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ABSTRACT

Effectiveness in biological chemical enviromments virtually
defines the term 'drug' when applied to any attempt to modify that
enviromment by the introduction pf an influence in terms of a specific
compound or group of compounds. Interest in the configuration of the
molecules involved in such modifications led to the X-ray structure
determinations, discussed in .the thesis, of the following three compounds;

(i) 7-chloro-2-methyl-5-phenyl-3-propyl[2,3-b]-imidazolyl quinoline.

CHy

N N/

N
P />—(CH2) ,CH3 (1)
cl N

Derived from the psychoactive drug Librium, it was thought to

conform to the structure,

i
N N

B

ol (CH,).,CH4 (2)

X111



containing the highly strained 4-membered monocyclic azete system (Shenoy,
a thesis submitted fdr the degree of Doctor of Philosophy, University of
London, 1975), and suggested as one of the first examples of possible
stable 4-membered azacyclobutadiene rings.

(ii) The methyl ester of 5,5-dimethyl-2-(2-phenoxymethyl-5-oxo-1,3-

oxazolin-4-ylidene)-1l,3-thiazolidine-4-carboxylic acid.

CH
QO/ 20NN PREN ~CH3
? S8 f

AN
0 COOCH,,

C,7H,gNy05S was first reported by Brandt, Bassignani and Re,

(1976, Tetrahedron Letters No. 44, pp 3979-3982), to have configuration (4),

QO/CHZ\C/NH\C= /S\C<CH3
0 L—N— H
0 COOCH,

w111



i.e. that of a novel class of DL-5,6—didehydropenicillins. 1Its reported
weak antibacterial activity, thought‘tb be associated with the unsaturated
nature of the penicillin nucleus promoted its X-ray structure analysis.

Subsequently, Bachi and Vaya, (1977, Tetrahedron Letters No. 25,
pp 2209-2212), suggested the configuration (3) which has been confirmed
by the structure determination.

A comparison of the proposed derivations of (3) and (4) is made,
and the conformation of the unconstrained thiazolidine ring is discussed
in comparison with the constraining effect of adjacent B lactams in the
nuclei of known penicillin structures,

(iii) The phenyl ester of carbenicillin (carfecillin).

C(I17)— C /NH\C‘-‘_Cr( ?\CH3

0 L —N—CH
C C\
cf’ \\O 0 NC1+

(5)

The crystal structure is used to facilitate a comparison of
the configurations of both the penicillin nucleus and the side-chain
substituents of C(17) with other penicillin derivatives of known crystal
structure.

The conformation in aqueous solution about C(17) is reflected
in the modification of H! n.m.r. signals from the B lactam protons for the

methyl and ethyl esters of carbenicillin between the two epimers. A

X1v



similar effect is noted for the two diastereoisomers of amino-hydroxybenzyl

penicillin; amino-phenylacetamido penikillanic acid and a tyrosyl penicillin,
To evaluate a correlation between the absolute configuration

and n.m.r. studies, circular dichroism spectra from penicillin compounds

have been characterised and the mutarotation exhibited by the esters of

carbenicillin used to describe configurational equilibria about C(17) in

terms of their characteristic n.m.r. spectra.

Rxv



CHAPTER 1

The Determination of Structure by the Scattering

of X-Rays from a Single Crystal

INTRODUCTION

The bicactivity of organic compounds may depend upon numerous
factors such as the reactivity and relative orientation of constituent
functional groups. Overall molecular size and shape often results in
preferential receptor site occupation in certain 'lock-and-key' mechanisms.
The crystalline solid state consists of a regular array of molecules
with relative orientations which minimise the potential energy
associated with both inter-molecular and inter-atomic interactions.
Crystal structure analysis reveals the molecular geometry associated
with the crystalline state, and a study of structures within a group
of similar compounds, provides the possibility of distinguishing thecse
geometrical features which play an important part in biological

activity.

Assigmment of molecular structure can be achieved without the
analysis of the crystalline state by techniques which provide
limited information by their use alone, but in conjunction, provide a
means whereby the most probable structure may be derived. Constituent
atoms are analysed by mass spectrometry, and molecular weight
analysis results in determination of the number of each elemental atoms
in the molecule. Nuclear magnetic resonance methods, provide a
description of the chemical enviromnment about some constituent atomic
sites, enabling a possiblé ordering of particular groups
to be achieved. Further analysis by optical methods can be made to
study the relative configuration of certain optically active groups.

However, the structure solution satisfying the results obtained by these



methods is often not unique and only limited information regarding

the geometrical features of the molecule is obtained.

The techniques of single crystal analysis discussed in

this chapter, bear a particular emphasis upon those used in the
determination of the crystal structures described in the following
chapters, and are progressively developed from the more general
aspects of the scattering of radiation and regarded as a particular
solution to the scattering process. The various analyses of X-ray
diffractiondata centre upon the determination of diffracted intensity,
and associated phase angle, and the Fourier synthesis of the model

structure with its subsequent least-~squares refinement.

This thesis describes the use of the methods of X-ray
crystallography to assign the structures of three compounds in the
crystalline state, which were considered of interest either by virtue
of their proposed novel structures or to further the

comparison of known groups of biologically active compounds,

The novel pharmacologically active azete, I, is of interest
because it is derived from the psychoactive drug Librium, and contains
the highly strained azete system. Only a few azete compounds have been

reported, and the stability of monocyclic azetes is very low.

Cﬁ3
N

cl \ \ I

(CH,), CH4

Structure determination of the dehydropenicillin, II, was

carried out as a preliminary to the investigation of the reported weak



antibacterial activity, suggested to result from the "unsaturated"

N CH
O/CHZ\C/ H\?=C/S\C< 3
i | [ ~cHy I

0 L—N—cy
0 COOCH,

nature of the penicillin nucleus.

Chapters 2 and 3 describe the eventual reassignment of structure

to both compounds I and II.

The esters of carbenicillin are shown to undergoc change of
the side-chain substituents in solution, (ref Ch. 5); investigation of
the nature of the processsinvolved was facilitated by the X-ray structural

investigations of the phenyl ester of carbenicillin, III, described in

C hapter 4.

The configuration and conformation of the side-chain substituents
in some penicillin derivatives of known structure is discussed in Chapter
5 and compared with that of three esters of carbenicillin, including III,
using distinguishing features arising from H1 nuclear magnetic

resonance spectra and circular dichroism measurements.



1.1 The basis for crystal structure analysis

The laws of diffraction alone can provide the basis for crystal
structure analysis; however, such laws result from the observations
made from a particular state of matter ie. the crystalline state,
whereas the techniques of analysis stem from the combination of fundamental
aspects of matter, relating more to the scattering process itself,
Diffraction can therefore be considered to emerge as a direct result
of constraints applied to the scattering process by the spatial
geometry within the crystal. Thus, a complete description of the basic
scattering process, and its particular solution under certain
constraining conditions for X-ray diffraction, such as elastic
wave/matter interactions and subsequent interference phenomena, is used
to form a basis for the development of the mathematical models used

in the structure analyses discussed later.

The field of X-ray crystallography is well served by many
. 1
standard texts; particular use has been made of the works of M.J. Buerger,
E. W. Nuffieldz, M.F. C. Ladd and R.A.Palmer3, M.M.Woolfsonk, G. H. Stout and

L.H.Jensens, and International Tables for X-ray Crystallography6

1.2 The scattering of a wave packet

The wave-particle description of matter, developed
largely from an understanding of energy/matter interactions and their
eventual equivalency, has resulted in considerable information concerning
the nature of energy scattering processes, in particular, those

associated with the atom and its constituents.

The crystalline state provides a unique interaction with incident
radiation which is described by the modification of a wave packet under

the influence of a potential7’8.

Motion under the influence of a potential V, which is appreciably



different from zero only within a sphere surrounding the origin of

radius 'a', may be described by the Schrydinger equation

2
-hTv2 vl =Ep ... Eqn 1.1

2u
where ¢ describes a wave packet, E the energy eigenvalue associated with

it and u the reduced mass.

Simplification of Eqn. 1.1 is achieved using the substitutions

k2= 2uE and U = 2pV  to become

He 1’12
(v2 + k2) v =up ... Eqn 1.2
Considering U} as a temporary inhomogeneily , Eqn. 1.2

can be solved by the superposition of a particular solution and complementary
function. Formally, a particular sclution can be constructed in terms
of the Green's function G(r, r') which is a solution of the equation

(v2 + k2) 6 (r, r') = =4w 8(r - r") ... Eqn 1.3

where the Dirac delta function has the property

S(r = r') d3r' =1 ... Egn 1.4

provided the region of integration includes r' = r.

-~

Hence, by Eqn. 1.4

Uy ('Y 6(c - ") d3r’

= U(E)w (E) BE Eqn 1.5
and provides the inhomogeneity Uy as required.
Thus, the expression
-1 | G(x, r') Ue') ¢ (') d3c"' , ... Egn 1.6
4 S ) i

solves Eqn. 1.2 adequately.



The complementary function is found as an arbitrary solution

of the homogeneous equation

(V2 + k2) v = 0 ... Eqn 1.7
which is the Schrbdinger equation for a free particle (no scattering)
and has the solution corresponding to a plane wave. Choosing

a suitable normalisation factor establishes the integral equation.
j k.T
(x) = 1 ed o0l

k . -1 G(r, ') U(r')wk(r') d3r!
- (21)3/, 4 > ~ T

s ... Egqn 1.8

as a particular set of solutions of the Schr8dinger equation.

The magnitude of the wave vector k has a definite value,
fixed by the energy eigenvalue, but its direction is determined
physically by the direction of incidence. A complete knowledge of E,
however, does not completely define wk(E) in Eqn. 1.8, for there

remains an infinite choice of Green's function G(r, r'). To

determine suitable Green's functions, the solution to Egqn. 1.3 must

be found,

(vZ + k?) 6(r) = - 4n &(r) ... Eqn 1.9
describes a simplified expression of Eqn. 1.3

Defining 6(r) by

!
s(r) = 1 SLERSFEE ... Eqn 1.10
(2n)3

suggests the application of the Fourier transform description of G{(r},

well kpnown in diffraction processes, giving

3 L
G(r) ={g(k") eJ% a3k ... Eqn 1.11

Substitution in Eqn 1.9 gives

3 t b 1
(w2 + k2){ g(k") X T g3 - - edR T g3

[t
}
[—

202
. Eqn 1.12



and hence,

)
‘[ g(k") (_krz + k2 ) eJ% -E d3k'

"
= -1 J.eJ_ T a3k’ ... Eqn 1.13
2u2
which in turn gives
g(k') =1 [ 1 ] ... Eqn 1.14
2ﬂ2 k|2 - kZ

furnishing the Fourier representation in reciprocal k-space, (ref 4 1.5),

d ]
KT a3k ... Eqn 1.15

G(r) =1
T on2 k'? - k2

Evaluation of this integral over all space is conveniently
carried out by expressing in terms of polar co-ordinates,
letting the colatitude 6 coincide with the angle between the

vectors k' and r. Thus, Eqn. 1.15 becomes

+o 277
: 1
G(r) =1 2 kT cos 8112 gine do d¢ dk’
) 272 K'2 - k2
—co 00
. Eqn 1.16
which may more conveniently be rewritten to give
+o .
G(r) =-1_ d eJk'E dk' ... Eqn 1.17
mr dr k'2 - k2
—o

following the integration over 6 and ¢.

The resulting integrand has simple poles on the real axis in
the complex k' plane at k' = + k and a solution may be

found by using an integration path such as in Fig. 1.1, avoiding the poles.

Since r is taken to be positive, a closed contour produced
by a semicircle, in the upper half plane, joining the path of integration

along the real axis from - « to + « will suffice.



;\Imik'l

ok
Tk 0 O

» >
Relk'}
Fig. 1.1. Path of integration in the complex k' plane
Thus, Eqn. 1.17 becomes
3 1
cry =-1_ d @ 57 a ... Eqn 1.18
Tr dr k'2~ k?
in which, by the use of the residue theorem
- . s
<ﬁejkr dk' = 27j eJkr _ikr]
k'Z2 - k? 2k 2k
... Eqn 1.19
Hence,
G(r) = eJkr + e-Jkr
r r ... Eqn 1.20a
which can be expressed as
G(r) = G+(r) + G_{(r) ... Eqn 1.20b

where G+(r) and G_(r) are both Green's functions, each satisfying

Eqn, 1. 9.

Thus, the Green's functions required as solutions to Eqn.
1.3 are

G,(r, r') = exp(z jklr -r'{) ... Eqn 1.21

o

- -



and substitution in the integral equation, Eqn. 1. 8, results in

(+) (-)

two distinct eigensolutions, denoted by ¥ and ¢ given by
= ik +
¥ ) (r) =1 éJ-{ -1 “exp(- jk [r = ') wo (2] 3
k - —_ ~ - Ulryy irldtr
: (2)3/, 4 K
|r - r'|
~ ~ |
. Eqn. 1.22

In view of the fact that U exists only for values of r'

<a, the integrand can be closely approximated. If r is chosen

so large that the quadratic term can be neglected, and if, further, r'

in the denominator of the integrand is neglected, as is the case in

all macroscopic measurement techniques, then

+ : . Tt +
¢(—) (r) ~ 1 eJ§€:-_g:_Jkr et Jk. T u(c") ¢( ) (r') d3r'
k - (2n)3/2 4nr - E -
. Eqn 1,23

A
where k' = kr.

. -

This asymptotic expression can be written as

) ik I ke <y A
b (f) A S LI S FACOTE
k (2m)3/, r kK <
(r large) ... Eqn. 1.24

where

+

(-) T ot ' +

£ y (Q) = - (2m3/, j.e+ JE i U(r") wi_) (r") d3§'
~ L ~

. - ... Eqn. 1.25

Physically, ¢(+)

B

represents the outgoing solution of the Schrddinger equation.

» when modified by exp [—jE&J s

Thus, Egqn. 1.24, describes the wave Ffunction J+ in terms of an
incident planewave, of energy and direction governed by the wave

vector k, and a scattered outgoing radial wave falling in amplitude



as the inverse of the distance from the scatterer and with a modified
A

ampiitude, defined as the scattering amplitude, fk (r). The term
A N ~

fk (r), in turn, is dependent. upon the scattering potential and whether

the process is elastic, (Thomson scattering), or inelastic, (Compton
scattering), determines the energy of the radial wave and thus, the

wave vector k'. It is therefore, the scattering amplitude and its

~

associated phase which furnishes the means by which the properties of the
A

process can be determined. The effective measurement of fk (r) forms

the basis for the methods of structure analysis considered in the

following discussion,

1.3 The scattering of X-rays by atoms

Section 1.2 adequately described the interaction of a wave
packet, for example on X-ray photon, with a central potential such as
that of a free electron. However, the electrons surrounding atoms
are not free but bound into definite energy states. Thus, Thomson
scattering corresponds to the electron remaining in the same energy
state after scattering, whereas Compton scattering will
involve the transition of the electron between energy states with the

absorption or emission of discrete energy quanta.

The coherently scattered component will suffer from ordered
interference and provides a systematic means of analysing the scattering
centres involved. Hence, the observationally valuable part of the scattering
amplitude is related to an outgoing wave of energy gnchanged from that
of the incident wave ie. k' = k. The ratio of the amplitude
of the coherently scattered component from an atomic electron, contributing
an 1idealised spherically symmetric charge distribution to that from an
electron situated at the origin is defined as the scattering factor
for that electron,fe. if an atom contains Z electrons then the

total ratio of amplitudes will be the sum of the individual ratios, (fe)i,



for each electron and is defined as the atomic scattering factor, fa,
given by
fa = (f-e)i ... Eqn. 1.26
Scattering factors used in this work were taken
from International Tables for X-ray Crystallography, Vol III, or

Acta. Cryst., A24 (1968) 321.

The scattering factor describes a reduction in amplitude
of the scattered wave with increase of scattering angle: at zero

scattering angle fa = Z.

1.4 Diffraction from a crystal

Section 1.2 discussed the scattering of a photon of wave vector
A

k = 2r k from a single scattering centre. The condition that all
A )
atoms in a three dimensional array (crystal lattice) should scatter in

phase in some direction can be fulfilled by three conditions.

Defining a scattering vector s, such that

A ~
s=nk =nk , (n integer) ... Eqn. 1.27
~t 21T~ ~

A

the three conditions that atoms separated by a, b or c should scatter

in phase, where the vectors a, b and ¢ are the three vectors which define

the array, are

s = h
b.s =k ... Eqns 1,28

¢
.
t

where h, k and ¥ are integers. Eqns. 1.28 are the Laie equations, so
called, after the first demonstration of diffraction of X-rays from

a regular crystal lattice by von Lave in 1912.

The three integers h, k and £ can be chosen to uniquely define



a given interference maximum, (known as the X-ray reflexion), and are
the Miller indices of that reflexion. Eqns. 1.28 also describe

a family of planes in the crystal space and so, therefore, do the Miller

indices.

1.5 The Reciprocal Lattice

To examine the scattering vector s, and hence the crystal

structure, it is necessary to describe s in terms of three

-~

basis vectors, which themselves relate to the vectors a, b and c
which in turn define the unit cell of the crystal ie, that parallelepiped

which, reproduced by close packing in three dimensions,gives the whole

crystal,

The three vectors a*, b* and c¢* are used to define the

reciprocal lattice where a*, b* and c* satisfy the

complete set of relationships.

a . a* =1 a. b* =20 a .ckt=0
b .a* =20 b . b*=1 b.c*x=0 ... Eqns. 1.29
c . a* =290 =0 c c*¥ =1

O

b'k

¢
]

-
{

-~

which uniquely define a*, b* and c* in terms of the real space

-~ ~

vectors a, b and ¢ such that

]
o
>
n

a*

~ ~ -~ ...Eqns. 1.30

a. (b A ¢)

Thus, using Eqns. 1.29, the scattering vector, s, can be

-

_]2_



defined, such that it satisfies Eqns. 1.28, by

s = ha* + k b* + Lc* ... Eqn,.1.31

- - ~

Thus, each set of Miller indices is related to a particular

scattering vector s The spacing between the real space

hkt ~
planes defined by(hk% is given by

= 1
dhkﬂ - . ... Egn. 1.32
~hke.
9 ..
Bragg ™ showed that an X-ray beam incident at an angle Bhkl to the

family of planes (hk?®) was diffracted such that the diffraction maximum

occurred along a path also at angle 8 to the same planes, given

that ehkO satisfied the relation

2dhk2 sin ehki = X ... Eqn, 1.32
Hence, the scattering vector ) determines the unique Bragg angle
Chie

1.6 Intensity data collection and the Weissenberg method

The photographic density produced by the impingement of an
X-ray photon on a film is related to the square of the amplitude
of the oscillation associated with the wave packet, and thus, provides
the means by which the intensity of each reflexion can be measured.
The range of intensity that can be measured by a single film is
limited by the saturation response of the emulsion. An increase
in the available measurement range was achieved using the multiple
film technique, so that each reflexion intensity was measured within

the linear optical density response, given by the relation log10 [1_ ]

I
o

where the logarithmic argument recorded the fraction of total

possible measurable intensity. Photographic densities were measured
by the Science Research Council microdensitometer service at Daresbury,
consisting of an Optronics International System P-1000 Photoscan

interfaced to a Computer Automation ALPHA -16 mini-computer with 16K

- 13 -



of 16-bit words of core store.

A Philips PW 10/10 X-ray generator operating at
34kV, 20mA using a Cu tube and Ni filter was used to
generate nearly monochromatic CuKe X-radiation (X = 1.54188) .
All X-ray measurements were obtained using either Stoe or Nonius
Weissenberg cameras. Application of the Weissenberg
camera to data collection is described in refs. 3, 4 and 5. Zero
layer Weissenberg photographs were obtained by the normal beam
method and upper layers by the equi-inclination method. Similar
exposure times were used for each layer and the inter-layer
scale factors were set initially at 1; they were subsequently

refined during the least-squares refinement, (§ 1.l4).

1.7 Determination of Cell Dimensions

Fig 1.2 shows a greatly magnified crystal, mounted to
rotate about an axis corresponding to a unit cell edge. The family
of planes perpendicular to this axis will diffract to the nth order

maximum at an angle £ to the zero order maximum if

rsinn, = NA ... . Eqn.1.34
axis of film
rotation
I
plﬂne A l‘/g’ ~ / yn
wave- - 4 = n, ~ .
front r_, = \
¥ X7
7 l =
family of _I
repeat units
! ~ )
R

Fig.1.2  Oscillation geometry.
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is satisfied, where r is the repeat distance along the rotation axis.

. h _.
Thus, a measurement of the separation of the zero layer and nt lines,
Yo from the resulting oscillation photograph, is related to £} by

tanf1n= Y, ... Egqn. 1.35

il

Hence, r is obtained from Eqn. 1.34 as

r = ni Egn. 1.36

where R is the true film radius.

The lengths of the two remaining unit cell axes were obtained
from zero layer Weissenberg photographs, by measuring the perpendicular
distance between equivalent axial reflexions on opposite

halves of t he film.

The angles between the unit cell axes, defined by

-1 A A
=cos (v . ¢)

-1 A A
B =cos (a . c) ... Eqns, 1,37

-1 A A
= cos (a . o) .

-~ -

were determined from the separation of the axial lines on zero level

Weissenberg photographs.

Accurate cell dimensions were obtained from zero level
Weissenberg photographs, calibrated using an annealed gold wire,
taken about two axial directions. The separation between pairs of
equivalent high angle reflexions on either half of the film was measured
and the corresponding value of 6 subsequently calculated gave a small

statistical spread for 4 by Eqn. 1.32, of standard deviation -0.038.



1.8 Determination of Space Group

The fundamental repetition characteristics within a crystal
can be expressed in terms of one of the 14 Bravals lattices. All the
possible unique combinations of symmetry elements, or point groups, places
the unit cell within one of 32 crystal classes. Consideration of both
the Bravais lattice and crystal class together with any translation
operators describes the unit cell in terms of one of the 230 space

groups.

