
University of Plymouth

PEARL https://pearl.plymouth.ac.uk

Faculty of Arts and Humanities School of Society and Culture

2023-02-13

Generative Music with Partitioned

Quantum Cellular Automata

Miranda, Eduardo

http://hdl.handle.net/10026.1/20513

10.3390/app13042401

Applied Sciences

MDPI

All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with

publisher policies. Please cite only the published version using the details provided on the item record or

document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content

should be sought from the publisher or author.

Citation: Miranda, E.R.; Shaji, H.

Generative Music with Partitioned

Quantum Cellular Automata. Appl.

Sci. 2023, 13, 2401. https://doi.org/

10.3390/app13042401

Academic Editor: Rocco Zaccagnino

Received: 3 January 2023

Revised: 31 January 2023

Accepted: 3 February 2023

Published: 13 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Generative Music with Partitioned Quantum Cellular Automata
Eduardo Reck Miranda 1,2,* and Hari Shaji 1

1 Interdisciplinary Centre for Computer Music Research (ICCMR), University of Plymouth,
Plymouth PL4 8AA, UK

2 Quantinuum, Partnership House, Carlisle Place, London SW1P 1BX, UK
* Correspondence: eduardo.miranda@plymouth.ac.uk

Abstract: Cellular automata (CA) are abstract computational models of dynamic systems that change
some features with space and time. Music is the art of organising sounds in space and time, and
it can be modelled as a dynamic system. Hence, CA are of interest to composers working with
generative music. The art of generating music with CA hinges on the design of algorithms to evolve
patterns of data and methods to render those patterns into musical forms. This paper introduces
methods for creating original music using partitioned quantum cellular automata (PQCA). PQCA
consist of an approach to implementing CA on quantum computers. Quantum computers leverage
properties of quantum mechanics to perform computations differently from classical computers, with
alleged advantages. The paper begins with some explanations of background concepts, including CA,
quantum computing, and PQCA. Then, it details the PQCA systems that we have been developing
to generate music and discusses practical examples. PQCA-generated materials for Qubism, a
professional piece of music composed for London Sinfonietta, are included. The PQCA systems
presented here were run on real quantum computers rather than simulations thereof. The rationale
for doing so is also discussed.

Keywords: quantum computing applications; partitioned quantum cellular automata; cellular au-
tomata music; quantum computer music; generative music

1. Introduction

In this paper, we report on our research into harnessing quantum computing for
creating original music.

The great majority of research in artificial intelligence (AI) for musical composition
has been focused on developing systems for imitating the style of existing music [1]. For
instance, ref. [2] introduced a system that analysed given pieces of music and recombined
the identified musical elements into new pieces, which sounded like the originals. This
system used a recombination algorithm informed by augmented transition networks (ATN).
These were originally developed for linguistics to analyse the structure of sentences [3].
More recently, ref. [4] introduced a system based on deep learning neural networks [5]
to compose tunes imitating the ones used for training the network. An overview of deep
learning models for music composition is available in [6].

Indeed, state-of-the-art AI is capable of generating convincing musical compositions [1,7].
However, the work reported here is not aimed at systems to imitate existing repertoires.
We are interested in developing AI technology to support the creation of innovative music
instead. Examples of previous work in this vein are sparse. A notable system, Fractal Mu-
sic [8], generates music from fractals [9]. Moreover, [10] introduced CAMUS, a system that
generated music using cellular automata (CA) [11]. This system inspired the development
of the systems reported in the present paper.

Quantum computing is an emergent technology, which is advancing rapidly. It
promises a number of advantages for certain computational tasks, which current digital
processors struggle to realize. For instance, the simulation of molecules for drug discovery

Appl. Sci. 2023, 13, 2401. https://doi.org/10.3390/app13042401 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13042401
https://doi.org/10.3390/app13042401
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-8306-9585
https://orcid.org/0000-0002-1713-2099
https://doi.org/10.3390/app13042401
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13042401?type=check_update&version=2

Appl. Sci. 2023, 13, 2401 2 of 21

and development is computationally very demanding, even for current supercomputers.
Quantum computing brings new approaches to optimise this, which will enable drugs to
be developed faster and more effectively [12].

For music, quantum computers will bring considerable processing speed and capacity
to handle increased quantities of data simultaneously. This is bound to impact future
music recommendation systems [13]. Furthermore, and perhaps more significantly, this
new technology is bound to foster new approaches to making music, which would be
unlikely otherwise. For instance, whereas ref. [14] developed a quantum computing music
sampler called QuiKo, ref. [15] developed the concept of a Qeyboard, a quantum musical
instrument. Moreover, [16] developed Quantum Music Playground, an educational tool for
learning quantum computing concepts through music. This paper introduces a system for
composing music using partitioned quantum cellular automata (PQCA) [17]. It follows
from preliminary work introduced in [18].

Music is the art of organising sounds in space and time [19,20]. CA are abstract
computational models of systems that change some features with space and time [11].
Pragmatically, CA models are useful because they generate patterns of data that can be
translated into music [21–23]. Quantum versions of CA have been developed to simulate
quantum mechanical phenomena; e.g., quantum lattice gases [24], hence our rationale for
exploring PQCA to generate music.

We begin with a brief explanation of quantum computing, CA and quantum CA. Then,
we present the new PQCA models that we developed for musical composition and show
practical examples produced for a musical composition entitled Qubism We end the paper
with concluding remarks and directions for further development.

2. Background
2.1. Cellular Automata (CA)

CA are discrete dynamical systems often described as counterparts to partial differen-
tial equations, which are suitable for modelling continuous dynamical systems. CA have
been used to model phenomena in a variety of fields, including image processing [25],
ecology [26], biology [27], sociology [28] and vocal production [29].

Stanislaw Ulam and John von Neumann conceived the notion of CA in the 1960s [30].
They were looking into developing self-reproducing machines. They built a model consist-
ing of a grid of cells. Each cell could assume several values representing the components
from which they built an abstract self-reproducing machine. Completely controlled by a
set of simple rules, the machine was able to make identical copies of itself at other locations
on the grid.

