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Abstract 23 

Most animals confine their activities to a discrete home range, long assumed to reflect the fitness 24 

benefits of obtaining spatial knowledge about the landscape. However, few empirical studies have 25 

linked spatial memory to home range development, or determined how selection operates on spatial 26 

memory via the latter’s role in mediating space use. We assayed the cognitive ability of juvenile 27 

pheasants (Phasianus colchicus) reared under identical conditions before releasing them into a novel 28 

landscape and used high-throughput tracking to record their movements as they developed their home 29 

ranges, and determine the location, timing and cause of any mortality events. Individuals with greater 30 

spatial reference memory developed larger home ranges. Mortality risk from predators was highest at 31 

the periphery of an individual’s home range, in areas they had less experience and opportunity to 32 

obtain spatial information. Importantly, predation risk was lower in individuals with greater spatial 33 

memory and larger core home ranges, suggesting selection may operate on spatial memory by 34 

increasing the ability to learn about predation risk across the landscape. Our results reveal that spatial 35 

memory, determined from abstract cognitive assays, shapes home range development and variation, 36 

and suggests predation risk selects for spatial memory via experience-dependent spatial variation in 37 

mortality. 38 

 39 

Main text 40 

Introduction 41 

Most animals confine the majority of their activities to a relatively restricted spatial region: their 42 

home range 1–4. The patterns and dynamics of animal home ranges have fundamental consequences 43 

across biology, from epidemiology 5,6 to population dynamics and predator-prey interactions 6–9, yet 44 

surprisingly little work demonstrates the processes by which selection can emerge and shape home 45 

range variation. A long-standing explanation for why many animals form home ranges, supported by 46 

a wealth of mechanistic modelling studies (e.g. 1,10), is that it allows a resident to learn the location of, 47 

and optimally exploit, patchily distributed resources such as food and shelter 11–13. Consequently, an 48 
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animal’s ability to learn, retain and update information on the spatial location of resources within its 49 

home range is assumed to be of great benefit 12,14, and is a central tenet to many definitions of the 50 

home range 15,16. Decades of work incorporating proxies of resource-based spatial memory into 51 

mechanistic random-walk models of home range development results in the emergence of more 52 

realistic home ranges, or better statistical power in predicting the development of real animal home 53 

ranges, compared to alternative processes such as sensory detection of resources 4,17–27. Whilst these 54 

prior studies have produced convincing conclusions when incorporating artificial analogues of spatial 55 

memory, they still require empirical validation in light of the extensive work from comparative and 56 

classical psychology demonstrating animals often make use of multiple and distinct cognitive 57 

modalities that work synergistically to process different types of information during daily life 28. 58 

Indeed, the few studies that incorporate different types of spatial memory such as ‘working memory’ 59 

(short-term memory of recently visited locations 29) and ‘reference memory’ (longer-term memory of 60 

landmarks 30) suggest they work in concert to maximise the efficiency of movement patterns within a 61 

home range (e.g. 21,22), and that working memory itself may be a particularly important determinant of 62 

home range size 21. However, we still lack empirical studies that test the predictions made by these 63 

simulation studies to establish the role of cognitive ability (and specifically various types of spatial 64 

memory) in real home range formation and size variation. 65 

 66 

Whilst a great deal of work has focused on the drivers of interspecific variation in home range size, 67 

for instance showing that it scales as a function of body size, metabolic rate and forage type 31 as well 68 

as being heavily influenced by locomotion and foraging strategies 32–34, less is known about the causes 69 

and consequences of home range size at the intraspecific level, particularly with regards to how these 70 

are affected by individual-level variation in different traits. Larger home ranges may infer a range of 71 

benefits such as increased access to mates, refuges and resources 35, although the factors constraining 72 

size are less well established empirically, particularly in species that do not suffer economic costs of 73 

aggressively defending spatially distributed and non-divisible resources 22,36,37. Spatial memory 74 

ability, as a major factor enabling animals to form stable home ranges in the first place, could be a 75 
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potential mechanistic component limiting home range size. If animals form home ranges to exploit 76 

spatial knowledge about important resources or local variation in predation risk, then all else being 77 

equal, better spatial memory should translate to animals being able to utilise larger home ranges 78 

without suffering associated costs caused by poor knowledge about the landscape such as inefficient 79 

travel between resources 21,22 or suboptimal vigilance whilst travelling across regions of varying 80 

predation risk 38. Whilst some biologically-plausible mechanistic models incorporating multiple 81 

cognitive modalities have indeed suggested that better spatial memory can translate into the 82 

emergence of larger home ranges 21,22, this needs validation from field-based studies of real animals. 83 

 84 

Here, we use a unique system in common pheasants (Phasianus colchicus) where we can rear large 85 

numbers of individuals under standardised conditions, assay them across a battery of cognitive tasks, 86 

tag all individuals with high spatial and temporal resolution radio tags, and release them into a novel 87 

wild landscape to track their movements as they develop their home ranges. This approach reduces 88 

variation in early life environmental effects on subsequent behavioural traits, allowing us to test key 89 

predictions about the causes and consequences of movement ecology (although, as with any 90 

experimental control, this comes at the potential expense of reducing ecological realism). Specifically, 91 

we aimed to test how individual-level variation in three cognitive modalities (associative learning, 92 

spatial working memory, and development of a spatial reference memory) obtained from 93 

psychometric assays predict variation in the development of home range size.  94 

 95 

The degree to which individuals can learn and process spatial information, particularly in relation to 96 

resources, should assumedly affect fitness, with potential consequences on selection depending on the 97 

heritability of these traits 39. Indeed, a limited number of studies have uncovered fitness benefits 98 

associated with variation in cognitive ability 40,41, and some have suggested that spatially-explicit 99 

processes are critical in driving the association 42,43. Nevertheless, the pathway by which spatial 100 

memory and other cognitive modalities drive variation in the movement of individuals, and how this 101 
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in turn affects how individuals interact with their environment to ultimately generate selection on 102 

spatial memory, is still unclear. Whilst most studies addressing the formation and benefits of home 103 

ranges have focused on the importance of exploiting patchily distributed resources (or restrictions in 104 

movement caused by aggressive defence by territorial neighbours 7,10,27), another critical factor that 105 

shapes natural selection and varies non-randomly across the landscape, is predation. Many predators, 106 

particularly ambush hunters, display fine-scale temporal and spatial patterning in their hunting 107 

behaviour 44, which prey can potentially learn and mitigate through strategies such as increased 108 

vigilance, avoidance of high risk areas, or exploiting memorised escape routes 38,44–47. As such, there 109 

is growing evidence that predation risk may be particularly high in regions that prey are less familiar 110 