Since X-ray diffraction is dependent upon the spatial array
of atoms within a crystal, then any operation relating equivalent
parts of that array will be displayed in the resulting
symmetry of oscillation and Weissenberg photographs. Thus, space group
determination requires knowledge of the number of molecules within the
unit cell and the identification of any symmetry elements by which they

are related.

The number of molecules, N, per unit cell was obtained from the

measured density of the crystal using the relation

N=Vp N0 ... Eqn. 1.38
M
where
V = volume of unit cell, inm
p = measured density, kgm—3

26 .
NO (Avogadro's number) = 6.023 x 10" molecules/kilo-gramme
molecutor weight
M = molecular weight.
Symmetry elements involving translation operators result
in extinction of certain families of reflexions by destructive
interference. Such symmetry elements encountered in the non-

centrosymmetric space Sroups P21212 and P2 and the centrosymmetric

1’

space group P21/C discussed later include 2-fold screw axes

- 16 -



and glide planes.

A 2-fold screw axis (21) effectively halves the separation
between planes normal to the axis and the reciprocal nature of the
diffraction array results in doubling of the separation of
interference maxima, or equivalently, causing phase cancellation of all
odd-order reflexions from these planes. The 21 axis, however, has no
simple ordered effect on the spacing of other planes and thus, only

axial reflexions of order 2n + 1, (n integer), suffer regular extinction.

The effect upon the diffraction array of a glide plane is
very similar to that of a 21 axis. Upper level Weissenberg photographs
were used to distinguish between axial absences caused by a 21 axis,
and those which resulted from rotation of the crystal about an axis

in the glide plane normal to the translation vector of the

glide (ref. 3 - Chapter 2),

A combination of symmetry elements within a space group
results in a linear superposition of the systematic absences derived

from the individual elements.

Consideration of the systematic absences alone does not
uniquely define all space groups for they provide no information regarding
the presence or otherwise of a centre of symmetry. A test which
may be used to detect a centre of symmetry is the N(z) test, suggested
by Howells, Phillips and Rogers (1950)10, and conéiders a cumulative
distribution curve for intensities. N(z) is the fraction of reflexions
with intensities less than or equal to z times the mean intensity.
Fig. 1.3 shows a theoretical plot of N(z) agains z for centric and
acentric distributions. The consistently lower values of N(z) in the
case of the acentric, compared with those for the centric distributions,

modelled the tendency for the intensity of reflexions from the

noncentrosymmetric space group crystals, (P2)2,2 (ref Chapter 2)



and P21 {(ref. Chapter 4)), to be more closely distributed
about their mean than were those from the centrosymmetic crystals,

(P21/c {(ref. Chapter 3)), discussed in this thesis.

N{z)

\
‘1.0ﬂ
0.9
0.8 . centric
0.7
0.6
05 ™ acentric
0.4
0.3
02
01

0

z

02 04 06 08 10

Fig. 1.3 Intensity distribution curves.

1.9 Factors affecting observed intensities

Absorption

Attenuation of the X-ray beam whilst passing through
a crystal of thickness t is given by

I =1 e 7} ... Eqn. 1.39
where Io is the intensity of the incident beam and I that of the
emergent beam. Hos the linear absorption coefficient, is expressed

in terms of the mass absorption coefficient [EJ for a
o)A, E

given wavelength A and element Ei by

BT e Pi[

i . Eqn. 1.40
100

)
plh, Ei
where p is the density of the compound composed of PiZ of each

element Ei'



Correction factors are integral parts of many crystallographic
programs provided the crystal shape is known. Numerical approximations are
used to provide a value for the average length of the X-ray beam
in the crystal for given reflexions. Interpolation of intra-crystal
path lengths between fixed 'grid' points, separated by known path
lengths within the crystal, was used to provide an

21

absorption correction from the SHELX 'ABSC' routine (ref. Chapter 4).

Primary and Secondary Extinction

Whilst the orientarion of the crystal 1s such as to meet the
Bragg condition, every point in the crystal is exposed to both the
incident beam and part of the diffracted beam. Any systematic
effect by crystal interaction with a diffracted beam, results in
primary extinction, and assumes a perfectly regularigeometry within the
crystal, whicﬁ in practice is confined only to microscopic regions
of the crystal known as mosaic blocks. The mosaic structure of such
ideally imperfect crystals, introduced by kinetic/thermal energy
during crystallisation, is such that effects due to primary extinetion

can be considered random and therefore, neglected.

Observations relating the intensities of reflexions relies
upon the assumption that all planes contributing to a reflexion receive
the same incident intensity. However, in the case of the most
intense reflexions, transmission of the incident intensity through the
crystal is attenuated by reflexion from those planes first encountered
by the beam, thus, planes deeper in the crystal receive less radiation
and contribute a reduced intensity to the diffracted beam, such that
the r ef lexion suffers from secondary extinction. A compromise was
therefore made between a reduction in crytal size and the resulting
lowering of diffraction intensity such that only a few very strong
reflexions were affected, and these were omitted.at the final stage

of refinement.



Atomic Vibration - the temperature factor

Atoms, bound within a crystal structure, are consequently
at a potential energy minimum related to the bonding processswithin
the molecule. Thus, any additional random energy, for example, a rise
in temperature, will result in vibrational motion of the atoms. The electron
cloud is, therefore, spread over a larger region than if the atom
were totally at rest, resulting in a faster fall off of scattering
amplitude with increasing Bragg angle. The effective atomic scattering
factor, (fa) , for an atom undergoing isotropic vibration may be

T

expressed 1n terms of that for the stationary atom, fa, by
-B(sin” 8)

() =Ff e ———— =

a a

. . Eqn. 1.41
T A

. . 1
where the exponential term is known as the Debye-Waller factor 1’12.

The isotropic temperature factor, B, is related to the mean square

displacement, UZ, of the atom, normal to the reflecting plane by

B = 812 U2 ... Eqn. 1.42
Anisotropic vibration is described in terms of a symmetric
3 x 3 matrix of the mean-square amplitudes of vibration Uij’ such

that Eqn. 1.4l becomes

2 2 2 2
= 252 * *
(é)T fa exp [ -2 (U11 h™ a*“ + U22 k™ b
+ U 2.2 c*2 + 2U hka*b*
33 12
L a* c* Lbk ck
+ 2U13 hf a* c* + 2U23 kib* c#)]
... Egqn. 1.43
Polarisation

X-ray reflexion by a crystal plane is more efficient for that
component of the incident beam which is parallel to the plane than
that which is perpendicular to it. Thus, an unpolarised incident X-ray
beam becomes partially polarised upon diffraction. For such an
unpolarised incident beam, the measured intensity must be corrected

by a factor 1, where

p
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p=1+ cos2 29 ... Eqn. 1.44
2

defines the polarisation, p, in terms of the Bragg angle.

The Lorentz-factor

Methods of collecting intensity data, in general, involve
the rotation of the crystal in the X-ray beam such that each reciprocal
lattice point passes through the sphere of reflexicn, satisfying a
given Bragg condition. Thus, the time taken for the reciprocal lattice
point to pass through the sphere varies with its position in reciprocal
space and its direction of approach. For a Weissenberg equi-inclination
setting angle of u, the measured intensity 1s corrected
by the application of a factor ! , where

L
L = sin 8 ... Eqn. 1.45

sin 28V (sinzé - sin2 u)

is the Lorentz factor.

Thus, the corrected intensity of a given reflexion I(hk%)
is obtained from the measured intensity by
I(hk?) = I(hk?) (measured) ... Egn. 1.46
Lp

1.10 The Structure Factor

In section 1.2, the solution of the scattering process,
expressed in terms of the Green's function given by the Fourier transform
in Eqn. 1.11, describes the diffraction pattern in terms of the
scattering object. In the case of X-ray diffracticn, the scattering
object is the electron density p(E) and the diffraction pattern
F (k) of the unit cell is therefore the Fourier transform of the electron

density within that cell of Volume V.

Hence,

F (k) =J‘D (r) EJF ! a3r ... Eqn. 1.47

\



and

p (r) = I F (k) e-J¥ - I a3k ... Eqn. 1.48

<

A crystal is defined by the convolution of the unit cell
with the crystal lattice, thus the Fourier transform (F T) of the
crystal ie. the complete X-ray diffraction pattern, by the
convolution theorem can be expressed as hEE F (fhkk) = FT( unit cell
* reciprocal lattice ]

= F (k) X reciprocal lattice ... Eqn. 1.49

Thus, F (s y where s

are the scattering vectors given
Stk Shks, 8 g

by Eqn. 1.31, exists only at the discrete reciprocal lattice points.

Hence, Eqns. 1.47 and 1.48 reduce to

F (shkﬂ J p (r) ed 2ns -
Vv
Z
h k¢

“hks, " d°r ... Eqn. 1.50

-j2ns

p (r) = Flsped e “puee

1 . Eqn. 1.51
- v (

)

The vectors shkz are described by Miller indices h, k and ¢,

and so, therefore, F ) can be written as the familiar structure foctor

(Shke
F (hk2). Splitting the electron density in Eqn. 1.50 into

the individual electron densities, pn(r') for each of the N atoms making

up the unit cell, F (hk!) becomes

N
F (hkg) = I p(r!") ernshkR'(E * T R d r'
n=1 n -~

v
N j2ns r ‘
=1 (£) e hkin ... Eqn. 1.52
n=1 an

where r is the vector position of the nth atom and (fa)
-n o
is the atomic scattering factor given in Eqn. 1.26.

The structure factor is therefore complex and may be

expressed as

- 22 -



F (hkl) = IF (hke.)l e® hke ... Eqn. 1.53

F (hk&)

where is the ratio of the scattering amplitude from the
unit cell to that from a point electron and ?hyy gives the phase
relative to that of a point electron situated at the unit cell origin,
Calculation of the structure factor is facilitated by symmetry
reduction of Eqn. 1.52 specific to each space group (the programs

in Appendix A use the symmetry reduced expressions for F (hkt) given in

8
International Tables for X-ray Crystallography . Vol.1l) .

1.11 The Wilson Plot

Assuming that the temperature factor, B, is the same for

each atom and isisotropic, the structure factor modulus |[F (hkﬂ,)R

for atoms at rest, is related to the measured intensity by

!/
I (hke) = K | F (hk2) |2 exp [ -2B (sin28 )
R =7

. Eqn. 1.54
where K is a scale factor. To place the relative intensities
I (hk%), and thus

F (hk?%)|2, on an approximately

absolute basis, K and B must be determined.

\
The theoretical average absolute intensity, sIabS>,
is given by
N 2
<Iabs> = ? (fa.) ... Eqn. 1.55
i=1 bop

for N atoms in the unit cell.

Thus, since B is assumed constant, by Eqn. 1.4l and 1.55
N

.2 2
<Iabs> = exp (-2B (sin 9)2)§ fa.
Aoi=1 1

= exp (-2B (sinzgl 2) <|F (hkt)R|2 > ... Eqn. 1.56

A
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Hence, by Eqn. 1.54

<I(hke)> = K exp (- 2B (sin? 9)_] ... Eqn. 1.57
N A2

L £.2

1 =1 i

To form a linear relation, Eqn. 1.57 becomes

In | <I (hk&)> = ln K - 2B (sin® §)
N A2
£ £z
i=1 i ... Eqn. 1.58

However, the fé's are not constant, but vary with

scattering angle as sin 8. pjvision of reciprocal space into

thin concentric shells minimises the effect of this wvariation.

Thus, <I (hki)> is taken as the average

69

value of the relative intensities within each shell and the fa's

8
are chosen suitably for that shell.

From Eqn. 1.58, a plot of 1n |<I (hk2) >

N
R
i=1"%1

against Eiﬂigz is a straight line of slope — 2B and co-ordinate
intercept lnAK. The granh is termed a Wilson plot (A.J.C.Wilson13).
The theory, Eqn. 1.54, assumes a random distribution of identical
atoms throughout the unit cell, in practice it is found that

the Wilson plot can be used to determined values of K and B adequate

for preliminary data analysis without this restriction (ref. Ch. 4).

1.12 Structure determination methods

The intensity of an X-ray reflexion from a crystal is proportional

to

F(hkﬁ)‘2 and thus only the moduli of the structure factors are
directly obtainable from the diffraction data. The solution of a
structure rests with the computation of the electron density from Eqn. 1.51

which requires the determination of the phases of a large number of reflexions.
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There are rwo major techniques which can lead to a full structure
determination; the heavy atom method and direct methods. These
techniques are particularly relevant to the present work and their
application is discussed in detail.

Heavy Atom Technique

A.L.Patterson14 defined the centrosymmetric function P(r)

in terms of the autocorrelation of the electron density p(r) as

P(r) = P(-r) = V(p(r) * p(r))
= v[ o(r') p(r' + r) d3¢' ... Eqn. 1.59
V.

and by Eqn. 1.51 this becomes

P(r) =1 E ‘F(hkﬂ) 2 73280 .. Eqn. 1.60

1
TV (hkY)

Since p(r) depends upon the number of electrons in the atom, Z,
P(r) has peaks of weight Zi Zj at r. -r. where i, j take all values from
1 to N, the number of atoms in the unit cell. Computation of P(r)

requires no knowledge of the phases, of the structure factors,

¢hkﬂ H
F(hk%). Thus, provided the atomic number of an atom is sufficiently
large, (v twice that of the average of the remaining atoms for structures
of the size discussed later) the vector between it and its symmetry

related atoms may be found, which, with a suitable choice of origin,

gives the position of that 'heavy' atom within the unit cell.

If the electron density p(r') for each atom were concentrated
at the atom origin (r' = 0), then Eqn. 1.59 would result in more
discernable peaks. Such a process is equivalent to considering a point
atom at rest. By a rearrangement of Eqn. l1.41, the scattering factor
for an atom at rest is given by

£o= (fa)T exP( B(sin? ] . ... Eqn. 1.61

8 )
F
A point atom at rest has a scattering factor equal to its
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atomic number, thus, by simple identity

Z=2 (7’-a)T exp [B (sinig )] ... Eqn, 1.62
F 22
a
and since
- ¢ ) eI ke i Eqn. 1.63
IF(hkf-)| = A ... Eqn. 1.
1 =1 i T

then the modulus of the structure factor for point atoms at rest is

N
j2n .L.
FCD) | e = E z, el "¥hke by
1 =1
N
=z Z, \F(hkl) exp (B(sinfg)] ... Eqn. 1.64
i=1 A2
n
z f
i=1 %
Use of {F(hkt)|? in Eqn, 1.60 results ir a sharpened
point

Patterson function with the advantage of more localised peaks with

consequently less overlap.

Oversharpening can introduce peaks due to diffraction ripples,
which, together with series termination effects caused by the finite
range of h, k and £ used in the summation can lead to
spurious results. Use of both the Patterson and sharpened Patterson
functions together gave the most reliable heavy atom positions. The
particular crystal system and its space group symmetry enables
Eqn. 1.60 to be reduced to its simplest form, as expressed, for
example, in the computation for space group P21212 in Appendix A.

Direct Methods

The determination of relationships between the
structure factors can lead to sufficient information about their phases

to obtain the electron density directly from Eqn. 1.51.

For any complex numbers ass bi’ the Cauchy inequality is given
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N N N
I a, b, |? < % la.|?2 = |bi|2
i=1% 1 i=1 L 1=1

.. Eqn. 1.65

Harker and Kasper (1948)15 applied this relation to
structure factors. In order to consider relating structure factors
for any h, k and £, it is necessary to normalise all
F(hk?) to remove that affect due to sin 6 fall off of the scattering

factors. Such normalised structure factors are often defined

by
|E (hk£)| = |F (hk£)| ... Eqn. 1.66
N
/1 (#F% | E
i=1 i T
and can be written
N .
E(hk) = ¢ n, ed?MShie °54 ....Eqn. 1.67
i=1 1
where n, = (£ ) . Eqn. 1.68
1 aiT
N 2
ap (£ )
i=1 iT

In the caseof a centrosymmetric structure, the phase ¢hk£
is given by O or m and so only the real part of E(hkl) need be

considered ie, from Eqn. 1.67

n

E(hk2) = ; ni cos 2n§hk2'fi . Eqn. 1.69
i=1

Letting a; = Jhi and bi = /(ni) cos 2"§hk£'fi

the Cauchy inequality, Egn.1.55, becomes
N

Bk0) L = Sn. S noceslimsye.r, - Eane 1.70
i=1 izt hxl"~]
which reduces to
2 N N N
E(hk?) < L n.| 1 I n. +1 I n. cos 2n2s g L.
i=1 1[ 2 i=1%" 7 i=1" ~hk® Ui
. Egqn. 1.71
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by a trigonometrical identity.

Defining a unitary structure factor

|u(hke)|2 = [E(hke) ]2 ... Eqn. 1.72

Eqn. 1.71 becomes
2
U(hk?) < + l_U(Zh 2k 28) ... Egqn. 1.73
2
which writcen as

1
2

U(2h 2k 22) > 2U(hk9.)2 -1 ... Eqn. 1.74
enables the sign of U(2h 2k 22),and hence E(2h 2k 2¢), to
be determined from the magnitude of E(hkf), provided the magnitude of

U{hk®) is sufficiently large,

Many such inequalities may be found by suitable partitioning
of E(hk{) taking into account any possible symmetry reduction within

the space group concerned.

If inequalities are produced by taking the sum and difference
of E(hk!) and E(h' k' £'), then, assuming that |E(hk2)| and |E(h'k'e")
are both large enough,

s(hk{) s(h' k' t') s{(h-h', k-k', 2-0") =1
... Egqn. 1.75
. 16 17
where s(hk!) refers to the sign of E(hkl{). Sayre ~, Cochran and
Zachariasen18 (1952) separately showed that Eqn. 1.75 is
E

approximately true even for 's smaller than was necessary to

satisfy the inequality relations. Eqn. 1.75 provides the means
of computing a sign - relation expansion pathway for all E's
considered large enough to satisfy or nearly satisfy the inequality

relations.
For non-centrosymmetric structures, ¢hk2 must be determined
' . 16 .
by the use of general phase relations. From Sayre it was

suggested that if the phases of a few reflexions are known, then
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an expectation value for others may be estimated by

<p = ¢ +

h'k'g! .éh_hl’ k—k', [ . Eqn. 1.76

>
hki

Further expectation values may be found by the tangent expression

<tan;§hkg> =
2 ty, gt _Rht L _p .
(h.k.g.)IE(h k'¢")||EC(h-h", k-k', 2-2 )|51n(¢h'kf1'+¢h-h', ekt g )
LE TR I3 | ! Lt _o1 .
(h'i'z')lE(h k') [JEG=R", ek, 200 feos (B vg #O e e g )

... Eqn. 1.77

derived by Karle and Hauptman (1956)23.

Cochran19 (1955) investigated the general form of the
probability distribution of <¢hk2> and showed that the probability

. .o o . .y .
of ¢hk2 being within 20 of <¢hk2> is 0.31 and the probability that it
is within 40° is 0.57.

Application of Direct Methods

The sign relations and the tangent formula predict structure

factor phases from a starting set of predetermined phases, In the
structures under consideration,three’

of the starting set phases must be chosen so as to fix the origin of the
unit cell on each of its three axes. Since, three linearly independent
vectors are necessary to define any Euclidean space uniquely, then

the three starting set phases must be those of reflexions whose associated

scattering vectors s are linearly independent. Using the three

hkZ

reciprocal axis vectors a*, b* and c* as a set of basis vectors then by

~ ~

the definition of fth (Egqn. 1.31),
fhkl =l h| = P _ ... Eqn. 1.78
k
'

A set of n vectors are said to be linearly dependent if there

exists a set of n integers a, .... a , not all zero such that

0 .
b a. h, =0 ... Egqn. 1.79
i -
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Since the starting set must be those phases of some of
the most intense reflexions, Eqn. 1.79, alone, would restrict
the possibility of even finding a starting set. However, symmetry
within each space group allows one of a number of permissible
origins to be chosen so that certain linear combinations of phases
whose values are independent of the choice of permissible
origin remain unchanged. Such linear combinations are structure

seminvariants. Eqn. 1.79 can thus be modified to become

ai Pi = 0 (mod ?s) ... Egn. 1.80

=M 3

=1

ie, for the vectors hi to be linearly independent modulo 0 there

must not exist any set of n integers a; ...a, at least one of which

being incongruent to zero modulo w.,for some i, such that Eqn. 1.80
i
holds, where'ms is defined as the seminvariant modulus, having components

ws s and is defined by the space group.

Thus the three origin determining reflexions must Pe chosen

such that the triple hl’ h2 and h_ is linearly independent

3

modulo w, le. such that the vectors ?1, ?2, ?3, h1+h2, §2+§3, §3+?1

22,23

and h1+h2+h3 are each linearly independent modulo W

In non-centrosymmetric space groups, the phase of a further
reflexion must be fixed in order to define the enantiomorph. The enantiomer
of a structure gives rise to a change of sign of @hkl' The
enantiomorph determining reflexion must be chosen with phase other
than O or m (since these are not affected by chaﬁge of +¢ to =% )
and must be a structure seminvariant. The phase of the enantiomorph
reflexion is thus chosen to lie within the range O to m or @ to 2w,

Certain space groups restrict the choice to L n by their inherent
-2

symmetry. Otherwise, a choice of T or 21 will give a maximum
4 4
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error of +m,
4

The use of a starting set, found by the above rules, may
be sufficient to determine the phases of a large number of reflexions
of high E, If the number of reliably estimated phases is not
large enough, then many trials using less reliable estimation of phase
may be carried out using different starting sets, known as the

multisolution method, (MULTANZO, SHELXZI).

‘Further relations between E(hkz)'s have been developed
P

by Karle and Karle (1964, 1966)26"25

, using a symbolic

addition method in which a limited number of reflexions with high

|E(hk%2)| and many interactions are given symbols to represent their phases
and solutions evaluating these symbols are subsequently related to the
auxiliary phase determining relations, already described, to form a

reliability check and the possibility of a multisolution approach within

the expansion pathway.

1.13 Structure Completion

The previous secticns described methods of obtaining
the phase of those reflexions either associated with the position of
a heavy atom, or which take part in more general phase rélationships.
In the first case, the structure has to be extended to determine the
remaining atomic positions, whereas, in the second case, often
only a partial structure can be determined and the structure remains

to be completed.

