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Abstract

The OWA operator proposed by Yager has been widely used to aggregate experts’ opin-

ions or preferences in human decision making. Yager’s traditional OWA operator focuses

exclusively on the aggregation of crisp numbers. However, experts usually tend to express

their opinions or preferences in a very natural way via linguistic terms. These linguistic

terms can be modelled or expressed by (type-1) fuzzy sets. In this paper, we define a new

type of OWA operator, the type-1 OWA operator that works as an uncertain OWA operator

to aggregate type-1 fuzzy sets with type-1 fuzzy weights, which can be used to aggregate

the linguistic opinions or preferences in human decision making with linguistic weights.

The procedure for performing type-1 OWA operations is analysed. In order to identify the

linguistic weights associated to the type-1 OWA operator, type-2 linguistic quantifiers are

proposed. The problem of how to derive linguistic weights used in type-1 OWA aggregation

given a such type of quantifier is solved. Examples are provided to illustrate the proposed

concepts.
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1 Introduction

Decision making is one of the most significant and omnipresent human activities in

business, manufacturing, service etc.. Existing decision making paradigms include

multi-expert decision making (i.e. group decision making), multi-criteria decision

making and multi-expert multi-criteria decision making. All these paradigms re-

quire aggregation methods. The objective of aggregation is to combine individ-

ual experts’ preferences or criteria into an overall one in a proper way so that

the final decision takes into account all the individual contributions [6]. It has be-

come a subject of intensive research due to its practical and academic significance.

Currently, at least 90 different families of aggregation operators have been stud-

ied [2,3,6,7,16,24,37,38]. Among them the Ordered Weighted Averaging (OWA)

operator proposed by Yager [38] is the most widely used. But most of the exist-

ing aggregation operators, including the OWA, focus on aggregating crisp num-

bers, while in real world decision applications human experts exhibit remarkable

capability to manipulate perceptions without any measurements and any compu-

tations [48]. For example, in practice, people perceive the distance, size, weight,

likelihood, and other characteristics of physical and mental objects in a very nat-

ural way via linguistic terms, like “very long”,“big”, “very heavy”, “good” etc.,

when they cannot provide exact numbers for expressing vague and imprecise opin-

ions [46]. Thus, how to effectively aggregate linguistic judgments for decision mak-

ers is a problem that needs to be addressed.

Linguistic terms can be characterised as linguistic variables via type-1 fuzzy sets

or type-2 fuzzy sets, where type-1 fuzzy sets are the traditional fuzzy sets pro-

posed by Zadeh in 1965 [45], and type-2 fuzzy sets were proposed by Zadeh later

in 1975 [46]. Currently, there are two main schemes to aggregate linguistic infor-

mation in decision making. The first scheme is to work directly on linguistic labels

without considering the (mathematical) expression of the linguistic terms. The only

requirement of this scheme is that these linguistic labels should satisfy an order re-

lation. Bordogna et al. [1] proposed a linguistic modelling of consensus in group

decision making, in which both experts’ evaluations of alternatives and degree of

consensus are expressed linguistically and where the overall linguistic performance

evaluation is computed via a linguistic OWA operator based aggregation. Another

method defined in [13, 14] integrates the OWA operator [38] and a convex com-

bination method of linguistic labels. One advantage of such a scheme of directly

aggregating linguistic labels without considering the expression of the linguistic

terms lies in its high computing efficiency due to its symbolic aggregation in na-

ture. However, the precision of the linguistic operations is an issue: in some cases,

this scheme may yield a solution set with multiple alternatives for decision mak-

ers to choose, rather than a single one. Another matter is that most of the existing

methods based on this scheme use the traditional OWA operator in nature which

aims at aggregating crisp numbers. The second scheme of aggregating linguistic

information is via operations performed on their associated membership functions.
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Zimmermann and Zysno developed a family of compensatory operators for aggre-

gating type-1 fuzzy sets by combining a t-norm and a t-conorm to produce certain

compensation between criteria [51,52]. This family of compensatory operators has

been extended to aggregate weighted fuzzy sets in heterogeneous decision mak-

ing problems [28], in which different experts were assigned different importance

weights in the form of crisp numbers. In order to evaluate an overall linguistic

value, a weighted average of the membership function values associated with the

linguistic labels was first computed, and then this aggregation result was translated

into linguistic terms via a linguistic approximation. There is a common problem

with these two schemes: the importance weights for different experts are assumed

to be precise numerical values. This assumption implies that uncertain linguistic la-

bels are aggregated in terms of certain precise crisp weights. However, in real world

decision making, the weights reflecting the experts’ desired agenda for aggregating

opinions and preferences are usually uncertain rather than crisp in nature. Hence,

a reasonable way of aggregating linguistic judgments in decision making should

consider linguistic weights as well rather than crisp weight values.

