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Abstract

Piotr Aleksander Bogdan

Learning and planning for autonomous systems with emergent hierarchical
representations and decaying short-term memory

How do we create machines with the ability to capture, record and recall mem-
ories of past experience? How should these machines choose the most optimal
action based on those stored memories? These seem like crucial questions for
creating intelligent machines capable of learning from experience. The field of
Artificial Intelligence (AI) is trying to reproduce such capabilities with increas-
ing success. Currently a large portion of AI algorithms are focusing on making
decisions based on big sets of learned past experience examples in the form of
instantaneous input-output mapping. They operate as discrete models where time
is collapsed into independent signal samples. Yet the dimension of time is the
most fundamental source of perception, and the presence and absence of the signal
is only visible by its changes in time. This work combines features of established
neural network algorithms to create a new approach to the processing of temporal
signals. Considering either agent-environment division present in reinforcement
learning (RL) or controller-process division in control theory, there is always the
intelligent part, agent or controller, which tries to control the passive, mostly
deterministic part, environment or process. As the complexity of the problem
grows, the coupling between the controller and the controlled part starts to become
more physically limited. With limited perception, the controller has to resolve to
building an abstract model of the controlled process or environment in order to
be able to take fully informed actions. Presented in this thesis is a new artificial
neural network capable of creating an unsupervised temporal model of the signal
that can then be used as an abstract environment model for the controller. The
network is structured as multilayer hierarchical composition of self-organising
maps, augmented by short term memory in the form of wave-delay lines. Each
layer performs temporal signal decomposition with a progressively larger time
spectrum. The research analyses the network performance in creating abstract
signal models on a range of synthetic and real world signals. It then introduces
simple reinforcement learning additions, that allow the network to solve simple
toy RL benchmarks.

9



10



Contents

Acknowledgements 5

Author’s declaration 7

Abstract 9

Table of Contents 11

List of Figures 15

Introduction 19

Proposed solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1 Literature review 23

1.1 Background Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.2 Spatio-temporal encoding . . . . . . . . . . . . . . . . . . . . . . . . 28

1.3 Self Organizing Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

1.4 Hierarchical Reinforcement Learning . . . . . . . . . . . . . . . . . . 31

1.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2 Methods 33

2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.2 Short-term memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.3 Long-term memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.4 Temporal Inhibition Circuit . . . . . . . . . . . . . . . . . . . . . . . 45

2.5 Multi-layer connections . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.6 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.7 Prediction, Value estimation and Policy for Reinforcement Learning 53

2.8 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

2.9 Parameterisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

11



3 Experiments 61

3.1 Experiment 1: Encoding of simple repeating spikes . . . . . . . . . 61

3.1.1 Activation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.1.2 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.1.3 Activation rate . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.1.4 Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.1.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.1.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.2 Experiment 2: Encoding of noise . . . . . . . . . . . . . . . . . . . . 70

3.3 Experiment 3: Encoding of complex repeating signals . . . . . . . . 72

3.3.1 Single convergence activation test . . . . . . . . . . . . . . . 73

3.3.2 Node activation dependent on sequence length . . . . . . . 74

3.3.3 Network convergence dependent on sequence length . . . . 77

3.3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.4 Experiment 4: Encoding of signals with noise . . . . . . . . . . . . . 79

3.4.1 Spatial noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.4.2 Temporal noise . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.4.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.5 Experiment 5: Encoding for classification . . . . . . . . . . . . . . . 83

3.6 Experiment 6: Encoding for reinforcement learning . . . . . . . . . 86

3.6.1 Two step "Tiger Problem" . . . . . . . . . . . . . . . . . . . . 88

3.6.2 Delayed reward updates . . . . . . . . . . . . . . . . . . . . . 90

3.6.3 Extended "Tiger Problem" . . . . . . . . . . . . . . . . . . . . 91

3.6.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4 Discussion and Further Work 95

Conclusions 99

Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

Acronyms 102

Bibliography 103

Appendices 107

A Short-term wave delay line memory code 108

12



B Self-organising map code 110

C Single layer code 113

D Single convergence activation test code 119

E Encoding for classification code 123

13



14



List of Figures

2.1 Diagram of network architecture. All layers consist of short-term
memory, self-organizing map and temporal inhibition circuit. First
Layer consist of simple delay line memory but from second layer
on-wards short-term memory can be implemented as analogue
wave delay line with decreasing propagation speed. . . . . . . . . . 34

2.2 Wave propagating through analogue delay line. . . . . . . . . . . . 37

2.3 Example encoding of repeating sequence of period of 7 steps (“AB-
CADEA”) encoded by SOM augmented by 4 time steps delay line.
In normal activation paradigm (A) the nodes of the SOM (1 through
7) are activated every time step and sequence chunks encoded in
the weights overlap. When SOM activation is time dilated (B) by
three steps the sequence chunks stop overlapping but lack of syn-
chronisation means that SOM still needs 7 nodes to encode whole
sequence. Only when activation is unevenly dilated in time can the
whole sequence be encoded by only 3 nodes (C). . . . . . . . . . . . 46

2.4 Behavior of temporal inhibition circuit. After each node positive
activation (full dot) TIC creates period of inhibition P at which
any BMU node which has ED bigger then some defined value R is
inhibited. Any node with better match can override inhibition at
any point and trigger activation and learning (2) else the network
has to wait till inhibition elapses (1). . . . . . . . . . . . . . . . . . . 49

2.5 Visualization of 5x5 classification SOM network trained on two clus-
ters of data (x and o) with additional class identity vector. The left
10 nodes captured the first data cluster (x), while the right 10 nodes
captured the right (o) cluster. The center 5 nodes where pushed by
neighbourhood function to the border of the class division and do
not help with classification. They could be recognized by blurred
class identity vector with confidence lower then 75% . . . . . . . . 53

2.6 Diagram of presented architecture utilised in RL context. The net-
work is trained on observation, action and reward sequence. By
using SOM as temporal associative memory the node weights can
be used as approximation of transition function and searched for
actions maximising expected future reward. . . . . . . . . . . . . . . 57

3.1 Plot of exemplary network node activation at each layer when
subjected to the simple periodical input. Input signal frequency is
1/13. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

15



3.2 Average and standard deviation of euclidean distant between input
vector and BMU node weights at each of the layers throughout the
learning process. Input signal frequency is 1/13. The average is
over 50 runs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.3 Spike activation rate at each layer over different sequence lengths
(1/frequency) and predicting layer. . . . . . . . . . . . . . . . . . . . 65

3.4 Average and standard deviation of spike prediction capability over
different sequence lengths (1/frequency) and predicting layer. . . . 66

3.5 The figure shows statistical results of 100 runs of a single layer
network trained on pseudo random binary signal with different
layer map sizes. A) Number of converged weights on short-term
memory at different map sizes. B) Rate of single node activation as a
ratio of all time steps. C) Ability to reproduce base signal from node
activation using learned weights. D) Percentage of nodes activated
as a response to the random signal. . . . . . . . . . . . . . . . . . . . 71

3.6 Node activation for a three-layer (L1 3x3, L2 3x3, L3 2x2) network
with a two bit input vector. The network was trained on a density
encoded sinusoidal curve with a period of 50 time steps and then
presented with the same signal. . . . . . . . . . . . . . . . . . . . . . 74

3.7 Weights of the network trained on a density encoded sinusoidal
curve with a period of 50 time steps. A) SOM connection weights
presented in 2D . Part of each layer activation at different layers can
be decoded from each map weights image. B) Partial reconstruction
of base signal input from activation of one of the top level nodes. . 75

3.8 Spectrograms of nodes activation frequency when trained to re-
spond to different input signal frequency. X and Y Scales represent
sequence length not the frequency. . . . . . . . . . . . . . . . . . . . 76

3.9 Network sequence recognition expressed as an average Euclidean
distance of activated nodes in different training conditions. . . . . . 78

3.10 This figure presents a network’s ability to recognize signal and
generalise as noise in spatial dimension is introduced to the input
signal. It compares average Euclidian distance when matching
input and weights of activated nodes as noise is introduced to the
input signal. The left plot shows average Euclidean distance when
network is tested with noisy signal after training on noiseless signal.
The right plot shows average Euclidean distance as network is
tested with noisy signal after training on signal with 5% spatial noise. 80

3.11 This figure presents network ability to recognise signal and gen-
eralise as noise in temporal (jitter) dimension is introduced to the
input signal. The left plot shows average Euclidian distance when
network tested with different base frequency signals after training
on noiseless signal. The right plot shows an average Euclidian
distance as network is tested with different base frequency signals
after training with 2% of temporal noise (jitter). . . . . . . . . . . . . 82

16



3.12 Sequence encoder performances on sequential MNIST. Sub-figure 3.12a
shows that RNNs (10K parameters, accuracy 0.98) initialized using
an identify matrix outperforms an LSTM network (10K, 0.65). Sub-
figure 3.12b shows how a TCN (70K, 0.99) outperforms an LSTM
network (70K, 0.87). Sub-figure 3.12c shows that ours network per-
formance (0.80) falls between the performances of the 10K and 70K
LSTM networks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.13 Visualisation of a simple reinforcement learning problem. It is a
variation of the well known tiger problem []. The robot navigates
this simple grid world taking north, south, east and west actions
at every time step. It starts at the top of the map where it receives
crucial observation (light bulb) that informs where the reward or
penalty (tiger) is hidden at the end of the corridor. The placement
of the reward (left or right room) is randomly selected at each
new episode and the algorithm has to learn to connect the initial
observation to action taken at the T junction. The length of the
corridor before and after the T junction can be extended to test
network memory retention. . . . . . . . . . . . . . . . . . . . . . . . 88

3.14 Example activation of two layer network solving simple Tiger prob-
lem. The input consist of 11 elements: a reward, 4 actions and 6
elements of observation. . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.15 Convergence of network performance on the simple tiger problem.
Optimal navigation through problem takes 2 steps but additional 4
clearing steps are added after every episode. Average and standard
deviation of 100 runs. . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

3.16 Convergence of network performance on the simple Tiger Problem
with forestalled reward updates to higher levels. Average over 20
runs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

3.17 Convergence of network performance on different tiger problems
and node value estimation mechanisms. Average and standard
deviation over 100 runs . . . . . . . . . . . . . . . . . . . . . . . . . . 93

17



18



Introduction

Artificial agents operating in the real world commonly have limited access to sense

the surrounding environment. Usually due to a physical inability to sense certain

environmental features. In such situations, where some information is not imme-

diately available through sensory readings, it may still be possible for an agent

to achieve a more comprehensive understanding of its situation by considering

the overall temporal stream of sensor data, rather than individual sensor readings.

These kinds of problems are categorised as partially observable Markov decision

processes ( POMDP). The POMDP problem formalization has been successfully

applied to a number of real world applications Cassandra (1998) through the

framework of reinforcement learning ( RL). One of the main problems in applying

RL techniques to POMDPs is long temporal information lags, i.e., a long delay

between the agent receiving a piece of information and the time the agent has

to act on that information. Such delays present a specific challenge in that the

POMDP algorithm must be able to identify and remember the relevant historical

information in order to produce accurate predictions. This problem is formally

referred to as "hidden state identification", and it is one of the crucial elements

in the credit assignment problem, i.e., the problem of identifying which actions

contribute positively to the agent’s performance by increasing its expected reward.

An agent’s estimate of the current POMDP state is called a belief state, sometimes

represented as a probability distribution over all possible states. Solving POMDP

problems implies calculating a current belief state from a stream of recent obser-

vations and actions and using it to select the next action in a way that maximises

the expected discounted future reward. This generic approach suffers from two

19



important problems: the curse of dimensionality, caused by the combinatorial

explosion of the size of the state space with an increasing number of state parame-

ters, and the curse of history Pineau et al. (2006) whereby the size of the potential

state-space also grows exponentially with the number of steps back in time that

need to be considered in order to solve a given problem. One way of identifying

hidden states is by using feed-forward neural networks with delay-lines Waibel

et al. (1989). Delay-line based networks capture the temporal dynamics of a signal

by looking at both the current input and a memory of a fixed number of past steps,

at the same time. This fixed horizon is a limiting factor in that it cannot capture

temporal dynamics that are longer than the number of past steps in the memory.

Delay-line algorithms also consider all past steps in memory at every time step.

The exponential complexity of this approach, due to the "curse of history", means

it is impractical for longer time horizons. As an alternative to delay-lines, algo-

rithms such as value iteration, and its effective implementation point-based value

iteration ( PBVI) Pineau et al. (2006), instead maintain a running state estimate

or belief state. PBVI algorithms maintain an explicit belief-state representation

in the form of a probability distribution over all states, which is updated at each

step of the algorithm according to transition and observation probabilities. On the

other hand, instance-based RL algorithms such as the Nearest Sequence Memory

algorithm McCallum (1996) re-calculate an implicit state estimate from scratch at

each step of the algorithm, e.g., in the form of the K observation-action sequences

in long-term memory that most closely match the sequence currently in short-term

memory. In between these two extreme approaches to state estimation, there is

a class of algorithms that use implicit state estimations through recurrent neural

networks. It is possible to hypothesise an algorithm that borrows from all of those

approaches. One that uses short term memory in form of specially modified delay

lines with an unsupervised quantization algorithm to smoothly develop a subset

of nearest sequence dynamics of the problem. Multiple layers would allow such a

network to encapsulate a longer time spectrum and thus develop explicit belief

state estimations.
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Proposed solution

This thesis proposes a solutions to the hypothesized algorithm in the form of

new unsupervised multi-layer feed forward neural network architecture based on

Kohonen’s self-organizing maps. This algorithm would learn compressed repre-

sentations of data with arbitrary temporal dynamics. The network architecture

is inspired by the Constructivist Learning Architecture presented by Cohen et al.

(2002) which successfully modelled empirical data on the development of infant

understanding of causal events. Pierris & Dahl (2017) demonstrated how a similar

network is able to encode and reproduce robot motions in a POMDP context.

The algorithm presented in this thesis goes beyond the work by Pierris in that

it learns a compressed representation of the given data, rather than producing

lossless encoding. The new algorithm has the potential to overcome the vanishing

gradient problem because it relies on a hierarchical structure to encode sequential

data, rather than recurrent connections. This thesis presents results showing that

the new algorithm can learn representations of data with a range of temporal dy-

namics and use these representations for sequence prediction. Later the research

combined the network with the action selection mechanism in order to produce a

novel complete RL algorithm.

The unsupervised network presented can encode signals generated by partially

observable Markov decision processes (POMDPs) using multi-layer Kohonen self-

organising maps (SOMs) with a layerwise, dynamic short-term memory mecha-

nism in the form of variable-speed wave-delay lines. The ability to model POMDPs

is crucial in a variety of problems, including natural language processing, predic-

tive maintenance, autonomous robot control and network routing. The network

model improves on existing non-recurrent sequence encoding networks, such as

Temporal Convolutional Networks, by removing the requirement to keep large

sequence segments in short-term memory. Instead, the network presented here

uses fixed-length short-term memory units spread across the levels of the network,

providing a hierarchy of increasingly long, but increasingly coarse records. This
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reduces the memory requirements, as a linear increase in the network’s size pro-

vides an exponential increase in its capacity. In other non-recurrent models such

as temporal convolutional networks, the memory requirement grows linearly with

encoding capacity. This research evaluates the effectiveness and robustness of the

network architecture through a set of experiments. First, via a simple density-

encoded sinusoidal curve with a period of 50 steps, to illustrate its encoding and

decomposition mechanism. Second, with a set of signals with different noise levels,

and a signal with a temporal distortion, i.e., jitter. The results show that the net-

work can detect signals buried in noise and can extract an underlying signal from

noisy data. The network’s representation capabilities were tested by training it on

the sequential-MNIST dataset and then training a classification algorithm using

the network as its input. The results show that the new architecture is effective

sequence encoder and that it perform generalisation better than alternative models

in the presence of certain types of noise. Finally the network was challenged with

encoding the dynamics of a simple toy reinforcement learning benchmark and

with an additional state estimation algorithm used to estimate hidden state and

solve the problem.
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Chapter 1

Literature review

The algorithm proposed here does not stand alone in the diverse field of artificial

neural networks. On the contrary it borrows from array of different algorithm. By

knowing the context in which it exists and the characteristics that relates to the

other we can try to infer its own features and shortcomings. Thus, the literature

review starts with an introduction to the scope and general history of neural

networks, followed by a description of three general areas from which the new

network inherits its characteristics, namely: Self-organizing Maps, Spatio-temporal

encoding and Hierarchical Reinforcement Learning.

1.1 Background Algorithms

At the root of all neural networks is the idea of perceptron Rosenblatt (1958).

Developed as a basic supervised classification algorithm, the classical perception

consists of a set of input weights based on biological neuron synapses, an activation

function that mimics the neuron body activation and single output based on a

neuron axon. In the classical implementation, the perception did not exhibit any

temporal dependency but was implemented as an instantaneous input to output

mapping device. The network composed of a set of perceptrons can classify input

signal based on a supervised learning rule and is the basis of most artificial neural

networks. By stacking multiple layers of such perceptron nodes, a feed forward
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network is created that is able to encode more complex functions of the input, but

also suffers from more complicated learning process.

