
University of Plymouth

PEARL https://pearl.plymouth.ac.uk

Faculty of Health: Medicine, Dentistry and Human Sciences School of Nursing and Midwifery

2004-12

AN UNSUPERVISED KERNEL BASED

FUZZY C-MEANS CLUSTERING

ALGORITHM WITH KERNEL

NORMALISATION

Zhou, Shang-Ming

http://hdl.handle.net/10026.1/20380

10.1142/s1469026804001379

International Journal of Computational Intelligence and Applications

World Scientific Pub Co Pte Lt

All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with

publisher policies. Please cite only the published version using the details provided on the item record or

document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content

should be sought from the publisher or author.

AN UNSUPERVISED KERNEL BASED FUZZY C-MEANS CLUSTERING ALGORITHM
WITH KERNEL NORMALIZATION

SHANG-MING ZHOU

Department of Computer Science, University of Essex,
Colchester CO4 3SQ, United Kingdom

szhoup@essex.ac.uk

JOHN Q. GAN
Department of Computer Science, University of Essex,

Colchester CO4 3SQ, United Kingdom
jqgan@essex.ac.uk

In this paper, a novel procedure for normalizing Mercer kernel is suggested firstly. Then, the normalized Mercer
kernel techniques are applied to the fuzzy c-means (FCM) algorithm, which leads to a normalized kernel based FCM
(NKFCM) clustering algorithm. In the NKFCM algorithm, implicit assumptions about the shapes of clusters in the
FCM algorithm is removed so that the new algorithm possesses strong adaptability to cluster structures within data
samples. Moreover, a new method for calculating the prototypes of clusters in input space is also proposed, which is
essential for data clustering applications. Experimental results on several benchmark datasets have demonstrated the
promising performance of the NKFCM algorithm in different scenarios.

Keywords: kernel normalization; clustering algorithm; fuzzy c-means; Mercer kernel; unsupervised data clustering.

1. Introduction

Since Vapnik introduced support vector machines (SVM) [1], the Mercer kernel based learning has
received much attention in the machine learning community [2][3][4][5][6][7]. The protruding
characteristics of a kernel based method is that nonlinear information processing can be carried out by
means of linear techniques in an implicit high-dimensional feature space mapped by a nonlinear
transformation from original input space. However, in contrast to the wide investigation of kernel
based methods, very few efforts have made to introduce the kernel treatment into fuzzy clustering
[8][9][10].

The objective of this paper is to normalize the traditional kernel function and apply the normalized
kernel to the FCM algorithm [11], which will improve the performance of the FCM algorithm and
remove some of its constraints. The FCM algorithm has been applied in various areas, however, it
makes implicit assumptions concerning the shape and size of the clusters, i.e., the clusters are hyper-
spherical and of approximately the same size. Some efforts have been made to avoid these assumptions.
The Mahalanobis distance is used in the Gustafson-Kessel (GK) fuzzy clustering algorithm [11][12]
instead of the Euclidean distance, in which the clusters are in fact assumed to be hyperelliptical. In
order to detect non-hyperspherical structural subsets, Bezdek et al. [13] defined linear cluster structures
of different dimensions in the fuzzy clustering process. In [14], Jerome et al. proposed a probabilistic
relaxation fuzzy clustering algorithm based on the estimation of probability density function without
assumptions about the size and shape of clusters. Hoeppner developed a special fuzzy shell-clustering
algorithm to detect rectangular contours [15]. This paper first proposes a novel method to normalize the
traditional kernel function and obtain a normalized kernel whose value possesses clear geometric
interpretation, i.e. the correlation coefficient of two feature vectors in feature space. Furthermore, a
normalized kernel based (NKFCM) clustering algorithm is developed to identify naturally occurring
clusters while preserving the associated information about the relations between the clusters, which
would remove the implicit assumption of hyper-spherical or ellipsoidal clusters within input data
samples. By using the kernel normalization, the NKFCM algorithm would become more stable and
some operations can be simplified, some bizarrerie within the original patterns could be relieved, and
finally better performance will be achieved. Different from regression and classification applications,
one of the main problems in using kernel based method for unsupervised clustering is that it is usually
difficult to obtain the prototypes of clusters in both feature space and input space [16]. A new method
for calculating cluster prototypes in input space is developed in the proposed NKFCM algorithm.

