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Abstract 

Dyimmics and Divergences in Electromagnetic Backgrounds 

Paul Jameson 

This thesis investigates the behaviour of a chaige which is subjected to either an 

electromagnetic background created by a laser or a background which is hidden 

behind the resolution limitations of accelerator experiments. When a charge interacts 

with an intense laser beam its dynamics changes. The resulting trajectory of a 

non-relativistic particle is solved in this thesis without having to employ the dipole 

approximation. Many fundamental features of this trajectory ai-e analysed including 

the drift velocity and the appearance of higher harmonic oscillations. In contrast, 

the interaction between a charge and an unobserved electromagnetic background 

leads to the infrared catastrophe. This has plagued field theories since the early 

nineteenth century. The standard theoretical response to such soft and collinear 

infrared divergences which are present in quantum field theories is the Lee-Nauenberg 

theorem. In this thesis a new class of collinear divergences associated with particles 

which are both soft and collinear will be discussed within the Coulomb scattering 

process. We show that all infrared singularities may be cancelled by the Lee-

Nauenberg theorem but only if severe restrictions are placed on the normalisation of 

states and experimental set-up. 
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Introduction 

This thesis investigates the effects which an electromagnetic background has on 

charges. The background might be manifest, as in the case of a laser, or hidden 

behind the resolution limitation of experimental detectors. The physical implications 

of such backgrounds are significant but, to a large extent, poorly understood. The 

aim of this thesis is to develop a greater understanding of the behaviour of a charge 

in both a laser and an unobserved electromagnetic background. There will be two 

themes to this thesis. First we consider the motion of a classical charged particle 

when it is subjected to the intense electromagnetic background of a laser. Following 

this the infrared singularities which manifest themselves in quantum field theories 

will be investigated. Although there is a significant overlap between the two projects 

the methods developed are quite distinct so each project will be essentially self-

contained. Therefore this thesis is structured in two parts followed up by an overall 

conclusion. 

The word laser is an acronym which stands for 'light amplification by stimulated 

emission of radiation'. Typical lasers emit light with a well defined wavelength in 

a narrow beam. This contrasts with more traditional light sources, such as the 

incandescent light bulb, which emits radiation over a wide spectrum of wavelengths 

into a large solid angle. A laser is designed and calibrated for a particular purpose 

which gives it certain properties. Some of these properties are discussed within part 

I . The first working laser was demonstrated in May 1960 by Theodore Maiman at 

Hughes Research Laboratories. Once lasers where said to be a 'solution' without 

a problem but today they have become a multi-billion dollar industry. The most 

widespread use of lasers is in optical storage devices such as the compact disc and 

DVD players, in which the laser scans the surface of the disc. Other common 

applications of lasers are bar code readers and laser pointers. In industry, lasers are 

used for cutting steel and other metals and for inscribing patterns. Lasers are also 

commonly used in various fields in science, especially spectroscopy, typically because 
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of their well-defined wavelength or short pulse duration in the case of pulsed lasers. 

Lasers are also used for military and medical applications. Recent rapid technology 

developments have lead to great interest in lasers from particle physicists. Some 

exciting laser phenomena are discussed in the introduction to part I . 

The infrared catastrophe originated in classical field theories and appears when 

considering classical bremsstrahlung. i.e. the radiation produced by a charge which is 

suddenly accelerated. It is shown, on page 40 of [ l ] . that although the total amount 

of energy radiated by the charge is finite the total number of light quanta (photons) 

required to emit this energy is infinite which leads to infrared divergent cross-sections. 

A solution to this problem was recognised during one of the earliest papers on QED 

by Bloch and Nordsieck [2]. These authors found that singularities also appear in 

some QED cross-sections provided there is more than one interaction vertex, i.e. 

beyond leading order in perturbation theory. Bloch and Nordsieck found that by 

adding to the bremsstrahlung process the cross-section contribution from a virtual 

photon the overall cross-section is finite. Within an experiment there may be low 

energy' unobserved i>hotons accompanying charges. Our detectors cannot distinguish 

between processes containing low energy photons and those without. They aie 

referred to as degenerate processes. Since Bloch and Nordsieck released their original 

paper on the infrared problem in QED other types of infrared singularities have 

been found and new methods to deal with these divergences have been discovered. 

Much work has been done on the physical interpretation of these divergences [3 . 

The greatest advance in our understanding of the infrared properties of QED came 

during the 1960's through the work of Kinoshita [4], Lee and Nauenberg [5) and 

Chung [6]. These authors addressed different questions regarding the infrared and 

their conclusions are somewhat different. Chung wanted to go beyond the cross-

section approach of Bloch and Nordsieck and develop an infrared finite 5-matrix 

description of scattering. Lee and Nauenberg adopted a more conservative approach 
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and extended the Bloch-Nordsieck mechanism to cover all infrared divergences with 

the aid of calculations by Kinoshita. Today the Lee-Nauenberg theorem is widely 

accepted as the method used to remove infrared singulaiities from cross-sections and 

the approach taken by Chung is relatively unknown. 

The presence of symmetmes within the Lagrangian, which describes the system, 

is an important aspect for both projects. Transformations of the canonical 

variables under which the Lagrangian is invariant has important consequences for 

the system. Examples of this, discussed within this thesis, are the Lorentz and 

their non-relativistic counterpart Galilean transformations, gauge transforms and 

reparametrisation invariance. Constraints is another issue which spans both topics 

which leads to physical effects such as Gauss' law in QED and the mass-shell 

condition for relativistic mechanics. E"^ = 'm ĉ'̂  -h p^c^. We wi l l see that both the 

laser background and the unobserved background lead to a mass-shift effect. 

The remainder of this introduction will serve to inform the reader which parts 

of this thesis are already scientifically well known and which parts are original 

contributions by the author of this thesis. The motion of a relativistic charged 

particle in the electromagnetic background of a laser has been previously studied 

by many authors [7.8]. However, for the motion of a non-relativistic charge the 

'dipole approximation' is often used, which neglects the influence of the magnetic 

field of the laser on the charge. The non-relativistic theory has many uses. For 

instance, it is ideally suited to describe atoms where pai'ticles are bound together by 

a potential. Potentials do not accomit for the relativistic retardation effect so they 

are fundamentally non-relativistic. During part I chapter 3 we derive the previously 

unknown trajectory for the motion of a non-relativistic particle without having to 

apply the dipole approximation. This has the effect of making the non-relativistic 

theory applicable to a greater range, in terms of the intensity and frequency, of 

laser. During chapter 4, we proceed to show exactly what lasers the non-relativistic 
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t ra jectory can be applied to. Often the relativist ic t ra jec tory is given in a parametric 

form, where the t ra jectory is described by the proper t ime. A n observer who sees 

that the particle is moving at a velocity which approaches the speed of l ight would 

need to know the relationship between the t ime measured on his clock and the 

proper t ime in order to predict the mot ion of the charge. Only once in the l i terature 

is the t ra jectory wr i t t en in terms of the reference frame's t ime [9]. The method 

used by Sengupta to derive the three dimensional t ra jec tory is complicated but in 

chapter 4 we find an alternative, somewhat simpler, method. The relativistic and 

non-relativistic trajectories are then compared. 

Part I I aims to give a thorough description of the widely accepted method, 

proposed by Lee and Nauenberg, to remove infrared singularities to processes 

wi th both final and in i t ia l degeneracies. A f t e r in t roducing the different types of 

infrared divergences and the physical reason why these divergences occur in Q E D , 

we proceed in part I I chapter 4 to analyse the Bloch-Nordsieck and Lee-Nauenberg 

approach to Coulomb scattering. Subtleties associated w i t h low energy' photons have 

been pointed out by Lavelle and M c M u l l a n [10] and, using Coulomb scattering as 

an explici t example, they found many hidden assumptions of the Lee-Nauenberg 

proposition which are reviewed in chapters 4 and 5. In [10] the authors also 

commented on a class of infrared divergences which Lee and Nauenberg omi t ted 

in their original calculations. In chapter 6 we show how to systematically include 

all degenerate processes and prove tha t the requirement to simultaneously cancel 

all types of infrared divergences at the level of the cross-section leads to dramatic 

restrictions on the way states are normalised and experiments are conducted. This 

allows us to question the physical significance of the Lee-Nauenberg proposition. 



Part I 

THE MOTION OF A CHARGE SUBJECTED TO THE 

BACKGROUND CREATED BY A LASER BEAM 



1. I N T R O D U C T I O N 

By the end of t l ie 20th century Quantum Electrodynamics had been proven to 

correctly describe the interaction between light and charged mat ter wi th in a vacuum. 

I t had passed many high precision tests [11]. Perturbative Q E D is successful despite 

not taking into account the coherence^ of the photons. U n t i l the development of 

the laser, photon sources could only produce incoherent photons, one at a time. 

Perturbative Q E D only considers a single -photon interact ing w i t h a single charge at 

a t ime, which was adequate. 

Since the mid 19S0's a huge amount of development has been conducted into laser 

technology, as may be seen from figure 1.1. The lasers which are manufactured for 

research today are capable of producing petawatt intensity short attosecond pulses 

of l ight. The physics which occurs in a strong field is rather different compared to 

the physics w i th in a vacuum. To reinforce this statement w-e consider an example, 

using values obtained f rom [12]. I f we have an optical frequency laser operating wi th 

an intensity of l O ' ^ W / c m ^ , an isolated electron w i t h i n the electromagnetic field has 

an energy of interaction of approximately lO^'eV. The energy o f a single photon of 

this laser is approximately l e V so the electron must have interacted w i t h at least 

10^ photons. The rest energy of an electron is 511keV so the electron must be a 

relativistic particle. The laser cleaiiy provides a physical environment which is quite 

foreign to conventional low intensity accelerator physics bu t s t i l l capable of achieving 

high energies. Research in this field opens up the possibili ty of exploring fundamental 

physics in a new environment which may be used to enhance our understanding of the 

^ Coherence is the property of wave-like states that enables them to exhibit interference. 
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world (see e.g. [13-16] and recent surveys [17]. [18]). M u l t i - p h o t o n experiments have 

shown us that i t is necessary to modi fy the conventional single particle description 

of the radiation-matter interaction. Q E D must be applied in an environment other 

than the vacuum in order to extend its predictive power. 

Many exciting experimental consequences are predicted when using strong enough 

fields, such as spontaneous pair creation, l ight-by-l ight scattering, mul t iphoton effects 

in Thomson scattering, the mass-shift and d r i f t velocity. Pair creation has been 

observed at SLAG E-144 in 1997 [19]. In this experiment plane wave laser field 

photons are probed by another high energy photon 7 . Th rough the reaction 

7 + ^Hl —* e"̂  e" (1.1) 

the n laser photons collide, by means of v i r tua l particles, w i t h the high energy 

photon to produce an electron-positron pair. More intense lasers lead to a faster 

transit ion rate per probe photon [20]. I f the field strength reaches the ciiiical field 

the field wi l l become unstable and pairs w i l l be produced spontaneously. The cri t ical 

field is defined as the field in which an electron gains energy, across a Compton 

wavelength, equal to its rest mass [21,22]. The rate for spontaneous pair creation^ is 

much lower [20] then that produced dur ing the S L A G experiment because we cannot 

produce fields close enough to the cri t ical field. 

Pair creation and l ight-by-l ight scattering are obviously quantum effects. How

ever, the probabilities of these occurring wi thou t s t imulat ion for current lasers is 

low. Many of the most interesting predictions are classical in nature, such as the 

modificat ion to Thomson scattering, mass-shift and the d r i f t velocity. I t is these 

classical phenomena which we w i l l s tudy in the fol lowing mater ia l . 

Dur ing this thesis we w i l l be s tudying the mot ion of a charge w i t h i n strong 

and weak electromagnetic backgrounds. Glassically interactions between a charged 

2 Pair creation from a constant electric field 
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particle and a laser beam hav^e been studied in the past. K n o w n non-relativistic 

solutions take v c and the dipole approximation^ is used. The dipole 

approximation has two implications: 

1. the influence of the magnetic por t ion of the Heaviside-Lorentz force on the 

charge is neglected; 

2. the position of the charge in the field no longer modifies the trajectory. 

This then leads to the well known Thomson scattering [7,23] cross-section formula 

The dipole approximated solution for the motion of a charge w i l l be reviewed in 

section 3.1. 

New research conducted by the author has shown that i t is possible to go beyond 

the dipole approximation and this w i l l be covered in chapter 3. A solution to 

the t ra jectory for a non-relativistic particle is derived which takes into account 

the position of the charge w i t h i n the field and the f u l l Heaviside-Lorentz force. 

We keep 0{v/c) but drop the '"truly relativistic" second order effects 0{v^/c'^), 

such as the relativistic correction to the kinetic energ>' th rough the Darwin te rm 

and the spin-orbital coupling effects on the Lagrangian. Reiss [12, 24] has shown 

that there is an intermediate region w i t h a wide range of parameters ( in laser 

intensity and frequency) where the leading contr ibut ion to the deviation f rom the 

dipole approximated solution comes solely f rom the magnetic field effect. The terms 

0{v^!<?) can be s t i l l be neglected. Reiss' observation mot ivated us to fill this gap 

in the theory. Such an approach is at tract ive for the description of laser-atom 

interactions, where the whole formalism is intrinsically non-relativistic (see [25] and 

^ The name "dipole'' was given because the formula for dipole radiation (7] is used when one 
comes to study the scattering of the light by the charge 
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references wi th in ) . The widely used numerical technique becomes cumbersome when 

passing to the fu l ly four dimensional relat ivis t ical ly covariant description. This work 

may be important for the study of atoms in laser backgrounds because potentials 

are intrinsically non-relativistic. Several par t ia l ly relativistic approaches have been 

conducted previously which include the effect of the magnetic field [12. 26] but do 

not go fu l ly beyond the dipole approximat ion. 

The motion of the electron in a laser beam has the relativistic energy which is 

given bv [8,12]: 

where (A^A^) is the time-averaged square of the electromagnetic four-vector 

potential . The first term is the relativist ic rest energy of the particle and the second 

term is called the 'ponderomotive potent ia l ' Up which is a relat ivist ic invariant. The 

laser intensity parameter can be defined as 

This quant i ty arose many years ago [27-29]. I t was found that may be viewed as 

a mass-shift effect. The normal mass of the electron appears to be modified by the 

laser. The mass-shift w i l l be derived in chapter 4 and we w i l l find tha t the effective 

mass is given by the formula 

= 7 7 1 ^ ( 1 + 7 ? 2 ) . (1.5) 

When the interaction energ}' Up is of the order of the rest energ>', the mass-shift effect 

is large and the effects of the field are relat ivist ic in nature. Relativist ic effects become 

impor tan t when the field is sufficiently strong and i t has been suggested [12,24] that 

the required laser intensity corresponds to if ^ O.l. 
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The fu l ly relativistic theory', which is valid for al l values of the intensity parameter, 

has been solved''. However, the solution is usually w-ritten in a parametric form 

where the t ra jectory of the charge is described by the proper t ime. I f the charge 

is moving at a velocity close to the speed of l ight in the frame we are considering 

then the proper t ime w i l l be significantly different to the observers t ime. The four 

dimensional parametric solution can be improved by wTiting the t ra jec tory in a 

three dimensional form x(t) i f the relationship between the t ime and proper t ime is 

invertible. The explicit solution x{t) is much more complicated than the parametric 

solution. Sengupta [9] found the three dimensional solution and showed that the 

oscillation frequency for the relativistic solution is not the same as the incident 

frequency of the laser but depends upon the intensity. The o rb i t of the particle 

includes all harmonic oscillations'* and as a result of this the classical Thomson cross-

section. (3-4), is modified for high-intensity laser beams (see e.g.. the basic references 

8, 37-40] and for the recent direct experimental observation of second harmonics 

[41]). Higher harmonics aie not predicted when the simple dipole approximation 

is used for a non-relativistic particle but . by going beyond this approximation, we 

wi l l see tha t all harmonics are present in the orbi t . In section 4.2 the method used 

by Sengupta to find the three dimensional relat ivist ic solution [9] wi l l be improved 

upon. 

The material in part I is organised as follows. Background topics which 

ai'e required to comprehend the solutions for bo th relativist ic and non-relativistic 

problems are presented in chapter 2. The plane waves we use to model the laser 

beam are discussed. Systems which describe the interaction of a chai'ge w i t h a 

laser beam contain constraints so we w i l l explain how to deal w i t h these through 

To the best of our knowledge, J. Frenkel was the first person to present the parametric 
relativistic solution (30). Since that publication this problem has been studied many times in 
different contexts. For the principal references see the reviews [17,18], original papers (27-29,31-35) 
and the textbooks [1,7,36]. 

^ If the frequency of a wave is u then the harmonics have frequency, iiu^ where n is any positive 
integer. 
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the Dirac-Bergmann algorithm [42-44]. Finally canonical transformations, which 

will be used to simplify many problems and enable us to determine trajectories, 

will be covered. Chapter 3 considers the motion of a non-relativistic charge in the 

electromagnetic background of a laser. At first the dipole approximation is used 

but, following this, we derive a new result using a novel method which does not 

require this approximation. In chapter 4 we consider a fully relativistic particle. Its 

parametric trajectory is derived and then we find an alternative method to derive 

the three dimensional solution. Finally we consider the parameter region in which 

the non-relativistic solution we discovered without having to resort to the dipole 

approximation can accurately describe the motion of the particle. 

Much of the original research presented in chapters 3 and 4 has been discovered 

in collaboration with Dr A. Khvedelidze from the Joint Initiate for Nuclear Research. 

Dubna, Russia. A publication is in preparation regarding the material covered in 

chapter 3. 



2. M E T H O D S A N D C O N C E P T S 

2.1 Plane Waves 

The electromagnetic field in a vacuum is determined f rom Maxwell ' s equations [7,23 

wi th charge density p = 0 and current density j = 0 

V x E = - - ^ , V ' E = 0. (2.1) 
c at 

V x B = - ^ . V B = 0 . (2.2) 
c at 

A non-zero field may exist wi thou t the presence of charges b u t i t must be time 

varying (see [7] plOS). 

A wave equation for the gauge potentials can be derived f rom Maxwell 's 

equations. We define the gauge potent ial f r o m t l ie fields in the usual way 

1 dA 
E = V(f> — . B = V x A . (2.3) 

c at 

By making the radiation gauge choice. <̂  = 0 and V • A = 0, and using the first of 

Maxwell 's equations in (2.2) i t can be seen that 

V U - l ^ . O , (2.4, 

which is called the wave equation. The wave equation is also called d 'Alembert 's 

equation. This may also be derived using the Lorentz gauge condi t ion d^A^ = 0 [7 . 

A plane wave is a special f o r m of an electromagnetic wave where the fields depend 
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on only one spatial coordinate, which we take to be the z direct ion, and time. The 

wave equation (2.4) becomes 

d'^A 1 d'^A ^ 

To solve this equation we introduce the variables ^ = t ~ z/c and i] = t -\~ z/c and 

re-write the wave equation as 

If the gauge potential depends solely on either ^ or rj the equation is .solved. 

Conventionally we choose A = A{Q. These plane waves are interpreted as an 

electromagnetic field propagating along the positive z direction. 

For plane waves the Coulomb gauge condit ion reduces to 

f)A 
V - A = ^ = 0 . (2.7) 

From this condit ion i t can be seen tha t (2.5) predicts a constant electric field. Since 

there can be no overall electric field when the charge and current density are zero so 

we set Az = 0. The vector potential is perpendicular to the propagation direction. 

Using these gauge choices the fields (2.3) become 

1 BA 
E = — — , B = z x E (2.8) 

The fields are perpendicular to the propagation direction of the plane wave, z and 

to each other. 

I f the wave is a periodic funct ion of t ime i t is said to be monochromatic. Let be 

the frequency of the wave, the t ime dependence of the wave is of the fo rm cos{ijj\^t-\-Q). 
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I f we have a monochromatic plane wave the wave equation (2.5) becomes 

3 , 2 + ^ ^ = 0- (2-9) 

The vector potential is a funct ion of wxXt — z/c). The wave is said to be linearly 

polaHsed if the gauge potential is zero in the x or y direction and circularly polaiised 

i f the ampli tude for the Aj. and Ay components are the same. For linear polarisation 

the electric field vector's components £^3. and Ey are in phase, so the direction of 

the electric field vector is constant, this is also true for the magnetic field. The 

components of the electric field are 90 degi'ees out of phase for circular polarisation. 

To an observer stationed at the laser i t appears tha t the electric field rotates in a 

clockwise direction about the z direction. 

A n electromagnetic monochromatic plane wave represents the simplest way to 

model a laser field. This is a reasonable assumption providing the transverse 

directions of the laser beam are much larger than the dimensions of the system 

considered. In reality most lasers have a focal spot of a few optical wavelengths. 

2.2 Mechanics 

The Lagrangian Formulation 

In classical mechanics the equations of mot ion follow f rom the principle of least 

action [45,46]. Let x = {x\,X2:... ,Xn} be a collection of coordinates and ± be the 

velocities at t ime t. The action is defined as 

Jtx 
dtC[x{t),x{t)A] , (2.10) 

where £ is the Lagrangian. For the systems we w i l l consider the Lagrangian depends 

explici t ly on the time. 
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There are many different routes a particle can take between two points. The 

principle of least action states that there is only one path the pai t ic le foUow^s which 

joins point A at t ime ti to point B at t ime ^2- This is called the classical path 

and i t yields a stationary value for the action SS — 0. This principle implies the 

Euler-Lagrange equations of motion 

I f £ is quadratic in there are n second order equations of mot ion in to ta l for the 

system. To obtain an exact solution 2n in i t ia l conditions must be specified. 

In the Lagrange formulat ion of mechanics the state of the system is represented 

by a point in an n-dimensional configuration space wi th n coordinates x\ This point 

traverses a path in configuration space as ' t ime ' evolves according to the solution of 

the Euler-Lagrange equations. Physically the velocities are not sepai-ate degrees 

of freedom so the system has n degi'ees of freedom. 

T i je Hnmiltonian Formulation 

From a mathematical viewpoint in the Lagrangian formula t ion the x's and i ' s have 

been treated as independent variables. Therefore i t can be argued tha t there are 

2/1 independent variables describing the Lagi'ange formulat ion. I n the Hamil tonian 

formulat ion the system is described using the coordinates and the conjugate 

momenta defined by 

The quantities x and p are known as canonical variables and the system is described 

w i t h i n phase space. 

I f the Lagrangian of a system does not contain a given coordinate then the 

coordinate is said to be cyclic [46]. The conjugate momentum to a cyclic coordinate 
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is conserved since the Euler-Lagrange equation reduces to 

( - 3 , 

Systems w i t h more cyclic coordinates tend to be easier to solve because more of the 

in i t ia l conditions are known. 

The transit ion f rom Lagrange's to Hamil ton 's fo rmula t ion corresponds to a 

change of variables f rom {x,xA) to (x , /? ,£) . The procedure for switching variables is 

known as a Legendre t ransformation [46]. Define the func t ion 

H,(x„pA) = x'pi - £ ( x , ± , 0 , (2.14) 

known as the Hamil tonian. This is considered as a func t ion of {x,p,t) providing 

(2.12) may be inverted to express the velocities in terms of phase space variables. 

The differential of is 

QH d 11 Q11 dd Q Q 
cLH^ = -^dxi + -^dpi + -^dt = x'dpi -bpidx' - —dxi - —dxi - —dt. (2.15) 

axi dpi at axi axi at 

The terms proportional to dXi vanish due to the def in i t ion of conjugate momenta 

(2.12). By using the def ini t ion of the conjugate momenta in the Euler-Lagrange 

equations (2.11) i t can be seen that 

Now from (2.15) Hamil ton 's equations of mot ion can be derived by equating 

coefficients of dxi and dpi to find 

x^ = ^ , p ' = - ^ . (2.17) 
api axi 
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They take the form of 27i first order equations of mot ion. They require one in i t i a l 

condit ion per equation to solve. The n second order equations (2.11) are replaced 

by (2.17) in the transition f rom a Lagrangian to Hami l ton ian formula t ion for a given 

system. 

From Hamilton's equations of mot ion i t can be seen tha t the Hamil tonian takes 

on the role of generator of t ime evolution. Consider an a rb i t r a ry funct ion A which 

depends on the coordinates and momenta, then the derivative w i t h respect to t ime 

A{x,p) = {A,H} (2.18) 

Here the Poisson brackets have been introduced which are defined in the standard 

way 
, , dA OB OA dB 

Therefore (2.17) may be re-wri t ten as 

i - ^ = { x \ / / e } , f = {p\,H,}. (2.20) 

Both forms of Hamilton's equations (2.17) and (2.20) w i l l be used in the following 

material . 

The Hamil tonian for each problem must be constructed f r o m the Lagrangian 

formulat ion using the fol lowing steps: 

1. Choose a set of coordinates (e.g cartesian, polar etc) and wri te down the 

Lagrangian for the system in question; 

2. Derive the conjugate momentum using (2.12) as a func t ion of x*. and £; 

3. Wr i te down the Hamil tonian using (2.14); 

4. Invert the conjugate momenta formula to make the velocities, x* the subject of 
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the formula. They wi l l be functions of {x.pA}: 

5. El iminate the x^'s f rom the Hamil tonian so i t depends on ly on phase space 

variables and time; 

6. Hamilton's equations of mot ion may be used. 

The laser systems considered in this thesis contain constraints which prevents steps 

4 , 5&:6 f rom being done. The modif ica t ion of the Legendre transforms due to 

constraints wi l l be discussed in section 2.3. 

For many systems the Hamil tonian is the to ta l energy He = T V, where T 

and V are the kinetic and potential energies. Of ten energy is conserved w i t h i n a 

system hence the Hamiltonian is frequently a conserved quanti ty. T i m e dependent 

external forces, such as laser beams, may add energy to a system in which case the 

Hamil tonian is not conserved since i t is a func t ion of t ime. The Hami l ton ian is only 

equal to the total energy i f the forces are conservative^. I f a part of the Lagrangian 

potential term is of degree one in the velocities the system is no t conservative, an 

example of this would be a non-relativistic particle interacting w i t h an external 

electromagnetic source. Later, in section 2.3.2, we wi l l study systems in which the 

canonical Hamiltonian vanishes. The Hami l ton ian w i l l be conserved but i t is not the 

total energ>^ 

Free Non-Rehitivistic Particle 

The free particle is the simplest system which may be solved completely. Later, we 

wi l l use a canonical t ransform (see section 2.4) to reduce more complex systems to 

the ft-ee system. Now. we wi l l review the relevant material . 

* A force is defined as being conservative if the work done moving from point A to B is the same 
for all possible paths from A to B. The potential V is a function of x{i) only, not the velocities. 
The system does not lose energĵ  through frictional (e.g. the damped harmonic oscillator) or other 
external forces. 
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For a non-relativistic particle the free theory is governed by the Lagrangian or 

Hamil tonian 

where the three momentum p = inx. The Lagrangian is homogeneous to degree two 

in the velocities so i t is purely kinetic energy. The Hamil tonian is the to ta l energy 

of the system and is conser\^ed. A l l of the coordinates x are cyclic, so we know 

the canonical momenta are constants. Solving the Euler-Lagi-ange or Hamilton's 

equations (2.17) are straightforward 

x = ^ , p = 0 . so x = ^ + c . (2.22) 
m 771 

The particle moves at an uni form velocity. To obta in a complete solution we need 

three more in i t ia l conditions which give values for the constant vector c. 

2.3 Constrained Dynamics 

Many of the problems we w i l l deal w i t h contain constraints [44]. A system w i t h n 

degrees of freedom is governed by Lagrange func t ion C{x\_ £) where ?' = 1, 2 , . . . . TZ. 

This leads to the Euler-Lagrange (2.11) equations of mot ion 

dC d dC 
(2.23) 

where we have defined the Hessian mat r ix 
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The accelerations x "̂ may only be uniquely determined by the positions and velocities 

if Wik can be inverted. Now define the Hessian. W = det(l'Ki;.), this is a very 

important quant i ty because i t determines i f there are constraints w i t h i n a system. 

In a constrained system the coordinates and the conjugate momenta are not 

independent. Constrained systems have the property tha t W = 0 and. as we w i l l 

shortly see, this means the Legendre t ransform f r o m the Lagi'angian formulat ion 

to the Hamil tonian formulat ion of mechanics is not unique. As an example of 

this take a free classical relativistic pai t icle which is described by the Lagrangian. 

C = •rny/x'^{r). Here the dot represents different ia t ion w^ith respect to the proper 

time. T . The Hessian, 

W = det [x^Sik - ±iXf,] = 0 , (2.25) 

therefore this is a constrained system. 

A mat r ix rank is the number of independent row^s or columns. For constrained 

systems W = 0 implies that the mat r ix rank, r of Wjk is less than n. I f 1'̂ ,-̂  were 

to be reduced to row echelon form i t w'ould have n — r rows of zero's. This leads to 

•n - r Euler-Lagrange equations which do not contain accelerations. There are s t i l l 

r equations w^hich contain accelerations and only these shall be called 'equations of 

motion*. 

There are many examples of constraints w i t h i n mechanics and field theory. 

In relativistic mechanics the mass-shell condi t ion = (mc)^ is the constraint, 

associated w i t h the example in (2.25), and for electromagnetism the momentum 

conjugate to AQ vanishes which is another constraint. Dirac set up the formalism to 

treat constraints consistently [42-44 . 
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2.3.1 The Dimc-Beignmnn Algoritbiu 

The Dirac-Bergmaiin a lgor i thm [42-44] treats constraints w i t h i n the Hamil tonian 

formalism of classical mechanics. Star t ing w i t h the def in i t ion of the canonical 

momenta 

Pi = ^ % ^ , v; = L 2 , . . . , n , (2.26) 

i t can be seen that the Hessian mat r ix is equal to dpi/ddJ. Reduce the Hessian 

matr ix to row echelon form so i t contains rows of zeros i f there are constraints. Let 

the first r rows of the Hessian mat r ix be non-zero. Define indices a.b = 1.2.. . . . 

and p, a = (7 -1-1), ( r + 2 ) , . . . . 71 so, for some values of i we find W'ai ^ 0 and Wpi — 0 

for all i. Since W^i = 0 i t can be seen tha t pp does not depend on xJ. Overall , the 

conjugate momenta are functions of 

Pa = Pa{'J^:ib'.ip'.Vi) and Pp = Pp{xi,Pi) (2.27) 

By inverting the equation for pa and since Pp does not depend on we find 

x''= r {^:uVt-Xp) . (2.28) 

W i t h constraints present the Hamil tonian may not be wTitten as a funct ion of 

{x.p. t}. Subst i tut ing (2.28) into the defini t ion of conjugate momenta (2.26) i t can 

be seen that pi = gi{xi,p^,Xp). For i = p the funct ion g cannot depend on the 

velocities Xp f rom (2.27), therefore 

Pp = gp{xuPt.)- (2.29) 

This gives (71 — r ) relations between the coordinates and momenta which are called 

primary constraints. 
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The next step is to t ransform f rom a velocity phase space to a phase space w i t h 

coordinates Xi.Pa and Xp. The canonical Hamil tonian 

He =Pix'-L{x,x) (2.30) 

= Pa r {^'.Pb:±p)+gp{^'.Pa):i^^ - L { x j a {x,Pb,±p) , ±p) , 

Using this the constrained version of Hamil ton 's eqnations of mo t ion (2.17) may be 

derived. For a constrained system the differential of He w i l l lead to three differentials 

dxi.dpa and dxp instead of the tw'O found in (2.15). By using the def ini t ion of 

the conjugate momenta (2.12) and equating coefficients of dxi.dpn and rfip the 

constrained equations of mot ion are 

f ) Ff 
' ^ P - P p = 0, (2.31) 

dHe _ . , dg. 
r = T T ^ - xf . (2.32) 

dpa dpa 

dx^~ dx^ dx^- ^^-^^^ 

The final two equations are reminiscent of Hamilton's equations bu t have addit ional 

terms which depend on the constraint. There are only ( / i -h r) equations of mot ion. 

(2.32) and (2.33), in the singular case and [n - r) constraints (2.31) for the 2n 

variables. The constraints restrict the motion to a subspace Fp of the fu l l phase 

space r . The hypersurface Fp is defined by these constraints. 

The Hamil tonian H^ and the equations of mot ion are defined on Fp. I t is desirable 

to describe the dynamics on F, the physical phase space {x,p). Therefore we want 

to define a funct ion on the whole phase space, w^hich is equivalent to He in the 

subspace Fp. To proceed w i t h the Dirac-Bergmann a lgor i thm for dealing w i t h 

constraints a discussion on switching a funct ion between the two phase spaces is 

needed. Let F{x,p) be a func t ion defined on the f u l l phase space. I t is called 
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'weakly zero' (denoted ^ ) if F | rp = 0 and 'strongly zero' (denoted c:;) if. additionally. 