44,48,49. An intuitively appealing, but so far untested, pathway by which selection may operate on 111 

spatial memory ability is therefore via variation in predation risk mediated by an individual’s 112 

familiarity (i.e. degree of prior experience) with high-risk areas as determined by the location and 113 

structure of its home range. 114 

 115 

The high spatial and temporal resolution of our tracking data allowed us to identify the precise 116 

location and timing of predation events during our study (n=45), as well as identify the predator 117 

species responsible (all caused by red foxes (Vulpes vulpes), an ambush hunter). These death locations 118 

were non-randomly distributed across the landscape, constituting regions of high predation risk. By 119 

coupling cognition, movement, and predation data, we were therefore able to test whether individuals 120 

are more likely to be killed outside their core home range in regions they have less knowledge 121 

regarding predation risk, the degree to which this is predicted by different cognitive abilities, and 122 

whether this ‘experience-dependent’ predation risk has the potential to generate selection on cognition 123 

and home range variation. A likely consequence of the hypothesised relationship between spatial 124 

memory and home range size we detail above is that predation will also be higher in less familiar 125 

parts of the landscape (as found previously in deer 44,49), a phenomenon we predict to be particularly 126 

exaggerated in individuals with poor spatial memory since these would be less capable of memorising 127 

the locations of non-lethal predator encounters and thus optimising antipredator behaviours across 128 
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varying regions of predation risk (e.g. 38). Whilst prior work on the antipredator benefit of different 129 

cognitive modalities is scarce, we predict that all three types of cognition we measured can affect 130 

predation risk; reference memory for learning landscape features and specific locations associated 131 

with regions of high risk; working memory in memorising and exploiting the locations of recently 132 

visited refuges and escape routes when predators are encountered; and general associative memory 133 

via the learning of non-spatial components associated with predation (e.g. heterospecific alarm calls 50 134 

and search images of camouflaged predators 51). 135 

 136 

We hatched and reared 126 pheasants and assayed their performance on three well-established 137 

cognitive tasks between the ages of four and seven weeks old. The first cognitive assay, a binary 138 

colour discrimination task, tested the ability of individuals to associate a particular colour with a food 139 

reward, a proxy for general associative learning ability (i.e. the ability to learn simple associations 140 

between stimuli52), and was explicitly designed to not be solved using spatial cues (Fig. 1C). The 141 

second, a radial arm maze task, was intended to test an individual’s ability to use spatial cues to orient 142 

around a maze and optimally exploit multiple food resources as they were depleted, a common 143 

paradigm for testing spatial working memory 53 and one that is particularly ecologically relevant to 144 

species such as pheasants that feed on patchily-distributed resources (e.g. 54). The third, a task similar 145 

to the classic ‘Lashley maze’ 55, was intended to test the ability of an individual to learn to navigate 146 

through a complex maze (‘complex maze task’ from hereon; Fig. 1A). Previous studies have shown 147 

that the Lashley maze can be solved using allocentric-based visual spatial cues, and/or varying 148 

degrees of egocentric-based learned turn sequences when these are absent or insufficient 56. We have 149 

previously shown that pheasants show individual-level variation in their preference for using 150 

allocentric and egocentric processes when solving this same complex maze task 57, suggesting that 151 

performance in this maze reflects at least some degree of spatial reference memory ability in this 152 

species, regardless of navigation strategy deployed. Indeed, whilst multiple cognitive modalities can 153 

be used to solve even explicitly domain-targeted tasks (e.g. 58), we chose these three tasks due to their 154 
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extensive prior validation from classical cognition testing, their suitability for testing with pheasants, 155 

and specifically for their likely relevance to processes important in animal movement ecology 21. 156 

 157 

After the completion of their cognitive tests, we simultaneously released the juvenile pheasants into a 158 

heterogeneous rural landscape (mixture of agricultural, grassland and woodland habitats) at 10 weeks 159 

old (the age wild birds start independence from their mother 59). We followed their movements and 160 

fate using ATLAS, a recently-developed reverse-GPS automated radio-tracking system with high 161 

spatial and temporal resolution 60–63, detecting locations at up to eight times per minute, for up to 120 162 

days as birds acquired their home ranges. This design ensured that all birds were equally naïve to a 163 

shared landscape, allowing us to test whether the stabilized size of an individual’s home range was 164 

predicted by their earlier performance in our three cognitive tests (accounting for prior experience; 165 

difficult with studies of adult animals but critical when comparing developmental patterns of 166 

behaviour between individuals 14). 167 

 168 

Results and Discussion 169 

We found that pheasants exhibiting superior performance in the complex maze task (designed to test 170 

navigation-related spatial cognition, including spatial reference memory) subsequently developed 171 

larger core home ranges (i.e. the area of the home range that birds spend a disproportionately large 172 

amount of time11; see Methods) calculated from autocorrelated kernel density estimates (AKDEs, 173 

which control for temporal autocorrelation in location data64) (-0.52 ± 0.24 (coefficient ± standard 174 

error); Fig. 1D; Table S1 and Table S3). This positive relationship provides direct empirical support 175 

for the long-standing implicit home range hypothesis suggesting that greater cognitive ability, 176 

particularly spatial memory, allows an individual to form a larger core home range 15,65,66. In contrast, 177 

we found no evidence that spatial working memory or associative learning ability predicted core 178 

home range size, or that any cognitive metrics predicted the size of the peripheral home range (area of 179 

the 85% AKDE isopleth subtracted from the area of the 99% AKDE isopleth; Table S2 – Table S6). 180 
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Comparison of our results to two previous mechanistic studies that incorporated multiple spatial 181 

memory systems show interesting discrepancies. Studies by both Van Moorter et al, and Riotte-182 