The organization of this paper is as follows. The next section describes the Mercer kernel
normalization procedure. Section 3 addresses the NKFCM clustering algorithm, including the objective
function in terms of kernels, the formulation for calculating the optimal input space partition, the
expression of cluster prototypes in feature space, and the formulation for calculating cluster prototypes
in input space. The proposed algorithm is experimentally evaluated in section 4. Section 5 provides
conclusions with discussions.

2. Mercer kernel normalization

Generally speaking, in a Mercer kernel based method, in order to increase the separability of patterns,
the observed data points in input space Pℜ are often mapped into a high dimensional feature space
Γ by using a nonlinear function)(⋅Φ , which is usually difficult to be expressed. Fortunately, this
problem can be avoided by constructing kernel functions directly. There is a very useful trick for
computing inner products in feature space using kernel functions),(⋅⋅k [1] [17] based on Mercer
theorem [18], which states that any positive integral operator as a kernel),(⋅⋅k can be expanded in its

eigenfunctions jψ , i.e.,

∑
=

>=
N

j
jjjj yxyxk

1

)0()()(),(λψψλ (1)

thus the mapping Φ can be expressed by

()TNNj xxx L),(),()(1 ψλψλ=Φ (2)

i.e.,)()(),(yxyxk T Φ⋅Φ= . The Mercer theorem makes it possible to develop a kernel based
method without using an explicit expression of mapping functionΦ . Moreover, if a mapping function

)(⋅Ψ is defined as

)(
)()(

x
xx

Φ
Φ

=Ψ (3)

then a normalized kernel is obtained as follows,

),(),(
),(

)()(:),(

yykxxk
yxk

yxyxn T

=

Ψ⋅Ψ=
 (4)

It can be seen that,),(yxn is the correlation coefficient of feature vectors)(xΦ and)(yΦ in
feature space. Interestingly,),(yxn possesses the following properties:
1) 1),(1 ≤≤− yxn ;
2))cos(),(α=yxn , where α is the angle between the vectors)(xΦ and)(yΦ ;
3) 1),(=xxn , no matter what the expression of kernel function),(xxk is;
4) if xxxk ∀=1),(, then),(),(yxkyxn = ;
5) The distance between)(xΨ and)(yΨ can be evaluated as,

)),(1(2
)()()()(2)()(

)()(),(22

yxn
yyyxxx

yxyxD
TTT

−=
Ψ⋅Ψ+Ψ⋅Ψ−Ψ⋅Ψ=

Ψ−Ψ=

 (5)

no matter what the expression of kernel function),(yxk is.
The above properties will make some expressions in a kernel based method simpler and more

efficient. Furthermore, they would improve the performance of the kernel based method. In this paper,
Gaussian kernels and polynomial kernels are considered separately, which are defined individually by:













 −−
= 2

2

exp),(
σ

yx
yxk (6)

and
()dyxyxk θ+⋅=)(),((7)

where σ is the width of the Gaussian kernel, θ and d are the offset and exponential parameters of the
polynomial kernel respectively. Tax and Duin pointed out that the polynomial kernel in the form of

()dyxyxk 1)(),(+⋅= cannot result in good tight description of the clusters by adjusting parameter
d [19]. It is found that the offset parameter θ in the polynomial kernel has different influence on the
outcome of clustering from parameter d. Hence, we adopt the general form (7) of polynomial kernel in
this study.

According to (4), for Gaussian kernel),(),(yxkyxn = , but for polynomial kernel
),(),(yxkyxn ≠ . In the following section normalized kernels are used to develop the kernel based

FCM algorithm.

3. NKFCM: an unsupervised kernel based fuzzy clustering algorithm with kernel normalization

3.1 FCM clustering algorithm
A pioneering work on fuzzy cluster analysis was due to Ruspini [20], in which the first fuzzy clustering
criterion function was proposed. However, it was the FCM or fuzzy ISODATA algorithm that
established clearly the relevance of the theory of fuzzy sets to cluster analysis and pattern recognition
[11].