Fourier Fc—Synthesis

The electron density synthesis Eqn. 1.51 is calculated
using as Fourier coefficients the observed structure factor amplitudes
combined with calculated phases, based on atomic positions included in
the model. Atoms included in the model appear with increased peak

height together with the appearance of smaller peaks suggesting



positions of further atoms in the structure.

If phases used in the synthesis are computed by direct methods
then their associated {E(hkf)|'s can be used to produce an 'E-map'.
Atomic positions are indicated by the higher peaks in the map.

Further atomic positions may be found by the Fourier
method using phase angles calculated from the accepted atomic positions

and measured |F(hkt)|'s.

Syntheses used in the early stages of structure determination
often suffer from series termination effects that cause spurious
rippling in the map especially if a restricted set of amplitudes is
used; (this caused particular problems in the structure
determination described in Ch. 4).

Difference AF-Synthesis

The difference, Ap(r), between the observed electron
density, as given by F_ synthesis, and the calculated electron density
from the structure model is defined as

.T

e_Jznfth -

ap(r) =1 T (|F_(hkt)]|- |Fc(hka)|) el%
¥V (hkpy °

. Egqn, 1.81

where @, is the phase of Fc(hkl).

Atoms which are correctly placed do not give rise to peaks
on this map, but missing atoms are shown by distinct positive peaks and
incorrectly placed atoms by negative 'holes'. Careful
use of difference Syntheses can result in information concerning
assigment of atom type due to the difference in electron density
between alternatives. Anisotropic thermal vibration may also be
distinguished from the appearance of asymmetrically placed peaks

and 'holes' surrounding given atom pasitions.

Optimisation of the information obtained from the AF synthesis
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was used to check the placing of hydrogen atoms within the
structure model following geometrical calculation of

their positions.

1.14 Least-Squares Refinement and Residual Index, R

The structure factor F(hkt), as described by

-B(sin28) .
. 3Cai e 12 g ISy, Ty ... Eqn. 1.82

F(hk%) =

™MD

is a function of the position vector r. of each atom and of the

-

temperature factor B, (or U,.).
i ij

For small errors in these parameters, an extension of the

total differential gives

N .
AF(hk®) - L aF(hkl),ABi + aF (hk?) Ar =0
i=1 aBi ari -1

.. Eqn. 1.83

I1f, however, AF(hk?) is given by the difference between
the observed and calculated structure factor, (Fo(hkl) - Fc(hkt))
and F(hk!) is substituted by Fc (hk!) within the summation, Eqn. 1.83
is usually not identically zero. A revised calculated structure

factor Fé(hkl), may therefore be obtained by

N
' = 3 Q .
F '(hk?) = F (hkt) + I X BF (hkt)  8B; + 3¢ (hki) Ar,
1= 3 B, ar.
1 -~
... Eqn. 1.84
and thus,
N
- ! = - h
Fo(hkl) Fc (hk?) AF (hk!) § . aFc(hkt)_ ABi + aFc( kt).Ar-
re 3B. 3T ~1
1 ~
.. Eqn. 1.85

The range of (hkf) provides a set of equations of
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the form 1.85 and a least-squares solution for the error in the
parameters is calculated which minimises

D= ¢ (F (hkz) - F_'(hkg))?2 ... Eqn. 1.86
(hkg)y ° ¢

Convergence to the best set of values is indicated by the
minimised static value of the residual index, R, after successive cycies
of refinement where

R = T |F_(hk&)| - |F_(hk2)] ... Eqn. 1.87
(hkp-) Q c

£
(h k 2) |F_(hke) |

1.15 Accuracy of Bond Lengths and Angles

Bond lengths and angles are functions of the atomic position

vectors r. which are parameters of the least-squares

refinement. The error, in terms of standard deviation, of a function f

related to n independent variables xi(i =1 to n) is given by

n
o =4z afri2ao?,
f (. . E;J 1) ... Eqn. 1.88

1 =

9 . . .
where 0.~ 1s the variance of variable x..
i 1

The bond length, as a function of the position vectors rland

~

r., between atoms 1 and 2 is given by

L2

12 |r - Eil |r12| . Eqn. 1.89
which reduces to

L, = Y x 12 * Y, 2, %%} ... Eqn. 1.90

-~

where x , y and 2z are the components of r related to orthogonal

axes of units a,b and c respectively.

Thus, if the atoms are uncorrelated, the standard deviation

in t is given by Eqn. 1.88 as

2 2
= 2 2 2
o, = ¢’((0 x + 02 ) [XIZ a] + v, + 0 ) ) [y12 ]
t g
2 2 2
+ (0’21 + a z2) [ZIZC] ] ... Eqn. 1.91
{
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9 12

w
-3

~13

Similarly, the bond angle, 8 , between bonds 1-2 and
1-3 may be obtained by the scalar product of the interatomic vectors ie.
= & )
Ty - T3 2 %3 cos 8 ... Eqn. 1.92

which when related to orthogonal axes gives

_1 '
B = cos (x12 X137 Y12 13 20 Z13) ... Eqn., 1.93

212 %13

and therefore by equation 1,88

a a 2 2 z + 0 2 + g 2 :

g=| 1t 2 Ty T3
R 2 2 2 2 ... Eqn. 1.94
k12 13 212 13

2 2 2 . . -
where Ur » O and or are the variance in positions of the atomsl,2 and
-1 ~2 ~3
3 respectively, {(ref. 7, Ch 17).
The deviations calculated using the relations described
take no account of errors such as errors in data
collection, unit cell parameters etc. Thus, such a treatment of

errors should be viewed as a measure of accuracy with respect to self-

consistent parametrical errors.

Sections 1.6 to 1.15 have discussed the major crystallographic
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measurements and computations required to carry out a single crystal
structure analysis. These are developed further in the following

chapters and applied to the structures referred to in the Introduction.



CHAPTER TWO

The Crystal and Molecular Structure of

7-Chloro-2-Mechyl-5-Phenyl-3-Propyl [2,3 -] -

Imidazolyl Quinoline.

CH4

/ .
N
N
Cl

2.1 Introduction

The title compound (1) C20H18N3C£, provided by Dr G.Kirk,
Department of Pharmacy of Chelsea College, University of London,

was considered of interest because it is derived from the psychoactive

drug Librium, and was thought: to conform to the structure,

Cl (CH-},,CH
Rl Al Rl
=N (2)
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i.e., that of a 7-chloro-1-methyl-5~phenyl-3-propyl-azeto - (2,3 - ]
[1,4] benzodiazepine containing the highly strained 4-membered azete

system.

Shenoy, (1975)26, assigned the structure (2) on the basis of

13

1
C"”, H n.m.r.,, U.V. and mass spectroscopy data. No examples of stable

4-membered azacyclobutadiene rings had previously been reported,
2 .
though Seybold et al, (1973) 7, inferred that they had prepared

tris (dimethylamino) azacyclobutadiene {3},

(CH3)2N N(CH3)2

N (3)
(CH?ZN

though the stability of the monocyclic azete is very low.

2.2 Crystal Preparation

R.J. Girven, (1977)28, prepared crystals of the compound
in order that configuration (2) could be confirmed by structure
determination. The best crystallisation solvent was found to be acetone;
using, as solution, 104 mg of starting material in 5 cm3 acetone and heating
to 45°C followed by cooling to room temperature over two hours,

colourless rod shaped crystals were obtained, up to l cm in length.

2.3 Space Group and Unit Cell Determination

Preliminary X-ray investigations showed the crystals to
belong to the orthorhombic system, and to have unit cell dimensions,

a=7.43 (3), b = 21.56 (3) and ¢ = 10.69 (3) R, v = 1712.44 R3, with
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elongation of the crystal along the a* reciprocal crystallographic

axis.

Weissenberg photographs revealed systematic absences CkO, k =
2n + 1 and h0O, h = 2n + 1, (n integer). The density was determined
by flotation in potassium iodide solution to be 1293 kgm—3. For a
structure having Z = 4 molecules per unit cell, the calculated
.density was found to be 1303 kgm_3 using Eqn, 138.It was thus concluded

that the crystal symmetry must be that of the space group P21212.

2.4 Intensity Data Collection and Preliminary Treatment

Equi-inclination Weissenberg techniques were employed
using the multifilm method of data collection. The Stoe camera was
used throughout with CuKa radiation. Crystals were rotated about the
a* reciprocal axis and intensity data collected for the zero layer
and five upper layers, using exposure periods of 5 days. Additional

data was collected for each level using 12 hours exposure, in order

to bring the most intense reflexions within the measurable range.

Intensity measurements were carried out at the SRC Microdensitometer
Service, Daresbury. 2222 reflexions were of measurable intensity?
Lp corrections and conversion to Fo values were carried out by the HKLF
and MERG rou tines of the SHELX program, resulting in an overall
isotropic temperature factor, of estimated value U = 0.074&2 from a

modified K-curve60 and linear absorption coefficient u (CuKa) = 1898 m_l.

2.5 Structure Determination

The presence of a chlorine atom in the molecule enabled the

structure to be solved by the heavy atom method.

The space group P21212 has equivalent positions in the unit

cell given by

x . . . . .
A possible 3863 reflexions are contained within the experimental Cu sphere,
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X, ¥, 2

Xs ¥, 2

N

5*"%5'}’,

N

i_x!£+Yv

for the corresponding atoms in each of the four molecules within the

unit cell.

The Patterson function, given in Eqn. 1.60, reduces to the
form

P(u,v,w) = 8 |F(hki’.)l2 cos 2mhu cos2nkv cosZniw

z
hk2

<|

. Eqn. 2.1
in the orthorhombic system, where the multiplying constant 8 ,
v
normalises spatially (V) and symmetrically (8).

A peak at the point (u,v,w) in the Patterson map indicates

that there exist, within the unit cell, atoms at (xl, ¥y zl) and

(Xz, Yos 22), such that
u =X "X,
VEY) T,
W=z, Tz, .. Eqns. 2.2

Thus, the equivalent positions in P21212 correspond to

Patterson peaks at

(ul, vis wl) (2x, 2y, O)

(UZ’ Vos W Yy = (4, 3 - 2y, 22)

2
(ug, Va5 W3) = (} - 2x, %, 22z) ... Eqn. 2.3
ie.
(22, 2y) on the w = O section,
(4-2y, 22) "ot u= | " ;
and (3-2x, 22) " "oy o= on

Computation of P(u,v,w) was performed in both the unsharpened

form (Eqn. 2.1) and the sharpened form using the sharpening function
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given in Eqn. 1.64,by the use of program (1) given in Appendix A.
Peaks consistent with Eqns. 2.3 gave a solution for the chlorine atomic

position at

x = 0.091
y = 0.198
z = 0.225 ... Egqns. 2.4

Further synthesis of the electron density (Eqn. 1.51)
can be expressed in terms of the spatial co-ordinates (X, Y, Z)

within the P21212 unit cell by

p(X,Y,2) =8 ) L |F(hk2)] [ cos2nhX cos2nkY cos2nfZ cosa(hkl)
Vv hk2
(h+tk = 2n)
- sin27hX sin27KY sin2ntZ sina(hki)]
- ¢ |F(hke)| [ sin2mhX sin2nkY cos2mlZ cosa(hki)
hk2
(h+k = 2n+1)
- cos2rhX cos2nkY sin2nfZ sina(hkﬂ)]i ... Eqn. 2.5
where
a(hky) = tan-1 - sin2r{hx + h+k) sin2n(ky - h+k) sinZunfz
4 4
cos2n(hx + h+k) cos2n(ky - h+k) cos2nfz
4 4

. Eqn. 2.6

is the phase of reflexion (hk2) contributed by an atom at (x,y,2z). The

program written to compute this function is given in Appendix A (2).

Fig 2.1 shows the progress of the Fourier syntheses in
the structure determination process; where the symbols e and o describe

respectively those atoms used in the synthesis and those derived from it.

Initial phasing of Eqn. 2.5 was carried out using those
observed reflexions Fo(hkl) thought to have a significant scattering

contribution from the chlorine atom already found by the Patterson
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Fig 2.1.

Progress of the structure determination during electron

density Fourier Synthesis.
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Fig 2.1 (contd.)
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method. The criterion used for selection of reflexions in this
initial phasing was

[F (hke)| , > 0.3|F (hke)| ... Eqn. 2.7

where |Fc(hk2)|cg is the calculated structure factor modulus for

the chlorine atom alone. The resultant synthesis, using 668
reflexions produced three further peaks thought to be consistent
with new atomic positions. The newly found interatomic vectors were
calculated, and corresponding Patterson peaks used to verify the new

positions as C(3), N(11) and C(18), Fig. 2.1 (A).

Further use of Eqn. 2.5 was made to produce subsequent
synthases using those observed reflexions satisfying the inequality

[P (hk2}| > 0.3 |F0(hk2)| ... Eqn. 2.8
where IFc(hk2§| is the calculated structure factor modulus for all
derived atoms, and corresponding values of a(hk%), calculated

by Egn. 2.6, for all derived atomic positions.

The six-membered ring containing N(1l) was quickly recognised
to show a departure from the expected structure (2), as early as synthesis
(D) and the spatial relation with the derived positions of C(21) confirmed
the attachment of C(21) to an alternative conjugation. The side
chain C(22), €(23), and C(24) had also therefore to branch from the
same ring system as C(21) which proved inconsistent with the
existence of a four-membered azete ring. Subsequent synthesis
revealed the existence of a five-membered ring which when used in the
phase calculation allowed the determination of>the two remaining Six-

membered rings in the final synthesis.

2.6 Refinement of the Structure

Six cycles of unweighted full matrix least-squares isotropic

refinement resulted in an unweighted R factor of 0.1498 excluding
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H atoms from the refinement.

Anisotropic refinement was carried out using SHELX 'BLOC' sectioning,
partitioning the structure into 6 sections, Fig. 2.2, to maintain the number
of parameters refined in any one cycle within the maximum of 112, compatible

with the limited storage capacity of the ICL 1903A machine used.

Fig, 2.2 Sectioning for SHELX 'BLOC' refinement. These

sections were refined in pairs, to provide the following overlap.

Cycle Sections Refined
1 ) 1 .2
2 2 3
3 3 4
4 4 5
5 5 6
6 6 1
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H atoms were included in the anisotropic refinement with

temperature factors fixed at the values of the isotropic temperature

factor of the carrier atom, obtained at the isotropic refinement

stage, the bond length being fixed at 1.083, resulting initially in

R = 0.1121. Final anisotropic refinement was carried out with the omission
of nine low order reflexions showing severe intensity reduction by

secondary extinction.

The final value of the unweighted R factor for the refined
structure was 0.0821. Structure factors are listed

in Appendix B (ref. SH62 P21212)

2.7 Discussion

The final co-ordinates of the non~hydrogen atoms are
given in Table 2.1. The bond distances and angles are
listed with their standard deviations in Tables 2.2 and 2.3, and are
illustrated in Figs. 2.3 and 2.4. The H atom co-ordinates are
given in Table 2.4. Thermal parameters are listed with their standard
deviations in Table 2.5. Fig 2.5 gives a view of the complete unit
cell contents along a and Fig 2.6 shows the complete unit cell

contents viewed along c.

The structure exists with the whole of the conjugated ring
system and linear side chains virtually coplanar; the separation
between the planes of adjacent parallel meclecules -3.68, However,
the side chain phenyl group is constrained such.that the plane of the
ring makes an angle of “65° to the plane of the remaining molecule
effected by rotation about C(8) - C(15); a feature which maintains a
parallel relationship with the plane of the same group in the adjacent
molecule with a perpendicular interplanar separation -1.8%

as shown in Fig 2.6.

2 ..
Synthesis of the compound, (Shenoy, 1975) 6, was an indirect
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Figure 2.3 Bond lengths in CpgHpgN3CR
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17.2 1214
121.4 120.5
119.9 119.5

Figure 2.4 Bond angles in CygH;gN3CR
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Figure 2.5 The Crystal structure of CogH gN3C% viewed along a.
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Fi

gure

2.6

The Crystal structure

of C,H,.N,CL viewed along c.

207183
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result of an attempt to react aldehydes with chlordiazepoxide under

acidic conditions.

CH3

/R
NHCH N - /N=C—H-HCl
= \
j RCHO1 -2mols \S OH
HCl 2mols  Cl
=N

N\
Ph 0

(i)

The reaction was repeated using forced conditions (excess aldehyde)

resulting in an adduct

CH3 R

s NHCH3 N-— C —HHCl
\S excess \5
RCHO
HCl
"H

—C—R
(i)

Treatment of methanolic solutions of the adduct with 40% aqueous

NaOH, gave products which analysed for C, H, N and C¢ only. Carboxylic
acid was shown to be present in the mother liquor after acidification,
indicating the removal of the O from the N-oxide function. In the

case of butyraldehyde used in reaction (ii), the H1 n.m.r. spectrum

of the product after treatment with 407 NaOH showed peaks for:

a n-propyl side chain, a deshielded N-methyl group and only eight
aromatic protons; features fully consistent with both the proposed
azete structure, {2), and that found by the X-ray structure analysis

described here, to correspond to structure (1).
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It is therefore concluded that the reaction formalism,

CH
13 R CHy
N «_N—C-H

/
s \ N N
OH o
NaOH >R
_ 0 L0 % P N
N\‘ i Cl
e Ph

(iii)

involving the cleavage of the seven-membered ring, becomes the only
interpretation consistent with the evidence provided by structure

determination.

The activity of the parent chlordiazepoxide as an antianxiety
agent is greatly dependent upon the existence of the (C = ﬂ ) system,
though removal of the O from the N-oxide function is not
critical for retention of activity (F. J. Patracek, Chemistry of Psycho--
pharmacological Agents)zg. It might be expected therefore,that
breaking of the C = N bond would result in a
diminishing of the typical anticonvulsant activity. However, the
structure of the resultant compound is more akin to that of a tricyclic
antidepressant though retaining the unsaturated nature within the

central ring system Similar to that of the parent compound.
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TABLE 2.1. Final co-ordinates obtained from least-squares

refinement. Co-ordinates are given as fractions of cell edges
4 .. . .

x 10 . Standard deviations in parentheses are with respect to

the last figures given .

X y z
cv(1) 913(4) 1966(1) 2172(3)
C(2) 1217(13) 2702(3) 2869 (9)
C(3) 1441(10) 3203(3) 2046(8)
c(4) 1734(10) 3797(3) 2594 (6)
C(S) 1802(10) 3847(4) 3912(7)
Cc(6) 1547(13) 3319(4) 4685(8)
c(7) 1257 (14) 2740 (4) 4129(10)
Cc(8) 2062(9) 4328(3) 1820(6)
c(9) 2449(9) 4869(3) 2444 (6)
C{10) 2433(10) 4870(4) 3756(6)
N(11) 2142(9) 4403(3) 4529(5)
N(12) 2189(7) 459(2) 7992(5)
C(13) 2002(9) 787(3) 6987(6)
N(14) 2196(8) 468(3) 5893(5)
C(15) 1961(10) 4294(3) 421(6)
c(16) 325(10) 4195(3) .9826(6)
c(17) 246(14) 4180(4) 8549(7)
Cc(18) 1818(17) 4266(3) 7853(7)
c(19) 3439(13) 4366(4) 8443(8)
€(20) 3568 (10) 4376(3) 9734(7)
c(21) 2088 (14) 689(4) 4607(7)
c(22) 1603(9) 1485(3) 6947(7)
c(23) 1413(11) 1766(3) 8252(8)
C(24) 1025(14) 2473(3) 8200(10)
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TABLE 2.2.. Bond lengths and their standard deviations (R) after

final least—-squares refinement

ce(l) - C(2) 1.767(8)
c(2) -cC(3) 1.403(11)
c(2) -c¢(7) 1.350(14)
C(3) - C(&) 1.427(10)
c(4) =-1cC(5 1.413(10)
C(4) - C(8) 1.433(9)
C(5) - C(6) 1.421(12)
C(5) - N(11) 1.391(10)
c(6) - C(7) 1.399(13)
c(8) -C(9) 1.374(9)
C(8) - C(15) 1.499(9)
c(9) - c(l0) 1.402(9)
C(9) - N(12) 1.383(10)
C(10) - N(14) 1.371(10)
C(10) - N(1l1) 1.321(10)
N(12) -~ C(13) 1.298(9)
C(13) - N(14) 1.364(9)
C(13) - C(22) 1.535(9)
N(14) - C€(21) 1.458(9)
C(15) - C(16) 1.389(10)
C(15) - €(20) 1.413(10)
C(16) - C(17) 1.367(10)
C(17) - C(18) 1.397(15)
C(18) - C€(19) 1.376(15)
C(19) - €(20) 1.383(11)
C(22) - C(23) 1.527(11)
C(23) - C(24) 1.552(10)
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TABLE 2.3. Bond angles (°) and their standard deviations

C(3) =-c(2)y - ca(l) 116.3 (0.7)
C(7) -0C(2) -c2(l) 118.6 (0.6)
C(7) -C(2) -cC(3 125.2 (0.7)
C(4) =-C(3) =-C(2) 116.9 (0.7)
C(5) - C4) - C(3) 118.9 (0.7)
c(8) - cC(4) - C(3) 120.4 (0.6)
C(8) - C(4) - C(5) 120.5 (0.6)
C(6) - C(5) =~ C(4) 120.9 (0.7)
N(11) - C(5) - C(4) 123.0 (0.7)
N(1l) - C{5) =~ C(6) 116.1 (0.7)
c(5) -cC(6) -C(N 119.3 (0.8)
c(6) -C(7) =-¢C(2 118.8 (0.8)
c(15) -~ C(8) - C(&) 121.9 (0.6)
C(15) - C(8) - C(9) 122.5 (0.6)
c(9) - cC(8) - C(4) 115.6 (0.6)
C(10) - C(9) - C(8) 119.0 (0.6)
N(12) - C(9) - C(8) 110.1 (0.3)
C(10) - C(9) - N(12) 108.4 (0.3)
C(9) - C(10) - N(11) 128.8 (0.7)
N(14) - C(10) - N(11) 125.4 (0.6)
N(14) - €(10) - C(9) 105.9 (0.3)
€(10) - N(11) - C(5) 112.9 (0.6)
C(9) - N(12) - C(13) 101.0 (0.2)
N(14) - C(13) - N(12) 115.3 (0.6)
C(22) - C(13) - N(12) 125.3 (0.6)
Cc(22) - C(13) - N(14) 119.4 (0.6)
c(21) - NQ(14) - €(13) 129.6 (0.6)
C(21) - NQQ4) -~ c(10) 134.2 (0.7)
c(13) - N(14) - €(10) 133.4 (0.7)
c(16) - C(15) - €(8) 120.6 (0.6)
C(20) - C(15) - C(8) 118.1 (0.6)
C(20) - C(15) - C(16) 121.4 (0.6)
C(17) - C(16) - C(15) 119.9 (0.7)
Cc(18) - €(17) - C(l6) 119.5 (0.9)
C(19) - c(18) - c(17) 120.5 (0.8)
C(20) - C(19) - Cc(18) 121.4 (0.8)
Cc(19) - €c(20) - c(15) 117.2 (0.7)
C(23) - C(22) - C(13) 112.4 (0.6)
C(24) - C(23) - C(22) 111.9 (0.7)
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TABLE 2.4. Co-ordinates of hydrogen atoms.
. . . 4
Co-ordinates are given as fractions of cell edges x10 .
The heavy atom associated with each hydrogen atom is also given,

Standard deviations in parentheses are with respect to ‘the last

figures given. (e.s.d.'s quoted refer to those of the parent atom).