(dF/dx\ dF/dp') Ipp = 0. A pr imary constraint on Fp is a weakly vanishing funct ion, 

Gp{x,p), on the whole phase space 

Gp{x,p) = -gp(x,Pa) -hPp^O, (2.34) 

but they are not strongly zero. O n the subspace Pp this is the constraint equation 

The relationship between weakly zero and strongly zero funct ions may be derived 

by s tudying the variation of a weakly zero funct ion . \i F then 6F ^ 0, we find 

9 F 
dx' 

OF 
SF = —6x' + —6p' = 

dp' 
OF _^ OF dg, 
dx^ dpp dx' 

Sx' + 
OF dF dgp 
dp^ ~^ dppdp\ 

(5/;". (2.35) 

Note tha t Spp = Sg^(x,pa) which depends on 6x^ and 6p^. The expressions in square 

brackets must be weakly vanishing. Subs t i tu t ing gp = pp — Gp and using Gp 5=̂; 0 i t 

can be shown that 

and U'-^'W)-^ ( . 3 0 , 
Here in the second part of equation (2.36) the index a has been replaced w i t h i 

because dGpjdpa = 6^. I t can be seen that \{ F^O then F ~ GpdF/dpp. A weakly 

vanishing funct ion is a linear combination of the weakly vanishing functions defining 

the hypersurface Fp. A constant te rm could not be added to F because that is not 

weakly vanishing. 

I t is possible to define a func t ion H' on F which is weakly equal to H^- Since 

He does not depend on pp s tudying the variat ion of these funct ions by subst i tut ing 
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them into (2.36) i t can be seen tha t 

d 
dx 

/ , dH'\ dH, , c) / „ , dH'\ dH, , ^ 

Introduce = - 9P^^ which, as may be seen fi*om the previous equation, is 

strongly equal to He. Using the equations of mot ion (2.32). (2.33) and gp = Pp — Gp 

the previous equations may be re-wri t ten as 

±i ~ ^ + ± p ^ ^ { : , : i ^ H - h ' j f G , } , (2.38) 

the Poisson brackets, defined in (2.19). are calculated as i f the x's and /j's are 

independent. Only after calculating the brackets may we impose the constraints. 

Since the Poisson brackets contain only derivatives w i t h respect to phase space 

variables we may use H ^ He and dL/dx^ = in (2.38) to give 

x' ^ {x', H, + xfGpix, p)} , f ^ {p\, H, + x^Gp{x, p)} . (2.39) 

Since Gp only vanishes weakly i t s t i l l influences the dynamics on the f u l l phase space. 

The are arbi t rary functions which we w i l l refer to as Lagrange multipliers A''. 

VVe define the pr imary Hamil tonian in order to rewrite the equations of mot ion 

in terms of one evolution operator 

Hp{x,v):= H, + \PGp„ (2.40) 

where is a mult ipl ier funct ion. The equation of motion for any phase-space 
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funct ion A defined on the whole phase space F is 

A{x.,p)^{A.,Hj,}. (2.41) 

Note that the equations of mot ion are now- only w-eak equations, however they bear 

more s imilar i ty to the equations dealt w i t h for unconstrained systems making them 

advantageous. The constraints Gr ~ 0 should be preserved in t ime^ therefore Gr ~ 

0^{Gr:He]-hfL^{Gr:Gp}. 

2.3.2 Lagrangian Reparainetrisation Invariance 

During chapters 3 and 4 we wi l l be interested in reparametrisation invariant systems 

so this Lagrangian symmetry w i l l be examined now. The general properties of 

reparametrisation invariant systems wi l l be i l lustrated using the system governing 

the motion of a free relativistic particle as an example. 

C{s) = mcyjx^{s)xf'(s). (2.42) 

Here 5 is the arc length parameter of the t ra jec tory or the proper t ime and since the 

Lagrangian has units of energy = c^. The conjugate momenta is 

jy^ = m . c ^ = , (2.43) 

this leads to a vanishing canonical Hani i l tonian H^ = 0. We have seen in (2.25) this 

system is singular, i t obeys the mass-shell constraint p^ = [mcf. Therefore the t ime 

evolution of this system is generated entirely by the mass-shell constraint as one can 

see f rom (2.41). 

Note that the Lagrangian funct ion (2.42) is homogeneous to the first degree in 

^ This may generate new 'secondary' constraints and although this discussion is not needed for 
this thesis it is important for example in Q E D where it leads to Gauss' law [44j. 
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the velocity, so i t has the property 

L{ax^) = aL{x^). (2.44) 

This equation is an example of a more general theorem due to Euler [47] which states 

that 

i ^ ^ = ^ ' - / ( i ) - (2-45) 

Integer ii is the degi'ee of homogeneity in the velocities . i ' o f / . Homogeneity 

of the Lagrangian wi l l now be used to show that the action is invariant under a 

reparametrisation of the world-line 5 s'(s). Using (2.44), the effect of a parameter 

change on the Lagrangian (2.42) is 

\ d s J V ds' ds J ds \ d s ' ) ^ ' 

The action. 

is invariant, providing the endpoints remain unchanged, the mapping 5 s'{s) is 

one-to-one and 

ds'/ds > 0 , (2.48) 

so t ime flows forwards. I f any Lagrangian is homogeneous (2.44) and degree one in 

the velocities, using Euler's theorem (2.45) we find 

The mat r ix W^^y has zero modes so therefore any Lagrangian which is homogeneous 

degree one is singular. 

In the free relativistic theory the reparametrisation invariance is generated by the 
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mass-shell constraint 0 = p^ — [incf however for different systems there wi l l be a 

different constraint. The constraint should generate a change in x^ (notated by 6x^) 

so that x^ - i - 6x^ is equivalent to a reparametrisation. Using the Poisson brackets^ 

{x^.p""] — —g^^ the effect of the constraint on the coordinates is 

6x^'{s) = {x^, Ode) = x^Ss = x^{s -h Ss) - x"{s) = x^{s') - . 7 : ^ ( 5 ) , (2.50) 

where 6s = 2niSe. Therefore, x''(s) -\-6x^{s) = x^{s'), as required. 

I f a Lagrangian contains a reparametrisation invariance a single t ra jectory can be 

described by an inf ini te number of different parameters. Any of these parameters can 

be used to describe the trajectory but a part icular choice must be made. The method 

of singling out one parameter is called gauge fixing. This amounts to spl i t t ing the 

four dimensional space-time into a cont inuum of hypersurfaces. Each hypersurface 

has a different value for the parameter and t ime evolution is the movement between 

hypersurfaces. For example, Minkowski space is decomposed in to hypersurfaces of 

equal t ime, 5 = constant, so at each instant in t ime the universe appears three 

dimensional. 

A l l of the properties discussed for the free relativist ic system hold for all 

reparametrisation invariant systems [48]. To summarise, any system which has a 

vanishing canonical Hamil tonian is reparametrisation invariant and the Lagrangian 

is singular. A constraint generates this invariance and must be gauge fixed to choose 

one evolution parameter to describe the system. 

During this thesis the metric is defined as 5̂ *' = diag(l, - 1 ) . 
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Parametensing Systems 

In non-relativistic systems motion is normally described by g iv ing the canonical 

variables as functions of the time. For a system w i t h no constraints the action reads 

S[x{t)Mt)\ = £ dt ( p . ( 0 ^ - ^<: ) : (2.51) 

where //c is the canonical Hamiltonian. Now introduce t ime as a canonical variable 

depending on some parameter s and replace the action by 

S'[i{s)Ms).x{s),p[s),X(s)]= r ds {pti + Pix'-\{p,+ H,)) , (2.52) 
J SI 

here the 'dot ' represents differentiat ion w i t h respect to the parameter 5 and A is a 

Lagrange mult ipl ier . The two systems (2.51) and (2.52) are equivalent. Through 

extremising the action wi th respect to pi w-e find tha t £ — A = 0 and equation (2.52) 

becomes 
ft2 / d:rUt) \ 

/ ds {p,x' - iHe) = dt{ Pi{t)—y - H A . (2.53) 
J s i Vt, \ / 

providing £ is a monotonic funct ion of s. i.e. its inverse exists. The extended system 

(2.52) has an extra canonical pair compared to (2.51). The canonical Hamil tonian 

of the extended system is always equal to zero, as can be seen f r o m (2.40). so i t is 

reparametrisation invariant. By extremising the action w i t h respect to the Lagrange 

multiplier , A we find 

H : = Pi - i - //c ^ 0 : (2.54) 

this is called the energj^ constraint and is responsible for generating the reparametri

sation invariance. 

The dynamics of the system (2.52) is contained entirely w i t h i n the constraint 

(2.54). When calculating the effect of the parametrisation on an\' funct ion F of the 
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canonical variables the equations of motion (2.41) become 

A ^ eX{A,pt-\-He} . (2.55) 

Any Lagiangian may be cast into a reparametrisation invai iant form but i t is 

especially useful when considering systems w i t h an explici t t ime dependence. The 

parametrisation removes many awkward t ime derivatives [42] and, as we shall 

see in section 2.4, makes sh i f t ing f rom one set of canonical variables to another 

simpler. The reduced/original phase space may be reached again by gauge fixing the 

reparametrisation s = t. The constraint (2.54) has two roles: 

1. generator of the evolution of system (2.55): 

2. generator of the local symmetry t ransformation induced by tl ie reparametrisa

t ion (2.50). 

2.3.3 Light-Cone Coordhmtes 

Often in laser physics i t is beneficial to use the light-cone coordinates which are 

defined as 

f : = i _ i . and d t - . (2.56) 
c c 

Note that the light-cone coordinate ^ is the variable used to solve the plane wave 

equation (2.5). In this section w-e w i l l derive the l ight cone coordinates canonical 

pairs and study gauge fixing for parameterised systems. Excluding constraints the 

Lagrangian for a parameterised system is 

C = p,i + p,x\, (2.57) 

where the dot represents differentiat ion w i t h respect to parameter 5 . As discussed, 

there are many different ways to gauge fix this parameter. T w o difi"erent gauge fbcing 
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wil l now be presented, the 'normal ' Minkowski gauge f i x ing s = t and a light-cone 

gauge fixing. 

To discretise space-time into slices of equal t ime we gauge fix the parameter s = t. 

Then i = 1 and the gauge fixed Lagrangian is 

CoF=Pix'+Pt. (2.58) 

I t can be seen that the canonical Hamil tonian, H^. = -pt. The term which is a 

product of canonical coordinates are canonical pairs and they have the commutation 

relation, {p'..xJ} = -6'^. 

The Lagrangian (2.57) can be wr i t t en in light-cone coordinates 

C = p f x \ + \ { p t - cpz) {^ + - ^ + \ iVt H- CP,) - ^ ) = (2-59) 

where ± \ = :?/) and pf = {px ,Py). For light-cone gauge fixing 5 = ^ so ^ = 1 and 

the Lagrangian becomes 

^ G P = \ p ' ^ + P i ' i i + i p - ' : (2.60) 

here the l ight cone momenta have been defined. The final t e rm expresses the light-

cone energ3', = pi + cpz, and the commutat ion relations can be read off f rom the 

Lagrangian's terms {p~..^} = —2. 

2.4 Canonical lYansfornmtions and Hamilton Jacobi Theory 

Canonical Transformations 

For many problems in theoretical physics the equations of mo t ion are complicated. 

However the free particle system, described in section 2.2, maybe easily solved. I n 
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this si tuation all the coordinates are cyclic and the conjugate momenta are constants 

of motion. I t is possible to reduce a system, w i t h an equation of mot ion tha t is hard 

to solve, into a solvable system via a canonical t ransformat ion (1.46 . 

The Hamil tonian formalism gives an equal status to all phase space variables. For 

example a change of variables f rom cartesian to polar coordinates must also transform 

the momenta. A system can be described by more than one set of canonical variables 

and all choices are equally valid, but one set may be more convenient for the problem 

under consideration. Moving to a set of variables which leaves the Hamil tonian w i th 

more cyclic coordinates wi l l , in general, make the system simpler to solve [46]. The 

act of t ransforming f rom one set of phase space variables to another w i l l now be 

discussed. The coordinates and momenta, {xi.pi) are transformed to the new set 

(A^j.rii) w i t h t ransform equations 

Xi = Xiixupi-A) and Ui = n,(x,,pi:0- (2.61) 

These equations are assumed to be invertible. 

I f the new variables {Xi, Yli) are to be of interest to us, they must also be canonical 

coordinates. They must be conjugate to each other and there must exist a new 

funct ion which plays the role of the Hamil tonian, A'c(AO, H , ; £). T h e Poisson brackets 

remain invariant [44] under a canonical t ransformation and the new variables obey 

the Hamilton's equations of mot ion 

V ^^^^ n ^^^^ {oao\ 

The principle of least action must be satisfied by bo th sets o f vai'iables. This is 

achieved i f bo th sets are related by the equation 

K {piXi - H,) = WiXi - + ~ . (2.63) 
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Here K is a scale transform; dur ing this thesis we are only interested in the case K = 1. 

According to the principle of least action the variat ion of the phase space coordinates 

vanish at the end of the path. Let funct ion S depends on both o ld and new phase 

space variables. A derivative w i t h respect to t ime of the S w i l l vanish in the action 

since i t is evaluated at the endpoints. The funct ion 5 can be used to specify the 

exact form of the canonical t ransform when half its variables belong to the old set 

of phase space coordinates and half to the new. I t then acts as a bridge between the 

two sets and is called the generating fxinction of the canonical t ransformation. 

For the canonical transforms used in chapters 3 and 4, the generating funct ion is 

chosen to be a funct ion of the old coordinates and the new momenta. Let 

which leads to 

The derivative 

S = S2{x,U-,t)- XiWi, (2.64) 

ViXi ~H, = ~t\,X, - A' , + ^ . (2.65) 

dS2 dS2 . dS2 ^ dS2 , , 
+ ^ -̂7jr- + n « T ^ ^ (2.66) dt dt dxi 'dUi 

allows (2.65) to be re-wri t ten as 

dt 

The new Hamil tonian, Kc, is a func t ion of new variables A' and H but not f l . 

Therefore the FI dependence in this equation must vanish. Similar ly the old 

Hamil tonian is not a funct ion of x so its dependence must also vanish. This is 

satisfied i f 
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leaving the equation 
'1 c 

!<c = He-\--~-. (2.69) 

Now /; and are known as a funct ion of x and H t l i rough the generating equations 

(2.68). I f these functions are invertible the canonical t ransform may be completed, 

i.e we may wr i te new canonical varial^le as functions of o ld and vice versa. 

Hamilton-Jacobi Theory 

The canonical t ransformation is specified i f the exact form of the generating funct ion 

is known since i t relates the old and new Hamiltonians. I n fo l lowing chapters w-e 

wi l l face problems where the in i t i a l Hamil tonian is known and we choose a new 

Hamil tonian where the equations of mot ion can be easily solved. The challenge 

w i l l be to find the generating funct ion w-hich specifies the canonical transformation. 

W r i t i n g explicit variables in (2.69) \\e have 

This equation is known as t l ie Hamilton-Jacobi equation. I t is a part ial differential 

equation in n coordinates and one t ime variable. I t can be showm that the solution 

to the Hamilton-Jacobi equation is equivalent to the classical action [46 . 

Before considering the canonical t ransformation we had to solve 2ii ordinai-y 

differential equations (2.17) to derive the motion. To know the t ransformation to a 

solvable system we need to solve the par t ia l differential Hamilton-Jacobi equation, 

w^hich is notoriously d i f f icu l t . A t first glance i t seems like not a great deal has been 

achieved, but, for systems w i t h cyclic coordinates, i t is possible to separate the 

variables in (2.70). Assume Xi is cyclic so its conjugate momenta pi is a constant 7. 

From (2.68) we know that 
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so we propose the solution 

52 {Xi„ Rii t) = 7.ri - f {X2., X 3 . . . , x,,, H^; £) . (2.72) 

By conducting a canonical t ransform to the free theory we can relate the constant 

new momenta H i w i th 7. The generating func t ion may be separated into a term for 

each cyclic coordinate in the system. 

The Hamilton-Jacobi theory wi l l now be applied to systems w^hich are explicit 

functions of t ime. As mentioned, in section 2.3.2, i t is useful to introduce a parameter 

into the system to remove awkward t ime derivatives in (2.70). Let the following 

system have an explicit t ime dependence 

C{p, xA) =p ± - He(p, X, t). (2.73) 

This system is then parameterised to become the equivalent system 

C{p, X, t, Pt)=Pti-\-p-x- X{pt - f H,({p, X, L pt))), (2.74) 

which does not have any explicit parameter dependence. The t ime, t, has been 

promoted to be a proper canonical coordinate and i t has the conjugate momenta pf 

The canonical Hamiltonian of the parameterised system He = 0 and the system's 

evolution is governed by the constraint (2.54), which is 

n{pt^, t,p,x)=pt-\~He^(}. (2.75) 

The post canonical t ransformation system may also be parameterised so Kc = 0 and 

i t obeys the constraint HQ ^ 0. Due to the parametrisation the Hamilton-Jacobi 
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equation (2.70) becomes 
dS2 

= 0. (2.76) ds 

The generating function has no exphcit parameter dependence. Mote that a factor 

of ds/dt is extracted for the change of variables in the action (2.53). The generating 

function still specifies the canonical transform between the constraints H ^ Ho 

fdS-2 dSo \ ( dSo dSo\ 

The time derivatives which made the Hamilton-Jacobi equation difficult to solve have 

been removed. By making a sensible choice for the new constraint the time evolution 

in the extended phase space may be solved through the constrained equations of 

motion (2.55) providing (2.77) can be solved for the generating function**. 

If we cannot solve for the generating function then the canonical traiisform between the two 
systems cannot be specified. 



3. NON-RELATIVISTIC DYNAMICS BEYOND THE DIPOLE 

APPROXIMATION 

All required background material has been covered so we may now move on 

to consider a particle's motion under the influence of a laser's electromagnetic 

background. In section (3.1) the simple dipole approximation wil l be reviewed and 

following that we will go beyond the dipole approximation. This can only be achieved 

using the paranietrisation techniques discussed in the previous chapter. Constraints 

are introduced into the system through the parametrisation of the non-relativistic 

system. Section 3.2 derives the parametric solution of the trajectory for a non-

relativistic particle beyond the dipole approximation. In section 3.3 an elliptically 

polarised monochromatic plane wave is introduced which will allow us to write the 

trajectory as a function of the Galilean time and eliminate the parameter. In section 

3.4 the trajectory is analysed in the lab frame and a frame in which the particle is, 

on average, at rest. 

3,1 Dipole Approximated Solution and Thomson Scattering 

Consider Thomson scattering [23.49]. A free non-relativistic electron which is at 

rest is subjected to a linearly polarised monochromatic plane wave* whose phase^ is 

t^L^ — ki^ x ^ uJi,t. This is called the dipole approximation which we discussed in the 

* The electromagnetic plane wave represents the simplest way to mathematically model a laser 
field. This is a reasonable assumption providing the transverse directions of the laser beams are 
much larger than the dimensions of the system considered. 

^ The non-relativistic nature of the wave phase approximation becomes apparent when 
differentiating ui^ct :^ ui,rL • x with respect to t. 
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introduction to part I . The vector /CL = C J ^ T I / C is called the wave vector. 0;^ is the 
frequency of the plane wave and n is an unit vector in the direction of the wave's 
propagation. The dipole approximation neglects the influence of the magnetic part 
of the Heaviside-Lorentz force. 

F = eE-\--v X B c^eE. (3.1) 
c 

For a plane wave the fields' amplitudes |JÊ ol = l ^ o l - neglecting the magnetic 

portion of the force we aie insisting that the electron's motion must be completely 

non-relativistic. v c. The electric field is 

E = EQCOSUJI^, (3.2) 

and therefore, according to (3.1), the electron executes simple harmonic motion at 

the same wave frequency as the laser, UJI^, along the electric field direction 

X = ^ E Q cosLJi^. (3.3) 

By using the Larmor radiation formula [23] the frequency independent Thomson 

cross-section may be derived 

= I . (3.4) 

According to (3.3) the maximum velocity of the electron is -Umax = e\Eo\/mLJi and 

therefore the motion is non-relativistic providing 

V 2 2̂ 
: = ^ = - T ^ , W = - ^ I c . 9.17 X IQ-'Xll « 1 (3.5) 
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where A/, is the radiation's wavelength and the beam's intensity / := c\Eo\'^/Sn has 
been introduced. The parameter ?/ is called the laser intensity and is dimensionless. 

3.2 Parametric Solution 

We now investigate the derivation of the particle's trajectory again, but this time we 

do not use the dipole approximation. A non-relativistic point particle with mass m 

and electric charge - e moving in an external electric field E and magnetic field B 

is influenced by the full Heaviside-Lorentz force. The particle's trajectory x{t) can 

be determined from Newton's equations of motion 

'^-rP- = e E{t, x{t)) + - ^ X B{L x{t)). (3.6) 
dt'̂  c d^ 

The nonlinear equations (3.6) can be reproduced within the conventional variational 

principle of least action fiom the following "non-relativistic"^ Lagrangian function*^ 

dx \ m dx dx e dx , , , ,, , , , ,, 

if the external electric field E and magnetic field B are defined in terms of the gauge 

potential A''{t, x) = x), A{t, x)) in the standard way (2.3). We intend to solve 

(3.6) for the special case of an ideahsed laser field described by the electromagnetic 

monochromatic plane luave. However, before restricting to this special case, we 

consider the more general plane wave background [7] discussed in section 2.1. with 

a gauge potential of the form 

A,{xA) = A,{0. (3.8) 

^ Note that the name ''non-relativistic" is somewhat misleading because the Lagrangian (3.7) is 
not Galilean invariant. It possess an approximate Galilean symmetry for small velocities which is 
discussed in (50) and Appendix A. 

Note the discussion in [51,52] considering the possible artifacts which arise from a partial 
relativistic treatment, as well as the necessity to consider the radiation damping effects (53-55) 
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Here Af, is a 4-vector which depends only on the light-cone coordinate 

^ = t - ^ . . (3.9) 

and n is a constant unit 3-vector pointing in the direction of the wave's propagation. 

We impose the axial gauge^ on the potentials 

n - A = 0. (3.10) 

It will be shown that the Lagrangian (3.7) with a plane wave background (3.8) is 

classically integrable and its solution can be represented in a parametric integial form. 

First the system must be parameterised [42] and a canonical transformation [46] to 

the free theory must be carried out using the methods from classical Hamilton-Jacobi 

theory [56-58] as well as the Dirac constraint formalism [42,43 . 

3.2.1 The Dirac Parametrisation method and Hnmilton-Dirac Equation 

Due to the explicit time dependence of the electromagnetic wave potential the 

Lagrangian (3.7) describes a rion-autonomous system. To deal with non-autonomous 

systems it is often useful to use the method of time re-parametrisation (see sections 

2.3.2 and 2.3.2 and [57], page 90 or [58], page 235) which is known to particle 

physicists as the Dirac "parametrisation trick" [42,43]. The system is then generally 

covariant and awkward time derivatives, which we would otherwise have faced, are 

removed. 

This approach will be summarised since i t has been discussed in [42] and section 

2.3.2 and then applied to system (3.7). Starting from an arbitrary Lagrangian system 

with Lagi'angian C[x{t), dx/dt. t) the configiu-ation space is extended by considering 

^ This gauge choice is also the Coulomb gauge which reduces for a plane wave to n .4 = constant. 
Since there can be no net electric field, as can be seen from (2.7) and related discussions, we set 
the constant equal to zero. 
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the time £ as a new dynamical variable, t{s) which, together with the other "spatial" 
coordinates x{s). depends upon an auxiliary evolution parameter 5 . The dynamics 
of the extended system is determined by the degenerate homogeneous (degree one) 
time-reparametrisation invariant Lagrangian £* which is constructed from the initial 
Lagrangian by the definition: 

r(x{s)..t{s).±{s),i{s)^ := (311) 

From now on a "dot" over any variable denotes a derivative w'ith respect to the 

evolution parameter s. We require that t{s) is a monotonic. increasing function of 

the new evolution parameter 5 : 

£ > 0 . (3.12) 

Any system with the Lagrangian C is generally covariant so it is invariant under an 

arbitrary change of the evolution parameter 

s~^s' = f{s). (3-13) 

The extended phase of the system (3.11) consists of 3 + 1 canonical pairs 

Z(s) : = 
x{s), p(s) 

but due to the parametrisation invariance symmetry (3.13) the dynamics on the new 

phase space are constrained by (2.54). 

According to the Hamilton-Dirac description [42,43], the constraint (2.54) plays 

a twofold role. First, it is the generator of the local symmetry transformation of 

the phase space coordinates (3.14) which is induced by the time reparametrisation 

(3.13). Second, it generates the evolution of the extended system. The canonical 
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Hamiltonian derived from the Lagrangian C is identically zero and the dynamics 
are encoded within the constraint (2.54). The Hamilton-Dirac equations of motion 
(2.55) for the extended phase space are 

Z = X{s){Z ,n} , (3.15) 

where X{s) is an arbitrary function. The freedom associated with the Lagrange 

multiplier A(5) reflects the fact that we can use an}' evolution parameter. This 

freedom needs to be fixed by imposing an additional constraint, in the form of a 

gauge condition. 

x{s,xA)={). 

The solution to (3.15) either coincides with the classical trajectory of the initial 

Lagrangian C (gauge x '•— '̂ ~ -s) or. by using an^' other admissible gauge, will be 

canonically equivalent to it [42 . 

Applying this method to the system (3.7) the Lagrangian is transformed to 

'111 'T* \ ^ P 

C{x.±.t.t)=- U] i+-±.A{0-eim (3.16) 

The time repaiametrisation invariant Hamiltonian dynamics of the non-relativistic 

particle is governed by the following Hamiltonian constraint 

I f e V 
n:=pt-^e<l>-h—(p - - A = 0 . (3.17) 

2 Tn. \ c / 

The strategy that we will use to find the parametric form of the trajectory of a 

non-relativistic particle in an electromagnetic plane backgroimd u-ill now be outlined. 

A canonical transformation to the free theory is conducted by using the Hamilton-

Jacobi method discussed in section 2.4. A solution to the equation of motion (3.15) is 

constructed by using the free theory and the canonical transformation equations [46 . 
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Fixing the parametrisation invariance with a suitable gauge allows us to derive the 

Lagrange multiplier function X{s) and complete the derivation. 

3.2.2 Canonical Transformation to a Free System 

Using the constrained Hamilton-Jacobi method ( 2 . 77 ) a canonical transformation 

from system ( 3 .16 ) , denoted Z , to a free system ZQ is constructed. The notation 

that will be used for pre and post canonical transformation variables are 

Z = 
x{s), p{s) 

tis).. pt{s) 
Zn = 

x{s)., n{s) 

T{s)., Uris) 
(3 .18) 

In order for ZQ to be a free system the constraint ( 3 . 17 ) must be transformed into 

the constraint for a fi'ee theory 

n-^no = nr-\- — n^ = 0. 
2 m. 

(3 .19 ) 

This canonical transformation "absorbs" the electromagnetic field so HQ generates 

free evolution and according to the transformed version of ( 3 . 1 5 ) we find 

T{s)=To+ [ duX{ii). X{s) = Xo-h— duX{u) 
Jo rri JQ 

(3 .20 ) 

where UT and I T ai'e now constants of motion determined by the initial conditions 

imposed here at 5 = 0 . Note that the constraint ( 3 . 19 ) has modified the 

un-parameterised results obtained in section 2.2. If we know the "absorbing 

transformation" Z —* ZQ we have found the solution to the initial interacting system. 

The explicit form of the "absorbing" transformation ( 3 . 18 ) can be found using the 

generating function method (section 2.4 and [ 5 6 . 5 7 ] ) where the generating function 2̂ 

depends upon the old coordinates {t, x) and new momenta ( I l r , H ) . We introduce the 
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notation that if a vector has a "JL"/"!!" subscript means it is perpendicular/parallel 
to the wave vector n . The system has cyclic coordinates x± and (a;|| - I - t) so the 
generating function, using (2.72), must be of the form 

S2{L X, H T , n ) = i Hr -f- X . n -h ^ ( e , n ) . ( 3 . 2 1 ) 

The unknown function, ^(^,n) will now be determined. Write the old momenta Pi 

and p, using ( 2 . 6 8 ) , as functions of transformed coordinates 

We now decompose all three dimensional vectors into components which are 

perpendicular and parallel to the wave propagation direction n e.g. 11 = n_L-t-n|| n . 

Finally, by using the gauge condition (3.10), we see that the constraint (3.17) will 

reduce to the free constraint (3.19) if the function ^ is a solution to the equation 

- - + ( .nc-n„) ^{mc-nny + w{^,n^), (3.24) 

where 

\V{^, D x ) := A i + 2 - >lx • n j . + 2me4'. (3.25) 

The solution to (3.24) for must be real in order to derive a real trajectory. This 

means that the left hand side of (3.24) must satisfj' the inequalitj' 

{•inc - n||)2 + W{^, H x ) > 0. (3.26) 
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Imposing the boundary condition ^ (0 ,11) = 0 we have the solution 

: r (^,n) = -c(-mc - n,,)^ ±c c\u ,J{mc - n,|)2 + W{IL, n^). ( 3 . 27 ) 

Later, we will see this boundaiy condition sets the particle to be at the origin when 

t = 0. Inequality (3.26) must be satisfied for all values of integration variable u. 

The importance of this restriction will be seen when we analyse the trajectory for a 

monochromatic wave. Observe the ± sign choice in (3.27). This occurs because the 

energy constraint does not contain information regarding the direction of the particle, 

only the shape of the trajectory. This choice is fixed by choosing the positive sign 

for the remainder of the calculation. 

Using (3.27) and equations (3.22) and (3.23) one can determine an expression for 

the new momenta as a function of the initial canonical coordinates. The momentum 

canonically conjugated to the new spatial coordinates X eae 

n^=P± n,! = vie + y ( m c - p „ ) 2 - l ' K ( ^ p ^ ) , (3.28) 

and the conjugate to the new time coordinate T is 

n-r = Pt-c {mc - p\\) + y(mc-p | | )2 - W{^,pj_) (3.29) 

Using the generating equations (2.68) 

dS dT 
(3.31) 

n=n(t,a:,p) 

one can find the new coordinates as a function of the old ones. The time coordinate 
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is unchanged 

T=t, (3.32) 

but. after using (3.28). the new three dimensional coordinates are 

1 
X_L = x x + e r duAj_{u), (3.33) 

.Y|, = -^-ll+c^ + c ^ / du yJ{rnc-p\y-W{u.,pJ. (3.34) 
\m.c — p\\ JQ 

The first half of the canonical transformation is complete, we have written the new 

canonical coordinates as a function of the old. 

Equations (3.28) express three constants of motion. The first two coincide 

with the transversal momenta . The third one. Hn , can be interpreted as the 

longitudinal momenta of the particle in the asymptotic region where the interaction 

with the electromagnetic field is negligible. Experimentally the laser pulse only lasts 

for a short time period. From the expressions (3.29) and (3.28) we see that the 

"Ught-cone energxj" represents another constant of motion 

— + 7̂11 = — + = constant. (3.35) c c 

In order to obtain the parametric solution to the Hamilton-Dirac equations, (3.15) 

the equations, (3.33) and(3.34) need to be inverted. We want to express the old 

coordinates as a function of the parameter 5 and the constants of motion. In order 

to do this the system must be fixed using an appropriate gauge. 

3.2.3 Light-Cone Gauge Fixing and the Parametric Solution 

The observation that the light cone energy (3.35) is a constant suggests a natural 

gauge fixing condition (see (2.60) and related discussion). The evolution parameter 

5 can be identified with the canonical variable conjugate to the light cone energy. 
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(3.9) which is our gauge 

X : = t { s ) ^ ' ^ - s = 0. (3.36) 

To find the form of the multiplier function, the equations of motion for the new 

coordinates (3.20) can be subtracted from each other to giv̂ e 

T - ^ = (1 - - ! ^ ) duX{u). (3.37) 
c mc JQ 

where the initial conditions TQ and XQ have been set equal to zero. By using the 

canonical transformation equations (3.32)-(3.34) and this gauge fixing condition we 

find that the Lagrange multiplier is 

/ duX(u) = m.c [ du , ^ = . (3.38) 
k ^ ^ Jo ^(n„--mc) '^ + H / ( u , n ^ ) 

When the canonical transformation equations (3.32)-(3.34) and this definition of 

the Lagrange multiplier are substituted into (3.20) the following trajectory may be 

derived 

t{s) = mc f du , ^ = = . (3.39) 
^ ^ h \ / ( n | | - m c ) 2 + i y ( u , n ^ ) ' 

1 
xn{s) = ~cs-\- nic'^ / du . . „ . : (3-40) 

Jo y(n|,-77ic)2 + H / ( n , n x ) 
rs n^--Aj_{u) 

xAs) = c / H-» c (3 41) 

^ ^ Jo y (n , | -mc )2 - f l 'K ( . . ,n^) 

Formulas (3.39)-(3.41) give the parametric solution for a non-relativistic particle's 

trajectory in an arbitrary plane wave background. They are analogous to the well-

known parametric solution of the corresponding relativistic problem (cf. [1,7,36]). 

The four dimensional parametric solution can be further improved by expressing 
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the three dimensional trajectory as a function of the Galilean time, x{t). I t is 
necessary to invert (3.39) and find s as function of t, but this is not possible for 
an arbitrary plane wave background. Sections 3.2.4 and 3.3 are dedicated to solving 
the three dimensional trajectory. 

3.2.4 Orbit of a Particle in a Weak Plane Wave Background 

We will sketch the possibility to solve the trajectory in terms of the galilean time for 

an arbitrarily "weak" plane wave in the leading order of an intensity expansion. 