In the FCM, an unsupervised fuzzy clustering algorithm partitions a given finite data set
P

TxxX ℜ⊂= },,{ 1 L into c fuzzy subsets. This fuzzy c-partition can be described by a partition
matrix U as follows:









∀<<∀=∈= ∑ ∑
= =

⋅
c

k

T

j
kjkj

Tc
fcT kTujuUM

1 1

0;1|]1,0[(8)

where the matrix element kju represents the membership of Xx j ∈ in the kth cluster and is
determined by minimizing the following objective function [11]:

∑∑
= =

=
c

k

T

j
kj

m
kjm duVUJ

1 1

2)(),((9)

where fcTMU ∈ is a fuzzy c-partition of X, Pc
cVVV ⋅ℜ∈=),,(1 L , with P

kV ℜ∈ being the

cluster center or prototype of the kth fuzzy subset, the distance kjd is defined by
22

kjkj Vxd −= (10)

and),1[∞∈m is a weighting exponent. Criterion (9) is reduced to Dunn’s functional by setting m=2
[21]. As 1→m , the FCM solution becomes hard and converges in theory to a “generalized” hard c-
means solution.

3.2 NKFCM clustering algorithm
Because the Euclidian distance is used in (10), the FCM algorithm shows the tendency to partition the
data points in clusters of hyperspherical shape with an approximately equal number of data points in
each cluster. Given a kernel function),(yxk , by using a nonlinear mapping

function)(⋅Ψ : Γ→ℜP in the form of (3), the clustering process can be carried out in feature space
rather than input space and the above restrictions can be avoided. The criterion functional used in
feature space is defined as

∑∑

∑∑

= =

Ψ

= =

Ψ

−Ψ=

=

c

k

T

j
kj

m
kj

c

k

T

j
kj

m
kjm

Vxu

DuVUJ

1 1

2

1 1

2

)()(

)(),(
 (11)

where fcTMU ∈ is a fuzzy c-partition of { })(,),()(1 TxxX ΨΨ=Ψ L , which corresponds to

the partition matrix on X,),,(1
ΨΨΨ = cVVV L represent cluster prototypes in feature space. The

optimal partition is obtained by

),(minarg
,

Ψ
Ψ

VUJ mVU
 (12)

subject to the constraints in (8).
The expression of cluster prototypes Ψ

kV in feature space can be derived as follows:

[]

[]∑

∑

∑

=

Ψ

=

ΨΨ
Ψ

=
ΨΨ

−Ψ−=

−Ψ⋅−Ψ
∂
∂

=

∂

∂
=

∂
∂

T

j
kj

m
kj

T

j
kj

T
kj

k

m
kj

T

j k

kjm
kj

k

m

Vxu

VxVx
V

u

V
D

u
V
J

1

1

1

2

))((2)(

))(())(()(

)(

 (13)

Setting 0=
∂
∂

Ψ
k

m

V
J

 leads to

∑

∑∑

=

==

Ψ

Ψ=

Ψ=

T

j
jkj

T

j

m
kj

T

j
j

m
kjk

xu

uxuV

1

11

)(~

)(/)]()([
 (14)

where

∑
=

==
T

j

m
kj

m
kjk

m
kjkj uuTuu

1

)(/)(/)(~ (15)

Based on the expression (14) for Ψ
kV , the distance kjD in the objective function (11) can be

reformulated as follows:

∑∑∑

∑∑∑

∑∑∑

∑∑

= ==

= ==

= ==

==

+−=

+−=

Ψ⋅Ψ+Ψ⋅Ψ−Ψ⋅Ψ=









Ψ−Ψ








Ψ−Ψ=

T

l

T

i
likikl

T

i
ijki

T

l

T

i
likikl

T

i
ijkijj

T

l

T

i
i

T
lkikl

T

i
j

T
ikij

T
j

T

i
ikij

TT

l
lkljkj

NuuNu

NuuNuN

xxuuxxuxx

xuxxuxD

1 11

1 11

1 11

11

2

~~~21

~~~2

)()(~~)()(~2)()(

)(~)()(~)(

 (16)
where ijN is a symmetric TT × kernel matrix defined by

),(),(

),(

)()(

),(

jjii

ji

j
T

i

jiij

xxkxxk

xxk

xx

xxnN

=

Ψ⋅Ψ=

=

 (17)
Hence, the criterion function (11) can be expressed as follows:

∑ ∑∑∑∑

∑ ∑∑∑∑

∑ ∑∑∑∑ ∑∑∑∑

∑∑∑∑∑∑∑∑∑

∑∑

= = == =

= = == =

= = === = == =

= = = == = == =

= =









−=









−=









+








−=

+−=

=

c

k

T

j

T

i
ij

m
ki

m
kj

k

c

k

T

j

m
kj

c

k

T

j

T

i
ijkikjk

c

k

T

j

m
kj

c

k

T

l

T

i
likikl

T

j

m
kj

c

k

T

j

T

i
ijkikjk

c

k

T

j

m
kj

likikl

c

k

T

j

T

l

T

i

m
kj

c

k

T

j

T

i
ijki

m
kj

c

k

T

j

m
kj

c

k

T

j
kj

m
kjm

Nuu
T

u

NuuTu

NuuuNuuTu

NuuuNuuu

DuUJ

1 1 11 1

1 1 11 1

1 1 111 1 11 1

1 1 1 11 1 11 1

1 1

2

)()(1)(

~~)(

~~)(~~2)(

~~)(~)(2)(

)()(

(18)

where ∑
=

=
T

j

m
kjk uT

1
)(. From the above criterion function, it is clear that based on the kernel

expression the clustering in feature space makes no implicit assumption concerning the shape of the
clusters such as hyper-spherical or hyper-ellipsoidal structure in input space.

3.2.1 Optimal partitioning matrix
The first problem in developing the NKFCM algorithm is how to optimize the partitioning matrix U by
minimizing (18) subject to the constraints in (8). Defining the following Lagrangian:

)1(),(
11
∑∑
==

−+=
c

k
kj

T

j
jm uJUL ββ (19)

and setting the Lagrangian’s gradient to zero, we obtain

01),(
1

=−=
∂

∂ ∑
=

c

k
kj

j

uUL
β
β

 (20)

0)()(1)(21)(),(
1 1 1

2
1 =+








+−=

∂
∂ ∑ ∑∑

= = =

−
j

T

i

T

l

T

i
li

m
ki

m
kl

k
ij

m
ki

k

m
kj

kj

Nuu
T

Nu
T

um
u
UL ββ

 (21)

Let

∑ ∑∑
= = =

+−=
T

i

T

l

T

i
li

m
ki

m
kl

k
ij

m
ki

k
kj Nuu

T
Nu

T 1 1 1
2)()(1)(21:ρ (22)

From (21), we get

1
1
−











−=

m

kj

j
kj m

u
ρ
β

 (23)

Combination of (20) and (23) leads to:

()
()∑

=

−

− =− c

k

mkj

mj

m
1

1
1

1
1 1

ρ
β (24)

Hence

()
()∑

=

−

−
= c

k

mkj

mkj
kju

1

1
1

1
1

ρ

ρ
 (25)

When 0=kjρ , i.e., the sample data xj is located at the core center of the fuzzy set for the kth cluster,

special care is needed. Firstly, the data classes can be divided into two groups jI and jI~ as follows:

jjkjj IcIckkITj −==≤≤=≤≤∀ },,1{:~},0;1|{:,1 Lρ (26)

If φ≠jI , then set 0=kju for jIk ~∈ and make 1=∑
∈ jIk

kju for jIk ∈ .

3.2.2 Cluster prototypes in input space
Another problem in developing the NKFCM algorithm is how to obtain the cluster prototypes in input
space. After an optimal partition U that minimizes the criterion functional (18) is obtained, the cluster
prototypes Ψ

kV can be expressed as expansions of mapped patterns. However, as discussed before it is
difficult to obtain explicit expressions for the mapped patterns, and even if explicit expressions are
available it is not guaranteed that there exist a preimage pattern kv in input space such that

Ψ=Ψ kk Vv)(since the mapping function)(ixΨ is nonlinear. The problem about cluster prototypes
in kernel based clustering methods is far from being addressed in the literature [16]. This paper
proposes a new method to calculate cluster prototypes in input space in terms of kernel function rather
than mapping function Ψ . Specifically speaking, approximate prototypes in input space can be
obtained by minimizing the following functional:

2
)()(Ψ−Ψ= kkk VvvW (27)

By replacing (14) for Ψ
kV ,)(kvW can be expressed by expansions of inner products of the mapping

functions, and the inner products can be replaced by kernel functions. Thus,)(kvW can be
reformulated as follows:

∑∑∑

∑∑∑

== =

== =

+−=

+−=

T

j
kjkjil

T

l

T

i
kikl

T

j
kkkjkjil

T

l

T

i
kiklk

vxnuxxnuu

vvnvxnuxxnuuvW

11 1

11 1

1),(~2),(~~

),(),(~2),(~~)(
 (28)

As a matter of fact, the minimization of (28) corresponds to minimizing the distance between Ψ
kV and

the orthogonal projection of Ψ
kV onto span))((kvΨ , which is equivalent to maximizing the following

term:

()
() ()