Interestingly, Meyer and Roubens [27] proposed a fuzzified Choquet integral to ag-

gregate type-1 fuzzy numbers (normal convex type-1 fuzzy sets) based on a Mobi-

ous transform of a fuzzy measure; a different version of fuzzified Choquet integral

was suggested in [36, 44] for fuzzy-valued integrands. However, in these two ver-

sions of the fuzzified Choquet integral the importance weights used are precise real

values rather than uncertain quantities. The major advantage of using the Choquet

integral lies in that it can provide a profound theoretical analysis and background,

but it suffers from the serious drawback of needing to assign real values to the im-

portance of all possible combinations [27]. Also, there is no clear way of inducing

real values as importance weights for the fuzzified Choquet integrals [27,44]. Cur-

rently, the fuzzy weighted averaging operator has been investigated to aggregate

type-1 fuzzy sets by type-1 fuzzy importance weights as well [5, 11, 21]. However,

how to generate the fuzzy importance weights for the fuzzy weighted averaging

operator was not addressed. The fuzzy weighted averaging operator implies pref-

erential independence of the experts’ points of view. Preference is an important

issue in soft decision making [2, 7], and has nowadays found significant interest

in various fields such as economic decision making, social choice theory, opera-

tions research, databases, and human-computer interaction. One way of avoiding

this independence condition is to generalise the traditional OWA operator as an ag-

gregation operator for type-1 fuzzy sets, which is the aim of this paper. Mitchell

and Estrakh suggested a way of generalising Yager’s OWA operator by extending

the integer ranks used in the reordering step to the case of real-number or fuzzy

ranks [30], however, this generalised OWA operator still focuses on aggregating

crisp number values based on crisp weights rather than fuzzy sets.

In this paper, a new type of OWA operator, the type-1 OWA operator, is proposed

to aggregate the linguistic information in the form of type-1 fuzzy sets by linguistic

weights in the form of type-1 fuzzy sets as well. Because Yager’s OWA operator is
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nonlinear as opposed to the weighted averaging operator, a linear operator, so the

proposed type-1 OWA operator is significantly different from the fuzzy weighted

average operator. Moreover, in this paper we further address the problem of how to

obtain the linguistic weights used in the type-1 OWA operator based on new type of

linguistic quantifiers. It is known that in the traditional OWA operator, the linguistic

quantifiers used for identifying its weights are modelled via type-1 fuzzy sets. The

limitation is that a type-1 fuzzy set actually uses precise values to characterise un-

certainty. As a result, the weights derived by these linguistic quantifiers are precise

and crisp. As Klir and Folger [24, page 12] point out: “... it may seem problemati-

cal, if not paradoxical, that a representation of fuzziness is made using membership

grades that are themselves precise real numbers”. In this paper, in order to model

a higher level of uncertainty associated to linguistic quantifiers, the concept of a

type-2 quantifier is defined in the form of a type-2 fuzzy set [19, 26]. A method of

deriving uncertain linguistic weights based on type-2 quantifiers for the proposed

type-1 OWA operator is also presented.

The rest of the paper is set out as follows. Section 2 defines the type-1 OWA opera-

tor for aggregating type-1 fuzzy sets, in which the procedure for performing type-1

OWA operations is analysed. Section 3 introduces the concept of a type-2 linguis-

tic quantifier and addresses the problem of how to derive linguistic weights used in

type-1 OWA aggregation given such a type of quantifier. Finally, in Section 4 we

draw our conclusions and suggest further research on type-1 OWAs.

2 Type-1 OWA operator for aggregating type-1 fuzzy sets

In this section, we present an uncertain OWA operator for aggregating uncertain

information with uncertain weights, the type-1 OWA operator. We also provide

a procedure for performing type-1 OWA operations in practice. First, we briefly

review Yager’s traditional OWA operator.

