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Abstract: The identification protocol is a type of zero-knowledge proof. One party (the prover) needs
to prove his identity to another party (the verifier) without revealing the secret key to the verifier.
One can apply the Fiat–Shamir transformation to convert an identification scheme into a signature
scheme which can be used for achieving security purposes and cryptographic purposes, especially
for authentication. In this paper, we recall an identification protocol, namely the RankID scheme,
and show that the scheme is incorrect and insecure. Then, we proposed a more natural approach
to construct the rank version of the AGS identification protocol and show that our construction
overcomes the security flaws in the RankID scheme. Our proposal achieves better results when
comparing the public key size, secret key size, and signature size with the existing identification
schemes, such as Rank RVDC and Rank CVE schemes. Our proposal also achieves 90%, 50%, and
96% reduction for the signature size, secret key size, and public key size when compared to the Rank
CVE signature scheme.

Keywords: public-key cryptography; post-quantum cryptography; code-based cryptography;
rank metric; signature scheme; identification scheme

MSC: 11T71

1. Introduction
1.1. Literature Review

Cryptography refers to the secure communication techniques that are derived from
mathematical concepts and algorithms to transform messages in ways that mean it is hard to
retrieve back the message. There are well-known cryptosystems, such as RSA, which have
been used until today. Nevertheless, this cryptosystem suffers from a few weaknesses that
might lead to the vulnerability of attacks, as we can read in [1,2]. The hard problem of RSA,
which is the factorization of large prime numbers, could turn out to be its weakness if there
exists a quantum computer. Therefore, it is necessary for cryptographers to construct other
cryptographic primitives that resist attacks by quantum computers, which are often coined
as post-quantum cryptosystems. One of the most common candidates for post-quantum
cryptosystems is built based on code-based cryptography. McEliece cryptosystem [3] is
one of the most well-known and the first motivation initiated in code-based cryptosystems
almost 40 years ago. Digital signature schemes (DSS) under code-based cryptography are
also secure as they are able to achieve three goals of cryptography, including data integrity,
authenticity, and non-repudiation.

One can consider the construction of code-based DSS via the hash-and-sign approach,
such as the CFS scheme proposed by Courtois et al. [4]. In this scheme, the document is
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repeatedly hashed to the bit-length r until the output becomes a decryptable ciphertext.
However, this was one of the weaknesses of this signature apart from having a very large
public key size. On the other hand, one can construct a code-based DSS by considering the
zero-knowledge protocol approach (ZKP). More specifically, in a zero-knowledge protocol,
one party (named Prover P) needs to prove to the other party (named verifier V) that he
or she knows the secret key without revealing the value or any information regarding the
secret key. Proof of identity as a means of authentication is the most common and secure
application of ZKP. One type of ZKP is the identification protocol which can be converted
into a signature scheme via the Fiat–Shamir paradigm. Meanwhile, if the person loses
his or her data or key, recovery is difficult to be attempted in ZKP. ZKP also has a large
signature size due to a large number of repetitions, and it requires a lot of computations
since it needs a large number of interactions between the prover and the verifier.

In 1994, Stern designed an identification protocol [5] that worked in the Hamming
metric. In this case, let Fqm be a finite field with qm elements where q is a prime power,
and m is an integer. In this scheme, given an error vector e which has weight w and a
vector, s = HeT where H is a parity check matrix over F(n−k)×n

2 . The prover P is needed to
convince the verifier V that he or she knows the value of e (the secret key). Stern managed to
reduce the cheating probability (the probability where a dishonest prover not knowing e can
cheat the verifier in the protocol) from 2

3 to 1
2 which led to a reduction in the signature size.

Later in 1997, Veron [6] proposed a different formulation of the secret key, x = mG⊕ e ∈ Fn
2

where the matrix G ∈ Fk×n
2 and x are public parameters. Despite the increment of the

public key size, Veron succeeded in reducing the communication cost. Since then, various
schemes have been invented using different modifications to enhance their schemes from
the previous ones. Aguilar, Gaborit, and Schrek [7] proposed a scheme (AGS) utilizing
double circulant codes to increase the number of challenges. They also managed to cut
down the communication cost in addition to reducing the size of the secret and public keys.

More recently, rank metrics have been considered to construct code-based identifica-
tion protocols and DSS by extending the constructions from the code-based identification
protocols and DSS in the Hamming metric. In 2018, Bellini et al. [8] proposed the rank met-
ric version of the Veron and CVE identification protocols and DSS. However, Lau et al. [9]
showed that the rank Veron was insecure, as its secret key could be recovered in polyno-
mial time. Nevertheless, Bellini et al. [10] improved the rank Veron DSS and proposed
another scheme, namely the RVDC identification protocol and DSS. Furthermore, in 2019,
Ayebie et al. [11] designed a rank metric version of the AGS identification scheme by using
random double circulant codes, which is known as the RankID scheme.

1.2. Research Flow

In this paper, we analyzed the RankID scheme. Their construction has errors in
correctness, which results in the invalidity of the scheme. The operations defined in the
scheme do not ensure the commutativity of the matrices and do not preserve the rank
of error vectors. Even if we assume the scheme is correct, we show that the scheme is
insecure, as its design leads to the leakage of the secret key. Then, we propose a new rank
version of the AGS ID more naturally and show that the new scheme achieves completeness,
soundness, and zero-knowledge properties. We also provide parameters achieving 128-bit
and 256-bit security levels, the latter is determined by the complexity for solving the Rank
Syndrome Decoding (RSD) problem.