Lambert et al suggest that home range size should strongly covary with working memory, and in the 183 

former study, be largely insensitive to variation in reference memory 21,22, with both memory systems 184 

working synergistically to result in the optimal exploitation of resources that causes the emergence of 185 

realistic home range patterns. Our study suggests that variation in spatial reference memory, 186 

independent of working memory, predicts the development of differing home range sizes (also 187 

suggested by Riotte-Lambert et al. 22), with no evidence for an interaction between these two spatial 188 

cognitive processes or any effect of working memory variation on home range size at all. We note that 189 

comparisons between theoretical and empirically-derived measures of cognition should be made with 190 

caution, but nonetheless a fascinating avenue for future mechanistic studies would be to investigate 191 

the relative importance played by predators and resource utilisation, and how these in turn place 192 

differing priorities on different memory systems, in driving home range development, particularly in 193 

systems that suffer high predation rates such as ours (as has been done in more nomadic species 67). 194 

  195 

We recorded 45 separate predation events during our study, for which we could identify the precise 196 

timing, location and predator species responsible due to the high temporal and spatial accuracy of our 197 

ATLAS data. All predation events were caused by red foxes (see Methods for a separate validation 198 

experiment that characterised untagged-predator and tagged-prey movement patterns). By comparing 199 

the whereabouts within the predated bird’s home range of these real death locations to a null 200 

distribution of simulated death locations, we find that pheasants were disproportionately likely to be 201 

predated on the periphery of their core home range, the area with which they had least experience 202 

(deaths occurring on 85% ± 25% (mean ± SD) isopleth of AKDE; Omnibus test: c= 242.61, df= 70, 203 

P<0.001; Fig. 2A and Fig. 2B). This suggests that familiarity with the landscape was an important 204 

determinant of an individual’s predation risk, supporting previous work in deer 44,49. However, a 205 

potential alternative (but not mutually exclusive) explanation for this spatial distribution of predation, 206 

not discounted in previous studies, is that prey individuals may simply establish their home ranges 207 
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outside of high-risk areas - mortality might be particularly high outside of the core home range simply 208 

because this is the area with highest intrinsic risk. Indeed, many prey species are known to form a 209 

‘landscape of fear’ by learning the temporal and spatial patterns of predation risk in their habitat 47,68, 210 

providing a possible avenue by which cognitive ability may facilitate predator avoidance. We directly 211 

tested for this possibility by calculating areas of high predation risk based on the predation events we 212 

recorded during our study. Whilst these were non-randomly distributed across the landscape, we 213 

found no indication that cognitive ability played a role in pheasants’ ability to avoid these high-214 

mortality areas (Tables S7 – S10), or indeed any evidence that pheasants avoided these areas at all 215 

(Extended Data Figure 1). Instead, the home ranges of surviving birds overlapped substantially more 216 

with the high-mortality regions than we would expect by chance (89.1% ± 22.2 (mean ± standard 217 

deviation) of a bird’s core home range; Permutation test: P=0.010; Extended Data Figure 1), possibly 218 

due to predators being attracted to areas of high prey abundance 69. Crucially, the locations of each 219 

death commonly fell within the home ranges of multiple individuals. We were therefore able to test, at 220 

a fine scale, whether it was an individual’s own experience (as determined by the percentage kernel 221 

isopleth of their home range) of the location that predicted their death rather than the intrinsic risk of 222 

the location itself. For the bird killed at a particular location, this was situated more peripherally 223 

within their home ranges compared to the other birds whose home ranges encompassed the location 224 

yet were not killed by predators during the study (65% ± 34% (mean ± SD) isopleth of AKDE; 225 

Kolmogorov-Smirnov test; D=0.32, P=0.001; Extended Data Figure 2). Taken together, these results 226 

suggest that predation risk is not simply a product of the probability of interacting with predators, but 227 

rather the level of experience an individual has with the landscape when it encounters those predators. 228 

Ignorance of local risk at the home range edge may manifest as a failure to optimally resolve the 229 

trade-off between vigilance and resource use, which may develop with age and experience as 230 

individuals obtain knowledge about the spatial and temporal patterns of predation risk, refuges and 231 

escape routes within their environment 47,68,70, rendering juveniles (or otherwise naïve individuals) in 232 

rarely visited areas at greatest risk of predation.  233 

 234 
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Further corroborating the antipredatory importance of spatial knowledge, the familiarity-dependent 235 

patterning of predation risk we found also created differential survival in pheasants contingent on 236 

their spatial memory. Survival was highest in pheasants whose performance in the complex maze task 237 

(assessing spatial reference memory) was correlated with their performance in the working memory 238 

task; birds had the highest survival if they combined good spatial working memory abilities with good 239 

spatial reference memory, and the lowest survival was found in birds with mismatching spatial 240 

abilities (i.e. they performed well in one but not the other) (Cox proportional hazards (Cph) model; 241 

reference memory x working memory interaction: -2.98 ± 0.90 (coefficient ± SE); Fig. 2C; Table 242 

S11- Table S13). When controlling for this interaction, birds with better performance in the complex 243 

maze task also had an overall lower probability of being predated (Cph: -1.02 ± 0.44 (coefficient ± 244 

SE); Table S13), although there was no important effect of working memory as a main effect (Cph: -245 

0.45 ± 0.59 (coefficient ± SE); Table S13). We found no support for an effect of general associative 246 

learning on survival, where our two best models included only sex or an intercept-only model (Table 247 

S14). Given that spatial cognition in pheasants has a (albeit low) heritable component 71, the 248 

familiarity-dependent spatial variation in predation risk we detail here has potential to generate 249 

selection on these two forms of spatial memory. An important prediction from our results is that, since 250 

spatial memory positively predicts home range size, with predation risk being highest just outside the 251 

core home range, and that this predation risk in turn generates selection on spatial memory, then core 252 

home range itself should be expected to be under directional, positive selection. Confirming this, we 253 

find that indeed the size of the core home range itself also predicted mortality, with predation risk 254 

being lowest in the birds with the largest home ranges (Cph: 0.12 ± 0.07 (coefficient ± SE); Fig. 2D). 255 