A new architecture of Multilayer (DEEP) convolution feed-forward networks

has headway in recent years, due to its computational capabilities and efficient

learning Schmidhuber (2014). It emerged from the field of image recognition

(Zhang et al. (1990)), but has been successfully applied in different fields (Li

et al. (2021), Deng (2014)). It represents a subcategory of multilayer feed-forward

networks. The two main differences between this and previous neural networks

are the reuse of weights and local learning updates. The reuse of weights is

achieved by creating a local perceptive window of neuron input, which takes the

part of the input space and calculates node output. Sliding this input window to

another part of input space allows the calculation of the next output while still

using the same node weights. This idea is similar to convolutional image filters

used in computer vision. Additionally the output of the one layer does not have

to be fully propagated to the top of the network to get weight updates. Instead,

the initial local learning rule tries to update weight so that the layer output can be

used to most accurately re-represent original input.

Although capable of describing almost any function, the classical feed forward

network is not able to express dependency on the temporal aspect of the input

stream. The next step in the development on perception based feed-forward

networks was the incorporation of its output or previous internal state back

into its input. This looping of signal paths as a short-term memory mechanism

is a common solution to sequence encoding in neural networks referred to as,

recurrent neural networks ( RNN) Williams & Peng (1990) and Pearlmutter (1995).

Assuming that a classic feed-forward network with enough layers and nodes can

approximate any function, a recurrent neural network can technically represent

any time dependent neural network architecture. Although possible in theory,

this would require both an enormous number of nodes and layers, and, more

importantly, learning rules for modifying weights to desired behaviour. In practice,

it has been shown that recurrent neural network models have problems capturing
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long temporal dependencies, because of the difficulty in back propagating error

signals in time during learning Hochreiter (1998). These algorithms have been

successfully applied in RL, but their scalability is limited, mostly due to the

vanishing gradient problem. The erosion of a signal as it is repeatedly fed through

recurrent connections limits how long a piece of information can be represented in

memory and whether it can be used to influence action selection.

This fundamental learning problem of recurrent neural networks was reduced in

specially developed more complex network architectures, such as long short-term

memory (LSTM) networks Hochreiter & Schmidhuber (1997) or gated recurrent

unit (GRU) networks Cho et al. (2014). These networks are an improved variation

of recurrent neural network in which special memory gates are implemented. In

such networks, the memory gate state can be acquired from its inputs, stored in-

definitely and be read out by the help of additional input trigger lines. This allows

long term storage of information, but also requires special learning algorithms.

These kind of recurrent neural networks are able to propagate error signals more

selectively and thus increase the lifetime of critical information in memory. These

type of networks are nowadays state of the art in terms of remembering long term

dependencies and working on sequential data.

More recent additions to the family of recurrent neural networks are: reservoir

networks in particular Schrauwen et al. (2007), echo state network Jaeger (2001)

and liquid state machine Maass et al. (2002). Reservoir networks are essentially a

pool of randomly connected recurrent neurons creating a reverberation reservoir.

These randomly connected recurrent networks can represent complex temporal

input dynamics and the underlying states are typically accessed through a trained

feed-forward output layer. The reservoir network is activated with a temporal

signal and responds with partially chaotic waves of activation within. The idea is

based on the concept of mapping the input vector space, including time, into a

multidimensional internal state of network to notice multidimensional interactions

between input dimensions. Because the interaction can be read out by simple

readout network, and most of such networks’ activation is defined by nodes with
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randomly initializing unchangeable weights inside the reservoir, learning is only

required through supervised training to modify weight in the output readout layer.

Reservoir networks combine the powerful sequence representation capabilities

of recurrent neural networks with the efficient training of feed forward networks.

One of the main problems of reservoir networks is that the number of nodes

required grows linearly with the required temporal horizon of perception Farkas

et al. (2016). The question arises then, how more intelligently initialized weights

can improve the performance of this network in terms of memorisation capacity

and prediction. Since all weights are randomly initialised the actual utilisation

of nodes required for calculating output is minimal. One could imagine some

minimal unsupervised adaptation policy that could improve reservoir reaction to

the input signal.

Within similar variety of architectures is the Hierarchical Temporal Memory (

HTM) network Y. Cui (2015), which uses sparse encoding of signal in the pool of

recurrently connected neurons. This network is inspired by biologically plausible

activation mechanisms and neuron arrangements. This network architecture

consists of sets of recurrently connected neurons arranged in columns. The neurons

crossing activation threshold represent a binary and sparsely encoded state of

the network. The sparse encoding allows enormous encoding capacity to record

multiple states of the network. Although randomly initialised similar to reservoir

networks the HTM network follows unsupervised adaptation learning rule that

rewards good predictions of future signals. Similar to reservoir networks, the

HTM network has a read out layer that can be learned to map an internal state

to desired output prediction. Although the network is called hierarchical the

elements allowing multilayer arrangement are not yet developed. Regardless, the

single layer network allow prediction of both complicated noisy signals like New

York weekly taxi demand problem and long temporal dependencies like simple

grammar and other long temporal benchmarks. This network represents one of

the few examples of unsupervised temporal networks. The network achieves this

temporal dependency by the creation of recurrent connections within a pool of

26



neurons. An important part of this network, not implemented in similar reservoir

networks, is an input layer called Spatial Pooler, which following unsupervised

adaptation, conditions the input stream of data into sparse distribution accepted

by the recurrent layer Cui et al. (2017).

Biologically inspired time dependent neuron models make neural network time-

sensitive by adding explicit time-dependent features to single neurons within the

network (Thorpe et al. (2001), Humble et al. (2012). This approach is explored in

spiking neural networks Maass (1997) and even more so, in multiple time scale

neural networks Y. Yamashita (2008) and temporal Polychronization networks

Izhikevich (2006). This network model follows derivation from biological research

of neural cell functionality. The processes involved in natural neural cell activation

are simplified into equations and implemented in computer simulation. Com-

pared to other models that are made through utility driven development, these

models are trying to isolate crucial elements to neural processes that are solely

responsible for information processing. It is not known how much of the multitude

of neural activation behaviours are necessary for information processing tasks, but

informed search can provide partial answers Sheik et al. (2013). Certain models

even allow for hierarchical functional arrangement of nodes Maes et al. (2020),

Ghalib & Huyck (2007). Unfortunately, the increased complexity of such models

do not allow testing to the degree of other models. This is because increased

computational complexity overpowers available resources when huge networks

are simulated. Most researchers pursuing bio-inspired networks architectures

agree that the human brain represents information not only in the activation of

certain neurons, but also in the arrangement of temporal activation. Izhikevich

(2006) Wang et al. (2018).

Finally, one of the oldest solutions of introducing temporal dependency into the

network is to keep fixed size input sequence segments in a short-term memory

in order to extract features across time. This approach has been effective in time-

delay neural networks (TDNN) Waibel et al. (1989), FIR networks Wan (1990),

Deep Q-Networks Mnih et al. (2015) and temporal convolutional networks (TCNs)
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Aaron van den Oord (2016); Bai et al. (2018) You et al. (2019). This approach has a

simpler training regime than the recurrent approach, since it can be viewed as a

feed-forward network, but it also has much higher memory requirements and a

limited time horizon.

1.2 Spatio-temporal encoding

The main feature of the new network presented in this thesis is its ability to deal

with spatio-temporal signals. As pointed out earlier, quite often the full extent of

information needed cannot be captured in instantaneous input to the network. In-

stead the input has to observed for an extended time to capture the full scope of the

information. Most temporal networks can be divided into three main categories.

The first and the simplest approach is to map the input space temporal dimension

into additional dimensions of space. This is mainly done by implicit delay lines

and memory cells, which augment input space with recordings of previous inputs.

Although the idea was early adopted by time-delay neural networks (TDNN) and

FIR filter networks. The most limiting factor of this approach is the finite time

window which cannot be easily extended without combinatory explosion. This

problem was partially solved by Temporal Convolutional networks (WaveNet)

by first using a convolutional approach to deal with huge input signal space and,

secondly, by using hierarchies and the “time dilatation” of input space. To limit

input space at higher layers, the connections in temporal dimension are regularly

cut/pruned in the hope that the faster changing dynamics of the signal were

already encoded in lower layers. The architecture presented in this thesis uses

this model of approaching spatio-temporal encoding by employing short-term

memory at the input of each layer. This short-term memory can take the form of

classical delay-lines, but the new architecture also introduced novel variable speed

analogue delay-lines. These slower analogue delay-lines perform the task of “time

dilatation” without a growth in memory requirements. The second, and possibly

the most broadly explored, solution to dealing with spatio-temporal information
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is the mapping of time dimension into the internal spacial representation of the

network. This solution is mostly categorized by internal recurrent connections.

The architectures exploiting this idea span from simple RNN through LSTM to

HTM. The strongest aspect of this approach is the possibility of pre-processing

the vast input space into compressed internal representation and storing only the

crucial temporal aspects of the signal. Although this might be the most powerful

approach for dealing with temporal aspects, the difficulty lies in creating an ef-

ficient mapping of input into internal state, which most of the time can only be

done by supervised methods, which have to guide network convergence. One

alternative to the long supervised convergence of such recurrent networks is the

usage of networks with excessive resources to encode spatio-temporal patterns

and random initialization, (Reservoir networks and HTM) for a higher chance of a

better initial guess. The last approach to dealing with spatio-temporal signals is to

equip a network with a temporal reference signal to which a changing input signal

can be correlated. This can be done either by creating a recurrent oscillator inside

network nodes Maes et al. (2020) or by adding “positional encoding” to the input

vector in Transformer Networks Vaswani et al. (2017), Dai et al. (2019). Properties

of these networks point to another problem of spatio-temporal encoding, namely

temporal alignment. A number of networks consider spatio-temporal signals only

with defined start and stop points (TDNN, LSTM) (e.g. simple grammar problem

Hochreiter & Schmidhuber (1997)) and even when capable of learning continued

problems, they struggle with temporal noise referred to as jitter (HTM) Y. Cui

(2015). As an example, Pierris & Dahl (2017) defined the problem as "temporal

misalignment" and proposed an algorithm for finding the best alignment in their

HSOM architecture. It is understandable that any networks storing some internal

representation of past input will be scrambled by abruptly changing input se-

quence, but one would expect certain resilience to small disturbances in temporal

alignment (jitter).
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1.3 Self Organizing Maps

Self Organizing Maps SOM are one of the most popular unsupervised learning

algorithms Kohonen (1982). This quantisation mechanism creates local topology

within a predefined map of nodes based on input space. Each node of the map is

characterised by its weights representing the quantisation vector of input space.

Nodes of the map compete to represent input space by way of best matching unit

function that only selects one node to respond to the current input vector. After

finding the best matching node the weights of this node are adjusted to better

represent input space. This function creates a “receptive field” within the input

space where each node is activated if novel input falls within it. The second im-

portant feature of the SOM, which creates topology and increases competitiveness,

is neighbourhood function. Each time the best matching node is selected and

its weights are updated, the set of neighbouring nodes within the topology of

output map are also updated, but with smaller intensity. This decrease of inten-

sity usually follows Gaussian distribution. This update of neighbouring nodes

brings their receptive fields closer together, increasing competitiveness, but it

also smooths and stretches those fields across input space. Classical neighbour-

hood functions makes neighbouring nodes on the map represent neighbouring

receptive fields in input space. SOM can perform quantization based on map

spacial adjacency (neighbourhood function) but also based on a minimum span-

ning tree Kangas J.A. (1990). Other unsupervised mechanisms, like Natural-Gas

architecture can perform quantisation in terms of pure input space Martinetz &

Schulten (1991). Although such quantization based on input space might better

represent complicated multidimensional signals than the two dimensional topo-

logical map, the static two dimensional representation is more accommodating for

multi-layer hierarchical representation. There have been a few attempts to make

SOM sensitive to temporal information, namely Temporal Kohonen Map (TKM)

c. Chappelier & Grumbach (1996) and Recurrent Self-Organizing Map (RSOM)

Varstal et al. (1997) and other Mcqueen et al. (2003). These approaches focus on
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adding temporal behaviour to node activation in the form of leaky integrator

dynamics inspired by biological processes. These networks can be seen within

the category of networks mapping the temporal aspects of the signal onto the

network’s internal state. The new architecture presented in this thesis is based on

SOM unsupervised quantisation of input space and employs all the mechanism

required for it functioning in terms of competitiveness of nodes and local topol-

ogy. However, the architecture disconnects the sequential function of finding the

best matching node and updating weights to insert a variable delay period. This

approach encourages the sparseness of node activations across time and enables a

resilience to temporal misalignment.

1.4 Hierarchical Reinforcement Learning

The traditional Reinforcement Learning (RL) paradigm operates on discreet time

actions and states received from controlling Markov decision process ( MDP).

Most of the algorithms employed in this classical approach can be extended

to semi-Markov decision processes (SMDP) where time between one action and

another can be extended by a random variable delay. This expansion allows for the

implementation of Hierarchical RL paradigm in which the algorithm does not have

to control action down to the “atomic” interactions, but can instead employ learned

or pre-programed temporally-extended actions or options Barto & Mahadevan

(2002) Kamat & Precup (2020). These extended actions represent short encoded

behaviours or skills. This allows for creation for multilayer/hierarchical RL system

in which each layer can abstract its decisions to more extended interactions. These

hierarchical algorithms provide significant improvement in abstract learning and,

presumably more importantly, by allowing more abstract exploration Nachum et al.

(2019). Pierris & Dahl (2017) demonstrated how a multi-layer augmented SOM (

HSOM) network can represent arbitrary long sequences, and successfully used

such networks in an RL context to encode and reproduce robot tactile gestures.

That work, however, encoded information in a lossless way, requiring there to

31



be sufficient nodes in the SOMs to represent all the observed sequences. Their

approach does not scale to more complex systems or to systems learning from

experimentation rather than from demonstration. The new network presented in

this thesis shows how it is possible to learn network structures similar to those

used by HSOM in a way that has the potential to handle large and noisy data.

1.5 Summary

This chapter has shown ways in which the new network can borrow from the

unsupervised algorithm of SOM architecture and the delay-line representation of

spatio-temporal encoding of input, in order to acquire long term representations

of short sequences of input, which could later can be exploited as options, encoded

behaviours or skills in a Hierarchical RL context. All these parts already exist as

elements of already established neural networks. The question arises whether a

mix of such features would work in combination and produce new anticipated

characteristics.
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Chapter 2

Methods

In this chapter the main elements of the proposed new neural network architecture

will be defined. Parts of the network described here were developed and tested in

progression but here they are presented in their final version. First, the mechanisms

for capturing the information into the network structure are defined followed by

mechanisms allowing its usage in classification and RL contexts.

2.1 Overview

Each layer of the proposed network consists of three main elements: a short-term

memory, a long-term memory and a temporal inhibition circuit. Figure 2.1 presents

a simplified diagram of the network architecture. Input signal feed to layer is first

met by a short-term memory. Its purpose is to capture, store and allow readout

of a certain amount of past signal history. It performs the function of mapping

time into additional dimensions of space. It allows long term memory to have an

overview of the past input without creation of recurrent connections. The short-

term memory is implemented as a tape delay-line in the first layers. In higher

layers, where signal can be represented as a spike stream, not sampled continues

data, and where higher temporal capacity is required, short-term memory is

implemented as a simulation of analogue wave memory.

After input augmentation performed by short-term memory, information is passed
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Figure 2.1: Diagram of network architecture. All layers consist of short-term
memory, self-organizing map and temporal inhibition circuit. First Layer consist
of simple delay line memory but from second layer on-wards short-term memory
can be implemented as analogue wave delay line with decreasing propagation
speed.

to a modified Self-Organising Map. The SOM is fully connected to all memory

units of short-term memory, allowing it to have access to a limited history of past

time input. The SOM is responsible for looking at these snapshots of past history

and making judgements about recognition and the need for incorporation of this

sample into nodes’ long-term memory weights. Incorporation of this new memory

is consistent with traditional SOM techniques. These include competitive closest

match learning and neighbourhood function. The triggering of these winner

node learning behaviours is, however, modified and controlled by an additional

Temporal Inhibition Circuit.

Temporal Inhibition Circuit (TIC) is closely coupled to the SOM network. It is

primarily fed by information of closest match value between SOM input and its

node weights. Based on additional local timing information, it triggers positive

match and node weights update. Its primary job is to manage the effective usage

of long-term memory with respect to the temporal stream of input data. It assists

in partial topological temporal signal spanning of input signal. TIC can be seen
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as an augmentation of traditional SOM quantisation properties which relies on

monolithically changing input space. In case of input from short term memory,

which is sparse and sharply changing, TIC helps by including temporal dimension

into quantisation.

2.2 Short-term memory

A memory is a type of device capable of reading input with the purpose of storing

it for latter readout. The presented network architecture consists of two types of

memory. Both types work in synergy to each other, in order to reach objectives

desired from the network. They differ in terms of triggers required for reading

data in and out, and capacity in terms of time and number of stored elements.

