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In this paper, a novel procedure for normalizing Mercer kernel is suggested firstly. Then, the normalized Mercer 
kernel techniques are applied to the fuzzy c-means (FCM) algorithm, which leads to a normalized kernel based FCM 
(NKFCM) clustering algorithm. In the NKFCM algorithm, implicit assumptions about the shapes of clusters in the 
FCM algorithm is removed so that the new algorithm possesses strong adaptability to cluster structures within data 
samples. Moreover, a new method for calculating the prototypes of clusters in input space is also proposed, which is 
essential for data clustering applications. Experimental results on several benchmark datasets have demonstrated the 
promising performance of the NKFCM algorithm in different scenarios. 
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1. Introduction 
 
Since Vapnik introduced support vector machines (SVM) [1], the Mercer kernel based learning has 
received much attention in the machine learning community [2][3][4][5][6][7]. The protruding 
characteristics of a kernel based method is that nonlinear information processing can be carried out by 
means of linear techniques in an implicit high-dimensional feature space mapped by a nonlinear 
transformation from original input space. However, in contrast to the wide investigation of kernel 
based methods, very few efforts have made to introduce the kernel treatment into fuzzy clustering 
[8][9][10].  

The objective of this paper is to normalize the traditional kernel function and apply the normalized 
kernel to the FCM algorithm [11], which will improve the performance of the FCM algorithm and 
remove some of its constraints. The FCM algorithm has been applied in various areas, however, it 
makes implicit assumptions concerning the shape and size of the clusters, i.e., the clusters are hyper-
spherical and of approximately the same size. Some efforts have been made to avoid these assumptions. 
The Mahalanobis distance is used in the Gustafson-Kessel (GK) fuzzy clustering algorithm [11][12] 
instead of the Euclidean distance, in which the clusters are in fact assumed to be hyperelliptical. In 
order to detect non-hyperspherical structural subsets, Bezdek et al. [13] defined linear cluster structures 
of different dimensions in the fuzzy clustering process. In [14], Jerome et al. proposed a probabilistic 
relaxation fuzzy clustering algorithm based on the estimation of probability density function without 
assumptions about the size and shape of clusters. Hoeppner developed a special fuzzy shell-clustering 
algorithm to detect rectangular contours [15]. This paper first proposes a novel method to normalize the 
traditional kernel function and obtain a normalized kernel whose value possesses clear geometric 
interpretation, i.e. the correlation coefficient of two feature vectors in feature space. Furthermore, a 
normalized kernel based (NKFCM) clustering algorithm is developed to identify naturally occurring 
clusters while preserving the associated information about the relations between the clusters, which 
would remove the implicit assumption of hyper-spherical or ellipsoidal clusters within input data 
samples. By using the kernel normalization, the NKFCM algorithm would become more stable and 
some operations can be simplified, some bizarrerie within the original patterns could be relieved, and 
finally better performance will be achieved. Different from regression and classification applications, 
one of the main problems in using kernel based method for unsupervised clustering is that it is usually 
difficult to obtain the prototypes of clusters in both feature space and input space [16]. A new method 
for calculating cluster prototypes in input space is developed in the proposed NKFCM algorithm. 

The organization of this paper is as follows. The next section describes the Mercer kernel 
normalization procedure. Section 3 addresses the NKFCM clustering algorithm, including the objective 
function in terms of kernels, the formulation for calculating the optimal input space partition, the 
expression of cluster prototypes in feature space, and the formulation for calculating cluster prototypes 
in input space. The proposed algorithm is experimentally evaluated in section 4. Section 5 provides 
conclusions with discussions.  



 

 
2. Mercer kernel normalization 
 
Generally speaking, in a Mercer kernel based method, in order to increase the separability of patterns, 
the observed data points in input space Pℜ  are often mapped into a high dimensional feature space 
Γ by using a nonlinear function )(⋅Φ , which is usually difficult to be expressed. Fortunately, this 
problem can be avoided by constructing kernel functions directly. There is a very useful trick for 
computing inner products in feature space using kernel functions ),( ⋅⋅k [1] [17] based on Mercer 
theorem [18], which states that any positive integral operator as a kernel ),( ⋅⋅k  can be expanded in its 