X y zZ

H(C3) 1385(10) 3147(3) 1042(8)
H(C6) 1554(13) 3370(4) 5690(8)
H(C7) 1091 (14) 2330(4) 4698(10)
H(C16) 14(10) 4186(3) 812(6)
H(C17) - 1024(14) 4095(4) 8088(7)
H(C18) 1749(17) 4273(3) 6844 (7)
H(C19) 4648(13) 4420(4) 7893(8)
H(C20) 4020(10) 4400(3) 693(7)
H(C21) (1) 2322(14) 305(4) 3980(7)
H(C21)(2) 3092(14) 1043 (4) 4448(7)
H(C21)(3) 766(14) 880(4) 4435(7)
H{C22) (1) 2682(9) 1716(3) 6455(7)
H(C22)(2) 355(9) 1555(3) 6448(7)
H(C23)(1) 2655(11) 1690(3) 8754 (8)
H(C23)(2) 323(11) 1539 (3) 8738(8)
H(C24) (1) 912(14) 2655(3) 9138(10)
H(C24)(2) - 219(14) 2552(3) 7702(10)
H(C24) (3) 2114 (14) 2703(3) 7718(10)
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TABLE 2.5.

exp[-Zﬂz(Ullhza*

i
* 2Uss

exp [—2n2U(h2a*

deviations in parentheses are with respect to the last figures given.

ce(l)
C(2)

c(3)
H(C3)
C(4)

Cc(5)

Cc({6)
H(C6)
c(7)
H(C7)
c(8)

c(9)

C (10}
N(11)
N(12)
Cc(13)
N(14)
Cc(15)
C(16)
H(C16)
c(17)
H(C17)
Cc(18)
H(C18)
c(19)
H(C19)
c(20)
H(C20)
c(21)
H({C21) (1)
H{C21)(2)
H(C21) (3)
Cc(22)
H(C22) (1)
H(C22)(2)
C(23)
H(C23) (1)
H(C23) (2)
C(24)
H(C24) (1)
H(C24) (2)
H(C24) (3)

keb*c*)] .

U or U1

2

2 2

+k2b*

1

586(22)
281(37)
53(52)
239(32)
1(46)
1(47)
443(68)
459(62)
269 (66)
417(41)
1(38)
1(43)
1(47)
218(46)
6(33)
1(39)
124(37)
88(43)
101(53)
278(32)
669(75)
386(38)
1127(99)
464 (40)
508 (77)
422(41)
215(51)
256(32)
555(66)
472(41)
472(41)
472(41)
128 (44)
296(32)
296(32)
273(55)
383(40)
383(40)
615(64)
573(47)
573(47)
573(47)

*
+ U2 kb

2

2

c*y]

Uss

344 (10)
281(37)
422(41)

407(38)
506 (46)
620(55)
492(52)
351(36)
351(37)
520(47)
491 (41)
321(28)
460(39)
417(34)
256(34)
354(37)
439(45)
336(39)
562(51)
375(39)

591 (56)

361(33)

324(35)

336(37)

2
*
+ U332 c

Isotropic temperature factors are expressed as

2

The unit of Uij is 82 x 10°.

Usg

921(21)
584 (61)
361 (44)
259(37)
315¢41)
353(48)
642(63)
222(33)
213(33)
273(37)
257(32)
278(27)
296(35)
248 (29)
251(36)
227(37)
347 (48)
263(41)
438(51)
372(40)

321(42)

446(41)

703(58)

969(76)
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Usz

64(13)
102(39)
40(35)

32(30)
53(35)
165(42)
218(47)
51(28)

8(26)
~14(31)
- 3(28)
22(25)
46(33)
103(26)
-17(27)
31(30)
- 9(36)
=24 (34)
-16(38)
- 3(31)

110(38)

165(33)

45(36)

-19(45)

Anisotropic temperature factors are expressed as

T % ok
+ 2Ul hka*b* + 2U13h£ ax ¢

Uis

-75(14)
-83(44)
-22(33)

15(29)
-23(31)
33(43)

41 (48)

60(28)
16(26)
17(28)
4(28)
-16(24)
-54(30)
-16(25)
-26(28)
-67(30)

109(42)

27 (50)
301(43)
163(31)

15(41)

-56(32)

-19(42)

38(62)

Standard

U12

~54(12)
23(36)
8(30)

19(30)
50(33)
-11(44)
~34 (44)
27(26)
19(27)
29(33)
37(33)
43(22)
-61(29)
4(27)
2(28)
. 236(33)
~138(45)
-12(47)
-5(44)
22(32)

-26(49)

37(27)
34(30)

67(41)



CHAPTER 3

The Crystal and Molecular Structure of the Methyl

Ester of 5, 5-Dimethyl-2-(2-Phenoxymethyl-5-Oxo-1,

3-Oxazolin-4-Ylidene) —-1, 3-Thiazolidine-4-

Carboxylic Acid

3.1 Introduction

C17H18N2055 was first reported by Brandt, Bassignani

30,31

and Re (1976) to have the configuration I,

I <:>_O/CHZ\C/’NH\C=C/S\/CH3
I [ ?\CH

0 C—N—CH 3
Vs
od C\COOCH3

i.e. that of a DL-5, 6-didehydropenicillin, afforded on the basis of
. 1 13
spectroscopic data (I.R., H® and C n.m.r., mass spectrometry).
X-ray structure analysis was undertaken as a
preliminary to investigation of the reported weak antibacterial activity

of the dehydropericillin and to establish a possible correlation with

the "unsaturated" nature of the penicillin nucleus,

Subsequently, Bachi and Vaya (1977)32 suggested the

configuration II on the basis of a comparativé study of U.V, and I.R.
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spectra.

n (o

3.2 Experimental

The compound was obtained from Snamprogetti Societa per
Azioni, Monterotondo, Rome. Single crystals were prepared in the
following manner: 30 mg starting material was dissolved in 2 cm
ethyl acetate and to this solution 1 cm3 cyclohexane was added
slowly to prevent clouding. The solution was placed in a water bath
warmed to not more than 40°C and protected from light and rapid
evapor ation. The compound crystallised as clear needle-shaped

single crystals on slowly cooling the solution.

‘The unit cell dimensions weredetermined from
zero level equi-inclination Weissenberg photographs, the camera radius
was determined from high-angle reflexions from an annealed gold wire.
Systematic absences hO%, £ = 2n + 1 and OkO, k = 2n + 1 ( n integer),
indicated space group P21/c in the monocl inic system, with a = 10.60 (3)
N _ 2 _ o _ c RB 3 . _
b =15.53 (3), ¢ = 12.63 (3) A, B = 61.97", V = 1835.25 , and linea:

absorption coefficient u (CuKa) = 1714m_1.
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Data for intensity measurement were obtained by the equi-
inclination method on Stoe and Nonius Weissenberg cameras using Ni-
filtered CuKg radiation (). = 1.5418 S) and the multiple film technique.
The crystals used for these measurements were rotated about the

¢ crystallographic axis with the long edge of the crystal
parallel to the rotation axis. The X-ray films showed severe
reduction in intensity of reflexion at high sin 8 after crystals had
prolonged exposure to X-rays; 4 different crystals were used for
collection of intensity data. The intensities of the X-ray reflexions
were measured by the Science Research Council microdensitometer
at Daresbury. A total of 1738 reflexions were of measur able
intensity. Lp corrections and conversion to Fo values were
carried out by the HKLF and MERG routines of the SHELX program,

resulting in an overall isotopic temperature factor, of estimated value

U = 0.066 R2.

3.3 Structure Determination

The structure was solved by direct methods, (Germain, Main
and Woolfson (1970, 1971), and Germain and Woolfson (1968)20,
Hauptman and Karle (1956)22, Karle and Hauptman (1956))23, using
the starting set given in Table 3.1 with the three origin determining
reflexions marked ORIG and the multisolution phase assigmments marked
MULT. Expansion was carried out with reflexions, having [E(hk2)|> 1.2,
to 290 signs using 2395 relations with 4096 permutations and 116
quartets. The choice of the three origin determining reflexions
was governed by Eqn. 1.80 such that the triple hl’ h2, h3 was linearly

- - ~

independent modulo w . The semnvariant modulus w_in the case of

- -~

space group P21/c is given by Hauptman (1974)33 as
2

W, o= 2 : ... Egqn. 3.1
- 2
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Thus, for the three origin determining reflexions,

5 1
h, = |2 = 0
1 2
- 1 1
-5 -1
h, =1 7 = 1
-2 1 1
4 0 2
and h3 = |5 = 1 modulo 2 ... Egqns. 3.2
- 1 1 2
combination gives
0 0
h, + h, = 9 = 1 ’
-1 22 5

[—1] (_l]
h, + h, = |12 = |0
-2 23 9 o
9 1 2
and h3 + hl = 7 = 1 modulo 2
- - 2 0 2
. Eqns. 3.3
together with
4 o 2
h, + h, + h = 14 = |0 modulo 2
-1 .2 ] 3 1 9
. Egqn. 3.4

such that the triple hl’ h2, h3 is linearly independent modulo

w_ as required.

All the 25 non hydrogen atoms were obtained from the E map
produced from an expansion pathway using the permutation of sign relations
++++—=+++++++=-— (Table 3.1) such that the config;ration I1, (¢ 3.1),
suggested by Bachi and Vaya (1977)32, was subsequently recognised

and confirmed.

3.4 Structure Refinement

Four cycles of unweighted full matrix least-squares isotropic



TABLE 3.1 Starting set of reflexions with associated phases and equivalent

sign relations.

h k 1 E Phase ° Sign Relations
5 2 1 3.540 0 ORIG +
-5 7 1 2.615 0 CRIG +
4 5 1 1.645 0 CRIG +
-1 4 1 3.396 0, 180 MULT + -
8 2 2.274 0, 180 MULT + -
0 3 2 2.896 0, 180 MULT + -
-2 7 1 2.297 0, 180 MULT + -
4 7 ¢ 1.975 0, 180 MULT + -
-1 1 5 1.800 0, 180 MULT + -
3 6 4 1.305 0, 180 MULT + -
6 3 6 2.113 0, 180 MULT + -
-2 8 5 2.468 0, 180 MULT + -
67 1 1.869 0, 180 MULT + -
-2 5 1 1.950 0, 180 MULT + -
-6 3 2 2.557 0, 180 MULT + -
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refinement including interlayer and overall scale factor refinement produced
R =0.175. Anistropic refinement initially resulted in R = 0.106 with
hydrogen atoms included in the refinement. The ‘hydrogen atoms were

given isotropic temperature factors fixed at the values of the

isotropic temperature factor of the atom to which they are bonded,

obtained at the isotropic refinement stage, the bond length

being fixed at 1.08 R,

An Fo' Fc synthesis revealed a significant positive
peak adjacent to 0(19) which could not be removed during refinement.
Further refinement was carried out with 0(19) replaced by 0(19(2)) in the
position indicated by the F - FC peak. A further Fo— Fc synthesis
showed a positive peak at the previous 0(19) position, (0(19(1))). The
ratio of the peak heights in both syntheses (~2:1) was taken as an
indication of alternative site occupation, in part confirmed by the
departure from the expected benzene C-C bond length (1.39 R) in
the phenyl group attached to 0(19) illustrated in particular by the
bond C(22) - C(23), (1.36 R). Anisotropic refinement of the

0(19(1)), 0(19(2)) positions, performed using site occupation factors of

0.7 and 0.3 respectively, finally resulted in R = 0.096.

Refinement at the anisotropic stage was carried out using
SHELX 'BLOC' sectioning, with the structure partitioned into
6 sections, Fig. 3.1., to keep the number of irdependent variables

refined in any one cycle within the maximum of 112.

| ! !

1
Fig. 3.1 Sectioning for SHELX 'BLOC' refinement
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-.f;g_

Fig.3.2 Schematic labelling of the non hydrogen atoms in the title compound, {C47H{gN20g5)



Figure 3.3 Bond lengths in Cj7HygNy0gS
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109.31(0.4)
1254 .4.5!

Figure 3.4 Bond angles in Cj;7H;gNp05S
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i

Fig.3.5 The crystal structure viewed along b ,{Cq7H1gN2055)
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Fig .36 The crystal structure viewed along g,(C47H1gN205S)
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Sections were paired during refinement to provide overlap

and overall refinement in 6 cycles.

The residual electron density in the final difference map
was within -0.39 and 0.42 ex-3. No further improvement could be
made in FO/FC correlation probably due to the deterioration of the
crystals during prolonged X-ray exposure. Structure factors are listed

in Appendix B (ref. SNP P2(1)/C).

3.5 Discussion
The final co-ordinates of the non-hydrogen atoms are
given in Table 3.2 with their schematic labelling illustrated in Fig. 3.2.
The bond distances and angles are listed with their standard deviatioﬁs
in Tables 3.3 and 3.4 and 1llustrated in Figs. 3.3 and 3.4. The H atom
co-ordinates are given in Table 3.5. Thermal parameters are listed
with their standard deviations in Table 3.6(a) and (b). Fig. 3.5 gives
a view of the complete unit cell contents along b and Fig. 3.6 shows

the complete unit cell contents viewed along a

Synthesis of the DL-5, 6-dehydropenicillins was
reported by Brandt, Bassignani and Re (1976b)31 to result from
an intramolecular alkylation of a novel class of 2-azetidinones when
treated with Et3N alone. The 4-thioxo-2-azetidinones (i) and (ii);
amongst the first examples of 2-azetidinones carrying a 4-thioxo group;
formed the direct synthéfic precursor of the 'dehydropenicillins’,
and were obtained, by a Norrish type II photoelimination reaction,
on irradiation of the corresponding 4-acylmethylthic -2-azetidinones

with U.V, 1ight30.
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. o%/Ph
PhOCHZCONH\E—T_S)
0/_N\Z<
COOCH,
hv
Y, H
PhOCHZCONH\E__]/S HO.  Ph
Y
AN
o’ ~
COOCH4 |
0\/Ph
(1)
and
oo O\_-Ph
Phoc:HzcoNH\Llf—S -
O “
H COOCH3
hv
—
(~CH,COPh] phocHzCOF‘JH\H >

=_l/
/
— N
o’ \//<
COOCH

(1)
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The suggested intramolecular alkylation, proceeding to

the 'dehydropenicillin', I, was then represented by

H
: S
PROCH.CONHNE - .
| 1/
o7 N
{ COOCH,
(i)
H

oNHE s
PRochZ YT , EGN PROCHLONH. S
[:ru——;:[

Of“-'N AN

COOCH,

) |
o COOCH,

(i) 1

By analogy, Bachi and Vaya (1977)32 expected the conversion
of the thiomalonimide, (iii), by treatment with silica gel or

Et3N, into the corresponding 'dehydropenicillin ', (iv), thus,

0
J EtaN [:::I::}‘ S
H — Wji:r I(
/
b & N P & 3
i) e (iv)

COOCH,
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- in their hands, however, this transformation did not occur.

Treatment of the thiomaleonimide,

(1ii), wicth Er N in

3

absolute methanol for 5 min., afforded, after preparative t.l.c.,

two compounds of the same molecular weight.

Structure (v) was assigned

to the less polar compound and structure (vi) to the more polar compound.

The major product, (v), was obtained by a nucleophilic attack of methanol

at C-2 followed by a spontaneous ring closure to the thiazolidine.

- 72 -

=0
(L g
/7
O I

N/ 2 4 th
0 COOCH,



The formation of {(vi) required a competitive methanolysis
of the phthalamide group in (iii) to the phihaleamic ester which
rearranged to the thiazolidylideneoxazolone,

Jo COOCH;
7
CH40H

L } g
{_'\{\ {rw

(i) COOCH,4 COOCH,
— =
i
N HN
0 COOCH;4

{vi)
A similar intramolecular rearrangement in which the azetidinone
ring is clkaved by a neighbouring acylamino group occurs in many

penicillins

The assignment of structure (vi) to the more polar compound
was corroborated by comparison of its U.V. spectrum with the spectra
of other thiazolid ylideneoxazolones of structure (vii) prepared by

a different route,

R
\\?,;N <
P
\ HN

COOCH4

{vii)
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and with those of 4-(l-thiocalkylidene) - and 4 -(l-aminoalkylidene)

59
- oxazolones

The similarity between the spectral data of (vi), and
that of the 'dehydropenicillin' suggested-by Brandt et a131, together
with the apparent inability to produce compound (iv), led Bachi and

32 .
Vaya to propose the alternative structure, II.

The compound was claimed by Brandt, Bassignani and Re (1976b)31
to show only a very weak antibacterial activity when tested against
B, subtlis and Staph. aureus by the agar diffusion disc assay.
It is therefore of interest to compare the conformation of the part
of the molecule in common with that of penicillins, the thiazolidine

34,35 compare the conformation of

ring. Boles and Girven (1976a and b)
thiazolidine rings of known penicillin structures. The ring exists

with four of its five atoms nearly coplanar and with the remaining

atom out of this plane.

In this structure, the plane containing the atoms S(1), C(2)
and C(5) is defined by

-0.2073x - 2.4491y + z = -0.8991 ... Eqn. 3.5
where x,y and z are measured in fractions of cell edges a, b and c
respectively., N{4) is 0.19 % out of this plane, and may be
considered, as in comparable structures, to be the fourth atom in
the plane, though showing rather more distortion about the plane
than is the case in penicillins., C(3) is 0.6 % out of the plane
defined above. The structure of the thiazo}idine ring is therefore
similar to that in phenoxymethylpenicillin36; p—bromopenicillin37 and

8,39

potassium benzyl penicillin3 , (ref Chap. 4, $4.7 ).

The N(4) - C(5) bond length of 1.333 & in the
present compound is significantly less than ‘the equivalent band
length in penicillin nuclei where the thiazolidine ring is

constrained by the adjacent B lactam eg. in amoxycillin trihydrateao,
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ampicillin anhydrate34 and ampicillin trihydrateal, the N(4) - C(5)
bond lengths are 1.49, 1.45, and 1.47 8 respectively. This

feature results in a marked difference in the bond angle S(1) - C(5)
- N(4) between the thiazolidine ring of the tite compound, (115.00)

and that of constrained penicillin nuclei of typical value ~105.5°.

0(19(1)) and 0(1%(2)) have positions almost symmetrical
about the expected 0(19) - C(20) bond with bond angles 0(19(1))
- C{20) - C(21) and 0(19(2)) - C(20) - C(25) being 109.1° and K)6.6o,
and bond angles 0(19(2)) - C(20) - C€{21) and 0(19(1)) - C(20) -
C(25) being 125.4° and 124.9° respectively, compared with the expected
values of 120°. This suggests that the co-ordinates of the atoms
in the benzene ring attached to 0(19) have refined

to the values of the weighted mean of the alternative configurations.
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Table 3.2 Finalcoordinates obtained from least-squares refinement. Coordinates
are given as fractions of cell edges x 10%. Standard deviations

in parentheses are with respect to the last figures given.