 256 

A small number of previous studies have demonstrated survival or mate choice benefits that are 257 

associated with cognitive abilities 40,42,43,72. However, the process by which cognition actually conveys 258 

these benefits by mediating how animals interact with their environment is unclear. Our results reveal 259 

that spatial variation in predation risk, arising from a prey individual’s own familiarity within its 260 

home range, may generate selection on spatial cognitive abilities that in turn predict home range size. 261 
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An intriguing result from our data is that survival was also relatively high in birds that performed 262 

poorly in the tasks that test both spatial working memory as well as navigational-based spatial 263 

cognition (spatial reference memory) (Fig. 2C). This result requires further exploration to determine 264 

the overall effect on selection experienced across multiple generations, although the overall effect of 265 

highest survival being found in the birds that performed best in both, in combination with the highest 266 

mortality being found in birds with mismatching performance, should result in overall positive 267 

selection in both cognitive abilities (as suggested by our result showing that birds with the largest 268 

home ranges also had highest survival). Previous modelling work has highlighted the importance of a 269 

synergistic mechanistic role of working and reference memory for an animal to create a home range 270 

that optimises foraging efficiency 21,22; our results suggest that a mismatch between these two facets 271 

of spatial memory may also have ultimate consequences in terms of survival. Whilst spatial reference 272 

memory is known to be important in allowing prey to efficiently exploit safe refuges, particularly 273 

when encountering predators 73–75, the role of working memory in relation to predation risk is poorly 274 

known so we can only speculate on this intriguing result. Perhaps birds with greater reference but 275 

poor working memory traverse larger home ranges, with correspondingly greater exposure to high-276 

risk areas, but their poor working memory means they are less capable of exploiting recently visited 277 

escape routes should they encounter a predator. Regardless of the explanatory factor for this result, it 278 

suggests that interactions between complementary modalities may be required for selection on some 279 

cognitive abilities to arise. The nature of our study site, with the simultaneous introduction of same-280 

aged, equally naïve birds at a single location, in the virtual absence of resident competitors and 281 

abundant natural and provisioned food mean that we cannot explore the role of resource distribution 282 

on home range development, maintenance and benefits in this analysis. Fluctuations or heterogeneity 283 

in resources or competition likely affect home ranges with larger ranges expected in low-productivity 284 

areas with patchily distributed resources. Under such circumstances, the relative values of working 285 

and reference memories may differ. Thus, we encourage future studies to explore the interplay 286 

between risk or resource distributions and spatial memory ability to better understand how selection 287 

may act more generally on cognition under varying ecological conditions. 288 
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 289 

Our findings provide empirical support for the long-assumed links proposed between movement 290 

ecology and spatial cognition as revealed in abstract cognitive tasks dependent on cues of space and 291 

movement. They suggest that spatially-contingent predation risk arises through familiarity and 292 

experience with the landscape, a potentially critical factor with important implications for how 293 

cognition shapes movement and space use. Importantly, they provide a plausible pathway by which 294 

selection acts on spatial learning and memory through an individual’s acquisition of, and familiarity 295 

with, their home range, and their life or death within it.  296 

 297 

 298 

Methods 299 

 300 

Housing and rearing conditions 301 
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On the 24th May 2018 we hatched 126 pheasant chicks from eggs obtained from commercial breeders 302 

(which sell large numbers of pheasant eggs each year) and allocated these approximately equally 303 

across four indoor enclosures (each 2m x 2m). Chicks were provided water and fed commercial chick 304 

crumbs (Sportsman© Game Feed) ad libitum, provided a brooder heat lamp for thermoregulation, and 305 

given various perches. At eight days old, we tagged all birds with small patagial wing tags (Roxan 306 

Ltd, Selkirk, UK) to allow individual identification. Chicks were given access to a sheltered outdoor 307 

enclosure (1.5 x 2.4m) at two weeks old and an outdoor run (4m x 12m) at four weeks old. At 10 308 

weeks old, we weighed and measured the tarsus length of all individuals (a common proxy for 309 

skeletal body size in birds76) before releasing all birds into a large outdoor pen allowing them to 310 

disperse into the surrounding rural landscape (mixed farmland and woodland; North Wyke Farm, 311 

Okehampton, Devon, UK). Prior to the release of our study birds, all wild pheasants were captured for 312 

a captive breeding programme. Pre-release visual surveys, as well as ongoing observations during the 313 

study, confirmed that less than 10 wild birds were ever present in the entire field site during the study. 314 

 315 

Cognitive testing 316 

All cognitive tasks took place within the same 75cm x 75cm testing chamber adjacent to their indoor 317 

enclosure. For the first three weeks we trained chicks to enter this chamber via a remotely controlled 318 

sliding door using live mealworms as rewards. An additional remotely controlled door with access to 319 

the outdoor enclosure enabled us to ensure birds entered and were tested within the testing chamber 320 

individually. Trial and session number represent a compromise between maximising the collection of 321 

cognitive data that our and previous work has suggested should allow the collection of learning slopes 322 

(e.g. 57,71) against the time and logistical constraints of running this multi-stage study.  323 

 324 

Colour discrimination task 325 

At 25 days old, we tested the chick’s associative learning ability on a binary-choice colour 326 

discrimination task that required birds to pierce tissue paper-covered wells to reach a mealworm food 327 
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reward (Fig. 1C). One week prior to testing, birds were trained to peck through the tissue paper via 328 

repeated exposure to the apparatus in the testing chamber in small groups until all birds could 329 

consistently perform this behaviour. Each bird completed 10 trials within each of eight sessions (80 330 

binary choices) between the 19th and 22nd June. In each session, a bird would enter the testing 331 

chamber where they then completed a total of 10 trials. Each 2cm diameter well was encircled with 332 

either a blue or green coloured ring; wells encircled with a blue ring contained three mealworms, 333 

while those encircled with a green ring could not be pierced due to a layer of undetectable cardboard 334 

immediately underneath the tissue. The two wells were oriented vertically in relation to the pheasant’s 335 

perspective, with a 1cm gap between them. We placed a dead mealworm between the two wells to 336 

attract birds to the apparatus and ensure they had a standardised orientation for each set of trials. Birds 337 

were only allowed to make one choice per trial. After each choice, the apparatus was replaced before 338 

starting the next trial. The location of the rewarded well was pseudorandomised so that it did not 339 

appear on the top or bottom more than 3 times in a row and thus removing any spatial associations 340 

that may form. 341 

 342 

Complex maze task 343 

Between 3rd – 5th July 2018 (once the birds reached five weeks old), the testing chamber was 344 

converted into a 3 x 3 chambered maze using 35cm walls of opaque black plastic to test the 345 

pheasants’ reference learning ability, recalling a route after an interval of several hours (Fig. 1A). We 346 