eigenfunctions jψ , i.e., 
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i.e., )()(),( yxyxk T Φ⋅Φ= . The Mercer theorem makes it possible to develop a kernel based 
method without using an explicit expression of mapping functionΦ . Moreover, if a mapping function 
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then a normalized kernel is obtained as follows, 
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It can be seen that, ),( yxn is the correlation coefficient of feature vectors )(xΦ  and )( yΦ in 
feature space. Interestingly, ),( yxn possesses the following properties: 
1) 1),(1 ≤≤− yxn ; 
2) )cos(),( α=yxn , where α is the angle between the vectors )(xΦ  and )( yΦ ; 
3) 1),( =xxn , no matter what the expression of kernel function ),( xxk is; 
4) if xxxk ∀=1),( , then ),(),( yxkyxn = ; 
5) The distance between )(xΨ  and )( yΨ can be evaluated as, 
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no matter what the expression of kernel function ),( yxk is.  
The above properties will make some expressions in a kernel based method simpler and more 

efficient. Furthermore, they would improve the performance of the kernel based method. In this paper, 
Gaussian kernels and polynomial kernels are considered separately, which are defined individually by: 
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and  
( )dyxyxk θ+⋅= )(),(               (7) 

where σ  is the width of the Gaussian kernel, θ  and d are the offset and exponential parameters of the 
polynomial kernel respectively. Tax and Duin pointed out that the polynomial kernel in the form of 



 

( )dyxyxk 1)(),( +⋅=  cannot result in good tight description of the clusters by adjusting parameter 
d [19]. It is found that the offset parameter θ  in the polynomial kernel has different influence on the 
outcome of clustering from parameter d. Hence, we adopt the general form (7) of polynomial kernel in 
this study. 

According to (4), for Gaussian kernel ),(),( yxkyxn = , but for polynomial kernel 
),(),( yxkyxn ≠ .  In the following section normalized kernels are used to develop the kernel based 

FCM algorithm. 
 
 
3. NKFCM: an unsupervised kernel based fuzzy clustering algorithm with kernel normalization 
 
3.1 FCM clustering algorithm 
A pioneering work on fuzzy cluster analysis was due to Ruspini [20], in which the first fuzzy clustering 
criterion function was proposed. However, it was the FCM or fuzzy ISODATA algorithm that 
established clearly the relevance of the theory of fuzzy sets to cluster analysis and pattern recognition 
[11].  

In the FCM, an unsupervised fuzzy clustering algorithm partitions a given finite data set 
P

TxxX ℜ⊂= },,{ 1 L into c fuzzy subsets. This fuzzy c-partition can be described by a partition 
matrix U as follows: 









∀<<∀=∈= ∑ ∑
= =

⋅
c

k

T

j
kjkj

Tc
fcT kTujuUM

1 1

0;1|]1,0[      (8) 

where the matrix element kju  represents the membership of Xx j ∈  in the kth cluster and is 
determined by minimizing the following objective function [11]: 
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where fcTMU ∈  is a fuzzy c-partition of X, Pc
cVVV ⋅ℜ∈= ),,( 1 L , with P

kV ℜ∈  being the 

cluster center or prototype of the kth fuzzy subset, the distance kjd is defined by 
22
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and ),1[ ∞∈m  is a weighting exponent. Criterion (9) is reduced to Dunn’s functional by setting m=2 
[21]. As 1→m , the FCM solution becomes hard and converges in theory to a “generalized” hard c-
means solution.  
 
3.2 NKFCM clustering algorithm 
Because the Euclidian distance is used in (10), the FCM algorithm shows the tendency to partition the 
data points in clusters of hyperspherical shape with an approximately equal number of data points in 
each cluster. Given a kernel function ),( yxk , by using a nonlinear mapping 

function )(⋅Ψ : Γ→ℜP in the form of (3), the clustering process can be carried out in feature space 
rather than input space and the above restrictions can be avoided. The criterion functional used in 
feature space is defined as 
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where fcTMU ∈  is a fuzzy c-partition of { })(,),()( 1 TxxX ΨΨ=Ψ L , which corresponds to 

the partition matrix on X, ),,( 1
ΨΨΨ = cVVV L  represent cluster prototypes in feature space. The 

optimal partition is obtained by  
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subject to the constraints in (8). 
The expression of cluster prototypes Ψ

kV  in feature space can be derived as follows: 
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Based on the expression (14) for Ψ
kV , the distance kjD  in the objective function (11) can be 

reformulated as follows: 
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where ijN  is a symmetric TT ×  kernel matrix defined by  
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Hence, the criterion function (11) can be expressed as follows: 
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where ∑
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kjk uT
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)( . From the above criterion function, it is clear that based on the kernel 

expression the clustering in feature space makes no implicit assumption concerning the shape of the 
clusters such as hyper-spherical or hyper-ellipsoidal structure in input space. 
 