% y z
S(1) 95(3) 4164(2) 1227(3)
Cc(2) 1928(13) 3912(8) 990(12)
C(3) 1831(12) 3999(7) 2277(11)
N(4) 738(9) 4650(6) 2906(7)
c(5) - 255(11) 4733(6) 2548(9)
C(6) 2938(17) 4553(10) 83(13)
C(7) 2297(17) 3003(9) 489(14)
c(8) 3215(13) 4248(8) 2275(11)
0(9) 4011(10) 3558(6) 2172(9)
0(10) 3581(10) 4975(6) 2388(10)
c(11) 5365(13) 3650(11) 2194(14)
c(12) -1502(10) 5204(6) 3204(8)
C(13) -1837(10) 5604 (6) 4340(9)
0(14) -3196(6) 5966 (4) 4710(6)
C(15) -3549(9) 5775(6) 3782(8)
N(16) -2609(8) 5353(5) 2881(7)
0¢L7) -1238(8) 5685(5) 4989(7)
Cc(18) -4939(11) 6082(7) 3904(11)
0(19(1)) -5397(11) 6750(6) 4755(11)
0(19(2)) -5858(20) 6238(14) 5007(18)
€(20) -6858(11) 7007(7) 5220(9)
C(21) ~-7166(13) 7653(8) 6090(10)
C(22) -8453(14) 8077(7) 6469(11)
C(23) -9336(12) 7895(7) 5991(10)
C(24) -9031(10) 7251(7) 5150(11)
€(25) =7744(11) 6787(6) 4716(10)
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Table 3.3 Bond lengths and their standard deviations (K) after final least-

squares refinement

s(1) - C(2) 1.863(15)
S(1) - C(5) 1.766(11)
C(2) - C(3) 1.586(22)
C(2) - C(6) 1.515(18)
C(2) - C(7) 1.521(19)
c(3) - C(8) 1.516(21)
C(3) - N(4) 1.459(13)
N(4) - €(5) 1.333(17)
c(5) - C(12) 1.392(13)
c(8) - 0(9) 1.331(17)
C(8) - 0(10) 1.224(17)
0(9) - ¢c(11) 1.456(20)
C(12) - C(13) 1.446(15)
C(12) - N(16) 1.432(16)
C(13) - 0(17) 1.256(17)
€(13) - 0(14) 1.407(12)
0(14) - €(15) 1.419(15)
C(15) -~ N(16) 1.285(11)
C(15) - C(18) 1.486(17)
c(18) - 0(19(1)) 1.407(9)

c(18) - 0(19(2)) 1.293(20)
0(19(1)) - €(20) 1.431(10)
0(19(2)) - €(20) ©1.535(19)
C(20) - C(21) 1.408(16)
C(20) - C(25) 1.403(19)
c(21) - C(22) 1.381(19)
C(22) - C(23) 1.361(23)
C(23) - C(24) 1.383(16)
C(24) - C(25) 1.407(14)
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Table 3.4 Bond angles (°) and their standard deviations

C(5)
C(3)
C(6)
C(6)
C(7)
C(7)
C(7)
N(4)
C(8)
C(8)
C(5)
N(4)
c(12)
c(12)
0(9)
0(10)
0(10)
C(11)
C(13)
N(16)
N(16)
0(14)
0(17)
0(17)
C(15)
N(16)
C(18)
C(18)
C(15)
0(19(1))
0(19(2))
C(20)
C(20)
C(21)

s(1)

c(2)
€(2)

€(2)
c(2)
c(2)
c(2)
c(3)
c(3)
C(3)
N(4)
C(5)
c(5)
c(5)
C(8)
c(8)
c(8)
0(9)
C(12)
c(12)
€(12)
C(13)
C(13)
C(13)
0(14)
C(15)
C(15)
C(L5)
N(16)
C(18)
c(18)
0(19(1))
0(19(2))
C(20)

i

Cc{(2)

S(1)
s(1)

c(3)
S(1)
C(3)
C(6)
c(2)
c(2)
N(4)
c(3)
S(1)
N(4)
S(1)
c(3)
c(3)
0(9)
c(8)
C(5)
c(s)
C(13)
C(12)
c(12)
0(14)
C(13)
0(14)
0(14)
N(16)
C(12)
C(15)
C(15)
c(18)
€(18)
0(19(1))
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104.
107.

113.

107.
112.
110.
105.
115.
110.
115.

115.
121.

123.
111.
126.
122.
120.
122.
126.
111.
103.
136.
119.
105.
116.
118.
125.
103.
106.
112,
115.
116,
109.
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(0.

(0.
(1.

(1.

(1.
(1.
.0)
(1.
(0.
.0)
.0)
(0.
(1.
(1.
(1.
(1.
(1.
(1.
(1.
.0)
(0.
.0)
(0.
(0.
(0.
(0.
(0.
(1.
(0.
(0.
(0.
(0.
(1.
(0.

(1

(1
(1

(1

(1

6)
7)
1)
3)
1)
2)

1)
9)

7
0)
1)
1)
2)
4)
1)
2)

8)

9)
8)
7
9)
8)
1)
9)
4)
9)
7)
3)
4)



Table 3.4 (continued)

c(21)
C(25)
C(25)
C(25)
€(22)
€(23)
C(24)
C(25)
C(24)

C(20)
C(20)
C(20)
c{20)
c(21)
C(22)
€(23)
C(24)
C(25)

0(19(2))
0(19(1))
0(19(2))
c(21)
C(20)
c(21)
C(22)
c(23)
C(20)
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125.
124,
106.
124.
116.
121.
122.
120.
115.

WO WO N0 e

(0.
(0.
(0.
(1.
(1.
(1.
(1.
(1.
.0}

(1

9)
4)
E))
1)
4)
1)
1)
3)



Table 3.5 Coordinates of hydrogen atoms.
Coordinates are given as fractions of cell edges x 10%.

atom associated with each hydrogen atom is also given.

The heavy

Standard

deviations in parentheses are with respect to the last figures

given

H(C3)
H(N&4)
H(C6) (1)
H(C6) (2)
H(C6) (3)
H(C7) (1)
H(C7)(2)
H(C7)(3)
H(C11) (1)
H(C11) (2)
R(C11)(3)
H(C18) (1)
H(C18) (2)
H(C21)
H(C22)
H(C23)
H(C24)
H(C25)

X

1542(12)
962(9)
2689(17)
2823(17)
4024(17)
1566(17)
3380(17)
2180(17)
5851(13)
5164(13)
6077(13)
-5673(11)
~-4799(11)
-6405(13)
-8777(14)
-292(12)
-9806(10)
-7436 (11)

y

3378(7)
4869(6)
5197(10)
4514(10)
4397(10)
2561(9)
2841(9)
2959(9)
3024 (11)
3930(11)
4063(11)
5548(7)
6369(7)
7797(8)
8553(7)
8273(7)
7092(7)
6305(6)
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z

2711(11)
3228(7)
442(13)
~722(13)
-128(13)
1155(14)
280(14)
~313(14)
2100(14)
3042 (14)
1471(14)
4137(11)
3077(11)
6407(10)
7173(11)
6248(10)
4853(11)
4022(10)



Table 3.6(a) Thermal parameters for non hydrogen atoms

Anisotropic temperature factors are expressed as
exp[-2n2(Uy1h%a*2 + U, k?p*2 + U3322c*2 + 2Uj hka*b* + 2UjjhRa*ck + 2Up3kib*c*)].

. -] R . . .
The units of Uij are A2 x 10%. Standard deviations in parentheses are with

respect to the last figures given.

Un Uz2 Uss Uzs Uys Uy2
S(1) 612(19) 658(20) 543(25) ~326(15) -379(15)  243(16)
c(2) 457(76) 367(73) 524(93) -249(61) ~246(65)  110(56)
c(3) 407(70)° 327(65) 392(81) -35(51) -168(57) 80(50)
N(4) 441(51) 435(52) 264(53) -65(38) -216(38) 45(41)
c(5) 491(65) 290(54) 242(59) -29(42) -222(49)  -33(47)
C(6) 806(112) 741(107)  396(96) -48(79) -232(82) -96(88)
c(7) 717(104) 500(90) 759(110)  -368(80) -351(84)  159(76)
c(8) 368(71) 402(76) 461(81) -54(60) -172(57) 87(60)
0(9) 568(60) 436(55) 759(71) -143(48) -344(52) 170(47)
0(10) 503(60) 341(49) 866(78) -124(48) -267(54) 27(42)
c(11) 341(79) 773(109)  750(114)  -190(85) -227(74)  120(71)
C(12) 423(57) 280(54) 272(59) -18(41) ~155(44)  -12(43)
C(13) 429(58) 333(55) 351(65) -145(43) -218(48) 97(41)
0(14) 374(36) 471(41) 442(43) -169(33) -205(31)  125(32)
C(15) 339(51) 354(54) 377(63) -23(44) -250(44) 7(42)
N(16) 421(48) 426(47) 394(53) -67(40) -230(39) 83(39)
0(17) 559(50) 817(61) 474(53) -250(42) -293(41)  183(42)
C(18) 608(72) 458(60) 717(80) ~266(56) -398(61)  234(53)
0(¢19(1)) 590(67) 566(65) 1036(88) -365(63) -454(62)  169(51)
0(19(2)) 267(107) 633{144)  559(123) 194 (114) -83(86) 176(97)
C(20) 612(67) 673(68) 497 (64) -142(53) -287(52)  293(54)
c(21) 807(85) 884(86) 678(78) ~244(67) -409(64)  256(68)
c(22) 944(88) 633(75) 574(77) -166(59) -335(68)  285(66)
c(23) 628(68) 556(65) 638(77) 34(55) -149(59)  200(52)
C(24) 452(55) 518(69) 944(89) 51(62) ~336(55) 12(50)
C(25) 570(62) 367(55) 584 (70) 77(49) -259(54) 18(46)
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Table 3.6(b) Thermal parameters for H atoms. Isotropic

2
temperature factors are expressed as exp [—2n U(h2a="2 + k2b*2

4 .
+ ch*z)]. The units of U are Rz X 10 . Standard deviations

in parentheses are with respect to the last figures given.

U
H(C3) 390(46)
H(NG) 322(34)
H(C6) (1) 681 (66)
H(C6)(2) 681 (66)
H(C6) (3) 681(66)
H(C7) (1) 619(63)
H(C7)(2) 619(63)
H(C7)(3) 619(63)
H(C11)(1) 616(62)
H(C11) (2) 616(62)
H(C11) (3) 616(62)
H(C18) (1) 512(41)
H(C18)(2) 512(41)
H(C21) 717(49)
H(C22) 661(46)
H(C23) 660(47)
H(C24) 609 (45)
H(C25) 494(37)
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CHAPTER 4

The Crystal and Molecular Structure of the

Phenyl Ester of Carbenicillin (Carfecillin).

4.1 Introduction

Esters of carbenicillin have been shown by optical rotatory
measurements to undergo side-chain configurational modification in
solution (ref. Ch. 5). To facilitate a study of the
mechanism by which such modification takes place within the side-chain
of penicillin compounds, the crystal structure of the phenyl ester

of carbenicillin, I, has been determined.

@CH\C/NH\CH-CH/S\ <3
I I T ?

AN
CH
— N — 3
049C'\‘ 0 4C N Ct! -+
0 0 CO0 Na
Experimental

4.2 Crystal Preparation and Preliminary X-ray Studies

The compound was obtained from Beecham Research Laboratories.
Preparation.of suitable crystalline material was performed in the
following manner: 2 g starting material was dissolved in 7 cm3 distilled
water at 48°C and to this solution 18 cm3 of ethanol and 18 cm3
isopropanol was added slowly to prevent clouding. The solution was maintained

at 4°C and protected from light for 7 days. After filtering and

drying, flat plate-like crystals were obtained.
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Preliminary X-ray investigations of these crystals revealed
a doubling of the refle#ions indicating that the crystals were themselves
twinned. All reflexions other than the Ok&'s were doublets, showing
that the ab and ac planes of the twin forms are parallel. Investigation
under the microscope of each crystal used, revealed a system of twinning,
common to them all, where the coincidence of the ab planes occurred between
the flat plate-like faces of the constituent crystals as shown, in

perspective, in Fig. 4.1. Fig. 4.2, I and I1 shows

ab coincidence
plane

Fig.41 Perspective view of the twinning of Carfecillin
crystals.
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Twinning of crystals of Carfecillin

Fig.4.2
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two aspects of one of the twin crystals. The overlapping coincidence
plane proved impossible to cleave and it was found necessary to remove
the triangular 'tail' of one twin for single crystal X-ray analysis,

Fig. 4.2, III.

The unit-cell dimensions were determined from zero level
equi-inclination Weissenberg photographs, the camera radius was
determined from high-angle reflexions from an annealed gold wire.
Systematic absences OkO, k = 2n + 1, (n integer), together with
there being two molecules per unit cell, indicated space group P21 in the
monoclinic system, with a = 8.77(3), b = 6.20(3), c = 21.40(3) g,.

1

© v = 1147.65 85, p(CuKa) = 1476 m .

B = 69.5

4.3 Intensity Data Collection and Preliminary Treatment

Data for intensity measurement were obtained by the equi-
inclination method on Stoe and Nonius Weissenberg cameras using Ni-
filtered CuKa radiation (A = 1.5418 &) and the multiple film
technique. The crystals for these measurements were rotated about the
b* reciprocal crystallographic axis with the (1 0 0) face of the crystal
parallel to the rotation axis. The x-ray films showed some reduction
in intensity of reflexion at high sin 6 after crystals had prolonged
exposure to X-rays, 5 different crystals of very similar dimensions
were used for collection of intensity data. The intensities of the
X-ray reflexions were measured by the Science Research Council

microdensitometer at Daresbury. A total of 1208 reflexions were of measurable

intensity.

A Wilson Plot (ref Ch.1, ALl) was used Eo estimate an
overall scale factor and isotropic temperature factor to place the
|F°(hk2)| data on an absolute scale. Groups of reflexions,
within a shell of the reciprocal reflexion sphere containing ~100
reflexions were chosen omitting those with Miller indices containing o©nly

0's or 1's, since they are close to the reciprocal origin, and thus
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Fig.4.3 Wilson Plot for Carfecillin
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affected by the physical constraints of intensity measurement related to the
proximity of the reciprocal
origin, extinction and camera back stop interference. Such

shells were described by radii lying between ha* values. Computation

. 2 . . . . . .
of (sin"9)/A% for each reflexion resulted in the following distribution

of reflexions within each shell;

. 2
(sin“8)/A2 No. of reflexions with <I(hk2)>

h, kor 2 #0orl
0 - 0.05 111 357.2
0.05 - 0.10 198 179.2
0.10 - 0.15 237 108.7
0.15 - 0.20 251 121.1
0.20 - 0.25 177 96.5
0.25 - 0.30 110 44 .8
io.30 - 0.35 68 36.3
10.35 - 0.40 26 25.8
; r

A plot of <I(hk%)> against
in N~
. f 2
i=1 3

. 2 ] ) . . . . .
(sin 6)/)\2 is given 1n Fig. 4.3, where fa 1s the atomic scattering faclor
i
for the ith atom at rest in the unit cell containing N atoms. The
measured gradient (-6.875 =-2B) resulted in an estimated isotropic

temperature factor B = 3.5 Xz and an overall scale factor of 0.325,

given by /(e—z'zs), where the exponent is the intercept when (sinza)/)\2 = 0.

4,4 Structure Determination

The major computations were carried out with the SHELX program.
Initial determination of the sulphur atom position was by means of a
Patterson function of the form given in Eqn. 1.60, which, upon symmetry

reduction in the monoclinic system, becomes
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P(u,v,w) =4 T [ |F(hk2)|2 cos 27 (hu + Rw)
V  (hk2) : :

+ |F(Ek2)|2 cos 2n (hu - w) ] cos 2nkv ... Eqn. 4.1

The equivalent positions in the space group P2, are (x,y,z) and

1

(-x, }+y, -z), resulting in expected Patterson peaks at

(Uls vl, wl) = (2x, i, 22)

]

and (uz, Vs wz) (-2x, %, -22) ... Eqns, 4.2

ie. peaks at (2x, 22z) and (1-2x, 1-22) on the v = } section, corresponding

to the centrosymmetric nature of the Patterson function.

A sharpened Patterson function; in this instance performed
by replacing the coefficient |F(hk&)|? in Eqn. 4.1 by
|E(hk2)|.|F(hk2)|,-where E(hk2) is the normalised structure factor
given by Eqn. 1.66; resulted in values for x and z, consistent with

Eqns. 4.2, of,

x ... Egqns. 4.3

0.2648 }
z = 0.1501

with the y value chosen as zero for convenience.

Electron density Fourier synthesis was carried out using

reflexions initially phased upon the sulphur atom alone using the

expression
p(Y,2) =4 L [ |[F(hk&)|cos 27 (hX + 2Z) cos (2mkY - a(hke))
v hk
(k=20) ] cos 2ni-hX+ 12) cos(2mky - alhki))]
-z [ [F(hke)| sin 2n(hX + 2Z) sin (2nkY - a(hk?))
hk2
(k=2n+1)

+ |F(Ek£)lsin 2n(-hX + LZ) sin (27kY - a(EkE))]] ... Eqn. 4.4
where o (hk&) is the phase of F(hkZ) given by

a {(hkk) = tan_l(_g) ) ... Eqn, 4.5
A

where
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A = 2cos 2n{hx + 2z + k)cos 2m(ky - 5)
4 4

and ... Eqns. 4.6
B = 2cos 2n(hx + 2z + k}sin 2n(ky - 5)

4 4

and x, y and z are the phasing atom co-ordinates. However, interpretatiocon

of the resultant map proved difficult on two accounts.

Firstly, by the nature of Eqns. 4.6, phasing on an atom
placed on y = 0, results in the calculated phase, a(hk2), having a
value of -kn. Any arbitrary value given to y, results in the same
effective 3a1ue of a(hk%), since a change in y represents a shift of

origin along the y axis; the origin itself being arbitrary and fixed only

by choice. Thus, Eqn. 4.4 reduces in the case of one atomon y = 0 to

the form
p (XYZ) =4 | & [ |F(hk2)| cos2n(hX + 22)
v hk2
(k=2n)

+ lF(Eki)[cos2n(-hX + EZ)] cos2nkY cos nm

-z [ |F(hk2)| sin2n(hx +2Z) + |F(hk2)|sin2n({-hX +2Z) ]
hkg
(k=2n+1)
cos2nkY cosnm ... Eqn. 4.7

from which it can be seen that the Y Fourier component follows a cosine
variation and is therefore symmetrical about Y = 0, resulting in a

mirror plane on Y = 0, and thus increasing the symmetry such that it

belongs to space group P21/m. Hence, an atom derived from the first Fourier
synthesis appears at x, y, z and x, -y, z; choosing one of these

positions only, breaks the mirror symmetry and weights any subsequent

synthéses toward the reduced P21 symmetry.

Secondly, due to the plate-like shape of the crystal,
early attempts at Fourier synthesis using phases calculated from

deduced atomic positions (x,y,z) yielded satellite positions

(-x, -y, -z) caused initially by the above centrosymmetric effect. This
» 2 ’

was enhanced by absorption of diffracted .intensity in passing
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through extended intra-crystal path lengths for reflexions (hk%)
with 2 large compared with h, iﬁ contrast with relatively shorter
intra-crystal path lengths for h large compared with 2: similarly,
layers with k large, for all h and £, suffer relatively

ltarge absorption, which confined early Fourier syntheses to a
dominance of low order k reflexions with the result that the pseudo
mirror symmetry was not easily removed. The anomalous behaviour was
overcome by the application of the numerical absorption correction,

based on the SHELX 'ABSC' routine, to the observed data.

Fig. 4.4 shows the progress of the electron density
synthesis using absorption corrected data; where the symbols e and o
describe respectively those atoms used in the synthesis and those
derived from it.- C(2) derived from synthesis A appeared as two identical
strong peaks directly above and below S(1) when viewed along the b
%

axis at y = - 1, however, the nature of the Y component in Eqn. 4.7

together with 2 predominance of low order k values at this early stage
led to doubt concerning the validity of this peak. Indeed a trial
synthesis using C(2) on y = -1 proved intractable when-compared

with inter-atomic vector peaké in the Patterson map. The Patterson
map, however, revealed a peak at (0, 0.3, 0) ie. directly above 5(1),
as in the case of synthesis A, but indicating a y co-ordinate of

z 0.3. Choosing y = —0.3, successfully broke the mirror symmetry in A
and produced synthesis B, from which, part of the B lactam could be
derived. Completion of the penicillin nucleus was achieved by
synthesis E and the side-chain determination proceeded rapidly, though
the benzene rings appeared as unresolved electron density distributions
defining the planes of the rings only until the final synthesis using

the completed remaining molecule, defined the individual atoms

satisfactorily.
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Fig. 4.4. Progress of Electron Density Fourier Synthesis

during the Structure determination of Carfecillin
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Fig. 4.4 (Continued)
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4.5 Structure Refinement

Three cycles of unweighted full matrix least-squares
refinement with individual isotropic temperature factors and refinement
of scale factors resulted in R = 0.120. An FO-FC Fourier synthesis
showed considerable anisstropic thermal vibrations, associated
particularly with the sulphur acom. Anisotrqpic refinement using
the SHELX 'BLOC' to section the structure, (Fig. 4.5), with hydrogen
atoms included in the refinement, resulted in R = 0.095 after omitting
ten low order reflexions suffering from severe extinction., The hydrogen
atoms were given isotropic temperature factors fixed at the
values of the isotropic temperature factor of the atom to which they
are bonded, ogtained at the isotropic refinement stage, the bond
length being fixed at 1.08 X. The benzene rings were refined as
rigid hexagons with bond lengths::fixed atil1.395 X. No further
improvement could be made in Fo/FC correlation probably due to the
deterioration of the crystals during prolonged X-ray e#posure and the
possible inaccuracy inherent in the use of an absorption correction
applied to the intensity data based on the assumption that all the
crystals used during data collection were of the same dimensions.

The observed and calculated structure factors are given in Appendix B

(ref. CARF P2(1)).

Fig.45 SHELX BLOC sectioning of Carfecillin.

- 94 -



4.6 Discussion

The final co-ordinates of the non-hydrogen atoms are given in
Table 4,1. The bond distances and angles are listed with their
standard deviations in Tables 4.2 and 4.3. The H atom co-ordinates
are given in Table 4.4. Thermal parameters for all atoms are listed in
Table 4.5. Fig. 4.6 shows the schematic labelling of the non hydrogen
atoms together with inter-atomic distances: Fig. 4.7 shows gond angles.
Fig. 4.8 gives a view of the complete unit cell contents along a

and Fig. 4.9 shows the structure viewed along b.

With reference to Fig. 4.8, it can be seen that the coincidence
ab plane (in the twinned crystal) passes through the ionic 0 Na' system
where Na(33) lies almost equidistant from 0_(12) and 0(13). Upon
crystallisation from solution, two molecules could combine in one of two
ways, depending on the charge distribution within the carboxylic radical.

Each single crystal in the twin has an atomic arrangement thus

0(13)2
Na(33), >c(11)2 —_
001215
(1)
0134
— C(11)1 N0(33)1
0(12)1
ab plane

whereas at the crystal interface, the following atom arrangement
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provides another orientation for similar crystal growth of the twin.