In practice, a CA model is often implemented as an arrangement of identical cells that
influence one another. This arrangement usually forms either a one-dimensional bar or a
two-dimensional grid of cells, respectively. However, in theory, there could be any number
of dimensions. An algorithm expressing transition rules operates on all cells simultaneously
to alter their values. The transition rules take into account the values of cells that are next
to or surrounding each cell.

The number of possible values for the cells might simply be the two numbers one
and zero (e.g., representing on and off switches), but it can be any amount. Cell values
can represent objects, properties or processes, depending on what is being modelled. For
instance, if each cell stands for a portion of a landscape, then a certain value might represent
the type of vegetation that is growing in the area.

The functioning of a CA-based system is normally monitored on a computer screen as a
sequence of changing patterns, following the tick of a virtual clock, like in an animated film.

Figure 1 shows an example consisting of a bar of cells, each of which can have the
value either zero or one, represented by the colours white or black, respectively. From a
given overall initial configuration of values, all cells change simultaneously at each tick t of
the virtual clock.

Appl. Sci. 2023, 13, 2401 3 of 21

Figure 1. An example of a one-dimensional CA consisting of a bar of 13 cells.

An example of two-dimensional CA, known as Conway’s Game of Life [31], is shown in
Figure 2. The system CAMUS, mentioned earlier, uses Game of Life to generate music [10].

Figure 2. An example of a two-dimensional CA consisting of a grid of 36 cells.

2.2. Quantum Computing

The basic unit for representing information in a quantum computer is the qubit. A
qubit is to a quantum computer what a bit is to a digital computer. However, qubits
operate at the atomic or even subatomic level. Therefore, they are subject to the laws of
quantum mechanics, with their properties of superposition and entanglement. In quantum
mechanics, an object does not exist in a determined state. Its state is unknown until one
observes it.

The state of a qubit lives in a two-dimensional complex vector space, referred to as a
two-dimensional Hilbert space. The canonical basis vectors in a Hilbert space are notated
as |0〉 and |1〉. This notation, referred to as the Dirac notation, provides an abbreviated way
to represent a vector. For instance, |0〉 and |1〉 represent the vectors shown in Equation (1):

|0〉 =
[

1
0

]
and |1〉 =

[
0
1

]
(1)

The general state |ψ〉 of a qubit is written as a linear combination of the basis vectors
as follows: |ψ〉 = α |0〉+ β |1〉 with α, β ∈ C and |α|2 + |β|2 = 1. This linear combination
expresses a state of superposition.

In a nutshell, qubits process information in a state of superposition. However, they
will return binary numbers (zeros and ones) when we read them. In quantum computing
terminology, the act of reading qubits is referred to as projective measurement.

Not expressed in the equation for |ψ〉 above, however, is the phase of the qubit. To
visualize this, let us consider a single qubit as a transparent sphere with opposite poles.
From its centre, the vector |ψ〉 can point to anywhere on the surface. This sphere is called
the Bloch sphere and the vector is referred to as a state vector (Figure 3). The angle ϕ defines
the phase.

Appl. Sci. 2023, 13, 2401 4 of 21

Figure 3. A Bloch sphere representing a single qubit. Source: Smite-Meister, https://commons.
wikimedia.org/w/index.php?curid=5829358 (accessed on 2 January 2023).

Quantum computers are programmed by applying sequences of unitary linear opera-
tions U to state vectors: |ψ′〉 = U |ψ〉. Programming languages for quantum computing
provide a number of such linear operators, referred to as gates. For instance, the X gate
rotates the state vector by 180 degrees around the x-axis of the Bloch sphere. Thus, if the
qubit vector is pointing to |0〉, then this gate flips it to |1〉: |1〉 = X |0〉, and vice versa,
|0〉 = X |1〉.

A parametric rotation Rx(θ) gate is typically available for quantum programming,
where the angle for the rotation around the x-axis is specified. Similarly, there are Rz(ϕ)
and Ry(θ) gates for rotations on the z-axis and y-axis of the Bloch sphere.

Mathematically, quantum gates are represented as matrices. For instance, the X gate,
which flips the state of a qubit is represented as shown in Equation (2). In this case, gate
operation is represented mathematically as the multiplication of a matrix (gate) by a vector
(qubit state).

X =

[
0 1
1 0

]
(2)

Thus, the application of an X gate to |0〉 is written as shown in Equation (3):

X(|0〉) =
[

0 1
1 0

]
×
[

1
0

]
=

[
0
1

]
= |1〉 (3)

An important gate for quantum computing is the Hadamard gate, referred to as the H
gate. It has the matrix shown in Equation (4).

H =

1√
2

1√
2

1√
2
− 1√

2

 =
1√
2

[
1 1
1 −1

]
(4)

The application of the H gate to a qubit pointing to |0〉 puts it in superposition, right
at the equator of the Bloch sphere. That is, it puts the qubit into a balanced superposition
state consisting of an equal-weighted combination of two opposing states, where |α|2 = 0.5
and |β|2 = 0.5. This is depicted in Equation (5):

H(|0〉) = 1√
2
(|0〉+ |1〉) (5)

Gates can also operate on multiple qubits. For instance, the controlled X gate (also
known as CX or CNOT gate) puts two qubits in entanglement. The CX gate applies an

https://commons.wikimedia.org/w/index.php?curid=5829358
https://commons.wikimedia.org/w/index.php?curid=5829358

Appl. Sci. 2023, 13, 2401 5 of 21

X gate on a qubit only if the state of another qubit is |1〉. Thus, this gate establishes a
dependency (or a correlation) of the state of one qubit with the value of another (Figure 4).

In practice, any quantum gate can be made conditional, and entanglement can take
place between more than two qubits.

|0〉

|0〉

q0

q1

Figure 4. Circuit representation of the CX gate. In this case, q1 will be flipped only if q0 is |1〉.