3.2.1 Optimal partitioning matrix 
The first problem in developing the NKFCM algorithm is how to optimize the partitioning matrix U by 
minimizing (18) subject to the constraints in (8). Defining the following Lagrangian:   
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and setting the Lagrangian’s gradient to zero, we obtain 
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Combination of (20) and (23) leads to: 

( )
( )∑

=

−

− =− c

k

mkj

mj

m
1

1
1

1
1 1

ρ
β     (24) 

Hence 

( )
( )∑

=

−

−
= c

k

mkj

mkj
kju

1

1
1

1
1

ρ

ρ
           (25) 



 

When 0=kjρ , i.e., the sample data xj is located at the core center of the fuzzy set for the kth cluster, 

special care is needed. Firstly, the data classes can be divided into two groups jI  and jI~  as follows: 

jjkjj IcIckkITj −==≤≤=≤≤∀ },,1{:~},0;1|{:,1 Lρ  (26) 

If φ≠jI , then set 0=kju  for jIk ~∈  and make 1=∑
∈ jIk

kju  for jIk ∈ .  

                            
3.2.2 Cluster prototypes in input space 
Another problem in developing the NKFCM algorithm is how to obtain the cluster prototypes in input 
space. After an optimal partition U that minimizes the criterion functional (18) is obtained, the cluster 
prototypes Ψ

kV  can be expressed as expansions of mapped patterns. However, as discussed before it is 
difficult to obtain explicit expressions for the mapped patterns, and even if explicit expressions are 
available it is not guaranteed that there exist a preimage pattern kv  in input space such that 

Ψ=Ψ kk Vv )(  since the mapping function )( ixΨ  is nonlinear. The problem about cluster prototypes 
in kernel based clustering methods is far from being addressed in the literature [16]. This paper 
proposes a new method to calculate cluster prototypes in input space in terms of kernel function rather 
than mapping function Ψ .  Specifically speaking, approximate prototypes in input space can be 
obtained by minimizing the following functional:  

2
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By replacing (14) for Ψ
kV , )( kvW  can be expressed by expansions of inner products of the mapping 

functions, and the inner products can be replaced by kernel functions. Thus, )( kvW  can be 
reformulated as follows: 
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As a matter of fact, the minimization of (28) corresponds to minimizing the distance between Ψ
kV  and 

the orthogonal projection of Ψ
kV  onto span ))(( kvΨ , which is equivalent to maximizing the following 

term: 
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Scholkopf et al approximated a preimage pattern in input space for a given mapped pattern in feature 
space in terms of (29) [16] without consideration of kernel normalization by using )(⋅Φ instead of 

)(⋅Ψ . Obviously, the optimal cluster prototypes in input space is the solution of the following 
equation 
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Hence, by applying (30), for Gaussian kernels, the approximated cluster prototypes in input space is 
obtained as follows,  
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and the approximated cluster prototypes in input space for normalized polynomial kernels can be 
expressed as 
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3.3 Picard iteration in the NKFCM algorithm 
In the implementation of the NKFCM algorithm, the following steps should be included: 
Step 1. Set the number of clusters c (1<c<T), the weighting exponent ),1( ∞∈m , and the error 

threshold 0≥Uε . Initialize partition matrix fcTMU ∈)0( . Set t=0. 
Step 2.  Choose a kernel function: Gaussian kernel or polynomial kernel, and perform the kernel 

normalization. 
Step 3.  Set t=:t+1. Update the fuzzy partition matrix )(tU in terms of (25). 

Step 4.  If ,)1()(
U

tt UU ε<− −  go to Step 5; otherwise go to Step 3. 

Step 5.  Calculate the cluster prototypes in input space: 
Step 5.1 For optimal partition matrix (*)U , set error threshold 0≥Vε . Initialize cluster 

prototypes Pc
cvvV ℜ∈= ),,( )0()0(

1
)0( L . Set r=0. 

Step 5.2  Set r=:r+1. Update the cluster prototypes )(rV  using (31) for Gaussian kernels or (32) 
for normalized polynomial kernels.  

Step 5.3  If ,)1()(
V

rr VV ε<− −  stop; otherwise go to Step 5.2. 

 
 
4. Experimental results 
 
Three examples of unsupervised data clustering are given in this section to demonstrate how the 
proposed fuzzy clustering algorithm works in different scenarios. 