1.3. Contribution of This Work

Our Rank AGS scheme parameters can reduce the signature and key size when
compared to the Rank CVE [8] and RVDC [10] schemes.

1.4. Paper Organization

This paper is structured as follows: in Section 2, we present the notions and prelimi-
naries that are used throughout the paper. Section 3 provides the analysis of RankID, which
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shows the errors in RankID that lead to the insecurity of the scheme. Section 4 introduces
the explanations and details of our proposed scheme, Rank AGS. Section 5 shows the
achievement of our proposed scheme on zero knowledge protocol security properties
such as completeness, soundness, and zero knowledge. Additionally, we also provide
the signing and verification algorithm of Rank AGS and the comparison of the sizes of
the signature, public, and secret key of Rank AGS with the other existing schemes in this
section. Furthermore, we also added the percentage of reduction in the key and signatures
sizes of Rank AGS with the reference Rank CVE as the original reference. Finally, we finish
with a section for the conclusion (Section 6).

2. Preliminaries

In this section, we recall the background on rank metrics and the hard problem used
in this paper. We also introduce the specification for AGS and RankID that have been used
in [7,11]. Throughout this paper, we will be using the following notations and definitions.

Let q be a prime power and m be an integer. Then, let Fqm be a finite field with
qm elements.

Definition 1. An [n, k]-linear code C of length n is a linear subspace of Fn
qm with dimension k.

A matrix G ∈ Fk×n
qm is called a generator matrix of code C if its rows form a basis of C. A matrix H

is called a parity check matrix of C if C = {x ∈ Fn
qm : H · xT = 0}.

Definition 2 (Rank Support). Let x = (x1, · · · , xn) ∈ Fn
qm . The support of x, Supp(x) is an

Fq-vector space spanned by elements x1, · · · , xn.

Definition 3 (Rank Metric). Let x = (x1, · · · , xn) ∈ Fn
qm ; the rank weight of x is defined as the

dimension of the support of x,
wtR(x) = dim(Supp(x)).

Let β1, · · · , βm be a basis for Fqm . For each 1 ≤ i ≤ n, we can write xi as an Fq-linear
combination of the basis, i.e., there exists cji ∈ Fq such that

xi =
m

∑
j=1

cjiβ j .

When forming an m× n matrix M = (cji) ∈ Fq, and we can rewrite x as:

x = (x1, · · · , xn) = (β1, · · · , βm)M,

and the rank weight of x also can be defined as the rank of the matrix M, wtR(x) = rk(M).
Now, let us define a problem that most of the cryptosystem in the rank metric is based on.

Problem 1 (Rank syndrome decoding problem (RSD)). Given a random matrix G ∈ Fk×n
qm ,

the random vectors x ∈ Fn
qm , f ∈ Fk

qm and an integer of r > 0 can be used as an input. The rank
syndrome decoding, RSD(q, m, n, k, r) problem needs to determine the vector e ∈ Fn

qm such that
rk(e) = r and f G⊕ e = x.

Gaborit and Zémor [12] showed that the RSD could be probabilistically reduced to
the syndrome decoding problem in the Hamming metric, where the syndrome decoding
problem is an NP-complete problem. Therefore, RSD is acceptable as a good candidate for
code-based cryptography.

The complexity of solving the rank syndrome decoding problem (RSD) is shown below.
We list down the combinatorial and algebraic attacks on RSD(q, m, n, k, r) in Table 1 and
Table 2, respectively, from [13] with their corresponding solving complexities.
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Table 1. Combinatorial attacks on RSD.

Attacks Complexity

CS [14] O((nr + m)3q(m−r)(r−1))

GRS-I [15]
O((n− k)3m3qr min{k, km

n }) if s 6= 0,

O((n− k)3m3q(r−1)min{k, km
n }) if s = 0

OJ-I [16] O(r3m3q(r−1)(k+1))

OJ-II [16] O((k + r)3r3q(m−r)(r−1))

GRS-II [15] O((n− k)3m3q(r−1) min{k+1, (k+1)m
n })

AGHT [17] O((n− k)3m3qr (k+1)m
n −m)

We used the following notation in Table 2 below.
The constant linear algebra is w ≈ 2.807, and the integer is a ≥ 0,
p := max{i : m(n−i−k−1

r ) ≥ (n−i
r )− 1},

At := ∑t
j=1 (

n
r)(

mk+1
j ),

Bt := ∑t
j=1(m(n−k−1

r )(mk+1
j ) + ∑

j
i=1(−1)i+1( n

r+i)(
m+i−1

i )(mk+1
j−i )),

b := min{t ∈ Z : 0 < t < r + 2, At ≤ Bt},
dn,r,k = (r + 1)(k + 1)− (n + 1),
Cn,k = (n

k), and vk = n− k− 1.

Table 2. Algebraic attacks on RSD.