first habituated birds to this arena by repeatedly feeding them within the maze when all the doors to 347 

each chamber were open. During the complex maze task, birds were required to make at least seven 348 

turns to navigate to the exit, at which point they would receive a mealworm reward and could exit to 349 

the outdoor enclosure. We ensured that all cues external to the maze (e.g. observer position) were 350 

identical in all trials. Each bird first underwent a total of eight trials. In each trial, we counted the 351 

number of chambers that a bird entered erroneously, with an error being defined as a chamber that did 352 

not lie on the most direct route to the exit. A bird was considered to have entered a chamber if their 353 

head passed over the chamber threshold. A bird could repeatedly re-enter a wrong chamber so the 354 
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number of (potential) errors was not capped. In a perfect performance with no errors, the bird would 355 

progress directly through the maze via seven chambers to the exit. 356 

 357 

Radial arm maze 358 

Once chicks had reached seven weeks old, we tested their working memory based on spatial cues over 359 

a period of a couple of minutes, by converting the testing chamber into a radial arm-style maze with 360 

four arms rewarded with a single large mealworm (Fig. 1B). The reward was concealed at the end of 361 

each arm by an opaque black plastic wall which the birds had to navigate around. On entry to the 362 

testing chamber, birds were lured to approach a central platform using a single mealworm as bait, 363 

after which they could enter one of the arms and so make their decision. In each trial, we recorded the 364 

number of errors a bird made (number of times a bird stepped off the central platform into an arm 365 

they had already depleted the reward from) and a trial continued until a bird found all the mealworm 366 

rewards, at which point it was released into the outdoor enclosure. All birds received a total of 12 367 

trials. A perfect performance would see a bird visiting and depleting each location just once, with no 368 

visits to previously visited locations. 369 

 370 

Cognitive performance analyses 371 

We quantified an individual’s learning performance in the radial arm and complex maze tasks by 372 

using the slope that describes their reduction in numbers of errors across trials, and for the colour 373 

discrimination task by using the slope that describes the number of correct choices out of the 10 trials 374 

across the eight sessions. For the colour discrimination task, we obtained the slope from running a 375 

Poisson regression between the number of correct choices out of the 10 trials across the eight sessions 376 

of the task. For the complex maze and radial arm maze tasks, we fitted a linear relationship to the 377 

pattern of errors across the 8 and 12 trials respectively. We derived the equation for the relationship 378 

and used the coefficient slope value. Steeper negative slopes for the radial arm and complex mazes, 379 
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and steeper positive slopes for the colour discrimination task, indicate that their learning of the task 380 

was faster (although these are inversed in our figures to aid interpretation; Fig. 1D and Fig. 2C). 381 

We only included birds that had completed at least eight of the ten trials in the radial arm maze and 382 

colour discrimination tasks, and seven of the eight trials in the complex maze for further analysis. 383 

Different birds reached criterion on different tests, which is why sample sizes for relationships with 384 

particular tests vary, and also why not all birds that contributed death location data also contributed 385 

spatial ability data (and vice-versa if birds did not establish a stable home range; see below). None of 386 

our cognitive variables were significantly correlated (linear model (lm) of spatial reference memory 387 

predicted by spatial reference memory: -0.01 ± 0.26 (coefficient ± standard error), F1,42 = <0.01, 388 

P=0.999; lm of spatial reference memory predicted by colour discrimination: -0.08 ± 3.91 (coefficient 389 

± standard error), F1,31=<0.01, P=0.983; lm of spatial working memory predicted by colour 390 

discrimination: 2.66 ±  2.18 (coefficient ± standard error), F1,31=1.49, P=0.232. 391 

 392 

Release into the wild and ATLAS system 393 

All birds were allowed to naturally disperse into the wild by being first released into an outdoor 394 

release pen (~4000 m2 in area) within woodland at North Wyke Farm, North Wyke, UK, once they 395 

reached ten weeks old. Before release, they were fitted with radio tags, sexed, and their mass was 396 

recorded. Within the pen, birds could enter and leave as necessary by flying or via a system of wire 397 

tunnels that were too small to admit terrestrial predators. We provided birds with supplementary food 398 

supplied in 43 artificial feeders situated inside and within 2 km of the release pen (see Fig. 2A for 399 

map of the release site). To ensure the attached radio tags had no adverse effects, tagged birds were 400 

monitored in captivity for seven days before being released. Specifically, we monitored behavioural 401 

(lethargy, isolation) and physiological (breathing, vocalisation) indicators of welfare as well as 402 

visually monitoring the pheasants for sites on the body that could be susceptible to abrasion. We 403 

tracked birds using a recently developed reverse-GPS system (ATLAS) 60,61,63. This system uses 404 

fixed-position receiver stations to detect and collect the time of arrival data from tag-derived radio-405 
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signals. These data are then collated at a database on a central server where location is calculated. 406 

Location data, accurate to ~4-6m relative to GPS measurements 63, can be accessed in real-time 407 

through an internet connection which allows for continuous monitoring. 408 

 409 

Determination of death locations 410 

Because the major predator of pheasants in our field sites, red foxes (Vulpes vulpes), will frequently 411 

transport their captured prey before eating or caching them, we combined three methods to determine 412 

the exact death location of each of our predated pheasants. Firstly, we ran an observational study 413 

using ATLAS-tagged fresh pheasant carcasses to determine the range of movement patterns displayed 414 

by predators carrying a dead pheasant (details of experiment below). Secondly, informed by the 415 

filtered movement tracks of scavenged dead pheasants, we visually assessed movement patterns of 416 

our live birds to subjectively determine putative kill sites where the bird’s movement path underwent 417 

an unusual substantial change (e.g. when the bird rapidly covered a large distance in an 418 

uncharacteristically straight line before suddenly stopping) and matched those displayed by the 419 

movement patterns of scavenged carcasses. Thirdly, we confirmed our putative kill sites by running a 420 

state change analysis on the tracked paths of each predated bird to determine whether locations that 421 

immediately preceded a substantial change in movement highlighted by our subjective assessment 422 

matched those determined using our state change analysis. Specifically, we used the segmentation 423 

approach by Lavielle77, where segment numbers (allowing us to identify change-points) were 424 

identified based on graphically examining the relationship between segment number and the 425 

decreasing contrast function, produced using the ‘lavielle’ function in the ‘adehabitatLT’ R package 426 

