTRODUCTION 

In a period of less than twenty years, chemometrics has grown from merely a 

collection of statistical techniques into a dynamic area of research with wide 

reaching implications. Chemometrics has been defined by Massart et al. 

[127] as, 

"...the chemical discipline that uses mathematical, statistical, and 

other methods employing formal logic (a) to design or select 

optimal measurement procedures and experiments, and (b) to 

provide maximum relevant chemical information by analysing 

chemical data." 

This was more succinctly stated by Malinowski [128] as, 

"...the use of mathematical and statistical techniques for handling, 

interpreting, and predicting chemical data." 

According to Svante Wold [129] chemometrics started in 1920 with Gosset's 

"Student's t-test" but it was not until 1974 that he and Kowalski founded the 

International Chemometrics Society. In the interim chemists from different 

research areas had been applying well-established mathematical and statistical 

techniques to chemical problems in isolation from each other. The advent of 

chemometrics was therefore perceived by its critics to be "more of the same" 

[130] but by the mid 1980's the discipline was firmly established and now 

boasts two dedicated journals [131,132] and a number of specialised 

monographs [ 127,133,134,135]. The development of chemometrics 

can be split into three phases: 

1. Academic research into algorithms and associated software and its 

application to selected data sets. 

2. Commercialisation of user-friendly software resulting in much wider 

application across the analytical community. 

3. Marketing of analytical instrumentation with dedicated chemometric 

software rendering routine analysis possible. 

The historical development of chemometrics has been discussed in greater detail 
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by Vandeginste [136] and Wold [129]. 

The revolution in laboratory computing and computerised analytical 

instrumentation coupled with the development of chemometric methods has 

transformed many areas of analytical chemistry into an information science 

[137]. Furthermore, the use of appropriate mathematical routines can in 

some cases reduce the complexity and cost of chemical analysis [138] 

especially as analytical equipment increases in price and computer hardware 

becomes cheaper [139]. 

Some of the most dramatic advances in chemometrics have been made in the 

area of calibration [140]. A number of different approaches to calibration 

are possible and it is the aim of this chapter to present these techniques, firstly 

in practical spectroscopic terms and secondly in a statistical/algorithmic sense. 

3.2 PRACTICAL CALffiRATION 

Calibration is the determination of a mathematical function that can be used to 

predict quantitative information from measured data. In practice, this means 

taking transmittance or absorbance values in spectroscopy or peak area or peak 

height values in chromatography, and finding their relationship to known analyte 

concentrations in order to predict the concentration of analytes in unknovm 

samples. 

Univariate Calibration 

Calibration in chemistry has traditionally relied on the measurement of a single 

variable to predict one analyte concentration. For example, manual 

spectrophotometric analysis for a single analyte would involve the preparation 

and single wavelength analysis of a set of standard solutions. The measured 

values would then be plotted against the corresponding concentrations and a 

straight line or curve fitted. This graph would subsequently be used to predict 
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the unknown analyte concentration in samples by interpolation. Statistical 

software packages are now widely used to produce calibration graphs but, as 

Miller points out [141,142], care should be taken to visually inspect the 

resulting fit. The use of such software provides the analyst with the least 

squares regression curve, its associated errors, and interpolated results with their 

confidence intervals. 

The univariate approach is excellent in cases where the analytical response is 

entirely selective for the analyte under observation. Much of the available 

spectrophotometric methodology includes steps to minimise the effect of 

potential interferents by techniques such as solvent extraction or derivatisation; 

an obvious selectivity enhancement tool is chromatography. It is possible 

however, that the analytical procedure in question has failed to account for all 

potential interferents, and the measured response reflects a positive or negative 

contribution due to something other than the analyte. This interference may be 

in the form of a species absorbing at the same wavelength, or something that 

effects the derivatisation procedure, eg. pH or competitive complexation. This 

wil l lead to erroneous predictions, which may go unnoticed by the analyst 

[143]. 

In routine analysis, more than one assay is often required on each sample and 

rather than carrying out numerous procedures, some form of multidetermination 

could prove to be more efficient. Unfortunately, univariate techniques preclude 

the collection of simultaneous multi-analyte information. This, and problems 

of selectivity can, in many cases, be solved by collecting multivariate data and 

utilising one of the mathematical selectivity enhancement tools that are the 

product of quantitative chemometrics. 

In spectroscopy, multivariate calibration relates a set of signals fi^om a 

multichannel instrument to the concentration of one or more analytes in a 

sample [144,145] and is most often applied to the quantitative 
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interpretation of non-selective chemical data [146,147]. Some 

multivariate calibration techniques such as direct multicomponent analysis have 

been in use for quite some time, but others, partial least squares regression for 

example, are relatively recent products of chemometric research. 

The Beer-Lambert Model 

The Beer-Lambert or linear mixture model states that the absorbance at a 

particular wavelength is a linear function of the concentrations of the absorbing 

species present in the solution under examination. Therefore, in the simplest 

case, binary mixtures can be analysed by the construction and solution of two 

simultaneous equations using the absorbance data from two appropriate 

wavelengths. This can be extended to the determination of J components from 

y equations at 7 wavelengths providing that the response at each wavelength is 

sufficiently different for each component. This approach is seldom useful 

except under ideal circumstances due to the effect of random noise and the 

selectivity problems discussed earlier. 

By including the absorbance data from more wavelengths than J 

(over-determined systems) the effect of noise can be reduced by ordinary least 

squares fitting [144], and reduced still further by using weighted least squares. 

The Beer-Lambert model is most often applied to spectrophotometric data as an 

over-determined or full-spectrum technique known as direct multicomponent 

analysis (DMA) or direct unmixing. It is direct in the sense that the spectrum 

of every absorbing species needs to be known in advance. Interferences not 

explicitly modelled or inter-analyte interactions that influence the spectral data 

can yield erroneous information on prediction. I f the spectral interference is 

sufficiently different from any linear combination of the pure spectra, then the 

least squares residual wil l be higher than expected, suggesting an outlier. 

However, i f the converse is true, then it is unlikely that the "rogue" sample wil l 

be spotted. DMA routines are often provided as on-board software by 

spectrophotometer manufacturers. This makes them particuleu-ly easy to 
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implement as no transfer of data is required between the instrument and a 

secondary computer. 

It is also possible to use Beer-Lambert models for indirect calibration; i f pure 

component spectra cannot be measured then a statistical estimate of them can 

be made and used to make predictions. 

Multiple Linear Regression 

Indirect calibration methods are more generally applicable because they do not 

require pure component spectra to be known in advance or to be calculated. 

Multiple linear regression (MLR) is conceptually the most simple of the indirect 

calibration methods. It can be viewed as a multivariate extension to univariate 

linear regression. MLR assumes that concentration is a linear function of 

instrumental response (cf the Beer-Lambert models). To ensure successful 

prediction with MLR, the wavelengths used in calibration need to be carefully 

selected. This is due to the phenomenon known as "multicoUinearity", whereby 

variables approximate to linear combinations of other variables; a problem often 

encountered in spectrophotometry. Selection of the wavelengths to be used in 

MLR may be achieved statistically by stepwise MLR; a method that chooses the 

"best" subset of variables according to some predefined criterion. Alternatively, 

selection may be made by judicious choice according to the analyst's knowledge 

of the samples and their spectra. Whilst MLR, carefully executed, has the 

advantage over DMA of not requiring interferences to be known before-hand, 

the interferences do have to be incorporated into the calibration. Also, due to 

the wavelength selection requirements of MLR, the fiill-spectrum advantages of 

DMA are lost. 

Most general statistical software packages, such as Statgraphics™, can handle 

MLR quite satisfactorily, and Minitab™ includes a stepwise MLR procedure. 
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Factor Analysis 

According to Martens and Naes [140] flexible calibration methods are needed 

that can simultaneously overcome the problems of: 

1. selectivity, 

2. collinearity, 

3. lack of prior knowledge. 

The Beer-Lambert methods can deal with problems of selectivity and 

collinearity but require pure component spectra and are unable to account for 

analyte interactions. MLR, on the other hand, suffers from data redundancy and 

leaving variables out of the calibration reduces the effectiveness of outlier 

detection. Stepwise MLR provides a means of data compression or "rank 

reduction" that utilises selected wavelengths which attempt to represent all the 

relevant information in the spectra. 

A different approach to data compression which utilises all of the spectral 

variables is known as factor analysis. Here, the spectral information is 

concentrated onto a few factors, which can be used as variables in an MLR 

regression equation. A factor is a linear combination of the original variables. 

As with MLR, factor analysis techniques assume that concentration is a function 

of instrumental response, but due to rank reduction the problem of collinearity 

can be overcome. The term bilinear refers to the way that the spectral data is 

expressed as the product of two linear parameters, known as the scores and 

loadings. 

The estimation of these parameters is very useful for qualitative data analysis 

as well as in calibration. Consider a series of spectra of solutions containing 

two analytes, without any physical or chemical interferences. Factor analysis 

of the data should reveal two factors which describe the original data. The 

structure of this data can be expressed by plotting the scores of factor 1 against 

the scores of factor 2. Samples with similar profiles would tend to be grouped 

together in such a plot and the presence of an isolated sample could be 
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indicative of unusual characteristics. Furthermore, plots of the factor loadings 

can reveal the identity of the wavelengths that are influencing the factors to the 

greatest extent. This can be useful for the interpretation of the physical 

phenomena influencing particular spectral regions. 

Most importantly, inspection of the scores and loadings plots can reveal 

situations where the spectra are more complicated than anticipated. For 

example, a third and unexpected phenomenon could be influencing the spectra 

of the two analyte solutions. Models based on the linear mixture mode! would 

seldom identify a third constituent, whereas factor analysis will reveal the need 

for a third factor to successfully describe the original spectra. In practice, the 

determination of the number of factors required to describe the data (the 

dimensionality of the data) is rarely straightforward. Factor analysis 

incorporates measurement noise and non-linearities into the model, often leading 

to dimensionalities far in excess of the number of analytes. Here again, visual 

inspection of the model parameters is vital to safeguard against "overfitting" 

which can lead to unstable models. The importance of dimensionality 

estimation is dealt with in more detail in Chapter 6. 

As with all indirect calibration methods, factor analysis techniques require that 

there is a relationship between the concentration of the analyte and the spectra 

that is sufficiently unique to allow quantitation. In addition, the spectra used 

to build the calibration model must have known analyte concentrations and span 

all anticipated analyte and interference levels independently. Once a model has 

been built that satisfies these criteria, then the analyte concentration of unknown 

samples can be estimated regardless of interferences. I f the data in question 

does not fit the model, then the sample may be identified as an outlier. This 

may be due to an unexpected interference which was not included in the 

calibration set, or simply that the level of analyte is outside those spanned in 

calibration. 
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Factor analysis, a product of research in the behavioral sciences, has appeared 

in the chemical literature under a number of different guises and although the 

terminology differs, the methodology is often very similar. Two methods to 

which factor analysis is ftindamental are discussed below. 

Principal Components Regression 

The decomposition of the data matrix into its most dominant factors has been 

referred to, amongst other things, as principal components analysis 

[148,149] (PCA), principal factor analysis (PFA) and singular value 

decomposition (SVD). Al l of these methods are equivalent, although the means 

of achieving the decomposition may vary according to the author. PCA lends 

its name to principal components regression (PGR) which uses the most 

dominant factors for calibration. 

The first principal component is a linear combination of the original variables 

that best describes the measured spectra. It is calculated in the least squares 

sense to yield the lowest residuals. Subsequent principal components are 

successively calculated in the same way to explain the remaining variance. 

Projection of the original data onto this reduced dimension space gives the 

factor scores and regression of the concentration data onto the score matrix 

gives the calibration coefficients. For prediction of an unknown sample, the 

scores of the new spectra are calculated and the concentration determined via 

the regression equation. 