Quantum processing with multiple qubits is represented using tensored vectors. A
tensored vector is the result of the tensor product (represented by the symbol

⊗
) of two or

more vectors. A system of two qubits looks like |0〉 ⊗ |0〉, but it is normally abbreviated to
|00〉. It is useful to study the expanded form of the tensor product to follow how it works.
For instance, see Equation (6).

|01〉 = |0〉 ⊗ |1〉 =
[

1
0

]
⊗
[

0
1

]
=

1 × 0
1 × 1
0 × 0
0 × 1

 =

0
1
0
0

 (6)

Furthermore, let us consider two qubits |q1〉 and |q0〉 with state vectors |Ψ〉 and |Φ〉,
respectively. These are shown in Equation (7). Moreover, Equation (8) describes a system
with two qubits |q1〉 and |q0〉, combining the state vectors |Ψ〉 and |Φ〉.

|Ψ〉 = α |0〉+ β |1〉 for q0

|Φ〉 = γ |0〉+ δ |1〉 for q1

(7)

|Ψ〉 ⊗ |Φ〉 = αγ |00〉+ αδ |01〉+ βγ |10〉+ βδ |11〉 (8)

In fact, Equation (8) represents a new quantum state with four amplitude coefficients
(Equation (9)). Thus, Equation (10) expresses that each of the four quantum states has an
equal probability of 25% each of being returned.

|Ω〉 = ω0 |00〉+ ω1 |01〉+ ω2 |10〉+ ω3 |11〉 (9)

|Ω〉 = 1
4
|00〉+ 1

4
|01〉+ 1

4
|10〉+ 1

4
|11〉 (10)

Now, it should be straightforward to work out how to describe quantum systems with
more qubits. For instance, Equation (11) depicts a quantum system with four qubits:

|B〉 = β0 |0000〉+ β1 |0001〉+ β2 |0010〉+ β3 |0011〉+
β4 |0100〉+ β5 |0101〉+ β6 |0110〉+ β7 |0111〉+

β8 |1000〉+ β9 |1001〉+ β10 |1010〉+ β11 |1011〉+
β12 |1100〉+ β13 |1101〉+ β14 |1110〉+ β15 |1111〉

(11)

A linear increase in the number of qubits extends the capacity of representing informa-
tion on a quantum computer exponentially [32]. With a quantum system composed of n
qubits, their joint state space is given by the tensor product of their individual state spaces
and has dimension 2n. With qubits in superposition, a quantum computer can consider all
possible values of some input data simultaneously.

Appl. Sci. 2023, 13, 2401 6 of 21

The evolution of many qubits interacting with each other is given by a global expo-
nentially large unitary operator acting on the entire joint exponentially large state space.
The larger this space, the harder for classical computers to process; hence, in principle, the
advantage of quantum computers over digital classical ones.

A quantum program is often depicted as a circuit with sequences of quantum gates
operating on qubits (Figure 5). Typically, the qubits start in the state |0〉. When the qubits
are read, the results can be stored in standard digital memory, which is accessible for
further handling.

|0〉

|0〉

|0〉

|0〉

|0〉

q0

q1

q2

q3 H

q4 H X X X

Figure 5. An example of a quantum circuit showing a sequence of quantum gates, the first of which
are two H gates applied to q3 and q4, followed by a CX gate with q4 as a control to flip the state of q0

and so on.

Quantum algorithms require a different way of thinking from the way one normally
approaches programming. For instance, it is not possible to store quantum states in a
“working memory” (classically) for access later in the algorithm. This is due to the so-called
non-cloning principle of quantum mechanics, which states that it is impossible to create an
independent and identical copy of an arbitrary unknown quantum state. For an in-depth
theoretical introduction to quantum computing, please refer to [32–34].

3. Partitioned Quantum Cellular Automata

Quantum cellular automata (QCA), as its name suggests, are CA for quantum comput-
ers. Actually, they were introduced as an alternative paradigm for quantum computation
and were shown to be universal: QCA can function as a quantum Turing machine. Please,
refer to [35] for a theoretical discussion about QCA and universal computation.

In QCA, the cells are implemented as qubits. However, implementing a QCA with
currently available quantum hardware is not trivial. The difficulty lies in updating all cells,
or qubits, at the same cycle. For instance, if we attempt to implement a quantum version of
any classical CA algorithm, we would need to store a copy of the original state of a qubit to
update the others. However, this is not allowed with a quantum computer because of the
non-cloning principle mentioned earlier [32].

A number of approaches have been proposed to get around the difficulty men-
tioned above [35]. One of them is referred to as partitioned quantum cellular automata
(PQCA) [17,36].

This section introduces the basics of PQCA. For a rigorous theoretical discussion please
refer to [17,36], in particular, to learn more about their nonclassical behaviour. Here, we
focus on the practical aspects of implementing PQCA.

To recapitulate, a CA at a certain time t is characterized by two properties: its current
state and an update step that establishes the values of the cells at time t + 1. Thus, we need
to apply an update circuit to all qubits of the automaton simultaneously at each time step.

In PQCA, we first define one or more partition schemes to split an arrangement of cells
into tessellating supercells. Then, a global update circuit is built from update frames. These
update frames are defined using the partitions and local circuits.

3.1. One-Dimensional PQCA

As an example, consider a one-dimensional PQCA characterised by a bar of twelve
cells. This is depicted in Figure 6.

Appl. Sci. 2023, 13, 2401 7 of 21

Figure 6. A bar of twelve cells.

Figure 7 shows two examples of partition schemes. At the top is a partition consisting
of six supercells, two cells long each. Let us notate this as follows:

{[1, 2], [3, 4], [5, 6], [7, 8], [9, 10], [11, 12]} (12)

At the bottom is a shifted version of the partition:

{[2, 3], [4, 5], [6, 7], [8, 9], [10, 11], [12, 1]} (13)

Figure 7. At the top is a bar of twelve cells partitioned into six supercells, two cells long each. At the
bottom is a shifted version of the partition.

Let us define a local circuit for the one-dimensional PQCA considering the partitions
shown in Figure 7. A local circuit needs to have the same number of qubits as the number
of cells in the target supercells. In this case, we are working with supercells that are two
cells long each. Therefore, the local update circuit must work with two qubits. Figure 8
shows a two-qubit circuit, with a H and a CX gate, respectively. This local circuit is then
tessellated through the supercells forming an update frame.

|0〉

|0〉

q0 H

q1

Figure 8. A simple local updating circuit for a supercell comprising two qubits.

A global update circuit can and should include more than one update frame. Figure 9
shows an example of a global update circuit using two update frames, one based on the
partition shown at the top of Figure 7 and the other using a shifted version of the partition,
which is shown at the bottom of the figure. For this example, we used the same local circuit
for both update frames, but we could have used two distinct local circuits instead.