(version 0.3.25)78. 427 

In our carcass tracking study, we placed 44 carcasses of ATLAS tagged adult pheasants (22 male and 428 

22 female) on 5th February 2019 in locations around the field site frequented by our live tracked birds. 429 

Two camera traps (Bushnell Trophy) were setup at each location to identify the predator that moved 430 

the carcass. After eight days (once all carcasses had been moved), we then located carcasses based on 431 
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their ATLAS coordinates. Camera trap footage confirmed that all carcasses moved from the 432 

introduction site were caused by red foxes. ATLAS coordinates for each bird were then filtered using 433 

the same method for our real birds, and the resulting movement patterns were used to help denote 434 

death locations as described above. 435 

In all instances of predation from our main release experiment, the paths of live birds that were 436 

predated were typified by regular movement patterns before a sudden and uncharacteristically long-437 

distance and rapid movement in a straight line before immediately becoming stationary. This rapid, 438 

single straight-line movement was recorded for all red fox scavenging instances we recorded in the 439 

carcass tracking study above, representing a fox moving its prey a long distance from the site it was 440 

captured to a new location to process and cache. This first ‘stop’ location was usually the spot where 441 

we recovered the predated bird via radio tracking, and the location immediately preceding the first 442 

long-distance movement (i.e. the last point of normal pheasant movement) was denoted as the 443 

location the bird was predated. We confirmed the species of predator using field signs around 444 

carcasses such as whether the carcass was buried, teeth marks on the radio-tags, and feather remains 445 

(e.g. characteristic field signs of a fox kill are large wing and tail feathers cleanly severed close to the 446 

base of the feather shaft, whereas raptors pluck feathers by grasping the feather further up the shaft, 447 

leaving a characteristic V-shaped kink). All the birds killed outside their pens in this study were 448 

predated by red foxes. 449 

 450 

Location data filtering 451 

All ATLAS coordinates were first filtered to increase the accuracy of locations used to calculate the 452 

home ranges. We first removed all coordinates where the variance in signal strength between base 453 

stations was greater than 75%. Each day was then split into five-minute blocks, and the median 454 

location during each five-minute block was calculated (so that every bird in the study had one location 455 

assigned within the same time periods within each day). This filtering process excluded anomalous 456 

locations caused by standard issues with radiotracking such as reflection 79,80. Because the release 457 
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pens which birds were kept in before dispersing effectively excluded foxes, we only included the 458 

coordinates of birds that were outside the pen in our home range estimations.  459 

 460 

Home range estimation 461 

To estimate home ranges of each pheasant we fitted a continuous-time stochastic movement model 462 

(ctmm) followed by AIC-based model selection to calculate autocorrelated kernel density estimates 463 

(AKDEs) for each of our birds using the ctmm package 64 in R (version 3.5.3) 81. Parameters for our 464 

ctmms were chosen based on visually assessing variograms of time-series movement patterns for each 465 

individual bird. The variograms also allowed us to identify and discard from the analysis a further 39 466 

birds who had not formed a stable home range because of either predation or death soon after release, 467 

tracker malfunction, or because they quickly dispersed from the study site. Core home ranges were 468 

estimated as the 85% AKDE isopleth based on the mean point of asymptote between the home range 469 

size and AKDE isopleth, indicating the region within which birds were concentrating their movement 470 

patterns 11. To determine the region of the home range where birds were killed, we then calculated the 471 

minimum AKDE isopleth that encompassed the coordinates of the bird’s predation location. 472 

 473 

Do pheasants avoid high-risk areas? 474 

One explanation for why pheasants are killed more frequently on the outskirts of their home range is 475 

because they avoid riskier areas - death locations on the home range periphery may simply reflect 476 

cases where pheasants ventured into high-risk areas instead of occurring due to a lack of intrinsic 477 

knowledge about local predation risk. To test whether our mortality patterns could therefore be driven 478 

by birds avoiding areas of high risk, we quantified the home ranges of non-predated pheasants and 479 

determined the proportion of their core home range (85% AKDE) that overlapped with a kernel 480 

density estimate (80% kernel estimate with no autocorrelated time estimate) created from the death 481 

locations of our predated birds. The 80% kernel density estimate from the actual death locations was 482 

chosen as a suitable ‘high risk zone’ as it represented the start of the plateau between the kernel 483 
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density percentage and size (surface area) of the home range, thus representing an area of 484 

concentrated predation risk. 485 

 486 

To determine whether the home range-risk area overlap differed from what we would expect by 487 

chance, based on the null hypothesis that pheasants can be predated with equal probability at any 488 

previously visited location within their home range, we compared the overlaps of our real birds to 489 

5000 simulated high-risk zones. Each simulated high-risk zone was created by selecting a single 490 

relocation coordinate (randomly selected from any of the coordinates recorded during a bird’s 491 

lifetime) from each of our predated birds and using this as a simulated predation location, before re-492 

calculating a new high-risk zone and subsequently calculating how much this overlapped with the real 493 

core home range of the surviving birds. Only those surviving birds that overlapped with some part of 494 

the home range of at least one of the predated birds were included in this analysis.  The proportion of 495 

randomised survivor-predation home range overlaps that were lower or higher than the real survivor-496 

predation home range overlaps was used as our two-tailed statistical significance value (Extended 497 

Data Figure 2). 498 

 499 

In addition to the above, we also ran an analysis to determine whether the AKDE isopleth containing 500 

a death location was higher in the bird that actually died compared to the same death location of a 501 

neighbouring bird that did not die. This is directly testing whether the actual death location itself was 502 

avoided at a more fine-scale level than can be determined by comparing home range overlaps with 503 

regions of high risk. We therefore calculated the minimum AKDE isopleth that contained a death 504 

location for birds that were killed and birds that were not recorded as being killed (surviving birds; 505 

n=67). Surviving birds were only included if the 100% minimum convex polygon of their home range 506 

encompassed the death location of the killed bird (to avoid including birds that never encountered the 507 

death location). We then compared the distribution of minimum isopleths that contained death 508 
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locations between killed and surviving birds using a Kolmogorov-Smirnov test (Extended Data Figure 509 