The first type of memory enables the network to look at the short term past in a

snapshot. It is known as a tape delay line. It is made out of a line of connected

memory units. Each memory unit in the line reads data from its previous neigh-

bour and stores it for one time step to be outputted to its neighbour down the

line. The first element of the line reads an input signal presented to the delay line.

Memory of this input travels down the line until the last unit and then is forgotten.

This type of memory was used in first fed-forward networks to create temporal

dependency (TDNN). The state of each memory unit can be represented as:

xn(t+ 1) =


0 n= 1,I(t) = 0

1 n= 1,I(t) = 1

xn−1(t) n > 1

(2.1)

Given I(t) is the input to the first memory unit, xn(t) is the state of the n-th

memory unit, the input value gradually travels down the memory line while the

output O(t) represents all memory unit at once

O(t) = [x1(t), ...,xn(t)] (2.2)
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When looking at all units, memory of input from the last few past time steps can

be uncovered, at once. This type of memory is a way of mapping dimension of

time into additional space dimensions. This type of mapping is only a means to

allowing the functionality of the second long-term memory.

Tape delay line is a method of including past input into current representation. A

problem arises when long temporal capacity of this memory is required. Since

each block can only store data for a one time step, increasing temporal capacity

can only happen by increasing the number of the memory blocks. This creates two

problems. The first is, doubling the memory capacity doubles the computational

resources required to operate it. Secondly, it also increases the number of readout

lines.

There are numerous ways to solve problems of extending tape delay memory time

capacity. They include modifying memory unit to hold memory for more than

one time step, skipping time steps at which new input to memory is read and

only reading out partial output from the too long memory line. However all these

methods suffer from the problems associated with discrete time steps. In discrete

time space, events can only happen at the certain time point so using any of

described methods might warp the time by down-sampling of the original signal.

When performing such an operation, re-sampled signal loses high frequency

components. This would mean losing exact input signal timing information or the

whole signal completely. Additionally, down-sampling high frequency signal can

introduce noise associated with not fully rejected high frequency components.

At higher layers of the network, the signal is represented as stream of SOM

node activations that can bee seen as spikes of activations. After converting the

signal to spikes by first layer it is easier to think about constructing memory

with higher temporal capacity. The spike signal is bounded in value. It can be

also be bounded in number of spikes per given time. This opens possibilities to

creating memory specialized in storing only the signal conditioned in this way.

One way of increasing the temporal capacity of the memory like delay line is

to slow down the speed of data propagation. This, of course, is not possible in
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the basic implementation of delay line memory units and requires more complex

single memory unit behaviour.

n 

x 

t+1 

Figure 2.2: Wave propagating through analogue delay line.

Most real world physical signals are propagating with limited speed dependent

on the medium. This phenomenon was used in the creation of the first refreshable

computer memory type using mercury delay line. This type of memory was a par-

tial inspiration to the implementation presented here of a new type of short-term

memory. Simulation of simplified dynamics of a physical medium can recreate

signal propagation with limited speed. This can be done by simulating a string of

points of mass connected by ideal springs simulated as a second order systems.

Disturbance at one end gets propagated through the line to the other end. The idea

of this model is presented in Figure 2.2. Parameters of the simulation influencing

speed of propagation can be changed to suit the requirements of temporal memory

capacity. The temporal capacity of such memory cannot be increased without a

cost. Without an increase of a number of simulated particles temporal resolution,

and an amount of independent spikes travelling and being memorised at once,

will be limited. This type of memory allows the network to increase memory

temporal capacity at a cost of reducing its temporal resolution. Since spikes propa-

gating through simulated physical memory like that are carrying energy, which

gets transmitted through the line, they have non-zero width (see Figure 2.2). This

property allows modelling of temporal noise (jitter). Such a wave has rising and

falling slope artefacts which, when remembered, can model the inconsistencies of

spikes occurrence.

Implementation of such wave memory follows simple physical dynamics equa-
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tions. Each memory unit is simulated as point of mass and is allowed uni-

dimensional movement perpendicular to wave propagation. Units are connected

by ideal springs. To stop back propagation and past resonance, movement of the

mass is stopped behind the wave when it reaches zero point. This requirement

might resemble neuron action potential propagation, but is implemented here

from a purely utility driven perspective. Finally, the last unit has additional damp-

ing parameter to stop wave reflection. Full equations of motion can be found

below:

dxn(τ) = [xn+1(τ) − xn(τ)] (2.3)

vn(τ+ 1) =
vn(τ) +Cdt [dxn(τ)] n= 1

vn(τ) +Cdt [dxn(τ) − dxn−1(τ)] L > n > 1

vn(τ) −Cdt [dxn−1(τ)] −Bvn(τ) n= L

(2.4)

xn(τ+ 1) =
1 n= 1,I(t) = 1

0 xn(τ)< 0

xn(τ) +Cdtvn(τ)

(2.5)

Where xn(τ) is a memory node state dxn(τ) is neighbouring nodes position dif-

ference and vn(τ) is nodes’ rate of change. As previously, I(τ) is the input to

the memory. The equations include set of parameters like last unit damping

ratio B = 0.14, simulation interval dt = 0.1 and propagation speed C = 1 which

can be changed depending on memory temporal capacity requirements. To im-

prove smoothness of dynamics, the equations’ iterations (τ) are run 10 times faster

compared to networks’ iterations (t).

τ= 10t (2.6)
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Additionally during readout, to narrow the propagation wave, the nodes’ positions

are sub-sampled, such that output vector O(t) reads the position of every other

node. As a result the output vector is defined as per equation:

[o1(t), ...,om(t)] = [x1(10t), ...,x2m−1(10t)] (2.7)

The code implementation performing the short-term wave delay line memory

function can be found in Appendix A.

2.3 Long-term memory

Although the short-term memory is capable of storing the input data, it does not

discriminate between important information and noise. That is the purpose of

the second, long-term memory. There are two commonly recognized ways of

discriminating and categorizing information. The first one is based on additional

supplementary signal and is referred to as supervised learning. The second is

based on probability distribution clusters persistent in the input space and is

referred to as unsupervised learning. In the set of problems presented to au-

tonomous systems trying to discover emergent representation of perception, the

additional supplementary signal allowing supervised learning is absent. There-

fore local unsupervised clustering based on probability distributions is the only

solution.

The way to solving the unsupervised learning challenges of clustering based on

probability distribution involves utilising vector quantisation methods. It is a way

of finding characteristic vectors describing clusters of probability distributions

of input vector space. In this method, the fixed number of vectors, sometimes

named nodes or code-book, competitively fight for the representation of input

space. At each input sample the closest node is selected and updated in order

to better represent input space clusters and decrease overall mapping mismatch.

By keeping the number of vectors fixed, or slowly growing, the vectors can only
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represent general probability centres that correspond to quantised input space.

By creating a map with local interaction between quantisation nodes Kohonen

(1982) proposed a way of creating an emergent topological arrangement in which

the nodes closest on the abstractly created map of nodes are also close in the

input space. When there is no interaction between the nodes themselves, except

for competitiveness in representing input space, the mapping can be referred as

topological zero-order.

There are four crucial elements required in creating topological unsupervised

learning, as defined by Kohonen’s Self-Organizing Map. The first element is an

array (map) of processing units, nodes, representing quantisation vectors through

their weights. The Array or Map is an arbitrary arrangement of nodes in activation

output space. The second element is a discrimination function that compares the

node weights to input vector and is a way of finding the best matching unit (BMU)

within the array of nodes based on this discrimination function. The third is a

network of local interactions between nodes in a small neighbourhood of the array

and the fourth is the function of adapting nodes in a neighbourhood to better

respond to presented input. All those elements have to be present in order to

create topological unsupervised learning, but the exact implementation can vary

depending on design.

All of the experiments were performed using a square map of nodes. This type

is map is the most common and creates the simplest distribution of nodes with

respect to neighbourhood function, since all nodes have evenly defined positions.

Since the input space for the problems that network was presented with, was

mostly highly multidimensional, the square network appeared to give the most

flexibility to adapt.

There are two most common discrimination functions used to assess similarity

between input vector and node weights. Namely Euclidean distance and dot prod-

uct. The dot product function calculates the sum of products of all components

between two vectors, which equates to the product of two vector lengths and the

cosine of the angle between them. The more similar the vectors, the bigger the dot
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product between them. The dot product function is dependent on vector length,

therefore it has no maximum value, when used as discrimination function between

input vector and SOM weights. This makes it more difficult to track the progress

of network convergence since weight vectors change length. Because of this, the

measure of Euclidean distance between the input vector and node weights was

used as discrimination function in this network. The Euclidean distance between

two vectors is simply the length of the vector that is the two vectors’ difference.

Although the more the vectors are dissimilar, the bigger the distance can be, when

vectors become identical the distance drops to zero, independent of the number

of vector dimensions. This makes is easier it track network performance during

training and compare different networks with different input vector sizes. The

equation defining the discrimination function can be found below:

BMU(t) = argmin
i

(||O(t) −Wi(t)||E) (2.8)

WhereWi(t) are the weight of a particular SOM node, O(t) is a input vector and

BMU(t) is a best matching node.

Finally, a neighbourhood function with the influence in the shape of Gaussian

function was applied in the algorithm described. The main reason for neighbour-

hood function is to bring vectors together and add inactive nodes to the pool of

existing probability densities. By bringing vectors together the function stretches

and smoothes out the map over the input space, creating a topological mapping of

nodes, where nodes that are close on the network map are also close in the input

space. Also without the neighbourhood function, a naive node with undeveloped

weights at the beginning of learning could never be chosen as a best matching

node and never have its weight updated toward the possible probability cluster.

With the neighbourhood functions applied, whenever a single node is shifted

towards a probability cluster, all neighbouring nodes are shifted too, making them

more likely to be activated in the future. Despite this, in the class of problems

that this research presented the SOM network with, very sparse representation

and input space with very dense probability distribution, forces some nodes to be
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outside of representation, effectively making them unused. In this situation, the

question emerges whether the enforced topology is necessary or useful, but since

the neighbourhood approaches zero order at the end of the session, the neighbour-

hood function in theory should not be handicapping the learning. Below is the

equation that describes the neighbourhood function:

hci(t,BMU) = exp
(
−
(xi − xBMU)

2 + (yi − yBMU)
2

2σ(t)2

)
(2.9)

Where hci(t,BMU) is a neighbourhood function, xi,yi is a position of a node on

the SOM map, xBMU,yBMU is a position of the best matching node and σ(t) is a

neighbourhood reach.

To make SOM converge to the desired representation, the learning rate for weight

updates is started with considerable value and is gradually reduced, slowly freez-

ing the weight in the final representation. The decaying learning rate allows

for a change from courser to finer changes to weights, allowing for fast initial

convergence to general representation and later fine tuning to better matching.

Similarly the neighbourhood reach is shrunk during training. Decaying reach

of neighbourhood allows for wide reach and the bringing of all nodes’ weight

vectors into the general area of probability distribution at the start of the training,

while simultaneously reaching almost zero-order topology with narrow reach at

the end of learning. The following equation describes the progression of decay for

learning rate and neighbourhood reach:

δ(t) = exp
(
−D

t

T

)
α(t) =Aδ(t)

σ(t) = Sδ(t)

(2.10)

Where δ(t) is a decay value, D is a decay rate, t is a time step, T is a number of

all time steps. α(t) is a learning value, A is a learning scaling factor, σ(t) is a

neighbourhood reach value and S is a neighbourhood reach scaling factor.
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Putting all of the elements together, the final weighs update for a particular SOM

node is as follows:

Wi(t+ 1) =

Wi(t) + g(t)α(t)hci(t,BMU)[O(t) −Wi(t)]

(2.11)

WhereWi(t) are the weights of a particular SOM node, O(t) is a input vector, α(t)

is a learning rate, hci(t,BMU) is a neighbourhood function, and finally g(t) is a

gating signal from a temporal inhibition circuit that inhibits learning.

Random initialisation of weights helps with randomising the initial unfolding

of a two-dimensional map into multi-dimensional input space. As far as the

mapping is never unique with multiple possibilities of unfolding, a random

initialisation allows to try different initial approaches. Thus, the weights of the

SOM are initialised with very small random numbers. Weights much smaller than

expected to develop do not overpower and disturb the development into their

final configuration.

The topological mapping can be argued to provide advantageous behaviour in

the context of augmented autonomous systems perception signal. The topological

mapping proposed by Kohonen has some biological basis and could be advanta-

geous when used to help with action selection when the map is employed in a RL

context. Although as later shown in the experiments, the topological mapping of

nodes does develop in this modified SOM implementation, the closeness of nodes

with similar weights on the map is not utilised in any way. Thus, the creation

of topology is not crucial or required for the purpose of the SOM used in this

implementation. The creation of topological mapping is only a by-product of the

neighbourhood function. The neighbourhood functions’ purpose is not only to

create topology, but also to recruit and move unused nodes into the probability

cluster, where they have a higher probability of being activated. Without this func-

tion one random node may take over all representation of the input distribution

and stop the competition of nodes in the fight for input representation. Simultane-
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ously, a strong neighbourhood function may not allow nodes to individuate on

particular clusters of representation. It is therefore crucial that the effects of this

function decay fast during the learning, so that the nodes can be recruited and

moved into the vicinity of general input data cluster, but then let go to individuate

without being effected by their neighbours. In the current implementation, the

neighbourhood function treats all node weight components independently and

applies neighbourhood effects across the same weight component for all nodes in

the map. Yet since the input vector is a composition of time augmented signals

read from short-term memory, it can be seen that nodes weights are not made of

independent components. Thus, some more elaborate neighbourhood function

that could take this time dependency of node weight components into account

creates interesting an avenue for development, but was not explored as part of

this work. Such a neighbourhood function could be seen as creating the topology

not only in the spatial dimension but also in the temporal dimension.

SOM is a type of network which by the use of unsupervised learning can create

a discretised reproduction of input space. The implementation of SOM here is

fully connected to short-term memory at each layer of the network. When fully

connected to the short-term memory type it might be expected to learn and rep-

resent chronological patterns of the input signal. There are a lot of unknowns

when forming a memory of temporal signal; like when it should start, when it

should end, what it should contain, how to store it, and how to know whether

similar memories already exist. At each time step new input is added to the

delay line, previously stored memories shift back and the last is forgotten. Al-

though in the memory representation of the past in vector space has changed

drastically, the amount of information about the signal pattern has not. Most of

the new short–term memory view consist of the same portion of signal history.

Unfortunately, SOM mechanisms require more monolithically changing input

space. Thus it is inefficient for the SOM, which is fully connected to the delay-line

memory, to try to discriminate input representation of delay line at every time

step. This creates a need for additional discrimination based on timing to decide
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when the representation of past stored in delay line has changed enough that it is

required for SOM to incorporate it into its vector quantisation. This function is

mitigated by additional temporal inhibition circuit. Standard equation of SOM is

only augmented by an additional gating signal which controls when the learning

should take place, the rest of mechanisms are left intact.

The full code implementation performing the Self-Organising Map function can

be found in Appendix B.

2.4 Temporal Inhibition Circuit

In the problem that is being addressed in this study, the temporal sequence is being

encoded by a Self-Organizing Map. In original implementation, Self-Organizing

Map learns and quantifies the input vector at every time step. Having a fixed

number of nodes, the number of unique time steps SOM can encode will be the

same as the quantity of nodes. We can regard this value as temporal or sequence

length capacity. Since in the implementation presented the input vector to SOM

is augmented but short term memory, in the form of delay lines, the temporal

capacity of each SOM node gets extended by this short term memory length value.

The resulting temporal capacity of such a network can be approximated by the

product of short term memory length and SOM nodes quantity. Unfortunately, in

classical form of the SOM learning paradigm, SOM nodes have to be activated at

every time step. Thus information (sequence snippets) contained in the short term

memory will overlap between nodes and the memory capacity of such a network

still only depends on the quantity of nodes. Consider the example presented

in Figure 2.3A where the short repeating sequence of length 7 is being encoded

by nodes augmented by a short term memory of 4 time steps. When nodes are

activated every time step the number of nodes required to encode this sequence

is the same as sequence length, while the nodes memory of the sequence has

considerable overlap between.