An example showing four cycles of the PQCA from given initial cell values—or qubit
states—is shown in Figure 10. The automaton applies the global update circuit to the
current qubit states, and the measured output is used to set the qubits with states for the
next cycle and so on.

Appl. Sci. 2023, 13, 2401 8 of 21

|0〉

|0〉

|0〉

|0〉

|0〉

|0〉

|0〉

|0〉

|0〉

|0〉

|0〉

|0〉

q0 H

q1 H

q2 H

q3 H

q4 H

q5 H

q6 H

q7 H

q8 H

q9 H

q10 H

q11 H

Figure 9. An example of a global quantum circuit for a one-dimensional PQCA.

Figure 10. An example of five cycles of a one-dimensional PQCA. (Note: the colours of the squares
stand for the measured values of the automaton. A black cell represents the number 1 and a white
one the number 0.)

3.2. Two-Dimensional PQCA

As an example of a two-dimensional PQCA, let us consider a 4× 4 grid of cells, as
shown in Figure 11.

Figure 11. A grid of 4× 4 cells for a two-dimensional PQCA.

Figures 12 and 13 show two examples of partitions: one is a partition of the grid
into horizontal strips, and the other into vertical strips, respectively. Effectively, Figure 12
constitutes eight supercells, each of which is formed by two cells. In addition, Figure 13
has four supercells, each of which is formed by four cells.

Appl. Sci. 2023, 13, 2401 9 of 21

Figure 12. A grid of 4× 4 cells partitioned into horizontal pairs of cells.

Figure 13. A grid of 4× 4 cells partitioned into vertical strips of four cells each.

In the same spirit of one-dimensional PQCA, let us define a global update circuit for
the two-dimensional PQCA shown in Figure 11.

For this example, we defined two local circuits, one for each of the partitions. Figures 14
and 15 show the local circuits for the partitions in Figures 12 and 13, respectively. They
yield two update frames, which combined result in the global update circuit with 16 qubits,
as shown in Figure 16. An example of a pattern produced by this two-dimensional PQCA
is shown in Figure 17.

|0〉

|0〉

q0 H

q1

Figure 14. Local update circuit made of two qubits.

|0〉

|0〉

|0〉

|0〉

q0 H

q1

q2 H

q3

Figure 15. Local update circuit made of four qubits.

Appl. Sci. 2023, 13, 2401 10 of 21

|0〉

|0〉

|0〉

|0〉

|0〉

|0〉

|0〉

|0〉

|0〉

|0〉

|0〉

|0〉

|0〉

|0〉

|0〉

|0〉

q0 H H

q1 H

q2 H H

q3 H

q4 H

q5

q6 H

q7

q8 H H

q9 H

q10 H H

q11 H

q12 H

q13

q14 H

q15

Figure 16. An example of a global update circuit for a two-dimensional PQCA.

Figure 17. A pattern produced with nine cycles of the global update circuit shown in Figure 16. All
cells started with |0〉.

4. Music Mapping

The art of generating music with CA hinges on the methods to convert their outputs
into patterns of musical notes. It is here that composers can experiment with different
mapping designs. An example developed to make music with the Game of Life CA (shown
in Figure 2) is discussed in [10]. A preliminary mapping design for PQCA was presented
in [18].

This section presents the mapping schemes developed to generate musical forms for a
piece for a chamber ensemble, composed for London Sinfonietta, entitled Qubism.

We developed two distinct mapping schemes: one for the one-dimensional and another
for the two-dimensional PQCA, respectively.

Appl. Sci. 2023, 13, 2401 11 of 21

4.1. One-Dimensional PQCA Mapping

A bar of 18 cells forms the one-dimensional PQCA. The mapping scheme generates
clusters of musical notes. Each cycle of the PQCA produces an eighteen-bit long bitstring,
which is converted into either a cluster or a rest (i.e., silence).

A cluster is a group of notes that are played simultaneously. It can have up to 12 notes.
Conversely, a rest is when a cycle does not generate any notes at all.

To encode musical information, the bitstring is split into four sections (Figure 18). Each
section forms a code representing a property of the cluster, as follows (the bit order is from
the left to the right of the bitstring):

• Code A (bits 1 and 2) defines the source of the notes. There are four different sources
to choose from (Figure 19).

• Code B (bits 3, 4 and 5) defines the duration of the cluster. There are eight different
durations to choose from (Figure 20).

• Code C (bit 6) = rest switch.
• Code D (bits from 7 to 18) defines the notes of the cluster; these notes are picked from

the source defined by code A

Figure 18. Coding scheme for representing a cluster of musical notes.

The pitches for a cluster are picked from one of four sources, according to code A.
Hence, this code requires two bits to encode four options. The sources can be customised.
The composition Qubism used two sets of sources, one of which is shown in Figure 19.

Figure 19. A set of four sources of pitches to build clusters.

There are eight options for the duration of a cluster, which are defined by code B
(Figure 20). It requires three bits to encode eight options. Moreover, code C establishes if
the respective cluster is active (code C = 1) or constitutes a rest (code C = 0).

Figure 20. One-dimensional PQCA codes for note durations.

Appl. Sci. 2023, 13, 2401 12 of 21

Note that in Figure 19, the sources are already displayed as clusters of twelve pitches.
Formed by the last twelve bits of the bitstring (from 7 to 18), code D defines which notes in
the selected source will constitute the resulting cluster.

The positions of digits “1” in the string (from the left to the right) correspond to the
positions of the notes to be picked from the source (from the bottom to the top). For instance,
let us consider code D = {011001001001}. This instructs the system to pick the second,
third, sixth, ninth and twelfth notes to form the cluster, as illustrated in Figure 21. However,
if code C = 0, then the system would output a rest, respective to the duration of the cluster
instead. A real example is discussed in Section 5.

Figure 21. An example of a cluster generated with A = {11} and D = {011001001001}.

4.2. Two-Dimensional PQCA Mapping

The mapping scheme for the two-dimensional PQCA generates polyphonic musical
segments to be played by an ensemble of instruments.

The PQCA grid should be thought of as a structural frame for a musical segment, and
the values of the cells specify how the contents are arranged in the frame.