NO(33)2

o),
— cin);
0(13);

013),

T>cm),—

/
0l12)

Na(33), i)

ab interface plane

Given the interface arrangement (1i) in the twinned crystal, growth from

solution can take place as in Fig. 4.8. Thus, a macro-crystal is seen

.. . . (o] .
to develop containing two single crystals oriented 180 with respect

to each other about an axis perpendicular to the flat ab face. The

nature of this twinning could explain the difficulty encountered when

attempting cleavage of the twin along the coincident plane.
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The crystal structure of Carfeciilin viewed along a

Fig. 4.8
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The crystal structure of Carfecillin viewed along b

Fig. 4.9 )
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4.7 A comparison of the conformation of the penicillin nucleus

with known penicillins and cephalosporins

Some penicillins and cephalosporins, which have been the

subject of detailed and accurate X-ray crystal structural studies,

are listed together with their structural formulae.

Patassiuo benzyl penicillin (pen. G)
(Crowfoor et al 1949, Pict 1952)

(ref no.} @ , @

Cephalosporin C
(Hodghin, Maslen 1961)

o

6 - amino - penicillanic acid (6-APA)
(Diamond 1963)

3]

Cephalosporin C. {ceph €0
(Diacond 1963)

Phep axymethylpenicillin (pen-V)
(Abrahamsson et al 1963)

O

Acpicillin
(tribydrate Jaoes et al 1968)
{anhydrate Boles, Cirven 1976)

0.0

Cepbalaridine hydrochloride oonohydrate
{Sweet and Dahl, 1970)

D

@mz\c/w\——c /S\c/cH3
]
0

| | o
V4 N———¢C
o” ™\ ook
“NH
3
\CH /\/\/N
-ooc ~
0\\ %
COOH
CHy
N \\ S
\CH_.’
N
0/ “cooH
*NH
3
>CH ; §
~ooc s
N =
o
o
o¢’
g c
f 5 Hy
Q—o—cnz—c ~NH~
CtHy
N COOH
0
*
e ‘
eH
i CH;
0 , N
0 coo~
s
s
e .
! |
0 SN =
0
COOH
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Cephaloglycin
(Sweet and Dshl 1970)

O

Syachetic 8- lactan syo-ceph
(Kalyani and Bodgkin 1970)

0

Aphydre - a - pheanxyethyl penicillin (an - pen)
(Sicon and Dshl 1970}

Phesoryoethyl - 42 - deacetoxylcephalosporin {2-cephac)

(Sweat and Dahkl 1970}

{pBr) benzyl pen. 1'
diethyl carbonate ester
" (Ceoragh, Palm 1976)

Benzyl 6a - benszyl &g -
(Cirven 1977)

Asorxycillin trihydrate
(Boles, Cirven, Cane [977)

Methicillin methyl ester
(Blanpaia, Melebeck, Durant 1977)

Qoxecillic Methyl Ester
(Blanpain, Durant 1976}

©

isocyano - penicillanate

C
|
Q ’ U\C/CH3
° ]
COOH 0

04’
CH3 CH3 0
?
/C’—NH\ S\C/O
0—cC
\., —4]
3
7z " -
0 \ CH3
CH3

(BF)Q—CH 2—C _~ NH~__
1.

¢]

N
7
0/
, s

CHy
N’

N
0/

N

N—O

102 -

CHy
CH3

N

N

s
o—cH,—c” "
2 i |
0 N
€¢ CHy

COOH
cH

N |
c

CH,y HF

i
-0-CH-0

i T

0 0
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Contrasts between the very different molecular forms of molecules
known to 4nhibit activity amongst bactefial enzymes, indicates that
requirements for activity may not be very conformationally restrictive.
Penicillin and cephalosporin antibiotics are similar stereo-chemically,
not in their detailed dimensions or conformation, but because each, in
its B lactam ring, contains a N-CO bond with characteristics differing
from the usual amide or unstrained B lactam.

The decrease in amide character and the peculiarly distinctive
behaviourof the fused B lactam.would appear to be necessary for any
bactericidal action.

It is possible to facilitate a comparison amongst the reported
structures by considering the molecular conformation within the penicillin
nucleus. Two distinctive features are illustrated in Figs. 4.10 and 4.11.

The effect of the constraining power enforced by the B lactam
upon the adjoining thiazolidine ring, consisting of five atoms, maintains
four of them almost coplanar, with the remaining atom removed from this
plane. The non-coplanar atom differs in both Type A and B (Fig 4.10).
Particular thiazolidine ring conformations appropriate to the known

Q
penicillin structures ate shown. 1In carfecillin, C(3) is 0.42 A out of

the plane defined by S(1), C(5), N(4) and C(2) (Table 4.6). The thiazolidine
ring in carfecillin is therefore very similar to that of the thiazolidine
ring in phenoxymethyl penicillin, p-bromopenicillinYand potassium benzyl
penicillin, characterised by C(3) out of the common plane, and thus belongs
to type A.

The significance of the chemical and biological activity of
B lactam compounds is perhaps centered on the relative geometry of the
B lactam nitrogen atom with its three substituents. The perpendicular
distances of N(4) from the plane containing its neighbouring atoms

appropriate to the known structures are shown in Fig. 4.11. Inclusion
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CONFORMATION OF THIAZOLIDINE RINGS OF KNOWN

PENICILLIN STRUCTURES

TYPE A
CHatg)

/\ CH3 lex)
%

PHENOXYME THYL — PENICILLIN €3 down
penicillin V

- AMIND — PENICILLANIC  ACID N, up

p— BROMOPEHICILLIN V Cy down

POTASSIUM BENZYL PENICILLIN Cy down
penicillin G

(pBr) benzyl pen. 1' Cy down

TYyPE B diethyl carbonate ester

’
z

o== }//Cﬁ /CH3IM

R CHj ()}
AMPICILLIN ANHYDRATE Co down
AMPICILLIN TRIHYDRATE Sy up
PENICILLIN V SULPHOXIDE Sy up
AMOXYCILLIN TRIHYDRATE 5y wup
METHICILLIN METHYL ESTER S; up
CLOXACILLIN METHYL ESTER S, uwp

Fig. 410
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BONDING GEOMETRY AT B-LACTAM NITROGEN IN SOME

PENICILLINS AND CEPHALOSPORINS

S
7
|
o
COMPOUND DISTANCE OF N ATOM FROM
PLANE OF 3 SUBSTITUENTS [A)
METHICILLIN METHYL ESTER 044
PEN G 040
PEN V 0-40
CLOXACILLIN METHYL ESTER 0-39
(PBI‘) benzyl pen. 1' 0-38
diethyl carbonate ester
AMOXYCILLIN TRIHYDRATE 0-38
AMPICILLIN TRIHYDRATE 0-38
AMPICILLIN ANHYDRATE 0-35
6-APA 0-32
CEPH C. 0-32
CEPHALORIDINE 024
CEPHALOGLYCINE 022
AN-PEN 042
2-CEPHEM 0-06 Inactive
SYN—-CEPH 010

Fig. 4.11
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of the 'inactive' compounds must be bormewith reference to significant
differences from the antibiotics. The con1parative structural
arrangements of cthe nuclei of penicillins, A3 -cephalosporins and

A2 - cephalosporins are given in Fig. 4.12 (a), (b) and (c)

respectively.

(a) penicillins

A3 - cephalosporins

A2~ cephalosporins

Fig. 412 The comparative structural arrangements of the
nuclei of penicillins,A3& AZ— cephalosporins.
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The pyramidal nature of N(4) is described by the
deviation of N(4) from the plane defined by C(3), C(5) and C(7).
In carfecillin, N(4) is 0.47 X out of this plane; a similar value
to that for methicillin methyl ester (0.44 X), but somewhat
greater than a typical distance of 0.35 X for reported bactericidally
active B lactam antibiotics. N(4) is also significantly out of the
plane of the remaining 8 lactam constituents C(5), C(6) and C(7) being

0.28 & distant , (Table 4.6).

The following chapter discusses the side-chain configuration
in carfecillin, both in the crystalline state and in solution,
forming a correlation between side-chain configurations of penicillin
derivatives of known structure and observed H1 n.m.r. and circular

dichroism characteristics associated with those configurations.
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Tablet 1 Final co-ordinates obtained from least-squares refinement
. . . 4
Co-ordinates are given as fractions of cell edges x 10" . Standard

deviations in parentheses are with respect to the last figures given.

X y FA
s(1) 2614(6) 0(0) 1492(3)
c(2) 2842(23)  -3049(42) 1580(10)
c(3) 2004(22)  -3992(37) 960(9)
N(4) 670(17)  -2555(26) 733(7)
c(5) 958(22) - 143(47) 860(9)
c(6) - 712(23) 100(40) 1032(10)
c(?7) - 712(28)  -2592(43) 1009(11)
0(8) -1514(18)  -3948(33) 1146(9)
c(9) 2097(23)  -3847(38) 2137(8)
c(10) 4622(21)  -3547(33) 1695(9)
c(11) 3078(22)  -4157(40) 437(8)
0(12) . 3325(18)  -6048(24) 263(6)
0(13) 3440(15)  -2410(22) 204(6)
N(14) - 799(17) 771(27)  1663(7)
c(15) -2133(20) 1481(37) 1822(8)
0(16) -3398(14) 1419(22)  1454(6)
c(17) -2141(21) 2461(35)  2478(8)
c(18) -3141(13) 1142(24)  2848(7)
c(19) -2605(13) - 878(24)  3073(7)
c(20) -3491(13)  -2141(24)  3416(7)
c(21) -4913(13)  -1383(24)  3536(7)
c(22) -5448(13) 638(24)  3311(7)
c(23) -4562(13) 1900(24)  2968(7)
c(24) - 575(25) 2783(45)  2908(9)
0(25) 565(15) 1680(26)  2930(6)
0(26) - 654(16) 4472(25)  3322(7)
c(27) 441(17) 4721(25)  3840(6)
C(28) 1219(17) 6686(25)  3936(6)
c(29) 2253(17) 7048(25)  4495(6)
c(30) 2509(17) 5445(25)  4958(6)
c(31) 1730(17) 3480(25) 4862(6)
c(32) 696(17) 3118(25)  4303(6)
Na(33) 4871(8) 881(13) 457(3)
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Table 4.2 Bond lengths and their standard deviations (A) after final

least-squares refinement.

s(1) - c(2) 1.907(26)
s(1) - c(5) 1.816(19)
c(2) - c(3) 1.523(28)
c(2) - c(9) 1.533(31)
c(2) - c(10) 1.570(27)
c(3) - N(4) 1.487(25)
c(3) - c(11) 1.580(29)
N(&) - c(5) 1.533(33)
N(&4) - c(7) 1.434(30)
c(s) - c(6) 1.576(30)
c(e) - c(7) 1.570(36)
c(6) - N(14) 1.427(26)
c(7) - 0(8) 1.164(32)
c(11) - 0(12) 1.260(29)
c(11) - 0(13) 1.255(28)
N(14) - c(15) 1.345(24)
c(15) - 0(16) 1.251(19)
c(15) - c(1L7) 1.530(26)
c(17) - c(24) 1.535(26)
c(17) - c(18) 1.515(24)
c(18) - c(19) 1.395(20)
c(18) - c(23) 1.395(18)
c(19) - c(20) 1.395(20)
c(20) - c(21) 1.395(18)
c(21) - c(22) 1.395(20)
c(22) - c(23) 1.395(20)
c(24) - 0(25) 1.206(28)
c(24) - 0(26) 1.381(29)
0(26) - c(27) 1.350(18)
c(27) - c(28) 1.395(21)
c(27) - c(32) 1.395(19)
c(28) - c(29) 1.395(17)
c(29) - c(30) 1.395(19)
c(30) - c(31) 1.395(21)
c(3L) - c(32) 1.395(17)
Na(33).... 0(12) 2.334

Na(33).... 0(13) 2.410
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Table4.3 Bond angles (o) and their standard

c(5)

c(3)

c(9)

c(9)

c(10)
c(10)
c(10)
N(4)

c(i1)
c(11)
c(5)

c(7)

c(7)

N(4)

c(6)

C(6)

c(n

N(14)
N(14)
c(6)

0(8)

0(8)

0(12)
0(13)
0(13)
c(15)
0(16)
c(17)
c(L7)
Cc(24)
c(18)
c(18)
c(19)
c(23)
c(23)
c(18)
c(21)
c(22)
c(23)
c(18)
0(25)
0(26)
0(26)
c(27)
c(28)
c(32)
c(32)
c(27)
c(30)
c(31)
c(32)
€(27)

1 ] ] 1 ] L] ] ] ]

s(1)
c(2)
c(2)
c(2)
c(2)
c(2)
c(2)
c(3)
c(3)
c(3)
N(&4)
N(4)
N(4)
c(5)
c(5)
c(5s)
c(6)
c{6)
c(6)
c(7)
c(7)
c(7)
c(11)
c(11)
c(11)
N(14)
c(15)
c(15)
c(15)
c(17)
c(17)
c(17)
c(18)
c(18)
c(18)
c(19)
c(20)
c(21)
c(22)
c(23)
c(24)
Cc(24)
c(24)
0(26)
c(27)
c(27)
c(27)
c(28)
c(29)
C(30)
c(31)
c(32)

c(2)
5(1)
s(1)
c(3)
s(1)
c(3)
c(9)
Cc(2)
c(2)
N(&4)
Cc(3)
Cc(3)
c(5)
S(1)
S(1)
N(4)
c(5)
c(s)
c(7)
N(4)
N(4)
c(6)
c(3)
c(3)
0(12)
c(s)
N(14)
N(14)
0(16)
c(15)
c(15)
Cc(24)
c(17)
c(17)
c(19)
c(20)
c(19)
c(20)
c(21)
c(22)
c(17)
c(17)
0{25)
c(24)
0(26)
0(26)
c(28)
c(29)
c(28)
c(29)
c(30)
c(31)

94

105.
110.
110.
107.
112.
110.
107.
liz2.
109.

115

121.

94

134
135

115.
116.
128.

121

123.

119

117

110.
101

107

118.
121.
120.
120.
120.

120

120.
120.
127.
110.
122.
120.
119.
120.
120.
120.

120

120.
120.
120.

- 110 -

.8(1.
4(1.
3(1.
.8)
2(1.
.8)
.6)

3(1

7(1
8(1

2(1.
5(1.
6(1.
4(1
9(1.
.0(1
105.
118.

90.

83.
116.
108.

90.

5(1
7(1
1(1
9(1

6(1.
.8)
o(L.
6(2.
4(2.
o(1.
5(2.
1(1.
.3(1
3(1.
.8(1
116.
. 6(1
9(1.
4)
.3)
4)
0(1.
o(1.
o(1.
.0(1.
o(lL.
0(lL.
1(2.
.8)
.8)
.5)
0(1.
4)

6(1

9(1

3(1
7(1

4(1
3(1
6(1

7(1

0(1.
0(1.
.01
o(1.
o(1.
4)

0(1

deviations.

1)
5)
6)

5)
7)

6)
5)

4)

7)

.6)
4)
4)
.6)
.8)

6)

7)
5)
3)
9)
0)
9)

A4)

6)

A)
.6)
.6)

6)

3)
2)
3)
3)
2)
3)
1)

3)

1)
3)

4)

1)
3)



Tabled .4Co-ordinates of hydrogen atoms. Co-ordinates are given as

fracrions of cell edges x 104. The heavy atom associated with each

hydrogen atom is also given. Standard deviations in parentheses are

with respect to the last figures given.

X y z
H(C3) 1664(22)  -5618(37) 1055(9)
H(C5) 1248(22) 1067(47) 536(9)
H(C6) -1616(23) 1097(40) 777(10)
H(C9) (1) 2666(23)  -3143(38) 2576(8)
H(C9)(2) 2251(23)  -5576(38)  2155(8)
H(C9}(3) 878(23) -3474(38) 2071(8)
H(CL10)(1) 5164(21)  -2925(33)  1315(9)
H(C10)(2) 4733(21)  -5282(33) 1713(9)
H(C10)(3) 5178(21)  -2866(33)  2139(9)
H(N14) 386(17) 623(27) 1896(7)
H{C17) -2552(21) 4065(35)  2345(8)
H(C19) -1504(13)  -1465(24)  2980(7)
H{(C20) -3076(13)  -3705(24)  3590(7)
H(C21) -5599(13)  -2360(24)  3802(7)
H(C22) -6549(13) 1224(24)  3404(7)
H(C23) -4977(13) 3464(24)  2794(7)
H(C28) 1021(17) 7927(25)  3578(6)
H(C29) 2855(17) 8569(25)  4570(6)
H(C30) 3309(17) 5725(25)  5391(6)
H(C31) 1928(17) 2239(25)  5220(6)
H(C32) 94(17) 1597(25)  4228(6)



Table4.JAnisotropic temperature factors are expressed as exp [-2772(U11

hza*z + U

2k2b*2 + U

33

12

+ 20, _hka*b* + 2U , hRa*c* + 2U23

13

k2b*c*)].
2 2

. ' 2,
Isotropic temperature factors are expressed as exp [-272U(h“a*” + k

b*2 + izc

.. o2 4
The units of Uij are A™ x 10 .

parentheses are with respect to the last figures given.

s(1)
c(2)
c(3)
H(C3)
N(4)
c(5)
H{CS)
c(6)
H(C®6)
c(7)
0(8)
c(9)
H(C9)(1)
H(C9)(2)
H(C9)(3)
c(10)
H(C10)(1)
H(C10)(2)
H(C10)(3)
c(l1)
0(12)
0{13)
N(l4)
H(N14)
c(15)
0(16)
C(17)
H(CLl7)
c(18)
c(19)
H(C19)
c(20)
H{C20)

c(21)
H(C21)

c(22)
H(C22)
c(23)
H(C23)
c(24)
0(25)
0(26)
c(27)
c(28)
H(C28)

U or Ull

201(24)
182(109)
361(114)
164(99)
135(82)
203(102)
287(118)
260(107)
269(111)
308(131)
467(102)
443(128)
270(109)
270(109)
270(109)
301(112)
253(126)
253(126)
253(126)
387(111)
624(105)
355(83)
278(82)
215(48)
135(91)
223(64)
226(103)
203(57)
142(91)
312(117)
393(88)
552(161)
393(88)
449(159)
393(88)
292(110)
393(88)
264(116)
393(88)
294(122)
258(75)
370(83)
422(131)
467(143)
452(65)

U22

137(43)
55(169)
1(116)

10(103)
506(167)

260(142)
376(177)

431(124)
140(127)

1(133)

182(150)
119(104)
117(92)

130(108)

450(155)
78(87)
201(139)

450(157)
318(165)

484(184)

963(245)

1073(265)

436(158)

628(197)
510(114)
316(119)
697(187)
942(227)

- 112 -

Uss Va3

268(30) -39(28)
268(127) -78(102)
293(117) 16(102)

171(82) -51(69)
187(116) 216(126)

326(136) -62(117)
357(141)-148(119)

904(134) 0(112)
181(104) 93(102)

339(117) -50(97)

221(99) 20(107)
298(85) 21(70)
212(83) 26(64)
211(81) -45(73)
131(95) 112(99)

364(71) -118(66)
180(99) -152(93)

257(106)-109(117)
327(126) 144(109)

386(138) 85(128)

390(133)-151(164)
582(159) -24(169)

497(144) 12(125)
265(116)-196(126)
231(75) -157(73)
433(93) -118(79)
281(118) -77(136)
236(117)-128(127)

Standard deviations 1n

U U

13 12
4(20) 37(27)
-28(90) -68(°8)
-62(95) -39(102)
-65(65) 31(68)
-51(85) 69(126)
120(92) 202(113)

-44(106)-149(125)
252(95) -194(103)
187(94) -112(114)

54(97)

-6(90)

81(86) -137(106}

188(73) 120(76)
134(66) -71(65)
34(66) 141(73)
68(74)  89(99)
-13(55) 107(63)
-28(80) 121(95)
63(80) -42(1190)

102(100) -36(106)
-101(117)-129(137)
168(121)-197(177)
165(112) 49(145)

94(104) 145(115)

38(96) -43(128)
-51(59) -4(77)
-144(70) 13(72)

-4(96) -231(141)
-78(100) -20(148)

(continued)



Table 4.5,

c(29)
H(C29)
c(30)
H(C30)
c(31)
H(C31)
c(32)
H(C32)
Na(33)

(continued)

U or U11

572(155)
452(65)
898(202)
452(65)
1213(245)

452%65)
815(204)

452(65)
336(38)

Uas

798(214)
1080(339)

1324(315)

464(189)

65(48)

- 113 -

Usg

400(135}-

565(192)

58(116)
509(151)

364(43)

U u U

23 13 12

408(145) 4{116)-175(152)

120(207) -207(153)-425(226)

294{159) -126(127)-382(250)

-90(141) 101(133) -43(154)

-79(36) 133(31) -9(34}



Table 4.6. Planarity of the penicillin nucleus in carfecillin.
Equations expressed as Px + Qy + Rz = S in direct space; with x, y and
z given as fractions of cell edges a, b and ¢ respectively.

p Q R S Deviations (A) of atoms
from planes

(a) Planarity of the thiazolidine ring
-0.3810 -0.0072 1 0.0496 S(1> 0.00
C*(2) 0.06
C*(3) 0.42
N(4) 0.00
€(5) 0.00
(b) Pyramidal nature of N(4)
0.0365 0.0359 1 0.0890 c(3) 0.00
N=(4)  0.47
c(5) 0.00
c(7) 0.00
(c) Deviation of N(4) and 0(8) from the plane of the remaining B
lactam constituents
0.1018 -0.0085 1 0.0958 N*(4) 0.28
c(5) 0.00
c(6) 0.00
c(7) 0.00
0%(8) 0.14

* Atoms not used to define the planes.
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CHAPTER 5

The Configuration and Conformation of

the side-chain substituents in Penicillin

Derivatives

5.1 Introduction

The crystal structure of the phenyl ester of carbenicillin,
discussed in Chapter 4, is used to facilitate a comparison of the
configuration about C(17) with other penicillin derivatives of known
crystal structure to form a characterisation and evaluation of the

. . . . 1 .
spectroscopic differences evident in the H nuclear magnetic resonance
and circular dichroism spectra of the respective side-chain

diastereoisome ric configurations.