2.1 Yager’s OWA operator

In 1988, Yager introduced an aggregation technique based on the order weighted

averaging (OWA) scheme [38]. Since then, OWA based aggregation strategies have

been widely investigated and have achieved successful applications in many do-

mains, such as decision making [4,13,14,28,38,39], fuzzy control [41,42], market

analysis [43], image compression [29], etc..

Definition 1 Yager’s OWA operator of dimension n is a mapping φ : R
n→R, which

has an associated set of weights W = (w1, · · · ,wn)
T to it, so that wi ∈ [0, 1] and

4
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n

∑
i=1

wi = 1,

φ(a) = φ(a1, · · · ,an) =
n

∑
i=1

wiaσ(i)

where σ : {1, · · · ,n} → {1, · · · ,n} is a permutation function such that aσ(i) is the

i-th highest value in the set
{

a1, · · · ,an : aσ(i) ≥ aσ(i−1)

}
.

Generally speaking, the OWA operator based aggregation process consists of three

steps:

(1) The first step is to re-order the input arguments in descending order. The ele-

ment ai is not associated with a particular weight wi, but rather wi is associated

with a particular ordered position of an aggregated object.

(2) The second step is to determine the weights for the operator in a proper way.

(3) Finally, the OWA weights are used to aggregate the re-ordered arguments.

Among the three steps, the first step introduces a nonlinearity into the aggregation

process by re-ordering the input arguments, which make Yager’s OWA operator

significantly different from the weighted averaging operator, a linear aggregation

operator.

2.2 Type-1 OWA operator

The departure point for suggesting such an uncertain OWA operator is to aggre-

gate the linguistic variables (modelled as type-1 fuzzy sets) used to express human

opinions or preferences in soft decision making. Let F(X) be the set of type-1 fuzzy

sets defined on the domain of discourse X . Based on Zadeh’s extension principle,

we extend Yager’s OWA operator when both weights and aggregated objects are

type-1 fuzzy sets.

Definition 2 Given n linguistic weights {Wi}
n
i=1 in the form of type-1 fuzzy sets

defined on the domain of discourse [0,1], an associated type-1 OWA operator of

dimension n is a mapping Φ,

Φ : F(X)×·· ·×F(X) −→ F(X)

(A1, · · · ,An) 7→ G

that aggregates type-1 fuzzy sets {Ai}
n
i=1 in the following way,

µG(y) = sup
n

∑
k=1

w̄iaσ(i) = y

wi ∈U,ai ∈ X

(
µW1

(w1)∗ · · · ∗µWn
(wn)∗µA1

(a1)∗ · · · ∗µAn
(an)

)
(1)
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where ∗ is a t-norm operator, w̄i = wi
n

∑
i=1

wi

, and σ : { 1, · · · ,n } → { 1, · · · ,n } a per-

mutation function such that aσ(i) is the i-th largest element in the set {a1, · · · ,an}.

From the above definition, it can be seen that Φ(A1, · · · ,An) = G∈F(X) is a type-1

fuzzy set defined on X . When the associated weights of the type-1 OWA operator

are intervals ( i.e., special cases of type-1 fuzzy sets), its expression simplifies as

follows:

Definition 3 Given n interval weights
{

Ŵi

}n

i=1
, Ŵi ⊆ [0,1](i = 1, · · · ,n), the asso-

ciated type-1 OWA operator is

µG(y) = sup
n

∑
k=1

w̄iaσ(i) = y

wi ∈ Ŵi,ai ∈ X

(
µA1

(a1)∗ · · · ∗µAn
(an)

)
(2)

where ∗ is a t-norm operator, w̄i = wi
n

∑
i=1

wi

, and σ : { 1, · · · ,n } → { 1, · · · ,n } a per-

mutation function such that aσ(i) is the i-th largest element in the set {a1, · · · ,an}.