The vertical dimension of the grid defines the number of instruments. The horizontal
dimension defines the length of the segment and encodes a transposition coefficient, which
is explained below. As a default, the scheme is set to associate each column of the grid to a
beat in a 4⁄4 measure; this is customisable.

As an example, consider the 8× 4 grid of cells depicted in Figure 22. Let us hypothesise
that this is the output from one PQCA cycle. This grid provides a frame for two 4⁄4 measures.
That is, each cycle of the PQCA will generate two measures of music at a time. Moreover, in
this case, the music will be for four instruments. This particular example yields three notes:
there are three cells that are equal to 1. Two notes are played by instrument number three
and one note by instrument number two. How are the pitches, placements and durations
of the notes calculated?

Figure 22. A 8× 4 grid of cells. Three cells are equal to 1.

Just as in the one-dimensional PQCA mapping (Section 4.1), here we also have sources
of pitches (Figure 23) and codes for durations (Figure 24).

Figure 23. Sources of reference pitches for two-dimensional PQCA.

Appl. Sci. 2023, 13, 2401 13 of 21

Figure 24. Two-dimensional PQCA codes for waits and durations.

4.2.1. Calculating the Pitch of a Cell

The system is programmed with four sources of reference pitches, labelled as 00, 01,
10 and 11, respectively (Figure 23). The sources can hold any number of pitches. In this
example, they hold four pitches each.

To establish which source to pick a reference pitch from, the system builds a two-bit
long code (xy) with the values of the top right (x) and bottom left (y) neighbours of the
respective cell (Figure 25). For instance, in Figure 22, the cell at coordinates (5, 2) yields
the code (10): x = 1 and y = 0. Thus, the system retrieves the first pitch, A3, from source
10. The system loops through a source sequentially; the next time it needs to retrieve a
reference pitch from source 10, it will pick the second one, E4, and so on.

Figure 25. Coding scheme for the two-dimensional PQCA.

In addition to the sources, the system holds a list of transposition coefficients ∆ =
[δ1, δ2, ..., δn]. These coefficients correspond to semitones for transposing a given reference
pitch. That is, the system transposes the selected reference pitch by adding to (or subtracting
from) a transposition coefficient δ.

Let us consider the following example: ∆ = [7,−5, 0, 12, 4, 0, 5,−7]. ∆ must be of the
same length as the horizontal dimension of the grid; in this case, equal to eight. This is
because the x coordinate of the cell defines the index i of ∆[i] to retrieve the respective
coefficient to transpose the pitch. Thus, for cell (5, 2), it will add four semitones (∆[5] = 4)
to pitch A3, resulting in C]4 (Figure 26).

Figure 26. Adding four semitones to pitch A3 results in C]4.

4.2.2. Placing the Pitches in the Frame: Wait and Duration

As mentioned at the beginning of Section 4.2, the 8× 4 grid in Figure 22 defines a
frame for two 4⁄4 measures of music. We have already established that the cell (5, 2) yields
the pitch C]4, which is to be played by the second instrument (counting from the bottom
to the top of the score) of an ensemble of four (Figure 27). To calculate the placement of
this pitch on the frame, the system builds two codes based on the values of the respective
neighbouring cells, as shown in Figure 25: (abc) for waits and (mno) for durations. Thus,

Appl. Sci. 2023, 13, 2401 14 of 21

Wait(5,2) = 000 and Duration(5,2) = 000, which retrieves a minim figure (or a half note in
North American English). In this case, note C]4 starts after two beats from the beginning
and lasts for another two beats. The complete frame with all three notes is shown in
Figure 27. In this example, the cells were processed from the bottom to the top and from
the left to the right of the grid, in this order: (5,2), (2,3) and (6,3).

Figure 27. The musical rendering of the PQCA in Figure 22.

5. Real Examples from Qubism

We are now in a position to examine two real examples of generating musical materials
for the composition Qubism. The first example used a one-dimensional PQCA to generate a
rhythmic sequence of clusters. The second used a two-dimensional PQCA to produce a
polyphonic musical sequence.

5.1. Composing Rhythmic Clusters

The first example used the sources of pitches and duration codes shown in Figures 19
and 20, in Section 4.1.

We partitioned the PQCA bar of 18 cells into nine pairs of supercells. Similarly to the
instance in Figure 7, we defined two partition schemes. One of which was a shifted version
of the other by one cell.

Next, we specified two update frames, one for each of the partitions, and the global
update circuit. Figures 28 and 29 show the respective local circuits for the update frames,
and the global update circuit is depicted in Figure 30.

|0〉

|0〉

q0

q1 Rx(π/4)

Figure 28. The local circuit for the first update frame of the one-dimensional PQCA example.

|0〉

|0〉

q0

q1 H

Figure 29. The local circuit for the second update frame of the one-dimensional PQCA example.

As briefly mentioned in Section 2.2, the qubits in a quantum circuit typically start in
the ground state |0〉. However, here we wanted to initialise the cells of the PQCA with
random values. To this end, we implemented a simple quantum dice [37] to generate truly
random values to initialise them. This resulted in the following initial cell values: [1, 1, 1,
0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0]. Thus, the system needed to adapt the global update
circuit before sending it to the backend for processing. When a cell was equal to one, the
system added an X gate at the beginning of the circuit to flip the respective qubit to |1〉.
Figure 30 shows the circuit for the first cycle. On the left side of the dashed line are the
gates to initialise the qubits. Such update must be done for every cycle of the PQCA to set
the qubits with the results from the last measurement.

Appl. Sci. 2023, 13, 2401 15 of 21

|0〉

|0〉

|0〉

|0〉

|0〉

|0〉

|0〉

|0〉

|0〉

|0〉

|0〉

|0〉

|0〉

|0〉

|0〉

|0〉

|0〉

|0〉

q0 X H

q1 X Rx(π/4)

q2 X H

q3 Rx(π/4)

q4 X H

q5 X Rx(π/4)

q6 X H

q7 Rx(π/4)

q8 H

q9 X Rx(π/4)

q10 X H

q11 Rx(π/4)

q12 H

q13 Rx(π/4)

q14 H

q15 X Rx(π/4)

q16 H

q17 Rx(π/4)

Figure 30. Global update circuit for the one-dimensional PQCA example. On the left side of the red
dashed line are the gates to initialise the qubits.