By utilising these dominant factors PGR can provide a much more flexible and 

robust calibration than fiiU-spectrum MLR and has come to replace MLR and 

stepwise MLR in many NIR calibrations [150,151,152]. Its 

weakness, however, lies in the data compression stage. It is conceivable that 

the most dominant factors are not those that best describe the analyte 

concentration; factor 1 may be largely describing measurement noise for 

example. 
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Partial Least Squares Regression 

Just as PCR utilises the most dominant factors in the spectral data, partial least 

squares regression (PLSR) attempts to define the factors which are most 

relevant to the concentration of the analyte in question [140,145,153]. This 

is achieved by simultaneously estimating the factors in both the spectral and the 

concentration data, and actively using the concentration data in the bilinear 

decomposition of the spectral data. In this way PLSR can reduce the influence 

of dominant but irrelevant factors and in some cases yield models of lower 

dimensionality which are subsequently easier to interpret. PLSR also has the 

advantage of being able to model a number of analytes simultaneously. 

Partial least squares has developed from the early work by Hermann Wold 

between 1960 and 1980 [154] and is being increasingly used as a calibration 

technique in chemistry today. PLSR has been applied to data from various 

analytical techniques including liquid chromatography with UV detection 

[155] and the following spectroscopies; NIR [145], molecular fluorescence 

[156 ,157] , X-ray d i f f r a c t i o n [ 1 5 8 ] , F T I R [159 ,160 ,161] , 

FT Raman [162] and UV-visible [163]. 

A number of specialised chemometric software packages are commercially 

available with which to perform these bilinear modelling techniques. Among 

the most popular is the Unscrambler II™ program which has PCA, PCR and 

PLSR facilities. 

Unscrambler //™ 

Unscrambler [164], an interactive program for multivariate calibration and 

prediction [165], is the product of research at the Norwegian Food Research 

Institute by Harald Martens and co-workers. The program is well structured and 

with its menu driven interface is relatively easy to use. 

The development of a multivariate calibration model and subsequent predictions 
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using Unscrambler can be broken down into a number of distinct stages. 

1. Problem definition and experimental design. 

Before commencing any chemical analysis it is important to clearly define one's 

objectives. This is no less true when dealing with multivariate calibration. 

Consider an analysis involving the spectrophotometric determination of three 

inherently absorbing analytes in an aqueous matrix. One must first address the 

following issues: 

i) Can artificial calibration standards be prepared? 

ii) Are the expected levels of all analytes and interferences known? 

iii) What are the general analytical requirements in terms of accuracy, 

precision, sensitivity and detection limits? 

I f artificial standards can be prepared then the analyst has much greater control 

over the experimental design. This would generally be true in 

spectrophotometry, but in other cases (whole grain analysis of wheat by NIR 

reflectance for example) the analyte levels may have to be determined on real 

samples by a reference method. Furthermore, i f the analyte and interference 

levels are well characterised then a structured experimental design spanning all 

anticipated events can be used for the training set. 

The choice of experimental design is a non-trivial matter 

[143,166,167,168], indeed a detailed discussion is beyond the scope 

of this chapter. It is important, however, to avoid making unnecessary 

replications and whilst ensuring that all expected phenomena are spanned, care 

should be taken to avoid very large designs. This can be particularly 

problematic when factorial designs are used. Consider a 2-level 3-factor design 

which requires 2̂  = 8 samples; i f this is increased to a 3-level 4 factor design 

then 3'* = 81 samples are required. Nevertheless, the preparation, analysis and 

data processing of such a large experiment can be avoided by using fractional 

factorial designs. This approach effectively ignores higher order interactions, 

which are often negligible, and can reduce the experiment size considerably. 
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For example, the 3** design could be reduced to only 27 samples by using a full 

3̂  design with the fourth factor assigned according to the sum of the first three 

factor effects. This is designated as a 3*̂* design. Another approach to design 

which necessitates fewer experiments is known as the central composite design 

[166,167]. 

Once the calibration has been designed, then the analytical variables such as 

wavelength range and integration time must be considered and the data must be 

stored in a manner such that it wil l be easily retrievable for processing. 

2. Data transfer. 

The transfer of data files is often one of the most problemafic stages of carrying 

out a multivariate calibration. Fortunately, Unscrambler has a number of 

routines designed to aid the import and export of data files and, most 

importantly, can accept ASCII files in a number of formats. 

Spectrophotometers that are not controlled by a personal computer, have the 

added complication of transferring data electronically from instrument to 

computer. This can be achieved by using one of a number of communication 

software packages, eg. Kermit™. 

3. Preprocessing. 

With the raw data converted to a suitable format, a number of processing or 

preprocessing routines can be conducted using the Unscrambler software. It 

should be noted, however, that great care needs to be taken when manipulating 

raw data as this can have dramatic effects on the final results. Many of the 

transformations that can be carried out are linearisation procedures, but 

curvature is not generally a problem in absorbance mode spectrophotometry. 

A smoothing function is available which can be used to remove measurement 

noise. This is a simple averaging function which reduces the number of 

variables; a box-car moving average function would be a welcome addition 

here. Spectral derivatives, which can enhance resolution, can also be calculated 
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but each derivatisation leads to a depreciation of the signal-to-noise ratio. 

Another form of preprocessing is the weighting of variables. With bilinear 

modelling techniques, the data sets are always mean-centred prior to 

decomposition. Mean-centring simply involves the subtraction of the variable 

mean from each individual variable. Normalisation is a scaling technique that 

sets all variable values to unit length across individual spectra. This is 

particularly usefiil when variables of different units are used in the same 

calibration, but is seldom required in spectrophotometry. Autoscaling is used 

to set all variables to equal variance after mean-centring and is carried out by 

dividing the individual variables by the standard deviation of that variable 

across all objects. This can cause problems due to unimportant variables 

making a significant contribution to the model. As the analyst becomes more 

familiar with particular data sets then weights may be attached to individual 

variables according to their relative importance but as a general rule, for new 

data sets and when in doubt, avoid any form of preprocessing. 

4. Calibration method. 

The choice of calibration method was discussed earlier but there is often little 

difference between the predictive ability of PGR and PLSR. For some data sets 

PLSR can yield less complex models than PGR and has the ability to estimate 

more than one analyte simultaneously. Obviously, i f the analyst is only 

interested in studying the underlying spectral information rather than 

quantitation then PGA can be employed. 

5. Model validation. 

Selection of the optimum number of factors or dimensions to be used for fiiture 

predictions is arguably the most important stage in reduced dimension 

multivariate calibration. I f too many factors are included there is the risk of 

over-fitting the data; the calibration set may be well modelled but subsequent 

predictions wil l be unreliable due to the incorporation of noise. Gonversely, 
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using too few factors can lead to under-fitting, leaving important interactions 

and interferences unmodelled, therefore yielding similarly unreliable predictions. 

In order to compare the predicfive ability of the model at different 

dimensionalities some kind of validation needs to be carried out. In practice 

this means the direct comparison of actual and predicted values for a given set 

of objects. The objects may be those used in the calibration stage or a subset 

of them, so called internal validation; or a new and independent set, known as 

external validation. 

When large data sets are available, and a representative subset can be defined, 

then external validation using this subset is possible. However, this approach 

is wasteful of data and rarely used in routine work. Internal validation uses the 

calibration data for measuring predictive ability. Calibration fitting estimates 

can be used, but this is not validation in the predictive sense and is of little 

value due to its tendency to underestimate prediction errors. The method of 

choice is cross validation (CV) which uses independent validation subsets 

without wasting data. Full CV (leave one out) successively divides the data set 

(n objects) into a modelling subset (n-1) and a validation subsample until all 

possible divisions have been made. The predictive ability is calculated at each 

dimension for each object left out, and hence the opfimal model for prediction 

can be estimated. Full CV in Unscrambler is achieved by setting the number 

of CV segments equal to the number of objects in the calibration set. 

Unscrambler selects the optimum which has the first local minimum of 

prediction error as the dimensionality is increased one factor at a time. This 

generally provides a good compromise between over and underfitting of data, 

whilst remaining computationally simple. Depending on the data in question, 

especially considering large data sets, the prediction error may never reach a 

local minimum within the number of factors being considered. In this case the 

first local minimum is in fact the global minimum. Visual inspection of the 
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loadings vectors can also be helpfiil in assessing the extent to which noise is 

being modelled. 

6. Prediction, 

The concentration of unknown samples can be determined by using the 

validated model. The program will ask for the number of model factors to be 

used for prediction and wil l output estimates of the analyte concentrations and 

their deviations. In addition, the presence of objects which do not fit the model 

wil l be flagged by the program as outliers. 

3.3 MULTIVARIATE CALIBRATION ALGORITHMS 

A study of the multivariate calibration literature wil l reveal not only that the 

same techniques have a number of names but also that the presentation of the 

algorithms varies widely, both in style and the variables used. The aim of this 

section is to present the four multivariate calibration techniques which have 

been applied in this work, in a consistent algorithmic manner. 

The following notation is used throughout the thesis: 

bold uppercase letters -> matrix 

bold lowercase letters -> vector 

plain lowercase letters -> scalar 

X —> matrix of spectral variables (independent) 

Y -> matrix of analyte concentrations (dependent) 

le. 
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x= 

where. 

71 

X 1 

and, 

X.- -> spectrum / from wavelength 1 —> K 

/ -> sample or object index 

J -> analyte index 

K -> wavelength index 

c -> concentration 

£ -> molar absorptivity 

K -> matrix of sensitivity coefficients 

E -> matrix of spectral residuals 

F -> matrix of concentrafion residuals 

» -> matrix of regression coefficients 
) -> transpose of a matrix or vector 
A -> estimated value (hat) 

Matrix inversion 

The solufion of multivariate expressions in the development of calibration 

models often involves matrix inversion. Inversion of a matrix is the 

multivariate equivalent of division [140]. The product of a matrix and its 

inverse is equal to the identity matrix, 

XX '=x->x=i 

where I is the identity matrix and is the matrix equivalent of 1. A matrix is 

only invertible i f it satisfies the following criteria [128,146]; 
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1. X is a square matrix, \c. I = K 

2. X is non-singular, ie. neither the rows or columns are linearly dependent. 

In spectroscopy, the first criterion is rarely fulfilled by either the concentration 

or the spectral matrix, but is overcome by implementing the generalised inverse 

method. This yields what is referred to as either the generalised inverse, the 

pseudoinverse or the Moore-Penrose inverse. 

I f X is nonsingular and square then the model 

y=xp 

is solved by 

p=x-V 

however, when X is not square, then a least squares estimate has to be made 

minimising the squared residuals of y such that 

P=[X'X]-* X 'y 

where, 

[ X ' X ] - ' X'=X* 

which is the pseudoinverse of X. Note that the determination of the 

pseudoinverse includes the inversion of X 'X , which by definition is a square 

matrix. There is, however, no guarantee that X ' X is non-singular. I f the 

variables of a matrix approximate to linear combinations of other variables it is 

said to exhibit singularity or collinearity. Spectrophotometric data sets contain 

a great deal of linear dependence and are said to be multicollinear. The 

generalised inverse of a non-singular matrix is likely to be unstable and can 

yield models with poor predictive ability. 
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Direct multicomponent analysis 

DMA is a technique based on the Beer-Lambert model which states that 

absorbance at wavelength k can be expressed as the sum of the component 

concentrations muhiplied by their molar absorptivity at wavelength k. 

Assuming a cell of fixed path length then: 

A=ec 

therefore, at wavelength k. 

^k' ^kl^kl'^^kl^kl'^ '^^kj-\^kj~\'^^kfkj 

In the literature, DMA has been referred to as classical least squares, reverse 

least squares and K-matrix calibration. The K-matrix refers to the matrix of 

molar absorptivities or sensitivity coefficients. The model can be expressed in 

matrix terms as: 

X = Y K ' + E 

where X is an / sample by K wavelength matrix of spectra, Y is an / sample by 

J analyte matrix of concentrations, K is a 7 analyte by K wavelength matrix of 

normalised pure component spectra and E is an / sample by J wavelength 

matrix of spectral residuals. The calibrafion model in DMA is usually built 

fi-om the spectra of pure individual component spectra and therefore no 

estimation of K is required. The prediction of a new sample is estimated by: 

y/=x /K[K'K]-^ 

I f K is unknown then the least squares estimate minimising the squares of the 

spectral residuals is given by: 

K = X ' Y I Y ' Y 1 - ' 

again using the generalised inverse. 
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Future predictions are calculated by: 

y/ = x / K [ K ' K ] -

Every component that has an absorbance in the region of the spectrum under 

analysis must be considered in the calibration because the spectra are defined 

as a function of the individual component absorbances and their concentrations. 