2

1

2
2

),(~

)(
)()(

)(









=

Ψ⋅=
Ψ⋅Ψ

Ψ⋅

∑
=

Ψ
Ψ

T

j
kjkj

kk
kk

kk

vxnu

vV
vv

vV

 (29)

Scholkopf et al approximated a preimage pattern in input space for a given mapped pattern in feature
space in terms of (29) [16] without consideration of kernel normalization by using)(⋅Φ instead of

)(⋅Ψ . Obviously, the optimal cluster prototypes in input space is the solution of the following
equation

∑
=

=
∂

∂T

j k

kj
kj v

vxn
u

1

0
),(~ (30)

Hence, by applying (30), for Gaussian kernels, the approximated cluster prototypes in input space is
obtained as follows,

∑

∑

=

== T

j
kj

m
kj

T

j
jkj

m
kj

k

vxnu

xvxnu
v

1

1

),()(

),()(
 (31)

and the approximated cluster prototypes in input space for normalized polynomial kernels can be
expressed as

()
()

()
() 1

1

1

1
1

1

)(

)()(

)(

)(~

−
=

−

−
=

−

+⋅⋅

+⋅
=

+⋅

+⋅
=

∑

∑

d
kkk

T

j
j

d
kj

m
kj

d
kk

T

j
j

d
kjkj

k

vvT

xvxu

vv

xvxu
v

θ

θ

θ

θ

 (32)

3.3 Picard iteration in the NKFCM algorithm
In the implementation of the NKFCM algorithm, the following steps should be included:
Step 1. Set the number of clusters c (1<c<T), the weighting exponent),1(∞∈m , and the error

threshold 0≥Uε . Initialize partition matrix fcTMU ∈)0(. Set t=0.
Step 2. Choose a kernel function: Gaussian kernel or polynomial kernel, and perform the kernel

normalization.
Step 3. Set t=:t+1. Update the fuzzy partition matrix)(tU in terms of (25).

Step 4. If ,)1()(
U

tt UU ε<− − go to Step 5; otherwise go to Step 3.

Step 5. Calculate the cluster prototypes in input space:
Step 5.1 For optimal partition matrix (*)U , set error threshold 0≥Vε . Initialize cluster

prototypes Pc
cvvV ℜ∈=),,()0()0(

1
)0(L . Set r=0.

Step 5.2 Set r=:r+1. Update the cluster prototypes)(rV using (31) for Gaussian kernels or (32)
for normalized polynomial kernels.

Step 5.3 If ,)1()(
V

rr VV ε<− − stop; otherwise go to Step 5.2.

4. Experimental results

Three examples of unsupervised data clustering are given in this section to demonstrate how the
proposed fuzzy clustering algorithm works in different scenarios.

In the first example, the NKFCM algorithm is applied to the Ringnorm dataset available at
DELVE repository (http://www.cs.toronto.edu/~delve/data/ringnorm). This dataset consists of 2 classes
of 7400 samples, each containing 20 attributes. The data samples are drawn from multivariate normal
distributions. Breiman reported that the theoretically expected error rate on this data set is 1.3% [22].
The Ringnorm data is labeled. The labels are not used in the following clustering process, but used for
calculating the clustering error rate)(UE to evaluate the performance of the NKFCM algorithm. The
clustering error rate is defined by [11]

∑∑
= =

−=
c

k

T

j
kjkj uu

T
UE

1 1

2)(
2
1)() (33)

where kju (=0 or 1) are labels from the dataset and kju) form a hard partition that is the closest to fuzzy
partition U, i.e.,





 ==

otherwise
uuifu ljlkj

kj
0

)(max1) (34)

In order to examine the influence of the kernel parameters on the clustering performance, a group
of parameter values for Gaussian kernel and polynomial kernel are evaluated separately in the
experiment. The experimental results are illustrated in Fig.1 and Fig.2. It can be seen that both the
width of the Gaussian kernel and the offset and exponential parameters of the polynomial kernel have a
significant effect on the outcomes of the clustering. By choosing appropriate values for kernel
functions, the NKFCM algorithm exhibits striking performance on this dataset. Set 5.6=σ for
Gaussian kernel and m=2, the NKFCM algorithm leads to 99 misclassifications among 7400 samples
with an error rate of 1.34%, which is very close to the theoretically expected value 1.3% [22]. The
NKFCM algorithm with normalized polynomial kernel also achieves a promising performance at

4,40 == dθ and m=2 with an error rate of 2.62%. As a comparison, Fig.3 shows the results obtained
by kernel based FCM algorithm without consideration of the kernel normalization for polynomial
kernel (7), in which the optimal performance, an error rate of 4%, is achieved by setting 2,4 == dθ
and m=2. This indicates that by the proposed kernel normalization the performance of the NKFCM
algorithm has been improved. This is reasonable, because due to kernel normalization some bizarrerie
within the original patterns could be relieved during clustering.