According to (3.39)-(3.41), if 5 as a function of t is known, s = f ~ \ t ) , the 

classical trajectory can be written in the form of an integral 

xAt) = ^ t - ^ fdt'A^U-'it')), (3.42) 
771 mC JQ 

and 

z{i)=ct-cr'{t), (3.43) 

These formulae, where the function / " ' is to be determined from (3.39), gives the 

non-relativistic paiticle's trajectory as a function of the Galilean time in an arbitrary 

plane wave background. 

A "naive" non-relativistic limit for the solution of a particle's trajectory follows 

from (3.42) and (3.43) if we assume the validity of a 1/c expansion in the denominator 

of the integrand in the expression (3.39). For small enough laser field intensities the 

charged particle's classical trajectory x(£), as a function of the Galilean time t, can 

then be found. 

We denote by ( . . . ) the time averaging of some quantity over one period and the 

dimensionless intensity parameter (3.5) is written in the form 
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The metric is defined as g^i, = diag(H-l, —1) and if the laser is described by a 
monochromatic plane wave we find {A^) = C^\EQ\^I2u}1. I f mc is much larger then 
the momenta, mc — X\\\ % mc and Tl±/vic ^ 0. Assuming a weak background field 
the leading term of an intensity expansion of the denominator in (3.39) gives 

1 
^(5) = 5 + - 7 / 2 / dualiu). (3.45) 

^ Jo 

In (3.45) the normalised potential, a± := A±/y/(A\) has been introduced. 

Therefore, for a background with a small intensity, the auxiliary time 5 can be 

described as a series in the intensity with the lowest order contribution 

1 /"̂  

s = t - - i f j dua\{a). (3.46) 

The 3 dimensional trajectory of a charged particle subjected to a weak electromag

netic plane wave backgroimd is thus given by 

X {t) = —t~^il [ dna_L('u) + . . . , (3.47) 
rn I JQ 

z{t) = - a f / d u a l ( a ) + . . . . (3.48) 
^ Jo 

Higher order corrections can be obtained in a similar way by using the well-known 

Lagrange expansion method over a small parameter [59). 

In section 3.3 it will be shown how to solve the three dimensional trajectory for 

a monochromatic plane wave. 

3.3 The Orbit of a Particle in a Monochromatic Plane Wave 

Let the monochromatic plane wave have an arbitrary polarisation, choose its 

propagation to be in the z-direction and let its frequency be C J L - The gauge potential 



3. Non-Rehitivistic Dynamics beyond the Dipole Approximation 50 

in (3.39) - (3.41) which describes this wave is 

:= a{u) ( o , £COs{u), Vl -e'^s'm{u), 0 j , u = ujy^ ( t - (3.49) 

The parameter 0 < £ < 1 measures the polarisation. The values, e = 0 and 5 = 1, 

correspond to linear polarisation while £^ = 1/2 is circular polai-isation. To model 

a laser beam the profile function a{'a) is assumed to be smooth and slowly varying 

(on the scale of oscillations) and vanishing as u ±oo. For the remainder of this 

calculation, for simplicity, the pulse function is chosen to be a constant, a{u) := a. 

Formally this corresponds to a laser w^ith an infinite length pulse. 

The solution to the equations of motion for the particle depends upon the 

laser field characteristics as well as the particle's initial/boundar\' conditions. The 

laser field is specified by its frequency uji^, polarisation c and the gauge invariant 

dimensionless intensity parameter (3.44) which, for our choice of monochromatic 

wave potential, is 

= iS)' • <-») 
Recall that the solution (3.39)-(3.41) is wTitten with the initial conditions for the 

coordinates so that 

x(0) = 0. (3.51) 

The initial velocity v(Q) := da;/di(/- = 0) is related to the dimensionless constants 

of motion 

^ + : = l - - ^ ^ i , f3^ = {p,.J,):='^, (3.52) 
mc 7nc 

via the relations 

v±{0) = cP^-cne^., (3.53) 

vM = c - C y / p l - i f e ^ + 2ve^ -0^ .. (3.54) 
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where for the electromagnetic background choice (3.49) when £ = 0 the polarisation 
vector, ex = (e, 0 ) . Recall that the system possesses a Galilean symmetry for small 
velocities (see Appendix A) so by choosing the constants v{0) we pass to a certain 
frame of reference. To simplify' the trajectory a transverse boost allows us to pass to 
a reference frame where the transverse velocity*" is 

/3x = 0, (3.55) 

After this boost the particle's longitudinal velocity is 

ft = ^ = 1 - ^Pl - rfe' , (3.56) 

The velocity must be real so Pi > rfe^ . 

With this specific choice of constants we shall find x, y and z as functions 

of the Galilean time t. Here we note also that due to the 27r periodicity of the 

monochromatic gauge potential below we treat all canonical coordinates as functions 

of a point on a circle given in trigonometric parametrisation with the domain 

- 7 r / 2 <u< 7r / 2 . 

3.3.1 Trajectory as a Function of the Laboratory Frame's Time 

The condition (3.26) which, as we will see, guarantees the monotonic character (3.12) 

of the function t(s) and forces the trajectory to be real must be fulfilled. For the 

monochromatic plane wave (3.49) the inequality (3.26) with initial conditions (3.55) 

can be rewritten as 

1 - f.i'^sin'^u > 0, (3.57) 

As it will be shown, fixing = 0, corresponds to zero average transverse velocity, {v±} = 0. 
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where 

Therefore, one can define three allowed domains 

(I) 0 < / i 2 < l , (II) / i ' > l , ( I I I ) M ^ < 0 . 

It will be shown that the solution in region (I) which we call the "fundamental 

domain" determines the solution in all the other regions. I t will be demonstrated 

that the particle's trajectory in the fundamental domain will reproduce the trajectory 

in region (II) if the parameter —* in the "fundamental solution''. Similarly, 

if 2/i in the fundamental solution we reproduce the trajectory found in region 

( I I I ) . Besides these there are two other cases 

/A^ = 0 , and fj^ = 1. 

The solution for both of these parameter values can also be derived from the 

fundamental solution. Note that ft^ = 0 corresponds to either circular polarisation 

or a free particle. Each of these domains and values will now by studied 

Parameters in the Fundamental Domain, (I) : 0 < < 1. 

The inequality (3.57) is true for all the values of u between —7r/2 < tt < 7r/2. 

Equations (3.39) and (3.41) can be rewritten as 

1 f'^''^ 1 

x(s) = — ~ , / — i — arcsin sin(u;L5)l , (3.60) 
uj\. V 1 — ZE^ I J c^L V 1 -

.. (3.61) 
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and the component in the wave propagation direction (3.40) is 

z{s) = ct{s) -cs. (3.62) 

This is the parametric sohition to the equation of motion with parameter 5 from the 

principal interval 

- | < U ; L S < | . (3.63) 

Thanks to the w'ork of L. Euler, A . M . Legendre, N.H. Abel and C.G.J. Jacobi, we 

know^ how to invert (3.59). The evolution parameter s may be described as a function 

of the Galilean time t, using the Jacobian amplitude function (C . l ) , [59,60 

uji^s = am(u;J /.i) , (3.64) 

with mochdus fi and the non-relativistically Doppler shifted frequency 

ujl:=uJi^{l-P,). (3.65) 

For the values of 5 from the interval (3.63), using (3.64), i t can be seen that the 

Galilean time is a well defined increasing function between the interval 

- K ( f i ) < Lult < Kifi), (3.66) 

where IK is the "real" quarter period of the Jacobian elliptic functions (C.7). 

Therefore one can consider the transformation from the evolution parameter s to 

the time t as well-defined change of coordinates on a circle. The useful properties of 

the Jacobian functions are discussed in appendix C. 

Substitute the expression for the evolution parameter in terms of Galilean time 

(3.64) into (3.60), (3.61) and (3.62). Then, using Jacobian property (C.2), we arrive 
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at the trajectory for a charged particle moving in the electromagnetic background 
of a monochromatic elliptically polarised plane wave for the fundamental domain of 
parameters 

^/^(^) = y j j ^ [fisn{u;[ t, ^i)] , ( 

fLcn[ujlt, ft) + dn[uj'i^t, ^ 
yrit) n 

C J L V 1 - 2 £ 2 1 + M 

am 

zrii) = ct- — am(cjLi, f^t) . (3.69) 

The subscript "F" is written to emphasize that (3.67)-(3.69) corresponds to the 

trajectories with the modulus from the fundamental interval 0 < < 1 . 

We have discovered the trajectory of a non-relativistic particle subjected to a 

laser's electromagnetic background without using the dipole approximation. The 

fundamental solution will be analysed in gieat detail shortly and we will discuss the 

type of laser i t is applicable to in section 4.3. 

Solution with Pnnuneters in Domain (II) : / i ^ > 1 . 

In this domain there are two peculiaiities which need to be taken into account. 

Firstly, when / i ^ > 1 the inequality (3.57) is only satisfied when 

> sin^w, where // := — . (3.70) 

This means that the upper limit, uji^s, for the integral in (3.59), lies within the smaller 

interval 

< - arcsin (/x) < ui^s < arcsin {f£) < ~ • (3-71) 
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Second, the standard integral representation for the amphtude function (C. l ) is 
defined for a modulus which is in the interval 0 < < 1. Some simple mathematical 
manipulations are required to transform the integral (3.59) into a form where its 
integrand depends upon the inverse of the par ameter / i , which can be defined as the 
modulus of the amplitude function. So (3.59) becomes 

t{s) = — / ci-^ . (3.72) 

The relationship between the evolution parameter s and the time t for this domain 

is given by 

LO^s = arcsin {jisn {io\j.tt, [t)) . (3.73) 

As required, when the parameter 5 is contained within the interval (3.71) the relation 

(3.73) defines a monotonic increasing function on the interval 

-K(f_L) <ojli^tt<K{^), (3.74) 

On substituting (3.73) and relation (C.2) into the parametric form of the 

trajectory (3.60)-(3.62) we find 

c I 6^ 

/ I 4- 1 
(3.76) 

and 

z{t) = ct arcsin [iisn{uj[^fLt, f i j ) . (3.77) 

These formulae describe the paiticle's trajectory for parameters in the domain, f.L^ > 

1. 
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Sohition with Parameters in Domain, ( I I I ) : / i ^ < 0. 

For this domain the inequality (3.57) is true for all values in the interval —n/2 < 

u < 7T/2 . Introduce the positive parameter, where / . i ^ ;= —K^ . The relation (3.59) 

reads 

Jo 

1 
(3.78) 

while the solutions for the spatial coordinates are 

x{s) = ; arcsmh K sm((x'L5)J , 

y{s) = — — • In 
UJt IK i -h K 

(3.79) 

(3.80) 

Again, we must perform a change of integration variables to (3.78). in order 

to obtain the integral in terms of a Jacobian amplitude function with modulus 

from (0,1). This guarantees that the amplitude function is single-valued. I t is 

straightforward to check that (3.78) is equivalent to 

du 
1 

1 ^ sm u 
(3.81) 

where the upper limit of the integial is 

(j>{s) arcsin 
K' sin(u;5) 

\ / l -h sin^(a;5) 
and '2 1 . 2 (3.82) 

We have now achieved our goal, the modulus of K/K! e (0,1), for all values of / i ^ < 0 

Therefore, the inverse to (3.81) reads 

({){s) = am(tj'^/v'i, K/K) , (3.83) 
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or in terms of the evolution parameter we find 

sn {u'f K f t , K / K ' ) 

dn {uj'fhi't, K/K') 
(3.84) 

Using (3.84), one can rewTite the particle's trajectory in terms of the Jacobian elliptic 

functions with modulus K/K' 

x{f.) 

z{t) 

c qe 
arcsm 

c / / V l 

ct arcsm 
UJ 

K sn{uj'i^K't, K , / K ' ) 

K' dn {bj'j^hi't, K/K') 

1 — men (ti;[ K ' i , K / K ' ) 

(1 - 2K)dn (w^^Ac't, ^^/K.') 

1 sn {uj'i^K,'t, K/K!) 

K' dn {w'l^K't, K/K') 

(3.85) 

(3.86) 

(3.87) 

Equations (3.85)-(3.S7) describe the particle's trajectory in a background charac

terised by / i ^ < 0. The solution is well defined on the interval 

(3.88) 

Parcimeter values fi^ = 0 Sz / i ^ = 1 

Note that vanishing modulus, = 0. corresponds to a circulaiiy polarised 

monochromatic plane wave, = 1/2, or no electromagnetic background, if = 0. 

If fj? ~ 0, then the parametric solution (3.39) which determines the time i as a 

function of the auxiliary parameter s takes on the simple form 

t{s) 
1 - A 

(3.89) 

The equations (3.41) for the spatial orthogonal components reduce to 

x{s) = 
1 c 

- • / / s inwLS: y{s) = -V2—t] 
C . 2 t^L5 

sm (3.90) 
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Therefore the three dimensional trajectory in terms of the Galilean time for /̂.̂  = 0 
is given by 

x{t) = - - L ^ , ^ sin(c^'0: y{t) = ' ^ - ^ V sin^ f ^ A , z{t) = cp,t • 

(3.91) 

From these expressions we see that for a circularly polarised monochromatic wave all 

of the nonlinear effects disappear and one can choose to be in a frame of reference 

where the particle's motion is purely harmonic. The laser frequency W'L is Doppler 

shifted (3.65). 

Finally, for completeness, we derive the orbit for fi^ = 1. The equation (3.39) 

gives 

^(5) = ^ arctanh (sintJi^s) . (3.92) 

and from (3.41) it follows that 

^*^^^""Vi?272^^^ y(^) = y (cosujy^s) . (3.93) 

A l l parameter values have been considered for the particle's trajectory in a generic 

monochromatic plane wave. In the next subsection we will briefly outline how each 

of the different trajectories may be related to the fundamental solution. 

3.3.2 Modular Properties of the Orbits 

As shown above the trajectories' dependence on the polaiisation and intensity of the 

radiation background is contained in the modulus of the elliptic Jacobian functions. 

The doubly periodic elliptic functions have a remarkable property which relates 

functions with different moduli. An elliptic function with periods wi and W2 can 

be algebraically expressed in terms of another elliptic function(s) with periods w\ 

and wty. 
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In our trajectories the modular transformation manifests itself as an intensity 
duality between the motion in backgrounds with different laser intensities. The 
solutions in the fundamental domain may be connected to the trajectory with an 
arbitrary intensity using the modular transformation. Using the relations between 
the Jacobian functions whose moduli are inverse to each other, given in formulae 
(C.21), one can verify that the trajectory (3.75)-(3.77) with / i ^ > 1 follow from the 
fundamental solution (3.67)-(3.69) by the transformation : 

x{t\ii) = x p { t \ l / f t ) , (3.94) 

Similarly if /.L^ < 0. the trajectories (3.S5)-(3.87) are connected to the fundamental 

solution by the shift transformation (C.20) where we transform / . i —* i f i / y / l — {.t^ : 

x{t\^L)=xJt\ . (3.95) 

Note that the special cases of trajectories with fi^ = 0 and = 1 . which were 

considered in section 3.3.1 coincides with the corresponding limits of the fundamental 

solution taking into account that the Jacobian functions are degenerate to the 

trigonometric ( C . l l ) and hyperbolic functions (C.IO) for moduli ft = 0 and f.i = I. 

respectively. 

3.4 Analysis of the Trajectory 

The trajectory has now been ev^aluated as a function of the Gahlean time for all 

values of / i . For each value of fi we have seen that, due to the properties of the 

Jacobian functions, we need only consider the fundamental solution. We will now 

analyse this solution in greater detail. 
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From the fundamental solution, (3.67)-(3.69), one can derive the velocity 

Vx{t) = -C7]£cn{u;'j^t, ^t) , (3.96) 

Vy{t) = -a]\/l-£^sn(uj'^t, m) , (3.97) 

v,{t) = c - c ( l - 0,) dn {uj'f^L ft) . (3.98) 

Using the properties of the Jacobian functions (see equations (C.9) in Appendix C) 

it can be seen that components of the velocity which are in the plane orthogonal to 

the waves propagation are periodic with the period 

T . : = ^ = ^ . (3.99) 

In the direction parallel to the wave's propagation the oscillation period is Tp/2 . 

The frequency of the particle's motion, tjp, differs from the frequency of a laser field, 

t^L; by 

^ P ^ ^ t ^ ^ (3.100) 

There are two differences between the particle's frequency and the laser's frequency. 

The former is Doppler shifted, which is a purely kinematical non-relativistic effect, 

and it depends on the laser's intensity Intensity dependence can be seen because 

the quarter period may be expanded as a function of the parameter /i (C.16). The 

particle oscillates at a frequency which depends on the laser's intensity in a nonlinear 

way. For low intensity lasers, ?; 1, the period of the particle's oscillation can be 

represented by using the expansion, (C.16) to find that 

, f l V l - 2 e 2 / 1 . 3 \ ' ( 1 -

'-^[-2) (T^^^ ' ^+M (n 2 £ 2 ) 2 
(3.101) 

In contrast to the non-relativistic dipole approximated result, the relativistic 
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solution (see chapter 4) predicts that a laser pulse will cause a particle to move in the 
direction of the laser's propagation [9,61,62). This leads to an overall net velocity 
which is called the dHft velocity of the particle. The size of the relativistic drif t 
velocity is proportional to the laser's intensity. Wi th the initial condition Tlx = 0 
the mean velocity for the fundamental solution in the transverse direction is 

(t;x) = 0. (3.102) 

But, in the direction of wave propagation we predict a dr i f t velocity of 

= (3.103) 

This is a nonlinear function of the laser beam's intensity. For small intensities the 

leading order dr if t velocity is 

Another new feature observed when comparing to the dipole-approximation is the 

appearance of higher harmonics in the particle's motion. This can be seen from the 

fundamental solution by using the Fourier series expansion of the Jacobian function 

59,60]. Using the formulas (G.17) one can rewrite the trajectory as 

OO 
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where q is called the name parameter 

r / : = e x p ( ^ - 7 r ^ j • (3-108) 

Note that by using (C.18) the nome q can be written for small intensities as 

1 - 2 ^ 2 
7/' + 0(7?^). (3.109) 

1 6 ( 1 - / ? . ) 2 

These higher harmonic terms are camouflaged in the usual parametric form of the 

relativistic solution [8,37-40]. but are observed in the three dimensional trajectory [9 . 

When the intensity parameter is small one can perform a Galilean boost with 

the velocity V := — {0,0, (v^)) to the average rest frame (ARF). In this frame the 

particle has zero drif t velocity. Its motion is purely a superposition of all harmonic 

oscillations with frequency up . For small intensities equations (3.105)-(3.107) in the 

ARF frame can be written as a series in rj which, up to order i f , are 

{t) = - f£ ,^s ina ; ;^£ , (3.110) 

VARAI) = - — - — n s m ^ l ^ - ^ j , 

c 1 -

Al l of these features, the Doppler shift, the particle's oscillation frequency 

dependence on the laser beam intensity as well as the presence of higher harmonics in 

the particle's motion, leads to several important phenomena worthy of further study. 

Among them there is a non-linear modification to classical Thomson scattering and 

a charged particle's mass/energy shift in the electromagnetic backgi'ound. 
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3.5 Con cl u ding Rem arks 

The relativistic solution to a charged particle's motion in a laser plane wave 

electromagnetic background has previously been found [1,7,9,36]. Non-relativistic 

solutions use the dipole approximation which leads to simple harmonic motion. The 

solution presented within the main body of this chapter is an improvement on the 

dipole approximated solution. First order relativistic effects have been included in the 

system, so the magnetic portion of the force is taken into account. For an elliptically 

polarised monochromatic plane wave the trajectory is written as a function of the 

Galilean time. The trajectory is described by the Jacobian elliptic functions, which 

for weak laser intensities reduce to trigonometric functions. 

The method we used to obtain the solution involved parameterising the non-

relativistic system. This enabled us to follow the same techniques which are 

familiar from the relativistic problem''. Once a specific monochromatic plane wave 

is introduced this parameter can be removed. Having obtained our solution we are 

now in a position to substitute it back into the Euler-Lagrange equations as a final 

check. For the plane wave (3.49), with a{u) = a, and the initial conditions 

x(0) = v{0) = 0, (3.111) 

the equations of motion for system (3.7) are 

d_ 
dt 
d 
dt 

, , eae ( z(t)\ 
mxit) H cos^L I 

V c J c 
0, (3.112) 

eay/l - £2 / z{t) 
m y { t ) -\ C O S U ; L t 

in'z{t) = 

c 
eaujx^ 

= 0, 

C2 
c±(£)sina;L (^t - - Vl - E'^ y{t) cosui^ -

^ In the following chapter the solution for the relativistic problem will be given. As we will see 
a similar method is employed to derive the non-relativistic and relativistic trajectories. 
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By inserting the 2-component of our solution 

z[t) = ct- —am (CJL t. ^L) . (3.113) 

where the parameter 0 < / i ^ < 1, into the equations of motion and by the using 

properties of the Jacobian functions (C.2) it can be seen that 

X = —cEi-icn{uj\J.,^i), (3.114) 

•ij = - c \ / l - eh-isn{ujx^i, ^i) . (3.115) 

Differentiating z{t) the final equation of motion is satisfied u])on recalling that ^L^ = 

(1 —2ê )7/̂ . Since the Jacobian function modulus is proportional to the intensity there 

is an interesting duality between high and low laser intensity which is discussed in 

section 3.3.2. The Jacobian functions take on a different form if /.i^ > 1 and / i ^ < 0. 

An analysis of this solution enables us to predict a non-relativistic drif t velocity, 

which has never been predicted by a non-relativistic treatment. I t is possible to 

explore whether other relativistic features, such as the mass-shift, are expected non-

relativistically. We observed that the period of the orbit depends upon the laser 

intensity ?/. Since our solution is not pai^ametric it contains all harmonics. The 

Jacobian functions can be expanded as a Fourier series. Thus the higher harmonics 

are not a solely relativistic phenomenon. 

Looking forward, the derivation of the canonical transformation between the free 

and interacting theories generating function will enable us to construct a quantum 

mechanical description. This is important for the study of laser atom interactions. 

The trajectory will enable us to derive a modification to Thomson/Compton 

scattering. Important effects such as electromagnetic dressing and a charged 

particle's acceleration due to a laser may be studied. 



4. RELATIVISTIC CHARGE SUBJECTED TO T H E 

BACKGROUND OF A LASER 

In chapter 2 we introduced the idea of re|)arametrisation invariance and we saw that 

the system describing a free relativistic particle has this property. In chapter 3 we 

introduced a parameter into the system describing a non-relativistic charged particle 

interacting with a plane wave background. This makes the non-relativistic system 

more akin to the relativistic problem. The relativistic system has previously been 

solved and the methods used in chapter 3 for the non-relativistic parametric solution 

are virtually the same as those used for the relativistic solution in [7,8]. The only real 

difference comes about in the canonical transform, since for the relativistic theory it 

makes sense to transform to a free relativistic system. Since previous authors have 

studied this solution before, and the methods are familiar to us from the previous 

chapter, the parametric solution will only be sketched. 

During this solution relativistic four-vector notation will be used and the metric is 

defined as g^'" = diag(-|-l, —1). The derivation of the parametric solution in section 

4.1 will closely follow the method employed by [7,8]. Features of the parametric 

solution are presented as well as a discussion of some 'missing' features which are 

camouflaged in the parametric form. Sengupta [9] went beyond the parametric 

solution and derived the three dimensional trajectory. This w^ork wi l l be commented 

on and we shall find a new alternative method to derive the three dimensional 

trajectory in section 4.2. After studying the relativistic trajectory i t is possible 

to further motivate the non-relativistic solution beyond the dipole approximation. 
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which we do in section 4.3. 

4.1 Parametric Solution 

A laser produces a Lorentz force on a particle within the laser's beam. This is 

described by the equation of motion 

'^ = eE + - v x B . (4.1) 
dt c 

where p = myx and 7^ = (1 - i ; ^ / c ^ ) " ^ The only difference between (3.6) and (4.1) 

is the relativistic 7 factor. The Lagrangian from which (4.1) is derived is 

^ ' ^ ^ ( ^ ^ ^ d r j -^-Hdfd^ -cdr- ' '^(-^ '*(^))^ 

using the standard variational technique. Note that the first term in (4.2) is just the 

free kinetic energ>^ term and the second term is equivalent to the interaction studied 

for the non-relativistic system. The laser beam is described in exactly the same way 

since the laws of electromagnetism are relativistic. The Lagrangian is a homogeneous 

function of degree one in the velocities so it is reparametrisation invariant and the 

canonical Hamiltonian vanishes. Note that the parameter s ^ x^, s will later be 

interpreted as the light-cone time. The conjugate momenta to x'^ is 

p - = 7 n c ^ - ^ / i r (4.3) 

and it is split into a free and interacting portion. The time evolution is described by 

the mass-shell constraint 
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This is the constrained Hamilton-Jacobi equation for the relativistic system. 

The laser background is once again modelled by an arbitrary plane wave. The 

gauge potentials in (4.2) take on the form 

A^{xA) = A^\0- (4-5) 

They are a function of only one dimensionless variable ^ where ^ = n x. The 4-vector, 

n}* = ( l , n ) / c . where n points in the direction of the plane wave's propagation and 

7?2 = 0. The Lorentz gauge is imposed on the vector potential which reduces to the 

condition that n - A{^) = Q. 

The process employed by (7.S] to solve the equations of motion (4.1) will now be 

described and then carried out. A canonical transformation to the free relativistic 

system with variables (A''', U^) will be derived using the constrained Hamilton-Jacobi 

technique described in section 2.4. A relationship between and A^'' exists due to 

the canonical transformation. After finding this relationship, a gauge fixing of the 

reparametrisation invariance will be done in the light cone gauge. As in chapter 3 

the parametric trajectory will have been discovered. 

The relativistic constraint (4.4) is used with the constrained Hamilton-Jacobi 

method (2.77). Let 52 be the generating function of the canonical transform. Replace 

the canonical momentum in the Hamilton-Jacobi equation, (4.4) by 

From the definition ^ = 7i-x it can be seen the coordinates perpendicular to the plane 

wave's propagation direction are cyclic so the generating function may be separated 

into the form 

s^ix, n) = - X • n + n ) . (4.7) 
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Using this definition the Hamilton-Jacobi equation (4.4) becomes 

rnc^ -n^ = %:A^A^ - 2n • ~ 2-U • A. (4.8) 
c 

The left hand side of this equation describes the free theory. If the right hand side is 

set equal to zero then the new coordinates will obey the free theory and its equations 

of motion can be solved as in equation (4.13). In order to absorb the laser field into 

the canonical transformation we find the generating function (4.7) must have the 

term 

(4-9) 

The n's are momenta from the free theory so they are constants of motion and may 

be taken outside the integral. This is somewhat less complex than the non-relativistic 

particle's solution because the trajectory will be real for all values. We have specified 

that the particle is initially at the origin at time t = 0 through the initial condition 

J^(0. n ) = 0. There is no inequality like (3.26) to concern us in the relativistic theory. 

From the theory of canonical transformations 

The total Hamiltonian for the new coordinates is 

/ / = ^A(s) (n^ - (rncf) , (4.12) 

here A is a Lagrange multiplier function for the time evolution mass-shell constraint 

and reflects the reparaiiietrisation invariance of the system. In the free relativistic 
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system the equations of motion can be solved 

.Y"(5 ) : = A; ' ; , + n'' r duX{u). (4.13) 

The constants A^/^ will be set equal to zero. The parameter 5 can now be gauge fixed 

in the light cone gauge, s = ^ = x • n. By d o t t i n g - i n t o (4.10) it can be seen that 

X 11 = X • n and fi'om (4.13) we find 

^ \ / . A ( . ) = - ^ . (4.14) 

Therefore (4.13) becomes A ' ' ' = —sW/U n and the gauge fixed parametric trajectory 

(4.10) reads 

(4.15) 

This is the most general parametric solution describing the motion of a relativistic 

charge in a laser field. To derive the trajectory in terms of the proper time we note 

that the proper time is the arc length of the world-line 

To go further an explicit choice of plane wave must be made. Before studying the 

three dimensional solution some features of (4.15) will be discussed and we specialise 

the solution to the specific gauge choice (3.49). 
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Effective Mass 

The time averaged 4-veIocity may be calculated from (4.15) and (4.16). The 4-

velocity 

ds dx^ 1 
c n • n \ 2c^ c dr ds m 

can be averaged over one period of the plane wave 

dx^\ 1 

(4.17) 

{in = dr / m. 
(4.18) 

Define the quasi-momentum, := 711(11^'), it obeys a free mass-shell constraint, 

:= {rn*c)^ where m' is the effective mass. The relativistic particle moving within 

a laser field is often described using these quantities. The averaged effect of the laser 

field is absorbed into these quantities. Using these quantities the sj^stem is effectively 

describing a free relativistic particle with mass m* and 4-momenta q^. The effective 

mass is 

^ 777,2 - . (4^9) 
Lr 

This is the same quantity which was discussed in the introduction (1.5). For non-

relativistic theories there is no mass-shell constraint which makes the non-relativistic 

mass-shift harder to find. 

DnTt Velocity 

The Lorentz gauge reduces to a • A = 0. We now make the final gauge choice, 

0 = 0. This gauge condition forces the gauge potential to be perpendicular to the 

laser beam. As discussed in section 2.1. = 0 to avoid having a net electric field. 

An elliptically polarised laser beam travelling in the positive z direction is modelled, 
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as in (3.49) 

^ " ( 0 = ft (O,£cos{^), \ / l - c 2 s in (O ,0 ) . (4.20) 

As mentioned after (3.49) the pulse function has been simphfied a(^) = a. As we 

shall see. the form of the drift velocity is much more insightful if it is derived from 

a specific monochromatic plane wave. 

Re-uTite the free theory's momentum by introducing the dimensionless velocity 

parameter 0^ i» tl̂ e standard way 

U>' = -j=={l.O.O..P.) . (4.21) 

It helps if we employ the notation from [36] and let 

The parametric trajectory for the specific gauge potential is found by substituting 

(4.20) into (4.15). in the new notation it is found that the parametric trajectory as 

a function of the proper time (4.16) is 

1 + Q-̂  J 2a 
1 l - 2 £ 2 / I . 
-t^LQT ( - sm (2u;LQr) 

^ o , e s i n ( a ; L a r ) , 2 v / r ^ s i n 2 ( 5 ^ ) , o) , (4.23) 

with 7/ = ea/rn.c^, as derived in (3.50). 

The average three velocity of a particle is defined as 
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which for a particle with motion (4.23) gives 

This is the diift velocity of the relativistic particle in a laser field. As before, the 

average rest frame ( A R F ) is the frame in which the drift velocity is equal to zero. 

For the specific choice in initial constant which leads to 

= 1 + ^ (4.26) 

we have the initial velocity' in the A R F , 

Since tf > 0 then > 1, and the initial velocity PARF < 0 and dependent on the 

intensity. Before switching on the laser pulse the particle is moving in the negative 

z direction, or towards the laser. The parametric trajectory in the A R F is plotted in 

figme 4.1. using (4.26) and (4.23). for a linearly polarised laser it can be seen that 

the particle moves through a figure of eight. 

The proper time, which parameterises (4.23), can be very different from the 

reference frame time if the particle moves at relativistic v^elocities. The fi = 0 

component of (4.23) has not been inverted so the relationship describing r as a 

function of the reference frame's time is unknown. It is of course possible to use (4.23) 

numerically, but this is not ideal. The higher harmonic oscillations, observed for the 

non-relativistic solution (3.105), are not apparent in (4.23). The^^ are camouflaged 

by the parametric solution, but they will become apparent in the following section 

when we discuss the three dimensional relativistic trajectory. 
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Fig. 4A: Parametric relativistic trajectory for a linearly polarised [s = 1) laser beam with 
optical wavelength A = lOOOnm and intensity if = 1/2. The orbit is the well 
know figure of eight. 
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4.2 Solution in terms of the Average Rest Frame's Time 

Sengupta [9). after his equation (33) discusses an analogy between his equation and 

Kepler's equation [46 

t = ip -esin-ip. (4.28) 

Kepler's equation is usually associated with a planet's elliptical orbit, with eccen

tricity e, about the sun. Inverting Kepler's equation, so that the trajectory of a 

planet can be written as a function of the time, attracted much research in the 

eighteenth and nineteenth centuries. Researchers have found over 100 methods to 

invert Kepler's equation. Sengupta merely comments on this analog}', but we have 

found a frame in which the fi = 0 component of (4.23) is equal to Kepler's equation. 

By studying the /i = 0 component of (4.23) and letting the particle be in the 

A R F frame (4.26) Kepler's equation is found as 

1 „ 2 Q _ 9^2) 
2uji^t = 2aujtT - -—— ^-s\n{2aujir). (4.29) 

4 

Only in the A R F is t the observable time because time is transformed under Lorentz 

boosts. The inversion of Kepler's equation will now be outlined. We will differentiate 

(4.29) with respect to 2auJi^r then taking the reciprocal of the subsequent equation. 