Omission of a component would yield a large residual error upon prediction. 

Multiple linear regression 

The mathematical inverse of DMA and related techniques is known as MLR; 

concentration is defined as a function of the absorbance data. This is illustrated 

by comparing the model from the last section with that for MLR: 

K 

ie. the concentration of the analyte j in sample / is equal to the absorbance at 

k wavelengths multiplied by the regression coefficients for analyte j at the k 

wavelengths. MLR is also known as inverse least squares, indirect calibration 

and forward calibration. In matrix terms, MLR can be represented as: 

Y=XP+F 

where Y is an / sample by J analyte matrix of concentrations, X is an / sample 

by K wavelength matrix of spectra, B is a AT wavelength by J analyte matrix of 

regression coefficients and F is an / sample by J analyte matrix of concentration 

residuals. 

The regression coefficients are determined in the least squares sense to minimise 

the squares of the concentration residuals according to: 

p=[X'X]-^X'Y 

minimising, 
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1=1 j=\ 1=1 y=i 

Inspection of this procedure reveals that all the variation in X is being used to 

model Y in accordance with the least squares principle. This wil l include any 

noise and irrelevant information in addition to the information pertinent to the 

concentrations. From the regression coefficients predictions can be made using: 

I f noise has been incorporated into the regression coefficients then the 

subsequent predictions are likely to be inaccurate. 

Collinearity is a major problem in full-spectrum N4LR calibrations. The 

generalised inverse is utilised for the calculation of the regression coefficients 

but X is unlikely to be nonsingular. This is the reason for the popularity of 

selective wavelength routines particularly in NIR spectroscopy, SMLR for 

example. This type of data reduction renders the inverse stable, but leads to a 

compromise in both the signal-to-noise ratio and outlier detection. 

Principal components regression 

Principal components analysis decomposes the spectral matrix into its most 

dominant factors, where the first principal component describes the greatest 

variance and subsequent principal components describe the remaining variance. 

In matrix algebra terms, X is approximated by two smaller matrices, T and P, 

which describe the patterns in X. Thus PCA can be represented as follows: 

X = t p ' + E 

TTie Columns of T, known as principal component scores, are orthogonal and 

describe the concentration patterns of the objects in X. Similarly, the rows of 

P, known as the principal component loadings, are also orthogonal and describe 

the spectral patterns of the variables in X. PCA can be geometrically 

interpreted as the projection of X on a reduced dimension subspace by the 
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projection matrix P. The coordinates of the objects on this hyperspace are the 

score vectors, T. 

Decomposition of the X matrix can be achieved by a number of numerical 

algorithms [169]. Of these methods, singular value decomposition (SVD) 

is recognised as the superior method when all of the principal components are 

required [170]. However, the non-iterative partial least squares (NIPALS) 

algorithm is computationally much faster, and in calibration when only the first 

few factors are required, then NIPALS is the algorithm of choice [146]. 

The NIPALS algorithm can be summarised as follows: 

For each dimension, a: 

1. Select the score vector which corresponds to the column of 

X^^jj with the largest remaining variance 

2. Calculate the loading vector p 

3. Scale the length of p 

p. 
p 

4. Calculate a new score vector t 

t, = X , . ,p , (p ' ,pJ -^ 

5. Check for convergence: I f t in No. 4. is different to t in No. 1. then 

return No. 2 

6. Calculate the residual 

7. The data matrix is then reassigned as the residual for the next dimension 
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Once the optimal number of dimensions has been determined (see Chapter 6) 

the principal components regression is obtained by regressing y onto the score 

vectors 

y=tp+f 

The regression coefficients are determined by least squares estimation 

minimising the residuals in f 

P = l t ' t l - ' t 'y 

It should be noted that in cases where the number of factors A equals the 

number of wavelength variables K then the regression coefficients D are 

equivalent to those in MLR. 

Prediction of an unknown sample first requires the calculafion of its scores 

vector 

The score vector can then be multiplied by the regression coefficients 

to yield the analyte concentrations. 

In the discussion of the NIPALS algorithm, the concentration data has been 

represented as the vector y. In the real analysis of data sets, this could in fact 

be a matrix of analyte concentration data Y. However, the number of analytes 

under inspection, and their covariance, has no effect on the principal component 

analysis. The principal components are computed to describe the X variance 

only and therefore, all J analytes use the same data prior to regression. This is 
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the fundamental difference between PGR and the other biased regression 

technique used in this work, partial least squares regression. 

Partial least squares regression 

PLSR is conceptually very similar to PGR. It is an indirect, full spectrum, 

biased method of regression which uses bilinear modelling. It differs in its 

approach to the calculation of scores and loadings. Principal components 

describe the variance in the spectral data, whereas PLS factors are calculated 

with regard to the concentration variance. According to Martens and Naes 

[140], 

"...the intention of partial least squares in regression is to optimise 

parsimony: Produce bilinear calibration models with as few dimensions 

as possible and in such a way that these dimensions are as relevant as 

possible." 

The choice of factors that describe the spectral variance correlated to the analyte 

concentrations ensures this relevance. 

Similar again to PGA, the PLS principle has its roots in econometrics and the 

social sciences and various different algorithms are available for matrix 

decomposition. In chemometrics, PLS models the relationship between two 

matrices, X and Y, by a sequence of simple, partial models fitted by least 

squares. As a consequence, PLS algorithms tend to be more complex than those 

used in PGR, with more variables requiring computation. 

The algorithm may be represented as follows: 

For each dimension a\ 

1. Select the score vector that corresponds to the column of Y^, with the 

largest remaining variance 

2. Galculate the loading weight vector w by regressing X^, onto the 

concentration scores according to the local model 
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a-i o a 

The weights are found by least squares estimation minimising the 

residuals in E 

w = X ' , u j u ' u 

3. Scale the length of w 

4. Calculate a new score vector t 

5. Calculate the loading weights c by regressing Y^, onto the spectral 

scores according to the local model 

a - l a a 

The weights are found by least squares estimation minimising the 

residuals in F 

6. Scale the length of c 

7. Calculate a new score vector u 

8. Check for convergence: I f u in No.7 is different to u in No. 1 then 

return to No.2 
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9. Calculate the X and Y loading vectors, p and q 

10. Calculate the residuals 

11. The data matrices are then reassigned as the residuals for the next 

dimension 

a a 

Once the optimal number of dimensions has been established (see Chapter 6), 

the scores vectors for unknown samples can be calculated according to the 

following sequence. 

For each dimension, a: 

1. Calculate a new scores vector according to the model 

a-\ a a 

minimising the residual by least squares esfimafion 

2. Calculate the residual and reassign x 

Using these data the analyte concentrations can be estimated according to 
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Chapter Four 

Multicomponent 
analysis of a model 
spectrophotometric 

data set 



4.1 INTRODUCTION 

Relative to its application in vibrational spectroscopy, multivariate calibration 

has been little used in UV-visible spectrophotometry. This can largely be 

attributed to the nature of the procedures applied using these techniques. In 

very generalised terms, IR spectroscopists tend to quantify the spectroscopic 

data derived from virgin or matrix isolated samples. In the mid-IR region, it is 

sometimes possible to fmd a fundamental bend or stretch that is directly 

attributable to the analyte, or analytes, of interest. In such cases, providing that 

a reproducible base-line can be established then univariate procedures can be 

more than adequate. It is more likely however, that due to known and unknown 

interferences, single frequency procedures wil l be inadequate and the 

multivariate calibration routines discussed in Ghapter 3 wil l be more suitable. 

The case is accentuated as one moves into the near-IR region where the 

assignment of combination and overtone bands can be ambiguous. Here 

multivariate techniques are essential to the success of real sample analyses. 

This is in contrast to the manner in which UV-visible spectrophotometry is 

applied. Traditionally, quantitative spectrophotometric measurements are carried 

out in the latter stages of a derivatisation procedure. Such procedures are 

designed to produce a highly absorbing chromophore, the absorbance of which 

is directly proportional to the analyte of interest. Implicit in this procedure is 

not only the enhancement of analytical sensitivity but also minimisation of the 

effect of potential interferents, ie. analytical selectivity. Accordingly, UV-

visible spectrophotometry has tended to involve measurement at a single 

wavelength corresponding to the wavelength of maximum absorbance, followed 

by a univariate calibration. In the simplest terms, visible spectroscopists have 

generally utilised physico-chemical approaches for selectivity enhancement, 

whereas a more mathematical approach has been used in quantitative IR studies. 

Multivariate analysis has, however, been applied to visible spectrophotometric 
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data for the resolution of multianalyte systems. Thus, in moving fi-om single 

to multicomponent analysis, the other multivariate advantages such as 

interference removal and noise reduction are adopted. 

The aim of this chapter is to investigate the relative predictive abilities of three 

of the multivariate calibration techniques discussed in the previous chapter. An 

extension of the transition metal 'model' system described by Wolf [171] 

has been selected as a means of evaluation. Rather than monitoring 

derivatisafion products the model system relies on the inherent absorbance of 

the species under investigation, thus reducing the number of random error 

sources. In total, four visible spectrophotometric data sets were collected and 

subjected to direct multicomponent analysis, principal components regression 

and partial least squares regression. The data sets were designed to provide 

varying spectroscopic complexity and a range of physical and chemical 

interferences. 

4.2 EXPERIMENTAL 

Reagents 

All solutions were prepared in Mi l l i R-0 water (Millipore) and all reagents were 

AnalaR grade (Merck). Solutions (0.1 mol dm'^) of chromium (III) potassium 

sulphate 12-hydrate, iron (II) sulphate 7-hydrate, cobalt (II) sulphate 7- hydrate, 

nickel (II) sulphate 7-hydrate and copper (II) sulphate 5-hydrate were prepared 

in 1% v/v sulphuric acid. Barium sulphate was added, where indicated in the 

text, as the solid. 

Apparatus 

Absorbance and derivative spectra were measured using a Hewlett-Packard 

8451A PDA fitted with a 1 cm path-length silica cuvette, and the data were 

stored using a HP 9121 disk drive. Data from the PDA were downloaded in 

ASCII format to a personal computer via a HP 82939A serial interface card 

62 



using 'Kermit' serial communication software. 

Software 

DMA was carried out using the weighted least squares on-board software of the 

PDA. PCR and PLSR were carried out using the Unscrambler v. 3.2 

multivariate data analysis package (Camo A/S, Norway) which incorporates 

matrix handling routines thus allowing manipulation of ASCII files. 

Procedures 

The spectra of all solutions were measured in triplicate, against a 1% v/v 

sulphuric acid blank, with an integration time of 25 s. The spectra were 

averaged and their means were stored for use in calibration/prediction. A 

wavelength range of 302-800 nm with a 2 nm interval was used throughout 

yielding 250 data points per spectrum. 

A three component system was developed by dilution of the Co (11), Ni (11) and 

Cu (II) solutions; 0.025M solutions of the metal sulphates were used in the 

DMA and the calibration set used for PCR and PLSR is shown in Table 4.1. 