By knowing the length of short term memory augmentation, the SOM matching

45



Figure 2.3: Example encoding of repeating sequence of period of 7 steps (“AB-
CADEA”) encoded by SOM augmented by 4 time steps delay line. In normal
activation paradigm (A) the nodes of the SOM (1 through 7) are activated every
time step and sequence chunks encoded in the weights overlap. When SOM
activation is time dilated (B) by three steps the sequence chunks stop overlap-
ping but lack of synchronisation means that SOM still needs 7 nodes to encode
whole sequence. Only when activation is unevenly dilated in time can the whole
sequence be encoded by only 3 nodes (C).

and learning functions can be regularly halted for a few steps to allow short

term memory to be filled with more new data samples. This could extend the

overall network sequence length capacity, as long as the halting period is not

longer then the short term memory length. This approach can be regarded as

down-sampling of the input signal and SOM activation. A similar technique is

used on higher layers of TCN networks and is referred as, “time dilatation”. This

solution, although simple, suffers from the problem of synchronisation with the

input sequence. When sequence is not synchronised and its length is not divisible

by a halting period the activation of the nodes changes every time the sequence is
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presented (see Figure 2.3B). In this example, a halting period of three steps makes

the sequence of length 7 appear different each time it is presented. This results

in activation of different SOM nodes every 21 steps when the halting and the

input sequence re-synchronise again. Although this halting technically extends

the network sequence length capacity, in the example presented the network still

requires 7 nodes to represent the sequence and, additionally, the representation of

nodes activation is artificially extended to a 21 step sequence.

The only solution to the presented problem of activation is to introduce a type

of soft halting function. This function would have to introduce halting to extend

SOM sequence length capacity, and also allow for the re-synchronisation of nodes’

activation every time the sequence repeats by also allowing shorter halting delays.

Consider the activation on Figure 2.3C. Although the one node exhibits a 3 step

halting period, the other two nodes’ halting period is shortened to 2 steps, making

the overall SOM activation repeat and synchronise with 7 step sequence. In this

example, the sequence of 7 is encoded by activation of only 3 SOM nodes every

2 or 3 time steps, creating the desired temporal and spatial compression of the

sequence.

To produce a mixed activation pattern of SOM nodes, the Temporal Inhibition

Circuit ( TIC) was created. It modifies default patterns of matching and learning

to accommodate best usage of memory resources. In its classical implementation,

the SOM algorithm performs a function of finding a best matching node and

adjusting its weights and those of its neighbours at every signal sample. The

inhibition circuit operates by breaking this link; still performing the function of

finding best matching node, but the decision to adjust weights in this particular

time step is triggered by TIC only at appropriate moments. This triggering of

learning, referred to as node activation, is conditioned on two aspects. Firstly, the

time since the last node has been triggered and secondly the strength of the match

(Euclidean distance) between input and current best matching node weights. The

"time since last node activation" part acts as, mentioned earlier, “time dilatation”

or, “refractory period”, forcing nodes to spread their activation in time. This
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part does not strictly forbid activation of any node for certain time. Instead it

enforces softer, “refractory threshold” which puts a barrier on best matching node

Euclidean distance value "goodness" before the node can be activated.

The exact algorithm for the temporal inhibition circuit can be implemented in a

few steps. Firstly depending on the desired performance two static variables are

defined: the maximal refractory period (P) and minimal refractory level (R )(see

Figure2.4). The TIC functioning is based on two main global variables: a map of

values representing time since last activation corresponding to each node of the

SOM map and a single global refractory threshold that defines current threshold

below which new matches are accepted. At each time step the new input vector is

queued and delay lines are updated. The best matching node is found within all

SOM nodes. If best matching node Euclidean distance is smaller then refractory

threshold, and this node has not been activated in last P steps, the node enters

activation state. This state represents a positive match so the nodes’ weights

are updated as per standard SOM update strategy with neighbourhood update.

In this activation state, nodes’ variable for time since last activation get reset.

Simultaneously, the global refractory period gets set to a more rigorous (lower)

value of R. Finally, in this activation state, this node activation gets advertised

as one-hot map to the next layer above. Independently whether any nodes have

been activated, each time step the values for all nodes’ time since last activation

get increased. Additionally, when time since last activation for all nodes gets

bigger then the P value the global refractory threshold gets relaxed to infinity to

allow any node to get activated. Figure 2.4 describes the expected behaviour of

the TIC in visual form. This implementation helps to span SOM weights most

efficiently across input sequence, but is also flexible enough to allow re-triggering

of already memorised patterns. Only positive match and weights adjustment

point to signal pattern detection event and is fed as a positive node activation to

the next layer. The behaviour of the temporal inhibition circuit can be defined by a

set of equations. First is a definition of map representing the time since each node
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Figure 2.4: Behavior of temporal inhibition circuit. After each node positive
activation (full dot) TIC creates period of inhibition P at which any BMU node
which has ED bigger then some defined value R is inhibited. Any node with better
match can override inhibition at any point and trigger activation and learning (2)
else the network has to wait till inhibition elapses (1).

was activated:

Ai(t+ 1) =

 0 g(t) = 1, i= BMU(t)

Ai(t) + 1
(2.12)

In the next step global refractory period value and its longitude is defined based

on the activation map:

r(t) =

 R ∃i,Ai(t)< P∞ (2.13)

Next, based on activation map and refractory value gating output is calculated:

g(t) =

 1 EDBMU(t)< r(t),ABMU(t)> P

0
(2.14)

Additionally, gating output and BMU value are combined to create one hot repre-

sentation of the activation map as an input to the next layer:

Gi(t) =

 1 g(t) = 1, i= BMU(t)

0
(2.15)

At the extreme values of the refractory period (P) and the refractory threshold (R )

all of the activation patterns presented in Figure 2.3 can be recreated. When the
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period is set to zero and the threshold to infinity the pattern of activation presented

in Figure 2.3A will ensue. When the period is set to 3 and the threshold to zero,

the pattern of activation in the Figure 2.3B will be visible. By setting the values in

between those extremes the pattern from the Figure 2.3C can be recreated.

The exact implementation of the code performing single layer network functions,

joining short-term memory, self-organising map and temporal inhibition circuit

can be found in the Appendix C.

2.5 Multi-layer connections

One layer can find statistical redundancies in the signal only to the extent of

its short-term memory. This memory can be enlarged, but when the signal is

lacking statistical redundancies in repeating patterns, limiting the size of the

memory nodes will prevent parts of the node weights to converge on single

representation. Even in such cases, partially converged layer memory can still

detect smaller signal redundancies and react to them by positive match activation.

This activation can be converted into an activation signal that can serve as a input

signal to the next layer. This layer activation signal will be seen as a quantised

and down sampled version of the original signal. Provided the signal exhibits

some temporal redundancies, new representation will have a lower density of

information and will be compressed. This allows the next layer to have a longer

short-term temporal window without overwhelming the quantisation mechanism.

These properties allow the stacking of such networks with increasingly longer

temporal views. The multilayer connection can be simplified to the following:

L1

 OL1(t) = DL(I(t))

GL1(t) = MSOM(OL1)
(2.16)

L2

 OL2(t) = WDL(GL1(t))

GL2(t) = MSOM(OL2(t))
(2.17)
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Where DL(I) is simple delay line implementation, WDL(I) is a wave delay line,

andMSOM(O) is a Modified (TIC augmented) Self-Organizing Map.

Depending on the amount of the frequency components of input signal, each

layer can have exponentially increasing short-term memory capacity without an

increase of long-term memory nodes numbers. Together with the property of

limited analogue delay line memory requirements the addition of new layer and,

therefore, doubling of temporal signal spectrum can inflict only linear growth in

computational expenses.

The exact implementation of how multiple layers of such network can be joined to

encode complex repeating signals can be found in Appendix D.

2.6 Classification

The SOM architecture is designed to create quantisation of input space in the form

of a topological map based on frequency of occurrence and spatial proximity. It

produces the unsupervised compression of input space in form of quantization

vectors (QV). It has also been discovered that the input vector can be augmented by

additional elements to create a type of associative memory Kohonen (1989). After

the formation of a SOM map trained on input signal composed of two elements,

the search through the QV can produce a simplified/compressed association code-

book. The size of the network can define the coarseness of the associations. Since

the matching and neighbourhood functions act on the whole input vector, the

relative size (Euclidean length) of the associated parts can shift the importance of

clustering from one part to another. In particular, the use of this type of associative

encoding for classification tasks was explored using augmentation of input vector

by class identity unit vector Kangas J.A. (1990).

I(c) = [i0 = 0, ..., ic = 1, ..., in = 0] (2.18)

Otrain = [Strain,γI(c)] (2.19)
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Where I(c) is a class identity vector of class c of n number of classes. Otrain is an in-

put vector during training composed of data sample S and identity vector I scaled

by γ parameter. This one-hot vector representation of the class identity added

to input vector gets associated in the node weights through SOM unsupervised

quantisation.

Later search for the best matching unit with the test input sample can yield a class

identity. Since the test input vector has unknown class identity at the moment

of the search, Euclidean distance calculations during matching have to ignore

dimensions of the identity component and empty identity vector has to be added

to the input vector composition:

BMUtest = argmin
i

(||[Stest, [0, ...,0n]] −Wi||E) (2.20)

C= argmax
j

(IBMU(j)) (2.21)

Where BMUtest is a node closest matching the test sample Stest (ignoring identity

part) and C is a predicted class of test sample. This algorithm might be viewed as

an implementation of k-nearest neighbours on simplified and compressed data

sample. This compression of the dataset speeds up classification and allows for

the generalisation of clusters. Because of properties of the SOM neighbourhood,

some nodes can be placed on the border of the class divisions. These nodes

can then appear close to some borderline test samples and its identity vector

part will be blurred, showing partial affiliation with multiple classes. To guard

against this problem, additional checks for clear class identity was shown to

improve classification results (Kangas J.A. (1990)). One of the down sides of using

unsupervised quantisation algorithm for classification task, is that quantisation

has no inherent goal of placing QV in places where they could help the most

in the classification task. The QV are distributed evenly, based on statistical

frequency of occurrence and input vector proximity which might not be desirable

for dataset with uneven frequencies and spatially distant classes. See the example

visualization of not effectively placed nodes in Figure 2.5.
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Figure 2.5: Visualization of 5x5 classification SOM network trained on two clusters
of data (x and o) with additional class identity vector. The left 10 nodes captured
the first data cluster (x), while the right 10 nodes captured the right (o) cluster. The
center 5 nodes where pushed by neighbourhood function to the border of the class
division and do not help with classification. They could be recognized by blurred
class identity vector with confidence lower then 75%

2.7 Prediction, Value estimation and Policy for Rein-

forcement Learning

All problems of control can be abstracted to the general formula of controlling

some "black box" system. A black box system follows certain unknown internal

dynamics: it can accept external input and allow observation of some internal

states. The goal of a controller is to produce the input in the form of actions to

drive the system to the desired state. In special cases when the desired state is

hard to define, the desired outcome or path can be more easily described by a

reward signal. In these cases, the controller designer’s goal is to find optimal

actions conditioned on an observable internal state to maximise received rewards.

Finding such a controller/agent and its optimal actions is a basic challenge in field

of Reinforcement Learning (RL).

p(st+1|st,at) (2.22)

r(st,at,st+1) (2.23)

π∗(at+1|st) (2.24)
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In a basic definition of the RL problem the system follows known dynamics

described by transitions function p. The transition functions defines probability of

system reaching state st+1 conditioned on previous state st and action taken at.

The system produces immediate rewards r, which are calculated based on internal

state or state transitions. The goal of RL algorithm is then to find optimal policy

π∗ function, which produces the probability of taking actions at+1, conditioned

on current state, such as to maximise received future rewards when following

such policy. Such systems with defined state transitions and observable states are

referred to as Markov Decision Processes (MDP). A solution to the RL problem

is to create Value estimation for each of the internal states. This Value function

represent discounted expected reward for being in that state and following optimal

policy. Knowing the value function and state transitions the optimal policy would

choose actions following/traversing states with highest expected reward.

Given the ideal model of the system, in the form of a transition function, algo-

rithms defined as Dynamic Programming (DP) were shown to be able to iteratively

converge on optimal value estimations Bellman (1953). For each state they av-

eraged immediate and expected rewards for transitioning to the following state,

weighted by probability of each transition given the policy. By iteratively looping

through all states, value estimates converge to true values. In a process referred

to as Generalised Policy Iteration (GPI), first the state values are evaluated for a

given suboptimal policy. Subsequently new, better policy is derived from these

value estimates. By iterating between these two operations, the value estimates

and policy has been proven to converge to the optimal solution.

Methods referred to as Monte Carlo (MC) for their random sampling, can evaluate

state values only from samples of experience. In cases when there is no knowledge

about systems dynamics, it is still possible to get traces of actual system behaviour,

either as a recording of real system or just its simulation. These traces represent

samples of experience of interacting with such systems in the form of state, action

and reward chains. For such traces to be useful in predicting state values, they

need to lead to some terminal reward. Thus, such traces can be derived only from

54



episodic problems. MC methods evaluate the value of each state in a trace and then

average the values of each state across traces. Since the system transition function

is unknown, the state value estimation does not allow a new policy to be derived.

Thus, more often MC methods are instead employed to derive state-action value

estimates, which represent expected future reward for being in certain state and

taking certain action. State-action values can be directly utilised to obtain greedy

policy by finding action leading to best expected reward for each state.

By combining the ideas of Dynamic Programming and Monte Carlo methods,

the algorithm of Temporal Difference (TD) was formulated. By allowing us to

estimate value of current state based on estimates of other states (DP contribution)

and to define state transitions based on random sampling from experience (MC

contribution), the algorithm achieved the most universal scope. It can be applied to

continues problems without known dynamics and without recording of experience

traces. Although efficient, TD estimation of state value without known transition

function does not allow for extracting policy. Thus, a more detailed variation

of TD algorithm was devised, known as Q-learning, which estimates values of

state-action pairs known as Q values. The general formulation of Q-learning

algorithm can be define by its Q table TD update.

Q(st,at) =Q(st,at) +α[rt+1 + γmax
a

(Q(St+1,a)) −Q(st,at)] (2.25)

At every time step the entry to the Q table entry indexed by state and action

Q(st,at) asymptomatically aims with speed defined by α to reach the target value

by taking small update steps. The update change known as temporal-difference

is a difference between the current estimate of the state-action value, intimidate

reward rt+1 and discounted by γ best possible state-action value reached in the

next step Watkins (1989).

One difficulty with the algorithms presented is the assumption of full observability

of the system. For complicated systems, internal state is very rarely fully observ-
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able, as the controller/agent only has access to subset of internal states called

observations. These problems are referred to as Partially Observable Markov

Decision Processes (POMDP). Essentially, any single observation is ambiguous

in describing internal system state, but when multiple consecutive observations

are connected the internal system can be discovered. Additionally, the state space

of advance problems becomes untraceable, because a number of discretised di-

mensions of state is impossible to approach in a table like fashion. An additional

obstacle in the presented abstraction is that no system can be fully isolated from

the outside world, and therefore any system will have uncontrollable outside

disturbance, which will affect internal state. These disturbances can usually be

modelled as noise. In simulation problems, these disturbances are also sometimes

an effect of random exploration.

In the final part of this research, we argue that some of those problems can be

mitigated when the presented network is added as an unsupervised state decoder.

When trained on sequences of observation, action, reward triples from the RL

problem, the network can discover repeating traces of problem dynamics. When

discovered traces are encoded in the long term memory they can be accessed as

both, traces of interaction as in the Monte Carlo method and as transition function.

Additionally, depending on the problem, when remembered traces of observation

are longer than the POMDP order, the memory traces can start to be regarded as

actual discovered states of the RL problem, not only observation. See Figure 2.6

representing conceptual diagram of such utilisation of the new architecture.

When an initial solution to the RL problem is unknown, then random policy can

be employed to explore the problem. The network can then observe the output

of such random policy. The weight developed by encoding such interactions

can be regarded as encoded historical traces of interaction with the RL problem.

From this point, to improve on random policy the historical traces have to be

differentiated based on their expected reward. Two ways have been developed to

assign such value to the network nodes (encoded traces). The first method, referred

to as Feed-Up, searches rewards in the traces of interaction encoded in network
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Figure 2.6: Diagram of presented architecture utilised in RL context. The network
is trained on observation, action and reward sequence. By using SOM as temporal
associative memory the node weights can be used as approximation of transition
function and searched for actions maximising expected future reward.

node weights and reassigns them to the nodes representing those traces on the

higher level. This method resembles the Monte Carlo method, in that it searches

traces for rewards and tries to update all proceeding states with discounted value.

The second method, referred to as Temporal-Learning, redefines the temporal-

difference equation in that instead of updating the entries to Q-table, the values

assigned to network nodes are updated based on their activation pattern.

To utilise the discovered node values in better action policy, expectation of which

network nodes may be activated have to be calculated. This can be done based on

the algorithm for classification presented earlier, which employs SOM network as

a associative network. By leaving some parts of the weights blank, the network

matching function can calculate partial association to past context stored in delay

lines. The network has to consider node activation in a few future time steps and
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consider context information with different time shifts. See diagram of building of

such association of input for the future time activation predictions in Figure 2.6.

When both possible future development of activation and node values are known,

the decision of which possible node trace to follow can be made. Although more

sophisticated combination of those two values could be developed, the simplest

solution was to chose the node with highest product of probability and expected

value. After choosing the node that represents the most favourable future, the

policy is to just choose the action stored in its trace weights.

2.8 Implementation

All of the elements of the new neural architecture described above were developed

gradually and implemented in MATLAB scripting language inside a dedicated

MATLAB environment. Although this scripting language does not provide the

fastest execution time, in this development, the flexibility of quickly implementable

changes was more important. Additionally, the MATLAB environment allowed

easy visualisation of the important parameters during and after network training.