Finally this will be expanded in terms of a Fourier cosine series [59,63]. Let ip = 

2au}LT and the 'eccentricity' is 

Differentiating Kepler's equation with respect to ip and inverting yields: 

dip 1 

d(2u;L^) 1 - ecos-t^ 
= f W - (4.31) 
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Here f{ip) can also be thought of as a function of 2u!i^t, since the aim of the analogy 

with Kepler's equation is to write r as a function of t. Since if > 0 the eccentricity 

e| < 1 and the function. / is even, so a Fourier cosine series may be used to describe 

it. 

27r Jo l-ecosip fr^ Jo l-ecosip 

After a change of variables to -ip using (4.31) the integials can be evaluated using 

identity (9.1.21) from reference [63] 

1 /•̂ '̂  
— / d.Tcos [z/(2x - esin2.7;)] = 2J„(£/e) 
^ Jo 

(4.33) 

Here Ji,{ve) are Bessel functions [59,63]. After integration (4.32) becomes 

f{2ui^t) = 1 + 2 ^ cos{2uuiJ)J^{i^e), (4.34) 

which may be inserted into (4.31) to obtain 

2auji^T = 2ujLt H- 2 ^ - (i/e) sin{2uuji^t) (4.35) 

Equation (4.35) can be substituted into (4.23) to give the equation for the relativistic 

trajectory in the A R F in terms of the A R F time, we find 

Cc 
X = — sm 

y 

z — 

2 c s / l ^ 
sm 

1 1 °° 1 
9 (^^) sin{2uLUi^t) 2 ^ v 

c { \ — 2e^\ f if \ °° \ 

(4.36) 

(4.37) 

(4.38) 
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Therefore the equations of motion (4.1) have been solved as a function of the reference 
frame's time. Through the Bessel functions all harmonic oscillations are present, 
as was the case for the non-relativistic beyond dipole solution. This leads to the 
modification of Thomson scattering (see e.g., the basic references [8,37-40] and for 
the recent direct experimental observation of the second harmonics [41]). 

It is interesting to compare weak field expansions in the A R F for the relativistic 

and non-relativistic theories. This can be done by expanding the Bessel functions 

using identity (9.1.10) from reference [63 

M'^)={U] TAT^^^^- (4.39) 

Here f is the gamma function and r(7?. 4- 1) = n\ as can be seen in pl61 of [64 

Expanding (4.35), using (4.39) to lowest order in the laser field strength gives 

1/; 
2auji^T = 2uJi^ + ---^(1 - 2£')sm{2<jJi^). (4.40) 

4 a 

Using Taylor expansions we may calculate an expansion in the intensity /; to any 

order. The trajectory in the A R F as a function of the A R F time, to order f f , is 

•''•ARF(0 = - — ? ; s i n u ; L ^ (4.41) 

c 1 - 5 
^arfW = — • — V sin2uji^t. 

References [12,24] indicate that the value of the intensity parameter if ^ 0.1 is when 

we expect relativistic effects to become prominent. It is interesting to compare the 
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same expansion for the non-relativistic solution (3.110), which we repeat below 

^ • A R P ( 0 = - ^ v s i n u j l t , (4.42) 
I 

?/AaF(0 = - -7 Vsm^ 
\ - / L 

ujf^ » ( 1 - P A R P J 

and relativistic solution (4.41) since the two should coincide when the non-relativistic 

theory is valid. At first glance there appear to be differences. T h e non-relativistic 

solution (4.42) contains factors of the initial velocity ^ A R F the z component and 

through the Doppler shifted laser frequency a;[ = (1 — PARF)^L- However, we know 

that PARF is a function of 7/ from (4.27) so (4.42) must be Taylor expanded. At order 

if the relativistic and non-relativistic solutions describe an equivalent trajectory, but 

if we then go be^'ond this level it appears like deviations between the two theories 

appear. 

The inversion (4.35) can only be done in the A R F , which has the specific 

relationship between the initial velocity and intensity = 1 -h because it is 

only in this frame that Kepler's equation (4.29) is produced. However, this may be 

generalised, since it is possible to conduct a boost into the A R F . Consider the system 

before the laser pulse is activated, i.e. at t = - 0 0 . Then (4.21) can be interpreted 

as the physical 4-momentum of the particle so P: is the 3-velocity. We know that in 

order to be in the A R F the initial 3-\^elocity must be 

fi'om (4.26). A Lorentz boost from a general frame with velocity, P^ to the A R F which 

has 'initial' velocity PARF may be constructed. Using the composition of velocities 
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formula, given on page 31 of [65), it is found that the boost velocity must be 

^^os. = (4 + ^ , ) ^ ^ ^ ( 4 ^ , , , ) • (4.44) 

Therefore, using this boost parameter, \ve can solve the equations of motion (4.1) in 

terms of the reference frame's time, for all frames and laser intensities. 

To conclude we have re-derived the relativistic parametric solution and observed 

effects such as the mass-shift and drift velocity. However, the parametric solution 

disguises the higher harmonics and complexity of the actual three dimensional 

trajectory. Solving the three dimensional trajectory in the A R F allows us to vastly 

simplify the derivation in [9] by using Kepler's equation. 

4.3 Parameter Region between Dipole and Relativistic Solutions 

It has been shown by H.R. Reiss [24] that there is a large domain where the particle 

can still be considered as non-relativistic but we must include the effect of the 

magnetic field i.e. go beyond the dipole approximation as in chapter 3. 

It is well known that in the A R F the parametric solution for the relativistic theory 

(4.23) predicts that a linearly polarised laser beam causes a charge to move in a figure 

of eight, as displayed in figure 4.1. As the velocity induced by the laser decreases the 

figiu-e of eight will narrow and eventually reduce approximately to simple harmonic 

motion predicted by the dipole approximation. The "small axis" is in the direction 

of the plane wave's propagation, chosen to be z for solutions within this thesis. The 

size of the small axis of the figure of eight is a measure of the force applied by the 

magnetic field. If this dimension becomes as large as the size of an atom then the 

departure from the dipole approximation should have physical manifestations. 

In the average rest frame of a relativistic particle, for a Unemly polarised laser 

propagating in the z direction the parametric trajectory has been solved in (4.23), 
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the 2-coniponent of which is 

' = 8 ^ ( T r f e p sm(2.,yrTW2r) . (4.45) 

Conduct an intensity expansion in i f , then study only the amplitude of (4.45), ZQ, 

which is 

. 0 = ^ ; - . ^ (4.46) 

The magnetic field has physical manifestations if ZQ > ap, the diameter of a Bohr 

atom [24]. Using the definition of the laser intensity parameter (3.5) the recorded 

intensity is equal to 
O t; 9 

It can be seen that the magnetic field has no physical manifestations when the 

intensity 

Relativistic effects may be observed w-hen if > 0.1 (as motivated in [12.24] and 

observed by comparing (3.110) and (4.41)). From (4.47) it can be seen the relativistic 

solution is needed when 

From (4.49) and (4.48) it can be see that there is an intermediate parameter region 

where one must go beyond the dipole approximation and incorporate the magnetic 

field but relativistic effects are not required. The non-relativistic solution beyond 

the dipole approximation is valid for a wider range of parameters then the dipole 

approximated solution, as displayed in figure 4.2. By comparing figiu-es 1.1 and 4.2 

we see that the particle is acciu-ately described by the non-relativistic theory for 

lasers, which by today's standards, are strong. 

Very short wavelength laser pulses lead to rapid oscillations with small magnitude. 
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lntensity(W/cm''2) 

Fig. 4.2: Domains in which individual solutions are valid for a charge's motion in a linearly 
polarised laser's electromagnetic background, as found in [24] 
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The direction of the force applied by the magnetic field alternates frequently (4.1). 
The dipole approximation must be invalid to experimentally differentiate betw*een 
the dipole approximation and the relativistic solution. This may be seen in figure 
4.2 when A becomes very small, approximately A < 1.05 x 10"®. 

It is now sensible to plot the previously unknown beyond dipole trajectory for a 

non-relativistic particle (3.67). since w-e now know what laser intensities this solution 

is valid. We also conduct a boost to the A R F to display graphs. The motion is 

essentially the same shape as that produced by the well known relativistic parametric 

solution. As discussed above, the charge's orbit appears as a figure of eight for a 

linearly polarised laser, which is displayed in figure 4.3(a). For circularly polarised 

laser beams, it is well known [20] that the motion is circular as shown in figure 4.3(b). 
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Fi^. 4.3: Trajectory' for a non-relativistic particle beyond the dipole approximation for a 
laser beam with intensity / = 8.55 x 10*®VV/cm^ and wavelength A = 10~*̂ m. In 
diagram (a) the beam is linearly polarised and in (b) circularly polarised. The 
non-relativistic particle is initially at rest at the origin before the laser pulse is 
switched on. 



Part I I 

UNOBSERVED BACKGROUNDS AND INFRARED 

DIVERGENCES 



1. INTRODUCTION 

When considering the interaction between particles colhded by a powerful accelerator 

it is necessary to go beyond the classical consideration of part I. Attempts 

made to combine relativity and quantum mechanics failed which led researchers 

to describe the interactions of fundamental particles using quantum field theory. 

Particle physicists describe the electromagnetic, weak and strong forces using gauge 

theories. In quantum electrodynamics ( Q E D ) interactions between electrically 

charged particles are mediated by massless spin one particles which are called 

photons. It is an abelian theory described by the unitary group U{1). Particles 

with colour charge are described by quantum chromodynamics ( Q C D ) . Similarly 

this force is also mediated b\̂  massless spin one particles called gluons. However 

Q C D is a non-abelian gauge theory described by the group SU{3). This leads to 

there being more than one type of colour charge (red, green, blue and their anti-

colours) and the gluons carry colour charge. This makes it possible for a gluon to 

interact with other gluons. It has been shown, through deep inelastic scattering 

experiments, that low energy gluons form a large proportion of the matter within a 

hadron [66j. The weak interaction is also described by a SU{2) gauge theory, but in 

this case the gauge symmetry is broken (or hidden) and the gauge bosons and 

Z acquire a mass. This model also unifies the weak and electromagnetic interactions 

into a single larger gauge theory called the electro-weak theory. T h e combination of 

the electro-weak and Q C D theories is called the standard model of particle physics. 

Data gained from accelerator experiments matches the theoretical calculations for 
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observable quantities we can calculate^ The L H C will be coming into operation 

during 2008 so there shall be a lot of new data available thereafter to compare with 

the predictions made by the standard model. 

Experimentalists collide two particle beams together at high energies then observe 

the final state particles. Then this is compared to the theoretically calculated cross-

section, which is a measure of the probability that a certain scattering process will 

occur. The first step in calciJating the cross-section is to identif^^ all the possible 

processes which have in common the same initial and final state particles. We 

may also include processes involving particles which the experiment cannot detect, 

which we refer to as degenerate processes. For example consider Coulomb scattering. 

the process where an electron is scattered electromagnetically off a nucleus. The 

initial and final states are the electron and nucleus. Feynman diagrams are drawn 

for the processes which contain these initial and final states. There are several 

different diagrams to consider, some of these processes are shown in figure 1.1. The 

contribution to the cross-section for each of the diagrams must be calculated using 

the Feynman rules. There are an infinite number of diagiams to consider but for 

perturbative theories the coupling constant is small so in practice we may stop 

considering new processes at some order of the coupling. The tree-level diagram, 

displayed in figure 1.1(a), is the simple scattering of an electron off the nucleus by the 

transfer of a virtual photon. This is the lowest order approximation in perturbation 

theory. Higher order corrections come in several degenerate forms, for example, 

bremsstrahlung displayed in figure 11(b) (the experiment is not sensitive enough to 

detect the emitted photon) and a virtual photon correction figure 1.1(c). However, 

these higher order diagrams are difficult to calculate because they contain infrared 

and ultraviolet singularities. 

The ultraviolet divergences exist at small distance or l£U*ge momentum scales. 

' See [11] for a review of the precision tests which have taken place to confirm the predictions 
made by Q E D . 
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Fig. 1.1: C o u l o m b s c a t t e r i n g of a n e lectron off a s t a t i c nucleus a t tree-level ( a ) a n d some 

next to leading order effects: b r e m s s t r a h l u n g (b ) a n d v i r t u a l ( c ) . T h e photon on 

the left h a n d side of the d i a g r a m s is not e x t e r n a l . 

These divergences are well understood through the renornialisation group [67, 6S . 

The singularities are absorbed into the bare parameters and the field strength of 

the Lagrangian [68] as the large momentum degrees of freedom are removed. When 

calculating with renormalised perturbation theory the physical values of the mass, 

coupling strength and field strength must be used. 

The infrared divergences have a dynamical origin. They arise because of the 

massiessaess of the gauge bosons in Q E D and Q C D . This means that the force can 

propagate over long ranges [3,69.70] which correspond to small momentum. There 

are two different types of infrared singularities called soft and collinear divergences. 

Consider the bremsstrahlung diagram in figure 1.1(b). Let the out-going electron 

have momentum^ p'^ and the emitted photon have momentum k'^. Both these 

momenta are on-shell, this means that p'^ = and A:'̂  = 0. The intermediate 

electron propagator has the denominator 

(1.1) 
(7/ -h k'Y - m? 2?/ . k' 

If the photon momentum A:'̂  0 it is easy to see that the propagator diverges. 

2 T h e notation used to prime the final state particles momenta will be useful when considering 
more complex diagrams. 
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This is called a soft infrared singularity and it generates a divergence in an S-matrix 

element calculation. When the energy of a photon is referred to as soft it means 

that the photon has energy 0 < u;' < A . Here A is some upper cut off. above which 

the photon would be detected in a particular experiment. CoUinear divergences are 

present in scattering experiments where there aie massless charged particles (e.g. 

gluons) or if the energ>^ of the electron is much larger than its mass E' ;» rn. For 

the latter case the electron is effectively massless so |p'| ^ E'. Then the propagator 

may be wTitten as 

2/y • k' E'LJ'{\ - cose) 

where 9 is the angle l:)etween the electron and photon momenta 3-vectors p' and fc'. 

If ^ = 0 then (1 — cos^) vanishes and w-e obtain a collinear divergence. Collinear 

divergences occur in massless and high-energy theories when particles are emitted 

or absorbed as they travel parallel to each other. We will use a small electron 

mass m to regulate collinear singularities. When calculating the contribution to the 

cross-section from a high energy process with collinear particles ŵ e obtain factors 

0{\nrn) which diverge as we let m return to zero. To summarise, we find that if 

the momentum of an internal line within a Feynman diagiam is on-shell then the 

cross-section contribution for the process will be infrared divergent. 

The soft infrared problem is much worse in asymptotically free theories such as 

QCD**. The coupling strength grows \v\th the distance scale so the soft dynamics 

are much more important, because there is a much higher probability of emitting or 

absorbing soft particles. When calculating matrix elements from Feynman diagrams 

one usually makes the assumption that as £ —* ± o o the interactions are 'switched 

off' (see page 165 of [l] and [69]) and the particles become fr-ee. This is in direct 

conflict with the long range nature of Q E D and Q C D . In Q C D hadronisation shows 

that interactions occur far from the scattering centre. The dynamical origin of the 

^ For a discussion on the problems cancelling soft divergences in Q C D see (71,72) 
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infrared problem will be discussed further in chapter 3. 

In the particle physics community the consensus of opinion is that the 5-

matrix is infrared divergent but the cross-section is inftared safe. Papers have been 

wTitten which explain that all the infrared divergences, produced by degenerate 

processes contributing to the cross-section, may be combined in such a way that 

the singularities cancel. There are two widely accepted ideas which deal with the 

cancellation of infrared divergences at the level of the cross-section. These are called 

the Block'Nordsieck theorem [2,73,74] and the Lee-Naueiiberg theorem [5] which is 

sometimes referred to as the Kinoshita-Lee-Nauenberg theorem. It is widely believed 

that the combination of these two ideas removes both soft and collinear divergences. 

Bloch-Nordsieck is used to cancel soft divergences and, after this is complete, Lee-

Nauenberg is used to remove collinear divergences. It is vital we fully understand the 

singularities appealing in physical theories and this thesis aims to provide a greater 

insight into the application of the underlying theories behind infrared divergence 

cancellation and expose some unknown complications. 

The Bloch-Nordsieck paper was published in 1937, one of the earliest papers 

on Q E D . Lee and Navienberg was published their work in 1964. Although several 

authors [10, 75-78] have revisited some aspects of the arguments used by Lee and 

Nauenberg, there has not been a systematic reappraisal of how their method should 

be applied to high-energy or massless gauge theories when there are both initial and 

final state degeneracies. Processes which have hadrons in the initial states obviously 

have both types of degeneracy. Given the relevance of precisely this type of process 

to the forthcoming L H C era in particle physics, such a reassessment of the role of 

the Lee-Nauenberg theorem is needed. This reassessment was started by Lavelle and 

McMullan [10] and during this thesis we will extend their work. 

Bloch and Nordsieck recognised that in, for example, Coiilombic scattering 

there is always the possibility to emit a soft photon off either the out-state, 
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displayed in figure 1.1(b), or in-state electron. The inclusive cross-section formed 

by summing over all possible soft final state photons and virtual processes is soft 

infrared finite. However, when one deals with high-energ\' or massless theories, 

there are also collinear divergences which are not removed in the same way. Lee 

and Nauenberg wanted to extend the Bloch-Nordsieck mechanism to include the 

coUineai- divergences. Building upon lessons learnt through explicit calculations by 

Kinoshita [4], they were able to prove a general quantum mechanical result. When 

applied to a field theory with massless fields, their argument concludes that cross-

sections are free of both soft and collinear divergences if summed over both final 

(Bloch-Nordsieck processes) arid initial degenerate states. By degenerate they mean 

degenerate in energj' up to the resolving power of any given experiment. They do not 

explicitly investigate how soft divergences cancel but simply assume "the infrared 

divergence has already been eliminated by including the contributions due to the 

emissions of soft photons" (see the discussion following equation (20) in [5]). Lavelle 

and McMullan have shown that there is an inconsistency in this cancellation [10 

which we will review in chapter 4. The authors of [78] claim the Lee-Nauenberg sum 

of initial and final state degenerate processes represents physical reality so further 

research is required. 

The inconsistency discovered by Lavelle and McMullan could be interpreted 

to mean that the Lee-Nauenberg proposition fails. However, it is a fundamental 

quantum mechanical result and we may need to fully embrace the Lee-Nauenberg 

theorem for all infrai*ed divergences. Using Coulomb scattering as an example we 

want to see how the Lee-Nauenberg theorem should be used in practice in field theory. 

Prom a modern point of view Lee-Nauenberg use some non-standard techniques that 

obscure a full understanding of their method and hide some important consequences 

of this approach to the infrared. 

In chapter 2 a discussion of Yang Mills theory is presented which is specialised to 



J. Introduction 90 

Q E D . Q E D is the simplest gauge theory in the standard model but it contains all the 

infrared problems. The asymptotic dynamics of Q E D is studied in chapter 3 to gain 

a greater insight into the physical reason behind this problem. In chapter 4 we move 

on to analyse the standard ways used to remove infrared singularities from the cross-

section. The Bloch-Nordsieck theorem will be performed to all orders, ŵ e discuss how 

Lee-Nauenberg is used for colUnear divergences and the inconsistency in cancelling 

soft and collinear divergences is presented. A new class of coUinear divergences will 

be identified. In the final two chapters ŵ e embrace the Lee-Nauenberg proposition 

for all infraied divergences and study the simultaneous cancellation of soft and both 

typGS of collinear divergences for processes contributing to the Coulomb scattering 

cross-section at next to leading order in perturbation theory. 



2. YANG MILLS THEORY 

Here we review Yang-Mills theory [79] which is used to describe different fundamental 

forces. Some features of the Lagrangian for Yang-Mills theory will be presented and 

some specific properties of Q E D and Q C D are covered. 

In Yang-Mills theory the force is mediated by gauge bosons which are described 

by vector fields / l ° ( x ) . The index a labels the internal degrees of freedom. The index 

//. refers to the space-time component of the vector. In four dimensions they appear 

to have four degiees of freedom (per space time point per internal degree of freedom) 

but we know spin one gauge bosons only have two. The gauge bosons can interact 

with other vector fields and matter with coupling strength g. T h e field strength 

F°^^(x) is constructed ft'om the vector fields by the formula 

= d^Al - d^Al + gr'^A'^Al, (2.1) 

here en'e the structure constants which ai*e totally antisymmetric. Yang-Mills 

theory with no matter present is given by the Lagrangian 

Even in the absence of matter it may be seen that this system is nontrivial and 

interacting because gauge bosons carry a charge for non-abelian groups. In Feynman 

diagram language this leads to three and four gauge boson vertices. 

In physical theories matter is present and interacts with the gauge bosons. The 
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Dirac matter term of the Lagrangian is 

Co = i^{iip-m)ilj, (2.3) 

where Z?^ = d^^ — igA^^T^ and are the representation matrices of the group used 

to construct the theory and obey a Lie algebra. The spinors -0 may have several 

different charges associated with it depending on the group. The full Yang-Mills 

theory is given by the Lagrangian 

C = £ Y M + £ D + ^ G . F . + ^Ghosts • (2.4) 

The gauge-fixing £ G . I - . and ghost terms ^chosis are added to cancel the unphysical 

gauge boson degrees of freedom and the freedom associated with the gauge 

transformation (see page 63 152 of [80]). 

The radiation and matter terms in (2.4) are gauge invariant. This means that if 

the fields undergo a transformation 

•IIJ [ / - V and U-'A,,U + ^U-'d^U, (2.5) 

where = / l ^ T " and UeSU(N), the Lagrangian is invariant. With the gauge 

fbcing and ghost terms the gauge symmetry of the Lagrangian is lost. It is replaced 

by B R S T symmetry which is related to gauge invariance. However, for the topics 

studied in this thesis it is not important. 

It is wwth noting that if we looked at the Hamiltonian formulation of Yang-Mills 

theory the conjugate momenta to the AQ variable is zero. The conjugate momenta 

constraint is interpreted to mean that AQ is an unphysical degree of freedom in the 

system w^hich must be removed through gauge fixing. Using the Dirac-Bergmann 

algorithm, which is discussed in part I section 2.3.1. to preserve the constraint for 
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all time leads to Gauss' law. Gauge fbcing the constraint leads to the gauge fixing 

term in the Lagiangian. In Q E D Gupta and Bleuler (see page 87 in [81]) have 

shown that by using the positive frequency part of the Lorentz gauge the time-like 

and longitudinal photons cancel one another. This leaves only the two physical 

transverse photonic polarisations. For Q C D , using Faddeev-Popov method and a 

Lorentz gauge condition one introduces 'ghosts'. These ghosts can be thought of as 

'negative' degrees of freedom which cancel the unphysical gluon freedoms. 

Renormalisation of ultraviolet divergences leads to a 'running' coupling constant 

6S]. In Q E D the coupling strength becomes weaker for less energetic pai'ticles. 

Howev^er. Q C D is an asymptotically free theory (providing the number of fermion 

species in the representation is sufficiently small, n.f < 16), its coupling decreases 

as energy increases. Therefore the probability of a soft particle interacting is much 

more likely than an energetic particle. The matter in the theory are called quarks 

and they come in triplets 

'0=(V'r.^g.0b), (2.6) 

which corresponds to three colour charges (red, green and blue) and anti-colours. 

During Q C D scattering experiments one never observes a free quark but we see 

jets of hadrons. Much experimental focus for over more than 30 years aimed to 

decipher the exact composition of a hadron. Deep inelastic scattering experiments 

have shown that a significant amount of material within a hadron is in the form of 

soft gluons [66]. This means that there are interacting massless charged particles in 

the final state of a scattering experiment. For L H C processes there are protons in the 

initial state, so it also contains massless charged particles. The presence of massless 

charged particles means that there will be soft and collinear infrared singularities 

present in cross-section calculations. 

A much simpler theory which contains massless charged particles in the initial and 

final states is high-energy or massless Q E D (e.g. Compton scattering). The fermions 
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and photons aie massless and will lead to both soft and collinear singularities. The 

infrared problem is a feature shared between Q E D and Q C D although asymptotic 

freedom means the singularities associated with soft particles are much more severe 

in Q C D . In order to explore infrared divergences in a simpler arena we study high-

energy Q E D which is governed by the Lagrangian 

CQED = -\F,,F^^ + i ; { i i p - m) + Cc.F., (2.7) 

as m —> 0. This is formed from the Yang-Mills Lagrangian using the U{\) group. The 

Feynman rules used for calculating scattering amplitudes in Q E D are discussed in 

appendix D and can be derived from the Lagrangian as in [68]. The aim of the work 

in this thesis is to develop a sound understanding of the infrared problem in high-

energy Q E D . We will not tackle the infrared problem in Q C D or other Yang-Mills 

gauge theories. 



3. THE INFRARED PROBLEM - ASYMPTOTIC DYNAMICS 

Here a method introduced by Kulish and Faddeev to probe the soft dynamics of 

Q E D will be followed [3,69]. By exploring the asymptotic dynamics of Q E D we can 

discover the physical reason for the infrared problem. 

As noted in (2.5) neither the vector potential or matter fields are unique. The 

gauge transformation for Q E D may be wTitten in infinitesimal form as 

A*'{x) A^{x) + a^x(x) , -tPix) e'^'^iPix). (3.1) 

This leads to the conclusion that only two of the four components of the vector 

potential are physical [44,81] but. in contrast the gauge dependence of the matter 

field is not usually interpreted to mean that the matter fields are un-physical. This 

occurs because it is assumed in the L S Z formalism of Q F T that the coupling e —̂  0 

at the asymptotic limit. Even in Q E D the 1/R fall-off (where R is the distance) in 

the interaction between two charges is too slow to be neglected at spatial infinity [3] 

so the non-interacting regime is never reached. This is much more obvious in an 

asymptotically free theory such as Q C D where hadronisation shows that interactions 

still take place at large separations from the initial scattering site. It will be 

illustrated that the asymptotic interaction means it is possible to create an infinite 

number of particles. 

The method used by Kulish and Faddeev will now be outlined. L i the interaction 

picture (see [81] page 22-24 for a discussion on the Schrodinger. Heisenberg and 

interaction picture) the time evolution of an operator is given by the free Hamiltonian. 
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These fields are labelled as Tree' in the following calculations. The interaction 
Hamiltonian determines the evolution of physical states. The L S Z formahsm of Q F T 
assumes that the interaction Hamiltonian vanishes for early and late times so the 
Heisenberg and interaction pictures agree. The asymptotic dynamics are expected 
to be like that of a free theory. However if the interaction does not vanish it cannot 
be neglected. 

In Q E D the interaction Haniiltonian [69] in the interaction pictme is given by 

HUt) = - e J cl'xA^it., X ) 4 J L x ) , (3.2) 

where the current J^^J^t.x) = -ifj^^^Y'^^^^i^':^) • The free fields can be expanded in 

terms of their creation and annihilation operators (see page 58 in [68]). Inserting 

these expansions into (3.2) results in 8 terms with time dependence of the form 

e"̂ ^ Here ip involves different sums of energy terms from the fields contributing to 

the interaction Hamiltonian. These terms have been studied in the t ± o o limit. 

The argument used by Kulish and Faddeev (see also [69,82] and the discussion in 

supplement S4 of [83]) is that only if ~+ 0 can these terms contribute to the 

asymptotic interaction. If 7̂  0 then, on average, // i„i(dioo) = 0. A more rigorous 

description of this is given in [84]. Denote the energ>' of the emitted/absorbed photon 

by uJk and the 'electrons' energy before and after the interaction as Ep and Ep+k-

When (jjb ~ 0 the photon is soft. Two terms in (3.2) can meet the condition —> 0 

when tok 0, these aie = ±{Ep+k — Ep ± ujk) which meet the condition since 

£^p+k ^ Fp. This can only take place in a theory with massless exchange particles 

which can have zero energy*. There is no infrared problem associated with weakly 

interacting particles because their gauge bosons are massive so u;^ > 0. It can be 

shown [1,3,69] that the interacting Hamiltonian does not vanish asymptotically, it 

If a particle has a mass it has a minimum energj' given by the famous formula, E = jncP. 
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is given by 

(3.3) 

with 

) = 
' J i2n 

{b''iP)b%P) - cl''{p)d^{p)) X I) (3.4) 

Here b^^ and d^^ create fermions and antifermions and 6̂  and annihilation fermions 

and antifermions. The current is proportional to the velocity p/E multiplied by the 

number operator of particles minus the number operator of antiparticles. Q E D ' s 

asymptotic dynamics aie not free since H^^^ 0. Therefore the coupling cannot 

be taken to zero in Q E D (or Q C D ) . The fermion in the Lagrangian is not gauge 

invariant. This means it cannot be associated with anything physical such as the 

electron. Note that we have not discussed the collinear singularities at all here, an 

asymptotic discussion of these divergences is contained in [84.85 . 

When studying the asymptotic limits of the matter field it is found that [69] 

rP'^ix) = I ^ ^ - ^ D ( p . . t) [b^{p)u^ip)e-"'- + d^^^{p)v%p)e'''-] .. (3.5) 

where D{p, t) is called a distorting factor. This distortion may be split into two terms, 

one is a phase factor which can be neglected [83], the other component depends on 

the soft dynamics of the system. Only the soft dynamics contribute to the asymptotic 

fields. This soft distortion operator modifies the creation and annihilation operators 

. Jsoh (27r 

(3.6) 

(3.7) 
)3 2cj V p.k ' p.k 

The asymptotic limit of the matter fields are a coherent state of vector field operators 
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and matter. This operator no longer has a single particle interpretation, it does not 
even act in a Fock space. This is the infrared problem and has lead to the view 
amongst some theorists [3] that no relativistic particle description is possible for 
the electron. The view taken in references [69, 86, 87] is that the matter field ip 
is unphysical therefore it should not be surprising if its asymptotic limit is also 
unphysical. We will not explore this approach here and instead move to analyse 
the more established method for dealing with infrared singularities in the remaining 
chapters. 



4. FROM BLOCH-NORDSIECK TO LEE-NAUENBERG 

Dmung this chapter we will explore many degenerate processes contributing to the 

Coulomb scattering cross-section. Infrared singularities will be evaluated, and we 

will attempt to cancel all divergences using a combination of the Bloch-Nordsieck 

method and the Lee-Nauenberg proposition. 

Tree-level Coulomb scattering is represented by the diagram drawn in figure 4.1. 

We will now evaluate the cross-section contribution to claiify the notation we use. 

The electron is scattered off a nucleus with charge = 1 and the four momentum of 

the electron before scattering \s = {E,p) and after scattering is p'^ = {E'.p'). 

Using the Feynman rules for Q E D , given in appendix D, the tree-level cross-section 

is 

where we introduce the shorthand notation v! = u{p') and n = u{p). The convention 

adopted for all diagrams is that out-going/final state particles are primed and in

coming/initial state particles are not. Since the nucleus is static the energy of the 

in-state and out-state electrons is the same, E = E'. The exact form of the source 

is irrelevant, the only thing that matters is that it is static, so for simplicity we will 

drop factors in the denominator of (4.1) from now on. Other processes related to 

Coulomb scattering at the level of the cross-section will be considered in the following 

sections. 
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Fig. 4.1: Tree-level Coulomb scattering 

P 

Fig. 4.2: Next to leading order virtual contribution to Coulomb scattering 

4.1 The Virtua.1 Process 

A v i r tua l photon wi th momentum k is emit ted f rom the ' i n ' state electron and 

absorbed by the 'out ' state. This diagram associated w i t h this process is displayed 

in figure 4.2. A t order e** this diagram contributes via interference w i t h the tree-level 

process in the cross-section. A p p l y i n g the Feynman rules in the Feynman gauge we 

find tha t this process is equal to 

J ( 2 ^ ) ^ ((p - ky - m?){{p' - ky - m2)] fc2 
(4.2) 
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sandwiched between the tree-level spinors. These integrals w i l l be regularised using 
dimensional regularisation [68] so D is the number of dimensions. By changing the 
number of dimensions, D = 4 — 2£, one can render the integi'al temporar i ly f ini te so 
i t may be calculated. Please note that the external legs have been amputated in this 
discussion so 5-mat r ix elements are being studied. Af t e r a l i t t l e Dirac algebra the 
following integrals are found that must be solved 

where 

and 

4p • p ' 7 ° / , - 2(;i7o7'' + 7%o/')/2 + (D - 2){g,py° - 2'r,g°p)lf] .. (4.3) 

r _ I ( 4 4 ) 

' J (27r)« [((p - - m2)((p' - ky - m^)] k^ - ^ ' ' 

r - f j ^ ^ ! ( 4 5 ) 
'^-J {2n)D [((p - k)^ - •m2)((p' - ky - rn^)] k^ - ^ ' > 

rP ^ f (4 6) 
J (27r)0 (((p - ky - m2)((p' - ky - m^)) ' ^ ' > 

Through power counting of the momentum k i t may be seen tha t some of these 

integials diverge. The ultraviolet divergences are regulated by lowering the number 

of dimensions. To regulate the in f ia red divergences we increase the number of 

dimensions £ = -SIR. There is an ul t raviole t divergence associated w i t h I^^ and 

an inf iared divergence associated w i t h The other integral, /2 : is f in i te . 

The v i r tua l process modifies the tree-level vertex so we must replace 

/ _ (^^0{i ^ ^^(^2)} + ^ F 2 ( 9 ^ ) ) . (4.7) 

The integrals / i , and I^^ are related to the fo rm factors F i and F2. The anomalous 

magnetic moment ^2(0) is infrared safe. Here Fi is of order and 1 -h Fi(0) is the 
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charge of an electron in nnits of e. Therefore Fi (0) = 0 to all orders, this is guaranteed 
by the Ward identi ty (see chapter 7 of [6S]). 