The predictive ability of each method was determined using the test set also 

described in Table 4.1. Incorporation of Cr (III) gave a four component system, 

a 0.025M sulphate solution again being used for DMA. The calibration set for 

PCR and PLSR and the test set is given in Table 4.2. After measurement of the 

spectra, various amounts of barium chloride were added to the training and test 

set solutions in a non-quantitative manner, thus creating the effect of a physical 

interference due to the scatter and absorbance caused by the barium sulphate 

precipitate. DMA (with and without the barium sulphate standard spectrum), 

PCR and PLSR were repeated using these solutions which simulate suspended 

solids. Finally the Fe (II) solution was incorporated to give a five component 

system; the calibration and test sets are shown in Table 4.3. 
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Table 4.1 Concentration data of the training set and test set for the three-

component system (mol dm"') 

Training set Co (n) Ni (U) Cu (U) 

A 0.025 0.025 0 

B 0.025 0 0.025 

C 0 0.025 0.025 

D 0.010 0.010 0.010 

E 0.010 0.005 0.020 

F 0.005 0.010 0.020 

G 0.010 0.020 0.005 

H 0.005 0.020 0.010 

J 0.020 0.010 0.005 

K 0.020 0.005 0.010 

Test set 

1 0.010 0.010 0.020 

2 0.010 0.020 0.010 

3 0.020 0.010 0.010 

4 0.020 0.020 0.010 

5 0.020 0.010 0.020 

6 0.010 0.020 0.020 

7 0.025 0.005 0 

8 0.025 0 0.005 

9 0.005 0.025 0 

10 0 0.025 0.005 

11 0.005 0 0.025 

12 0 0.005 0.025 

13 0.015 0 0 

14 0 0.015 0 

15 0 0 0.015 
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Table 4.2 Concentration data of the training set and test set for the four-

component system (mol dm'') 

Training set Cr ail) Co (n) Ni (n) Cu (II) 

L 0 0.025 0.025 0.025 

M 0.025 0.025 0.025 0 

N 0.025 0.025 0 0.025 

O 0.025 0 0.025 0.025 

P 0.010 0.010 0.010 0.010 

Q 0.020 0.005 0.010 0.015 

R 0.015 0.020 0.005 0.015 

S 0.010 0.015 0.020 0 

T 0.005 0.010 0.015 0 

Test Set 

19 0.025 0 0.005 0.010 

20 0.010 0.025 0 0.005 

21 0.005 0.010 0.025 0 

22 0 0.005 0.010 

23 0.020 0.010 0.010 0.025 

24 0.010 0.010 0.010 0.010 

25 0.010 0.010 0.020 0.020 

26 0.010 0.020 0.010 0.010 

27 0 0.025 0.020 0.010 

28 0 0 0.025 0 

29 0.020 0 0 0.020 

30 0.025 0.020 0 0.025 

31 0.015 0 0.015 0 

32 0 0.015 0 0 

33 0.015 0.015 0 0.015 

34 0 0 0.015 0 

35 0.015 0.015 0.015 0.015 

0.015 
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Table 4.3a Concentration data of the training set for the five-component 

system (mol dm"*) 

Training 

set 

Cr (III) Feai) Co (II) Ni (U) Cu ai) 

A 0.050 0.050 0 0 0 

B 0.050 0 0.05 0 0 

C 0.050 0 0 0.050 0 

D 0.050 0 0 0 0.050 

E 0 0.050 0.050 0 0 

F 0 0.050 0 0.050 0 

G 0 0.050 0 0 0.050 

H 0 0 0.050 0.050 0 

I 0 0 0.050 0 0.050 

J 0 0 0 0.050 0.050 

K 0.033 0.033 0.033 0 0 

L 0.033 0 0.033 0 0.033 

M 0.033 0.033 0 0.033 0 

N 0.033 0.033 0 0.033 0 

0 0.033 0.033 0 0 0.033 

P 0.033 0 0 0.033 0.033 

Q 0 0.033 0.033 0.033 0 

R 0 0.033 0.033 0 0.033 

S 0 0.033 0 0.033 0.033 

T 0 0 0.033 0.033 0.033 

U 0.025 0.025 0.025 0.025 0 

V 0.025 0.025 0.025 0 0.025 

W 0.025 0.025 0 0.025 0.025 

X 0.025 0 0.025 0.025 0.025 

Y 0 0.025 0.025 0.025 0.025 

Z 0.020 0.020 0.020 0.020 0.020 
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Table 4.3b Concentration data of the Test set for the five-component system 

(mol dm ') 

Test set Cr (III) Fe (n) Co (II) Ni (II) Cu (n) 

1 0 0.010 0.020 0.030 0.040 
2 0.010 0.050 0.040 0 0 
3 0.020 0.010 0.010 0.020 0.040 
4 0.030 0.020 0 0.050 0 
5 0.040 0 0.050 0 0.010 
6 0.050 0.020 0 0 0.030 
7 0.020 0 0.030 0.040 0.010 
8 0.040 0.010 0 0 0.050 
9 0 0.020 0.020 0.040 0.010 
10 0 0.030 0.050 0 0.020 
11 0.050 0.040 0 0.010 0 
12 0 0.048 0 0.030 0.020 
13 0.030 0.040 0 0.010 0.020 
14 0 0 0.010 0.050 0.040 
15 0.020 0.040 0.020 0.010 0.010 
16 0.050 0 0.030 0.020 0 
17 0 0.010 0.040 0 0.050 
18 0 0.030 0.050 0.020 0 
19 0.040 0.010 0.020 0 0.0320 
20 0 0.050 0.040 0.010 0 
21 0.040 0.010 0.010 0.020 0.020 
22 0 0.020 0 0.030 0.050 
23 0.010 0 0.050 0.040 0 
24 0.030 0.020 0 0.050 0 
25 0.010 0.020 0.030 0.040 0 
26 0.050 0.040 0 0 0.010 

27 0.020 0.010 0.010 0.020 0.040 

28 0.020 0 0.050 0 0.030 

29 0 0.050 0 0.010 0.040 

30 0.020 0 0 0.030 0.050 
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Al l PCR and PLSR models were developed from mean-centred data and the 

optimal dimensionality was defined as the first local minimum of the PRESS 

(prediction error sum of squares) relative to the number of factors used. The 

PRESS is defined as: 

PRESS ^J^Cy.-y,)^ 
1=1 

where is the concenfration of object /, y. is the predicted concentration of 

object / and / is the total number of objects used in the calibration. The 

standard error of prediction (SEP) is calculated from the PRESS and has units 

the same as the original concentration data. 

SEP= PRESS 

The SEP is also referred to as the root mean square error (RMSE), which can 

be expressed in relative terms (similar to the relative standard deviation) as the 

relative RMSE. 

RRMSE = - i^ .SEP 

where y is the mean analyte concentration. The RRMSE is used for 

comparisons of both the cross validation models (RRMSECV) and the 

prediction of an independent test set (RRMSEP). In both cases no degrees of 

freedom are lost. In this work a hybrid of the RRMSEP has been used for 

comparison of the predictive ability. Defined as the relative error of prediction 

(REP (%)), it represents the cumulative RRMSEP for all analytes predicted by 

the model 
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REP(%) = ^ i=i y=i 

where y-j is the mean concentration of all the analytes in the prediction 

set, y.j is the predicted concentration of analyte j in sample /, y.̂ . is the true 

concentration of analyte j in sample i and N is the total number of predictions 

(LJ). 

All PLSR models were developed in the PLS-2 mode. 

4.3 RESULTS & DISCUSSION 

The absorbance and first derivative spectra of the five metal ion standard 

solutions are shown in Figs. 4.1 & 4.2. The relative prediction errors for the 

three calibration methods used for the three component system using 

absorbance, first derivative and second derivative data are given in Table 4.4. 

The use of first derivative data with DMA has led to significantly better 

predictions than DMA with absorbance data and the PCR and PLSR methods 

for absorbance and first derivative data. There was no significant difference in 

the REP fi-om the absorbance and first derivative data with PCR and PLSR. 

With all three calibration methods the second derivative data yielded 

significantly less accurate predicfions. 

Analysis of the results for the four component system revealed no significant 

difference in the REP values between the three procedures for absorbance or 

first derivative data. The second derivative data again yielded much less 

accurate predictions. The relative prediction errors are given in Table 4.5. Fig. 

4.3a shows the absorbance spectra for the calibration set for comparison with 
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VAVELENCTH Cna) 

Figure 4.1 Absorbance spectra of the five standard metal sulphate 
solutions: A, Cr; B, Fe; C, Co; D, Ni ; and E, Cu. 

.02 

WAVELENGTH Cm) 

Figure 4.2 First-derivative spectra of the five standard metal sulphate 
solutions: A, Cr; B, Fe; C, Co; D, Ni ; and E, Cu. 
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procedures with the barium sulphate interference are summarised in Table 4.6. 

As expected, the prediction ability of DMA is very poor when the barium 

sulphate interference is not included as a calibration standard. When the 

interference is included the predicted values with DMA are still significantly 

less accurate than those obtained with PCR and PLSR using both absorbance 

and first derivative data. There is no significant difference between the REP 

values for the absorbance and first derivative data in either PCR or PLSR. The 

second derivative data once again yields results markedly less accurate for all 

three methods. 

Table 4.4 Relative error of prediction values for the three-component system. 

Absorbance First derivative Second derivative 

REP(%) Dim. REP(%) Dim. REP(%) Dim. 

DBA 3.91 - 1.20 - 107.53 -

PCR 3.62 3 2.70 3 13.66 5 

PLSR 3.61 3 2.69 3 11.88 5 

Table 4.5 Relative error of prediction values for the four-component system. 

Absorbance First derivative Second derivative 

REP(%) Dim. REP(%) Dim. REP(%) Dim. 

DMA 1.86 - 2.08 - 27.73 -

PCR 2.47 4 2.15 4 10.23 5 

PLSR 2.47 4 2.15 4 10.21 5 

The five component system incorporating Fe (II) presents the most challenging 

problem for calibration and prediction due to partial oxidation of the ferrous ion 

in the presence of copper, which markedly effects the visible spectrum. 
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WAVELENGTH lnm> 

Figure 4.3a Absorbance spectra of the four-component test set (refer to 
Table 4.2 for concentration data). 

1.2 

VAVELENGTH ( r w ) 

Figure 4.3b Absorbance spectra of the four-component test set after 
the non-quantitative addition of barium chloride. 
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Analysis of the prediction residuals revealed that soft modelling techniques offer 

a much more robust calibration procedure in this particular case. There was no 

significant difference between the REP values obtained by the PCR and PLSR 

methods for both absorbance and first derivafive data. The relative error of 

prediction values for each procedure are presented in Table 4.7. The linear 

regression data for the regression of the predicted values on the true values and 

the relative error of prediction for each analyte fi-om the PLSR model with 

absorbance data are presented in Table 4.8. It can be seen that the analytes best 

modelled are those with the most distinct spectra; Fe (II) having the poorest 

relative error of prediction due to the interferences explained above. 

Table 4.6 Relative error of prediction values for the four-component system 

with barium sulphate interference. 

Absorbance First derivative Second derivative 

REP(%) Dim. REP(%) Dim. REP(%) Dim. 

DMA 1 484.92 - 33.55 - 122.09 -

DMA 2 21.52 - 9.52 - 126.49 -

PCR 2.28 6 4.61 5 20.51 5 

PLSR 2.28 6 4.58 5 19.9 5 

Table 4.7 Relative error of prediction values for the five-component system. 

Absorbance First derivative 

REP(%) Dim. REP(%) Dim. 

DMA 110.77 - 100.87 -

PCR 6.40 5 8.25 6 

PLSR 6.40 5 8.24 6 
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Table 4.8 Linear regression data for the regression of the predicted values on 

the true values for individual analytes from the PLSR calibration 

on the absorbance data. 

Analyte Slope Intercept Correlation 

coefficient 

REP (%) 

Cr 1.021 ± 0.005 0.000 ± 0.000 1.0000 3.44 

Fe 1.015 + 0.030 -0.002 ± 0.001 0.9984 11.89 

Co 1.013 ± 0.009 0.000 + 0.000 0.9999 3.55 

Ni 1.016 ± 0.021 0.000 + 0.001 0.9993 4.57 

Cu 1.021 ± 0.010 0.000 ± 0.000 0.9998 3.83 

4.4 CONCLUSIONS 

The DMA procedure provides an accurate means of prediction in the well 

behaved three and four component systems. However, under less well behaved 

circumstances, the PCR and PLSR routines offer more robust models by 

implicitly accounting for interferences in the calibration stage. 

The use of second derivative data consistently led to significantly less accurate 

predictions due to the much poorer signal-to-noise ratio. 