0 5 10 15 20 25 30
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Parameter σ

M
is

cl
as

si
fic

at
io

n
R

at
es

Fig.1 Error rates obtained by NKFCM with Gaussian kernel vs kernel parameter σ

1
2

3
4

5
6

0

10

20

30

40
0

0.1

0.2

0.3

0.4

0.5

Parameter 'd' Parameter θ

M
is

cl
as

si
fic

at
io

n
R

at
es

Fig.2 Error rates obtained by NKFCM with normalized polynomial kernel vs kernel parametersθ and d

1
2

3
4

5
6

0
10

20

30
40
0

0.1

0.2

0.3

0.4

0.5

Parameter 'd' Parameter θ

M
is

cl
as

si
fic

at
io

n
R

at
es

Fig.3 Error rates obtained by kernel based FCM without consideration of kernel normalization

for polynomial kernel vs kernel parametersθ and d

In order to compare with other methods, Table 1 shows the error rates of the NKFCM method, the
decision trees CART [22][23] and the FCM algorithm on Ringnorm dataset. It should be noted that the
error rate from CART was obtained in a reduced Ringnorm dataset with only 300 samples [22]. The
advantages of the proposed kernel normalization procedure and the NKFCM algorithm are very
obvious from Table 1. However, in comparison with non-kernel based methods such as FCM algorithm,
the drawback of the NKFCM algorithm is also obvious due to the high computational load, although
this drawback commonly exists in most kernel based methods. Fig.4, Fig.5, and Fig6 show the time
costs by the NKFCM algorithm with Gaussian kernel (σ =6.5, m=2), the NKFCM algorithm with
normalized polynomial kernel (d=4, θ =40, m=2) and the FCM algorithm (m=2) separately against the
variation of the number of used samples. It should be noted that for Gaussian kernel the time cost is
dramatically increased when the number of used samples is greater than 6300. This is caused by the use
of hard disk as virtual memory. Similarly, for normalized polynomial kernel this dramatic increase
happens when the number of used samples is greater than7200.

 Table 1. Performance comparison on Ringnorm dataset
Methods Error rates No. of samples used

NKFCM (m=2) with Gaussian kernel (σ =6.5) 1.34% 7400 samples
NKFCM (m=2) with normalized polynomial

kernel),(yxn (d=4, θ =40)
2.62% 7400 samples

Kernel based FCM (m=2) with polynomial kernel
),(yxk (d=2, θ =4)

4% 7400 samples

FCM (m=2) 24.01% 7400 samples
CART[22][23] 21.4% 300 samples

0 1000 2000 3000 4000 5000 6000 7000 8000
0

50

100

150

200

250

300

Numbers of Samples

Ti
m

e
C

os
ts

 b
y

M
KF

C
M

 :
Se

co
nd

s
(s

)

Fig.4 Time costs by NKFCM with Gaussian kernel (σ =6.5, m=2)

0 1000 2000 3000 4000 5000 6000 7000 8000
0

10

20

30

40

50

60

70

80

90

100

Numbers of Samples

Ti
m

e
C

os
ts

 b
y

M
KF

C
M

 :
Se

co
nd

s
(s

)

Fig.5 Time costs by NKFCM with normalized polynomial kernel (d=4,θ =40, m=2)

0 1000 2000 3000 4000 5000 6000 7000 8000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Numbers of Samples

Ti
m

e
C

os
ts

 b
y

FC
M

 :
Se

co
nd

s
(s

)

Fig.6 Time costs by FCM (m=2)

The purpose of the second example is to test the performance of the proposed NKFCM in

detecting non-hyperspherical clusters, in which a synthetic dataset with a cross structure is used, as
shown in Fig.7. The NKFCM algorithm with Gaussian kernel finds out two line-shaped clusters, as
illustrated in Fig.8. Moreover, the NKFCM algorithm with the normalized polynomial kernel obtains
parabola-shaped clusters, as shown in Fig.9. Fig.10 indicates that the FCM algorithm failed to detect
the line-shape clusters due to its favor of hyperspherical or hyperelliptical clusters.