Each part of the network was developed as a separate class object in order that

it could be more easily incorporated and ported into each experiment, and to

providing sufficient level of abstraction. The implementation code for each of the

main network elements can be found in Appendix A.

2.9 Parameterisation

As the goal of the development was not to find the best and fastest final perfor-

mance of the network, but rather to prove that the network could achieve the

desired goals of encoding, the task of finding the best hyper-parameters was not of

crucial importance. Nonetheless, the hyper-parameters of the network had to fall

within certain values for the network to converge and perform its functions. The

new network’s high number of hyper-parameters defining its performance can
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be divided into two general classes: the parameters defining network’s encoding

capacity and the parameters defining network’s learning and convergence. Since

the numbers of layers, layer sizes and learning rates required for convergence

strongly depend on the type of temporal signal being encoded, depending on

the experiment, different networks’ organizations were devised via an iterative

process. The process involved bottom-up, layer by layer, building of the network

and assessing its performance. For each layer, firstly, the short memory tempo-

ral size was defined. Smaller for lower layers and progressively increasing for

higher layers. Secondly, the layer was initialized with an over-sized number of

nodes and trained for an artificially long training period. This guaranteed conver-

gence and development of stable weights in long term memory. After that, the

network was assessed by the output activation pattern or node weights, for the

number of utilised nodes compared to total number of nodes. If the number of

nodes activated was much smaller, then the total number of nodes in the map and

their weight were clearly developed, the network size could be shrunk. After the

optimal layer size was found, the artificially long learning period could also be

reduced to the point where the overall final average Euclidean distance was still

achieving relativity comparable value. The neighbourhood function reach usually

followed the learning rate value such that the reach would recruit nodes from

the whole map at the beginning but allow individuation of nodes at the end of

the learning. Additional, initial neighbourhood reach was scaled in proportion

to the map dimensions. After the layer’s size and learning rate was defined the

parameterisation of the next layer could commence. Since the network’s layer

can encode up to the certain time spectrum of sequence elements, the next layer’s

temporal view (short term memory length) can be usually doubled. In the end, the

size of each layer depended on how many components at each layer’s frequency

spectrum the encoded signal included.
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Chapter 3

Experiments

To test the hypothesis that the described architecture should be able to capture,

learn and recall temporal characteristics of the signal, a number of experiments

were devised. The experiments followed a progression of increasingly compli-

cated signals being encoded by the network; starting from the simplest temporal

signal (Experiment 3.1), they move through pure noise (Experiment 3.2) and more

complicated synthetic signals (Experiment 3.3). This was later followed by tests

checking network performance on dealing with signals buried in noise (Experi-

ment 3.4) and real world data (Experiment 3.5). The experiments culminated in

testing network’s ability to capture and encode systems’ temporal dynamics to

aide discovery of hidden states in order to solve a simple Reinforcement Learning

problem (Experiment 3.6).

3.1 Experiment 1: Encoding of simple repeating spikes

The objectives of this first experiment were to test the network performance with

the simplest conceivable repeating signal and see if the signal could propagate

through layers. Simultaneously, it would check if SOM connected to short term

memory and with an additional temporal inhibition system would converge and

to discover what the activation pattern and rate of nodes at each layer would

be. The final aim of the experiment was to check whether the node weights after
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training could be used to decode the initial signal into a prediction. The main

objective was to show that the new network could encode, remember and predict

long dependencies of the simplest input signal. The maximum length of these

dependencies was decided by the number of layers and length of input buffer

queues in each layer. The network was tested on simple synthetic signals, for

which it is easy to manipulate the temporal dependencies. The signal was a two-

dimensional vector. The vector represented one-hot representation of one of two

states. The signal has a simple temporal behaviour in which, for most of the time,

one state is activated, but, at every defined number of time steps, activation briefly

flips to the other state. This can be seen as a constant frequency spike in a discrete

time domain. See the input signal in the figure 3.1. This kind of signal is relatively

hard to predict, because the timing of the next spike depends only on the last

visible spike, which is a small part of the overall input sequence. Manipulating the

input signal frequency and the number of predicting layers finds the maximum

delay, at which the network is no longer able to correctly predict the next input

spike. To prove that this network could compress input data in time, the number of

node activations was recorded on each layer. This shows the relationship between

the activation on a given layer and the frequency of the input signal. To show that

the algorithm converges, the average Euclidean distance between input and the

BMU throughout the learning process was also plotted. Because convergence is

dependent on the input signal, the first activation graph shows only exemplary

behaviour for a single frequency, not a mean and standard deviation from multiple

runs.

The parameters of the experiments were as follows: four SOMs of size 3 by 3

stacked into a 4-layer architecture. The input queue for each layer is a basic delay-

line memory with increasing lengths of 2, 4, 8 and 16. The prediction window

for each layer was the same as the size of the input queue. The learning rate for

each layer followed an exponential decay and we used a Gaussian neighbourhood

function. Each layer had a different starting point and the decay factor for learning

rate allowed convergence of higher layers to take place later in the process. Propor-
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Node activation at different network layers

Time [steps]
0 5 10 15 20 25 30 35 40 45 50

N 1

N 2IN

0 5 10 15 20 25 30 35 40 45 50

N 1

N 6L1

0 5 10 15 20 25 30 35 40 45 50

N 1

N 7L2

0 5 10 15 20 25 30 35 40 45 50

N 6

N 7L3

0 5 10 15 20 25 30 35 40 45 50

N 1
L4

Figure 3.1: Plot of exemplary network node activation at each layer when subjected
to the simple periodical input. Input signal frequency is 1/13.

tional learning rate for all layers was set to 0.5, while the exponential decay factors

were -1,-3,-6 and -12 for layers 1,2,3 and 4, respectively. Temporal inhibition circuit

settings were as follows: the global threshold was not allowed to drop below 0.5

for any layer. The persistence of the global threshold for each layer was set to be

one time step smaller than input queue length. This pushed the nodes weights

to not overlap when learning the input history. Prediction happened only on the

top layer. The last node activated on this layer passes its predictions of the next

node to be activated to the lower layer nodes. They are then combined with the

activation on the lower layer and the sum is passed again on to the layer below,

until the bottom input prediction is reached. For each frequency of input signal,

the network was trained for 2000 time steps and then its prediction and activation

was tested for 1000 steps. 50 runs of each input frequency were performed, and

average and one standard deviation was calculated for each of plotted values.
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Figure 3.2: Average and standard deviation of euclidean distant between input
vector and BMU node weights at each of the layers throughout the learning process.
Input signal frequency is 1/13. The average is over 50 runs.
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Figure 3.3: Spike activation rate at each layer over different sequence lengths
(1/frequency) and predicting layer.
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Figure 3.4: Average and standard deviation of spike prediction capability over
different sequence lengths (1/frequency) and predicting layer.
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3.1.1 Activation

First, the response of the network to the input signal was tested. The frequency of

1/13 was chosen because it engages all the layers simultaneously and does not

stretch the network’s capabilities to its maximum. Figure 3.1 shows an example

activation of the network after the learning session. At the bottom we can see the

input signal and above we can see the response of consecutive network layers to

this signal. Only nodes that are activated on each layer are plotted. The rest of

the nodes did not learn to respond to the signal. All layers learned to respond

to specific periods of the input signal. The activation of nodes at the first and

second layer does not explicitly correlate to the input timing. This is because of the

repetitive activations of nodes at those layers. It can be seen that although the first

three layers did encode the input signal, their queue length did not allow them to

perform complete time compression. The fourth layer, with queue length of 16,

was able to pick up the repetition of the input signal and learn its behaviour. This

is also shown by the fact that this layer gets activated with the same frequency as

that of the input signal and only needs one node to represent the whole sequence.

3.1.2 Convergence

In Figure 3.2, we can see the development of the average Euclidean distance

between the input signal and the weights of the node declared as the BMU. Time is

shown in logarithmic scale, because the learning at each layer takes a progressively

longer time to converge. It follows an expected trajectory where the lower layers

converge first. Additionally, it is only after one layer has converged that the next

higher layer starts to converge. This can be explained by the observation that as

one layer converges, it starts to find a more detailed description of input signal

and the output gets more complex. As the output of one layer gets more complex,

the Euclidean distance of the nodes on the next layer increases, because network

is presented with previously unseen variability in the signal.
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3.1.3 Activation rate

After testing the network performance with one frequency, experiments with

sweeps through frequencies were conducted. The output of this experiment is

shown in Figure 3.3. In this experiment, the network was presented with signals

of different frequencies (1/sequence lengths). After the learning period, the node

activation rate at different layers was measured while the network was tested with

the same input signal. The node activation rate is defined here as a ratio of time

steps when any node is activated over the total number of time steps. Figure 3.3

shows the average activation rate and standard deviation over 50 runs for each

sequence length. The activation rate for each layer follows a frequency curve

(1/sequence length) until it reaches roughly twice the queue length for that layer

and then it starts to rise, not being able to resolve temporal dependencies.

3.1.4 Prediction

The results from the final experiment are shown in Figure 3.4. In this experiment,

the network simultaneously learned the traditional node weights and also the

additional prediction weights by way of associative memory augmentation. After

the learning had converged, the chosen layer was used to predict the next input.

Since each layer can only predict its own input, the higher layer’s predictions

were combined with lower layer’s predictions, down to the network input layer.

At longer sequence lengths, the opportunities for making wrong predictions

were less frequent. This is caused by the less frequent changes in the input

signal. To remove the effect of this artificially high base prediction correctness for

longer sequences, the correctness was measured only for predicting the part of the

sequence containing a spike. From Figure 3.4 we can see that the predictive power

of each layer has a definite limit. This limit corresponds to the point at which the

activation rate diverges from normal decay. Prediction from a next layer above

almost doubles the prediction power of a lower layer.
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3.1.5 Discussion

In this experiment the temporal inhibition circuit was still being developed and

although the circuit would enforce refractory period and refractory level, the

circuit would still allow the same node to be activated multiple times when the

match was below the refractory threshold. It can be seen in the activation depicted

in Figure 3.1, that the single node can be activated multiple times especially

when the period of the signal is longer than the time horizon of the particular

layer. It is even more visible in Figure 3.3, where at certain sequence lengths

each layer’s activation rate would spike up when the nodes started to be activated

multiple times in the row at that layer. Since such intense activation of nodes is not

informative and artificially increases the amount of spikes sent to the higher layer

the additional rule for temporal inhibition circuit was added to stop that behaviour

from happening. This rule did not allow the same node to be re-activated within

the refractory period, even when the match would fall below refractory threshold.

This rule was already described in the methods section, as all other experiments

already employed this improved temporal inhibition circuit version.

3.1.6 Conclusions

The experiments showed that the network presented with a simple repeating

signal could propagate this signal through layers. The SOM node weights can

converge onto a representation in a sequenced, timely and predictable manner.

The node activation rate is dependant on signal frequency and when this frequency

rises above the layer capability to encode, the activation increases to allow the

next layer to pick up longer dependencies. Finally, the converged weights can be

read to recreate the signal in the form of prediction.
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3.2 Experiment 2: Encoding of noise

Any network presented with real world data has to be able to discern between the

actual signal and the associated noise. After showing in Experiment 3.1 that the

network could encode noise free signal, in this experiment the network was tested

as to how it would react to noise without any underlying signal and whether such

signal would break any learning paradigms. Ideally, when the network cannot find

any underlying signal dependencies, it should dedicate its resources to encoding

all visible combinations of signal and re-represent them for the next layer. The

next layer should then try to find longer possible signal dependencies. With a pure

noise signal the combinational explosion of possible combinations means that the

network resources are stretched to their limits and in this experiment would help

to see how the proposed network dealt with reaching such limits.

This experiment was also conducted to test the capabilities of single layer to

converge and re-represent signal without any temporal dependencies. The layer

was trained on a randomly generated binary signal. The network should be able

to converge a certain amount of its long-term memory weight in order to represent

repeating sequence patterns. As the signal has no temporal dependencies, the

weights should represent all possible signal combinations. The network should

use all available nodes to represent the sequence, which should result in lowering

the activation frequency of each node. Independent of signal type, the network

should be able to encode the signal into node activation pattern, which should be

reproducible into original signal.

The experiment was conducted on a single layer with constant short term tape-

delay memory of 6 time steps. The network was trained on computer generated

pseudo-random binary signal. Each training took 5000 steps for the network to

converge and then network was tested for 1000 steps without weight updates.

Network testing included finding the number of activated nodes, its capability to

reproduce original signal from node activation and its weights, and determining

the amount of total node activations. Additionally, after each training, the number
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of converge weight (above 0.9) was measured. Experiments were conducted with

different map sizes to see how the algorithm utilises a different number of long

term memory units.

Figure 3.5: The figure shows statistical results of 100 runs of a single layer network
trained on pseudo random binary signal with different layer map sizes. A) Number
of converged weights on short-term memory at different map sizes. B) Rate of
single node activation as a ratio of all time steps. C) Ability to reproduce base signal
from node activation using learned weights. D) Percentage of nodes activated as a
response to the random signal.

As the size of the network map increases, the number of converged weights in-

creases see Figure 3.5A. The number of converged weight bits follows almost

exactly logarithm of base 2 of the map node number, showing that the algorithm

tries to encode all binary combinations of input signal in its weights. Simultane-

ously, the number of activations for each node in the map declines as weights

start to represent bigger snippets of the sequence and do not have to be activated

so often see Figure 3.5B. Figure 3.5C shows that the reproduction is not ideal for

small map sizes, but quite quickly reaches almost perfect reproduction for any
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bigger map size. Figure 3.5D shows that the utilization of nodes starts to decline

from maximum as map sizes increase.

This experiment shows that the presented network can work with signal that

does not have any temporal dependencies within the layer’s temporal perception

spectrum and still encode, and, almost losslessly, re-represent and simplify signal

for the next layer. The next layer can then try to find temporal dependencies in

its longer temporal perception spectrum. The network does not produce perfect

reproduction for small network sizes because of the algorithm’s goal of spreading

activation as far as possible and its not ideal influence of neighbourhood function.

For bigger maps, however, the network utilization starts to degrade because of the

problem of converging multiple weights in short training sessions.

The experiment also shows that the network performs as theorised: trying to

employ the biggest number of nodes, shown in node utilisation, to represent

the longest possible sequence snippets, in the form of the number of converged

weights, and, simultaneously, still achieves good reproduction of the signal.

3.3 Experiment 3: Encoding of complex repeating sig-

nals

After the first two experiments 3.1 and 3.2 were conducted to test the very basic

functionality of the network, the next experiment was conducted to challenge the

network with a signal of a more complicated nature. A signal was chosen which

had both short term and long term repeating patterns, which would mean that

each layer of the network would have to find, encode and re-represent different

characteristics of the signal. This experiment included study of feed forward

activation patterns of nodes at different levels, a view of the weights representing

long term memory and the possibility of mapping these representations into the

original signal. The network was expected to pick up different characteristics of the

signal at the different layers of the network, depending on the signal periodicity
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which was changed to see the changes in network behaviour.

3.3.1 Single convergence activation test

Since the network utilized an unsupervised learning method, each of the training

sessions might result in different weights’ convergence to the same input signal.

This first test was only conducted to explain activation patterns; which is why

it presents only one exemplary result. The input signal used in this test was

a periodical sequence of 50 time steps representing the binary pulse density

modulation of a sinusoidal wave created by a first order delta-sigma converter.

A few periods of this sequence can be seen in the bottom of Figure 3.6IN as an

input to the first layer. To keep constant length of the input vector, the sequence

was augmented by its negation. Three layers were employed to encode this signal:

two first with the SOM sizes of 3 by 3 and top layer of size 2 by 2 (see SOM

of node weights in Figure 3.7A). The short term memory of the first layer was

implemented as a delay line of length 4. Short term memories of the higher

layers were implemented as a wave delay line with 8 memory units and speed of

propagation of one unit per time step for second layer and 0.5 units per time step

for top third layer. The network was trained for 5000 time steps with decaying

learning and neighbourhood rates with higher levels decaying more slowly. The

exact implementation can be found in Appendix D.

Figure 3.6 shows the resulting feed forward activation of trained network at

different levels subjected to the periodical signal. The vertical lines represent

activation of certain memory node. The bottom part shows periodical input signal

presented to first layer. Figure 3.7A represents the weights of three layers of

trained SOM maps. Each node weights represent a partial snapshot of lower layer

activation. The X axis of each node weights image represents time and Y represent

the different nodes from lower layer. It is possible to see a resemblance between

the weights and activation shown in Figure 3.6. Figure 3.7B shows how weights

from one of the top layer nodes can be de-constructed into the activation of a lower

layer. Reconstructed activation of lower layer can then be reconstructed again

73



Figure 3.6: Node activation for a three-layer (L1 3x3, L2 3x3, L3 2x2) network with
a two bit input vector. The network was trained on a density encoded sinusoidal
curve with a period of 50 time steps and then presented with the same signal.

until the original input sequence is recreated.