Calculations may be carried out in the Brei t frame where the on-shell four 

momenta p^^ = vij{l,v) and p'' ' = 7717(1,-1;). The velocity in the Brei t frame 

is related to the energ\' transferred to the nucleus, Q"^ = —(p'-pY t>y 47;^/(l —v^) = 

+ Q ^ / m ^ . Performing on-shell renormalisation to remove the ul t raviole t divergence 

and neglecting any f ini te terms as either CJR —> 0 or m —^ 0 we f ind 

1 A (Q 

(4.S) 

where l/im = 1/CIR - f 7 — ln(47r) and / i is the mass scale which enters dimensional 

regularisation. Here we have also mul t ip l ied by a factor of two since the v i r tua l 

diagram can only contribute through interference terms at this level of the cross-

section. The v i r tua l diagram contains both soft and. when s tudying high-energy 

processes. coUinear I R divergences which must be removed by combining 2F\ w i t h 

other degenerate processes. 

4.2 Soft Emission a.2id the EikonaJ Approximation 

Soft emission, represented by figure 4.3, is degenerate w i t h the tree-level process. The 

momenta ;/ | and k' are both on-shell and related to the tree-level electron momentum 

p' = p\ -\- k' so that the to ta l energy' in the out-state is the same as the tree-level 

process. The spinor for an electron w i t h momentum p\ is wr i t t en i n our shorthand 

notat ion as IL\ . The photons have energy' uj' which must be less than the out-state 

energy resolution of the detector, Aout, or the photon w i l l be detected. Of course, i f 

the photon is detected then i t w i l l not contr ibute to the Coulomb scattering cross-

section. 

First consider only the emission of a soft photon w i t h momentum k' f r o m the f inal 
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+ 

Fig. 4.3: Soft photon emission from (a) the initial state electron and (b) the final state 
electron 

State fermion which is represented in figure 4.3(b). The ampli tude is modif ied by an 

additional vertex and electron propagator. This leads to the fol lowing modif icat ion 

of a spinor in the ampli tude 

(4.9) 

where £ is a small parameter. Here we have neglected the photon polarisation vector 

temporarily, i t w i l l be reinstated when we come to consider the cross-section. In 

the li terature calculations involving soft photons are s implif ied through the eikonal 

approximation [88.89] which tells us to let —^ 0 in numerators. Through on-shell 

power counting we can see that the dropped te rm is soft finite. Next commute 

the i}\ past the gamma mat r ix and use the Dirac equation. Thus using the eikonal 

approximation (4.9) is simplified to 

XL (4.10) 

Note that here the Feynman rules for a spin 1/2 particle are used. Due to the 

eikonal approximation the emission of a soft photon modifies the ampli tude for 
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charged particles w i t h any spin in the same way [88]. The eikonal approximation 
removes the spin dependence fi 'om the calculation. Divergences correctly reproduced 
by the eikonal approximation are spin independent. Later we w i l l see that this 
approximation does not correctly account for al l collinear divergences, which are 
spin dependent divergences. 

The emission 5-matr ix for bo th processes in figure 4.3 is 

' 2p; • k' - ^° 2 p . k' ' 

where e'' = e*{k',X') and A' is the polarisation label for the photon. Using the 

eikonal approximation we drop 0{ljt') in the numerator of (4.11). Also the spinor 

approximation u\ ~ a' can be used (see appendix E) . which removes some soft 

finite terms. Af t e r the emission process is squared up. so tha t i t is a cross-section 

contr ibut ion, a sum over polarisations must be evaluated. The general ident i ty for 

polarisation sums is 

A' 

where the unit t ime-like vector 7/̂ , = ( L O ) . However, after using the eikonal 

approximation in (4.11) only the first part of (4.12) needs to be used because 

gauge invariance is manifest. W i t h the eikonal approximat ion the polarisation 

sum is mul t ip l ied by the conserved current associated w-ith the classical change of 

momentum (see page 177-178 in [68]). 

To find the final contr ibut ion to the cross-section an integral over a soft cone w i t h 

maximum energ}' Aout w i l l be performed, i.e. 

2 
e 

soft 

I d-^k' ( ^ p ^ 
J {2-n)'^-'2w'\p k'v k' [jy-k'Y (p-/c')V 
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To compare w i t h the v i r tua l process this is also evaluated in the Breit frame and 

gives 

4/7 rr2 

1 

771' 
^ In ̂  - 1 - : r l n ^ ^ + l n 

Q'-

nv 
Q'-„ , , l + 21n2 + ln - f 
77l2 I \ \ /i2 

14) 

where Aout is the energy resolution in the Brei t frame. Soft emission produces soft 

and coUineai- divergences which may be combined w i t h the v i r t u a l process at N L O 

in the cross-section. 

Block-Norclsieck Cancellation of Soft Divergences at NLO 

The cross-section at 0{e'^) is modif ied by the v i r tua l and emission processes 

do_ 
(in 

= e'^\u-f^u\- ( I H - 2 F i + soft emission) (4.15) 

Adding (4.8) and (4.14) in (4.15) leaves only collinearly divergent terms 

Q 
n I — 

in 
^ + l n 2 - . n P 
4 V A out 

(4.16) 

Hence, soft divergences are removed by Bloch-Nordsieck bu t collinear divergences 

s t i l l remain. Later, we wi l l prove tha t the soft singularities are removed for al l 

orders in perturbation theory by the Bloch-Nordsieck method. T h e cancellation of 

all collinear divergences at one-loop level w i l l be the main topic for the remaining 

sections. 

I t is simpler to work in the lab frame of the static nucleus when evaluating 

collinear singularities so now we wi l l t ransform (4.16) into this frame. The momenta 

in the Brei t frame may be re-wri t ten in terms of the Brei t frame energy E = 7717. 

The energy transferred to the nucleus may be wr i t t en as Q'^ = 4771̂ (7̂  — 1). Pul l ing 



4. From Bloch-Norclsieck to Lee-Nauenberg 106 

out a factor of E i t can be seen that 

(4.17) 

where E is the electron's energj ' in the Brei t frame. Since is Lorentz invariant we 

can use i t to relate energies in the two frames, we f ind 

Eshy{^4>) E 

AoutSin2(i(^) Aoui 
(4.18) 

where (p is the scattering angle for the electrons in the lab frame, we see that the 

residual collinear divergence describe by (4.16) contributes to the cross-section as 

In -
rti " ( £ ) . (4.19) 

where we have dropped some colhnear f ini te terms. Note tha t the cross-section is 

experimental detector resolution dependent. 

To conclude, using informal notation, the Bloch-Nordsieck cancellation amounts 

to 

/ \ 
/ 

/ 
\ 

\ 
= - — + — . (4.20) 

By including the v i r tua l and eikonal approximated soft emission processes the N L O 

cross-section is soft f ini te . However, i f we were to study high-energy Q E D the 

logari thm in (4.19) produces collinear singularities ' . 

' We consider an electron with a very small mass as opposed to truly massless QED 
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4.3 CoUinear Divergences and the Lee-Nauenberg Theorem 

The processes considered by Bloch and Nordsieck axe degenerate w i t h Coulomb 

scattering in the final state but equivalent to Coulomb scattering i n the in i t i a l state. 

We w i l l now consider two other types of degeneracy which we cal l collmear and 

initial state. The inconsistency discovered by [10] in the simultaneous cancellation 

of soft and collinear singularities w i l l be presented. 

I n the high-energy and/or massless l imi t ( s ) the in i t i a l and final state electrons 

move at the speed of light. I f the photon is emit ted parallel to the f ina l state electron 

then both particles pass through the same point of a detector at the same time. Given 

that detectors have finite angular resolution 6, they can only measure the total out

going energy of the pair of particles E. This collinear configurat ion provides another 

degenerate process to consider. Note tha t these photons may have any proport ion 

of the energy in the electron leg 0 < LJ' < E, however we have already included soft 

photons w i t h energy 0 < c j ' < Aout h i the Bloch-Nordsieck cancellation. We can 

s t i l l include the collinear photons w i t h energy .Aout ^ ^ E in the cross-section 

for Coulomb scattering and we call these semi-hard collinear photons. Note tha t 

i f a semi-hard photon is emit ted collinearly to the in i t ia l state electron i t would be 

detected in the final state and contr ibute to a different process. 

In the final state we have collinear and soft degeneracies. I t is possible to also 

have both these types of degeneracies in the in i t i a l state, this is obviously the case 

at the L H C since i t has hadronic in i t i a l states. For the case of Q E D and L E P we 

could always have soft photons entering the experiment w i t h the incoming electron. 

I t is also possible to absorb semi-hard photons travell ing collinearly to the in i t i a l 

electron beam. I f an in i t ia l state semi-hard photon is not collinear t o the in i t i a l state 

electron when i t is absorbed i t w i l l be detected because its energ>' is greater than the 

experimental resolution. The experiment's abi l i ty to detect photons may not be the 

same in the in i t ia l and final state so we include different resolutions Ai„ and AQUI for 
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in i t ia l and final state degeneracies. There may also be different angular resolutions 
for in i t i a l and final states, but we let Jjn = Jout = since this w i l l not mod i fy our 
conclusions. 

These extra degeneracies mean we must add several more S-niatr ix elements to 

the Coulomb scattering cross-section. We can consider semi-hard emission ( f rom 

either electron) collinear wi th the final state electron or semi-hard absorption (on 

either electron) collinear w i t h the in i t i a l state electron. Soft absorption may also 

be considered on either the in i t i a l or final state electron. These processes w i l l 

produce addit ional infrared divergences so the question is whether the sum of these 

singularities cancel. According to the Lee-Nauenberg theorem the soft divergences 

have already been taken care of via the Bloch-Nordsieck method, so w'e are only 

interested in removing the remaining collinear divergences (4.19). Therefore we omi t 

any soft photon effects other than those Bloch-Nordsieck consider becau.se we do 

not want to re-introduce soft divergences. We only consider degenerate semi-hard 

collinear emission and absorption. I t is impor tan t to note in wha t follow^s tha t 

emission, displayed in figure 4.4, is the complex conjugate of absorption, shown in 

figure 4.5. Therefore, at the level of the cross-section |emissionp = |absorptionp. By 

recognising this we do not need to per form the same calculation twice. 

A semi-hard photon may be emi t ted collinear w'ith the final state electron off 

either electron line, but i f the photon is emit ted off the in-state electron (see figure 

4.3(a)), i t wi l l not produce a divergent intermediate propagator. The propagator 

denominator {{p — k'Y + ie)'^ = {2p • k')~^ and p k' ^ 0 since the three momenta 

are not collinear. The internal line w i t h i n figure 4.3(a) is not on-shell. However, we 

do need to consider the semi-hard emission process shown in figiu-e 4.4. As before 

the momentum / / : = p\ + k', where p\ and k' are on-shell but p ' is not, unless the 

photon is collinear. Denote the energy in the out-going electron Ei = E - u'. The 
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Fig. 4.4: Semi-hard collinear emission b}' the out-going electron 

S-Matr ix for this process is 

(4.21) 

where ii\ = u{p\)- Once this is squared-up and the spin traces have been evaluated 

we find the cross-section contr ibut ion 

(p\ • k'Y 4(7/, • ^'){P\ • enip\ • P) - 4(p'i • nip • ^')(P\ • k') 

-2(e'' niP • k'){p\ • k') (4.22) 

where p is defined by ^ = 7*̂ /̂ 70 so that 4p • p' = \u'^^u\'^. Prior to integrating over 

all the possible momentum of the semi-hard je t of photons, we need to sum over the 

photon polarisations. In contrast to the soft case, where we could simply replace 

^pf'iT by —g^w. we now need to use the f u l l identi ty (4.12) because gauge invariance 

is not manifest in (4.22) 
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A f t e r summing over polarisations in (4.22), we f ind 

Pi 
( l + ' ^ ) 4 { p \ - p ) + ( l + ^ ) A { k ' . p ) (4.23) 

where we have dropped all collinear finite terms. As discussed in Appendix E for 

collinear photons and electrons we can wri te , up to collineai' finite terms, 

k' •p = p' - p ^ and p\ •p = p' p - ^ . (4.24) 

Hence (4.23) becomes 

We can now use this to bui ld up the inclusive cross-section for the emission of collinear 

photons. Since the emitted photon we aie considering is not soft, the in-coming and 

out-going electrons have different energies. We follow the lead set by Bethe-Heitler 

who say that for the cross-section we must include an energy weighting factor equal 

to the electron energy out divided by the electron energy in Ei/E ( for references see 

section 5-2-4 in [ l ] , page 499 of [90], page 244 of [49] and the original paper [91]. For 

an interpretation see page 309 [92]). The resulting cross-section is given by 

2 f d^k' Ef + E^ E, . 
^ I ^ ^ ^ ^ ^ l J [2.f2u.'{p\-k')E.'-E-

semi-hard 
cone 

The coUinear divergences are contained in the l/p\ -k' term and take on an obviously 

singular f o r m when integrated over the angle between the electron and photon. This 

can be seen by wr i t ing 

/ 2 \ 

p\ - k ' ^ E . L j ' - Lj' cos By ^E[^ - m2 = '^u'Ei (^e^, + ~y (4.27) 
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Fig. 4.5: Collinear absorption by the in-coming electron 

here is the (small) angle between the out-going electron and photon in the lab 

frame. T l i e electron mass and angle Oi are small so we have Taylor expanded above. 

Performing the angular integration over the cone w i t h opening angle <5, the 

angular experimental resolution, we get 

collinear finite terms have been omit ted . This final integral can be evaluated to yield 

the cross-section for semi-hard collinear emission: 

1 e" , fEi6 
2 ^ ' " U r 

3 . r E \ A o u t ^ l A ^ ^ ^ - i 

4 VAn.. , y E 4 E^ 
7 7 V u 2 . (4.29) 

In equation (20) of their original paper [5] Lee and Nauenberg do not wTite down 

the terms 0(AonJE, AlJE^), 

Comparing this result w i t h (4.19) we see tha t jus t including the out-going semi

hard collinear photons does not completely remove the residual coUineEU- divergences 

since there is a factor of a half i n (4.29) which obstructs the cancellation of 

the divergent terms found in (4.19). Lee-Nauenberg now include the in-coming 

degenerate process whereby a semi-hard photon is absorbed by the in-coming 

electron, displayed in figure 4.5. then we w i l l get another cont r ibu t ion equal to (4.29) 
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and we see the cancellation of the mass logarithms in (4.19) 

e' , f E S \ 
— In — 
7r2 V m J 

1 A 2 
out 

E A E^ 
v:-i\i\\ (4.30) 

There are several comments which must be made. The first and most obvious 

comment is that (4.30) is st i l l collinearly infrared divergent. Lee and Nauenberg 

neglected these terms, which we call A divergences, but we observe from (4.30) that 

they must be considered. The ordinary l n ( m ) terms in (4.29) have been cancelled and 

from now on these aie referred to as regular collinear divergences. T h e In(Aout) l n (m) 

divergences have also cancelled but in order to achieve this cancellation we have 

insisted A j , , = A o „ f This was the conclusion reached by Lee and Nauenberg following 

their equation (21). 

There are s t i l l collinear divergent terms in (4.30) that are linear and quadratic in 

^o\ii/E and these must be cancelled in order to get a collinear finite cross-section. 

To trace what is going on here, we note tha t these terms come f r o m the semi-hard 

energ}' integi'al in (4.28) which may be split into two terms: 

\n{m) / ''^^ duj' = 2E^\n(7n) / L _ + i n ( m ) / {uj'-2E)dw'. (4.31) 

I t is possible to remove all divergences above, but we must treat the integrals in an 

inconsistent manner. In the first term i t is essential tha t the lower l i m i t of Aout is 

kept otherwise we would reintroduce the soft divergences. Singularities or iginat ing 

f rom the first t e rm are cancelled via the Lee-Nauenberg method in (4.30). However, 

the second term is finite as Aout —* 0 so we are missing the collinear singularities 

produced by photons which are soft. The separation between soft and semi-hard 

photons is not a division between soft and collinear divergences. 

The authors [10] traced where such terms where dropped in the Bloch-Nordsieck 

mechanism. I n the discussion fol lowing equation (4.11) we used the eikonal 
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approximation and dropped factors of k' in the numerator. This has t l i rown away 

a relevant collinear term so we must go beyond the eikonal approximat ion for soft 

cross-section contributions. The corresponding te rm in ( 4 . 2 1 ) generates the divergent 

terms Lee-Nauenberg failed to cancel in ( 4 . 2 9 ) . Reinstating this momentum in ( 4 . 1 3 ) 

and integrating the energy f rom 0 to A o u i : we see tha t ( 4 . 1 9 ) should be replaced w i t h 

e \ f E \ \ 3 , f E \ 'out 
2E 8£;2 

( 4 . 3 2 ) 

This represents the Bloch-Nordsieck analysis w i t h all collinear terms retained. Now 

we see that the Bloch-Nordsieck treatment beyond the eikonal approximat ion of a 

soft photon emission (4.32) w i t h the emission of semi-hard collinear photons (4.29) 

results in the cross-section 

le' , f E \ \3 / E 
( 4 . 3 3 ) 

To summarise, using diagrammatic notat ion, the Aom collinear divergences are 

removed via 

Jo beyond 
eikonal 

f 
( 4 . 3 4 ) 

In section 4.2 we saw that the eikonal approximat ion omits the spin dependence of 

the propagator, so the A divergences may be spin dependent. 

I t is important to note that here we are s t i l l only considering photons emit ted 

collinear w i th the out-state electron. As mentioned, the cross-section contr ibut ion 

( 4 . 3 5 ) 

beyond 
eikonal 

does not force an internal line to go on-shell. Therefore we do not get any addit ional 
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singularities. However, for the process in (4.35). we could consider soft emission 
parallel to the in i t ia l state electron. Th i s w i l l force the propagator to go on-shell 
and produce collinear divergences. This process is degenerate to tree-level since the 
photon is soft. The aim in this chapter is to discuss what is done w i t h i n the hterature, 
we w i l l re turn to this diagram i n chapter 6. 

As expected, (4.33) is s t i l l collineai'ly divergent and we need to include the 

contr ibut ion f rom ini t ia l degenerate states. Now, though, we face a problem not 

addressed in [5]. Soft in i t ia l states aie not included in the Bloch-Nordsieck analysis 

so there is no equivalent, consistent procedure similar to (4.34) for including in i t i a l 

soft photon contributions that are not infrared divergent. Hence we are forced to 

simply add the in-coming version of (4.29) to (4.33). This t ime we do not insist that 

Ai„ = Aout and we find 

l e " , f E 
A ; J In ^ + 

Ain A ^ 
E 4£;2 

i z V - a p . (4.36) 

Even by going beyond the eikonal approximat ion we cannot remove the A diver

gences. Regular collinear divergences ai'e successfully removed by Lee-Nauenberg 

theorem since the eikonal approximation is not used for semi-hard processes. 

The only way to remove the divergences in (4.36) is to consider soft absorption 

collinear w i t h the in i t ia l state electron beyond the eikonal approximat ion. How

ever, since |emissionp = |absorptionp we know the soft absorption cross-section 

contr ibut ion wi l l reintroduce the soft divergences which Bloch-Nordsieck cancelled. 

Therefore there is no consistent way to remove bo th soft and collinear divergences^ 

simultaneously. 

Contrary to the procediu-e in [5], we must not treat the sof t and collinear 

divergences using a mixture of Bloch-Nordsieck and Lee-Nauenberg arguments 

^ One couid inconsistently remove all divergences by including only the collinear terms arising 
from soft absorption and neglecting the soft divergences. However, this clearly makes no physical 
sense. 
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separately. This does not necessarily mean tha t the general Lee-Nauenberg 

proposition is wTong. W h a t i t does mean is tha t we need to understand how to 

consistently deal w i t h both soft and collinear initial and filial state degeneracies. 

As we have seen, the naive inclusion of absorption f rom in i t i a l soft photons w i l l 

double the soft infrared divergences that arise f rom real processes and hence lose 

the Bloch-Nordsieck soft cancellation. This suggests that the mechanism for infrared 

cancellations is more subtle than expected. 

In chapters 5 and 6 we wi l l embrace Lee-Nauenberg proposit ion for both soft 

and collinear infrared divergence and examine i f all divergences may be cancelled for 

the Coulomb scattering process. Before moving on to this i t w i l l be interesting to 

discover i f a mix ture of Bloch-Nordsieck and Lee-Nauenberg theorem works for any 

processes, which we w i l l cover in the fol lowing section. In section 4.4 we wi l l consider 

the summation of soft divergences to al l orders which wi l l uncover v i t a l informat ion 

regarding the experimental energ\' resolution. 

4.3.1 Processes with just Final State Degeneracies 

Let us. for the sake of argument, assume there are no in i t i a l state soft degeneracies. 

A j n = 0. and the in i t ia l state particles are massive^. This could be a L E P process 

e+e" qq —* jets, represented in figure 4.6. where the quarks are very l ight. This 

assumption cannot be taken at the L H C because the hadronic in i t i a l states are 

messy but at L E P the in i t i a l states are cleaner than at the L H C so this unrealistic 

assumption is more plausible. This gives a counter example to the Coulomb 

scattering process where the Bloch-Nordsieck and Lee-Nauenberg cancellation takes 

place as expected. 

Since the in i t i a l states are completely clean we do not consider absorption and 

^ The experiment has been set up so that we are 100 percent certain what is in the initial state. 
This is of course an unrealistic assumption, but it leads to situations where the Lee-Nauenberg 
theorem works for all infrared divergences. 
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Fig. 4.6: L E P process e'̂ e —>• qq —* jets where the quarks are taken to be very light 

because the initial state particles are massive there can be no collinear degeneracies. 

Therefore we may only include soft emission and virtual processes for the initial 

states so the soft singularities are remov^ed by the Bloch-Nordsieck method. 

The final state particles are massless so there are also collinear divergences 

present. However, for the process in figure 4.6, a collinear emission off both the 

fermion or anti-fermion can be soft or semi-hard. Soft divergences can be removed 

using Bloch-Nordsieck so we only have collinear singularities to deal with. Regular 

collinear divergence may be removed by Lee-Nauenberg, in a similar way to the 

Coulomb scattering case, by considering semi-hard emission off both legs. Since the 

photons can be soft or semi-hard on both final state legs the resolution dependent 

Aout collinear divergences cancel if one goes beyond the eikonal approximation for 

the Bloch-Nordsieck calculation. Therefore we conclude that Lee-Nauenberg works 

for processes with clean initial states'* i.e. only final state degeneracies. 

If Ain 7̂  0 this cancellation will be ruined by soft and collincar absorptions. 
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Fig. 4.7: Coulomb scattering including hard virtual processes 

4A Summation of Soft Divergences to all Orders 

The AouL coUinear divergences are naively removed in (4.30) if the Umit AQUI —* 

0 is taken so in this section we will serve to reinforce why this cannot be done. 

By studying the summation of soft divergences to all orders we will uncover vital 

information regarding the experimental energy resolution. The are two reasons why 

Aout 7̂  0- Firstly, any real experiment has a non-zero resolution for both in-state and 

out-state. We would not be describing a physical scattering experiment if Aout = 0. 

Another reason came in [88.93], as Yennie et al developed a method to sum up soft 

divergences from emission and virtual processes to all orders in perturbation theory. 

Consider a Coulomb scattering process where we have included effects from hard 

virtual processes, figure 4.7. The following discussion can be extended to a more 

general process involving any number of initial and final state fermions [88], but for 

simplicity we only consider one electron in each state. The amplitude for this process 

we call M^''^\ The effect of n soft virtual and /V real soft emitted photons on the 

amplitude will now be considered. The number, yV, of soft photons emitted is related 

to the number of virtual soft photons by N = 2n. 
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Fig. 4.S: Example virtual photon contribution 

Soft Virtual Photons 

Virtual soft photons also contribute to the amplitude, an example process is shown 

in figure 4.8. Let q be the momentum of each of the n virtual photons. Since loop 

momentum is integrated over there is no need to use a diffez'ent symbol for each 

virtual momenta. The momenta in the virtual loops must be constrained because 

later in the calculation virtual and emission processes are going to be combined. 

Therefore it is necessary that the virtual momenta it not so large that the eikonal 

approximation (4.10) is invalid. This leads to an upper limit A for the virtual photon's 

momentum, A is arbitrary so observable quantities may not depend upon it. For the 

time being we regulate the infrared divergence with a small photon mass A [88.93). 

therefore X < q < A. When the virtual and emission processes are combined the A 

dependence will be removed so we can set the photon mass to be zero again. 

For each virtual photon the amplitude is modified by a photon propagator factor 

(4.37) 
q^ + IS 

and new electron propagators. At each order of perturbation theory there are many 
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different virtual processes that can contribute to the amplitude. Some combinatorics 
must be done to evaluate the number of ways we can link the 2n interaction vertices. 
There are 2n ways to choose the first vertex and 2??, - 1 ways to link it to another 
vertex, there are now 27i-2 remaining vertices to choose to link to another vertex, etc. 
A factor of (2n)! is obtained. However, some of these factors reproduce equivalent 
diagrams, so we have over-counted. It does not matter which vertex we choose first, 
we still get the same diagram which leads to a 1/2" factor. It also does not matter 
which way the lines are chosen. Swapping the photon propagator lines makes no 
difference and removing this over-counting give a factor of l/n\. T h i s leaves 

different virtual diagrams. The (277,)! factor is absorbed into the soft emission process. 

The total effect on the amplitude at all orders for n soft virtual photons is 

V , < ^ . = M < ' ^ ) y : ^ r ^ ^ - ^ ^ ] - (4.39) 

—p • q — ie —p • q + ie ̂  

Several comments are in order. The amplitude M^^^ includes soft and hard virtual 

photons and yV/*'̂ ' is the amplitude where soft virtual photons are neglected (i.e. 

figure 4.7). For electron self-energy diagrams the mass-shift effect is not being taken 

into account, since it is infrared finite in four dimensions, but the field strength 

renormalisation is included. This has the effect of replacing a (p^ —77î )"^ propagator 

with an extra (7; •( /)"' propagator. Therefore the fermion pole structme above is 

formed. In the second set of brackets there is a factor of —p • q because the photon 

is absorbed on this electron leg. Note that the effect of the virtual photons may be 
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exponentiated 

M(^) = A'/f'̂ * exp ) . (4.40) 
_d^q I 

P/i PM 
• q-ie - p • q + le 

These integrals in (4.40) may be evaluated, for qo the method of residues must 

be used. Details of this calculation can be found in [88] which finds the amplitude 

«<>. . M'» (A) ' • „ . e , e = | i [± ,„ ( l ± a ) - 2 . 

(4.41) 

Here /3 is the relative velocity between the in-state and out-state fermions and 0 < 

P < I. The function A{p p ) is positive for all This can be squared up so 

that at the level of the cross-section 

= f ^ ] ( ^ ) (^-^2) 

This formula is surprising because the N L O virtual processes cross-section (4.8) 

diverges, but at all orders as A ^ 0 the virtual contribution to the cross-section 

vanishes. The effect of the infrared on soft virtual particles at all orders is very 

different compared to the 1 loop calculation studied in section 4.2. 

Soft Emission and Singularity Cancellation 

As we saw in section 4.3 the eikonal approximation drops some next to leading order 

collinear divergences but reproduces all soft and regular ln^(7n) collinear divergences. 

It is an useful approximation if the theory we are studying only contains massive 

charges so that only soft singulfu-ities ai'e present. As discussed soft divergences and 

leading order collinear divergences are spin independent but the ln(m) terms may be 
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spin dependent. 

Consider the emission of a soft photon with momentum A; from the final state 

electron. The amplitude is modified by an additional vertex and electron propagator. 

Using the eikonal approximation (4.10) the modification to a spinor in the amplitude 

due to a soft photon emitted h'om the out-state electron line is simplified to 

li! -ev'-r^ . (4.43) 

Next, assume a soft photon is emitted from the 'in' state. The effect is similar but 

there is a sign difference in the propagator (—p • k + ie)'^ = - { p • k — ie)"*. The 

amplitude, including all virtual processes, is modified for a single soft emission by 

M^^y ^ eA'/t^' ( r - T — 1 • (4-44) 

^p - k — te p • k -\- le J 

Here we have neglected the photon polarisation vector which will be reinstated later. 

This equation is spin independent and is manifestly gauge invariant. It can be 

shown [88], by induction, that the effect of adding more photons is to multiply the 

amplitude by a factor proportional to the object in brackets, i.e. 

Mi^r ^ M(^)e^vfT ( . f ^ . . (4.45) 

is the amplitude at order N where N > 0. These must be summed up so that to all 

orders the amplitude is 

Mi')^ M^'^ T e'^tll , f \ , . 1 • (4-46) 

The amplitude must be multiplied by the photon polarisation vector. 

In (4.45) the photons emitted are soft since the eikonal approximation has 
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been used. However we did not discuss the experimental resolution required for 
this process to be degenerate with tree-level Coulomb scattering. There are two 
ways a photon could be detected by an experiment. The experiment could have 
photon detectors with resolution Aout- Therefore soft photons must have an energy 
t̂ r < Aout V r. An experiment could also indirectly detect a photon through its 
measurement of the electron's energy. If the detector can measure a shift in the 
electron energ}' of AT^^^ then this puts an upper limit on the total energy contained 
in soft photons Y^^^^ < ^r^ui- To simplify this calculation we assume Aout = ^Toui: 
see [88] for the more general result^. These energy constraints must be incorporated 
into (4.46) at the level of the cross-section. 

Contract each of the real soft photons in (4.45) with their polarisation vector 

^fii^i) = ^ta î"<i square up so we have a cross-section contribution 

(4.47) 

Here {do/d^)^^^ inchides the tree-level process and all possible virtual effects, soft 

and hard. The remaining factors on the right hand side of (4.47) comprise the effect 

of the real soft photons. The polarisation sum may now be evaluated, (4.12) becomes 

^p îgC .̂e* .̂ ~ —guiuj- due to the manifest gauge invariance in (4.47). This leads to a 

factor of ( — 1)'̂ ' in the cross-section depending on whether an even or odd number of 

polarisation sums are evaluated. The indexes r and s are just dummy variables and 

can be set equal to each other. Include a factor of 1/A''! because we have counted 

permutations of Â  soft photons which we cannot distinguish between experimentally 

in the cross-section. Finally we integrate over all possible momenta for the emitted 

^ During chapter 6 we will see that, for the canceHation of collinear singularities, it is important 
not to let Aout = ATO„,. Here we can let Aout = AT„.„ because it will not modify any conclusions 
we draw. 
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photons which yields 

The angular integrals are the same as those encountered for soft virtual processes 

and may be evaluated (see [88] for details). We find that 

(s)"'=(s):î rn!r̂  
so the logarithmic infrared divergence can be seen explicitly in each of the final 

integial products. 

Each photon has been restricted to have energy less than Aout iî  (4.49), but 

^j.tJr < Aout has not been imposed. To incorporate this restriction we include a 

step function of the form 

in (4.49). This gives us 

(A) / ./^ \ (A) 

r ^ \ = '- r du'-^^^^^ (4.50) 

where the r index is a dummy variable so we replace cUr ̂ vith cj. T h e expression in 

the second set of brackets may be exponentiated 

(4.52) 

Using a trick (see [88 ) these integrals may be evaluated. The cross-section result, 
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for Aoui = A T , , , is 

This formula has an infrared divergence as A —> 0. Cancelling the infrared divergence 

with soft virtual photons (4.42) the A dependence is removed and 

Taking Aoui ^ 0 is equivalent to not allowing any processes with soft photons emitted 

to contribute to the total cross-section for Coulomb scattering which, as we can see 

from (4.54), vanishes. This is also true for a more general process with any number of 

initial and final state fermions [88,93]. If you exclude the possibility of emitting any 

soft photons then there is zero probability of scattering occurring. Of course for any 

real experiment Ao„t ^ 0. As required the right hand side of (4.54) is independent 

of A since {da/dQ)^'''^ oc A"". 

According to the L S Z formalism for scattering we measure the final state at 

time t = -foo. For each period of time there is a finite probability of emitting a 

soft photon. During the infinite amount of time before the electron is theoretically 

measured an electron will always emit a soft particle. Therefore is seems physically 

intuitive that the theoretically predicted cross-section should vanish as AQUI. 0. It 

has been shown that during the interaction of a charge with a classical current an 

infinite number of soft photons are produced [83,94 . 



5- LEE-NAUENBERG FOR SOFT AND REGULAR COLLINEAR 

INFRARED DIVERGENCES 

We return now to the stage in the argument reached at the end of section 4.3. Here we 

concluded that the failure to remove all divergences through a combination of Bloch-

Nordsieck and Lee-Nauenberg did not mean that the Lee-Nauenberg proposition 

failed. It only means that the way in which we applied the theorem was not 

successful, therefore we will now use the theorem differently. T h e Lee-Nauenberg 

theorem claims that when one considers all degenerate processes all types of infrared 

divergences (soft, regular coUinear and A ) cancel. A process can be considered as 

degenerate with Coulomb scattering if it contains the tree-level scattering plus the 

emission/absorption of any number of soft or semi-hard collinear photons. Because 

any additional soft photon is degenerate to Coulomb scattering this will lead to some 

rather unfamiliar disconnected processes being considered. Disconnected processes 

are an essential part of the Lee-Nauenberg theorem [5] and have been considered by a 

variety of authors [10,75-77,95-97]. This leads to some success when combining the 

soft and collinear divergences but also raises some questions. Lavelle and McMullan 

presented an alternative approach for applying the Lee-Nauenberg proposition to 

Coulomb scattering and during the course of this chapter their approach will be 

reviewed [10). 