No significant difference was observed in the predictive ability of the PCR and 

PLSR routines in any of the experiments. 
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Chapter Five 

Partial least squares 
resolution of 

multianalyte FIA data 



5.1 INTRODUCTION 

In the preceding chapters, the concepts of process FIA and multivariate 

calibration of UV-visible spectrophotometric data have been investigated. The 

aim of this chapter is to draw these two threads together and present 

multianalyte FIA suitable for the process environment. 

Multivariate calibration has been applied to data fi-om a number of FIA 

determinations as shown in Table 5.1. Blanco et al. [171] applied DMA to the 

absorbance and derivative spectra of 2, 3 and 4 component mixtures of 

etafedrine, phenylephrine, doxylamine and theophylline using FIA as a sample 

presentation technique for the PDA. The same authors also compared 

univariate, DMA and MLR methods for the FIA-PDA speciaticn of iron [172]. 

MLR has also been applied to the resolution of ternary mixtures of aromatic 

amines after retention on a Cjg bonded silica support in a PDA flow-cell [179]. 

The first application of PLSR to FIA data was published in 1988 by Lukkari 

and Lindberg [174]. They exploited a gradient system for the simultaneous 

FIA-titration of up to five organic acids by utilising firstly the signal shape at 

a single wavelength and secondly the absorbance vs. time matrix fi-om a PDA. 

The second-order data for each sample was unfolded to a vector (and bunched) 

before calibration. Gerritsen et al used PLSR to quantify teniposide in blood 

plasma [181] thus demonstrating the resolving power of this technique in the 

presence of an interfering matrix. MLR, PCR and PLSR have recently been 

applied to first-order data for the determination of nickel and iron by FIA 

utilising a double-injecfion zone penetration technique [184], and PLSR has 

been used for multicomponent analysis of FIA-FTIR data [185]. There is as yet 

no reported use of an on-line FIA-multidetection system, with or without 

multivariate calibration, for process analysis. 
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Table 5.1 Examples of the application of multivariate calibration techniques 

to FIA data. 

Analytes Calibration Method Reference 

Pharmaceutical compounds DMA 172 

Fe(n)/Fe(in) DMA,MLR 173 

Organic acids PLSR 174 

Lanthanoids MLR 175 

Cu/Fe MLR 176 

pH indicators SMCR 177 

Ca/Mg DMA 178 

Th(IV)/LaaiI) MLR 179 

2,4-DNPH/2-NPH/4-NPH MLR 180 

Teniposide PLSR 181 

Fe/free acid PLSR 182 

Rare earth metals MLR 183 

Ni(II)/Fe(II) MLR,PCR,PLSR 184 

Acetone/ethanol/THF PLSR 185 

The conclusions of Chapter 4 indicate that in ideal circumstances DMA 

performs no worse than PCR and PLSR for the multicomponent resolution of 

visible spectrophotometric data. However, when physical and chemical 

interferences were incorporated into the experiments, the bilinear modelling 

techniques consistently produced significantly better predictions. The same 

experiments revealed no significant difference between the predictions made by 

PCR and PLSR. These findings agree with those of other workers 

[150,151,152,153] but i f one considers its theoretical advantages and optimal 

performance over a wide range of conditions [154], PLSR can be considered the 

general method of choice. 

This chapter describes the development of a combined reaction FIA system with 

76 



photodiode array detection and data treatment with PLSR. The primary 

objective is to demonstrate the feasibility of this integrated approach for 

simultaneous multianalyte determinations in a process environment. With this 

in mind, the emphasis is on the investigation of a number of calibration criteria 

using a physically simple manifold. Nonetheless, the model system considered 

here is a real one. Zinc phosphate and chlorine are added to industrial cooling 

water systems as a corrosion inhibitor and biocide respectively, and on-line 

information is desirable for control purposes. The practical implications of 

combining established spectrophotometric methods for analytes of a diverse 

nature are considered and the influences of a number of calibration parameters 

are considered in detail. 

5.1 EXPERIMENTAL 

Reagents 

All solutions were prepared in Milli-Q water (Millipore) and all reagents were 

of AnalaR grade (Merck) unless otherwise indicated. A stock phosphate 

solution containing 1000 mg 1' phosphorus (PO4-P) was prepared by dissolving 

4.390 g potassium dihydrogen orthophosphate (dried for 2 h at 105 °C) in 1 1 

of water. A stock hypochlorite solution containing 1000 mg 1* fi-ee chlorine as 

chlorine was prepared by dilution of an appropriate volume of iodometrically 

standardised sodium hypochlorite solution (Merck; general purpose reagent). 

Calibration and test set solutions were prepared by serial dilution of these stock 

solutions and are subsequenfly referred to as phosphate and chlorine solutions. 

The DPD reagent was prepared by dissolving 1.5 g N,N-diethyl-p-phenylene 

diamine sulphate (Aldrich) (4-N,N-diethylaminoaniline sulphate) in 11 of water. 

The acid/molybdate reagent was prepared by dissolving 10 g of ammonium 

heptamolybdate in 1 1 of 0.4 M nitric acid and the ascorbic acid solution was 

prepared by dissolving 80 g in 1 1 of water. A solution of o-tolidine was 

prepared by dissolving 0.86 g of o-tolidine dihydrochloride (Fluka; purum) in 

2 M hydrochloric acid. 
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Caufion: o-tolidine is highly toxic and should be handled with extreme care. 

personal 
computer 

pump 
module 

serial 
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GPIO 
interface 

printer/ 
plotter 

HP85A 
microcomputer 

disk 
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reaction 
manifold 

photo-diode 
array 

Figure 5.1 Schematic diagram of the automated FIA-PDA system. 

Instrumentation 

A schematic diagram of the automated FIA-PDA arrangement is shown in Fig. 

5.1. The FIA manifold was constructed fi-om 0.8 mm i.d. polytetrafluoro-

ethylene (PTFE) tubing and in-house PTFE T pieces. Absorbance spectra were 

measured using a Hewlett-Packard HP 8451A PDA spectrophotometer fitted 

with an 18 | i l glass flow cell with a path length of 1 cm (Hellma). Raw data 

were stored using an HP 9121 disk drive and output in ASCII format using an 

HP 82939A serial interface to a Viglen 386 DX personal computer with 8 Mb 

of RAM. Al l subsequent data processing was carried out using this computer. 

Sample injections (150 j i l ) were made using a pneumadc valve control unit 

(P.S. Analytical) and all solutions were propelled by two peristaltic pumps 

(Ismatec Mini S-820) with PVC pump tubing (Labsystems). Control of the 

valves and pumps was maintained via an HP 82940A GPIO interface. 
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Software 

A general purpose program was written in HP basic to control the FIA 

components, measure and record spectra, and carry out some basic data 

processing. A further program was used to transmit spectral data to the 

personal computer via the serial interface. Kermit serial interface software 

version 3.01 was used to collect and store data in ASCII format on the personal 

computer. A l l multivariate data analysis was carried out using Unscrambler I I 

Extended version 4.00 (Camo A/S, Norway) which incorporates matrix handling 

routines allowing manipulation of the ASCII files. 

Procedures 

Batch Experiments 

In order to evaluate the compatibility of the phosphate and chlorine reaction 

chemistries, a number of preliminary experiments were carried out. The visible 

spectra of combinations of the molybdate, DPD and o-tolidine reagents were 

recorded after addition of combinations of water and solutions of 10 mg 1"' 

phosphate and 10 mg 1*' chlorine. 

Flow Injection Experiments 

The FIA manifold used in all experiments is shown in Fig. 5.2. The absorbance 

was measured every 2 nm over the wavelength range of 352-550 nm yielding 

100 data points per spectrum and one spectrum was recorded every second 

between 1 and 60 s after injecfion. This resulted in a total of 6000 data points 

for each injection. Al l spectra were measured against a reagent blank. The 

control software was designed to calculate and store to disk the mean spectrum 

of the three spectra nearest to the peak maximum for each injection. A l l 

solutions were measured in triplicate and the overall mean spectrum of the three 

injections was also stored to disk. This overall mean spectrum was used for all 

subsequent data processing unless otherwise stated. 
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Figure 5.2 Flow-injection manifold for the simultaneous determination of 
phosphate and chlorine: SAM, sample; TOL, o-tolidine; and 
MOL, acid-molybdate. 

Calibration set solutions (training set) were prepared to cover the range 2-10 mg 

r ' phosphate and 1-5 mg 1' chlorine in a 5-level factorial design. A further 20 

samples were prepared and analysed 48 hours later as an independent test set. 

The concentration details are given in Table 5.2. Both the calibration and test 

sets were analysed in random order to reduce any drift effects. 

Al l PLSR models were developed in PLS-2 mode and the optimal 

dimensionality was defined as the first local minimum of PRESS relafive to the 

number of factors included. 
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Table 5.2 Concentration data of the calibration set and test set (mg 1'*) 

Sample 
Number 

Calibration Set Test Set Sample 
Number CI PO4 CI 

1 2 1 3 1 

2 2 2 3 2 

3 2 3 3 3 

4 2 4 3 4 

5 2 5 3 5 

6 4 1 5 1 

7 4 2 5 2 

8 4 3 5 3 

9 4 4 5 4 

10 4 5 5 5 

11 6 1 7 1 

12 6 2 7 2 

13 6 3 7 3 

14 6 4 7 4 

15 6 5 7 5 

16 8 1 9 1 

17 8 2 9 2 

18 8 3 9 3 

19 8 4 9 4 

20 8 5 9 5 

21 10 1 - -

22 10 2 - -

23 10 3 -

24 10 4 - -

25 10 5 - -
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5.3 RESULTS & DISCUSSION 

Batch Experiments 

One reason for the widespread use of FIA techniques is the breadth of 

established spectrophotometric procedures that can be implemented. The 

analytes under investigation in this study are routinely determined by 

spectrophotometric procedures; the molybdenum blue method for phosphate and 

the DPD method for chlorine [186]. Furthermore, both reaction chemistries 

have been successfully used in FIA methods for phosphate [39,187,188] 

and chlorine [189,190]. Initial experiments were conducted to combine 

these reaction chemistries to enable simultaneous determinations. However, 

batch experiments revealed that the two procedures were incompatible due to 

differing pH requirements; acid media for the molybdate reaction and pH 

6.2-6.5 for the DPD reaction [186]. Another method for the spectrophotometric 

determination of chlorine uses o-tolidine and can be carried out over a wide pH 

range [191]. This reaction has also been used in an FIA method [192]. 

However, when the o-tolidine reaction was combined with the molybdenum blue 

reaction the chlorine response was lost completely. This was found to occur 

instantaneously upon addition of the ascorbic acid solution. Ascorbic acid is 

added in the determination of phosphate to reduce phosphomolybdic acid to the 

molybdenum blue complex. The monitorand for chlorine, in contrast, is a 

holoquinone; the product of chlorine oxidising the o-tolidine. Stannous chloride 

was found to have the same effect on the chlorine reaction suggesting that the 

holoquinone is being reduced by the ascorbic acid. Nevertheless, the yellow 

phosphomolybdic acid can also be monitored spectrophotometrically, thus 

eliminating the need for ascorbic acid reduction. This approach, while less 

sensitive than the molybdenum blue approach, has also been used in FIA 

[193]. 

Flow Injection Experiments 

The successful implementation of process analytical methods requires the 
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fulfilment of a number of important criteria, one of the most important of which 

concerns instrument reliability. Any instrumentation which is to be installed in 

a manufacturing environment needs to be robust and the overall procedure must 

be dependable, especially i f the information is going to be used for process 

control. In FIA terms, the manifold design must be kept as physically simple 

as is permissible with the analytical requirements. This would be a single line 

manifold in ideal situations. In this work, a single injection, two line manifold 

with one detector and a second pump for sample loop filling was used 

throughout (Fig. 5.2). This configuration was required for two reasons. Firstly, 

injection of sample into a molybdate stream caused a large negative response 

due to reagent dilution and secondly, a mixed molybdate/o-tolidine reagent was 

found to be unstable. 