Attacks Conditions Complexity

FLP [18] m = n, (n− r)2 = nk O((log q)n3(n−r)2
)

CGK [19] - O(k3m3qr km
n )

GRS [15]
dn,r,k ≤ 0 O(((r + 1)(k + 1)− 1)3)

[
dn,r,k

r ] ≤ k O(r3k3qr[
dn,r,k

r ])

BBB [20]
mCvk ,r ≥ Cn,r O(( ((m+n)r)r

r! )w)

mCvk ,r < Cn,r O(( ((m+n)r)r+1

(r+1)! )w)

BBC [21]
mCvk−p,r ≥ Cn−p,r − 1 O(mCvk−p,rCn−p,rw−1)

mCvk ,r ≥ Cn−a,r − 1 O(qarmCvk ,rCn−a,rw−1)

Ab − 1 ≤ Bb, q = 2 O(Bb Aw−1
b )

Definition 4 (Circulant matrix). A k× k matrix is called a circulant matrix if each row is obtained
from the previous one by a cyclic shift from one position to the right. In particular, A is generated by
a vector a = (a0, · · · , ak−1) in the form of:

A =


a0 a1 · · · ak−1

ak−1 a0 · · · ak−2
...

a1 a2 · · · a0


Definition 5 (Double circulant matrix). A [2k, k]-code over Fqm is a double circulant code if it is
generated by a matrix G = [A|B], where A and B are k× k circulant matrices.
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RankID

In this subsection, we first introduce the definitions and operations that have been
used in RankID [11]. Then, we identified the errors found in the RankID scheme.

Definition 6. Let vector x = (x1, · · · , xn) ∈ Fn
qm and M = (cji) ∈ Fq, as defined in Equation (2).

We defined the function Φβ map from Fm×n
q to Fn

qm as Φβ(M) = x. The inverse function, Φ−1
β was

defined as the mapping for Fn
qm to Fm×n

q and we can rewrite it as Φ−1
β (x) = (M).

Definition 7 (Asterisk Product). Let Q ∈ Fm×m
q , x ∈ Fn

qm , M = (cji) ∈ Fq and β be a basis of
Fqm over Fq. We define the product Q ∗ x by

Q ∗ x = Φβ(QM).

Let k be an integer such that k > 1, to any α ∈ F∗qm we associate the symmetric matrix

α̃k ∈ Fk×k
qm such that:

α̃k =


α

α2

. . .
αk

 (1)

Definition 8 (Bullet Product). Let α be an element of F∗qm , k be an integer such that k > 1, and
v = (v1||v2) (where || is the concatenation symbol) be a vector of Fn

qm such that v1, v2 ∈ Fk
qm . We

define the product v • α as follows:

v • α = v1α̃k||v2α̃k.

where α̃k is as defined in Equation (1).

The RankID scheme [11] utilizes the double circulant matrix from the AGS ID scheme [7]
to generate the generator matrix, G as a public key. The hard problem on which the RankID
is based is the RSD problem. They introduced the special multiplication law that has been
used in their protocol, as we explained in the previous section in definitions (7) and (8).

Their protocol uses a public k × n (with n = 2k) random double circulant matrix
G over Fqm . This matrix G generates an [n, k]-linear code over Fqm . They considered the
matrix of type G = (Ik, G1) where G1 is a k× k circulant matrix over Fqm and Ik is the k× k
identity matrix.

Private key: (e, f ) with e ∈ F2k
qm with rk(e) = r and f ∈ Fk

qm .

Public key: (G, x, r) with G ∈ Fk×2k
qm , x = f G⊕ e.

3. Analysis of RankID

Here, we provide more details regarding the errors that we encountered in the RankID
(Table 3). The authors in [11] claimed that RankID achieved completeness by the follow-
ing argument.

When g = 0, then the verifier can compute:

(u⊕ f α̃k)G⊕ x • α = uG⊕ f α̃kG⊕ ( f G⊕ e) • α

= uG⊕ f α̃kG⊕ f G • α⊕ e • α

= uG⊕ f α̃kG⊕ ( f α̃k|| f G1α̃k)⊕ e • α

= uG⊕ f α̃kG⊕ ( f α̃k|| f α̃kG1)⊕ e • α (2)

= uG⊕ f α̃kG⊕ f α̃kG⊕ e • α

= uG⊕ e • α.
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Equation (2) is incorrect because α̃k and G1 are not commutative. Although α̃k is
symmetric: it does not commute with the matrix G1. Therefore, f G1α̃k 6= f α̃kG1.

The second error in the scheme is when g = 1, then we obtain rk(Q ∗ (e • α)P) 6= r.
To illustrate rk(e • α) 6= r, we provide a counterexample here. Since P and Q are invertible
over Fq, they preserve the rank of the vector. Therefore, we only require showing that
rk(e • α) 6= r.

Table 3. The identification protocol (RankID).