The circuit (Figure 30) required 18 qubits. It was run on ibmq_toronto, which is a
27-qubit superconducting Falcon processor made by IBM Quantum. We ran it for 50 cycles,
with 30,000 shots per cycle. Figure 31 shows the resulting rhythmic sequence of clusters
and Figure 32 depicts the cellular sequence that produced it.

Figure 31. The resulting rhythmic sequence of clusters.

Appl. Sci. 2023, 13, 2401 16 of 21

Figure 32. The resulting cellular sequence.

5.2. Composing Musical Forms

The two-dimensional example used the sources of reference pitches shown in Figure 23
and the codes for waits and duration shown in Figure 24. The transposition coefficients
were defined as follows: ∆ = [7, 4, 5, 0, 12, 3, 2, 1].

This PQCA used an 8× 12 cellular grid. Therefore, each cycle produced two 4/4 mea-
sures of music for twelve instruments.

We defined two partition schemes, forming 48 supercells each. One scheme parti-
tioned the grid into horizontal pairs and the other into vertical pairs. Then, we defined
two update frames, one for each partition. The respective update circuits are shown in
Figures 33 and 34.

|0〉

|0〉

q0 H

q1

Figure 33. A local updating circuit for the first update frame of the two-dimensional example.

|0〉

|0〉

q0

q1

Figure 34. A local updating circuit for the second update frame of the two-dimensional example.

Appl. Sci. 2023, 13, 2401 17 of 21

The global update circuit is shown in Figure 35. As it requires 96 qubits, only a partial
view of the circuit is printed. Put simply, in the full version, the shown block of 24 qubits
is repeated four times. For this PQCA, the initial values of the entire grid were 0s. It was
run on ibm_washington, which is a 127-qubit superconducting Eagle processor made
by IBM Quantum. We ran it for 50 cycles of 80,000 shots per cycle. Figure 36 depicts the
cellular sequence resulting from the first four cycles of the PQCA and Figure 37 shows
the respective resulting musical forms: there are eight measures of music, two measures
per cycle.

|0〉 . . .

|0〉 . . .

|0〉 . . .

|0〉 . . .

|0〉 . . .

|0〉 . . .

|0〉 . . .

|0〉 . . .

|0〉 . . .

|0〉 . . .

|0〉 . . .

|0〉 . . .

|0〉 . . .

|0〉 . . .

|0〉 . . .

|0〉 . . .

|0〉 . . .

|0〉 . . .

|0〉 . . .

|0〉 . . .

|0〉 . . .

|0〉 . . .

|0〉 . . .

|0〉 . . .

q0 H

q1

q2 H

q3

q4 H

q5

q6 H

q7

q8 H

q9

q10 H

q11

q12 H

q13

q14 H

q15

...

...

q88 H

q89

q90 H

q91

q92 H

q93

q94 H

q95

Figure 35. The global update circuit for the polyphonic musical example.

Figure 36. Cellular sequence resulting from the first four cycles of the PQCA.

Appl. Sci. 2023, 13, 2401 18 of 21

Figure 37. Resulting musical form for twelve instruments.

Appl. Sci. 2023, 13, 2401 19 of 21

5.3. Implementation Considerations

The systems were implemented in Python [38] and Qiskit [39], an open-source SDK for
programming quantum computers. The ICCMR team developed and maintain a Python
package for designing and executing PQCA, which is publicly available. The PQCA
package and accompanying tutorials, including music mapping examples, are available
through the ICCMR’s GitHub repository [40,41].

Quantum computing hardware is accessed through IBM Cloud [42]. The global
update circuits are optimised using optimisation tools available through t|ket〉, a software
platform developed by Quantinuum [43]. The optimisation reduces the number of gates in
a quantum circuit and reconfigures it to perform better on specific devices.

The system generates music notation in MusicXML format using Music21, a Python-
based toolkit for computer-aided musicology [44].

6. Concluding Discussion

There have been numerous initiatives to use CA to compose music, e.g., [10,21,22,45–48].
However, to the best of our knowledge, the work presented here, the PQCA package [40]
and the composition Qubism are pioneering the use of quantum CA in music. The PQCA
package [40] is now publicly available for other musicians wishing to explore the fascinating
possibilities offered by quantum CA.

In the introduction, we mentioned that we were interested in developing AI technology
to support musicians to create original music, rather than imitations of existing repertoires.
Moreover, we emphasised the term “support” because we are not interested in systems
that create compositions autonomously.

Music expresses ineffable thoughts, highly personal impressions of the world and
emotions. Of course, music is also logical, systematic and follows guiding rules. Rationality
does play an important role in music composition, especially classical music. However,
music that is generated totally automatically is rather meaningless. Music should be
embedded in cultural and emotionally meaningful contexts, which composers express in
subtle ways, which are largely beyond description. A computer would not be capable
of composing a piece such as Beethoven’s Symphony No. 3 autonomously. Its backstory,
myriad references, drama and so on, are aspects of musicianship that computers, as we
know them today, cannot grasp.

Obviously, composers ought to explore the technologies of their time. Undoubtedly,
the most influential music technology of the 21st century is the computer: a general-purpose
device that can be programmed to generate music following logical operations. Moreover,
computers facilitate musical composition informed by processes and data abstracted from
phenomena other than music. CA models are a case in point.

However, computing technology is constantly evolving, and emerging quantum com-
puters are a nascent technology, which is bound to impact the music industry in the time
to come.

Despite the various theoretical demonstrations and proof-of-principles of the advan-
tages that future quantum computers will bring over existing classical ones (e.g., [49,50]),
we are not in a position here to advocate any quantum advantage for musical applications.
What we advocate, however, is that the music technology community should be quantum-
ready for when quantum computing hardware becomes more sophisticated, widely avail-
able and possibly advantageous for creativity and business. In the process of learning and
experimenting with this new technology, novel approaches, creative ideas and innovative
applications are bound to emerge. Nevertheless, we argue that it would be impossible to
generate the musical examples shown in this paper without a quantum computer.