Throughout this chapter the soft divergences will be evaluated at N L O in pertur

bation theory. The aim is to discover a way to cancel the soft divergences without 

spoiling the cancellation of the regular collinear divergences. Full calculations will 
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not be given here but may be found in [10]. The methods used for these calculations 

are also contained in chapter 6. but there the emphasis will be on the A collinear 

divergences rather than soft singularities. Here we will simply outline the method 

used to calculate soft divergences, the results obtained in [10] and then draw 

conclusions. This will further motivate the need to carefully study A divergences 

using the approach taken by Lavelle and McMullan. 

First we summarise the state of the calculation at the end of section 4.3. 

We applied a combination of the Bioch-Nordsieck method and the Lee-Nauenberg 

proposition. We considered soft plus semi-haid emission, semi-hard absorption and 

virtual processes. In order to remove A and regular" collinear singularities we saw 

we must also consider soft absorption. Therefore we find the soft divergences do not 

cancel 

\ / 
/ + (5-1) 

1 1 1 — + — -h — 
^iR 

Absorption has re-introduced a soft divergence. No consistent approach can be 

found which cancels all infrared divergences for these degenerate processes. We 

have gone beyond the eikonal approximation for emission collinear with the out-

state and absorption collinear with the in-state. Since the soft divergences have 

not been removed by considering only these degenerate processes we must look for 

other degenerate processes which contribute to the cross-section. As noted, in the 

discussion following (4.35), we have yet to consider soft emission collinear with the in

state and absorption collinear with the out-state. This omission will not prove to be 

important when considering only the soft singularities. However, these are considered 
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in chapter 6 when our attention shifts back to the A coUinear divergences. 

At N L O , it is not obvious that there are any other processes which contribute 

to the cross-section. However, we have only considered processes with either initial 

or final state degeneracies. It is possible to consider a process with both types of 

degeneracies contributing. Consider the case when a photon is both emitted and 

absorbed displayed in figure 5.1. The unusual thing about this process is that to 

contribute to the cross-section at order e'̂  we need these emitting and absorbing 

processes (which are already at order e^) to interfere with a process of order e. 

Following [5]; we consider the disconnected process shown in figure 5.2 where the 

in-coming electron is accompanied by a photon that does not interact with it 

In order to contribute to the Coulomb scattering cross-section the disconnected 

photon must also be degenerate with the tree-level process. It cannot be collinear 

with both the initial and final state particle. Therefore it must be a soft photon so 

that its momentum is less than the experimental resolution. 

The Feynman rule associated with the disconnected process is also given in figure 

5.2. The interference effect between the processes displayed in figures 5.1 and 5.2 

leads to a soft infrared divergence which may be calculated by using the eikonal 

approximation (4.10). The technical details of this calculation may be found in [10] 

where it is shown that 

. (5.2) 

Since these are interference terras we multiply by a factor of 2. Label this contribution 

to the cross-section We define P„,,„ as the cross-section contribution to Coulomb 

scattering from a degenerate processes which is accompanied by n degenerate photons 

in the initial state and in degenerate photons in the final state. 
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+ 

(a) 

+ + 

+ 

Fig. 5.1: Emission and absorption processes which we call Pi^i- Diagrams (a) represent 
emission and absorption on the final state electron, (b) on the initial state electron 
and (c) emission off one electron and absorption on the other. 
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A , 

T A: 

T k 

Fig. 5.2: Disconnected process and its tissociated Feynman rule 

+ 

Fig. 5.3: Emission combined with a disconnected photon - P\o 
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When we consider virtual (Po.o)-. emission (Po,i): absorption (Pi,o) and Pi,i 

processes there remains an overall infrared singularity, — I / ^ I R . Therefore we must 

look for another degenerate process. Now that we have begim including disconnected 

processes there is no reason not to consider the disconnected and emission process 

which is displayed in figure 5.3. There is one photon in the initial state and two 

in the final state, so the cross-section contribution is labelled Pi,2- Once again 

the disconnected photon must be soft because it cannot be collinear with both the 

initial and final state particles. By squaring up this diagram we get a cross-section 

contribution at N L O . The calculation details may be found in [10] and chapter 6, 

the result for the soft divergence is 

= + em 
(5.3) 

It is important to note that we only consider fully connected diagiams^ Using all 

these processes soft infraied divergences can be removed. 

Thus we have seen it is possible to remove soft divergences when considering 

the combination of Po,0: Po,i, Pi,0: P^^ and Pi,2- However, we have not considered 

the collinear divergences - regular or A types. We will now consider the regular 

collinear divergences and leave the A collinear singularities for the next chapter. 

We have argued that disconnected photons must be soft. We will see. in the 

following chapter, that since only the fully connected diagrams are considered all 

the photons contained in the Pi^i and Pi,2 processes must be soft. Therefore they 

will not produce any regular collinear divergences. We obtain semi-hai-d collinear 

divergences from Bloch-Nordsieck processes (4.32), semi-hard emission (4.29) and 

^ We follow the lead set by Lee-Nauenberg who omit vacuum bubble contributions to the cross-
section once the photons have been contracted to one another. Further discussion on connecting 
diagrams is contained within chapter 6 and [10]. 
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semi-hard absorption also contributes a factor of (4.29). During the section 4.3 we 
concluded that the regular collinear divergences are removed via this combination. 
The Lee-Nauenberg proposition can successfully remove soft singularities and regular 
collinear divergences when considering the processes discussed in this chapter. This is 
more consistent than the approach taken within [5]. Specifically we do not only have 
to consider semi-hard absorption which, as we saw in section 4.3, leads to overall 
A collinear divergences at the level of the cross-section. Lavelle and McMullan's 
approach has yielded some success. We have found a better approach to the infrared 
but there are many questions which still remain. During the remainder of this chapter 
the questions raised by the disconnected photons and the A collinear divergences are 
discussed. 

We included the emission -h disconnected process Pi^2 represented in figure 5.3 

but we did not take into account an absorption -h disconnected, P2.1 process which 

is displayed in figure 5.4. The P2,i process is the complex conjugate of the Pi,2 

diagrams so it will have the same probability of occurring. Without this process 

our cancellation is unbalanced between emission and absorption which conflicts with 

our intuition. However, ^2,1 is not included in the discussion because it would re

introduce soft divergences. But, ^2,1 is degenerate with tree-level Coulomb scattering 

if all the photons are soft, so according to the Lee-Nauenberg theorem (which states 

we should include all degenerate processes) this process should be considered and 

we will obtain an overall infrared divergence. By following this path onto its logical 

conclusion we can go on to argue that if we allow one disconnected photon, why not 

allow two, three or n? The disconnected photons do not add additional vertices to 

Feynman diagiams so these are all valid processes at N L O in perturbation theory. 

The introduction of disconnected processes leads to an infinite number of diagrams at 

each order of perturbation theory. Usually disconnected diagrams are not considered. 

However, as we have seen without them there is no way to consistently remove 
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+ 

Fig. 5.4: Absorption combined with a disconnected photon - p2,i 

soft and collinear divergences for processes w i t h in i t i a l and final state degeneracies, 

so they are an essential part of the Lee-Nauenberg theorem. Therefore we must 

accept this inf ini tely long divergent series at each order of per turbat ion theory. 

Lee-Nauenberg state that they do not address the convergence of this series but 

a discussion of this can be found in [10:95]. I n practice when we do calculations we 

simply stop at a finite point. We add degenerate processes un t i l the overall result 

is infrared finite then stop - as we d id in this chapter. To go any fur ther would 

re-introduce soft divergences. I f the cross-section is infrared finite the regular and A 

collinear divergence must cancel in the same way as soft singularities. 

By adding more and more disconnected photons a pat tern emerges for the 

cancellation of soft divergences. Our discussion involving one disconnected photon 

shows that the v i r tua l process Po,o is cancelled by the emission process Po,i through 

the Bloch-Nordsieck mechanism and the absorption process Pi^o is cancelled by the 

processes Pi , i and Pi,2- Tha t is, 

0 = - 1 + 1 4 - 1 - 2 + 1 = 
Bloch-Nordsieck Lec-Nauenberg 

(5.4) 

The Lee-Nauenberg proposition requires us to sum over all degeneracies. I t w i l l be 

shown in chapter 6 that as far as the soft infrared poles are concerned, we have the 
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identities: 

Pn.,n + \ = Po,\ ^n+I ,n + l = -̂ 1,1 ailcl = Pi,o • (5-5) 

Here the number of disconnected photons, n > 0, and we o m i t vacuum bubble 

diagrams. The generalisation of (5.4) to an arbi t rary number of disconnected photons 

is then 
CO 

Po,0 + Po,\ + ^{Pa,a-i + Pa^a + Pa.a + i ) • (5.6) 
a=l 

I t can be seen that there are several points in this series where soft divergences 

are removed. No factor is present which suppresses processes w i t h more than one 

disconnected photon in (5.5) so the series in (5.6) does not converge. Th i s was the 

conclusion reached by Lavelle and MciVIullan in [10]. 

We have not discussed the A collinear divergences. These d id not get removed via 

the approach taken by Lee and Nauenberg discussed in section 4.3. Here, following 

the approach taken by Lavelle and M c M u l l a n . we have included many more processes 

w i t h disconnected photons tha t can only be soft. I f these soft photons are also 

collinear then they w i l l produce A divergences. There cannot be any corresponding 

semi-hard disconnected processes which are degenerate w i t h Coulomb scattering. I f 

the cross-section is to be infrared f ini te these divergences must also cancel at the same 

point as the soft and regular coUinear divergences in the series (5.6). I f they cancel 

at a different point then the cross-section would be soft divergent again. Lavelle and 

M c M u l l a n d id not consider the A divergences. In the fol lowing chapter they wi l l be 

considered using the processes contained in the series (5.6). Our a im is to discover 

whether the cross-section is simultaneously soft and collinear finite. 



6. A C O L L I N E A R D I V E R G E N C E S AND L E E - N A U E N B E R G 

T H E O R E M 

Tluoughout part I I of this thesis we have examined how soft and colhnear infrared 

divergences are dealt w i t h . This material w i l l now be summarised. We have shown 

tha t interactions wi th photons which are both soft and collinear generate a class 

of collinear divergences of the fo rm A " \n{7n) and l n ( A ) \n{7n). Here A is the 

experimental energy resolution and n > 0. This class of singularities are referred 

to as A divergences. For a real experiment, the detector's energy resolution wi l l not 

necessarily be the same for bo th "in' and 'out ' state particles. T h i s leads to two 

resolutions A j n and A o u i 

There are various responses to soft and collinear divergences. However, an often 

used approach - going at least as far back as the in i t ia l paper by Lee and Nauenberg 

5] - is to add sufficient degenerate processes so that one obtains a f in i te answer. I t 

is not generally clear why one should not include fur ther degenerate processes and 

questions of convergence are rai'ely addressed (see, e.g. [10]). 

In their original paper [5] Lee and Nauenberg assume tha t a l l soft divergences 

are removed by summing over soft emission, i.e. they follow Bloch-Nordsieck. To 

remove the residual collinear divergences they sum over the emission of a semi-hard 

photon which is collinear w i th the out-going electron. Semi-hard photons possess 

energy in between the detector resolution Aout and the total energ>^ experimentally 

observ^ed E. Soft photons are not added again as this would be double counting. 
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Only half o f the regular collinear divergences' are el iminated so the absorbtion of 
semi-hard photons are also considered. However, we saw in section 4.3 tha t the A 
collinear divergences lead to an inconsistency in the infrared cancellation. I f one 
only includes semi-hard absorption, which has the min imum energj^ A i n : we are left 
w i t h A i „ collinear divergences. To eliminate these we must also account for the 
possibility of soft photon absorption. However, by removing the energy cut off A j n , 
we re-introduce the soft divergence. B y involving jus t these degenerate processes the 
cross-section for Coulomb scattering is divergent. 

We came to the conclusion that we must be using the Lee-Nauenberg theorem in 

the wrong way. Therefore we changed our approach and applied Lee-Nauenberg to 

all infrared divergences, not jus t collinear. I n chapter 5 this approach led to some 

success. Soft and regular collinear infrared divergences can be removed in a consistent 

manner. However, in order to achieve this success we must introduce disconnected 

degenerate processes and we have not considered the A collineai* divergences. We 

have argued that , in order to obtain a finite cross-section, the A divergences must 

cancel througi i the same degenerate processes required for the removal of soft and 

regular collinear divergences. Dur ing this chapter we wi l l check whether the cross-

section is in fact an infrared safe quant i ty or whether i t w i l l always contain some 

sort of infrared divergence irrespective of how many degenerate processes are taken 

into account. 

We wi l l continue using Coulomb scattering as our concrete example to display 

the Lee-Nauenberg proposition in action. We w i l l show that there are more A 

divergences which come f rom the processes considered in figures 5.1. 5.2 and equation 

(5.1). We wi l l check to see i f they cancel by calculating the A divergences for 

emission, absorption, Pi^i and processes w i t h more disconnected photons, Pn,m-

V i r t u a l loops do not include the energy cut-off A so they cannot generate A 

* We remind the reader that we use the term regular collinear divergence to mean terms 0 ( h i 7 n ) 
but not proportional to A. 
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divergences. I f all infrared divergences cancel then we have fo imd a finite point where 

i t is mathematically appealing to stop considering addit ional degenerate processes. 

However, i f they do not cancel through the same processes as the soft singularities 

then the Coulomb scattering cross-section is infrared divergent. 

6.1 CoUinear Emission - fo,i 

ColUnear with the out-state electron 

A photon can be emitted collincar w i t h the out-state electron o f f either the in i t ia l 

state or final state electron. VVe have argued, in section 4.3, that emission f rom the 

in i t i a l state electron collinear w i t h the final state electron is not inf rared divergent 

because i t does not force an internal line of the Feynman diagram to be on-shell. 

Therefore we only consider the diagram represented by figure 4.4. This process 

has previously been evaluated and we found tha t i t contributes a factor of (4.28). 

Note that in (4.28) we only allowed the photon to be semi-hard and this led to 

A divergences in (4.29). These delta divergences are easily removed in the current 

calculation because soft photon emission is also considered. The photon's energy 

integi'ation l imi ts for soft emission can be combined w i t h the l imi t s in (4.28) to give 

/ dw'+ CLJ'= duj'. (6.1) 

This removes all delta dependence f rom this process. The upper integral l i m i t is 

the electron's energy E and this produces regular collinear divergences. The eikonal 

approximation (4.10) throws away A collinear divergences so we do not use this for 

al l photons considered in this chapter. We have seen that processes in which the 

photons can be both soft and semi-hard do not produce A divergences. 
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Fig. 6.1: Emission of a photon by the in-state electron which is collinear with the in-state 
electron 

Collinear with the instate electron 

Consider the process displayed in figure 6.1 where a photon is emi t ted f rom the 

in-state collinear w i th the in-state. One could also consider an emission process 

from the out-state collinear w i t h the in-state. However, this wou ld not cause a 

collinear divergence since i t does not force an internal propagator to go on-shell. 

The emit ted photon is not collinear w i t h the final state electron so, unless i t is soft, 

i t w i l l be detected. Therefore, to contribute to Coulomb scattering, the photon must 

be soft. In the cross-section we can only integrate over the photon's energy up to 

Aout therefore we wi l l discover Aout divergences which, un t i l now. have never been 

considered . 

Retaining only singular terms the cross-section cont r ibu t ion for the process 

displayed in figure 6.1 wi l l now be evaluated. The 5-mat r ix element is 

+i:^u\'r''{'2pe' -^'^'')u.. (6.2) 

where the Dirac equation has already been used. Squaring up and evaluating spin 
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traces we find 

+ ( p - e ' ' ) { p ; 0 } - 2 ( e ' - e - ' ) ( p ' , - f c ' ) ( ; / , - A : ' ) ' 

I t is impor tant to note tha t we have omi t ted 0{k' -e'] in (6.3). Th i s is because when 

k' is dotted into the polarisation sum (4.12) i t vanishes. Photon polarisations must 

be summed over which yields 

Here we have used the collinear approximations, discussed in appendix E. to m i t e 

the collinear f inite term 

k' •v\=V'V\^- (6.5) 

The same energy weighting factor used for equation (4.26) is applied which multiples 

the cross-section by the factor of E[/E. The spinors may be re-expressed as 

1̂ '. A r = § I " 7%r • (6.6) 

Overall the Bethe-Heitler energj ' weighted cross-section may be w r i t t e n as 

e -1 „ £;'2 

This contr ibut ion to the cross-section, after integrat ing over a soft cone, w i l l produce 

soft divergences and the new Aout collinear divergences. For the process of collinear 

emission off an in-coming electron the A divergences are not ar t i facts of an unphysical 

decomposition of the integiat ion region bu t rather AQUI plays the role of a physical 

cutoff which, as shown in section 4.4, is non-zero for any experiment. This integral 
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Fig. 6.2: Interference between emission by the in-state and out-state electrons 

wi l l be performed in section 6.6 after evaluating al l other possible A divergences. 

I t is important for what follows to observe that interference between emission 

off the in-coming and out-going fermions. displa^-ed in figure 6.2. does not generate 

these new collinear divergent structures. This comment also holds for absorption 

(since i t is jus t the complex conjugate of emission) and indeed for a l l other processes 

discussed in the remainder of this chapter. Cross-terms contain purely soft divergent 

contributions to the cross-section, which can be seen f rom the first t e rm in brackets in 

(4.13). As we w i l l see this difference between the product ion of soft and A divergences 

wi l l be important when we fo rm our conclusions. 

6.2 CoUinear Absorption - Pi.o 

Collinear absorption on the in-coming electron leg as displayed in figure 4.5 can be 

soft or semi-hard and be degenerate to tree-level Coulomb scattering. I t w i l l not 

produce A divergences but , as seen in section 4.3, eliminates the regulai' collinear 

divergences f rom the cross-section. However, absorption collinear w i t h the out-going 

electron, represented by figure 6.3, w i l l produce new collinear divergences. The 

momentum associated w i t h the in-coming electron in figure 6.3 is defined as p i = 
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P' 

Fig. 6.3: Absorption collinear with the out-going electron 

p — k. The absorbed photon must be soft otherwise i t would be detected in the in i t ia l 

state and this process would not be degenerate w i t h Coulomb scattering. Since this 

is an in i t ia l state degeneracy the energy cutoff is Aj i^. 

The S-matrix element for the process of absorption on the in-coming electron leg 

is: 

+ i ^ r l ' { 2 p ' - e ' - n ' ) t ' ' u , , (6.8) 

Comparing (6.8) w i t h (6.2) i t can be seen that the cross-section calculation wi l l be 

almost equivalent because emission' = absorption. The final result can be derived 

following the same method (evaluating spin traces and polarisation sums) to find the 

cross-section contr ibut ion 

I f one were to exchange E ^ E', LU <^ LJ' and the spinors then this is the same 

as (6.4). We are scattering off a heavy, static nucleus which takes away no energy 

so E = E'. The photon is soft and its energj' is integrated over so u' is a dummy 

variable and can easily be redefined as u providing we s t i l l integrate up to energy 
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Ai„. So (6.9) is actually equivalent to (6.4). 

We must discuss the energy weighting that we apply for absorption. In the 

original derivation of the energy' weighting Bethe and Heitler on ly consider the 

emission process [91]. They conclude tha t the cross-section should be mul t ip l ied 

by a factor of the energy in the out-going electron and divided by the energy in 

the in-coniing electron. Their work, to the best of my knowledge, has never been 

extended to include absorption processes. However, we assume tha t the probabil i ty 

of an electron emi t t ing or absorbing a photon should be the same^. Therefore after 

the cross-section is energy weighted we should obtain the same cont r ibut ion f rom 

emission and absorption. In order to achieve this we must apply an inverted energy 

weighting for absorption which is defined as electron energy in d iv ided by electron 

energy' out. For Pi,o this yields a factor of: 

§ • (6.10) 

Note that the energy weighting in equation (4.26) d id not mod i fy the soft or In A 

collinear divergences, but i t does mod i fy the A " terms. Since A divergences are 

not usually considered in the l i terature this issue has not received a great deal of 

attention, but i t is discussed in [78,98]. The spinors are related b}-

l « V - . | ' = f (6.11) 

and the inverted energy weighting w i l l lead to the same cont r ibu t ion as (6.7): 

p ' • A; ' ' ' E'^uj 

The only difference between emission and absorption is that here we must integrate 

^ In the literature it is ahvays assumed that the background is in equilibrium. 
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over a soft cone which has the upper l i m i t A j n instead of A o „ i -

A n alternative energy weighting would make i t impossible to remove A " 

divergences. If , for instance, we applied the same energy weight ing as we d id for 

the case of emission we would obtain a factor of E/Ei. Instead o f (6.12) we would 

find 

_ ^ , , V . r J _ ( ^ ' ^ + ^?) . (6.13) 

This is a linear expression in uj but (6.7) is a cubic equation for LJ'. Therefore, after 

doing an integial over the i>hoton energies we would have different powers for A " 

and no cancellation would be possible. 

Now we wi l l proceed by calculating the A divergences for a l l the other P„ „, 

processes i n order to a t tempt to cancel them. 

6.3 CoUinear Emission and Absorption - Pi^i 

We consider the Pj^i process which is an interference effect between figures 5.1 and 

5.2. We have previously argued that , since the disconnected photon cannot be 

collineai- w i th both the in i t i a l and final state particle, i t must be a soft photon. 

For the t ime being all we can say about the disconnected photon's upper energy 

l i m i t is that i t is soft, but we w i l l re turn to this point later. 

In i t i a l ly we consider only the (b)-type emission and absorption diagrams displayed 

in figure 5.1 and label the momenta for these processes as in figiure 6.4. However, 

we w i l l show that the diagrams in figure 5.1(a) produce similar A divergences. As 

mentioned in section 6.1, i t can also be shown that the diagrams in figinre 5.1(c) 

do not produce any A divergences bu t this w i l l not be proven here. Contract the 

diagrams in figure 6.4 w i t h the complex conjugate o f the disconnected process which 

is displayed in figure 5.2 along w i t h the associated Feynman rule. T h e cross-section 
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+ 

Fi^. 6.4: Emission and absorption by the in-state electron 

contr ibut ion is 

• 8 b . - ( ^ - ^ ' 0 ] ( ; . - ^ ) ( p . - A : 0 ^ ^ ^ ^ ^ ^ ^ 

X | 2 ( p i • A:')^i(2p, • e; + - ^p, • k)f:,{2p, • e'^ + m}^i^noti\ 

(6.14) 

Here we have simplified by using the Dirac equation. The shorthand notation 

ej ' = €.'{k',X2) is also introduced. I t is impor tan t to keep track of the individual 

polarisations of the photons when we come to evaluate the polarisation sums. Terms 

wi th an odd number of gamma matrices wi l l be dropped because they vanish when 

spin traces are evaluated. 

The same calculatory steps as executed for PQ.I a^»cl Pi,o must be performed in 

order to calculate the final form of the cross-section. However, here i t is considerably 

more d i f f i cu l t due to the extra complexi ty of (6.14) which may be seen by s tudying 

the possible divergences in (6.14). There are collinear divergences o f the f o r m • k 

and l / p i • k'. A different divergence 1/pi • {k — k') which has not been met un t i l 

now prevents us f rom using the delta func t ion in (6.14). We are only interested in 

collinear divergences, therefore we aim to extract the 1/pi • {k — k') divergence f rom 
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the cross-section. This gives us a strategy w i t h which to tackle the calculation of 
(6.14). To remove the l / p \ • {k - k') divergence i t helps to separate the calculation 

into two parts by spl i t t ing the ( / i + - ^ ' ) into ŷ i and (^ - ^ ' ) terms. 
First consider the / ^ i term which is proport ional to: 

u\j% i^2{p, • k')^', (2p, • e; + /^^{^ - 2{p, - A:)/; (^2/7, • e', + ^7^) . (6.15) 

The can be commuted through the brackets in order to use the Dirac equation 

f)^Ui — 0. Then take ^ and ^' terms to the r ight hand side of o r t e r m s , neglecting 

terms 0{k • e]) and 0{k' • e'^) because they w i l l vanish when polai'isation sums are 

evaluated. Then (6.15) becomes 

f / . T ' - 8/>i - {k - k'){p, • e'^){pi • e\) - S{p, • k){p, • k y \ • e', (6.16) 

+4p , . {k - A : ' ) | p i • e ^ I - Pi • e ; ^ } ^ ' - 4p, • k'l^p, • e'J\ - - 6 ; / ^ | ( ^ - ^ u, . 

Notice that for the first and th i rd terms of (6.16) the l/pi • (A: —A:') divergence in (6.14) 

w i l l be removed. I n the second te rm both collinear divergent denominators have been 

removed by the [pi • k){pi • A;') factor and we are jus t lef t w i t h the 1/pi • (A; — A:') 

divergence. Since we are only interested in collinear divergences we wi l l drop the 

second term in (6.16) because i t w i l l not provide any of the A divergences. The 

final term is of the form (^ - f/t') so we combine i t w i t h the remaining terms in the 

cross-section (6.14). 

Now move on to the second part of the cross-section and combine i t w i t h the 
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additional - f ) term f rom (6.16). Tlii.s is 

w',7°(^ - r ) { 2 ( p . • fc')A(2p. • + ^ / ^ ; ) - 2 (p , . A;)/; ( 2 ^ , . e'̂  + r/̂ '̂ ' 

+4p , .^- '(p, . e ^ t - P i e l ^ i ) ! " ! (6.17) 

= f t ' ,7°(^ - ^'){ - 4p, • (fc - fc')p. • 4/; + 2 p , • k ' m \ + 2p i • /^-/?;^^/2}wi. 

In the first term the unexpected divergence has been removed. When the delta 

funct ion in (6.14) sets k = k' this term w i l l vanish so we may neglect i t f rom now 

on. Some terms which vanish under the photon polarisation sum have been dropped. 

I t is now much more convenient to evaluate electron spin traces than at the in i t ia l 

stage (6.14). From (6.16) the trace f rom the t h i r d te rm yields 

16p, - {k - k'){p, • k){p, • • - P I - e\v\ - 4} . (6.18) 

The trace in the second and th i rd term of (6.17) can be made easier by re-wri t ing i t 

as 

2 ( p p A : ) T r | ^ / 5 ; ( ^ - ^ ' ) ( / ^ ^ ^ ; - / I ^ ; ^ i ) | - 2 p K ( ^ - - f c ' ) T r { ^ , 5 ' , ( ^ - n / ^ ' 2 # ; } . (6.19) 

Here the second trace extracts the • {k — k') term and i t also vanishes when we 

use the delta funct ion to set k = k' so we neglect i t . The first trace may now be 

evaluated to give: 

I6{prk) piik-k')f/,'ke]-e'^-\-pv{k-k')i^Pi e\^^ (6.20) 

Once again, in the first term, we have extracted the l / p i • {k - k') t e rm. Note tha t 

in the second term this divergence is not removed. However, by looking inside the 

curly brackets the first two terms vanish when we evaluate the photon polarisation 
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sums and the final term does not contain any collinear divergence so we neglect i t 

for the moment. 

Af te r this derivation we may w i t e the collinear divergent terms in (6.14) as 

{27Tf{2ij')e'ei • e^^6^k - k') 
- ( p . • 4 ) ( P i - ^ ; ) K i 7 % l ' [pi • k){p, • k') 

-t-2(pi - k)Li • e'^p\ • e; - Pi • €]p\ • e'^ + 2p, • kp\ • k'e'^ • e l j 

(6.21) 

The 1/p- (it - k') divergence has been cancelled. There are two final state photons 

which we have to integi'ate over their momenta. First integrate over k' and then use 

the delta funct ion to leave 

2 ^ ^ [ - ( P i - e 2 ) ( p . - 6 ; ) | ' a ^ ^ ^ ^ ^ ^ ^ ^ ^ 

+2(7^1 - / c ) | p i • €2P\ • e\ - pi - e\p\ • 63 + 2pi - kp\ • ke2 • e^j 

Now we must sum over the polarisations \i and A2 using (4.12) to find 

(6.22) 

Pi • "̂ 
(6.23) 

Some collinear finite terms have been dropped here. 

Some technical details have been omi t ted in the above calculation which we wi l l 

now consider. In figure 6.4 the absorbed photon can be either soft or semi-hard so 

0 < uj < E. In order to generate a colhnear divergence the emi t ted photon must 

be collinear w i t h the in i t ia l electron, so i t is soft 0 < oj' < Aout- I n the previous 

paragraph we integrated over the external photon momentum k', but d i d not take 

into account the detector resolution. We find 

/ d^k / d^k'6^k-k')= / d^k 
Jo Jo Jo 

(6.24) 
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This means that the disconnected photon in figure 5.2 forces k t o be soft in figure 
6.4, so 0 < a; < A o u f Since UJ is set equal to C J ' by the delta funct ion the energy 
weighting (energj'-in divided by energy-out or the inverted version) is zero. The 
spinors generate a factor of {E\lEY and the collinear approximations, discussed in 
appendix E. gives aaiother factor of {E\/E). The overall cont r ibut ion to the cross-
section is thus 

The diagiams in figure 5.1(a) are very similar to the process we have jus t 

calculated. Naively one would simply mul t ip ly (6.25) by a factor of two. However, 

this would not take into account the difference in the integration l imi t s tha t w i l l arise 

in (6.24). I n figure 5.1(a) i t is the absorbed photon which must be sof t and this leads 

to an upper integration l imi t of A j n -

Note that, as indicated above, processes w i t h a photon emit ted by the in 

coming/out-going electron and absorbed on the other line, displayed in figure 5.1(c), 

do not generate these A divergences. 

Now we return to discuss the non-collinear divergences which arose in the above 

calculation. From the second term in (6.16) and the final t e rm in (6.20) we obtain 

the cross-section contr ibut ion 

^ ( 2 . ) 3 ( 2 . ) e ^ . 3 ( , _ ^ ) . , . . 4 ^ ^ _ _ ^ . ^^ ^^^ 

p\ • [k — k ) \ ) 

In the l imi t k ^ k' we can re-wTite 

1 1 

P\ • (A: - k') Pi - 77V 
(6.27) 

The momentum pi is on-shell and we can see tha t this te rm should be interpreted as 

a mass-shift and can be removed by a counter te rm. Remember tha t in par t I of this 
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( a ) 

+ 

k' 

k 

Fig. 6.5: Emission combined with a disconnected process. Pi,2; with momenta labels 

thesis we observed a mass-shift for a classical charge when it is subjected to a laser's 

electromagnetic background. This unobserved background containing disconnected 

photons leads to a similar effect. 

6.4 CoUinear Emission + Disconnected - P i ,2 

The process described by figure 6.5 can only be degenerate with Coulomb scattering 

if the disconnected photon's momentum is soft. However, we don't know if the 

disconnected plioton is collinear with the initial or final state electron in either 

diagram so we cannot assign a maximum energy to it. In order to generate a collinear 

divergence the photon emitted in figure 6.5 diagram (a) must be collinear with the 

final state electron. Therefore technically the emitted photon can be soft or semi

hard. However, we will see that this photon must be soft in order to contribute to 

the fully connected^ cross-section. Therefore diagram (a) will produce A divergences. 

^ See the discussion on connected diagrams in the following paragraph. 
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The emitted photon in figure 6.5 diagram (b) must be soft if it is to produce a colhnear 

divergence. Note that we define the electron momenta in figure 6.5 as p = pi + A; 

and p' = P2 + 1̂ 2̂ ^^^^^ ^^^^ photon polarisations are A. Ai and A2 respectively (the 

subscript refers to the photon's momentum). 

Throughout this thesis we have insisted that we are studying the fully connected 

cross-section. With the aid of figure 6.6. which shows the possible cross-section 

contributions for the process in 6.5(a), we will now explain what it means to 

be "fully connected". This Pi,2 process caai contribute to the cross-section at 

order e'^ in two possible ways. In figure 6.6 the contraction of photon lines 

are represented by a dashed line. By connecting our photons to the dashed 

lines then either the disconnected photon lines are contracted together to yield 

a disconnected contribution, displayed in figure 6.6(a). or one obtains the fully 

connected contribution described by figure 6.6(b). We will follow Lee-Nauenberg's 

lead and ignore the vacuum bubble diagrams. We will see that the fully connected 

contribution is straightforward to calculate because the 'loop' of photons can be 

unwound. Let k2 be emitted from the left hand side of figure 6.6(b). Following 

the direction of momentum flow round the 'loop' it can be seen that, since the 

disconnected processes conserve momentum, k'^ is finally absorbed by the complex 

conjugate Pi,2 process. 