Prover, P Verifier, V
u ∈ Fk

qm

P ∈ GL2k(Fq)

Q ∈ GLm(Fq)

c1 = h(P||Q||(uG1 ⊕ f ))
c2 = h(Q ∗ (uG)P)

−−−−−−−−−−−−−−→
α∈Fqm
←−−−

c3=h(Q∗(uG⊕(e•α))P)−−−−−−−−−−−−−→
g∈{0,1}←−−−−

if g = 0,

u + f α̃k ,
uG1 ⊕ f , (P||Q)

−−−−−−−−−→ verify:
c1 = h(P||Q||(uG1 ⊕ f )),

c3 = h(Q ∗ (uG⊕ (e • α))P)

if g = 1,

Q ∗ (uG)P,
Q ∗ (e • α)P
−−−−−−→ verify:

c2 = h(Q ∗ (uG)P),
c3 = h(Q ∗ (uG⊕ (e • α))P)

rk(Q ∗ (e • α)P) ≤ r

Proof. Let z be a primitive element in Fqm and {1, z, z2, · · · , zm−1} be a basis of Fqm over
Fq. Let q = 2, k = 4, m = 11, α = z2, e = (e1||e2) ∈ F2k

qm where e1 = (1, z, z2, z) and
e2 = (z, z2, z, z2) with rk(e) = 3.

rk(e • α) = rk(e1α̃k||e2α̃k)

= rk(1, z, z2, z)


z2

z4

z6

z8



||(z, z2, z, z2)


z2

z4

z6

z8


= rk(z2, z5, z8, z9||z3, z6, z7, z10)

= 8.



Mathematics 2023, 11, 1139 7 of 17

From the above counterexample, we obtain rk(e • α) = 8 which is greater than rk(e) =
r = 3. Therefore, rk(Q ∗ (e • α)P) 6= r.

Security Analysis of RankID

Now, we assumed that RankID was correct even though we found some errors in this
scheme. We showed that, based on the information sent through the channels, one could
recover the secret of the scheme.

As we know, the adversary can have the public key, which is (G, r, x) and other
elements from the scheme such as (α, G1, x, u + f α̃k, uG1 ⊕ f , P||Q) as the adversary can
look over the communication channel.

Now, we show how the secret key f was retrieved as follows:
Let w = u + f α̃k and v = uG1 ⊕ f ,

y = wG1 − v

= uG1 + f α̃kG1 − uG1 − f

= f α̃kG1 − f

= f [α̃kG1 − I].

Now, let δ = α̃kG1 − I and δ look random with the random matrix minus the identity
matrix. Therefore, we can have the inverse of the matrix, δ, so that f can be retrieved.

f = y [δ]−1.

Then, we can also computed the secret u.

u = w− f α̃k

= w− y[δ]−1α̃k.

Since we identified ( f , u), we could successfully retrieve the error vector, e. Therefore,
RankID is insecure to be used.

4. New Rank AGS Identification Protocol

In this section, we describe our new zero-lnowledge identification protocol, namely
the Rank AGS identification protocol. Our technique implements the double circulant
structure in the public matrix, G. Our public key is still the same as (G, r, x). Our secret
key is ( f , e). We modified the secret α that would be sent by the verifier to the prover into
α = γCir(v) where γ ∈ Fqm and Cir(v) is a circulant matrix generated by a vector v ∈ Fk

q .
We introduced a new definition of the product, which is defined below.

Definition 9 (Dot Product,·). Let e = (e1||e2) ∈ F2k
qm where e1, e2 ∈ Fk

qm and let α ∈ Fk×k
qm . We

define the product of e · α as follows:

e · α = (e1α||e2α).

4.1. Key Generation

We used the same notation and the same keys as in the scheme of RankID. Our
zero-knowledge protocol uses a public k× n (n = 2k) random double circulant matrix G
over Fqm .

4.1.1. Key Generation

Choose k, m, q, and r.

G $← Fk×2k
qm

e $← F2k
qm with rk(e) = r.
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f $← Fk
qm

x← f G⊕ e

Public Key = pk←(G, r, x), Secret Key = sk← ( f , e).

4.1.2. Rank AGS ID

In our zero-knowledge protocol, to prove its identity, a prover must prove the knowl-
edge of the secret key (e, f ) by using two blinding techniques. The first one is to Xor a
random vector to the secret key f , and the second blinding technique uses the “∗” and “·”
products to multiply the secret e to random values. Moreover, the security of our protocol
relies on the hardness of the rank syndrome decoding problem (RSD). We modify the α
that has been distributed by the verifier to the prover where α = γCir(v), where v ∈ Fk

q
and γ ∈ Fqm . Notice that the RankID scheme is insecure due to the extra information
uG1 + f sent by the prover to the verifier. As a result, we considered the original AGS
scheme in the Hamming metric and constructed the Rank AGS more naturally. Therefore,
the key generation and the algorithm of the Rank AGS are still the same except for the
commit, c1 = h(P||Q), and we removed the response uG1 ⊕ f when the challenge g = 0
was received. The repaired new scheme is shown in Table 4 below:

Table 4. The identification protocol (Rank AGS).

Prover, P Verifier, V
u ∈ Fk

qm

P ∈ GL2k(Fq)

Q ∈ GLm(Fq)

c1 = h(P||Q)
c2 = h(Q ∗ (uG)P)
−−−−−−−−−−→

α∈Fk×k
qm

←−−−−
c3=h(Q∗(uG⊕(e·α))P)−−−−−−−−−−−−→

g∈{0,1}←−−−−
if g = 0,

u + f α,
P||Q
−−−−→ verify:

c1 = h(P||Q),
c3 = h(Q ∗ (uG⊕ (e · α))P)

if g = 1,
Q ∗ (uG)P,
Q ∗ (e · α)P
−−−−−−→ verify:

c2 = h(Q ∗ (uG)P),
c3 = h(Q ∗ (uG⊕ (e · α))P),

rk(Q ∗ (e · α)P) ≤ r

4.1.3. Algorithm of Rank AGS ID

1. A proverP randomly chooses u ∈ Fk
qm , P ∈ GL2k(Fq), Q ∈ GLm(Fq). Then, P sends to

a verifier V the commitments c1 and c2 such that: c1 = h(P||Q) and c2 = h(Q ∗ (uG)P).
Here, h is a hash function.