In the first example, the NKFCM algorithm is applied to the Ringnorm dataset available at 
DELVE repository (http://www.cs.toronto.edu/~delve/data/ringnorm). This dataset consists of 2 classes 
of 7400 samples, each containing 20 attributes. The data samples are drawn from multivariate normal 
distributions. Breiman reported that the theoretically expected error rate on this data set is 1.3% [22]. 
The Ringnorm data is labeled. The labels are not used in the following clustering process, but used for 
calculating the clustering error rate )(UE  to evaluate the performance of the NKFCM algorithm. The 
clustering error rate is defined by [11] 
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where kju (=0 or 1) are labels from the dataset and kju)  form a hard partition that is the closest to fuzzy 
partition U, i.e., 
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In order to examine the influence of the kernel parameters on the clustering performance, a group 
of parameter values for Gaussian kernel and polynomial kernel are evaluated separately in the 
experiment. The experimental results are illustrated in Fig.1 and Fig.2. It can be seen that both the 
width of the Gaussian kernel and the offset and exponential parameters of the polynomial kernel have a 
significant effect on the outcomes of the clustering. By choosing appropriate values for kernel 
functions, the NKFCM algorithm exhibits striking performance on this dataset. Set 5.6=σ for 
Gaussian kernel and m=2, the NKFCM algorithm leads to 99 misclassifications among 7400 samples 
with an error rate of 1.34%, which is very close to the theoretically expected value 1.3% [22]. The 
NKFCM algorithm with normalized polynomial kernel also achieves a promising performance at 

4,40 == dθ  and m=2 with an error rate of 2.62%. As a comparison, Fig.3 shows the results obtained 
by kernel based FCM algorithm without consideration of the kernel normalization for polynomial 
kernel (7), in which the optimal performance, an error rate of 4%, is achieved by setting 2,4 == dθ  
and m=2. This indicates that by the proposed kernel normalization the performance of the NKFCM 
algorithm has been improved. This is reasonable, because due to kernel normalization some bizarrerie 
within the original patterns could be relieved during clustering. 
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Fig.1 Error rates obtained by NKFCM with Gaussian kernel vs kernel parameter σ  
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Fig.2 Error rates obtained by NKFCM with normalized polynomial kernel vs kernel parametersθ and d 
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Fig.3 Error rates obtained by kernel based FCM without consideration of kernel normalization 

for polynomial kernel vs kernel parametersθ and d 
 

In order to compare with other methods, Table 1 shows the error rates of the NKFCM method, the 
decision trees CART [22][23] and the FCM algorithm on Ringnorm dataset. It should be noted that the 
error rate from CART was obtained in a reduced Ringnorm dataset with only 300 samples [22].  The 
advantages of the proposed kernel normalization procedure and the NKFCM algorithm are very 
obvious from Table 1. However, in comparison with non-kernel based methods such as FCM algorithm, 
the drawback of the NKFCM algorithm is also obvious due to the high computational load, although 
this drawback commonly exists in most kernel based methods. Fig.4, Fig.5, and Fig6 show the time 
costs by the NKFCM algorithm with Gaussian kernel (σ =6.5, m=2), the NKFCM algorithm with 
normalized polynomial kernel (d=4, θ =40, m=2) and the FCM algorithm (m=2) separately against the 
variation of the number of used samples. It should be noted that for Gaussian kernel the time cost is 
dramatically increased when the number of used samples is greater than 6300. This is caused by the use 
of hard disk as virtual memory. Similarly, for normalized polynomial kernel this dramatic increase 
happens when the number of used samples is greater than7200. 
 

 Table 1.  Performance comparison on Ringnorm dataset 
Methods Error rates No. of samples used 

NKFCM (m=2) with Gaussian kernel (σ =6.5) 1.34% 7400 samples 
NKFCM (m=2) with normalized polynomial 

kernel ),( yxn (d=4, θ =40) 
2.62% 7400 samples 

Kernel based FCM (m=2) with polynomial kernel 
),( yxk  (d=2, θ =4) 

4% 7400 samples 

FCM (m=2) 24.01% 7400 samples 
CART[22][23] 21.4% 300 samples 
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Fig.4 Time costs by NKFCM with Gaussian kernel (σ =6.5, m=2) 
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Fig.5 Time costs by NKFCM with normalized polynomial kernel (d=4,θ =40, m=2) 
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Fig.6 Time costs by FCM (m=2) 

 
The purpose of the second example is to test the performance of the proposed NKFCM in 

detecting non-hyperspherical clusters, in which a synthetic dataset with a cross structure is used, as 
shown in Fig.7. The NKFCM algorithm with Gaussian kernel finds out two line-shaped clusters, as 
illustrated in Fig.8. Moreover, the NKFCM algorithm with the normalized polynomial kernel obtains 
parabola-shaped clusters, as shown in Fig.9. Fig.10 indicates that the FCM algorithm failed to detect 
the line-shape clusters due to its favor of hyperspherical or hyperelliptical clusters. 