The presented learning algorithm is capable of observing repeating temporal

patterns and converging on representation encoding the pattern in internal long

term memory weights. Each layer is capable of dividing the input sequence into

smaller chunks and represent them in the long-term memory weights. Each layer

captures repeating redundancy and simplifies the signal for the next layer. The

SOM neighbourhood function creates a topology of encoded weights visible in the

similarities in weights between neighbouring nodes.

3.3.2 Node activation dependent on sequence length

This experiment was performed to visualise where and how layers respond to

different periods of input signal patterns. The experiment also checked whether

the network could find and synchronise its activation to the input signal period.

The network of the same architecture as in the previous experiment was fed with

signal generated by a delta-sigma generator. To change the pattern period, the

74



Figure 3.7: Weights of the network trained on a density encoded sinusoidal curve
with a period of 50 time steps. A) SOM connection weights presented in 2D . Part
of each layer activation at different layers can be decoded from each map weights
image. B) Partial reconstruction of base signal input from activation of one of the
top level nodes.

frequency of the fundamental source sinusoidal wave was changed at each run.

After each training session the network was tested with the same signal, and

the frequency of node activation was recorded. This created spectrograms of

node frequency response for each input frequency. The results show average

spectrograms of one hundred runs.

The spectrogram of node activation for the first layer in Figure 3.8 shows that node

activation synchronises with the input signal up to certain limited value when the

period falls out of scope of this layer and nodes start to be reused. Because of the

nature of delta sigma modulation, signals of uneven period length fully repeat

over double period length. Thus all uneven period values are met by a response

of double period activation. This creates an activation spectrogram with two

dotted lines. It can be seen from the figure that consecutive layers get activated

at progressively longer signal periods. A layer activation start to synchronise

with the input signal around the point when the period of this signal exceeds this

layer’s short term memory length. This synchronisation carries on for the rest of
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Figure 3.8: Spectrograms of nodes activation frequency when trained to respond
to different input signal frequency. X and Y Scales represent sequence length not
the frequency.
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the signal periods. Similar behaviour could be seen in activation of all layers.

3.3.3 Network convergence dependent on sequence length

One of the main limiting factors while learning long sequences is convergence

time. This experiment tried to test the characteristics of the network to converge

on sequences of different length and determine whether longer sequences required

additional iterations of the learning algorithm. There are a lot of parameters that

might define single layer convergence time, like the number of nodes, sequence

complication and sequence length with respect to layers temporal window. Yet, if

we consider the worst case scenario we could imagine a sequence that exhausts all

available layer nodes without any reuse and stretches node activation to maximum

inhibition period. This situation may still have bounded iteration requirements not

directly depending on sequence length, since one node has a limited number of

activation that is required in order to converge its weight representation. Nonethe-

less, the whole network has to have enough layers to capture the sequence’s whole

temporal spectrum for signal to be fully encoded.

In this experiment, the network was presented with sequences of randomly gen-

erated binary symbols repeated to the network during training and testing. The

sequence was generated with different fixed lengths. The network recognition, in

terms of average Euclidean distance between activated node and input, was tested.

Simultaneously, the number of presentations of the sequence during training is

changed to find its effects on the final network performance. The network con-

sisted of four layers, each with 3 by 3 map and progressively doubling temporal

spectrum of short-term memory. Since this network is multilayer, each layer’s

learning is dependent on the lower layer’s convergence. Since, it is difficult to

isolate dependence when all layers are trained simultaneously, in this experiment

the performance of each layer was tested independently. Thus, all testing and

training for higher layers was done on output from lower layers’ pre-converge in

ideal conditions (200 sequence repetitions).
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Figure 3.9: Network sequence recognition expressed as an average Euclidean
distance of activated nodes in different training conditions.

Figure 3.9 shows the experiment results. It can be seen that layers reach their

final performance around 100 repetitions of the given sequence, independently of

sequence length. An exception to this is layer 4, which, with a shorter sequence

length, takes longer to converge. This can be explained by the fact that its temporal

spectrum is bigger than the sequence length, and it might be argued that it is not

required for shorter sequences. Also, the second layer started to under-perform at

the longest sequence case, which is caused by the nature of the signal, which at

this time spectrum starts to overwhelm the number of nodes at this layer.

It was shown that within the spectrum of constructed network, the number of
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sequence repetitions required for convergence does not grow with sequence length.

An increase of sequence length requires more iterations of learning algorithm, but

it is fully justified by the increase in number of weights required to be converged.

To be able to increase the capability of encoding to even longer sequences than

tested here, additional layers would need to be added to the network. Since each

additional layer can multiply temporal spectrum, computational expense of using

this method for encoding sequences only grows logarithmically to the sequence

length.

3.3.4 Conclusions

The network is able to synchronise to the input signal and shift the responsibility

of synchronisation between layers, depending on signal period. The network per-

forms frequency decomposition in some way similar to the fast Fourier transform

(Heideman et al., 1984), where signals are progressively decomposed based on

their frequency components.

3.4 Experiment 4: Encoding of signals with noise

All real world signals are a combination of the underlying signal and noise. To

respond to such real world data the network has to be able to separate the un-

derlying signal from within the noise, both during training and testing. To have

that ability, the network has to be able to train on noisy data and then be able to

recognise the underlying signal within it.

Since it is difficult to find data sets with signals of changing noise content, the

signal used in this experiment was artificially constructed to gradually challenge

the network with an increasingly noisy signals to ascertain its limits. Experiments

were conducted on a three-layer network with the same hyper-parameters as the

previous experiments, trained on the same signal generated by a delta sigma mod-

ulator with a period of 50 time steps. The Euclidean distance between the input
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and the connections was used to indicate the encoding error during testing. This

error defines the mismatch between the tested signal and network response. This

mismatch can be recognised as the measure of the network’s ability to recognize

the signal.

3.4.1 Spatial noise

First, the effects of spatial noise were evaluated, introduced by randomly flipping

sequence bits. Separate networks were trained on noiseless and noisy (5%) signals.

The response was then tested with signals containing different levels of noise. This

type of noise reaches its maximum value at 50% since at higher levels the signal

starts to resemble its negation which is interpreted as the same signal but shifted

in time.

Figure 3.10: This figure presents a network’s ability to recognize signal and gener-
alise as noise in spatial dimension is introduced to the input signal. It compares
average Euclidian distance when matching input and weights of activated nodes
as noise is introduced to the input signal. The left plot shows average Euclidean
distance when network is tested with noisy signal after training on noiseless signal.
The right plot shows average Euclidean distance as network is tested with noisy
signal after training on signal with 5% spatial noise.

In the case of networks trained without the noise, the error almost reaches zero

when testing on noiseless signal Figure 3.10Left. This is expected since the test

and training signal are identical. As the noise is increased in the test signal, the
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error starts to increase. The increase is slight in the first layer since it cannot

differentiate between signal and noise patterns. The increase starts to be visible

for the second and even more so, for the third layer. The error increases until the

noise level reaches roughly 25% after which there is little visible difference for

further increases in noise. When the network is trained with 5% spatial noise the

error on a noiseless signal is lowest, as expected, but does not reach zero, Figure

3.10Right. It can be seen that the first layer of such networks perform better than

in the first case, because it learns to encode all signal combinations and becomes

less pattern specific. The second layer performs almost the same as in the previous

case, except for a small reduction in error for noise levels similar to the ones used

for training. The mismatch for the third layer is also smallest at the zero noise

level and rises as the noise is introduced and plateaus around 10% mark.

3.4.2 Temporal noise

Secondly, we evaluated the effects of temporal noise during training. This noise,

called jitter was set to randomly extend and shorten the signal by one time steps in

a given amount of randomly chosen time steps. Separate networks were trained on

noiseless signals and signal with 2% jitter. This amount of jitter results, on average,

in one time step every period (1/50) being extended or shortened by one step.

Network selectivity was tested by presenting the trained networks with the signal

generated by the same delta sigma modulator as above, but with different periods.

Therefore the network was trained on signal with varying, "jittery" frequency and

then the network frequency selectivity was tested.

In case of temporal noise, when a network is trained without noise, its error is

equally high on all testing patterns except the one trained on as shown in Figure

3.11Left. When jitter is introduced during training, the error is still lowest on the

noise-free signal, but it also achieves a relatively low error on signals with similar

period, e.g., 1/49 and 1/51 see Figure 3.10Right. It can be seen that as jitter is

introduced during training, as expected, the selectivity of the network in testing is

widened.
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Figure 3.11: This figure presents network ability to recognise signal and generalise
as noise in temporal (jitter) dimension is introduced to the input signal. The
left plot shows average Euclidian distance when network tested with different
base frequency signals after training on noiseless signal. The right plot shows
an average Euclidian distance as network is tested with different base frequency
signals after training with 2% of temporal noise (jitter).

3.4.3 Conclusions

The network can recognise signal within noise both during training and testing.

The gradual introduction of noise in the testing signal creates a clear decrease in

the network’s ability to recognize the signal. The recognition is still visible even

for quite high noise level (25%) in spatial dimension. When the network is trained

on a signal with temporal noise, it has a low error on the original signal, but is

also able to generalize its representation to lower its error on similar signals with

slightly different temporal periods. Coping with spatial and temporal noise is

made possible by the higher layers’ capability to represent more abstract signal

elements. The experiments showed that both in cases of spatial and temporal

noise, the network can be trained on noisy signal and generalise to find underlying

signal, shown by responding most strongly to noiseless signal during testing. That

is the most crucial attribute of any neural network and this network not only

managed to generalise spatial noise but also was able to generalise temporal noise

which most of temporal network architectures struggle with. Coping with such
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noise can be difficult, especially for single layer temporal networks like LSTM or

HTM see Y. Cui (2015).

3.5 Experiment 5: Encoding for classification

After the network performance was proven on synthetic data, the next step was to

challenge it with a large dataset of real-world data. The experiment was designed

to show whether a simple network could be trained in an unsupervised manner on

a huge dataset with multiple possible sequences interlaced, while simultaneously

showing whether the SOM could be used in a classification task just at the top

layer of the network. In principal, the network should be able to encode, converge

and re-represent even the complicated real world date without a huge loss of

information, and correct classification should be a good proxy for that.

In order to compare the sequence encoding capabilities of the network with

standard temporal supervised models, a top classification SOM was added to the

network and was trained according to the algorithm presented in the Methods

section and later trained on the well known sequential-MNIST (Lecun et al., 1998)

dataset. The input to the additional top classification layer was the network

top layer activation pattern mapped into wave delay line. The network had

three layers in addition to the classification layer. The first layer was used as a

thresholding function with only two nodes and no short term memory. The second

layer consisted of a 3 by 3 map with a wave delay line of length four at its input.

The final layer also had a 3 by 3 node map and a wave delay line length of eight

units. The classifier layer was of size 15 by 15 with inputs connected to a delay

line of length 392 units mapping history of 784 time steps. As per the classification

algorithm, during training, the input of the top level SOM layer, was augmented

by the class identity of the current sequence as a one-hot vector. By adding class

identity to the input, the topological mechanisms of SOM grouped patterns of the

same class together. Weight adjustments for this layer took place only at the end

of each digit sequence presentation.
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During classification, the input vector with unknown class identity was compared

to all SOM nodes and prediction was made from the closest nodes, which had

well developed class identity weights (>.75). This additional requirement stopped

predictions from nodes lying on the border of class regions. This type of classifier

is comparable to a k-nearest-neighbours’ representation with the fixed number of

neighbour skeletons in the form of the node weights. All layers were run through

one epoch and tested on a 10k test set. The results are presented in Figure3.12.The

network converged on representations, which could represent signal in the form

that still consisted of most of the important classification information. The final

classification accuracy was lower than large LSTM the accuracy of large (70K)

LSTM networks, but better than smaller (10K) networks. The final network perfor-

mance depended on the training period and the network size. These are non-trivial

to compare as the networks use their connections differently. The network had 772

weights in the lower layers and 794K weights for the final classification layer, but

both the sequence encoding and classification layers performed weight updates at

a much lower frequency than the LSTM.

The main benefit of using this network compared to other algorithms, is that the

layers of the network, except for the top classification map, work in an unsu-

pervised manner. This allow the network to acquire the model of the sequence

purely from the data. The acquired model allows the sequence to be filtered

and compressed before being presented in simplified form to the classification

layer. Additionally, the lower layers store the representation of the sequence, so

that the classification network training only has to take place only at the end of

each sequence presentation. Although the number of weight incorporated in the

network is large, only a small amount can get adjusted in each update step and

big classification network gets updated only after each sequence presentation.

The experiment shows that the network can be trained in the unsupervised manner

on a large set of data with a number of sequences interlaced, and encode, converge

and re-represent the information in the format, which allows for classification

comparable with other supervised temporal networks.
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(a) From Le et al. (2015) (b) From Bai et al. (2018)
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Figure 3.12: Sequence encoder performances on sequential MNIST. Sub-
figure 3.12a shows that RNNs (10K parameters, accuracy 0.98) initialized using an
identify matrix outperforms an LSTM network (10K, 0.65). Sub-figure 3.12b shows
how a TCN (70K, 0.99) outperforms an LSTM network (70K, 0.87). Sub-figure 3.12c
shows that ours network performance (0.80) falls between the performances of the
10K and 70K LSTM networks.
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The exact implementation for this experiment can be found in Appendix E.

3.6 Experiment 6: Encoding for reinforcement learn-

ing

In this experiment, the new neural network architecture was employed in solving

simple Reinforcement Learning problems. In this set of tests, the network would

be challenged to encode a noisy signal sequence like previously, but also to actually

take part in the active development of the sequence. This is because the developing

representation of the sequence inside network weights would be used to guide

the actions selection which in turn would change the perceived sequence. The

network would be used to encode the state-action-reward dynamics of the RL

problem, while the problem will be actively solved by prying those dynamics

from the network. The network, in itself, would be a part of a closed-loop system

trying to develop a model of the interaction. Although all the encoding of the

signal would still be done in an unsupervised manner the close loop system in

which the network will be employed would operate in an Reinforcement Learning

manner. It was unknown whether the unsupervised learning mechanisms in the

network were capable of converging to one stable representation and would be

able to adapt and re-develop as the representation changes while still maintaining

enough valid past representation to guide gained action selection knowledge.

The problem attempted was a simple toy scenario of a robot exploring a maze.

The robot moved between maze grid cells by taking north, east, south and west

actions in discrete time steps. The robot had limited sensory perception, allowing

it only to observe whether the cell next to the current position was open or closed,

making the problem partially observable. When the cell at the direction of action

was open, the robots moved to it, but if it was closed the robot remained in the

current cell. The maze was a simple corridor of cells ending with a T junction. An

illustration of the problem can be seen in Figure 3.13. The robot always started at
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the most northerly end and received an initial crucial observation. This observation

informed the robot at which end of the T junction it should finish the episode

in order to receive a positive reward. When the robot moved to the wrong end,

it finished the episode without the reward. The correct direction transmitted in

initial observation was randomly selected at the beginning of each episode. This

example problem was first formulated under the name of "tiger problem" since the

reward or penalty was supposed to represent a hidden tiger in one of the cells at

the end of the corridor. This problem was developed to test algorithms’ ability to

bridge the time lags between crucial (pointing to reward) observation and crucial

(taking right turn) action. One of the features was the ability to extend the length

of the corridor to increase the problem’s difficulty. Additionally, the corridors

following the T junction could be extended to increase the time lag between crucial

(taking right turn) action and the final reward.

As discussed in the Methods chapter, the type of RL algorithm used in this experi-

ment for solving this problem is referred to as feed-up (FU). Its characteristics are

similar to some Dynamic Programming methods. The feed-up algorithm proposed

here assumes that the reward will be received in the next time step and "asks"

SOM network which nodes are consistent with such an outcome by means of SOM

associative encoding for classification. This allowed the algorithm to determine

the amount of association of receiving a reward to each network node, which can

be interpreted as state-action value. An analogical algorithm was used to take

the current short term memory and find nodes that represented the trace most

closely resembling the current situation encoded in delay lines. Then, for each

node on the top layer, the state-action value and resemblance to the past value

were multiplied and the node with the biggest product was assumed to represent

the most desirable future. This node then dictated the action taken at the next time

step.
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(a) (b)

Figure 3.13: Visualisation of a simple reinforcement learning problem. It is a
variation of the well known tiger problem []. The robot navigates this simple grid
world taking north, south, east and west actions at every time step. It starts at the
top of the map where it receives crucial observation (light bulb) that informs where
the reward or penalty (tiger) is hidden at the end of the corridor. The placement of
the reward (left or right room) is randomly selected at each new episode and the
algorithm has to learn to connect the initial observation to action taken at the T
junction. The length of the corridor before and after the T junction can be extended
to test network memory retention.

3.6.1 Two step "Tiger Problem"

In the first experiment the simplest version of the "Tiger Problem" was approached.

The maze shown in Figure 3.13 was used. It has only two steps required to pass

through from start to finish. The robot would receive the crucial observation at

the start and take one step towards the junction. It would then make a decision

as to which way to turn to reach the reward. As in any RL problem, additional

exploration rate was introduced, so that 10% of actions were randomly decided.