2. A verifier V sends α ∈ Fk×k
qm to P .

3. A prover P builds c3 = h(Q ∗ (uG⊕ (e · α))P) and sends to V .
4. A verifier V sends g ∈ {0, 1} to P .
5. Two possibilities:
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• If g = 0: P reveals u + f α and P||Q.
• If g = 1: P reveals Q ∗ (uG)P and Q ∗ (e · α)P.

6. Verification step, two possibilities:

• If g = 0: V verifies that c1 = h(P||Q), c3 = h(Q ∗ (uG ⊕ (e · α))P) have been
honestly computed;

• If g = 1: V verifies that c2 = h(Q ∗ (uG)P), c3 = h(Q ∗ (uG ⊕ (e · α))P) have
been honestly computed and rk(Q ∗ (e · α)P) ≤ r.

Now, we provide a simple toy example of the Rank AGS scheme as in Table 5 below.
Let q = 2, k = 4, m = 3. Let z be the primitive element in F23 and 1, z, z2 be the basis of F23

over F2.
Private key: e = (1, z, z2, z||z, z2, z, z2) with e ∈ F8

23 with rk(e) = 3 and f = (1, z, z, z2)

with f ∈ F4
23 .

Public key: G =


1 z z z2 z 1 z2 z
z2 1 z z z z 1 z2

z z2 1 z z2 z z 1
z z z2 1 1 z2 z z

 with G ∈ F4×8
23 , r = 3 and

x = f G⊕ e = (1 + z + z2, z, z, z, z + z2, 1 + z + z2, z + z2, z2).

Table 5. Example of identification protocol (Rank AGS).

Prover, P Verifier, V
u = (1, z, z2, z) ∈ F4

23

P ∈ GL8(F2)

P =

1 0 0 0 0 0 0 0
1 0 0 1 0 1 0 0
1 1 1 1 0 1 0 1
1 0 1 0 0 1 1 0
1 0 0 1 1 1 0 0
1 1 0 1 1 1 0 0
0 1 0 0 0 0 1 1
0 1 1 1 0 0 1 1


Q =

1 0 1
0 1 0
1 0 0

 ∈ GL3(F2)

c1 = h(P||Q)
= 10101011100011100011000001

c2 = h(Q ∗ (uG)P)
= 11010000100111010011111101
−−−−−−−−−−−−−−−−−−−−→

α=


1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1

∈F4×4
23

←−−−−−−−−−−−−−−−−
c3 = h(Q ∗ (uG⊕ (e · α))P)

= 10101010110110010010011011
−−−−−−−−−−−−−−−−−−−−→

g∈{0,1}←−−−−
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Table 5. Cont.

if g = 0,

u + f α
= (z, z2, 1 + z + z2, z2),

P||Q
−−−−−−−−−−−−−−→

Assume can be verified
as we can receive back:

c1 = h(P||Q)
= 10101011100011100011000001,

c3 = h(Q ∗ (uG⊕ (e · α))P)
= 10101010110110010010011011

if g = 1,

Q ∗ (uG)P

=

0 1 1 0 1 0 1 1
0 0 0 0 1 0 0 0
0 1 0 1 1 1 0 0

,

Q ∗ (e · α)P

=

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 1 1 1 0 1 0 1


−−−−−−−−−−−−−−−−−−−−−−−→

Assume can be verified
as we can receive back:

c2 = h(Q ∗ (uG)P)
= 11010000100111010011111101,

c3 = h(Q ∗ (uG⊕ (e · α))P)
= 10101010110110010010011011,

rk(Q ∗ (e · α)P) = 2 ≤ 3

From the above Rank AGS example, we were able to prove that our Rank AGS scheme
works efficiently.

5. Properties and Security of the Rank AGS ID

In this section, we prove the ZK security of our scheme by using the usual zero-
knowledge arguments and also consider security properties such as completeness, zero
knowledge, and soundness. We also showed that this protocol is zero-knowledge with a
cheating probability of around 1

2 .

5.1. Completeness

We obtained the completeness of Rank AGS that has been described in (Table 4)
by showing that if an honest prover P and an honest verifier V execute our protocol, it
always succeeds.

Theorem 1. If a prover and a verifier honestly execute Rank AGS, we have for any round

Pr[RankAGSIdP,V = Accept] = 1.

Proof. P and V are supposed to be honest. We can verify c3 in the case that g = 0, V can
compute:

(u⊕ f α)G⊕ x · α = uG⊕ f αG⊕ ( f G⊕ e) · α
= uG⊕ f αG⊕ f G · α⊕ e · α
= uG⊕ f αG⊕ ( f || f G1) · α⊕ e · α
= uG⊕ f αG⊕ ( f α|| f G1α)⊕ e · α
= uG⊕ f αG⊕ ( f α|| f αG1)⊕ e · α
= uG⊕ f αG⊕ f αG⊕ e · α
= uG⊕ e · α.
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In the case g = 1, we can check that rk(Q ∗ (e · α)P) = r. The proof is as below when
we consider rk(e · α) = rk(e).