H
! Me
NH S
(Or-am—e"qrqr ™4

l I N CH Me
~C 0 /}:—
= \\\ 0 \\ - +

0 CO0 Na

5.2 Side Chain Configuration and Associated Nuclear Magnetic Resonance

Configuration of the side chain about C(17) is shown to notably
affect the H1 n.m.r. resonance from the B lactam protons H(C(5)) and

H(C(6)). In the crystalline solid state, the configuration of the
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methyl and ethyl esters of carbenicillin, as in the structure of the
phenyl ester of carbenicillin (ref. Ch.4), when examined by n.m.r. in
fresh solution, (t = 0), is characterised by a singlet B lactam proton
peak (Traces 1(a) and 2(a)). However, after about 30 minutes a steady

state is reached (at 35°C) in DO scolution, characterised by four B

2
lactam proton peaks superimposed upon the singlet which in turn suffers
a reduction in intensity, for the methyl and ethyl esters, (Traces
1(b), 2(b), 3(a) and 3(b)}, but this effect is not apparent in the
case of the phenyl ester (Traces 4(a) and 4(b)). To investigate
the cause of this effect; its association with configuration about C(17):
and the apparently anomalous behaviour of the phenyl ester, Hl n.m.r.
studies of the two diastereoisomers of amino-hydrbxybenzyl penicillinao,
amino-phenylacetamido penicillanic acid36 and a tyrosyl penicillin
have been made.

The three penicillin derivatives amino-hydroxybenzyl penicillin
(i), amino-phenylacetamido penicillanic acid (ii), and the tyrosyl

penicillin (iii) are-known to crystallise, under different conditions,

(i)Amino-hydroxybenzyl penicillin

NHS
i Me
N
HO 0 C—N—CH
o” ~co0”

(it)Amino-phenylacetamido penicillanic acid

NIHg
CF{‘\\ ,/4“H S 549
CSen—cH” 7 el
g | T( ~Me
C—N——CH
. -
0” COoo
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(ili) the tyrosyl penicillin

+
NH3
O r ANH S~~~Me
HO CH5 ¢ CIH—CIH/ W
0 C—N—=CH
o? ~coo~

to accommodate the side chain in either the D or L forms, (N.B. D and L
being assigned by optical measurements from the two C(17) configurational
epimers, the penicillin nuclei remaining unchanged). These configurations
are stable in solution at room temperature and no epimerisation of the
two diastereoisomers takes ﬁlace. Thus, the H1 n.m.r. spectra of

these compounds in the side chain D and L forms have been used to assert
that the feature distinguishing the diastereoisomers of each compound

is the association of a single B lactam proton peak with the side chain
D form and a system of four peaks with the side chain L form (Traces
5(a), 6(a), 7(a), 8(a), 8(b), 9¢a), 9(b), 10{a)). This characteristic
phenomenon was demonstrated to be purely intra-molecular by determining
that there was no dependence of the g lactam proton resonance upon
concentration (Traces 5(b), 6(b), 7(b), 10(b), (1), (2), (3) & (4)[each
Trace is shown with a scale expansion illustrating no observed‘change

in the resonance feature at very low concentration]).

The spectra were obtained by using a Perkin-Elmer R12b nuclear
magnetic resonance Spectrometer with D20 as solvent, and NEOD/DZO to form
the sodium salt of the amino compounds. The spectrum produced by n.m.r.
due to the B lactam protons, is conventionally described as an AB

51, 52 one in which two protons are coupled together, having

system:
a coupling constant J comparable to the chemical shift & which could be
introduced by the comparative shielding of omne proton by envirommental

effects imposed by chemical groups and their position relative to the proton

within the molecular configuration.
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The spin Hamiltonian for the AB spectrum is given by:-

H=-u (1l -0)I -v (l-0)1
o A 74 0 B 7B

..... ton.Sd
VL -1y a

where v, is the frequency at which resonance takes place for the bare
proton above; ¢ is the screening constant which is isotropic due to the
exclusive use of liquids for the purpose of n.m.r. measurements; I is
the nuclear spin with IZ as its Z component. The Hamiltonian describes
the two Zeeman energies for the protons A and B in the molecular
environment, combined with the spin-spin coupling. Each proton can
have two spin states |a > and |B>; the combined system can be described
using the set of basis functions,

>

b, = loa>, 9, = |aB>, §, = [Ba> and ¢, = |B8>.

The term Vo (1 - a) IZ describes the chemical shift SIZ, where GAIZA’
splits ¢1 from ¢3 and ¢4, and GBIZB splits @1 from ¢2 and ¢A in terms

of frequency units.

BR> —p—
I ~
-%(0A+OB) vo
v
o
%(o A-0 B)Vo
|fa> —— —

|af> —— ™~

o
o +o )N
5 A B) 0
|aa> —— —
(Bare nuclei) (screened nuclei)

- 118 -



The operator }A'}B can be split into two parts
I..I. =1I_.1 + 4 (I+ I_ + I-I+ ) -
A'_B TZA'ZB A B A B - <l | N
where
I+ IQ) = O, I+ IB) = Iu)
1 |e> = |8> and 1 |e> = 0. ... Egns. 5S¢

- : :
The effect of } (IA I+ I, IB) is to mix ¢2 with ¢3 and produces a

further change of frequency of these states by, +C respectively where

C = %/ (J2+62). The term IZAIZB shifts the levels of all states (in

. + . +
frequency units) by -}J depending on each IZ = -} where |a> has IZ =}

and |B> has I, = -4

|8B> —— %J 4 >
—%(0A+0B) v, :
v, :
(0,0, fn—-jj:c l EE
.|80_> J[_/ '
i
lag> T~ |
- |
ROCRba S
'%J'C |
N I
o |
5o, +0,)v ! |1>
A 2L
//// %J
|aa> —

{Spin-spin coupling)
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For varying coupling J, relative to the difference in chemical

environment for each proton §, the spectra appear thus, in which the

intensity of each resonance is related to the transition probability.

T<< §
1> 13> 135 11>

T 2/C

——ly

|2>—ﬁ> J~6 4> 12>

IT>§
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From this analysis, it can be seen that the spectra of the D forms

of the penicillin derivatives correspond to § = 0, i.e, no difference
in the screening ‘tensor ¢ between the B lactam protons. However,

the L forms have spectra corresponding to a chemical shift between the
proton resonances of the same order of magnitude as the coupling, or
less. The single B lactam proton peak of the fresh solution of methyl
and ethyl carbenicillin esters indicates that the compounds crystallise
in the configuration corresponding to the D diastereoisomer of other
penicillin derivatives. Equilibrium between the two configurations

is reached in solution and the mixture of the two gives rise to a

superposition of the singlet upon the spin-spin split spectrum,

The phenyl ester of carbenicillin, however, is known from optical
measurements, (£. 5.4), to reach equilibrium more rapidly than either the
methyl or ethyl esters, yet its n.m.r. spectrum shows no shielding
of the glactam protons with time i.e. the resonance remains a singlet.

An explanation of the anomaly is afforded by the consideration of the
relative orientation of the phenyl group C(27) C(28) C(29) C(30) C(31)
C(32), with respect to the B lactam protons, (H(C(5)) and H{C(6)),
Fig. 4.6. Coupling constants and chemical shifts for those compounds
showing spin-spin splitting of the B lactam proton resonance are given

in Table 5.1

5.3 Relative orientations of the C(17) side-chain substituent in the

phenyl ester of carbenicillin

Benzene rings can affect H' n.m.r. signals by introducing ring
current shifts. When an aromatic ring is within a magnetic field, a
current is induced which arises from the circulation of the delocalised
m - electrons. This ring current produces a local magnetic field which
opposes the externally applied field in the area above

and below the plane of the aromatic ring, but reinforces it otherwise.

The ring current effect, therefore, can produce magnetic shielding, or
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deshielding, of a proton depending upon the aspect of the aromatic

ring that is presented to the proton; The geoﬁetric form of the region

of influence of ring current shifts corresponds to cones whose axes

coincide with‘the direction of the principal symmetry axis. The

special case of axial symmetry, in benzene, results in a spherical

cone with half-angle 54°44" . The model described is useful for
semi—quantitative estimations of the shielding effect due to the phenyl

group (C(27), C(28), C(29), C(30), C(31), C(32)) of the B lactam

protons (H(C(5)), H(C(6))) in carfecillin, during equilibration.

Relative orientations of the benzene ring with respect to
H(C(6)), (the B lactam proton nearest the ring and
hence, most likely to suffer shielding), have been calculated for all

the substituent positions possible at C{17).

Inter-atomic vectors may be described by a basis set of three
] AoA A . )

orthogonal unit vectors p, u and n as shown in Fig. 5.1, where
AoA L ) A A A .
p, W lie in the plane of the benzene ring and n , (= u * p), perpendicular
to the plane. Determination of the basis set relied on the definition
of the plane in terms of the scalar product.
r .n=20 ... Egqn, 5.1

A
where r describes any vector in the plane and n, (= nn) a vector normal

-

to the plane.

Two vectors in the plane of the benzene ring are the

inter-atomic vectors

C(27) C(28) = (0.0778
~ 0.1965 ... Eqn. 5.2

0.0096

and Cc(27) c(32) = ( 0.0255
s —0.1603 ... Egqn. 5.3

0.0463

with components expressed as fractions of the unit cell vectors a, b and

c respectively. These vectors can be used in Eqn. 5.1 to determine the
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Geometrical parameters used in describing the relative side-chain orientation

of the phenyl ester of carbenicillin

Fig. 5.1
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direction of n as,

-0.6082
n =| 0.1919 ... Eqn. 5.4
- 1

(there being no necessity to uniquely define its magnitude).

p is conveniently defined with respect to the unit cell

vectors a, b and ¢ as the interatomic vector C(27) C(30), such that
- - ~ ~

0.2068
p =|0.0724 ... Eqn. 5.5
-~ 10.1118

Thus, satisfying the definition of the plane,

p. n z 0 ... Eqn. 5.6

-

is found to be true.

The two vectors p and n are referred to the unit cell vectors

a, b and ¢ which are not orthogonal (B = 99.50). To produce an orthogonal

basis, it is necessary to transform p and n to refer to orthogonalised

. . oA A . .
unit basis vectors da, b and ¢, as shown in Fig. 5.2, where

b a

-~

H e

>

Fig. 5.2 Transformation of co-ordinate axes.
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the operation & satisfies the reorientation of a such that

-~

da.c =0
T ... Egqns. 5.7

and da.b 0

-~ -~

and premultiplies the magnitude of a by sin B,

A A
Thus, expressed in terms of the basis da, Q and c,

pl Sa 1.7888
P =1p, b = 10.4489 ... Egqn. 5.8
p3 c 2.3925
and
? = nl/ -0.0703
da
n2/ =| 0.0310 ... Egqn. 5.9
b
n:,‘/C 0.0467

where p and n still satisfy Eqn. 5.6.

Conversion to unit vectors results in

A 0.5922
p = |0.1486 ... Egqn., 5.10
- 0.7920

and
A -0.7819
n =| 0.3448 ... Eqn. 5.11
- 0.5194

- N N + + A .
Definition of the remaining vector, p, in the plane of the

ring is given by the vector product

G = 3 A g ... Eqn. 5.12
such that

A ~0.1959

u = -0.9269 ... Eqn. 5.13

- 0.3204
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Fig. 5.3 is a contour plot of shift in n.m.r. shielding
values in p.p.m., which will be experienced by hydrogen atoms as a
result of the rihg currents associated with the benzene ring, (from Johnson
and Bovey, 1958)53. The #Z direction is along n ie, the hexagonal
axis of the benzene ring while p is the direction in the plane

. AR
of the carbon atoms, ie, the p, 1 plane.

(i) Relative orientation in fresh solution

In the crystalline solid state the orientation of the
ester substituent benzene ring with respect to H(C(6)) 1is
described by the vector between H(C(6)) and the centre of the benzene
A

- 3 . A
ring, vl, expressed in terms of the newly found basis set p, u

A
and n. The vector v

1, may be conveniently obtained by considering the

vector sum

vy = H(C(6)) C(17) + C(17) C(27) + ig
~ ~ . Eqn. 5.14
which gives
2.6737
vy = 2.4722 ... Eqn. 5.15
N 7.7512
. A A
expressed 1n terms of da, ﬁ and c.
By letting
A A A
v1 = 2p + my + pn ... Eqn. 5.16
2, m and n are given by
¢ = A
Vi f
m = v . s .. Egns. 5717
T
P=vy.n

. ' A
and describe the components of v, in terms of the basis set p,

Ao A
u and n such that

8.0897
v, = (-0.3318 ... Eqns. 5.18
- 2.7878
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The distance from H(C(6)) to the centre of the ring is

thus given by the two components

) \/(2.'2 + mz)
= 8.1k parallel to the plane of ring
. Egqn. 5,19
and 2 = p = 2.8 X perpendicular to the plane of ring

. Eqn. 5.20

It can be seen from Fig. 5.3 that these co-ordinates lie
outside the region of influence, (indicated by the 'dashed’® rectangle),
considered sufficient to effect any shielding of H(C(6)). Thus, the .
configuration of the phenyl ester of carbenicillin in fresh solution,
assumed to be the configuration described above, i.e. that of the
crystalliné state, is such-that no shielding of thé.B8 lactam protons would be
expected; as evidenced by the singlet H1 n.m.r. peak in Trace 4(b).
Comparable distances between H(C(6)) and the ester substituents in
the cases of the methyl and ethyl esters of carbenicillin could also

be expected to result in the B lactam singlet in fresh solution.

(11) Relative orientation after equilibration

During equilibration, a change of the ester substituent
position at C(17) is described either by the replacement of
the benzene substituent C(18) C(19) C(20) C(21) C(22) C(23) or of
H(C(17)) by the ester. Hence, if the phenyl ester is to effect shielding
of the B lactam proton H(C(6)) it must result in a closer approach
between the ester and H(C(6)) than that described in the crystalline

state.

To study the closeness of approach of any C(17) substituent
A
position to H{C(6)) the unit interatomic vectors C(17;\S(2A),

A A
C(17) H(C(17)) and C(17) C(18) were determined. The distance from
~ ~

H(C(6)) to the end of each unit vector was given by 4.32, 3.89 and 4.33 R

respectively as shown in Fig. 5.4.
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' chzIche)

Ch7)C(24) =~
~ Cl17)H(Cl7))
\\ ,’o
\
\
A
o\ —
L32A ' HIC(B))C17)

Fig. 54 Distances of C17) & its substituents from H(C(6)).

Hence, substitution of the ester at H{(C(17)) provides the closest
approach to H(C(6)). This change of orientation can be effected by a
rotation of the bond C(17) - C(24) to C(17) - H(C(17)) through
the bond angle C(24) - C(17) - H(C(17)) given by
cos ¥ = C(l?)AC(ZA) . C(17)AH(C(17)) ... Eqn. 5.21
~ ~

which upon substitution gives

v = 107.57° ... Eqn. 5.22
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A general rotation of a co-ordinate system through an
. . . A A A L) . .
angle & about an axis inclined to the (p, v, n) axes with direction

cosines £, m and n respectively is represented by the matrix

cos ¢ + 22 (1~-cosuv) tm(l-cosy) + n siny 2n(l-cosy) - m siny
R{y) = Qm-(l-cosw) - n siny cosb + m2 (1-cosy) mn(l-cos¥) + L sin¥
in (l-cosy) + m siny mn(l-cosy) - Lsiny cosy + n2(1—cos¢)
. Eqn. 5.23
The axis of rotation is the vector perpendicular to C(17lig(24)
and C(17)AH_(C(17)), ie. given by their vector product. The direction

Y
cosines are therefore found to be

I'a =O_r765]
m = -0.0341 ... Eqns. 5.24
n = -0.8244

Hence, the matrix operator for the rotation of the ester

substituent 1s given by

0.1139 -0.8110 -0.5740
R(107.57°) = 0.7608 -0.3004 0.6053
-0.6390 ~0.5021 0.5829

.. Egn. 5.25

AoA A
Since this operates upon p, uy and n, the vector from C(17)

to the centre of the benzene ring (= C(17) C(27) + ip) remains unchanged
~J ~
when substituted at H(C(17)), but H(C(6)) C(17) is operated on by
~o
R. such that

-1.5267
R(107 .57°) [H(C(6)) C(17)] = 3.4786] ... Egqn. 5.26
™ -0.5084

. . A A A
expressed in terms of the basis p, u and n.

Rotation about the C{17) -C{(24) bond must now be considered

to allow for conformational change about this bond.

A -
As an approximation it is assumed that p is parallel to

A A
C(17) C(24); this is verified by taking the scalar product between p
~ ~
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and c(17)"c(24) resulting in

~
A
- . C(17) C(24) = 0.95
~
* 1 as required ... Eqn. 5,27
AA
Hence, rotation about C(17) - C(24) is in the yu, n
plane and the rotation matrix R, (Eqn. 5.23), reduces to
1 0] 0]
R'(9) = 0 cos% -sing ... Eqn. 5.28
0 sing ‘cosd

where 4 is the angle of rotation.

Thus, a rotation § associated with a change in configuration
about C(17) is accompanied by a rotation ¢ about C(17) - C(24)

associated with a change in conformation.

Severe constraint upon the rotation ¢ is expected due to
the vicinity of the two carbonyl groups C(15) = 0(16) and
C(24) = 0(25). The relative orientation of the carbonyl groups in the
crystalline state was assumed in some measure to represent the most
probable and energetically favourable conformation, and indeed,
in solution, conformation of such groups is strongly localised such
that the mutually repellant nature of the carbonyls is accommodated

54,55

within the constraints of the surrounding groups Thus, to maintailn

the same relative orientation between the carbonyls, ¢ is given by

o =2y x (360)
109.47 3
=+ 117.92° ... Eqn. 5.29

where 109.47° is the theoretical tetrahedral bond angle as illustrated

in Fig. 5.5. However, orientation with respect to the benzene ring

- 131 -



Fig. 55 Theoretical geometry about C(17).

C(18) €(19) €(20) C(21) C(22) and C(23) constrains ¢ to take the

value - 117.92°.

The transformed vector H(C(6)}) C(17) therefore becomes
~

m -2.0779

R' (—117.92°)(R (107.57%) [H(C(6)) cang) = —1.5267]
-2.8357

.. Egn, 5.30

and the vector from H(C(6)) to the centre of the ring, Voo is given

by
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-1.5267

v, = -2.0779 + C(17) C(27) + 4p
- : ~2.8357 s =
= 3.8232
-1.2748 -.. Eqn. 5.31
-2.5852

. , AA A
expressed in terms of the basis set p, p and n.

Since the operators R(¢) and R'(9) rotate the co-ordinare
axes (é, g, g) by the same transformation as that experienced by
the ester side chain, the vectors C(112\9(27) and lp remain rotationally
invariant under R(y) and R'(¢), then it is only the vector H(C(6%2\9(17)

that undergoes transformation.

The vector v, can be reduced to components parallel and

22
perpendicular to the plane of the ring by Eqns. 5.19 and 5.20, such
that

4.03 R

pe}
u

and ... Eqns. 5.32

2.59 &

H4

£

Fig. 5.3 illustrates that these co-ordinates result in an
aspect of the ester substituent benzene ring, at position @®, lying close
to the zero shielding contour, thus, no change in the B lactam proton
n.m.r. signal during equilibration is to be expected for the phenyl
ester of carbenicillin. The trajectory followed by the ring under arbitrary
rotation ¢, ie. conformational change, is also plotted at 30° intervals
from which it can be seen that for approximately 757 of the period time,
the ring orientation is such that the magnitude of the n.m.r. shielding
is between + 0.1 p.p.m. The n.m.r. spectra of the 8 lactam protons in'
the methyl and ethyl esters of carbenicillin show a splitting during
equilibration, with the coupling J (in frequency units) of the order of
the chemical shift §. J was found to be 4.0Hz and 2C to be 9.0Hz; using

a 60MHz oscillator, & was estimated to be + 0.13 p.p.m. ie. of comparable

- 133 -



magnitude to that expected ahove.
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Table5,) B lactam proton magnetic resonance spin-spin splitting coupling

; ; ) ; o
constants, J, and chemical shifts, §, in solution at 35 C.

L-Tyrosyl penicillin,
L-Amino-phenylacetamido
penicillanic acid,

L-Amino-hydroxybenzyl
penicillin,
Methyl ester of carbenicillin,

Ethyl ester of carbenicillin,.

J(Hz)
3.80
3.90
3.95
4.00

4.00

147 -

§(p.p.m.)

0.13

0.16

0.17

0.13

0.13

Solvent
DZO/NaOD
1

mn

D20

after
equilibration



5.4 Side Chain Configuration and Associated Circular Dichroism.

Stenlake, et al, (1972)56, used the chiroptical technique of
circular dichroism, (CD), as a method of assay to determine the proportions

of D and L diastereoisomers in samples of phenethicillin potassium.

M'e
(ﬂ) | [ >Me
C—N—c¢
o/ H\coo‘K*

The spectrum obtained for the D and L epimers alone is shown in GD(I1)
where Ae is the difference (eL - eR) between left and right circularly
polarised light. The reversal in Cotton Effect, (CE), between the (+)ve
Ae value for the D and the (-)ve value for the L compounds both at 269nm
and 276nm was shown to follow a linear relationship.

Boyd, et al, (1975)57, computed a theoretical CD spectrum for
penicillin nuclei using a molecular orbital model based on 6-aminopenicillanic
acid, (6-APA}. The predicted CD spectrum based on Extended Huckel

Molecular Orbital theory is shown in CD(2), in which the exponential half-
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width parameter for the transitions has a value chosen to most closely
agree with experimental spectra of 6-APA. Two main features are

evident: (i) the: (+)ve CE at about 236nm is predicted to involve molecular
orbitals designated S-N 7+ amide n* with some mixing from S n -+ amide

n* ie. the sulphide chromophoric behaviour shows a dependence upon the
relative vicinity of the 8 lactam amide chromophore; (ii) the shorter
wavelength (-)ve CE at about 199mm is assigned to the B lactam n > n*
transition, however, a reversal to a (+)ve CE has been noted experimencally
under conditions of varying pH. The (-)ve CE seems consistent with
experimentally low pH values (73.0), and the rever sal of CE for higher

PH values could be explained by a small mixing of the amino group orbitals

into the amide orbitals.