2). 510 

 511 

Statistical analysis 512 

To determine the drivers of home range variation, we ran linear models (LMs) with core and 513 

peripheral home range size in hectares of the eventual stable home range of each pheasant as the 514 

response variables. We define the peripheral home range as the area covered by the core (85% kernel 515 

isopleth) subtracted from the area of the total (99% kernel isopleth) home range. We used this 516 

measure rather than the 99% kernel to detect any effects of total home range size exclusive of the role 517 

played by the underlying core home range (which is of course a composite of the total home range). 518 

Both core home range size and peripheral home range size were strongly left skewed and so were log-519 

transformed to obtain normally-distributed residuals from our models. To test the effect of different 520 

cognitive modalities on these home range parameters we created a model to test performance in the 521 

colour discrimination task, and a model that tested for the role of performance in both the spatial 522 

cognition tasks, across both of the response variables detailed above. To be included in any analysis, 523 

pheasants of course had to reach criterion in the relative cognitive tests (two tests in the case of the 524 

spatial analyses), as well as form a stable home range before dying/suffering a transmitter 525 

malfunction/dispersing out of the field site. For the survival analysis, we also only include birds 526 

where the known cause of death was predation (as determined from above), or to include birds that 527 

‘survived’, we only included their location data up to the point that they were still moving freely and 528 

were producing high-accuracy data (i.e. hadn’t dispersed outside of the range of the ATLAS 529 

receivers). As such, there was rather extensive data loss from our original 126 birds (see specific 530 

numbers in each statistical section below). 531 

 532 

In the spatial cognition models, performance in the radial arm maze and complex maze were included 533 

as main effects to test for the general hypothesis that spatial reference memory is important in the 534 
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development and utilisation of a home range (e.g. 25,26), as well as in a two-way interaction to 535 

explicitly test the hypothesis that home range development and size arise and vary due to the 536 

synergistic effect of working and reference memory 21. To control for the amount of time that a bird 537 

could familiarise itself with the landscape, we also included a bird’s lifespan (in days) as a covariate 538 

in all models. In addition, pheasants show sex differences in home range size,  with females having 539 

larger home ranges than males when the latter become territorial during the breeding season (although 540 

our study did not encompass this period), and so we therefore include sex in our models as a fixed 541 

term 82,83. Our code syntax for the structure of our starting maximal model for the core home range 542 

spatial analysis (n=44) was therefore: ‘lm(log(Core_HR_hr) ~ Slope_LM * Slope_RAM + Sex + 543 

Lifespan, data= akde_data_main)’, and we returned support for a single model in our model selection 544 

procedure (Table S1). To test whether body mass is a confound in this analysis (since home range is 545 

known to scale with body mass at the intraspecific level in some species 84, although see 36), we also 546 

ran a final model that included only lifespan and mass as predictors. Model comparison using AICc 547 

(154.1 for the reference memory model and 156.3 for the mass model) confirmed that mass is not a 548 

confound. We intentionally excluded mass in our starting model to avoid issues with collinearity since 549 

it is strongly correlated with sex (female mass: 575g ± 65; male mass: 717g ± 100 (mean ± standard 550 

deviation); t-test: t = -5.65, df = 37.2, P<0.001). 551 

 552 

Our code syntax for the structure of the starting maximal model for the peripheral home range spatial 553 

analysis (n=44) was: ‘lm(log(Peripheral_HR_H) ~ Slope_LM * Slope_RAM + Sex + Lifespan, data= 554 

akde_data_main)’. Our model selection procedure produced two minimum adequate models (Table 555 

S4). As with the core home range model above, we also tested for any confounding effect of mass by 556 

comparing our two final model AICcs with a model that only contained mass and lifespan as 557 

predictors, confirming again that it is not a confound.  558 

 559 
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For the associative learning analyses based on the colour discrimination task, we included sex, colour 560 

discrimination performance and lifespan as the fixed effects. The syntax for our starting maximal 561 

model for the core home range colour discrimination analysis (n=55) was therefore: 562 

‘lm(log(core_HR_hr) ~ CD_Slope + Sex + Lifespan, data = akde_CD)’, returning a single model 563 

with only sex and lifespan as covariates. The syntax for our starting maximal model for the peripheral 564 

home range colour discrimination analysis (n=55) was: ‘lm(log(Peripheral_HR_hr) ~ CD_Slope + 565 

Sex + Lifespan, data = akde_CD)’. This produced three separate minimum adequate models (Table 566 

S5). 567 

 568 

A central question in this study was to test whether animals were more likely to be predated on the 569 

outskirts of their home range, in areas they were less familiar. However, the null expectation of where 570 

predation locations should occur across a home range density estimate such as AKDE are unclear. As 571 

such, we took a simulation approach, comparing the AKDE isopleth that a real death occurred on to a 572 

null distribution of ‘simulated death isopleths’, where every location a bird was recorded was 573 

assigned as a simulated death location and the accompanying minimum AKDE isopleth that 574 

encompassed it. To calculate our total P value for each bird, we then calculated the proportion of 575 

simulated death isopleths that were higher or lower than the observed death isopleth, and tested for 576 

overall significance of all birds by combining the P values using Fisher’s combination (omnibus) test 577 

85. 578 

 579 

We also ran two binomial regression analyses investigating whether cognitive ability predicted the 580 

proportion of a pheasant’s core home range that overlapped with the region of high predation risk. We 581 

again separated spatial memory and associative learning into separate models to maximise our sample 582 

sizes and statistical power, using a conditional log-link function in our models to control for the 583 

unequal distribution of our proportion data. We controlled for the size of the core home range in 584 

driving these patterns by including this variable as a covariate in all models. The syntax for our 585 
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maximal starting model for spatial memory (n=29) was: ‘glm(HR_death_overlap_prop ~ Slope_LM * 586 

Slope_RAM + core_HR + Sex, family= binomial(link= "cloglog"), data= 587 

akde_cognition_HR_overlap)’ and for associative learning (n=29): ‘glm(HR_death_overlap_prop ~ 588 

core_HR + CD_Slope + Sex, family= binomial, data= HR_overlap_CD)’. We identified three 589 

candidate models for the spatial memory analysis and a single model for associative learning (Table 590 

S7 and Table S8). 591 

 592 

To determine how spatial cognitive performance and home range size affected a pheasant’s 593 

probability of being predated, we ran three Cox-proportional hazards models to determine the effect 594 

on lifespan and general probability of death. In the first survival model we included performance in 595 

the complex and radial arm maze tasks as covariates, sex, and the size of the core home range 596 