Proof. Let (β1, · · · , βm) be the basis for Fqm . Let Me1 and Me2 be the support matrices for
e1 and e2 respectively.

e · α = e1γCir(v)||e2γCir(v)

= (β1, · · · , βn)Me1 γCir(v)||(β1, · · · , βn)Me2 γCir(v)

= γ(β1, · · · , βn)Me1 Cir(v)||γ(β1, · · · , βn)Me2 Cir(v).

Now, we can determine rk(e · α). Let M′1 = Me1 Cir(v) and M′2 = Me2 Cir(v).

rk(e · α) = rk(M′1||M′2)
= rk(Me1 Cir(v)||Me2 Cir(v))

= rk([Me1 ||Me2 ]

(
Cir(v) 0

0 Cir(v)

)
)

≤ min
{

rk(Me1 ||Me2) , rk
(

Cir(v) 0
0 Cir(v)

)}
≤ rk(Me1 ||Me2)

≤ rk(e) = r.

Therefore, rk(Q ∗ (e · α)P) ≤ r. The verifier, V can execute the protocol correctly.

5.2. Zero Knowledge

We used the classical idea of simulation as presented in [22] to ensure zero knowledge.
We need to prove that no information can be deduced in polynomial time from the execution
of the Rank AGS protocol.

Theorem 2. The protocol defined in (Table 4) is a prover-verifier zero-knowledge protocol.

Proof. Let S and δ be a simulator using a dishonest verifier and the number of rounds that
are taken by an honest identification process to be executed, respectively. We needed to
construct a polynomial-time simulator S of the protocol that, by interacting with the verifier
V, could provide a transcript indistinguishable from the original protocol. The simulator S
should perform the following steps:

If g = 0:

S randomly chooses u′ ∈ Fk
qm , P′ ∈ F2k×2k

q and Q′ ∈ Fm×m
q and solves the equation

x = f G ⊕ e without necessarily satisfying the condition rk(e) = r. Then, the computed
c1 = h(P′||Q′) and c2 is taken as a random value. S simulates the verifier by applying
(c1, c2) to obtain α ∈ Fk×k

qm . Then, S can compute c3 = h(Q′ ∗ (u′G⊕ (e · α))P′). Note that
P′, Q′, and u′ are indistinguishable from P, Q, and u + f α.

If g = 1:

S randomly chooses u′ ∈ Fk
qm , P′ ∈ F2k×2k

q and Q′ ∈ Fm×m
q . Now, he randomly chooses

f ′ ∈ Fk
qm and e′ ∈ F2k

qm such that rk(e′) = r. Then, he computes c2 = h(Q′ ∗ (u′G)P′) and c1

is taken as a random value. S simulates the verifier by applying (c1, c2) to obtain α ∈ Fk×k
qm

and then S can compute c3 = h(Q′ ∗ (u′G⊕ (e′ · α))P′). Note that P′, Q′, u′, f ′ and e′ are
indistinguishable from Q∗(uG)P and Q ∗ (e · α)P.
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Therefore, S generates a communication transcript that is indistinguishable from
another communication transcript which exactly looks similar to an honest identification
process execution in 2δ rounds.

5.3. Soundness

The soundness of our scheme can be proven by starting to show that for each round,

a dishonest prover can cheat with a probability that does not exceed qm+k−qm−qk+2
2(qm+k−qm−qk+1)

.
The finite field used is Fqm .

St1: He or she randomly chooses u′, P′, Q′, and solves the equation x = f ′G⊕ e′ without
necessary satisfying the condition rk(e′) = r where f ′ ∈ Fk

qm and e′ ∈ F2k
qm when

receiving g = 0 as a challenge. Then, he or she computes c1 = h(P′||Q′) and sets c2
at random data. Thus, the dishonest prover is able to answer the challenge g = 0
regardless of the value of α chosen by the verifier.

St2: He or she randomly chooses u′, P′, Q′, and generates the couple ( f ′, e′) randomly
such that rk(e′) = r when receiving g = 1 as a challenge. Then, he or she can compute
c2 = h(Q′ ∗ (u′G)P′) and set c1 at random data. In this case, the rank of e′ is valid.
Thus, the dishonest prover can correctly answer the challenge g = 1 regardless of the
value of α.

By trying to guess α, the above two strategies can be improved. Let α′ be the guessed
value of α. Thus, the dishonest prover can compute h(x) where x = Q ∗ (uG⊕ (e · α′))P.

Since there are only two strategies (St1, St2), we have P(St = Sti) =
1
2 . Next, we only

have two possibilities of being challenged which are g ∈ 0, 1. Therefore, P(g = i) = 1
2 .

Meanwhile, the probability of guessing the correct value of α depends on its size. We
know that α = γCir(v) where γ ∈ Fqm and v ∈ Fk

q . Thus, excluding 0, the size of α is
(qm − 1)(qk − 1) and the probability of guessing the correct α is 1

(qm−1)(qk−1)
.