Absorbance 

Wavelength 

Figure 5.3 3-D FIA response profile for a solution containing chlorine at 5 
mg 1' and phosphate at 10 mg 1'. 

A typical 3 dimensional FIA response profile obtained fi-om this manifold is 

shown in Fig. 5.3., representing 60 spectra measured at 2 nm intervals over the 

352-550 nm range. Fig. 5.4 shows the mean spectra recorded at the FIA peak 
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Figure 5.4 Mean spectra recorded at the FLA peak maximum for solutions 
containing: A, 10 mg 1* phosphate; and B, 5 mg I * chlorine. 

maximum for phosphate only and chlorine only standards. The univariate 

procedures on which this work was based used 362 nm for phosphate [193] and 

438 nm for chlorine [192] and it can be seen that the same spectral regions are 

active after combination of the reaction chemistries. It is obvious from Fig. 5.3, 

however, that when phosphate and chlorine are present in the same solution a 

more complex picture arises. Most noticeable is the emergence of a shoulder 

at wavelengths greater than 460 nm in the chlorine active region of the 

spectrum. This is more distinct in Fig. 5.5 which shows the mean spectra 

recorded at the FIA peak maximum for each of the 25 calibration standards of 

the 5̂  experimental design. For reasons of clarity the spectra have not been 

labelled. Variance in the chlorine active region of the spectra is particularly 

evident and grouping of equal chlorine concentration samples is noticeable, 

especially at lower concentrations. 
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Figure 5.5 Mean spectra recorded at FIA peak maximum for each of the 25 
solutions of the 5̂  experimental design. 

Calibration 

The first three PLSR loading vectors for the 5̂  calibration model are shown in 

Fig. 5.6. In the process of PLSR modelling, the covariance between the spectral 

scores and a single analyte is maximised. This often leads to the loadings of 

the first PLSR factor approximating to the pure component spectrum of the 

analyte under examinadon. PLS-2 however, maximises the covariance between 

the spectral scores and a linear combination of a number of variables (2 in this 

case). The physical significance of the loadings therefore becomes less clear. 

Inspection of the plot of the scores of the first PLSR factor versus the second 

factor reveals a very interesting structure (Fig. 5.7). The samples are aligned, 

as expected, in the order of the 5̂  experimental design but not in an equidistant 

fashion. This is particularly noticeable between the samples containing 2 and 

4 mg r* phosphate, where the distance between pairs of samples of equal 

chlorine concentrafion increases with chlorine concentration. This would 

suggest some kind of non-linear relationship caused by the combinafion of the 
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phosphate and chlorine reaction chemistries [194,195]. Although PLSR 

is a linear method, it can handle non-linearities by the inclusion of additional 

factors [140] and this could explain the need for three factors to describe a two 

component system. 

Loading 

-0.1 h 

-0.2 
450 

Wavelength (nm) 

Figure 5.6 Overiay of the loading vectors of the first three PLS-2 factors as 
a fiinction of wavelength. 

Scores of PLSR factor 2 

-20 -10 0 10 
Scores ofPLSRfector 1 

Figure 5.7 PLS-2 scores of factor 1 versus factor 2. 
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Preprocessing 

The effect of a number of preprocessing techniques on the RRMSECV of the 

5̂  experimental design are shown in Table 5.3. Mean-centring [196] is 

traditionally applied in PCR and PLSR and, as the name suggests, involves the 

subtraction of the variable mean firom the individual variable values. Whilst the 

model dimensionality has not been reduced by mean-centring in this case, the 

phosphate predictions are significantly improved. Setting all variables to equal 

variance by dividing the mean-centred values by their standard deviation is 

known as autoscaling and it can be seen that autoscaling has had a small but 

beneficial effect on this data set. Normalisation on the other hand, which sets 

all spectra to unit length, has had a grossly detrimental effect. 

Table 5.3 Effect of a number of preprocessing techniques on the relative 

prediction errors of PLSR and PCR models 

Preprocessing 

Techniques 

PLSR PCR 

Preprocessing 

Techniques 
No. 

Factor 

RRMSECV No. 

Factor 

RRMSECV Preprocessing 

Techniques 
No. 

Factor 
PO4 CI 

No. 

Factor 
PO. CI 

None 3 11.9 1.9 3 12.0 1.9 

Mean-centring (MC) 3 5.4 2.0 3 5.6 1.9 

MC & Autoscaling (AS) 3 4.0 2.4 3 4.0 2.4 

MC AS & normalisation 6 12.8 14.7 5 15.1 15.1 

MC AS & 1st deriv. 3 6.5 1.8 3 6.5 1.8 

MC AS & 2nd deriv.. 4 11.8 4.3 4 14.9 4.5 

Spectral derivatives which can enhance resolution generally lead to a 

depreciation in the signal to noise ratio with each derivatisation. Both the first 

and second derivatisations had an overall detrimental effect on the RRMSECV 

of this data set. PCR models were also built using the preprocessed data and. 
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as expected, resulted in dimensionality and RRMSECV values very similar to 

those for PLSR. 

Wavelength selection and averaging 

The effect of the size of the spectral data matrix on the prediction ability was 

studied in two ways. Firstly, wavelength variables were simply selected from 

the original data set and used to build PLS-2 models after mean-centring and 

autoscaling. Selection was made by taking every second variable to reduce the 

number from 100 to 50 and the same approach was taken for the selection of 

the 25 and 10 point data sets. The 5 point data set was selected according to 

the perceived importance of the variables; 360, 400, 440, 470 and 510 nm were 

used. The RRMSECV values for the five models are given in Table 5.4 

together with the RRMSEP values for the independent test set. The prediction 

error for chlorine is very stable with decreasing data set size but that for 

phosphate increases. In the second case, the data set was reduced by averaging 

the spectral variables before mean-centring and autoscaling. Inspection of Table 

5.5 reveals that both the phosphate and chlorine predictions are stable to the 

data set averaging. 

Table 5.4 Effect of wavelength selection on the relative prediction errors 

Number of 

wavelengths 

RRMSECV RRMSEP Number of 

wavelengths 
PO4 CI PO4 CI 

100 4.0 2.4 4.0 2.9 

50 4.1 2.4 4.2 2.9 

25 4.3 2.4 4.9 2.8 

10 4.3 2.5 7.2 3.3 

5 5.2 2.2 7.0 2.3 
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Table 5.5 Effect of wavelength averaging on the relative prediction errors. 

Number of 

wavelengths 

RRMSECV RRMSEP Number of 

wavelengths 
PO. CI PO4 CI 

0 (100)* 4.0 2.4 4.0 2.9 

2(50) 4.0 2.4 4.0 2.9 

4(25) 4.0 2.4 4.0 2.9 

10 (10) 4.0 2.4 4.1 2.9 

20 (5) 4.1 2.3 4.2 2.9 

* Values in parenthesis indicate the number of data points used 

In averaging the spectral variables the original data is largely retained, albeit in 

a modified form, whereas information is lost in wavelength selection. This 

could explain the small increase in RRMSEP for phosphate using the selected 

variable data sets. The practical implications of these findings are that full 

spectra should be collected and stored at the measurement stage and that some 

wavelength averaging could be carried out before model building. However, the 

only advantage of wavelength averaging is a reduction in the time taken for 

model building, which for data sets of this size is not problematic and, given the 

loss of qualitative information associated with reducing the data set size, it 

would be provident to use the ftill spectra. 

Calibration design 

The effect of the size of the calibration set on the RRMSEP of the independent 

test set was determined by reducing the number of levels of the experimental 

design. The four level design includes the samples at 2, 4, 8 and 10 mg 1* 

phosphate and 1, 2, 4 and 5 mg chlorine, and the three level design was 

constructed from the 2, 6 and 10 mg 1' phosphate and I , 3 and 5 mg I * chlorine 

samples. The samples containing 2 and 10 mg 1* phosphate and 1 and 5 mg 1' 

chlorine made up the two level design and finally the 6 mg 1' phosphate and 3 
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mg r* chlorine sample was included to give a calibration set of 5 samples. The 

results given in Table 5.6, show a general increase in the RRMSEP as the 

number of calibration samples is reduced. Nevertheless, this increase is not 

dramatic, and in a situation where analysis time is an important consideration, 

the use of a 9 sample calibration set requires only a small compromise in 

prediction error. 

Table 5.6 Effect of reducing the size of the calibration set on the prediction 

errors of an independent test set. 

Calibration 

design 

Size of 

calibration set 

RRMSEP Calibration 

design 

Size of 

calibration set 
PO. CI 

5 level 25 4.0 2.4 

4 level 16 4.5 3.5 

3 level 9 4.7 3.3 

2 level 4 6.8 3.7 

2 level +1 5 6.3 3.2 

Predictions 

Finally the predicted values of the independent test set are given in Table 5.7. 

Predictions were made using the model built fi*om the 5 level experimental 

design after mean-centring and autoscaling the data. The RSD of three replicate 

injections and the percentage difference between the added and calculated 

concentrations of phosphate and chlorine are listed. The absolute errors and the 

precision of these predictions would fulf i l the process specifications for the 

on-line monitoring of phosphate and chlorine in industrial cooling waters. 
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Table 5.7 Predictions of the independent test set 

Sample Phosphate Chlorine 

number Added Found Diff. Added Found Diff . 

mg 1' mg 1' % mg 1' mg 1' % 

13 7.0 7.1 +1.4 3.0 2.8 -6.7 

8 5.0 5.1 -2.0 3.0 2.8 -6.7 

17 9.0 9.4 +4.4 2.0 1.9 -5.0 

18 9.0 9.4 +4.4 3.0 3.0 -

6 5.0 5.2 +4.0 1.0 1.0 -

20 9.0 9.1 +1.1 5.0 5.1 +2.0 

19 9.0 9.2 +2.2' 4.0 3.9 -2.5 

5 3.0 2.6 -13.0 5.0 4.9 -2.0 

15 7.0 6.7 -4.3 5.0 5.0 -

2 3.0 2.9 -3.3 2.0 1.9 -5.0 

9 5.0 4.8 -4.0 4.0 3.9 -2.5 

7 5.0 5.1 +2.0 2.0 1.9 -5.0 

1 3.0 3.0 - 1.0 1.0 -

11 7.0 7.0 - 1.0 1.0 -

3 3.0 2.8 -6.7 3.0 2.9 -3.3 

10 5.0 4.5 -10.0 5.0 5.1 +2.0 

4 3.0 2.7 -10.0 4.0 3.9 -2.5 

16 9.0 9.0 0 1.0 1.0 -

12 7.0 7.0 - 2.0 1.9 -5.0 

14 7.0 6.7 -4.3 4.0 4.0 -
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5.4 Conclusions 

A physically simple, combined reaction FIA system with PDA detecfion 

integrated with PLSR of the data has been shown to be a feasible approach to 

simultaneous multianalyte determinafions. 

The combination of established spectrophotometric methods is a non-trivial 

matter and judicious choice of reaction chemistries is required to avoid gross 

interference. Visual inspection of the scores and loadings of the multivariate 

calibration model has been shown to reveal some of the underiying effects of 

the reaction combination. 

Mean-centring and autoscaling of the data sets were found to be profitable, 

whilst selection and averaging of the spectral variables had no beneficial effect. 

Reducing the number of calibration standards used in modelling increased the 

error of prediction, but not prohibitively so. 

A procedure has been developed for the simultaneous determination of 

phosphate and chlorine and the prediction of analyte concentrations for an 

independent test set, prepared and analysed 48 h after calibration, yielded 

RRMSEP values of 4.0% for phosphate and 2.4% for chlorine. 
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Chapter Six 

Jackknife estimation 
of PLS models 



6.1 INTRODUCTION 

Two of the most important stages in the development and implementation of 

multivariate calibration models are the estimation of optimal dimensionality and 

the estimation of the errors in prediction. Arguably, however, both of these 

ftindamental aspects of the procedure have been somewhat neglected. It is the 

aim of this chapter to present some of the currently practised methods, highlight 

some of their shortcomings and investigate the potential of a different approach. 