The methods described in the paper to map PQCA outputs onto music are, of course,
arbitrary. There might be infinite ways of doing this, and it would be untenable to compare
those methods objectively. One could ask: Does the music produced with method “a” sound
more interesting than the music produced with method “b”? To answer this question, we
would need to define “interesting”. This is not trivial. We rather propose that the design of

Appl. Sci. 2023, 13, 2401 20 of 21

such methods should be considered as part of a compositional process. Different composers
or different pieces should explore different methods. In the case of the systems presented
here, they were not designed to produce music ready to be played. We intentionally
designed them to produce material to be further developed by a human composer. Indeed,
the examples in Figures 31 and 37 are sketches for Qubism. Dozens of such sketches were
produced. These were the raw materials for the composition. With these materials, the
composer (E.R.M.) further developed them into a fully fledged piece.

Author Contributions: Conceptualization, E.R.M.; methodology, E.R.M.; software, H.S.; investi-
gation, E.R.M. and H.S.; resources, E.R.M.; writing—original draft preparation, E.R.M. and H.S.;
writing—review and editing, E.R.M.; project administration, E.R.M. All authors have read and agreed
to the published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: This work was developed as part of E.R.M. research residency at the Center
for Quantum Technologies and Applications (CQTA) in DESY (Deutsches Elektronen-Synchrotron),
Zeuthen, Germany, in 2022. The authors would like to thank CQTA for enabling access to IBM
Quantum computer resources. In particular, we are indebted to Karl Jansen and his team, for their
support and advice.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Miranda, E.R. (Ed.) Handbook of Artificial Intelligence for Music Foundations, Advanced Approaches, and Developments for Creativity;

Springer International Publishing: Cham, Switzerland, 2021.
2. Cope, D. Experiments in Musical Intelligence; A-R Editions: Madison, WI, USA, 1996.
3. Woods, W.A. Transition network grammars for natural language analysis. Commun. ACM 1970, 13, 591–606. [CrossRef]
4. Kuang, J.; Yang, T. Popular Song Composition Based on Deep Learning and Neural Networks. J. Math. 2021, 2021, 7164817.

[CrossRef]
5. Graupe, D. Deep Learning Neural Networks; World Scientific: Singapore, 2016.
6. Hernandez-Olivan, C.; Beltran, J.R. Music Composition with Deep Learning: A Review. arXiv 2021, arXiv:2108.12290.
7. Romero, J.; Ekart, A.; Martins, T.; Correia, J. (Eds.) Artificial Intelligence in Music, Sound, Art and Design; LNCS 12103; Springer

International Publishing: Cham, Switzerland, 2020.
8. Waugh, I. Datamusic Fractal Music. Music. Technol. 1991, October, 62–66.
9. Epstein, J.M.; Axtell, R. The Fractal Geometry of Nature; W. H. Freeman: New York, NY, USA, 1982.
10. Miranda, E.R. Cellular Automata Music: An Interdisciplinary Project. J. New Music. Res. 1993, 22, 3–21. (formerly known as

Interface). [CrossRef]
11. Shiff, J.L. Cellular Automata: A Discrete View of the World; Wiley: Hoboken, NJ, USA, 2011.
12. Cao, Y.; Romero, J.; Olson, J.P.; Degroote, M.; Johnson, P.D.; Kieferova, M.; Kivlichan, I.D.; Menke, T.; Peropadre, B.; Sawaya,

N.P.D.; et al. Quantum Chemistry in the Age of Quantum Computing. Chem. Rev. 2019, 19, 10856–10915. [CrossRef]
13. Kerenidis, I.; Prakash, A. Quantum recommendation systems. In Proceedings of the 2017 Conference on Innovations in Theoretical

Computer Science, Berkeley, CA, USA. 9–11 January 2017. [CrossRef]
14. Oshiro, S. QuiKo: A Quantum Beat Generation Application. In Quantum Computer Music Foundations, Methods and Advanced

Concepts; Miranda, E.R., Ed.; Springer: Cham, Switzerland, 2022.
15. Clemente, G.; Crippa, A.; Jansen, K.; Tuysuz, C. New Directions in Quantum Music: Concepts for a Quantum Keyboard and the

Sound of the Ising Model. In Quantum Computer Music Foundations, Methods and Advanced Concepts; Miranda, E.R., Ed.; Springer:
Cham, Switzerland, 2022.

16. Weaver, J. Quantum Music Playground Tutorial. In Quantum Computer Music Foundations, Methods and Advanced Concepts; Miranda,
E.R., Ed.; Springer: Cham, Switzerland, 2022.

17. Arrighi, P.; Grattage, J. Partitioned quantum cellular automata are intrinsically universal. arXiv 2010, arXiv:1010.2335.
18. Miranda, E.R.; Miller-Bakewell, H. Cellular Automata Music Composition: From Classical to Quantum. In Quantum Computer

Music Foundations, Methods and Advanced Concepts; Miranda, E.R., Ed.; Springer: Cham, Switzerland, 2022.
19. Clark, S.; Rehding, A. Music in Time: Phenomenology, Perception, Performance; Harvard University Press: Cambridge, MA,

USA, 2016.
20. Dustan, R. The Composer’s Handbook: A Guide to the Principles of Musical Composition; Leopold Classic Library: South Yarra, VIC,

Australia, 2017.
21. Beyls, P. The musical universe of cellular automata. In Proceedings of the International Computer Music Conference (ICMC),

Columbus, OH, USA, 2–5 November 1989; pp. 34–41.

http://doi.org/10.1145/355598.362773
http://dx.doi.org/10.1155/2021/7164817
http://dx.doi.org/10.1080/09298219308570616
http://dx.doi.org/10.1021/acs.chemrev.8b00803
http://dx.doi.org/10.48550/arXiv.1603.08675

Appl. Sci. 2023, 13, 2401 21 of 21

22. Hoffmann, P. Towards an automated art: Algorithmic processes in Xenakis’ compositions. Contemp. Music. Rev. 2002, 21, 121–131.
[CrossRef]

23. Miranda, E.R. Cellular automata music: From sound synthesis to musical forms. In Evolutionary Computer Music; Miranda, E.R.,
Biles, J.A., Eds.; Springer: London, UK, 2007.