Therefore, the success cheating probability of a strategy for one round is given by:

P =
1

∑
i=0

P(St = Sti)P(b = i) + P(St = Sti)P(b = 1− i)P(α = v′)

= P(St = St0)P(b = 0) + P(St = St0)P(b = 1)P(α = v′)

+ P(St = St1)P(b = 1) + P(St = St1)P(b = 0)P(α = v′)

= (
1
2
)(

1
2
) + (

1
2
)(

1
2
)(

1
qm+k − qm − qk + 1

)

+ (
1
2
)(

1
2
) + (

1
2
)(

1
2
)(

1
qm+k − qm − qk + 1

)

= (
1
4
) + (

1
4
)(

1
qm+k − qm − qk + 1

) + (
1
4
)

+ (
1
4
)(

1
qm+k − qm − qk + 1

)

=
1
2
+ (

1
2(qm+k − qm − qk + 1)

)

=
qm+k − qm − qk + 2

2(qm+k − qm − qk + 1)
.

If a dishonest prover succeeds in cheating with a probability higher than(
qm+k−qm−qk+2

2(qm+k−qm−qk+1)

)δ
where δ is the number of rounds, then he or she can solve the rank

syndrome decoding problem (RSD).
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5.4. Rank AGS Signature Scheme

After this, we investigated the signature scheme based on the Rank AGS ID. As men-
tioned in the introduction, the Fiat–Shamir transform [23] can turn any zero-knowledge
identification scheme into a signature scheme by considering the cryptographic hash func-
tions known as the commit-and-challenge approach. The key generation of our signature
scheme is the same as in Rank AGS ID. Now, we present the Rank AGS signing and
verification algorithm as shown in the following Algorithms 1 and 2 respectively.

Algorithm 1 rank AGS signing algorithm

Input: msg, message, δ, number of rounds, sk=(f,e)← KGen, pk=(G,r,x)← KGen.
Output: Sign(sk,pk,msg,δ)

Step 1:
1: for i = 1 to δ do
2: ui ∈ Fk

qm

3: Pi ∈ F2k×2k
q

4: Qi ∈ Fm×m
q

5: ci,0 ← h(Pi||Qi)
6: ci,1 ← h(Qi ∗ (uiG)Pi)
7: end for
8: cmt0 ← c1,0||c1,1|| · · · ||cδ,0||cδ,1

Step 2:
9: ch1 ← h(cmt0||msg)

Step 3:
10: for i = 1 to δ do
11: γi = (ch1,(i−1)m+(i−1)k+1, · · · , ch1,im+(i−1)k)

12: vi = (ch1,im+(i−1)k+1, · · · , ch1,im+ik)

13: αi = γiCir(vi)
14: cmt1,i ← h(Qi ∗ (uiG⊕ (e · αi))Pi)
15: end for

Step 4:
16: ch2 ← h((cmt1||1)|| · · · ||(cmt1||`))

Step 5:
17: for i = 1 to δ do
18: if ch2,i = 0, then
19: rspi ← [ui + fiαi, (Pi||Qi)]
20: end if
21: if ch2,i = 1, then
22: rspi ← [(Qi ∗ (uiG)Pi), (Qi ∗ (e · αi)Pi)]
23: end if
24: end for
25: sgn← [cmt0, ch1, cmt1, ch2, rsp]
26: return sgn

Impersonation attack. An attacker executes the Rank AGS with a prover, P , and tries
to give answers that the verifier, V , will accept. It is impossible to give commitments that can
be opened for two values of g. Without the knowledge of the secret key, e, the probability
of success is at most Primp = 1

2 .

5.5. Key Size and Signature Size

Here, we report the key and signature bit size for our Rank AGS ID and Rank AGS
Signature scheme, respectively. First, we investigate the key size that we need for Rank
AGS ID.
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1. Our public keys are (G, x, r). G ∈ Fk×2k
qm is a systematic double circulant matrix, which

requires only a vector to represent it, 2km log2(q). x ∈ F2k
qm has a size of km log2(q).

Therefore, the public key size is 3km log2(q).
2. The secret keys are ( f , e) where f ∈ Fk

qm and e ∈ F2k
qm . If we have f , then we can

compute e from e = x + f G. Therefore, it suffices for us to store only f as a secret key,
which contributes to km log2(q).

3. Based on the Rank AGS signature scheme, we can construct the signature size of
our signature scheme. The signature consists of two commitments which are cmt0
and cmt1,i, and have a total length of 3hδ. Then, the challenge, ch1 is having size of
δ(k + m)log2(q) and ch2 is having size of δ. The total size of the response, rspi for the
commit-challenge, is based on the value of the challenge, which is 0 or 1. The size of
rspi is 1

2 δ(5km + 4k2 + m2)log2(q). The signature size is based on the total size of the
commitment, challenge, and response which is 3hδ + δ + δ(k + m)log2(q) + 1

2 δ(5km +
4k2 + m2)log2(q).

Algorithm 2 rank AGS verification algorithm

Input: msg, message, δ, number of rounds, sgn = [cmt0, ch1, cmt1, ch2, rsp], pk=(G,r,x)←
KGen.