Fig. 7 Cross dataset

Fig. 8 Clustering results by NKFCM: m=2 and Gaussian kernel withσ =0.058.

“●” and “▲” : the prototypes of clusters.

Fig. 9 Clustering results by NKFCM: m=2 and normalized polynomial kernel with d=2,θ =0.01.

“●” and “▲” : the prototypes of clusters.

Fig. 10 Clustering results by FCM: m=2 and c=2. “●” and “▲”: the prototypes of clusters.

In the third example, the NKFCM algorithm is evaluated on the well-known Iris dataset [24]. This

dataset contains three classes of data: Iris setosa, Iris versicolor, and Iris virginica, each data point
containing four features: Sepal length, Sepal width, Petal length, and Petal width measured in

millimeters. There are 50 samples for each of the three classes, which are shown in Fig.11 in the Sepal
length vs. Sepal width plane. It can be seen that one of the classes is linearly separable from the other
two and the remaining two classes are significantly overlapped. Similarly, the clustering error rate
described by (33) is used to evaluate the performance of the NKFCM algorithm. Fig.12 shows the
clustering result obtained by the NKFCM algorithm using Gaussian kernel with m=2 and 12=σ in the
Sepal length vs. Sepal width plane. There are 10 misclassifications and the clustering error rate is
6.67%. As a comparison to the NKFCM algorithm, the performances of several other methods on the
same dataset are given in Table 2. The error rate of the FCM is 10.67%, corresponding to 16
misclassifications. The clustering result obtained by the FCM algorithm is shown in Fig.13. The SVC
algorithm [5] used principal components rather than the original Iris data. When four principal
components were considered, the number of misclassifications of the SVC on the Iris dataset is 14,
corresponding to an error rate of 9.33%. The SPC algorithm by Blatt et al misclassified 15 data points
when applied to the original Iris dataset [25]. From Table 2, it is clear that the NKFCM algorithm
achieves the best performance.

Fig.11 Iris data in the Sepal length vs Sepal width plane. Class 1-Iris Setosa, Class 2-Iris Versicolor, and Class 3-Iris Virginica

Table 2. Comparison of several algorithms on Iris dataset
Method No. of misclassifications Error rate

NKFCM with Gaussian kernel (m=2, 12=σ) 10 6.67%
FCM (m=2) 16 10.67%

SVC [5] 14 9.33%
SPC [25] 15 10%

Fig.12 Clusters obtained by NKFCM with m=2 and 12=σ . Class 1-Iris Setosa, Class 2-Iris Versicolor, and Class 3-Iris

Virginica. “●”, “▲” and “ ”: the prototypes of clusters.

Fig.13 Clusters obtained by FCM with m=2. Class 1-Iris Setosa, Class 2-Iris Versicolor, and Class 3-Iris Virginica. “●”, “▲”

and “ ” : the prototypes of clusters.

5. Conclusions and discussions

In this paper, a new kernel normalization procedure is suggested, based on which the normalized
Mercer kernel possesses clear geometric interpretation and some good properties. An unsupervised
clustering algorithm, NKFCM, is also proposed. The NKFCM algorithm makes no assumptions about
the shape of clusters within data samples, it thus possesses strong adaptability to data cluster structures.
In virtue of normalized kernel transformation from input space into high-dimensional feature space, the
opportunity of linearly separating the mapped patterns by the NKFCM algorithm increases, which has
been supported by the experimental results. However, it becomes problematic to calculate the
prototypes of clusters in input space in Mercer kernel based clustering methods. In the NKFCM
algorithm, a method for approximating the prototypes of clusters in input space has been developed.
Experimental results have demonstrated the promising performance of the NKFCM algorithm with
kernel normalization procedure.

From the experiments it is also found that the kernel parameters have great influence on the
clustering performance. Kernel functions with different parameters give rise to different results. Hence,
how to choose an appropriate kernel parameter is a problem that has not been solved well in this paper.
As a matter of fact, this is an open problem in most kernel based algorithms. A possible way to attack
this open problem is to optimize kernel parameters in terms of a criterion for kernel parameter selection.
Another problem is how to speed up the kernel matrix computation and lighten the requirements on
computer memory, which is also a common demand in most kernel based algorithms. These problems
will receive much attention in our future research.