The diagrams in figure 6.5 have a symmetry factor of 1/2 (from normalisation), 

but this factor is removed by combinatorial factors associated \v\t\\ having two 

photons in the out-state. Let us consider the diagram in figme 6.5(b) and calculate 

its cross-section contribution. The S-matrix element for this process is a mixture 

between an emission Po,i process and the disconnected diagram (see figure 5.2). We 

find 

7^27o(/2 + mi{>^i)u^e\{X,) • e[X)[2i,f2uj\6\k\ - A:). (6.28) 
2pi • 

WTien squaring this up it is important to remember that the momentum k2 is now 
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Fig. 6.6: The two possible contractions of photon hnes for a Pi,2 process: (a) disconnected 
contribution (b) fully connected 

flowing through the disconnected photon. The cross-section contribution is 

4pi • k\px • k'^ 
(e;(A,) - e(A)) {e{X) • e'^{X,)) {2n)'{2uj\){2uj'^)6'{k[ - k)6^{k^ - k) 

(6.29) 

The S^(k2 — k) factor shows us that the disconnected photon is parallel to the initial 

state electron. This restricts the photon energies to 0 < uj < E since k can be semi

hard and 0 < a;'i < A Q U I since k\ can only be soft. It is now convenient to perform 

a sum over photon polarisations Ai and A2. When the delta functions are used any 

terms of the form A: • e vanish. 

r^"47o(A + + ri)7o^^2(2^)'(2a;;)(2u;i)J^(/:; - k)6^k'^ - k). 

(6-30) 
4pi - k\pi ' k'^ 

The integral over the out-going photon momenta k\ and k'^ yields 

4(pi • ky 
^27o(/i + + ^)7o^4 (6.31) 
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Careful examination of equation ( 6 . 3 1 ) shows us that we have reduced this process to 
figure 6.1 , albeit with different electron momenta. Therefore the contribution from 
this process is virtually identical to the basic emission process. T h e only difference 
being the initial-state and final-state electron momenta which is now pi —p — oj and 

= // - 2uj. 

Earlier, in section 4 .4 . we discussed the Bloch-Nordsieck cancellation of soft 

divergences to all orders. In the paragraph following ( 4 . 4 6 ) we saw that there are 

two possible ways to detect soft photons experimentally. Firstly, they can be directly 

observed via photon detectors, which lead to the resolutions A j n and A o „ t . When 

we integrate over the out-going photon momenta in ( 6 . 3 0 ) . remembering that the 

disconnected photon is collineai" with the initial state electron, we see that 

/ (Pk d'k[ cPk'^6''{k~k\)6^{k-k^)= d'k, ( 6 . 3 2 ) 

The Pi,2 process reduces to basic emission of a photon with maximum energ>' ^oui-

We will obtain A divergences. An experiment can also indirectly detect a soft photon 

through measurements of the electron's energy [88]. This leads to the requirement 

that uj\ H- ^ ^Toui ^he out-going state for this process. Here Axout *s the 

experimental resolution for the electron detector. AT^^^ > A o m for a real detector**. 

The delta functions have acted in ( 6 . 3 1 ) to set ij\ = = t J , so we have two conditions 

for the photon energy in ( 6 . 3 1 ) : 

1. u}< Aout < AT„„,: 

2. 2 u ; < A T . , , . 

The integration limits in ( 6 . 3 2 ) will be modified if the second condition is stronger 

than the first. For instance, if the photon is indirectly detected in the electron leg 

If AT„„» < Aoui then there would be no point in installing a soft photon detector in the 
experiment. 
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then A o u i < ^ TOUI ^ 2Aout aî cl the second condition is stronger. If the photon is 
directly observed we know AT^^^ > 2Aout and the maximum photon energy is A o m 
because the first condition is stronger. If the second condition is stronger then we 
must incorporate this into (6.32) by taking the photon energy integration limits to 
be 

0<uj< min QATO,, = A o u i ) • (6.33) 

If we were to consider a process with more than one disconnected photon this 

discussion should be modified since tiie second condition would no longer be strong 

enough. For instance, if there were two disconnected photons which are not detected 

via some "missing' electron energ\' then uj\ -\-U}2~^LLJ'^ < /^TOUI • After the delta functions 

have been used we would find that the second condition is replaced by the stronger 

constraint on the photon energj^ 3a; < A-p^^^. For a real experiment we would have 

different electron detector resolutions in the initial and final states A-p^^^ and AT^^. 

We have 'unwound' the Pi,2 process so that it is equivalent (up to electron energies 

and photons integration limits) to a Po,i process. The final result for the cross-section 

before approximations and weightings may be obtained from (6.4): 

P i • k 
H i ° u ^ \ ' { E ^ + K ' ) . (6.34) 

The electron energies have been modified from those in (6.4) to account for the 

different momentum in the initial and final state electrons. Similarly figure 6.5(a) 

gives a contribution comparable to (4.25), 

H I ' U , \ ' - ^ { E U E ' , ^ ) . (6.35) 

For this case the disconnected photon is collinear with the out-state electron which 
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leads to the energy restriction 

r^" d'k' r cpk', r cpk'^ 6^k ~ k[)6^(k - ^̂ )̂ = r'^ d^k'. (6.36) 
7o JQ JO JQ 

Here there is only one A i „ upper limit which means that there is only one chance 

to detect the soft particle. In (6.32) there are two Aout upper limits which leads to 

the photon energy modification (6.33). There shall be no similar condition to the 

second condition discussed above for the process displayed in 6.5(a). Note that the 

only difference is through the integration limits for the cross-section contributions 

from the two processes in figure 6.5. Using the collinear approximations discussed in 

appendix E we find that each of these processes contributes 

Note that the energy weighting has not been considered here. This will be left until 

we come to consider the sum of all processes. 

To summarise we have found that the photon emitted in the diagram displayed 

by figure 6.5(b) has energy 0 < u;' < min (ATou t / 2 , A o u t ) - The electron's energy 

detector modifies the upper limit for diagram 6.5(b) because this process has two 

soft photons in the final state. For the second diagram, since we have only one 

photon in the initial state, the electron's energy detector will not modify results, so 

0 < u;' < A i n . For processes with more than one soft photon in the initial or final 

state the upper limits of integrals over the photon's energy will be modified. 
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+ 

Fig. 6.7: Absorption and disconnected - P2,i 

6.5 Further Pa,m Processes which Contribute to the Cross-Section at 

NLO 

We have now considered all the processes which we saw in chapter 5 may be used to 

cancel soft and regular coUinear singularities at the level of the cross-section. We also 

observed that there are other combinations of processes, which fall into a pattern 

involving more disconnected photons (5.6), that lead to a soft and regular collinear 

finite cross-section. During the following section we want to see if the A collinear 

divergences are also eliminated in the same ŵ ay found for soft and regular collinear 

divergences. Therefore, we must consider processes with more disconnected photons 

at N L O in perturbation theory. 

Having evaluated the emission and disconnected process Pio in the last section 

it is straightforward to calculate an absorption and disconnected process PQ.I as 

displayed in figure 6.7. We have seen, in sections 6.1 and 6.2, that the only difference 

between emission and absorption is the upper energy integration limit. This was 

because emission = absorption* and in a similar way P^^^ = P^A- Therefore we 

obtain, up to differences in the photon energy integration limits, another two factors 

of (6.37) since there are two ^2,1 diagrams to consider. Absorption on the final state 

electron which is displayed in figure 6.7(a) has two soft photons in the initial state. 
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This will lead to a similar modification to the photon energy upper integration limit 
as we found for the process described by figure 6.5(b). However, process 6.7(a) has 
two soft photons in the initial state whereas 6.5(b) has two soft photons in the final 
state. Therefore AT.^^ will be replaced by Axi^. Absorption on the initial state 
electron shown in figure 6.7(b) needs to be integrated over oj up to energ>' A o u i and 
on the final state displayed in figure 6.7 (a) up to energy lu = min(ATi„/2 , A i „ ) -

In section 6.4 we described how to unwrap a Pi,2 process so that it becomes 

the fundamental FQ.I emission process. This method, applied to P2,i unwraps it 

to become the fundamental Pi,o absorption process. By performing the necessary 

polarisation sums and integiating over the new disconnected photon momentum a 

P2,2 process may also be unwound into the fundamental emission plus absorption 

Pi. i process. All diagrams contributing to the cross-section at N L O in perturbation 

theory come in the form of P n + i , n : Pn,n+i and Pn+],n+\ processes, where n is the 

number of disconnected photons. They can all be unwound into the fundamental 

0̂,1 ; ^1,0 and P i , i processes. In section 6.4 we saw that the electrons for P|,2 processes 

carry energj' = E ~ UJ or E2 = E — 2uj and from section 6.1 the electrons for Po,i 

processes carry energy EQ = E ov E\. By comparing the cross-section contributions 

(6.37) and, after removing the energ}' \veighting (4.11), one can observe that the sole 

difference comes in the subscript of the electrons' energ}^ in the numerator, EQ ̂  E\ 

and E\ £̂ 2- When switching the formulas between cross-section contributions 

0̂,1 ^ we can let E^ ^ where AC = 0,1. There ai'e two Po,i diagrams 

so the process has two photon energ>^ integration limits^ E and A o u t , and the Pi,2 

process has limits A i „ and min(ATi , /2 , A j n ) . By comparing the diagrams for Po,i 

and Pi,2 it can be seen that integration limits swap between E <-> A i „ and Aout ^ 

min(AT„ ,72 , Aout) -

The next challenge is to discover how to modify the fundamental processes 

^ A process with upper photon energj' integration limit E can be soft or semi-hard. For the case 
of Po,i this is displayed in figure 4.4. 
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cross-section contributions (6.7). (6.12) and (6.25) to describe a general N L O 
process with n disconnected photons. After unwinding disconnected 'loops' there 
are only two differences between the fundamental processes Po,i ,Pi,0: PIA and the 
P„,n+i , Pn+i,n Pn+ i ,n+ i pioccsses cross-scction coutribution. The energ^^ carried by 
the initial and final state electrons and the upper photon energy integration limits are 
not the same but in all other respects the contributions are equivalent. To modify the 
cross-section contributions of the fundamental process to become the contribution of 
the processes with n disconnected photons Pn+\,n = Pn^n+i , Pn+iM+i we let 

—> E^+n = E — n)(jj , (6.38) 

in the numerator of (6.7), (6.12) and (6.25). The photon energ}' integration limits 

applied to the cross-section contributions must also be modified from the limits 

obtained for the fundamental processes to describe a disconnected photons. If the 

energ}' of more disconnected photons is 'missing' from the electron via equation (6.38) 

then the electron energy detector becomes an increasingly useful experimental tool 

when compared to the photon detector. This will lead to a stronger condition than 

the one we applied in section 6.4. For n disconnected photons we find 

I- u}< Aout < Axo^t or u < A i „ < A T , , ; 

The integration limits for the fundamental processes are proportional to either 

A i n ; Aout or E which will be modified due to the stronger second condition for the 

Pn+i,n: Pn,n+\ and Pn- f i ,n+i proccsscs. Here E stands for the integration limit of 

the Po.i and Pî o diagrams which can be both soft and semi-hard. These diagrams 

eliminate the virtual processes regular collinear divergences but they do not produce 

A divergences. If the fundamental processes integration limits are proportional to 
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A i n : A o u i or E it w îll be converted for n> I according to 

A . „ ^ min , A , , ) , Aout - niin , Aout") = (6.39) 

Po,i : for 71 = 1 , E ^ A i „ and for 7i > 1, E ^ min (^^^ , A j n j ,(6.40) 

Pi,o : for n = l , E -> A o u i and for / i > 1, E ^ min = Aout j • 

Equation (5.5) holds for the soft pole but for the A singularities we need to modify 

(5.5) using (6.3S), (6.39) and (6.40). 

To summarise, we have evaluated the cross-section contributions for the fun

damental FQ ] , Pi,o and P i , i processes. In section 6.4 we saw that processes with 

disconnected photons may be un-wound to become similar cross-section contributions 

to the fundamental processes. During this section we have found how to relate any 

N L O Pn,m processes contribution to the cross-section with one of the fundamental 

processes contributions. This is done by modifying the fundamental processes 

cross-sect ions by (6.38) and using either (6.39) or (6.40) depending on the process 

in question. Now we are ready to discover if the A collinear divergences ai*e 

eliminated when considering only the same processes as the soft and regular collinear 

singularities. 

6.6 Cancelling Collinear Divergences and Energy Weighting 

We have shown that there is a new class of collinear singularities of the form 

A"In(7/?.) and ln(A)ln(7?2) which have not previously been considered. These have 

been evaluated for all the degenerate processes which contribute to the consistent 

cancellation of soft and regular colhnear divergences in the cross-section at N L O 

in perturbation theory. These divergences must be summed up to see if they are 
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removed at the level of the cross-section. If the A divergences are removed in the 
same way as the soft divergence (5.6), which we recall is given by 

CO 

Po,0 + Po^ + X ^ ( n . a - l + Pa,a + Pa,a + l) = (6.41) 
a=l 

then we have found that the cross-section is infrared finite. Howwer, if they are not 

removed, then the only possible conclusion is that the Lee-Nauenberg proposition 

fails and the cross-section is divergent. If A divergences are removed by some other 

combination of degenerate process than that displayed in (6.41) we will re-introduce 

soft divergences. 

Our results for all the processes which contribute to the N L O Coulomb scattering 

cross-section \v\\\ be combined. Before doing this consider the regular Bethe-Heitler 

energ}' weighted Po,i emission process. In equation (6.7) we found the cross-section 

contribution is 

angular term energy term 

Here we have labelled the term which contains all the angular dependence and the 

terms which depend on the photon's energ}^ LJ. We must integrate each process over 

the photon momentum and combine the results. The generic integration measure 

being 

f 1 1 /"^ . f^^ ,^7 da 

Here A stands for the experimental energj' resolution for the process under 

consideration. As ŵ e have seen different processes have different resolutions. First 

perform the angular integral, using a similar expansion to (4.27). The angular 

integral is the same for all Pn m processes because we have used the second type 
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of collinear approximation discussed in appendix E . We find 

(2 ̂
^ K 7 ° ^ r i " ( | 7 ) | / ^ E (energy-terms) do;. (6.44) 

all 
processes 

This equation is singular as rn —+ 0, the collinear divergences are all contained 

in the angulai- integration. Since the collinear divergences have been extracted the 

remaining integral is either finite or contains soft singularities. Each processes' energy 

terms may be substituted into (6.44). By specify'ing the correct integration limit and 

performing the integral the cross-section contribution shall be evaluated. 

Table 6.1 serves to summarise all the results presented within this chapter 

and shows the energy terms and photon energy integration limits for some of the 

Pn,iTi processes. In the literature the Bethe-Heitler energy weighting has only been 

evaluated for the Po,i process. In section 6.2 we argued for the need to use an 

inveHed energy weighting for absorption, so that an electron has the same probability 

to absorb a photon as to emit one. The energy weightings for processes with 

disconnected photons has never been discussed so we use a trial and error method 

and apply three different types of energy weighting: 

• no weighting: 

• regular energy weighting which comprises of a factor equal to the electron 

energy out divided by energy in; 

• a factor equal to the electron energy in divided by energj' out which we call an 

inverted weighting. 

For each of the processes contained in table 6.1 we must evaluate the remaining 

integral in (6.44). All these integrals are going to produce A divergences but we need 

to see if they cancel for some summation of processes and then check if this complies 

with (6.41). Table 6.1 has been extended indefinitely to include n disconnected 
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photons using the rules in equations (6.38), (6.39) and (6.40). It is important to 
realise that each process given in the table has two contributions to the cross-section 
- one from each integration limit. 



Process No 
Weighting 

Regular 
Weighting 

Inverted 
Weighting 

Integration 
Limit(s) A 

unphysical unphysical Aoui ^ E 

^1,0 unphysical unphysical ^ {El + B?) E k Ai„ 

- 2 ^ ( 2 £ ; ? + a ; ^ ) no effect no effect Aoui k A i n 

Pui {El + El) ^{E^ + ED min ( ^ A T „ , , , Aout ) & A i „ 

A,. -^{El + ED §Z {El + El) Aout & m i n ( | A T i „ , A i „ ) 

P%2 - 2 ^ ( 2 E | + u ; 2 ) no effect no efi'ect min ( | A T , . „ , A o „ i ) k min Ax;.., A j , , ) 

P2,, (Ei + El) ^ {El + El) ^ {El + El) m i n ( | A T . , , , A o u , . ) k niin (^Ar,. , A i „ ) 

P3,2 ^ {El + El) ^ {El + El) §Z {El + El) min ( | A T , , , : Aout) & niin ( lAr, . , A ; , . ) 

^3,3 -2§-j2El + u') no eft'ect no effect min( |AT„, , , Aout) & min (^ATJ^ , A ; , , ) 

! \ : ; 

Pr»,;i+l ^ { E l + EU,) %:J{EI + EU,) ^AE^. + El,,) " ' ' " ( ; : i T ^ T o u c . A o „ t ) & m i n ( i A T , . , A i , . ) 

Pn+l,n ^ {El + El^,) •^JEI + EU '%i{Ei+E^.,;) «ni"(^AT. . , ,Aout) & min(;;: |:yAT,. ,Ai„) 

Pri+l,n+l - 2 % ( 2 £ , ^ , , + c . 2 ) no effect no effect min A T . . , , Aout) & niin ( ; ^ A T , . , A , . ) 

9 

i 

1̂ ^ 

Tab. 6.1: Cross-section contribution for all processes contributing at NLO to Coulomb scattering. Three different energy weightings 
are applied to the cross-section: (i) no weighting, (ii) regular and (iii) inverted. The different integration limits relate which 
diagram(s) the cross-section contribution comes from. 
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The remaining integral in (6.44) must be performed for each of the processes. 

Before doing this integral it is interesting to consider the sum of energies {E^-i + 

E^} - 2{2El + a;2} [El + El^,} , where ft = 0, L 2 . . . and Ea = E - aw. It can 

be proven algebraically that 

{El., + El) - 2{2El + + {El + El^,} = 0. (6.45) 

If the energ}^ terms of the degenerate processes discussed in table 6.1 can be combined 

as in (6.45) then the collinear divergences will be removed**. For a = 1 (6.45) reads 

{E^ + E f } ~ 2 { 2 E ? + u;^}^{E^-^ E^} = 0. (6.46) 

Using table 6.1, it can be seen that Po,i is proportional to the first set of brackets, P i , i 

is proportional to the second set of brackets and P2,i is proportional to the final set of 

brackets. However, in order to produce something that is proportional to the whole 

of equation (6.46), we must choose the energj' weighting from table 6.1 carefully. 

By applying two different energy weighting methods we will see that there are two 

different ways of clustering the processes which eliminate the collinear divergences 

from the cross-section. The first cancellation we consider is symmetric between 

emission and absorption processes and the energy weighting seems natural. However, 

the soft singularities are not cancelled by taking this approach so the cross-section is 

divergent. The second cancellation uses the same processes required to eliminate soft 

divergences and leads to a finite cross-section. Unfortunately we must make some 

questionable assumptions to achieve infrared finiteness. Both these approaches will 

now be explained. 

^ Resen'ations regarding the convergence of the series (6.41) are not addressed here. 
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Symmetric CoUineav Cancellation 

Using a regular energy weighting for Po,j and P2,i allows us to combine Po,i + Pi,i+P2,i 

in such a way that they are equal to E^/E^uj times (6.46)''. As explained previously 

all the terms in table 6.1 must be integrated over the photon energ>' (6.44) with 

their respective maximum integration limits. Simply combining terms so that they 

are proportional to (6.45) is not sufficient because if the integration limits for the 

processes in question are different the cancellation in (6.45) cannot take place. From 

the table it can be seen that the processes Poj - f P i j -i-P2,i have a common integration 

limit Aoui- By combining these processes the integral in (6.44) can be written as 

E I ^^^'-i^\iEo + En-mEl+u,'} + {E^ + E l } j = Q . (6.47) 

It can be seen from table 6.1 that these are the only processes with upper integration 

limit AouL, so all Aout collinear divergences have been completely removed. In a 

similar way an inverted energy weighting applied to Pi o and Pi,2 allows us to remove 

all A i n divergences. 

Through a careful examination of the energy terms and integration limits in table 

6.1 a pattern for the cancellation of all A divergences for n collinear photons emerges. 

For all final state contributions, by which we mean they have an integration limit 

proportional to Aout or AT^UI: we apply a regular energy weighting. We do the 

opposite for all initial state contributions and apply an inverted energ}' w*eighting. 

By carefully selecting the three processes which can have the same integration limit 

and applying the energy weighting as described we obtain the general cancellation 

^ Note that we also could produce something proportional to (6.46) using the (Pi.o + Pi.i + Pi,2) 
processes or an alternative mixture. 



6. A CoUinecir Divergences and Lee-Naiienberg theorem 164 

of collinear divergences valid for any nvnnber of disconnected photons 

(6.48) 

Here the shorthand notation A;;;,;" = m in (AT^^7a , A o u t ) and A?;;'" = m i n ( A T i „ / f l ^m) 

has been introdnced. We have discovered a way to remove all A collinear divergences 

but we must still consider whether the soft singularities are removed by this 

combination of processes. Written in terms of the processes involved (6.48) is 

regular weighting 

inverted weighting 

^ dw' (̂ Po,. + Py,x + A., j 

+ ^ y (l^ ( P a - l , o + Pa.a + Pa+l.aj 

1 « f^^r ( \ 

+ ^ Y . J duj\^Pa,a-l + Pa,a+P.,a+lj 

(6.49) 

regular weighting 

inverted weighting 

= 0 

Each collinear cancellation contains one process which can be reduced to emission 

and one process which can be reduced to absorption. Therefore (6.49) is symmetric 

between emission and absorption. From an initial inspection of (6.49) i t appears that 

some processes are being counted twice. By studying figure 6.8 i t can be seen that 

processes are not double counted but there are in fact different diagrams contributing 

to the same process with different integration limits. 

The energy weighting used in the cancellation in (6.49) is interesting. On the first 
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(o) 

Fig. 6.S: Processes contributing to the first cancellation of A divergences discovered in 
(6.49). Diagrams (a) represent the Aout cancellation. The first and final diagram 
contribute these divergences when squared up, and the Pi^i diagrams contribute 
when interfering with a disconnected process. Similarly diagrams (b) represent 
the A j n cancellation. 

line of (6.49) for a 7̂ 2,1 diagram we used a regular energy weighting. However, on 

the final line an inverted energy weighting is used for the other p2,i diagram. If one 

applied the same energy weighting to both P2,i diagram and combined the processes 

as in (6.49) the collinear divergences w^U not be eliminated because the A divergences 

are sensitive to the weighting. Both Pi o processes require the same energy weighting 

to cancel the regular collinear divergences. This suggests that further research is 

needed to fully understand the energy weighting. I t is important to stress that, we 

can see from table 6.1 and (6.45) that an energy weighting scheme is required to 

remove A divergences. 

In figure 6.8 we have displayed all the processes which are used to cancel the 

A j n and Aout singularities in the first two hnes of (6.49). This method of combining 
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processes will now be compared to the version discussed for soft divergences (6.41). 
To remove soft divergences we require both Po,i diagrams displayed in figure 4.3. 
We can see from (4.13) that the interference effect (figure 6.2) between the two 
diagiams produces a soft divergence, but interference effects do not produce any 
Aout divergences. However, it is possible to add the extra Po,i process in figiu-e 4.3 
and the interference effects without destroying the Aout cancellation because this 
process can be integrated up to the ful l electron energy' E. The same conclusions 
may be reached for Pi,o and A j n divergences. Turning our attention to the Pi,i 
processes it can be seen that the diagrams in figvu-e 5.1(c) are not present in figure 
6.8. The diagrams in figure 5.1(c) are essential to the soft divergence cancellation. 
They do not produce A divergences so it will not harm the colhnear cancellation to 
add these to the diagi-ams in figure 6.8. In figure 6.8 we have just one diagram of each 
of the Pi.2 and P^j processes and these diagrams cannot interfere with each other. 
For the soft cancellation we required both of the Pi,2 (or Pj,]) diagrams and again 
interference effects are essential because these diagrams can be unwound to give a 
similar factor to (4.13), With just one of each of the Pi 2 and Pj,! diagrams we cannot 
produce this essential interference effect. By attempting to add the additional Pi,2 or 
P2,i diagram we would reintroduce the A divergences®. Therefore we must conclude 
that this cancellation of collinear divergences does not use the same processes as the 
soft cancellation (6.41). Put bluntly, the Lee-Nauenberg theorem fails to produce 
a finite cross-section i f the processes are combined as in (6.49). I t is interesting to 
obser\'e that the cancellation of collinear divergences is symmetric between emission 
and absorption type processes. This is in contrast with the soft cancellation (6.41). 
Intuitively we should expect symmetry between emission and absorption and this 
gives (6.49) a somewhat more 'natural feel' compared to (6.41). 

^ Cancellation of both types of divergence could be arranged if we only add the interference effect 
between the extra diagrams, but it would be extremely unnatural to allow a physical process to 
take place only as an interference effect. 
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Collinear and Soft Cancellation 

Another careful study of table 6.1 shows us that it is possible to obtain both a soft and 

collinear infrared finite cross-section. To do this we must alter the cancellation which 

takes place in (6.49) and the symmetry between emission and absorption is ruined. 

Take the same processes considered at the first finite point of the soft singularity 

cancellation (/^o,i :/^i,o: ^ i , i and ^1,2) and apply a regular energy' weighting to PQ.I 

and an inverted weighting to all other processes. Note that we apply an inverted 

weighting to a process which can be unwound into emission. The cancellation of the 

Ai„ divergences in (6.49) proceeds as before but we are left with the following final 

state A divergences 

duj [{El + El) - 2{2E? + j ^ j ^^2 ^ £.2} ( 6 . 5 0 ) 

where A|; ; '" = m i n ( A T , , , / 2 = Aout ) - I f A ^ i ' , " = A o u i it can be seen that the Aout 

collinear singularities will cancel. However, by insisting AJ,"'" = Aout we are 

physically saying that the photon is always directly observed through the photon 

detector and never observed indirectly by the electrons' energy' detector. This is not 

necessarily true for a given experiment. To produce an infrared finite cross-section 

we have put a constraint on the way experiments are carried out. Consider the soft 

cancellation series ( 6 . 4 1 ) and now include the next cluster of processes which are 

soft finite (a = 2). Apply an inverted energy' weighting to each of these processes 

(P2 , i : A,2 and /^2,3)- All these process share a common integration limit A T j „ / 2 

and the cancellation of these divergences proceeds as in ( 6 . 4 9 ) . For the final state 
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degeneracies we are left with the A divergences 

El 
J du [E\ + E^j-2J (iw [2EI + uj^ ) ( 6 . 5 1 ) 

/ • m i n ( l A T ^ ^ ^ , i l o u t ) / 

+ j clw\El-\-El 

These divergences are removed if the photon is observed directly so ATOUI ^ 3 A o u i -

This discussion may be extended for any v âlue of a and the collinear divergences 

cancel in the same way as the soft divergences providing AT^^^ > (a H- l ) A o u t : 

E'^w 

I 
m i n ( i ^ T „ ^ ^ , A o u t ) 

Jo V 
( 6 . 5 2 ) 

Therefore collinear divergences may be cancelled in exactly the same way as soft 

divergences. However a constraint is placed upon the way experiments are conducted. 

Concluding remarks 

We have calculated all possible A divergences for all the processes which contribute 

at NLO to the Coulomb scattering cross-section and displayed them in table 6 .1 . 

Through a careful examination of this table we found two ways of combining 

degenerate processes to cancel collinear divergences. 

The first cancellation we observed is given in equation ( 6 . 4 9 ) . i t is symmetric 

between emission and absorption processes. Soft divergences are produced from 

interference effects (displayed in figure 6 .2 ) as can be seen from ( 4 . 1 3 ) . These 

interference effects are missing in ( 6 . 4 9 ) and this puts the cancellation of A 

divergences in conflict with the soft singularities ( 6 . 4 1 ) cancellation. Therefore, 
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combining collinear divergences as in (6.49) means that the Lee-Nauenberg theorem 

fails because the cross-section is not simultaneously both soft and collinear finite. 

By insisting that an inverted energ}' w^eighting is applied to all processes other 

than Po,i another collinear singularity cancellation is possible. This takes place using 

the same processes required for the soft cancellation (6.41). Degenerate processes can 

be combined in a way which leads to an infrared finite cross-section through (6.41). 

There is no physical motivation to apply the energy weighting in such a way, but 

i t does allow us to preserve the Lee-Nauenberg proposition. Bethe-Heitler energy 

weighting has not been considered for many of the processes under consideration, 

so a trial and error method was employed here. More research must be done to 

discover if this energy w-eighting is physical. In order to achieve the cancellation 

in (6.41) for collinear divergences and preserve the Lee-Nauenberg proposition we 

have to place an unpleasant constraint on experiments. We insist that experiments 

detect a photon through a photon detector. I f an experimentalist detected a photon 

indirectly through energy which is 'missing' in the electron then the delicate infrared 

cancellation we have achieved in (6.41) is ruined. 

Through systematically applying the Lee-Nauenberg proposition we have dis

covered that i t makes an assumption regarding how experiments are conducted. 

There are problems to do with the convergence of series containing soft and collinear 

singularities. We have recognised that further research is required to understand the 

energ>' weighting and this research could disprove the Lee-Nauenberg theorem. 
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In this thesis new results on the motion of a charged paiticle within the 

electromagnetic background of a laser and on the summation and cancellation 

of infrared divergences have been presented. The main new results will now be 

summarised. More detailed/technical conclusions may be found at the end of the 

corresponding chapters and sections contained within this thesis. 

Tiie Dyimnucs of a Particle in a Laser Background 

The motion of a particle in a laser background has previously been solved for a 

relativistic charged particle [8]. but the three dimensional trajectory where the 

motion is described as a function of a reference frame's time is complicated to 

solve [9]. For a non-relativistic charge the state-of-the-art solution used the dipole 

approximation (see section 3.1) where terms 0{v/c) and higher are neglected. This 

disregards the influence of the magnetic field produced by the laser on the trajectory. 

Work done by Reiss [24] has shown that there is an interesting intermediate region 

where the fully relativistic theory is not needed but the magnetic field is. 

The previously unknown trajectory for a non-relativistic particle under the 

influence of the electromagnetic background produced by a laser has been found 

(without using the dipole approximation). The method used to discover this 

trajectory involved introducing a parameter into the non-relativistic system and thus 

making time a proper canonical variable. When parameterised in this way the non-

relativistic theory has been shown to mimic the relativistic problem and similar 

techniques may be applied. An interesting duality between high and low intensity 

regimes has been discussed. 

The non-relativistic trajectory we derived is very similar to the well known 

parametric relativistic solution [8] and the lesser known three dimensional solution 

[9]. Traditionally trajectories are considered in frames in which the particle is on-

average at rest. Here the motion of the particle for a circularly polarised laser is 
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circular and for a linear polarisation we find a figure of eight. Both of these orbits 

ai-e expected from the solution to the relativistic problem. By expanding the non-

relativistic and relativistic trajectories as functions of the intensity parameter (1.4) 

we saw that to order if these two models agree. We observed that many of the 

relativistic phenomena such as the drif t velocity and higher harmonic oscillations are 

also predicted by the non-relativistic theory. 

We found an improvement to the method used to derive the three dimensional 

relativistic trajectory originally discovered by Sengupta [9]. Often the relativistic 

solution is presented in a parametric form [8] and the evolution is described by the 

proper time parameter. Using Kepler's equation, the proper time parameter can 

be removed in the frame in which the particle is, on average, at rest. By finding 

this analogy to Kepler's equation we made the derivation of the three dimensional 

relativistic trajectory much more efficient. 

The mathematical model we used to describe the laser assumed that the laser 

pulse is infinitely long. This could be improved upon by including a more realistic 

pulse function. For instance the constant pulse function chosen in (4.20) could be 

replaced with a Gaussian. Looking forward, we could examine the non-relativistic 

modification to Thomson scattering and the effect of the particle's spin on the non-

relativistic trajectory. Other potentially frui t ful directions we may take are to look 

into solving the Schiodinger equation using this method or to consider the motion of 

two non-relativistic charged particles in the background of a laser which are bound 

together by some potential. 

Infrared Divergences 

The Lee-Nauenberg theorem has been carefully applied to the Coulomb scattering 

process. A fundamental aspect of this theorem is the need for unobservable particles 

in both the final and initial state. The Bloch-Nordsieck mechanism only allows for 
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degeneracies in the final state of a process. A particular emphasis has been placed 

on the class of divergences omitted by Lee and Nauenberg but noted by Lavelle 

and McMulIan. We call these singularities A divergences, where the quantity A 

is the detectors experimental energj' resolution i.e. the minimum energ>' a particle 

must have for the experiment to detect i t . These singularities are associated with 

the emission and/or absorption of massless charged particles which are both soft 

and collinear. In the bulk of the literature the Bloch-Nordsieck method [2] is used 

to remove soft divergences and then the Lee-Nauenberg theorem [5] is applied to 

cancel the remaining collinear divergences in the cross-section. By calculating the 

A divergences we have shown that this infrared cancellation cannot be done for 

processes with both initial and final state degeneracies. 