Output: Verify(pk,msg,δ,sgn)
1: for i = 1 to δ do
2: γi = (ch1,(i−1)m+(i−1)k+1, · · · , ch1,im+(i−1)k)

3: vi = (ch1,im+(i−1)k+1, · · · , ch1,im+ik)

4: αi = γiCir(vi)
5: if ch2,i = 0 then
6: ci,0 ← cmt0,2h(i−1)+1, · · · , cmt0,2h(i−1)+h
7: if ci,0 6= h(rspi,2)∨ then
8: cmt1,i 6= h(rspi,2(2) ∗ (rspi,1G⊕ (x · αi))rspi,2(1))
9: return false

10: end if
11: end if
12: if ch2,i = 1, then
13: ci,1 ← cmt0,(2h(i−1)+h)+1, · · · , cmt0,2hi
14: if ci,1 6= h(rspi,1) ∨ cmt1,i 6= h(rspi,1 ⊕ rspi,2) ∨ rk(rspi,2) 6= r then
15: return false
16: end if
17: end if
18: end for
19: return true

Now, we provide the parameter sets achieving 128-bit and 256-bit security levels as
shown in Table 6. These security levels are computed based on the complexity of existing
known combinatorial and algebraic attacks on the RSD problem. We set q = 2, m to be a
prime number, and n = 2k. The number of rounds needed to decrease the impersonation
probability to our needs. Therefore, we fixed the number of rounds, δ = 129 and δ = 257 to
reach the desired impersonation probability (2−129 and 2−257) to achieve the security level
of 128-bits and 256-bits respectively. The hash value, h, is the same as the δ value according
to the Rank AGS signature scheme.

We could achieve the desired security level to solve the rank syndrome decoding
problem (RSD) based on the sets of small parameters.

Then, we looked at the key and signature bit sizes for other signature schemes, which
are based on rank metrics such as Rank CVE [8] and the double circulant version of Veron
(Rank RVDC) [10] identification schemes. Then, we compared the size of public, secret,
and signature keys with our Rank AGS as shown in Tables 7 and 8.
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Table 6. Public, secret keys and signature bit sizes for 128-bit and 256-bit security levels.

Parameters
(q, m, n, k, r, δ, h) Security Level Signature Size Secret Key Public Key

(2, 43, 38, 19,
8, 129, 129) 128 bit 533,931 817 2451

(2, 37, 34, 17,
8, 129, 129) 128 bit 422,733 629 1887

(2, 47, 46, 23,
11, 257, 257) 256 bit 1,466,699 1081 3243

(2, 53, 46, 23,
11, 257, 257) 256 bit 1,634,006 1219 3657

Table 7. Comparison of keys and signature bit sizes with CVE and RVDC schemes for 128 secu-
rity level.

Scheme Parameters (q, m, n, k, r, δ, h) Signature Size Secret Key Public Key

Rank CVE (2, 43, 38, 19, 8, 128, 256) 3,313,662 1258 33,969

Rank RVDC (2, 43, 38, 19, 8, 129, 256) 574,953 2451 2454

Rank AGS (2, 43, 38, 19, 8, 129, 129) 533,931 817 2451

Table 8. Comparison of keys and signature bit sizes with CVE and RVDC schemes for 256 secu-
rity level.

Scheme Parameters (q, m, n, k, r, δ, h) Signature Size Secret Key Public Key

Rank CVE (2, 47, 46, 23, 11, 256, 512) 14,161,547 2162 75,673

Rank RVDC (2, 47, 46, 23, 11, 257, 512) 1,645,057 3243 3247

Rank AGS (2, 47, 46, 23, 11, 257, 257) 1,466,699 1081 3243

Based on the comparison above, we could observe that all our public, secret key size,
and signature sizes were smaller than other schemes. The percentage of the size reduction
in the keys or signature is given below in Tables 9 and 10 as we consider Rank CVE as the
original reference for 128 and 256 security levels.

Table 9. Percentage of size reduction as we consider Rank CVE as the original reference for the 128
security level.

Scheme
Percentage (%)

Signature Size Secret Key Public Key

Rank RVDC 83 −95 93

Rank AGS 84 35 93

We used the notation of “- %” to indicate that the key size was, in fact, larger than
the ones in Rank CVE. In particular, rank RVDC had a larger secret key size compared to
Rank CVE. Moreover, Rank AGS reduces drastically in the size of the signature, public key,
and secret key compared to Rank CVE.
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Table 10. Percentage of size reduction as we consider Rank CVE as the original reference for the 256
security level.

Scheme
Percentage (%)

Signature Size Secret Key Public Key

Rank RVDC 88 −50 96

Rank AGS 90 50 96

6. Conclusions

In this paper, we studied and identified the errors in RankID [11]. The operations
chosen in the RankID construction did not ensure the commutativity of the matrix multi-
plication and preserved the rank of the error vector. Furthermore, even if we assume that
RankID is correct, it is still insecure because the secret key can be recovered. Therefore,
we propose a new scheme: Rank AGS ID based on the hardness of the rank syndrome
decoding problem (RSD) by considering the original AGS ID in hamming metric. We
provided the correctness of our Rank AGS ID and proved that the rank of the error vector
was preserved. Our scheme also achieved zero-knowledge security properties such as
completeness, soundness, and zero knowledge. Finally, we showed how that our scheme
has a smaller public, secret, and signature key size when compared with other identification
schemes=-based signatures, such as Rank CVE and Rank RVDC, for 128-bit and 256-bit
security levels.
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