(hectares) as predictors. We also directly test whether an interaction between working and reference 597 

spatial memory are important for the ultimate consequences of forming a home range, as suggested by 598 

mechanistic models (e.g. 21) by including an interaction between performance in our complex maze 599 

and in our radial arm maze tasks. We also included sex within a three-way interaction that also 600 

includes working and reference memory. Our model syntax for this starting model (n=51) was 601 

therefore: coxph(Surv(Lifespan, State_bin) ~ Sex + Slope_LM*Slope_RAM, data=spatial_data). Our 602 

AICc based model selection returned support for a single model (Table S11). As with our home range 603 

models, we also investigated whether body size was a confound by adding it to our final model 604 

(where sex and was not included and could therefore not cause any collinearity issues). 605 

 606 

To test for the importance of associative learning performance on survival, our second model included 607 

performance in the colour discrimination task, sex, and tarsus size, with a single two-way interaction 608 

between colour discrimination and sex. Our syntax for this starting model (n=61) was therefore: 609 

coxph(Surv(Lifespan, State_bin) ~ CD_Slope*Sex+Tarsus, data=CD_data)). Our AICc based model 610 

selection returned support for a single, intercept-only model (Table S12). Because different birds did 611 
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not reach criterion in the different cognitive tests and were thus removed (see above), we also ran a 612 

third survival model that included all birds for which we had stable home range sizes to maximise 613 

statistical power (resulting in n=68) to test if core home range size itself, independent of cognitive 614 

variables, affected survival. In this model, we included three predictors: core home range size in 615 

hectares, sex, and a two-way interaction between these variables. Our model syntax for this starting 616 

model (n=68) was therefore: coxph(formula = Surv(Lifespan, State_bin) ~ core_HR_H*Sex, data = 617 

HR_surv_data), and our our AICc based model selection returned support for a single model with 618 

core home range size as the sole term (see main text). 619 

 620 

Diagnostics were performed on all models to check they met assumptions. We used a stepwise AICc 621 

(AIC corrected for small sample size) model selection approach to find our best models. Specifically, 622 

after constructing our starting model that allowed us to test our most complex hypotheses, we 623 

performed a stepwise simplification procedure based on the “AICc” function from the R package 624 

‘MuMin’ 86 to compare nested models until a best set of plausible models were obtained (minimum 625 

adequate models), where models with DAICc £ 2 were deemed more plausible. If this process created 626 

more than a single best model, we used the model.avg function in the ‘MuMin’ package to average 627 

the model estimates and standard errors. In addition, we present P values, uncorrected for multiple 628 

testing (as per 87) for each of our best models in the supplementary material, which were obtained 629 

using likelihood-ratio tests for change in deviance between nested models with and without the term 630 

of interest. 631 

 632 

All animal work in this study was conducted under Home Office license PPL 30/3204 and approved 633 

by the University of Exeter Animal Welfare Ethical Review Board. 634 

 635 

Data availability 636 
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Data required to rerun the statistical analyses of this study are available online 637 

(https://data.mendeley.com/datasets/m89226xg6p)88. Animal AKDE models and GPS coordinates are 638 

available from the corresponding author upon request. 639 

 640 

Code availability 641 

R code used to run the simulation analyses of this study are available online 642 

(https://data.mendeley.com/datasets/m89226xg6p)88. 643 

 644 

Acknowledgements 645 

We would like to thank Rothamsted Research North Wyke for accommodating the rearing and release 646 

of the pheasants, and various landowners in Devon for hosting our tracking equipment. We also thank 647 

the Minerva Foundation and the Minerva Center for movement ecology for their persistence in 648 

supporting and developing ATLAS. Additionally, the authors thank Kandace Griffin and Anna Morris 649 

for their help with data collection and animal husbandry, and Fiona Moultrie for helpful discussions 650 

and comments on the manuscript. We would also like to thank Nick Griffiths of ‘Sporting Shots Ltd’ 651 

for supplying the pheasants for the carcass tracking experiment. This work was funded by an ERC 652 

Consolidator award 616474 to JRM. 653 

 654 

Author contributions 655 

RJPH and JRM conceived the idea for the manuscript. CEB, PRL, MAW, JOvH and JRM collected 656 

the cognition data. MAW, CEB and JRM collected the movement data. RJPH and MAW carried out 657 

the carcass tracking study. RJPH conducted the analyses and led the writing. RN, YO and ST 658 

developed the reverse‐GPS system and provided support throughout data collection. All authors 659 

contributed critically to the drafts. 660 



 27 

 661 

Competing interests 662 

The authors declare that they have no competing interests 663 

 664 

665 



 28 

Figure legends 666 

Fig. 1. Cognitive predictors of home range size in pheasants. A: The complex maze task (A) radial 667 

arm maze task (B) and colour discrimination tasks (C) used to assess spatial memory (A & B) and 668 

associative learning (C), respectively, in juvenile pheasants. D: Performance in the complex maze task 669 

positively predicted the size of the core home range in pheasants. Error bars denote the 95% CI. X-670 

axis in D represents the inverted coefficients taken from a regression between number of trial errors 671 

over time for ease of interpretation, i.e. a positive slope equals increased learning rates. 672 

 673 

 Fig. 2. Spatial patterns of pheasant mortality and consequences for selection on spatial memory and 674 

home range. A. Map of the release site showing an example pheasant home range showing 85% (dark 675 

blue) and 99% (pale blue) kernel estimates in relation to where a bird was predated (red dot). B. 676 

Histograms showing the percentage kernel isopleths that contained the observed death locations (left) 677 

compared to the kernel isopleths that contained simulated death locations (right) taken from the same 678 

killed individuals. C. Mortality risk from predators depends on the interaction between working and 679 

reference memory. Complex maze and radial arm maze performance measures represent inverted 680 

coefficients taken from a regression between trial errors over time for ease of interpretation. D. 681 

Predation risk in pheasants is predicted by core home range size. Error bars denote the 95% CI. Map 682 

layer Imagery ©2022 Google Maps, CNES / Airbus, Getmapping pic, Infoterra Ltd & Bluesky, 683 

Maxar Technologies, Map data @2022. 684 
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