 

 
 

Fig. 7 Cross dataset 
 



 

 
Fig. 8 Clustering results by NKFCM: m=2 and Gaussian kernel withσ =0.058.   

“●” and “▲” : the prototypes of clusters. 
 

 
Fig. 9 Clustering results by NKFCM: m=2 and normalized polynomial kernel with d=2,θ =0.01.   

“●” and “▲” : the prototypes of clusters. 
 

             
Fig. 10 Clustering results by FCM: m=2 and c=2.   “●” and “▲”: the prototypes of clusters. 

 
In the third example, the NKFCM algorithm is evaluated on the well-known Iris dataset [24]. This 

dataset contains three classes of data: Iris setosa, Iris versicolor, and Iris virginica, each data point 
containing four features: Sepal length, Sepal width, Petal length, and Petal width measured in 



 

millimeters. There are 50 samples for each of the three classes, which are shown in Fig.11 in the Sepal 
length vs. Sepal width plane. It can be seen that one of the classes is linearly separable from the other 
two and the remaining two classes are significantly overlapped. Similarly, the clustering error rate 
described by (33) is used to evaluate the performance of the NKFCM algorithm. Fig.12 shows the 
clustering result obtained by the NKFCM algorithm using Gaussian kernel with m=2 and 12=σ  in the 
Sepal length vs. Sepal width plane. There are 10 misclassifications and the clustering error rate is 
6.67%. As a comparison to the NKFCM algorithm, the performances of several other methods on the 
same dataset are given in Table 2. The error rate of the FCM is 10.67%, corresponding to 16 
misclassifications. The clustering result obtained by the FCM algorithm is shown in Fig.13. The SVC 
algorithm [5] used principal components rather than the original Iris data. When four principal 
components were considered, the number of misclassifications of the SVC on the Iris dataset is 14, 
corresponding to an error rate of 9.33%. The SPC algorithm by Blatt et al misclassified 15 data points 
when applied to the original Iris dataset [25]. From Table 2, it is clear that the NKFCM algorithm 
achieves the best performance. 

 

 

Fig.11 Iris data in the Sepal length vs Sepal width plane. Class 1-Iris Setosa, Class 2-Iris Versicolor, and Class 3-Iris Virginica 
 

Table 2.  Comparison of several algorithms on Iris dataset 
Method No. of misclassifications Error rate 

NKFCM with Gaussian kernel (m=2, 12=σ ) 10 6.67% 
FCM (m=2) 16 10.67% 

SVC [5] 14 9.33% 
SPC [25] 15 10% 

 

 
Fig.12 Clusters obtained by NKFCM with m=2 and 12=σ . Class 1-Iris Setosa, Class 2-Iris Versicolor, and Class 3-Iris 

Virginica.  “●”,  “▲” and “ ”: the prototypes of clusters. 
 



 

 
Fig.13 Clusters obtained by FCM with m=2. Class 1-Iris Setosa, Class 2-Iris Versicolor, and Class 3-Iris Virginica. “●”,  “▲” 

and “ ” : the prototypes of clusters.
 
 

5. Conclusions and discussions 
 
In this paper, a new kernel normalization procedure is suggested, based on which the normalized 
Mercer kernel possesses clear geometric interpretation and some good properties. An unsupervised 
clustering algorithm, NKFCM, is also proposed. The NKFCM algorithm makes no assumptions about 
the shape of clusters within data samples, it thus possesses strong adaptability to data cluster structures. 
In virtue of normalized kernel transformation from input space into high-dimensional feature space, the 
opportunity of linearly separating the mapped patterns by the NKFCM algorithm increases, which has 
been supported by the experimental results. However, it becomes problematic to calculate the 
prototypes of clusters in input space in Mercer kernel based clustering methods. In the NKFCM 
algorithm, a method for approximating the prototypes of clusters in input space has been developed. 
Experimental results have demonstrated the promising performance of the NKFCM algorithm with 
kernel normalization procedure. 

From the experiments it is also found that the kernel parameters have great influence on the 
clustering performance. Kernel functions with different parameters give rise to different results. Hence, 
how to choose an appropriate kernel parameter is a problem that has not been solved well in this paper. 
As a matter of fact, this is an open problem in most kernel based algorithms. A possible way to attack 
this open problem is to optimize kernel parameters in terms of a criterion for kernel parameter selection. 
Another problem is how to speed up the kernel matrix computation and lighten the requirements on 
computer memory, which is also a common demand in most kernel based algorithms. These problems 
will receive much attention in our future research. 
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