24. Love, P.; Boghosian, B. From Dirac to Diffusion: Decoherence in Quantum Lattice Gases. Quantum Inf. Process. 2005, 4, 335–354.
[CrossRef]

25. Preston, K.; McDuff, M.J.B. Modern Cellular Automata: Theory and Applications; Springer International Publishing: Cham, Switzer-
land, 1984.

26. Hogeweg, P. Cellular automata as a paradigm for ecological modeling. Appl. Math. Comput. 1988, 27, 81–100. [CrossRef]
27. Ermentrout, G.B.; Edelstein-Keshet, L. Cellular automata approaches to biological modeling. J. Theor. Biol. 1993, 160, 97–133.

[CrossRef]
28. Epstein, J.M.; Axtell, R. Growing Artificial Societies: Social Sciences from the Bottom Up; The MIT Press: Cambridge, MA, USA, 1996.
29. Miranda, E.R. Generating Source Streams for Extralinguistic Utterances. J. Audio Eng. Soc. 2002, 50, 165–172.
30. Burks, A.W. (Ed.) Essays on Cellular Automata; University of Illinois Press: Champaign, IL, USA, 1971.
31. Gardner, M. The fantastic combinations of John Conway’s new solitaire game “life”. Sci. Am., 1970, 223, 120–123. [CrossRef]
32. Nielsen, M.A.; Chuang, I.L. Quantum Computation and Quantum Information, 10th Anniversary Edition; Cambridge University

Press: New York, NY, USA, 2011.
33. Ekert, A.; Macchiavello, C. An Overview of Quantum Computing. In Unconventional Models of Computation; Calude, C.S., Casti, J.,

Dinneen, M.J., Eds.; Springer: Singapore, 1997.
34. Sutor, R.S. Dancing with Qubits: How Quantum Computing Works and How It Can Change the Word; Packt: Birmingham, UK, 2019.
35. Farrelly, T. A review of quantum cellular automata. Quantum 2020, 4, 368. [CrossRef]
36. Inokuchi, S.; Mizoguchi, Y. Generalized partitioned quantum cellular automata and quantization of classical CA. arXiv 2003,

arXiv:quant-ph/0312102.
37. Miranda, E.R. Creative Quantum Computing: Inverse FFT Sound Synthesis, Adaptive Sequencing and Musical Composition. In

Handbook of Unconventional Computing; Adamatzky, A., Ed.; World Scientific: Singapore, 2021.
38. Python Programming Language Documentation. Available online: https://www.python.org/ (accessed on 27 December 2022).
39. Qiskit Documentation. Available online: https://qiskit.org/ (accessed on 27 December 2022).
40. PQCA Repository. Available online: https://github.com/iccmr-quantum/pqca (accessed on 27 December 2022).
41. PQCA Tutorial. Available online: https://github.com/iccmr-quantum/PQCA_Tutorial (accessed on 27 December 2022).
42. IBM Quantum Computer Resources. Available online: https://www.ibm.com/quantum (accessed on 27 December 2022).
43. Sivarajah, S.; Dilkes, S.; Cowtan, A.; Simmons, W.; Edgington, A.; Duncan, R. t|ket〉: A retargetable compiler for NISQ devices.

Quantum Sci. Technol. 2020, 6, 014003. [CrossRef]
44. Music 21 Documentation. Available online: https://web.mit.edu/music21/ (accessed on 27 December 2022).
45. Bilotta, E.; Pantano, P.; Talarico, V. Music Generation through Cellular Automata: How to Give Life to Strange Creatures. Research

Gate. Available online: https://www.researchgate.net/publication/2324938_Music_Generation_through_Cellular_Automata_
How_to_Give_Life_to_Strange_Creatures (accessed on 28 December 2022).

46. Burraston, D.M. Generative Music and Cellular Automata. Ph.D. Thesis, University of Technology, Sydney, Australia, 2006.
Available online: https://www.noyzelab.com/uploads/1/2/6/1/126197943/dburraston-genmusic_ca-phd-thesis.pdf (accessed
on 28 December 2022).

47. Delarosa, O.; Soros, L.B. Growing MIDI Music Files Using Convolutional Cellular Automata. In Proceedings of the IEEE
Symposium Series on Computational Intelligence (SSCI), Canberra, ACT, Australia, 1–4 December 2020. [CrossRef]

48. Nedjah, N.; Bezerra, H.D.; Mourelle, L.M. Automatic generation of harmonious music using cellular automata based hardware
design. Integration 2018, 61, 205–223. [CrossRef]

49. Gibney, E. Hello quantum world! Google publishes landmark quantum supremacy claim. Nature 2019, 574, 461–463. [CrossRef]
50. Huang, H.-Y.; Broughton, M.; Cotler, J.; Chen, S.; Mohseni, M.; Neven, H.; Babbush, R.; Kueng, R.; Preskill, J.; McClean, J.R.

Quantum advantage in learning from experiments. Science 2022, 367, 1182–1186. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1080/07494460216650
http://dx.doi.org/10.1007/s11128-005-7852-4
http://dx.doi.org/10.1016/0096-3003(88)90100-2
http://dx.doi.org/10.1006/jtbi.1993.1007
http://dx.doi.org/10.1038/scientificamerican1070-120
http://dx.doi.org/10.22331/q-2020-11-30-368
https://www.python.org/
https://qiskit.org/
https://github.com/iccmr-quantum/pqca
https://github.com/iccmr-quantum/PQCA_Tutorial
https://www.ibm.com/quantum
http://dx.doi.org/10.1088/2058-9565/ab8e92
https://web.mit.edu/music21/
https://www.researchgate.net/publication/2324938_Music_Generation_through_Cellular_Automata_How_to_Give_Life_to_Strange_Creatures
https://www.researchgate.net/publication/2324938_Music_Generation_through_Cellular_Automata_How_to_Give_Life_to_Strange_Creatures
https://www.noyzelab.com/uploads/1/2/6/1/126197943/dburraston-genmusic_ca-phd-thesis.pdf
http://dx.doi.org/10.1109/SSCI47803.2020.9308378
http://dx.doi.org/10.1016/j.vlsi.2018.03.002
http://dx.doi.org/10.1038/d41586-019-03213-z
http://dx.doi.org/10.1126/science.abn7293
http://www.ncbi.nlm.nih.gov/pubmed/35679419