References

[1] V. N. Vapnik, The Nature of Statistical Learning Theory. (New York:Springer-Verlag, 1995).
[2] B. Schölkopf, A. J. Smola, and K.-R. Müller, Nonlinear component analysis as a kernel eigenvalue problem,

Neural Computation, 10(1998)1299–1319.
[3] S. Mika, G. Rätsch, J. Weston, B. Schölkopf, and K.-R. Müller, Fisher discriminant analysis with kernels, in

Neural Networks for Signal Processing IX, Y.-H. Hu, J. Larsen, E. Wilson, and S. Douglas, Eds. (Piscataway,
NJ: IEEE, 1999)41–48.

[4] A. Ruiz, and P. E. López-de-Teruel, Nonlinear kernel-based statistical pattern analysis, IEEE Trans. on
Neural Networks, 12(2001)16-32.

[5] A.Ben-Hur, D. Horn, H. T. Siegelmann, V. Vapnik, Support vector clustering, Journal of Machine Learning
Research, 2 (2001) 125-137

[6] M. M. Van Hulle, Kernel-based equiprobabilistic topographic map formation, Neural Computation,
10(1998)1847–1871.

[7] M. Girolami, Mercer kernel-based clustering in feature space, IEEE Trans. on Neural Networks,
13(2002)780-784.

[8] C.-F. Lin and S.-D. Wang, Fuzzy support vector machines, IEEE Trans. on Neural Networks, 13(2002)464-
471.

[9] D.-Q. Zhang and S.-C. Chen, Clustering incomplete data using kernel-based fuzzy c-means,_Neural
Processing Letters, 18(2003) 155-162.

[10] J.-H. Chiang and P.-Y. Hao, A new kernel-based fuzzy clustering approach: support vector clustering with
cell growing, IEEE Trans. on Fuzzy Systems, 11(2003)518-527.

[11] J. C. Bezdek, Pattern Recognition with Fuzzy Objective Function Algorithms, (Plenum Press, New York,1981)
[12] D. E. Gustafson and W. Kessel, Fuzzy clustering with a fuzzy covariance matrix, in Proc. IEEE-CDC,

Voll.2(K. S. Fu ed), (IEEE Press, Piscataway, new Jersey, 1979)761-766.
[13] J. C. Bezdek and I. Anderson, An application of the c-varieties clustering algorithm to polygonal curve fitting,

IEEE Trans. on Systems, Man, and Cybernetics, 15(1985)637-641.
[14] C. Jerome, B. Noel, and H. Michel, A new fuzzy clustering technique based on pdf estimation, Proceedings

of Information Processing and Managing of Uncertainty (IPMU’2002) 225-232.
[15] F. Hoeppner, Fuzzy shell clustering algorithms in image processing: fuzzy C-rectangular and 2-rectangular

shells, IEEE Trans. on Fuzzy Systems, 5(1997)599-613.
[16] B. Schölkopf, S. Mika, C. J. C. Burges, P. Knirsch, K.-R. Müller, G. Ratsch, and A. J. Smola, Input space

versus feature space in kernel based methods, IEEE Trans. on Neural Networks, 10(1999)1000–1017.
[17] K.-R. Müller, S. Mika, G. Rätsch, K. Tsuda, and B. Schölkopf, An introduction to kernel-based learning

algorithms, IEEE Trans. on Neural Networks, 12(2001)181-201.
[18] J. Mercer, Functions of positive and negative type and their connection with the theory of integral equations,

Philos. Trans. Roy. Soc. London, A209(1909)415–446.
[19] D. M. J. Tax, and R.P.W. Duin, Support vector domain description, Pattern Recognition Letters,

20(1999)1191-1199.
[20] E. Ruspini, Numerical methods for fuzzy clustering, Information Science, 2(1970) 319-350.
[21] J.C. Dunn, A fuzzy relative of the ISODATA process and its use in detecting compact well-separated cluster,

Journal of Cybernetics, 3(1973)32-57.
[22] L. Breiman, Bias, variance and arcing classifiers, Tech. Report 460, Statistics department. University of

California, USA. April 1996.
[23] L. Breiman, J. Friedman, C. J. Stone, and R. A. Olshen, Classification and Regression Trees, (Chapman &

Hall / CRC, 1984)
[24] R.A. Fisher, The use of multiple measurements in taxonomic problems, Annals of Eugenics, 7(1936)179–188.
[25] M. Blatt, S. Wiseman, and E. Domany, Data clustering magnet, Neural Computation, 9(1997)1805–1842.