This allows exploration of the problem at the start but increases the average

number of steps required to reach the reward at the end of convergence. A two

layer network was used. The first layer fed with observation, action and reward

triples did not have any time dependence and was to compress the number of

all possible observation, action, reward combinations. The second layer had a

simple delay-line short-term memory of size 4 time steps. Which was sufficient

to solve the problem even with the additional exploration steps. To allow the

problem to become continuous, multiple episodes were lined after each other. To
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stop the network from joining rewards and short term memory between episodes,

additional 4 clearing steps are inserted between episodes to clear the network.

The example of activation of converged network solving the maze problem can be

seen in Figure 3.14.
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Figure 3.14: Example activation of two layer network solving simple Tiger problem.
The input consist of 11 elements: a reward, 4 actions and 6 elements of observation.

A network, with two SOM of size 4x4 at first and second layer, was trained for

20000 time steps with decaying learning and neighbourhood rates to achieve

convergence. While converging, the network was also involved in solving the

presented RL problem. By creating the representation of successful traces in its

node weights it allowed almost perfect performance in solving the RL problem.

The average convergence of such a network can be seen in Figure 3.15. The experi-

ment shows that average number of steps between receiving the reward is around

7 steps. Those include 4 clearing steps, 2 steps to traverse the maze and a sporadic

exploration step. It is worth noting that when the random exploration steps fell

on the decision step it could force the network to skip reward in this episode
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significantly extending the number of steps between rewards. The convergence

experiment shows that this type of network is capable of reliably learning to solve

the presented toy problem.
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Figure 3.15: Convergence of network performance on the simple tiger problem.
Optimal navigation through problem takes 2 steps but additional 4 clearing steps
are added after every episode. Average and standard deviation of 100 runs.

3.6.2 Delayed reward updates

Since the reward signal is encoded in slowly changing network weights, it does

not allow the network to change RL decision very swiftly. Thus, the calculation of

mapping the encoded rewards into state-action values of the network nodes does

not need to be updated after each network time step. To explore the implications

of slowing down this reward association the further experiment was devised. In

this experiment the reward association to network nodes state-action values is

intentionally slowed down. By performing these calculations every so many time

steps, the loop of interaction between the network and the RL problem was slowed

down. The experiment setup for the network was the same as for the previous
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experiment, except the forestalling of reward updates. The results can be seen in

Figure 3.16. After choosing forestall value from logarithmically increasing set, the

network was converged 20 times and average progression of convergence was

recorded. The results show that when the reward updates are done at least every

20-50 time steps, the convergence is similar to that shown when updates happen

every time step. Even when reward updates are as rare as every 500 steps, the

network converges slower but still to the same optimal solution. When network

reward updates are less often then every 500 steps the network converges, but

final performance is sub-optimal. From the results it can be concluded that the

reward updates have to happen with similar intensity as the actual reward signal.

At the first 5% of convergence the average number of time steps between receiving

the reward oscillate around 14 steps. It can be argued that there is no need to

perform reward updates with higher rates since they do not reflect any underlying

changes in reward encoding. The results of this experiment show clearly that

performing reward updates at a higher rate then every 20 steps does not provide

any additional gain in speed of convergence. When the whole convergence cycle

take 20000 steps, it is understandable that convergence performance degrades

when reward updates happen rarer then 1000 steps. This reflects only 20 updates

during the whole convergence and evidently is not enough to keep up the feedback

of exploring the problem and keeping up with improvement of policy.

3.6.3 Extended "Tiger Problem"

In the last experiment, the difficulty of the RL problem was expanded. As men-

tioned earlier, the corridors of the tiger problem can be extended to require RL

algorithm to bridge bigger temporal gaps. The first extension was the delay be-

tween crucial observation and deciding action. The second was the delay between

deciding action and reward signal. The Feed-Up algorithm should be able to solve

the first extension but it was incapable of solving the second extension since it

did not try to anticipate rewards in future time steps. Additionally, a second class

of algorithm was tested wherein the estimation of network node value was not
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Development of training performance on tiger problem

5%
10%
25%
50%
100%

Figure 3.16: Convergence of network performance on the simple Tiger Problem
with forestalled reward updates to higher levels. Average over 20 runs

based on rewards encoded in weights, but rather was purely based on temporal-

difference calculations derived from nodes activation and reward signal. In this

experiment, three scenarios of RL problem map were tested. For each problem

map the same network configuration was used as in previous experiments; the

only difference being the source of network node values calculation. Node val-

ues here were calculated either based on the previous Feed-Up (FU) algorithm

or based on Temporally-difference Learning (TL). Results of the experiment are

shown in Figure 3.17.

For the simplest problem map (1+1 Grid) the FU algorithm shows slightly better

performance than the TL algorithm. For the problem where memory retention

between the crucial observation and action was extended (2+1 Grid) both algo-

rithms still solve the problem, but the TL algorithm had a significant advantages.

When memory retention was extended between the crucial action and reward (1+2

Grid) the FU algorithm fell back to a suboptimal solution which was twice as long

(16 steps), matching the performance of a algorithm ignoring initial observation.

Conversely, the TL algorithm could still solve the delayed reward problem (1+2
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Grid) showing slightly worse than average performance at the extended decision

problem (1+2 Grid).

The results show that both algorithms produce node value estimates that can

produce algorithm convergence and lead to finding solutions to RL problems. The

TL algorithm, although simpler computationally, can outperform the FU algorithm

in the presented extended problems. The experiments expose the shortcomings

of current implementation of the FU algorithm leaving open the possibility of

implementation of more detailed search for future rewards in network nodes. It

also leaves speculation as to how such algorithms would behave and interact

in multilayer architecture, and whether there is a possibility of combining value

estimates from both methods for complementary benefits.

Figure 3.17: Convergence of network performance on different tiger problems and
node value estimation mechanisms. Average and standard deviation over 100
runs
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3.6.4 Conclusions

The presented combination of unsupervised model learning in a closed loop with

RL algorithms can solve the most basic POMDP toy problems. In such a system

the network takes an active role in developing the understanding of the problem

dynamics. This feature allows for usage of such a networks in solving simple RL

problems.
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Chapter 4

Discussion and Further Work

This work only scratches the surface of developing a new neural network algo-

rithm. Although the ability to encode different classes of signals was shown, the

applicability to real world problems and in-depth comparison to other competing

architectures was far from established. From this point multiple directions of

development are possible.

One could aim to improve theoretical understanding of such a networks, which

would involve deep exploration into all network’s hyper-parameters and how

they influence convergence speed, memory capacity, resistance to noise etc. For

such exploration, a synthetic full defined signal would have to be used. Partial

exploration into these questions has been done here, but in-depth systematic

exploration would be required.

A second direction of development should be to establish each part of the network

as the most suitable for its purpose. The network presented here was constructed

from parts of other network architectures. This allowed for quicker development,

since each part has an established history of performing certain tasks, but at the

same time was not exactly developed for the specific role that it is used for here. If

we take the Self-Organising Map as an example, generic neighbourhood function

and calculations of best matching unit based on Euclidean distance might not give

the best performance. In fact, there might be the possibility of developing some a
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more refined neighbourhood function taking time dimension into consideration, in

order to make more optimal utilisation of node weights. There is even a possibility

of redesigning the whole SOM architecture into a network capable of producing

sparse encoding of signal, similar to HTM (Y. Cui, 2015). By representing the

signal by activating multiple nodes instead of one hot best matching unit, the

network could automatically increase representation capacity. This would involve

redesigning SOM neighbourhood behaviour, allowing a split into few localised

centres. This research for possible alternatives to best matching unit technique

could create sparse encoding allowing a greater possibility of information compres-

sion. The question also arises whether this combination could open the possibility

of multiple best matching units describing segregation and the combination of

signals.

A third direction of development could be a comparison of a scaled-up version

of this network to other established temporal encoding neural networks on real

world dataset classification problems. One example of such a comparison was

presented here, but the estimation of speed of convergence and resources required

by each network were only partial.

A fourth area of development is in the reinforcement learning context. Again,

in RL context the theoretical and practical directions can be taken. The research

presented only used simplified implementations of RL algorithms. Since the

network in fact creates models of interaction with the environment, there is a

possibility of creating an algorithm, that is in effect intelligently searching through

all possible developments of future and calculating confidence, risk and reward for

following certain policies. Since the network is only an observer of the interaction

with the environment, there is a possibility of having multiple networks creating

their models simultaneously. This could allow for the constant development of

better models by young networks, while the converged (old) one would provide

required actions. This type of bootstrapping could even be mixed with some

variation of genetic algorithm to provide initial network weights.

The last and possibly the most exciting area of development is the application of
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the presented network with the RL algorithm to the real world control scenarios.

Since the experiments in this study showed that the network could encode slow

sinusoidal waves in pulse density encoding, a similar encoding could be used to

moderate the position of robot joints in a similar way to the control of biological

muscles. This encoding could be used to control a simple two joint crawling

robot. Since the reward of moving forward would be sparse and experiencing

distant time lag, the presented network here would be ideally suited to that kind

of problem.
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Conclusions

The results presented in this thesis suggest that the novel network architecture can

predict exponentially growing temporal dependencies with only a linear growth

of network depth. Each layer can learn and decode input signal. The temporal

activation circuitry can force time compression, while allowing the reuse of nodes.

Each layer outputs representation which can be used for further compression.

Node weights can be use bidirectionally: decoding the input signal into the output

but also mapping output into possible inputs.

The study has evaluated the network mostly using clean and simple input signals,

in order to clearly test and demonstrate mechanisms of information encoding.

An important step was also to see how the algorithm performs on more complex

and noisier data. The capabilities of this network in exploration of reinforcement

learning techniques, showed the effectiveness of those RL techniques in solv-

ing POMDP toy benchmark problems. After successful performance on simple

problems was proven, experiments with more complex simulated and real world

problems should be carried out.

The experiments show that the novel network is effective sequence encoding

structure that achieves a minimum distance between an input signal and the

winning node connection weights. The experiments also show that they do this

with only a linear growth in complexity for an exponential growth in encoding

power. This network property significantly reduces the cost of encoding and

improves the application potential for a range of temporal problems.
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Contributions

The work presented in this thesis introduced a new unsupervised sequence en-

coding algorithm based on multilayer Self-Organizing maps and local short term

memory. Although the algorithm borrows behaviours from algorithms previously

developed, the work introduces two new crucial elements.

The first one is a wave delay-line, a type of short term memory. This memory is

a simplified physical simulation of propagation of wave in a physical medium.

Thanks to an ability to modify parameters of the medium within big ranges inside

the simulation, the propagation time and therefore the retention time can be easily

manipulated. When the retention time of the memory is increased the temporal

resolution decreases. This enables the network to deal with temporal noise (jitter)

since the timing of the events at higher levels of the network gets partially blurred

by the lower temporal resolution of this memory.

The second novel element is a temporal inhibition circuit. The TIC is an additional

circuit which orchestrates activation and learning of nodes in time but allowing

the nodes to be flexible in their activation depending on the input data. The TIC

by managing activation of nodes, spreads resources of long term memory evenly

within a temporal sequence. Simultaneously by its flexibility in node activation it

solves the problem of temporal misalignment of encoded input sequence.

The last contribution is the development of ways of adopting the presented multi-

layer sequence encoder as a model building mechanism to help with hidden state

identification in the Reinforcement Learning context. This allows the network to

build internal representation of the problem during random exploration. While

simultaneously attaching the value to the temporally-extended traces of action-

states. A network built in this manner was shown to be able to then be decoded

for optimal actions in the temporal context.
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Acronyms

BMU Best matching unit. 35

HSOM Hierarchical self-organising map. 28

HTM Hierarchical temporal memory. 23

MDP Markov decision process. 28

PBVI Point based value iteration. 18

POMDP Partially observable Markov decision process. 17

RL Reinforcement Learning. 17

RNN Recurrent Neural Network. 22

SOM Self-organising map. 26

TIC Temporal inhibition circuit. 41
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Appendix A

Short-term wave delay line memory code

Below is the implementation of the code performing short-term wave delay line

memory functions:

1 classdef LIN_MEM < handle

2 properties

3 x;

4 xdot;

5 dt;

6 k;

7 d;

8 end

9

10 methods

11 function obj = LIN_MEM(size ,timeHorizonVal ,retentionTimeVal)

12 obj.x = zeros(size ,timeHorizonVal);

13 obj.xdot = zeros(size ,timeHorizonVal);

14 obj.k = 1.0;

15 obj.dt = 0.1/ retentionTimeVal;

16 obj.d = 0.14;

17 end

18

19 function step(obj ,dim)

20

21 if dim ~=0

22 obj.x(dim)=1;
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23 end

24

25 for i=1:10

26 dif = obj.x(:,1:end -1)-obj.x(:,2:end);

27 f = [zeros(size(dif ,1) ,1),dif]+[-dif ,zeros(size(dif

,1) ,1)];

28

29 obj.xdot (:,:) = obj.xdot (:,:)+(obj.dt*obj.k*f);

30 obj.xdot(:,end) = (1-obj.d)*obj.xdot(:,end);

31 obj.x(:,:) = obj.x(:,:)+obj.dt*obj.xdot (:,:);

32 obj.x(obj.x(:) <0)=0.0;

33 end

34 end

35 end

36 end
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Appendix B

Self-organising map code

Below is the implementation of the code performing self-organising map functions:

1 classdef SOM < handle

2 properties

3 inputSize;

4 latticeSize;

5 mapWeights;

6 % BMU;

7 TBMU;

8 dW;

9 end

10 methods

11 function obj = SOM(laticeSizeVal ,inputSizeVal)

12 obj.inputSize = inputSizeVal;

13 obj.latticeSize = laticeSizeVal;

14 obj.mapWeights= 0.1* rand(obj.latticeSize (1),obj.

latticeSize (2),obj.inputSize);

15 obj.TBMU = zeros (4,1);

16 obj.dW = 0;

17 end

18

19 function findBMUEucliMis(obj ,input)

20 weights = reshape(obj.mapWeights ,[],obj.inputSize);

21 euclideanDistance = ( ones(size(weights ,1) ,1)*input (:)

' - weights ).^2;
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22 euclideanDistance(isnan(euclideanDistance)) = 0;

23 euclideanDistance = sum(euclideanDistance ,2);

24 %dotProduct = (reshape(obj.mapWeights ,[],obj.

inputSize)*input (:))./L(:);

25

26 [obj.TBMU (4),obj.TBMU (3)] = min(euclideanDistance (:)

);

27 [obj.TBMU (1),obj.TBMU (2)] = ind2sub(obj.latticeSize ,

obj.TBMU (3));

28

29 end

30

31 %adjust weights of map according to Gausian neighborhood

function

32 function adjWeightsN(obj ,BMU ,input ,varience ,learningRate)

33

34 %find distance to BMU

35 ColInd = 1:obj.latticeSize (1);

36 RowInd = 1:obj.latticeSize (2);

37 ColInd = (ColInd -BMU(1)).^2;

38 RowInd = (RowInd -BMU(2)).^2;

39 Distance = ((ColInd '*ones(1,obj.latticeSize (2)))+(ones(

obj.latticeSize (1) ,1)*RowInd));

40

41 %reshape map weghts to 2D

42 w = reshape(obj.mapWeights ,[],obj.inputSize);

43 %apply neighborhood function Gaussian

44 l = learningRate*exp((-1* Distance (:))/(2* varience ^2));

45 %finde the weights change

46 dw = ( diag(l) * ( ones(size(w,1) ,1)*(input (:)' ) - w

) );

47 %addjust weights

48 w = w + dw;

49 %reshape mapWeight back to 3D

50 obj.mapWeights = reshape(w,obj.latticeSize (1),obj.

latticeSize (2) ,[]);

51 %remmember change in weights
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52 obj.dW = sum(sum(abs(dw)));

53 end

54

55 end

56 end
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Appendix C

Single layer code

Below is the implementation of the code performing single layer network functions,

joining short-term memory, self-organising map and temporal inhibition circuit.