Model validation 

Selection of the optimum number of factors or dimensions to be used for fijture 

predictions is critical to the success of reduced dimension multivariate 

calibration models. As discussed in Chapter 3, the inclusion of too many 

factors leads to overfitting and the incorporation of noise, whereas underfitting 

leaves important interactions unmodelled. The consequence, in either case, is 

poor prediction of fijture samples. Because the overall objective of the 

calibration procedure is the accurate prediction of fiiture samples, then an 

estimate of predictive ability provides a good means of comparing the different 

dimensionalities. 

As part of a validation exercise, the models are usually compared in terms of 

the predictive error sum of squares (PRESS). PRESS is calculated as follows 

/ 

PRESS = j : ( y . - y , . ) ' 
1=1 

and therefore gives a direct comparison of the actual analyte values and the 

values predicted by the model; the smaller the value of PRESS the closer the 

model fits the true values. The objects included in the calculation of the PRESS 

are governed by the type of validafion implemented. 

The most rigorous form of validation uses a completely new and independent 
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test set. This external validation approach was adopted for the transition metal 

model system discussed in Chapter 4. It is particularly suited to large, well 

understood data sets, from which a representative subset can be selected or 

synthetic samples can be easily prepared and analysed. Accordingly, it tends 

not to be used in routine studies because the very data being used for validation 

can enhance the quality of the model by being accounted for at the calibration 

stage. 

Extension of this concept leads to a number of routines known as internal 

validation. These routines actively use the calibration data for measuring 

predictive ability. One form of internal validation is calibration fitting. Here 

the PRESS is calculated using all n objects from the calibration data set and as 

such does not consider forward prediction. However internal validation can be 

carried out in the predictive direction by subdividing the calibration set through 

cross validation . Full cross validation (leave one out) successively divides the 

data set (w objects) into a modelling subset (w-l) and a validation subsample 

until all possible divisions have been made. The value of PRESS is calculated 

at each dimension for each object left out, and hence the optimal model for 

prediction can be estimated. 

The criterion for the choice of optimal dimensionality can be; 

i) the global minimum in PRESS, 

ii) the first local minimum in PRESS, 

iii) related to the significance of incremental changes in PRESS, 

iv) the visual inspection of the loadings vectors, 

v) a combination or combinations of i) to iv). 

Selection based on the absolute minimum in PRESS has been shown to have 

poor statistical properties [197] and is not considered fiirther. The first local 

minimum, however, generally makes a good compromise between over and 

underfitting of data, while remaining computationally simple. Depending on the 

data under consideration, the PRESS may never reach a local minimum within 
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the number of factors being considered. This is often encountered for large data 

sets. In this case the first local minimum is in fact the global minimum. This, 

of course, may well be the optimal model, but in situations where the 

incremental difference in PRESS is very small, then some form of significance 

test could avoid overfitting. With any of these criteria, a visual inspection of 

the loadings vectors can be helpftil in assessing the extent to which noise is 

being modelled. Assuming that the chosen criterion has been satisfied, then 

cross validation wil l have provided an estimated optimal model for prediction 

and an estimated measure of error associated with any fiiture predictions. An 

apparently similar approach might be to implement jackknife theory in 

validation. As with cross validation, the jackknife is based on the leave one out 

principle and it can be used to estimate optimal dimensionality and prediction 

ability. 

Jackknife theory 

The jackknife is a general nonparametric method for reducing the bias in an 

estimator and for obtaining a measure of the estimator variance by sample reuse 

[198]. The statistical similarity between the jackknife and CV runs no 

deeper than this resampling of data [199]. The estimator was introduced by 

Quenouille [200] for bias reduction and this version was subsequently 

utilised by Tukey [201] to develop a general method for obtaining 

approximate confidence intervals. This was referred to as the "jackknife". The 

jackknife can be used to calculate estimators of the bias and variance of PLSR 

coefficients and, by implementing a "double-jackknife", an estimation of 

dimensionality can be made. 

Consider the regression model: 

y=Xp+e 

where e is a matrix of random errors with mean 0 and variance o^ . PLSR 
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is used to calculate the regression coefficients P from the data y and X. 

Estimation of the RMSEP of a future prediction, is possible under the 

assumption that the model holds for future observations. 

The mean square error of prediction (MSEP) can be decomposed as follows: 

MSEP(yo)=var(yo) + OEyo-Xo'pD' 

= a2+Xo'var(P)x, + Dxo'Ep-pf 

where, variance of P =Xo'var( P ) X Q 

bias of P = l x o ' E p - p f 

The estimators of the bias and variance of P are determined by jackknifing: 

1. Leave out the i-th object. 

2. Perform the dimension estimation on the remaining 7-1 objects. 

3. Calculate the regression coefficient P_ . 

4. Calculate the prediction y_; = X ; P _ ^ 

5. Repeat steps 1-3 for i=\,...J. 

6. From the / values of y,. and ŷ . ,calculate the PRESS. 

7. From the / values of p_, ,calculate the jackknife estimators of the bias 

and variance of P according to Efron's formulae [198]: 
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bias = (/-l)(p_.-P) 

vanance = : ^ l ] [ : ( P . i - P . ) ' 

where, p_,=jackknifePLSR estimators 

P=PLSR coefficients 

pseudo-value, P,. = P.^+/(P - P.,) 

I 

8. From the values of PRESS and the bias and variance of p calculate the 

value of o 

MSEP(y.,) = P51SS 

hence, = ̂ ^ ^ ^ - variance - bias 

To account for the estimation of the dimension a double jackknife must be 

implemented; whereby a second jackknife is nested within the first. 

6.2 PROCEDURES 

Software 

MATLAB™ software was used for the development of a program to perform 

the jackknife and related procedures. MATLAB (Matrix Laboratory) is a high 

performance interactive software package, designed for scientific and 

engineering calculations, which combines numerical analysis, matrix 

computation and signal processing in one environment [202]. Command 
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sequences are logical and usually require few statements, although the graphical 

output of MATLAB is somewhat limited. 

In overview, the program operates as follows: 

1. Initial file sorting. 

2. Optional output of scores information. 

3. Calculation of CV model and estimation of PRESS minimum. 

4. Calculation of jackknife model, estimation of PRESS minimum and the 

model, predictions and prediction error at the minimum. 

5. Calculation of the mean jackknife estimated model. 

6. Output of the regression and dimensionality information. 

7. Calculation of the bias, variance and bias corrected model. 

8. Calculation of the MLR model. 

9. Output of the regression information and data storage. 

The double-jackknife is carried out according to the nested loops as follows: 

for 1=1 :n % outer loop 

indj=[1:i-1,i+1:n]; 

for k=1:n-1 % inner loop 

if k<i. j=k,: else j=k+1; end; 

indjj=indj(:.[1 :k-1 ,k+1 :n-1]); 

[Xbar,ybar,B2]=pls(X(indJj,:), y(indjj). maxA); 

E2(k.:)=yGHybar+(XG.:)-Xbarr[zeros(B2(:,1))B2]); 

end 

end 

An object is removed by the outer loop and the remaining objects are 

successively left out according to the inner loop. Within the inner loop PLSR 
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models are calculated according to the MATLAB function file "pls.m". The 

absolute error of prediction for the object left out is calculated and presented as 

the PRESS by dimension for that object. By choosing the optimum 

dimensionality at the first local minimum of PRESS, the optimum model can 

be determined according to 7-1 objects. This process is repeated for each of the 

/ objects. 

A program was developed to make predictions of new and independent objects. 

This routine produces a hard copy of the predictions with their confidence 

interval and compares the predicted values to those which were obtained by the 

reference method. This was specifically incorporated to provide a means of 

comparing the jacldcnife model predictions with those produced by the 

commercially available Unscrambler™ PLSR software. The Unscrambler 

package produces a confidence interval that has no theoretical foimdation, rather 

it is "an empirically found relationship that has given satisfactory indications on 

the uncertainty in predictions for a large range of applications". A similar 

program was written for comparison with MLR predictions. 

A number of data sets from the literature were used to assess the potential of 

the double-jackknife: 

Wold [203] 

Data set consisting of the observed B-receptor agonist activity for 15 structurally 

similar phenethylamines, and 8 independent variables relating to the 

morphological and physico-chemical properties of these compounds. A l l 8 

objects were used in calibration and predictions were made using the same data. 

Noes [204] 

Fat concentration (%) of 45 fish samples (rainbow trout) and independent 

variables of the absorbance at 9 wavelengths measured after sample 

homogenisation. Calibration was undertaken on the whole data set (45x9) and 
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after arbitrarily splitting the data set; #1-24 for calibration and #25-45 as an 

independent test set. 

Fearn [205] 

Data set consisting of the measured protein content (%) (Kjeldahl) of 50 ground 

wheat samples and the log reciprocal reflectance at 6 NIR wavelengths. 

Calibration was again carried out using the entire data set and after splitting the 

data #1-24 for calibration and #25-50 as an independent test set, as used in the 

original publication. 

6.3 RESULTS & DISCUSSION 

Wold 

Figure 6.1 reveals that cross validation of the complete data set produces a 

typical relationship between the PRESS and increasing dimensionality. After 

rapidly dropping to a local minimum (also the global minimum) at a 

dimensionality of 2, the value of PRESS gently increases with each extra factor. 

A 2-factor model would therefore be selected as the optimum model for 

prediction on the basis of cross validation. Similarly, examination of the score 

plots, such as the scores of factor 1 versus factor 2 shown in Figure 6.2, 

revealed no strong grouping of the objects. However, i f the PRESS versus 

dimensionality plot is studied for the double-jackknife model (Figure 6.3), it can 

be seen that one object is having a particularly strong influence; object number 

13. When #13 is left out of the inner jackknife, instead of the PRESS reaching 

a minimum after 2 factors and beginning to rise once again, it remains very low 

with the inclusion of each factor. This suggests that by including #13 in the 

calibration set an increasing amount of noise is being modelled with each added 

factor. Inspection of the regression coefficients (Figure 6.4) reveals 

dramatically different responses for each variable at #13. The score plots, 

however, do not indicate #13 as an outlier. 
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Figure 6.1 PRESS vs dimensionality curve for cross validation 
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Figure 6.3 PRESS vs dimensionality curves for jackknife 
Each curve represents the object left out of the outer jackknife. 
The identifiers have been removed for clarity 
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Figure 6.4 Regression coefficients for jackknife model 
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Predictions of the calibration objects were made using the jackknife model and 

the Unscrambler package. The UNSC model was fiiUy cross validated and has 

an optimum dimensionality o f 2, as expected. The results from the UNSC 

model, shown in Figure 6.5 reveal a tight confidence interval around the 

predicted values, however in 6 out of 15 cases (40%) the actual value lies 

outside this interval. Predictions from the jackknife model (Figure 6.6) yield 

a much less optimistic confidence interval and accordingly only one of the 

actual values lies outside the confidence interval. Conversely, the UNSC model 

yields predicted values closer to the actual values than the jackknife model; with 

calculated PRESS values of 1.0 and 2.9 respectively. 

During the model building stage the jackknife has selected an optimum 

dimensionality of 8 when #13 was left out. Inspection of the PRESS curve 

indicates that 3 factors would have been a more realistic choice. The 

incorporation of this element into the final bias corrected model could 

conceivably lead to inaccurate predictions. For this reason and the indications 

from the regression coefficients, #13 was removed from the data set and the 

model recalculated (wold-1). 

The PRESS versus dimensionality plot for the CV model, shown in Figure 6.7, 

is very similar to that for the complete data set model. However, the jackknife 

model dimensionality estimates again reveal a different data structure (Figure 

6.8). Here it can be seen that by leaving out either #14 or #15 has a similar 

effect to that seen when #13 was left out of the complete dataset model, (i.e. 

after 2/3 dimensions the PRESS value remains very low with each additional 

dimension). With #14 removed the first local minimum is reached after 3 

factors, and after 8 factors with #15 left out. The regression coefficients also 

reveal markedly different responses for these two objects. 