Lavelle and iVIcMullan [10] were the first to systematically apply the Lee-

Nauenberg proposition to all infrared divergences. They showed that, using Coulomb 

scattering as an example, there are several sums of degenerate processes, different 

from those used by Bloch and Nordsieck, which remove soft divergences. To achieve 

this cancellation they needed to incorporate processes involving disconnected photons 

which provide interference contributions to the cross-section. A cai'eful examination 

of [5] shows that disconnected processes are an essential part of the Lee-Nauenberg 

proposition. Each different sum of processes that led to the cancellation of soft 

divergences involves a different number of disconnected photons. 

The aim of this part of the thesis was to give a thorough description of the Lee-

Nauenberg theorem and its implications. We have extended the work of Lee and 

Nauenberg to incorporate the A divergences and to see i f they can be removed in the 

same way that Lavelle and McMuUan removed the soft divergences. We conclude 

that, even with the new A class of divergences, the cross-section may be rendered 

infrared finite. Therefore, the Lee-Nauenberg proposition may be preserved, but only 

if i t is systematically applied to soft as well as collinear divergences. However, to 
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achieve this some questionable assumptions must be made which we describe below. 

Recently Weinberg has made his reservations concerning the Lee-Nauenberg 

theorem clear when he wrote on page 552 of [88]: "The sum over initial states 

is nioie problematic. Presumably one may argue that truly massless particles are 

ahuays produced as jets accompanied by an ensemble of soft quanta that is uniform 

within some volume of momentum space. However, to the best of my knowledge no 

one has given a complete demonstration that the sums of transition rates that are 

free of infrared divergences are the only ones that are ex]}eii.inentally measurable.". 

By carefully studying the Lee-Nauenberg proposition when applied to Coulomb 

scattering we have seen that we must make two questionable assumptions in order to 

mathematically preserve the Lee-Nauenberg proposition. One of these assumptions 

places a constraint on experiments. Experimentalists must observe photons directly 

through a photon detector i.e. they are not allowed to indirectly observe a photon 

through some 'missing' electron energy. This shows that Weinberg's concerns are in 

fact \vell founded. An inverted Bethe-Heitler energy weighting must be introduced 

for all processes other than the basic emission of a photon. Currently there is no 

physical motivation to modif\- the cross-section in this way so further research is 

required. 

There are many topics which may be possible avenues for future work. There 

has been no attempt made to extend this analysis to QCD. where due to asymptotic 

freedom and its non-abelian nature, the infrared problem is much more severe [71 . 

J.C. Taylor has raised an interesting question regarding the fine tuning of the initial 

state within Lee-Nauenberg theorem and its applicability to real experiments [98]. 

The infrared problem in QED is also much worse i f one lowers the number of 

dimensions and this could prove to be another important test for the Lee-Nauenberg 

proposition. 
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A. NON-RELATIVISTIC SYMMETRIES 

Here we discuss the gauge symmetry and implementing Galilean boosts for a classical 

charged "non-relativistic" particle travelling in an electromagnetic background. 

A.J Gauge Transformations 

In three dimensional notation the gauge potential, A^* = (<p, A) and the coordinates. 

= {ct.x), are transformed under a gauge transformation as 

A(Lx)^A'(t,x) = A{Lx) + -^xit.^): ( A . l ) 
ax 

<f>{Lx)^<l>'{Lx) = 0 ( i , x ) - - - A : ( i , x ) , (A.2) 

Under the gauge transformation ( A . l ) and (A.2) the Lagrangian (3.7) is not invaiiant. 

It transforms like 

£ ( x , ^ . , ) ^ £ ( x , f . . ) + 5 l v « , x W ) , (A . 3 ) 

where d/dt denotes the total derivative 

d _ dx ^ d . 

Since the variation (A.3) of the Lagrangian is a total derivative of the function 

e/cx{t, x{t)) i t does not affect the classical equations of motion. I t is interesting to 

mention that the gauge transformation can be treated as a canonical transformation 
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with the generating function 

F{x, P,t) = x P - Q { t , x{t)). (A.5) 

A.2 Galilean Boosts 

For small velocities we neglect 0(K^/c^) and higher. A Lorentz boost, in the x 

direction, reduces to the Galilean transformation 

= t, x' = X - V t , y = y: z = (A.6) 

while the gauge potential will transform as 

0' = (/> - ^ / I , , AJ = A , - A y ' = A,, A,' = A,, (A.7) 

Using (A.6) and (A.7) and keeping only the leading order V/c terms the Lagrangian 

(3.7) transforms as 

= C^mV^ --^V A,^-^V A,-\~'^V^ ~\-o{Vlc) (A.8) 

^ £ - 7 7 1 ^ V'^t] . (A.9) 
dt \ 2 J 

Note that V is not infinitesimally small so terms 0{V'^) survive. Therefore the 

Lagrangian is only invariant under a Galilean boost up to a total deHvative. However, 

this change is important when considering a quantum treatment. 



B. GENERAL BOUNDARY CONDITIONS 

During the main body of the thesis we solved the equations of motion with the initial 

condition (3.55) when we could have solved for more general boundary conditions. 

Plugging the expression for the gauge potential (3.49) into the function l'K('u, Flj.) 

from (3.25) w-e have 

W{u, Y\j_) = —ifv^(r (e^ cos^ w 4- (1 — ê ) sin~ u) -f- 27;7uc (Fli cosu -h sin-u) . 

The integral in (3.39) with this expression is an elliptic integral. Using the 

trigonometric substitution x = tan(7//2) i t can be rewTitten in the Weierstrass form 

(see [60] section 13.5): 

Jo v i m 

with the fourth order polynomial 

f ( x ) = aox'' - f 4 a , + 6a2X^ -f- Aa^x -\- a.,, (B.2) 

whose coefficients are 

ao := Pl-ri's''-2i]p,, a,:^i]02. ^3 : = q 02 (B.3) 

a, := \pl + (e' - ^ ) , a, := Pi - if + 27;/?, (B.4) 
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According to the classical result [59] attributed to VVeierstrass, the integral (B . l ) can 

be inverted: 

tan 
• / ( o ) p - ( f 0 - 5 + ^ / ( o ) r ( o ) 

2 

(B.5) 

Here the number of primes over the polynomial (B.2) denotes the order of the 

derivatives with respect to x. In (B.5) the Weierstrass double periodic function, 

P •.92: fjs) depends on two invariants (see [59] section 20.6 for details) f/2 and ^3 of 

the polynomial (B.2) which are 

(J2 •• 

93 •• 

These equations show that the dependence of the trajectory on the initial conditions, 

contained within the invariants g2 and is quite subtle. 



C. JACOBIAN ELLIPTIC FUNCTIONS 

Here, following the classical textbooks [59.60], we have collected the basic formulae 

describing the Jacobian elliptic functions which are extensively used in part I . 

The amplitude function (p := am{z, fi) is the inverse of the function defined by 

the integral 

[ ^ \ . (C. l ) 
Jo v / l - / / . ^ s i n ^ T ? 

The function am(2 , fi) is defined on its principal domain which for real z is {—K. K). 

The value of constant, K depends on modulus / A and is given by the complete elliptic 

integral see (C.7) below. 

Three Jacobi elliptic functions, su{z, ft), cn{zjL) and dn(2,/t) are analytical 

functions of the complex variable z everywhere except at the simple poles. They 

are expressed in terms of the amplitude function 

sn(z, //,) = sin (am(z , / i)) , cn{z, ft) = cos (am(2 , fi)) , am(2. / L ) = dn{z, ft) . 
ciz 

(C.2) 

and satisfy the basic algebraic equations 

sn^2 + cn^z = 1 , f.i?s\?z + dn^2 = 1 , (C.3) 



C. Jilcobiau Elliptic Functions ISl 

and differential relations 

-^sn{z,ji) = sn{z , ft) c\n{z, fi), (C.4) 

^ cn(z, fj,) = -sn(2 , ii) dn(2 , / / ,) , (C.5) 

^ dn(z, /i) = - / / sn (2 , /x) cn(2 , / i ) , (C.6) 

which shows their analogy to the trigonometric functions. 

Functions sn(2, cn(2./i) and dn(z,/ i) are doubly periodic functions of z. 

Periods of sn(z, /i) are 4K and 2iK' while periods of cn(2. ^t) are 4E< and 2IK 4- 2iK'. 

Function dn{z.j.i) has periods 2K and 4iK'. The "real" (K) and "imaginary" {K') 

quarter periods are real numbers given by the complete elliptic integrals 

KUA := ^ (C.7) 

The Jacobian functions as functions of the modulus are single valued on the complex 

l^t plane with two cuts [ l ,oo) and (—oo,0]. 

The discrete symmetry. The Jacobian functions cn and dn are even functions, 

while sn is an odd function, they obey the relations 

sn{u-\-2TnK-\-2niK' ,f.i) = ( - ) ' " sn(u , /A ) , (C.9) 

cn{it + 2mK-\-2niK'ai) = cn(n, ^ i ) , 

c\n{u + 2mK + 2niK', /t) = ( - ) " dn(u , f.t), 

with n . m 6 Z . 

Two degenerate cases. The double periodic Jacobian functions degenerate into 

simpler functions when one of their periods becomes infinite, that if is 0 or 1. 
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When fL = 1 the real quarter-period K = oo and the Jacobian functions degenerate 

into the hyperbohc functions 

sn('U; 1) = tanh 'U , cn{u. 1) 
1 

cosh u 
dn(w, 1) = 

1 
cosli u 

(C.IO) 

If / i = 0 the real quarter-period is finite, K = 7T/2, but the imaginary quarter-

period is infinite and the Jacobian functions degenerate into the trigonometric 

functions 

sn{u, 0) = sin w, cn(i/, 0) = cos a, dn('ti, 0) = 1 ( C . l l ) 

Small modulus expansions. When the moduhis is small enough the Jacobian 

functions can be approximated by 

am(2. /t) 

sn(2,M) 

cn(2. ^i) 

2 - i / i ^ [z - sin(2) cos(2)] -H . 

sin(2) - ^ i^L^ [z — sin(2) cos(2)] cos(2) -|- o{ii^) 

cos(2) - f - / i ^ [z — sin(2) cos(2)] cos(2) -h o(/i*') 

(C.12) 

(C.13) 

(C.14) 

(C.15) 

The quarter period K with a small modulus may be expanded into the form 

TT 
1 + ( 2 ) "^n^J ' ' n^J (C.16) 
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The Foumer seiies expansions: 

, . . 27r 27r ^ (/" ^ TTZ 

where the nome, or Jacobian parameter, is defined by q := exp (—TTK'/K) • Similarly, 

since i t is a function of the quarter periods the nome (j can be expanded in powers 

of the modulus 

The viodidar transfoi^nations. The doubly periodic elliptic functions with differ

ent periods can be expressed through each other. The following identities hold 

.sn(2,/.A) f >^ ^ I /- '\ *^"(^'/^) (r^(^\ 
cn(2./i) ^ ^ cn(2,/i) cn{zat'} 

, if.L ,sn(z,AA) , , i f i . cn{z,f.t) ,t ^ CP 90^ 

sn(/i2 , / i) = M sn(2 , /O , cn(/i2 , ^ ) = cln(2 , ^ A ) , dn{i.iz , = cn{z , / i ) . (C.21) 

where = and / / := \J\ - i-i^, which is called the complementmij modulus. 



D. FEYNMAN RULES FOR QED 

The QED Lagrangian is 

^QED = - Ĵ p.̂ '*" + ('̂ ^ - rn) '0 4- £c .F . • (D . l ) 

From this the Feynman rules use to calculate S-Matrix elements may be derived, 

they are give in table D. For an electron, in this thesis, the charge Q = 1. For 

the complete set of Feynnian rules we should include anti-fermions too, but these 

are not needed for the calculations contained within this work. Momentum must be 

conserved at each vertex and virtual loop momentum are integrated over. Diagrams 

also have a symmetry factor but for many of the cases considered during this thesis 

it equals one. 

Often we are considering processes which, at the lev êl of the cross-section, may 

contribute via interference with a completely disconnected photon. The Feynman 

rule applied to these processes is given in figure 5.2. 
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Perm ion propagator 

Photon propagator 

Vertex 

Initial external ferniion 

Pinal external fermion 

P 

P 

= u^{p) 
P 

Initial external photon 

Pinal external photon 

i— 
A" 

— > 

Tab. D.l: Feyiiman rules for QED 



E. SOME COLLINEAR APPROXIMATIONS 

At various places in this thesis we make approximations based on collinearity. There 

are two classes of approximations that we will discuss in detail. 

Type J; Terms of the form p • k! that occur in a numerator where k! is not collinear 

with p. but is approximately coliinear with p'. Here we want to understand 

how to relate the scalar product /; • k! and p • p'. 

T>'pe 2; Terms of the form • kf that occur in a denominator where k' is 

approximately collinear with so the scalar product is very small. Here 

we want to understand how to relate the scalar product • k' and p • A:'. 

Type I approximations: Here we consider the non-vanishing p • fc' 

p • k' = Epw' - |p||A;'|cos(^,0 , (E . l ) 

where 9^' is the large angle between the momenta p and k'. Neglecting terms of order 

771 (which would be collinear finite) we can replace here \k!\ by \p'\uj'/Ep'. Define 

Op' the angle between p and p', then 6p> = Ok' + 6 where 6 is small. The angle in 

cos(^j;:') "^ay be replaced by cos(^p') since the correction 6 will only introduce finite 

corrections to our integrals. In this way ŵe see that, for the divergent terms, we may 

rewTite the numerator using 

Pk'=p-p'^. (E.2) 
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This manipulation allows us to express several divergent structures via a small 

number of integrals. 

Type 2 approximations: We are interested in approximating p„ • k\ where Pn and k' 

are on-shell but p is not. We are interested in the region where p„ is almost collinear 

with k' so these terms are small. Naively, we might expect that the simple identity 

Pn • k' = (p - nk') -k' = p'k', (E.3) 

would suffice. However, in the text, we need to compare Pn • k' with /; • k' where p is 

an on-shell momentum which is not the case in (E.3) except in the exactly collinear 

(and hence vanishing) limit. Thus a more careful argument is needed. 

To proceed we need to relate the angles between the various vectors. Let 6,^ be 

the small angle between /)„ and k', and let 0 be the small angle between and 0. 

Recall that p„ = p — nk' and hence p is not on-shell. Indeed, i t is straightforward to 

show that for small 0^ we have 

p'^iiE^uj'Ol. (E.4) 

Similarly, writing Pn in terms o f a n d k', we see that the on-shell condition for 

implies that 

0 = 7iE,,uj'el - 2nEuj' + 2n\p\w'{l - {6''). (E.5) 

Now the spatial component of p can be written as p = +nk. Hence we can wTite 
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Combining this result with (E.5) we find the approximation 

EX = E'e' . (E.7) 

Using this result and the small angle approximation that 

1 o 
(E.8) 

it is now straightforward to show that 

1 E 1 
p„ • k' En V • ^' 

(E.9) 



BIBLIOGRAPHY 

1] C. Itzykson and J. B. Zuber, Quantum Field Theory, McGraw-Hill, New York 

(19S0). 

2] F. Bloch and A. Nordsieck, Phys. Rev. 52, 54 (1937). 

3] P. P Kulish and L. D. Faddeev, Theor. Math. Phys. 4, 745 (1970). 

4] T. Kinoshita, .J. Math. Phys. 3, 650 (1962). 

5] T. D. Lee and M. Nauenberg, Phys. Rev. 133, B1549 (1964). 

6] V. Chung, Phys. Rev. 140, B l l l O (1965). 

7] L. D. Landau and E. M . Lifshitz, Course of Theoretical Physics, Volume 2: The 

Classical Theory of Fields. Pergamon Press, Oxford, (1975). 

[S] E. S. Sarachik and G. T. Schappert, Phys. Rev. D 1, A705 (1970). 

[9] N. Sengupta, Bull. Calcutta Math. Soc. 41 (1949). 

[10] M . Lavelle and D. McMullan, JHEP 03, 026 (2006). 

11] T. Kinoshitaand D. R. Yennie, Adv. Ser. Direct. High Energy Phys. 7, 1 (1990). 

12] H. Reiss, Prog. Quant. Electron. 16 (1992). 

13] N. Delone and V. Krainov, Atoms in Strong Light Fields, Springer Series in 

Chemical Physics, V o l 28, Berlin, New York, Springer-Verlag, (1985). 



Bibliography 190 

14] N. Delone and V. Krainov. iVIultiphoton Processes in Atoms, Berlin, New York, 

Springer-Verlag, (2000). 

15] F. Faisal, Theory of Multiphoton Processes, Plenum, New York, (1987). 

16] M . Fedorov, Electron in a Strong Optical Field, Nauka, Moscow, (1991). 

17] Y. I . Salamin, S. X. Hu. K. Z. Hatsagortsyan, and C. H. Keitel, Phys. Rept. 

427, 41 (2006). 

18] T. T. G.A. Mourou and S. Bulanov, Rev. Mod. Phys. 78, 309 (2006). 

19] C. Bamber et a/., Phys. Rev. D60, 092004 (1999). 

20] K. T. McDonald, Appeared in Proc. of 2nd Workshop on Laser Acceleration of 

Particles, Los Angeles, CA, Jan 7-18, (1985). 

21] T. Heinzl and O. Schroeder, J. Phys. A39, 11623 (2006). 

[22] K. D. Shniakov, Study of Nonlinear QED Effects in Interactions of Terawatt 

Laser with High Energy Electron Beam, PhD thesis, SLAC-R-666, (1997). 

23] J. Jackson, Classical Electrodynamics, New York , Wiley, (1999). 

24] H. Reiss, Phys. Rev. A 63 (2000). 

25] K. H. M . Klaiber and C. Keitel, Phys. Rev. A 75, 063413 (2007). 

[26] Y. Salamin, Phys. Rev. A 56, 4910 (1997). 

27] L. Brown and T. Kibble, Phys. Rev. 133, A705 (1964). 

28) A. Nikishov and V. Ritus, Zh. Eksp. Teor. Fiz. 46, 776 (1964). 

[29] H. Reiss, J. Math. Phys. 3, 59 (1962). 

[30] J. Frenkel, Z. Phys. 32, 27 (1925). 



Bi hiiogra phy 191 

31] A. Taub, Phys. Rev. 73, 768 (1948). 

32] J. Eberly and A. Sleeper, Phys. Rev. 176, 1570 (1968). 

[33] J. Kupersztych, Phys. Rev. D17, 629 (1978). 

34] R. \V. Brown and K. L. Kowalski, Phys. Rev. Lett. 51, 2355 (1983). 

35] Y. Salamin and F. Faisal, Phys. Rev. A 54, 5 (1996). 

36] VV. Thirring, Classical Matliematical Physics: Dynamical Systems and Field 

Theories, Springer , (1997). 

37] Vachaspati, Phys. Rev 128, 664 (1962). 

38] L Goldman, Phys. Lett. 8, 103 (1964). 

39] J. Eberly, Phys. Lett. 19, 284 (1965). 

40] V. Ritus, Trud. Fiz. Inst. Acad. Nauk. SSSR 111, 5 (1979). 

41) M.Babzien, Phys. Rev. Lett. 96 (2006). 

42] M . Henneaux and C. Teitelboim, Princeton, USA: Univ. Pr. (1992). 

43) P. Dirac, Lectures on Quantum Mechanics, Belfer Graduate School of Science, 

Monographs Series Yeshiva University, New York, (1964). 

[44] K. Sundermeyer, Lect. Notes Phys. Constrained Dynamics 169, 1 (1982). 

[45] L. H. Ryder, Quantum Field Theory, Cambridge, UK: Univ. Pr. (1985). 

46) H. Goldstein, Classical Mechanics, Addison-Wesley (1980). 

47] T. Tsang, Statistical Mechanics, Rinton Press, (2002). 

48] T. Heinzl, Lect. Notes Phys. 572, 55 (2001). 



Bi bliogra pby 192 

49] VV. Heitler, The Quantum Theory of Radiation, Oxford University Press, (1950). 

50] P. Rohrlich, Classical Charged Particles, Addison-Wesley, Reading. 

Massachusetts, (1965). 

51] J. Bergou and S. Varro, J. Phys. A 13, 3553 (1980). 

[52] K. Druhl and J. Mclver, J. Math. Phys. 24, 705 (1983). 

53] . ] . J. Sanderson, Phys.Letters 18, 114 (1965). 

[54] A. D. Steiger and C. H. Woods, Phys. Rev. D6, 1468 (1972). 

[55] A. D. Steiger and C. H. Woods, Phys. Rev. D5, 2912 (1972). 

[56] E. Whittaker, A Ti'eatise on the Analytical Dynamics of Particles and Rigid 

bodies. Third Ed., Cambridge University Press, Cambridge, (1927). 

[57] V. Arnold, Mathematical Methods of Classical Mechanics, Springer-Verlag, 

New-York, (1984). 

58] R. Abraham and J. Marsden, Foundations of Mechanics, Second Ed.. 

Benjamin/Cummings, Reading, Massachusetts, (1978). 

59] E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, Cambridge 

University Press, (1952). 

[60] H. Bateman, Higher Transcendental Functions vol. 11, McGraw-Hill, New^-York. 

(1953). 

61] E. McMillan, Phys. Rev. 79, 498 (1950). 

62] T. Kibble, Phys. Rev. 138, 1060 (1965). 

[63] M, Abramowitz and I . A. Stegun, Handbook of Mathematical Functions with 

Formulas. Graphs, and Mathematical Tables, (Dover, New York, 1964). 



Bibliography 193 

64] E. M- Stein and R. Shakarchi, Princeton Lectures in Analysis: H Complex 

Analysis, Princeton University Press. Princeton, (2003). 

[65] W. Rindler, Introduction to Special Relativity, Second Ed. Clarendon Press, 

Oxford, (1991). 

CTEQ, J. Botts et ai, Phys. Lett. B304, 159 (1993). 

67] K. G. Wilson and J. B. Kogut, Phys. Rept. 12, 75 (1974). 

68] M. E. Peskin and D. V. Scliroeder, An Introduction to Quantum Field Theory, 

Addison-Wesley (1995). 

[69] E. Bagan, M . Laveile, and D. McMuIlan, Annals Phys. 282, 471 (2000). 

70] J. D. Dollard, J. Math. Phys. 5, 729 (1964). 

[71] R. Doria, J. Frenkel, and J. C. Taylor, Nucl, Phys. B168, 93 (1980). 

72] C. Di'Lieto, S. Gendron, 1. G. Halliday, and C. T. Sachrajda, Nucl. Phys. B183, 

223 (1981). 

[73] A. A. Abrikosov, Sov. Phys. JETP 5, 1174 (1957). 

74] S. Weinberg, Phys. Rev. 140, B516 (1965). 

75] T. Muta and C. A. Nelson, Phys. Rev. D25, 2222 (1982). 

76] A. Axelrod and C. A. Nelson, Phys. Rev. D32, 2385 (1985). 

[77] R. Akhoury, M . G. Sotiropoulos, and V. I . Zakharov, Phys. Rev. D56, 377 

(1997). 

[78] H. F. Contopanagos and iM. B. Einhorn, Phys. Rev. D45, 1291 (1992). 

[79] R. Jackiw, Presented at Les Houches Summer School on Theoretical Physics: 

Relativity Crops and Topology, Les Houches, France, Jun 27 - Aug 4, (1983). 



Bibhogra phy J 94 

[80] N. Nakanishi and L Ojima, World Sci. Lect. Notes Phys. 27 (1990). 

[81] F- Mandl and G. Shaw, Quantum Field Theory, Wiley, (1984). 

82] R. Horan, M. Lavelle, and D. McMullan, Pramana 51, 317 (1998). 

[83] J. Jauch and F. Rohrlich, The Theory of Photons and Electrons: the Relativistic 

Quantum Field Theory of Charged Particles with Spin One-half, Springer-

Verlag, Heidelberg, (1976). 

84) R. Horan, M. Lavelle, and D. McMullan, J. Math. Phys. 41, 4437 (2000). 

85] F. N. Havemann, Scanned version avaliable at KEK library, (1985). 

86] E. Bagan, M . Lavelle, and D. McMullan, Annals Phys. 282, 503 (2000). 

87] M . Lavelle and D. McMullan, Phys. Rept. 279, 1 (1997). 

88) S. Weinberg, The Quantum Theory of Fields. Vol. 1: Foundations, Cambridge 

University Press, (1995). 

[89] H. M. Fried, Green's Functions and Ordered Exponentials, Cambridge Univ Pr, 

(2002). 

90] L. S. Brown, Quantum Field Theory, Cambridge Univ Pr, (1992). 

91) H. Bethe and W. Heitler, Proc. Roy. Soc. A 146, 83 (1934). 

[92] M . Bohm, A. Denner, and H. Joos, Gauge Theories of the Strong and 

Electroweak Interaction, Stuttgart, Germany: Teubner, (2001). 

93] D. R. Yennie, S. C. Frautschi, and H. Suura, Ann. Phys. 13, 379 (1961). 

[94] T. W. B. Kibble, J. Math. Phys. 9, 315 (1968). 

[95] M . Lavelle and D. McMullan, (2006), hep-ph/0607262. 



I 

Bihiiography 195 

96) C. De Calan and G. Valent, Nucl. Phys. B42, 268 (1972) 

97] L Ito, Prog. Theor. Phys. 65, 1466 (1981). 

98] J- C. Taylor, Phys. Rev. D54, 2975 (1996). 



Infrared Divergences from Soft and Collinear 
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1 Introduction 
To compare with experiment it is vital that theoretical predictions are finite. Beyond 
leading order in perturbation theory many processes contain infrared divergences. I t 
is often argued that these singularities are eliminated at the level of the inchisive 
cross-section [1,2]. During this talk I will show that the infrared divergences are still 
poorly understood. I also expose some questionable assumptions which must be made 
to render the theoretical cross-section finite. 

There ai'e two types of infrared singularities - soft and collinear. Soft divergences 
aie associated with low energy photons. Collinear divergences occur in high-energy 
or theories with massless charges. I t is common practice to use the Bloch-Nordsieck 
trick [1] for the soft divergences. By adding the bremsstrahlung process to the cross-
section with a virtual loop the overall cross-section is soft finite. Soft divergences 
can be regulated by dimensional regularisation where the number of dimensions, D = 
4 + 2£ifi. Focusing on the infrared pole, the Bloch-Nordsieck trick is summarised 
diagrammatically at next-to-leading order by: 

-h 

up to an overall multiplicative constant. This sum corresponds to the idea that there 
may be low energy unobserved photons accompan^'ing charges in the final state. 
Such processes are indistinguishable by experiment from an isolated charge. They 
are referred to as degenerate processes. The Bloch-Nordsieck trick, however, does not 
work for collinear divergences. 

The standard approach to deal with collinear divergences was developed by Lee 
and Nauenberg [2], Their quantum mechanical theorem states that the sum over all 
degenerate processes is infrared finite. In field theory one should thus include both 



initial and final state degeneracies. In this talk I will analyse the Lee-Nauenberg 
theorem applied to high-energy QED. Collinear divergences will be regulated by the 
effectively small mass, m. of the electron and will appear as terms proportional to 
In (7/1). 

2 New Class of Collinear Divergences 
I t is assumed in [2] that soft divergences hav̂ e been dealt with by the Bloch-Nordsieck 
trick and thus only collinear singularities produced by photons with energies greater 
than the experimental resolution A are considered. Recent work has shown that there 
is a class of divergences which were omitted in Lee and Nauenberg's paper [3]. These 
come from processes where low energi' (soft) photons travelling parallel (collinearly) to 
the charges are emitted and/or absorbed. These processes contain A ln(77z) collinear 
singularities in their cross-section which, from now on. will be referred to as A -
divergences. By inserting these divergences into the analysis conducted in [2] it may 
be seen that the cross-section cannot be simultaneously both soft and collinear finite. 
The reason for this failure may be traced back to the different ways soft and collinear 
singularities are dealt with. 

The Lee-Nauenberg theorem states that one should consider initial state degen
eracies. However, at first sight, including the absorption of low energ>' photons has 
the effect of reintroducing the soft divergences so that (1) becomes; 

A 
\ 

/ + 

X 
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However, all degeneracies must be considered and Lavelle and McMuUan have shown 
that the residual soft divergences in (2) may be cancelled by including the following 
cross-section contributions: 

\ < 
2 1 

= + — 

(3) 
The striking thing here is the need for the disconnected processes in the apphcation 
of the Lee-Nauenberg theorem. This was only briefly noted in the original paper [2 . 



Inv^estigations, by a variety of authors [3-8], have shown the need to consider such 
disconnected processes as displayed above. The amphtudes which interfere with the 
disconnected ones are the emission and absorption of a photon which can take place 
with either electron leg. By including all the above processes the ln(m) and soft 
singularities ai'e eliminated. However, in order to fully determine whether the cross-
section is finite the A-divergences must also be studied. The aim of this work is 
to discover if the Coulomb scattering cross-section can be made simultaneously both 
soft and collinear infrared finite. 

Lee and Nauenberg's theorem states that one should include all degenerate pro
cesses at each order of perturbation theory. However, at the same order of perturba
tion theory an infinite number of disconnected photons may be considered! Processes 
contributing to the next-to-leading order Coulomb scattering cross-section may be 
clustered into groups in which the soft singularities are eliminated: 

- 1 + 1 + ( 1 - 2 + 1 ) + ( 1 - 2 + 1 ) + ( 1 - 2 + 1) + 
Bloch -Nordsieck Lee- Nauenberg Lee— Nauenberg Lee— Naueiiberg 

(4) 

For each additional disconnected photon there are three further processes to con
sider. By calculating the soft divergences one obtains another factor of (1 — 2 + 1). 
Higher numbers of disconnected photons are not suppressed in this series so it will 
not converge. In practice this series is arbitrarily truncated at one of the finite stages 
to obtain a finite cross-section. Further discussion of this mathematically ill-defined 
procedure may be foinid in [3 . 

3 Cancellation of A-Divergences 

Figure 1: A process involving a disconnected photon. 

The discomiected photon, displayed in Figure 1, cannot be collinear with the 
electron both before and after it has been scattered. Therefore, in order for it to 
contribute to Coulomb scattering (and not be identified as a different process) the 
photon's energy must be lower than the experiment's detector resolution. Discon
nected processes provide contributions to the cross-section which can be soft and 



collineai". Therefore they produce A-divergences. The question arises: do these A 
divergences cancel for the same combination of diagrams as the soft singularities (4)? 

Photons may be detected by an experiment in two ways; 

1. Directly, through a detector with resolution A; 

2. Indirectly, through a measurement of the electron's 'missing' energy. 

A shift in the electron's energy puts an upper limit on the total energj^ contained by 
any number of soft photons. An electron energj' detector is a powerful tool for deter
mining whether a process is different from tree-level Coulomb scattering if multiple 
photons are contributing to the process. If the process contributes to Coulomb scat
tering then the photon's energy (or energies when including disconnected photons) is 
such that i t cannot be detected by either of the above methods. 

I have studied the next-to-leading order Coulomb scattering cross-section and 
evaluated all the A-divergences. The technical details will not be presented here 
(see [14]) and instead I will state the results. Removal of A-divergences from the cross-
section may take place using exactly the same prescription as soft divergences (4). 
However, for this cancellation to take place the following assumptions are required. 

1. A l l processes must have an inverted energj' weighting'. The exception to this 
rule is the emission process for which the usual Bethe-Heitler weighting is ai>-
plied. 

2. Experimentalists must observe photons directly through a photon detector i.e. 
they are not allowed to indirectly observe a photon through 'missing' electron 
energy. 

The energj^ weighting applied is not supported by a physical motivation (other than 
the infrai'ed finiteness which 1 am trying to prove). However, without this choice of 
w-eighting the Lee-Nauenberg theorem fails because the A-divergences are sensitive 
to the energy weighting. My calculations prove that in order for the A-divergences 
to cancel, the maximum photon energy must be the same for each of the processes 
being combined. I f a photon is detected indirectly then the amplitudes which contain 
different numbers of soft photons will have different maximum photon energies. The 

have followed the lead set by Bethe and Heitler. They state that for the emission cross-section 
an energy weighting factor which is equal to the electron energj' in the out-state divided by the 
electron energy in the in-state should be included. For references see section 5-2-4 in (9), p. 499 
of [10], p. 244 of [11], p. 309 of [12) and the original paper [13]. Intuitively the probability for 
emission and absorption should be equivalent. This requirement leads to the introduction of an 
inverted energ>' weighting for the absorption process. In the literature the energy weighting has 
only been carefully considered for the emission process. CoUinear A-divergences are highly sensitive 
to the energj' weighting scheme used so it will be important while studying their cancellation. 



processes required to cancel the soft singularities, displayed in equations (2) and (3), 
contain a different number of soft photons so the second assumption is necessary. 

Weinberg has made his reservations clear on the application of the Lee-Nauenberg 
theorem. I quote from page 552 of [15] " . . . to the best of my knowledge no one 
has given a complete demonstration that the sums of transition rates that ai^ fj'ee of 
infrared divergences are the only ones that are experimentally measurable.Through 
this calculation I have shown that Weinberg's reservations are well-founded since 
infrared finiteness places a condition on the way experiments are conducted. 

In summary what I have seen is that not only does the Lee-Nauenberg approach 
to the infrared lead to an i l l defined series of diagrams but there is no natural way to 
achieve infi'ared finiteness. Further research is urgently required. 

I am grateful to Martin Lavelle and David McMullan for their advice and assis
tance during the conduct of this research. 
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