An empirical discussion of the contribution made by the
side chain chromophores to the CD spectra of penicillin derivatives
is facilitated by the observance of features modifying the spectrum

of the penicillin nucleus discussed above.

The CD spectrum of amino-phenylacetamido penicillanic acid
is shown in CD(3). The spectrum for the D epimer resembles closely
that of the penicillin nucleus alone CD(2), however, the short wavelength
(-)ve CE occurs at 206nm compared with the unperturbed 8 lactam
amide transition at 199nm. As in the case of phenethicillin
potassium CD(1), a (+)ve CE is noted in the long wavelength region
at 259nm and 267nm. The spectrum of the L epimer, however, differs
by a reversal of sign of Ae at 206nm and at the long wavelength CE
at 261 om and 266 nm. The reversal in CE at the short wavelength
must be associated with the difference in side chain configuration since no
pH change occurred to effet¢t any change in.the amide n +n* transition.
Similarly, the longer wavelength CE reversal must also be associated
with the side chain configurational change since little or no contribution
to the spectrum by the penicillin nucleus is apparent at such wavelengths.

The side chain chromophores sensitive to configurational change about
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C(17) are those that are either substituents of C(17) or suffer no
insulation from chromophores in such a site, Thus, the study of the CD
spectra of selected penicillin derivatives enables an assignment to be
made of whic h chromophore(s) contributes the variation in spectra

both between each derivative and their respective D and L diastereoisomers.

In the case of amino-phenylacetamido penicillanic acid, the
differing spectral features, ie, reversal of CE's between the D and L
forms already described, could be assigned to the possible chromophoric

transitions in either the benzene, amine or carbonyl C(17) substituents.

Amino-hydroxybenzyl penicillin differs from amino-phenylacetamido
penicillanic acid in respect to the para-substituted hydroxyl of the
C(17) benzene substituent only. The absorption wavelength for a
disubstituted benzene is not greatly affected by para-substitution
of an electron donating group and as shown in CD(4), the spectrum of
amino-hydroxybenzyl penicillin shows CE's associated with the diastereoisomeric
configur ation, at only slightly longer wavelengths than those of amino-
phenylacetamido penicillanic acid. However, changé of sign of the CE
at 270-278 nm between the D and L forms of amino-hydroxybenzyl
penicillin is opposite to that of amino-phenylacetamido
penicillanic acid suggesting that this band is due either to a weak
benzene w=»n* transition or pH sensitive amine transitions. Fig. 5.6
illustrates the C(17) substituent orientations relative to the C{(17)
carbonyl substituent C(15) = 0(16) ir amoxycillin and ampicillin (the
D epimers of amino-hydroxybenzyl penicillin and phenylacetamido
penicillanic acid respectively), (James, Hall and Hodgkin, (1968)41 Boles
and Girven, (1976a)34 and Boles, Girven and Gane, (1978))&0, in which
it can be seen that any CE due to the carbonyl chromophore should
exhibit very little difference between like isomeric configurations
of the two compounds, thus, again confining the 270-278 nm absorption
band as representative of weak benzene or amine transitions as

described above.
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Atomic sites for
' the D- epimers

Amoxycillin,

Ampicillin,

Amoxycillin/ampicillin
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Conformation of the C{151= 0(16) chromophore with respect
to C{17) substituents in amoxycilhin and ampicillin.

Fig.56
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* cD is sensitive to relative configuration of those
chromophores in the immediate vicinity of C(17).
Since two of the chromophores are carbonyl groups
and, therefore, idéntical, C(17) can be regarded as
not constituting an asymmetric centre for the purpose

of CD measurements.
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The tyrosyl penicillin provides the opportunity to study
the (D spectrum of a derivative very similar to amino-hydroxybenzyl penicillin
and amino-phenylécetamido penicillanic acid but with chromophoric
insulation of the benzene ring by the intervening C(17) substituent
methylene group. The spectrum shown in CD(5) exhibits no reversal
of CE between the D and L forms ie. the insulation of the
benzene has removed any CE sensitivity to side chain configuration
within the recorded wavelength range, and thus, it can be concluded
that both the long and short wavelength absorption bands are associated
with 7 electron transitions of the benzene chromophore. Some reduction
Ln the (+)ve Ae at 190-195 am for the L form could be attributed to

the carbonyl or amine chromophores.

The absence of CE reversal between the spectra for D and L
phenethicillin potassium in the short wavelength band would indicate
that either some mixing of the absorption by the amine substituent,
present in the above compounds, but replaced by a methyl group in
phenethicillin, or the remoteness of the benzene due to the intervening

oxygen, have a marked effect on the benzene absorption at this wavelength.

The methyl, ethyl and phenyl esters of carbenicillin show
distinctive (-)ve CE's at 206-208 nm, in fresh solution, similar to the
D forms, amoxycillin and ampicillin. Although C(17) does not constitute
an asymmetric centre in the case of carbenicillinf the short wavelength
CE is sensitive to mutarotation. CD(6), CD(7) and CD(8) show the CD
spectra of the methyl, ethyl and phenyl esters respectively, in fresh
solution and subsequently at 10, 20 and 30 minutes and after 24 hours.
All three esters exhibit mutarotation and the(-)ve CE at 206-208 nm
in fresh solution virtually disappears when equilibrium is reached between
the two side chain SUbstituentconfiguracions in good agreement with
the H1 n.m.r. spectra previously discussed. The phenyl ester

reaches equilibrium more rapidly than eitherthe methyl or ethyl esters
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suggesting that the mechanism is susceptible to the molecular environment
The CD spectra, recorded at 27°C show slower rates of equilibration

than those recorded at 35°C for the methyl and ethyl esters during H1
n.m.r. stodies. Hence, the mechanism would appear to involve the
temporary separation of the mildly acidic hydrogen H(C(17)), as suggested
in the model previously used to describe the anomalous behaviour of the

Hl n.m.r. spectrum of the phenyl ester after equilibration, (8. 5.3).

The de values for the salient CE's for the D and L epimers
of amino-phenylacetamido penicillanic acid, amino-hydroxybenzyl
penicillin, the tyrosyl penicillin and the methyl, ethyl and phenyl
esters of carbenicillin are given-in Table 5.2; the snectra

being recorded in aqueous solution at 27°C.
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Table3-2 Circular dichroism data for the principal Cotton Effects of
the following penicillin derivatives in aqueous solution at 27°C. The

. . . . . . -1 -1
units of the molar extinction coefficient, € , are given 1in dm3mol cm |,

where Ae [=(cL - ER)] expresses the difference in absorption between left

and right circularly polarised light.

Ae A (nm)
D-Tyrosyl penicillin + 0.29 275
monohydrate + 8.75 235
+ 7.10 221
+ 5.74 217

+ 7.38 195%*
L-Tyrosyl penicillin + 0.15 275
trihydrate + 7.46 228
+ 3.37 202

+10.10 190%*
D-Amino-phenylacetamido penicillanic + 0.64 268
acid anhydrate (Ampicillin anhydrate) + (.96 260
+12.48 232
-10.24 206

+ 4.16 195%*
D-Amino-phenylacetamido penicillanic + 0.34 267
acid trihydrate (Ampicillin + 0.67 259
trihydrate) +12.73 232
-11.39 206

+29.82 192=*
L-Amino-phenylacetamido penicillanic - 0.31 266
acid trihydrate - 0.13 261
+10.59 224

+11.65 1983%*
D-Amino-hydroxybenzyl penicillin - 0.49 278
trihydrate (Amoxycillin - 0.74 270
trihydrate) +10.83 234
- 6.40 207

+46.25 190*
L-Amino-hydroxybenzyl penicillin + 0.96 275
trihydrate + 2.89 243
+ 7.45 226
+ 9,62 208

- 7.45 198%

* denotes the shortest recorded wavelength
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5.5 Further possihilities for conformational change outside the

penicillin nucleus

'

The discussion related to the spectroscopic evidence above has
been confined to a description of the relative orientation of side-chain
substituents of C(17) only. It has been suggested, (£. 5.3), that this
descriprion is satisfactory in explaining the characteristic behaviour
of the 8 lactam proton rescnance and precludes the possibility of changes
in conformation elsewhere within the molecule.

It is of interest to speculate what other possible conformational
changes might take place in solution and how, if at all, such changes
would be reflected in the relevant proton resonance and circular
dichroism spectra.

The penicillin derivatives used in the previous discussion,

(#. 5.2, 5.3, and 5.4), all have the common side-chain and 8 lactam

constituents, with bonds labelled (a), (b) and (c) for convenience.

AN
—c @ NH (¢! .
% \%ﬁ) ~CH——CH
0 o
C— N-
&

0

The constraining nature of the interstitial carbonyl group in the side-
chain provides conformational stability of the bonds (a) and (b), where
(b) takes on the nature of an amide-carbonyl bond common to rigid chain

protein structures. Thus, possible conformational change of the side-
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chain is limited tq bond (c¢) where linkage is made with the R lactam

of the penicilljn nucleus. Rotation about (¢) is, however, a remote
possibility due to the constraints applied by possible repelling

effects of the carbonyl groups in the side-chain and B lactam respectively.

Any progressive change of conformation of the side-chain in
solution would be evidenced in both the proton resonance and circular
dichroism spectra by either a superposition of shielding and unshielding
effects or a progressive change in Cotton Effect for all the penicillin
derivatives.

Free rotation of the side-chain in solution wouldiiresult in
the characteristic B lactam proton resonance being time averaged between
the shielded and unshielded extrema.

It may therefore be concluded that the discrete nature of the
differences in the respective Hl n.m.r. and CD spectra of the D and L
side-chain C(17) epimers precludes interpretation which does not include
the constraints of rigidity within the side-chain substituents of the

stable diatereoisomeric configurations.
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APPENDIX A

COMPUTER PROGRAMS FOR THE CALCULATION OF

ORTHORHOMBIC PATTERSON FUNCTION, (1), AND ELECTRON DENSITY

FOURIER SYNTHESIS, (2), IN SPACE GROUP P2,2;2.
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Program (1) performs the computation of the function

> 2
(hk2) |F(hk2)| cos2thu cos2nkv cos2niw

... Egn A.1l
for all observed reflexions (hki) at discrete chosen values of (u,v,w).
The output format is that of a discrete plot of P(u,v,w) over a 31 x 3I

array of points (v,w) for !l fixed values of u, ranging one quarter of

the unit cell,

FORTRAN ARRAY VARTABLE DEFINITION
NH(T) Reflexion indices h
NK(T) k
NL(I) 2
COSRU(I,J) Discret 1 f th i t
COSRV (I, J) Dise z z Ya ues o e cosine components
COSRW(I,J) an A.7%.
UPATT(I) Values of the Patterson function during
FPATT(I,Jd,K) synthesis,
FSCAT(I) Scattering factors used in the Sharpening
function,
F(I) Value of scattering factor for given Bragg
angle.
NPATT (1) Integer value of scaled Patterson function.
LINE(I) Overprint variable of NPATT(I).
NUMH (1) Number of reflexions of given h index.
LINES
14
. Set array variable dimensions.
19
20 ' '
21 Input NAST as ** and IBLK as 'blank'.
22 Input the element (NTYPE), used as the average
. scattering atom, whose scattering factors
: are used in the sharpening process, and an
26 average isotropic temperature factor (BETA).
27 . . .
. Input unit cell dimepsions.
. (D=a, E=b, C=cA)
32
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33
44
43
48
49
51
52
53
54
55
36
67
68
80
81
84
85
91
92

93
94

114
115
133
134
139

140

145

Input scattering factors (Int. Tables for
X-ray Crystallography Vol. 3.) in order of
atom type J...5. '

Set variables FORIG (value of Patterson
function at the origin) and counters NUMR
(number of input reflexions), MA and NUMH(I).

(hk2) and observed Fo(hkﬂﬂ read in as variables
J,K,L, and FOBS.

If J is given the value of 100, FOBS is the
layer scale factor for given data.

Test for J = 999 as end of reflexion data flag.

Calculates dhkﬂ as DJKL and places hk2 data

in layers of given h provided input is also
in layers of given ascending h.

Interpolates the scattering factor data for
that value of (sinB8)/X, for reflexion hk%,
using a difference formula.

Applies the Sharpening factor (if required)

as expressed in Eqn. 1.64.

Applies symmetry reduction factor to lFo(hk2)|2
for h, k or 2 = 0.

Sums contribution by |F0(hk2)|2 at the origin.

Places Patterson coefficients in array for
each reflexion,

Calculates discrete values of cos2rkv and

cos2niw for arrays of k}
) O...... 30
and V} 0 30
w) Oreeres

Calculates the Patterson function at discrete
values of (v,w) for blocks of fixed h index,
excluding u variation.

Print section U = section number heading.

Sets up nested DO LOOPS for output map.
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146

148

149

168

Calculates the Patterson function for varying
discrete u levels,

The value of the Patterson function is scaled

such that P'(u,v,w) = P(u,v,w) x 99 and then
P(0,0,0) x 10

output as an integer, If |P'(u,v,w)] > 99,

then P'(u,v,w) is set to 99 and overprinted

by **, This scaling was found the most

convenient for the problem in hand.
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Program (2) performs the computation of the function

z
(hk2)
h+k=2n

8
p(X,Y,2) = v |F (hk2) | [cos2nhX cos2nkY cos2nlZ cosa{hkR)

sin2rhX sin2nkY sin2w2Z sina(hkf)]

- I |F(hke) | [sin27hX sin27kY cos2s2Z cosa(hkR)
(hk)
h+tk=2n+1
- cos2rhX cos2nkY sinZ2aflZ sina(hkﬁ)]} ... Eqn. A.2
3
where a(hkf) = tan_l[%J ... Eqn. A.3

where A, B depend upon atom co-ordinates (x,y,z) such that

A = &cosZnihx + h Z k] cosZn[ky - h Z k) cos2niz
. Eqns. A.4
B = -&sinZn[hx + B Z k] sin2n[ky b k} sin2ntz
Intensity symmetry in space group P2,2;2 results in

|F(hke)| = |F(hk2)] = |F(hk2)| = |F(hke)| = |F(hke)|
and
a(hk) = -a(hk®) = -a(hk2) = -a(hk2) = -a(hk?)

¥V h+ ke 2n
and
a(hk?) = -a(hkf) = m-a(hk?) = n-a(hk2) = -a(hk?)

¥V h+k=2n+1
where n is integer.
The output format is that of a discrete plot of p(X,Y,Z) over
an array of points (Y,Z) for 11 fixed values of X, ranging one quarter of

the unit cell.

FORTRAN ARRAY VARIABLE DEFINITION
X(1) Input atomic co-ordinates X
Y (I) y
Z(1) z
AFUD(I,J) = I |F(hk2)|cosa(hk?) cos2ntZ
hk h+ k= 2n
BFUD(I,J) = § |F(hk2)|sina(hk?) sin2wiZ
hk4
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APUD(I,J)
BPUD (I, J)
A(I)
B(I)

AZ(I)
BZ(I)

NH(I)
NK(I)
NL(I)

NPAR(I)

NUMH (I)

NTYPE(I)

F(I)

COSRX (I,J)
SINRX(I,J)

COSRA(I,J)
SINRA(I,J)

GRID(I,J)

NGRID(I)

LINES

14
20
21
48
49
55
56
62
63

67

I |F(hk2)|cosa(hke) cos2ulZ

- hk% - h+k=2n+1
I |F(hk2)|sina(hki) sin2niZ

hkg

Calculated A for each reflexion.
B

A(I) cos2nRZ
B(I) sin2mgZ

Reflexion indices h
k
2

Parity store distinguishing h + k = 2n
and h + k = 2n + 1.

Number of reflexions of given h.

Atom type number to distinguish scattering
factors,

Scattering factor store.

Arrays of discrete values for cos2mhX.
sin2mhX

Arrays of discrete values for cos2nkY, cos2niZ
sin2rkY, sin2mfZ

Calculated value of p(X,Y,Z) for fixed X

Calculated integer value of p(X,Y,Z) for
complete map.

Set array variable dimensions.

Set arrays to zero (only needed for previously
occupied array storage).

Set values for counters and end of data flag
NINI = 999.

Input atom co-ordinates X,y,z and atom type
for selection of scattering factors.,

Input unit cell dimensions D = a
E=05b
C=ocA
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69 . .
. Input scattering factors in order of atom

. type N.
8-
79 Input reflexion data in terms of indices (hkg)

: and observed |Fy(hk&)|. Layer scale factors

are input as Fy data when h = ]00 preceding
each layer data batch., Scattering factors
are difference interpolated for the calculated
: (sinB)/A of each reflexion,
98
99 Calculation of I [F_(hke)[A

: hk&

: and I |F (hke)|B
110 nke €
11 Calculated |F_(hk2)| produced and tested for

. ' significant contribution to observed |Fq(hk2) |
116 using inequality Eqn. 2.8.

117 If |Fg(hk2)| accepted as Fourier coefficient,
118 it becomes phased on the input atoms.
119

. Parity and counters set for each reflexion.
141
142 . .

. Symmetry factor reduction of A and B in the

. case of h, k or 2 = 0.

150
151 .

. A and B stored in arrays A(I), B(I) and the
lSé number of accepted reflexions counted and ocutput.
160 . . . .

. Discrete arrays for spatial cosine and sine
|75 variations calculated.

176 A and B are computed in conjunction with (£,Z)

. variation within the synthesis i.e.

185 cos2nfZ cosa(hkf) and sin2mfZ sina(hkg).
186 Calculation of APUD(I,J), BPUD(IL,J);

: AFUD(I,J), BFUD(I,J);

200 as defined in array variable, for given Z.
201 . . . A

. Calculation of terms including all Y variation
210 in batches of given Z.

211 . .

. GRID(I1,J) contains values of the synthesis
21& for X and Y variation for fixed Z,
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215
227

228

233
23?
249
25?

260

Disused arrays reset to zero for recycling.

Values for the completed synthesis are placed
in NGRID(I) for Y= 0........ 30

for each X = 0......., 10
in turn for each Z

]
o

Scales the maximum value of !p(X,Y,Z)|
to 99.

Outputs discrete values of integer p(X,Y,Z)
on 11 levels of X for a 31 x 3! array of
(Y,Z) points.
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APPENDIX B

LIST OF STRUCTURE FACTORS FOR

(1) SH62 P2(1)2(1)2: 7-chloro-2-methyl-5-phenyl-3-

propyl[2,3-b]-imidazolyl quinoline.

(ii) SNP P2(1)/C: Methyl ester of 5,5-dimethyl

~-2- (2-phenoxymethyl=-5-oxo-1,3-oxazolin-4-

yli dene)-1,3-thiazolidine-4-carboxylic acid.

(iii) CARF P2(1): Phenyl ester of carbenicillin.
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THE STRUCTURAL AND PHYSICAL PROPERTIES OF CRYSTALLINE ANTIBIOTIC MATERIALS
by
P.A.C. GANE

ABSTRACT OF THESIS

Effectiveness in biological chemical environments virtually defines the term
'drug' when app11ed to any attempt to modify that envircnment by the introduction
of an influence in terms of a specific compound or group of compounds. Interest
in the configuration of the molecules involved in such modifications led to the
vx-ray structure determinations, discussed in the thesis, of the followxng three
compounds :

- (1) 7-chloro-2- methyl 5- phenyl 3- propyl[ﬁ 3-b] - -imidazolyl qulnol1ne
o | | . o 9“3

Nx—N S |
DHeH) CHy )
~N

cl

" “Derived from the psychoactive drug Librium, it was thought to <onform to the
structure:

Ct

conta1n1ng the highly scrained 4 mﬂmbered monocyc11c azete system (Shenoy,

a thesis submitted for the degree of Doctor of Philosophy, University of
London, 1975), and suggestel as one of the first examples of possible stable
4-membered azacyclobutadiene rings.

(CH),CH~, @

(ii) The methyl ester of 5,5-dimethyl-2-(2-phenoxymethyl-5-oxo-1,3-oxazolin-
4~ylidene)-1,3-thiazolidine-4-carboxylic acid.

‘

QO(CH??fN\ _s< ~CH3
- e,

. CH (3)
* R G e N,
. 0

COOCH3




P

CITHIBNZOSS was first reported by Brandt, Bassignani and Re, (1976, Tetrahedron
Letters No. 44, pp 3979-3982), to have configuration (&),

@—O/CHZ\C/NH\C c’s\c <3 |
| ] }l: - 1cHy )
0 COOCH,

j.e. that of a novel class of DL-5,6-didehydropenicillins., 1Its reported weadk
antibacterial activity, thought to be associated with the unsaturated nature of

sthe penicillin nucleus promoced its X-ray structure analysis.

Subsequently, Bach1 and Vaya, (1977, Tetrahedron Letters No. 25, pp 2209- 2212),
suggested the configuration (3) which has been confirmed by the structure

determination.

A comparison of the proposed derivations of (3) and (4) is made,- and the
conformation of the unconstrained thiazolidine ring is discussed in comparison
with the constraining effect of ad;acentﬁ lactamq in the nuclei of known

penicillin structures.

(iii) The phenyl ester of carbenicillin (carfecillin). ' .

C(I17) c/N”\c —q( \?\CH

' —N—~=CH

C c\
& +
() \13 () 0 Na

(5)

The crystal structure is used to facilitate a comparison of the configuracions
of both the penicillin nucleus and the side-chain substituents of C(17) with
other penicillin derivatives of known crystal structure.

The conformation in aqueous solution about C(17) is reflected in the modification
of Hl n.m.r. signals from theﬁ-lactam protons for the methyl and ethyl esters

of carbenicillin between the two epimers. A similar effect is noted for the

two diastereoisomers of amino~hydroxybenzyl pen1c1111n, amino-phenylacetamido
pen1c1llan1c acid and a tyrosyl penicillin.

To evaluate a correlation between the absolute configuration and n.m.r. studies,
circular dichroism spectra from penicillin compounds have been characterised and

. the mutarotation exhibited by the esters of carbenicillin used to describe

configurational equilibria about C(17) in terms of their characteristic n.m.r,
spectra.
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