Predictions from the UNSC model (Figure 6.9) reveal a very tight confidence 

interval with the actual values of three objects (21%) lying outside. The 
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Figure 6.5 Predictions and confidence interval from the Unscrambler 
package, actual y,. again shown as * 
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Figure 6.6 Jackknife predictions and confidence interval with the actual 
values of y,- shown as *. 

104 



PRESS Va DIMENSIGNAUTY (oil objocta) 

3 4 5 

No. of d!menaTon« wold- l .mat 

Figure 6.7 Press vs dimensionality curve for cross validation 

PRESS Va DIMENSIONAUTY 

14 

3 4 5 

No. of dtmanslons wold-1.mat 

Figure 6.8 Press vs dimensionality curve for jackknife model 

105 



7.5 
UNSC PREDICTIONS 

T 

0 2 4 6 8 

. = t r u e y SAMPLE NUMBER wold - l .mo t 

Figure 6.9 Predictions and confidence interval fi-om Unscrambler 

14 

JACK KNIFE PREDICTIONS 

1 
6.5 h 

6 8 

SAMPLE NUMBER 
• - true y 

Figure 6.10 Jackknife predictions and confidence interval 

12 14 

wold-1.mot 

106 



jackknife predictions (Figure 6.10) again have a much less optimistic confidence 

interval, but with the actual values of 3 objects falling outside the interval, as 

with the UNSC model. The PRESS values are also very similar, 3.3 and 2.9 

for the UNSC and jackknife predictions respectively. 

#14 & #15 have been removed and the models recalculated with 12 objects 

(wold-3). Figure 6.11 reveals that the CV model has a fu-st local minimum in 

PRESS at a dimensionality of 6, although there appears to be no significant 

change after 3 dimensions. This pattern is followed by the jackknife model 

(Figure 6.12) with the first local minimum in PRESS being found after 3,4,5 or 

6 dimensions. In all cases it is unlikely that any useful information is being 

modelled after 3 factors are incorporated. The predicted values from the UNSC 

(Figure 6.13) model are very good (PRESS<0.1) although the actual values for 

two of the predictions still lie well outside the confidence interval. For the 

jackknife predictions (Figure 6.14) the actual value lies outside the confidence 

interval in 5 cases (42%) and the PRESS is 2.0. 

For each of the models described above, the MLR predictions are very close to 

the actual values and mostly lie within the confidence interval. This is to be 

expected with MLR when predictions are being made using the same data as 

that used in calibration; MLR is fitting the data without accounting for the 

variance in the independent variables. 

For this particular data set, jackknife estimation has identified a number of 

objects that appear to be outlying which CV has failed to recognise. In terms 

of the predictive ability of the jackknife it is difficult to assess in this case 

because predictions were only carried out on the data used in the calibration 

stage. The inifial model did, nevertheless, illustrate how the jackknife 

estimations of bias and variance led to predictions boasting a more realistic 

confidence interval, which encompassed all but one of the actual values. 
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Naes 

Jackknife modelling of the whole data set (Figure 6.15) revealed an optimum 

dimensionality of 4 in all but three cases; CV likewise selected an optimum of 

4. It does, however, seem likely that 3 factors would have been sufficient. 

#43-45 appear to be outlying from the scores and the regression coefficients as 

well as when left out during the jackknife procedure. This has been recognised 

by the large confidence interval attached to these objects by the jackknife model 

as can be seen in Figure 6.16. The UNSC model (Figure 6.17) in this case 

yields 11 actual values lying outside the attached confidence interval, whereas 

the jackknife model yields only 4. The calculated values of PRESS for the 

predictions are 68 and 147 for the UNSC and jackknife models respectively. 

After splitting the data set and remodelling, the optimum dimensionality has 

been reduced to 3 for the CV model and in all but one case for the Jackknife 

model (Figure 6.18). The prediction results for the independent objects are very 

similar; a PRESS of 89 and 109 for the UNSC and jackknife models (Figures 

6.19 & 6.20). The actual values lying outside the calculated confidence interval 

were shown to be 4 and 3. The estimated size of the confidence interval is very 

similar for both models, showing a marked widening for the outlying objects. 

The jackknife model has again recognised potentially outlying objects and 

attached a realistic confidence interval to the predicfions for the whole data set. 

With the split set there is little difference in the predictions made by the two 

models. The selected dimensionality is uniform for the jackknife model (with 

one exception) and equal to the that estimated by CV. The resulting models are 

therefore very similar, with subtle differences due to a combination of bias 

correction and influence of the single 5-factor optimum. 

Fearn 

The PRESS versus dimensionality plot for the CV model revealed a first local 

minimum at a dimensionality of 0. This was ignored by the incorporation 

110 



PRESS Ve OIMENSIONAUTY 
800 

700 

600 
ES

S 500 
oc a. 
•o 400 

"o 300 
u 

200 

100 

0 

45 

4 5 

No. of dimensions noes.mot 

Figure 6.15 PRESS vs dimensionality curve for jackknife model 

65. • 

60^ 

551-
1 

\l f 

t 
50 j -

cn I 
z o 

40 j - 11-^ 

1 II 
40 j - 11-^ 

1 II 
351 // 

1 // 

30j-7 

25' 
0 

JACK KNIFE PREDICTIONS 

noes.mot 

15 20 25 30 

SAMPLE NUMBER 
• =! true y 

Figure 6.16 Jackknife predictions and confidence interval 

111 



UNSC PREDICTIONS 

10 15 20 25 30 35 40 

SAMPLE NUMBER 
* » true y nooa.mot 

Figure 6.17 Unscrambler predictions and confidence interval 

PRESS V8 DIMENSIONAUTY 
T 

No. of dimsntions 

7 B 9 

24 calnoaa.mol 

Figure 6.18 PRESS vs dimensionality for jackknife model 

112 



UNSC PREDICTIONS 

C/1 
UJ 

60, 

55 

50 

45 

40^ 

35 k 

30 

25 
10 15 

SAMPLE NUMBER 

20 

i 
J 
25 

true y _ valnoeo.mat 

Figure 6.19 Unscrambler predictions and confidence interval 

JACK KNIFE PREDICTIONS 

0 5 10 15 20 25 

. « true y ^ " " ^ ^ ' ^ vclncea.mat 

Figure 6.20 Jackknife predictions and confidence interval 

113 



of a loop within the program, and hence a 3-factor model was selected by CV. 

The jackknife model, shown in Figure 6.21, also yields optima at a 

dimensionality of 3 in 80% of cases with the remainder being split between 5 

and 6 factors. No outliers are obvious from the PRESS curves or the regression 

coefficients, although #25 appears to be outlying from the scores plots. 

Predictions on the whole data set produced a PRESS of 2.9 for the UNSC 

model (Figure 6.22) with 18 actual values lying outside the confidence interval. 

The jackknife model (Figure 6.23) predictions proved disappointing with a 

PRESS of 140 and 35 actual values lying outside the estimated confidence 

interval. 

After splitting the data set, both models select optima at a dimensionality of 4, 

with one jackknife the exception as shown in Figure 6.24. In all cases there 

appears to be little difference between the PRESS at dimensionalities of 3,4 and 

5; with 3 factors probably the most appropriate. In both cases the predictors are 

good, with PRESS values of 2.9 and 6.0 and the number of actual values lying 

outside the confidence interval, 9 and 7 for the UNSC and jackknife models 

respectively (Figures 6.25 & 6.26). As noted for the Naes data set, the 

differences in the models are presumably related to the bias correction. 

The poor prediction performance of the jackknife model for the whole data set 

can be attributed to the overestimation of dimensionality recorded for 20% of 

the jackknife estimators. The jackknife model has, nevertheless, provided 

reliable predictions from an independent test set, although there were a 

considerable number of actual values lying outside the estimated confidence 

interval. When making this consideration it should be noted that the assumption 

that the independent data f i t the calibration model may not necessarily hold. 

For the Naes and Feam data sets the MLR predictions appear to be as good as, 

i f not better than those predicted by the PLSR models, for the whole and the 

sub-divided data sets. 
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6.4 CONCLUSIONS 

1. The jackknife has been shown to reveal outlying objects which have not 

been detected by inspection of scores plots. 

2. Implementation of the double-jackknife enables a different approach to 

dimensionality estimation. 

3. Computation of the jackknife coefficients allows the model bias to be 

estimated and hence bias correction to be undertaken. 

4. Computation of model error from a theoretically sound basis allows the 

allocation of realistic confidence intervals to future predictions. 

However, the ultimate goal of any calibration is effective prediction of future 

samples and for a number of data sets the jackknife procedure has produced 

models with poor predictive ability. This has been due to overestimation of the 

optimum dimensionality to be used for prediction. A method of dimensionality 

selection based on the significance of improved prediction with added factors 

may prove more successful than the first local minimum approach used in this 

work. 
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Chapter Seven 

Conclusions & 
future work 



7.1 F I N A L CONCLUSIONS 

From the preceding chapters, the following general conclusions can be drawn: 

1. Automated flow injection analysis is suitable for the on-line single 

analyte monitoring of chemical processes. 

This is demonstrated by the installation of a monitor for the on-line 

determination of sulphite in 20 % m/v potassium chloride brine. The 

accuracy and precision of the system are ± 3 % and ± 1 % respectively, 

with a response time of <5 min and a dynamic range of 0.1-100 mg 1"'. 

The procedure is valid relative to a standard iodimetric method and the 

monitor is reliable over 21 days on-line analysis. 

2. Multivariate calibration enables multianalyte resolution of UV-visible 

spectrophotometric data. 

A model data set consisting of mixtures of transition metal sulphate 

solutions demonstrates the application of direct multicomponent analysis, 

principal components regression and partial least squares regression. 

Spectra, collected using a photo-diode array detector, can be resolved 

using commercial software. 

3. Partial least squares regression offers good calibration performance over 

a wide range of physical and chemical conditions. 

Comparison of the relative prediction abilities of the three multivariate 

calibration techniques under varying degrees of calibration complexity 

and interferences reveals that: 

Direct multicomponent analysis is reliable in the absence of gross 

interferences but yields large errors when chemical interactions or 
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physical interferences are incorporated. 

Both principal components regression and partial least squares regression 

are capable of accurate predictions under such circumstances. 

4. The combination of automated flow injection analysis, photo-diode array 

detection and partial least squares regression offers a physically simple 

means of simultaneous multianalyte determinations suitable for the 

process environment. 

The simultaneous determination of phosphate and chlorine is possible 

utilising a two-line flow injection manifold, single injector and single 

detector. Partial least squares modelling can reveal the non-linear effect 

of combining the established spectrophotometric reactions in a single 

procedure. RRMSEP values of a new and independent test set of 20 

samples prepared and analysed 48 hours after calibration are 4.0 % for 

phosphate and 2.4 % for chlorine. 

5. The jackknife offers a means of dimensionality estimation, bias 

correction and outlier detection in partial least squares modelling. 

The jackknife estimates of dimensionality curves help reveal potential 

outlying objects and the jackknife estimation of model error allows 

realistic confidence intervals to be attached to fiiture predictions. A more 

robust form of dimensionality selection is required to improve predictive 

ability. 
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7.2 SUGGESTIONS F O R F U T U R E W O R K 

Significant developments could be made in three distinct areas, within which 

short and long term aims can be defined: 

Flow injection analysis 

Short term Further examination of the suitability of flow injection analysis for 

process monitoring by the development, implementation, validation 

and extended on-line use of single analyte monitoring systems. 

Extension of the flow injection analysis, photo-diode array, 

multivariate calibration approach to a three (or more) component 

multianalyte system. 

Long term Development and on-plant implementation of a cam-driven piston 

pump system for the handling of aggressive materials. 

Detection 

Short term 

Long term 

Investigation of vibrational spectroscopic techniques for single and 

multianalyte process flow injection analysis. 

Development of a low cost, process worthy photo-diode array 

spectrophotometer and its use for on-line multideterminations. 

Chemometrics 

Short term Implementation of a significance based dimensionality selector for 

jackknife estimation of partial least squares models. 

Long term Examination of the applicability of quantitative multivariate curve 

resolution techniques for spectrophotometric flow injection data. 
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