The "LEYER2" class is design to work with the new wave-delay line memory while

the simpler "LEYER" class incorporates simple tape delay line memory:

1 classdef LEYER2 < handle

2 properties

3 SOMleyer;

4 leyerOS;

5 inputSize;

6 timeHorizon;

7 inputMap;

8 BMUMap;

9 inhib;

10 lastBMUMap;

11 mem;

12 retention;

13 treshold;

14 end

15

16 methods

17 function obj = LEYER2(mapSizeVal ,inputSizeVal ,

timeHorizonVal ,retentionVal ,tresholdVal)

18 obj.inputSize = inputSizeVal;
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19 obj.timeHorizon=timeHorizonVal;

20 obj.retention = retentionVal;

21 % obj.inputMap = zeros(obj.inputSize ,obj.timeHorizon *3);

22

23 obj.SOMleyer = SOM(mapSizeVal ,obj.inputSize*obj.

timeHorizon);

24 % obj.BMUMap = zeros(4,obj.timeHorizon +1);

25 obj.leyerOS = mapSizeVal (1)*mapSizeVal (2);

26

27 obj.BMUMap = zeros (4,1);

28 obj.inhib = +inf;

29 obj.lastBMUMap = ones(mapSizeVal);

30

31 obj.mem = LIN_MEM(obj.inputSize ,timeHorizonVal ,obj.

retention);

32 obj.treshold = tresholdVal;

33 end

34

35 function processInput(obj ,inputBMU ,n,l)

36

37 % obj.inputMap (:,1:obj.timeHorizon *3-1) = obj.inputMap

(:,2:obj.timeHorizon *3);

38 % obj.inputMap(:,obj.timeHorizon *3) = zeros(obj.

inputSize ,1);

39 % obj.inputMap(:,obj.timeHorizon *2) = zeros(obj.

inputSize ,1);

40 % if inputBMU ~= 0

41 % obj.inputMap(inputBMU ,obj.timeHorizon *2) = 1.0;

42 % end

43

44 if inputBMU ~= 0

45 obj.mem.step(inputBMU);

46 else

47 obj.mem.step (0);

48 end

49

50 Input = obj.mem.x;

114



51 obj.SOMleyer.findBMUEucliMis(Input);

52

53 %update nenory of TBMU

54 obj.BMUMap (:,1) = obj.SOMleyer.TBMU;

55

56 %check whether node should be selected

57 if (obj.BMUMap (4,1) > obj.treshold || obj.lastBMUMap(

obj.BMUMap (3,1)) < obj.timeHorizon*obj.retention) && obj.inhib <

obj.timeHorizon*obj.retention

58 %if obj.BMUMap(4,obj.timeHorizon +1) > 0.1 && obj.inhib

+1 < obj.timeHorizon

59 obj.BMUMap (:,1) = zeros (4,1); %clean last BMU

60 obj.inhib = obj.inhib + 1;

61 obj.lastBMUMap (:) = obj.lastBMUMap (:) +1;

62 else

63 obj.inhib = 1;

64 obj.lastBMUMap(obj.BMUMap (3,1)) = 1;

65 end

66

67 if l>0 && n>0

68 if obj.BMUMap (3,1) ~= 0 %check whether there was

BMU activation

69 Input = obj.mem.x;

70 %Input = obj.inputMap (:,1:obj.timeHorizon *2);

71 obj.SOMleyer.adjWeightsN(obj.BMUMap (:,1),Input

,n,l);

72 end

73 end

74

75

76 end

77 end

78 end

1 classdef LEYER < handle

2 properties

3 SOMleyer;
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4 leyerOS;

5 inputSize;

6 timeHorizon;

7 inputMap;

8 BMUMap;

9 inhib;

10 lastBMUMap;

11 end

12

13 methods

14 function obj = LEYER(mapSizeVal ,inputSizeVal ,timeHorizonVal

)

15 obj.inputSize = inputSizeVal;

16 obj.timeHorizon=timeHorizonVal;

17

18 obj.inputMap = zeros(obj.inputSize ,obj.timeHorizon *3);

19 obj.SOMleyer = SOM(mapSizeVal ,obj.inputSize*obj.

timeHorizon *2);

20 obj.BMUMap = zeros(4,obj.timeHorizon +1);

21 obj.leyerOS = mapSizeVal (1)*mapSizeVal (2);

22 obj.inhib = +inf;

23 obj.lastBMUMap = ones(mapSizeVal);

24 end

25

26 function processInput(obj ,inputBMU ,n,l)

27 obj.inputMap (:,1:obj.timeHorizon *3-1) = obj.inputMap

(:,2:obj.timeHorizon *3);

28 obj.inputMap(:,obj.timeHorizon *3) = zeros(obj.inputSize

,1);

29 obj.inputMap(:,obj.timeHorizon *2) = zeros(obj.inputSize

,1);

30 if inputBMU ~= 0

31 obj.inputMap(inputBMU ,obj.timeHorizon *2) = 1.0;

32 end

33

34 %find best matching node in som using missing data

35 misInput = obj.inputMap(:,obj.timeHorizon +1:obj.
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timeHorizon *3);

36 misInput(:,obj.timeHorizon +1:obj.timeHorizon *2) = NaN(

obj.inputSize ,obj.timeHorizon);

37 obj.SOMleyer.findBMUEucliMis(misInput);

38

39 %update nenory of TBMU

40 obj.BMUMap (:,1:obj.timeHorizon) = obj.BMUMap (:,2:obj.

timeHorizon +1);

41 obj.BMUMap(:,obj.timeHorizon +1) = obj.SOMleyer.TBMU;

42

43

44 %check whether node should be selected

45 if (obj.BMUMap(4,obj.timeHorizon +1) > 0.5 || obj.

lastBMUMap(obj.BMUMap(3,obj.timeHorizon +1)) < obj.timeHorizon)

&& obj.inhib < obj.timeHorizon

46 %if obj.BMUMap(4,obj.timeHorizon +1) > 0.1 && obj.inhib

+1 < obj.timeHorizon

47 obj.BMUMap(:,obj.timeHorizon +1) = zeros (4,1); %

clean last BMU

48 obj.inhib = obj.inhib + 1;

49 obj.lastBMUMap (:) = obj.lastBMUMap (:) +1;

50 else

51 obj.inhib = 1;

52 obj.lastBMUMap(obj.BMUMap(3,obj.timeHorizon +1)) =

1;

53 end

54

55 %if new node was selected do a input prediction

56 if obj.BMUMap(3,obj.timeHorizon +1) ~= 0 %check whether

there was BMU activation

57 w = obj.SOMleyer.mapWeights(obj.BMUMap(1,obj.

timeHorizon +1),obj.BMUMap(2,obj.timeHorizon +1) ,:);

58 w = reshape(w,obj.inputSize ,[]);

59 obj.inputMap(:,obj.timeHorizon *2+1: end) = w(:,obj.

timeHorizon +1: end);

60 end

61

117



62 %learn full representation for node activated

timeHorizon ago

63 if l>0 && n>0

64 if obj.BMUMap (3,1) ~= 0 %check whether there was

BMU activation

65 Input = obj.inputMap (:,1:obj.timeHorizon *2);

66 obj.SOMleyer.adjWeightsN(obj.BMUMap (:,1),Input ,

n,l);

67 end

68 end

69

70 end

71 end

72 end
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Appendix D

Single convergence activation test code

Below is the implementation of the code performing single convergence activation

test from experiment 3.3:

1 N = 5000;

2

3 F = 1/50;

4 qe = 0;

5 g = 1;

6 code = zeros(1,N);

7 inputval = zeros(1,N);

8

9 output0 = zeros(2,N,3);

10 output1 = zeros(9,N);

11 output2 = zeros(9,N);

12 output3 = zeros(4,N);

13 output4 = zeros(4,N);

14 outputN = zeros(4,N);

15 outputED = -1*ones(4,N);

16

17 dwOutput = zeros(4,N);

18 lOutput = zeros(4,N);

19

20 pos = zeros(2,N);

21

22 %leyer1;
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23

24 MapSize = [3,3];

25 leyer1 = LEYER(MapSize ,2,4);

26 MapSize = [3,3];

27 leyer2 = LEYER2(MapSize ,leyer1.leyerOS ,8 ,1 ,0.35);

28 %

29 MapSize = [2,2];

30 leyer3 = LEYER2(MapSize ,leyer2.leyerOS ,8 ,2,0.5);

31

32

33 for n=2:N

34

35

36

37 %first order delta -sigma modulator

38 inputval(n) = g*sin(n*F*2*pi);%+0.001* randn (1);

39 if inputval(n)>=qe

40 code(n) = 1;

41 else

42 code(n) = -1;

43 end

44 qe = code(n)-inputval(n)+qe;

45

46 input = (code(n) >0)+1;

47 %input = randi ([1 2]);

48 %-------------------------leyer1 ----------------------------

49

50 output0(input ,n,1) = 1;

51

52 %first leyer part%

53 LearnRate = exp( -5.0*n/(N));

54

55

56 leyer1.processInput(input ,0.8* LearnRate ,0.5* LearnRate);

57 dwOutput(1,n) = leyer1.SOMleyer.dW;

58 lOutput(1,n) = 0.5* LearnRate;

59 if leyer1.BMUMap(3,leyer1.timeHorizon +1) ~= 0
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60 output1(leyer1.BMUMap(3,leyer1.timeHorizon +1),n) = 1;

61 outputN(1,n) = leyer1.BMUMap(3,leyer1.timeHorizon +1);

62 outputED(1,n) = leyer1.BMUMap(4,leyer1.timeHorizon +1);

63 %conn = leyer1.BMUMap(3,leyer1.timeHorizon +1);

64 end

65

66 %second leyer

67 LearnRate = exp ( -4.0*(n)/(N));

68

69

70 leyer2.processInput(leyer1.BMUMap(3,leyer1.timeHorizon +1)

,0.8* LearnRate ,0.5* LearnRate);

71 dwOutput(2,n) = leyer2.SOMleyer.dW;

72 lOutput(2,n) = 0.5* LearnRate;

73 if leyer2.BMUMap (3,1) ~= 0

74 output2(leyer2.BMUMap (3,1),n) = 1;

75 outputN(2,n) = leyer2.BMUMap (3,1);

76 outputED(2,n) = leyer2.BMUMap (4,1);

77 end

78

79 %third leyer

80 LearnRate = exp ( -3.0*(n)/(N));

81

82 leyer3.processInput(leyer2.BMUMap (3,1) ,0.8* LearnRate ,0.5*

LearnRate);

83 dwOutput(3,n) = leyer3.SOMleyer.dW;

84 lOutput(3,n) = 0.5* LearnRate;

85 if leyer3.BMUMap (3,1) ~= 0

86 output3(leyer3.BMUMap (3,1),n) = 1;

87 outputN(3,n) = leyer3.BMUMap (3,1);

88 outputED(3,n) = leyer3.BMUMap (4,1);

89 end

90

91

92 if mod (100*n/N,1)==0

93 fprintf('progress = %0.0f%%\n' ,100*n/N);

94 end
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95

96 end

97

98 close all

99 plotSpikes

100

101 figure;

102 plotWeights(leyer1);

103 figure;

104 plotWeights(leyer2);

105 figure;

106 plotWeights(leyer3);
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Appendix E

Encoding for classification code

Below is the implementation of the code performing training and testing for

classification from experiment 3.5:

1 testMod = false;

2

3 if testMod == 1

4 NN = 10000;

5 load('test.mat');

6 test (: ,785) = test (: ,785) +1;

7 else

8 NN = 60000;

9 load('train.mat');

10 train (: ,785) = train (: ,785) +1;

11 end

12

13 N=784* NN;

14

15

16 if testMod == 0

17 readSeq = randperm (60000);

18 else

19 readSeq = randperm (10000);

20 end

21

22 insize = 392;
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23

24 %initialize layers

25 if testMod ==0

26 layer1 = SOM ([1 ,2] ,1);

27 layer2 = LEYER ([3,3],2,4);

28 layer3 = LEYER2 ([3,3], layer2.leyerOS ,8 ,1 ,0.35);

29 layerEnd = SOM ([15,15], layer3.leyerOS*insize +10);

30 end

31

32 mem = LIN_MEMF(layer3.leyerOS ,insize ,784/ insize);

33

34 output = zeros(NN ,2);

35 output1 = zeros(N,2);

36 output2 = zeros(N,layer2.leyerOS);

37 output3 = zeros(N,layer3.leyerOS);

38

39 InputScale = 20;

40

41 for n = 1:N

42

43 %select new digit for trining

44 if mod(n ,784) ==1

45 digit = readSeq(floor(n/784) +1);

46 end

47

48 %first layer quantization of pixel intensity

49 if testMod ==1

50 layer1.findBMUEucliMisFull(test(digit ,mod(n-1 ,784) +1));

51 else

52 LearnRate = exp(-3*n/(N));

53 layer1.findBMUEucliMisFull(train(digit ,mod(n-1 ,784) +1));

54 layer1.adjWeightsN(layer1.TBMU (1:2),train(digit ,mod(n

-1 ,784) +1) ,1.0* LearnRate ,.1* LearnRate);

55 end

56

57 output1(n,layer1.TBMU (3)) = 1;

58
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59 %second layer

60 LearnRate = exp(-2*n/(N));

61 if testMod ==1

62 LearnRate = 0;

63 end

64 layer2.processInput(output1(n,:) ,0.5* LearnRate ,.1* LearnRate);

65

66 if layer2.BMUMap(3,layer2.timeHorizon +1) ~= 0

67 output2(n,layer2.BMUMap(3,layer2.timeHorizon +1)) = 1;

68 end

69

70 %third layer

71 LearnRate = exp(-1*n/(N));

72 if testMod ==1

73 LearnRate = 0;

74 end

75 layer3.processInput(layer2.BMUMap(3,layer2.timeHorizon +1) ,0.5*

LearnRate ,.1* LearnRate);

76

77 if layer3.BMUMap (3,1) ~= 0

78 output3(n,layer3.BMUMap (3,1)) = 1;

79 end

80

81 %add third layer autput to clasification SOM memory

82 mem.step(layer3.BMUMap (3,1));

83

84 %run clasification on the end of the sequence

85 if mod(n-1 ,784)+1 == 784

86

87 %prediction

88 ED = layerEnd.findBMUEucliMisFull ([mem.x(:);NaN (10 ,1)]);

89

90 %consider only nodes with strongly defined class (>.75)

91 [v,~] = max(layerEnd.mapWeights (:,:,end -9:end) ,[],3);

92 v = 1*(v >0.75* InputScale);

93 v(v==0) = +inf;

94 ED = v(:).*ED;
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95

96 %find class of clossest node

97 [~,layerEnd.TBMU (3)] = min(ED);

98 [layerEnd.TBMU (1),layerEnd.TBMU (2)] = ind2sub(layerEnd.

latticeSize ,layerEnd.TBMU (3));

99 [~,predDig] = max(layerEnd.mapWeights(layerEnd.TBMU (1),

layerEnd.TBMU (2),end -9:end));

100

101 %save predicted and real pattern class

102 if testMod == 1

103 output(floor(n/784) ,:) = [predDig ,test(digit ,785)];

104 else

105 output(floor(n/784) ,:) = [predDig ,train(digit ,785)];

106 end

107

108 %learning

109 if testMod == 0

110 input = zeros (10,1);

111 input(train(digit ,785)) = InputScale;

112

113 LearnRate = exp(-1*n/(N));

114 layerEnd.findBMUEucliMisFull ([mem.x(:);input]);

115 layerEnd.adjWeightsN(layerEnd.TBMU (1:2) ,[mem.x(:);input

],1.2,.1* LearnRate);

116 end

117

118 mem.clean;

119 end

120

121

122 if mod (100*n/N,1)==0

123 fprintf('progress = %0.0f%%\n' ,100*n/N);

124

125 for i =1:10

126 subplot (1,10,i);

127 drawMap(layerEnd.mapWeights (:,:,end -10+i)/(.75*

InputScale));
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128 end

129

130 end

131

132 end

133

134 %plot prediction stats

135 nbins = 100;

136 stats = zeros(1,nbins);

137 for i=1: nbins

138 bin = NN/nbins;

139 stats(i) = sum(output ((i-1)*bin +1:i*bin ,1)== output ((i-1)*bin +1:i*

bin ,2))/bin;

140 end

141 figure;

142 plot(stats);

143 ylim ([0 1]);

144

145 %plot map classes in color

146 [v,cmap] = max(layerEnd.mapWeights (:,:,end -9:end) ,[],3);

147 colors = [(0.5+0.5* sin ((.15* pi *(0:9))+(2/3*(2* pi))));

148 (0.5+0.5* sin ((.15* pi *(0:9))+(1/3*(2* pi))));

149 (0.5+0.5* sin ((.15* pi *(0:9))+(0/3*(2* pi))))];

150 gray = zeros (29* layerEnd.latticeSize (1) +1 ,29* layerEnd.latticeSize

(1)+1,3);

151 for i=1: layerEnd.latticeSize (1)

152 for j=1: layerEnd.latticeSize (2)

153 %d = reshape(layerEnd.mapWeights(i,j ,1:784) ,28,[]) ';

154 %d = reshape(d,[],1);

155 d = ones (784 ,1);

156 d = d*(v(i,j) >.75* InputScale);

157 d = squeeze(d)*colors(:,cmap(i,j))';

158 d = reshape(d,28 ,28 ,[]);

159 gray (29*(i-1) +2:29*i,29*(j-1) +2:29*j,:) = d;

160 %gray (29*(i-1) +2:29*i ,29*(j-1) +2:29*j) = reshape(layerEnd.

mapWeights(i,j,:) ,28,[]) ';
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161 %subplot( layerEnd.latticeSize (1),layerEnd.latticeSize (1) ,(

i-1)* layerEnd.latticeSize (1)+j)

162 %drawMap(

163 end

164 end

165 figure;

166 imshow(gray ,'InitialMagnification ','fit');
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