2.3 Procedure for performing type-1 OWA operations

Given a set of linguistic weights {Wi}
n
i=1 ⊂ F(U), in order for the associated type-

1 OWA operator to aggregate type-1 fuzzy sets {Ai}
n
i=1 ⊂ F(X) on computer in

practical applications, as usual, the domains X and U have to be discretised for

calculation. Let the discretised domains be X̂ =
{

x̂1, · · · , x̂p

}
and Û = {û1, · · · , ûk},

which are partitions of the spaces X and U respectively. The final aggregation re-

sult should be achieved on the discretised domain X̂ . However, with all the com-

binations of (w1, · · · ,wn,a1, · · · ,an), where wi ∈ Û ,ai ∈ X̂ , i = 1, · · · ,n, the term

∑n
k=1 w̄iaσ(i) produces another partition of X :

X =
{

x̄ j

}
=

{
n

∑
k=1

w̄iaσ(i)

∣∣∣wi ∈ Û ,ai ∈ X̂ , i = 1, · · · ,n

}

The problem is that X̂ 6= X , i.e., the two discretised versions of X may be different,

and the cardinality of X is greater than or equal to the cardinality of X̂ :
∣∣X

∣∣ ≥
∣∣X̂

∣∣.
In other words, there are many points in X that lie between the neighbouring points

in X̂ . The set X is referred to as an over-partition of the input space given the used

X̂ . The consequence is that the fuzzy set, G, generated on X according to the exten-

sion principle is likely to be unreadable, because for some data points that are in X

but not in X̂ , their membership grades may not be consistent with the membership

grades of the corresponding nearest points in X̂ . Let us consider for example the

6
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Fig. 1. Two type-1 fuzzy sets

to be aggregated.
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Fig. 2. Aggregation result G gener-

ated on the over-partition X .

problem of aggregating the two type-1 fuzzy sets illustrated in Figure 1 by a type-1

OWA operator using the two interval weights [0.25,0.4] and [1,1]. Let the discre-

tised domains be X̂ = {0.24 · k|k = 0, · · · ,50}, Ŵ1 = {0.25+0.01 · k|k = 0, · · · ,15}
and Ŵ2 = {1} respectively. The over-partition of the input space, X , is obtained

as X = {0.0000,0.0480,0.0495, · · · ,12.0000} 6= X̂ . Figure 2 shows the initial ag-

gregation result G generated on the over-partition X . Hence the final aggregation

result, the type-1 fuzzy set G on the set X̂ , should be derived from G. This can be

conducted according to the extension principle as follows:

The sets X̂ and X are two partitions of the domain X as shown in Figure 3, with X

providing a finer resolution than X̂ . So the data points from the partition X lying

between two neighbouring points in the coarse partition X̂ , for example the points

x̂i and x̂i+1 in X̂ , form a cluster: Θx̂i
,

{
x̄ j

∣∣∣x̄ j ∈ X , x̂i ≤ x̄ j < x̂i+1

}
, in which x̂i is

the cluster prototype.

Fig. 3. The two partitions of domain X : X and X̂ .

This is analogous to a digital map with different resolutions: by zooming in, we can

see a map with fine details, whilst by zooming out, all the details are displayed in

a point, this point acts as one unit representing all the details behind it. Hence, the

whole cluster Θx̂i
with prototype x̂i is treated as one unit, and all the membership

grades of the data points in Θx̂i
should be assigned to this unit. So according to the

extension principle, the membership grade of this unit is obtained by maximising

all its available membership grades. Thus, the membership grade of the resulting

7
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Fig. 4. The fuzzy set G on X̂ derived from the fuzzy set G on X in Figure 2.

type-1 fuzzy set G at the prototype point x̂i is obtained as

µG(x̂i) = sup
x̄ j∈Θx̂i

(
µG(x̄ j)

)
(3)

Figure 4 shows the resulting fuzzy set obtained by applying equation (3) to the

initial aggregation result depicted in Figure 2. A Direct Approach to type-1 OWA

operation is addressed as follows:

Step 1: Initialisation.

• Given the set of linguistic weights {Wi}
n
i=1 ⊆ F(U) for aggregating the set of

type-1 fuzzy sets {Ai}
n
i=1 ⊆ F(X);

• Given the discretised domains of the linguistic weights, Û , and that of the

aggregated objects, X̂ ;

• Let the initial aggregation result G =
(
X , µG

)
, where X = {0}, and µG(x̄) = 0.

Step 2: Obtain the initial result G

(1) Select w1, · · · ,wn ∈ Û , a1, · · · ,an ∈ X̂ ;

(2) Normalise (w1, · · · ,wn) as w̄i = wi
n

∑
i=1

wi

;

(3) Perform the traditional OWA operation: ȳ = φ(w̄1,··· ,w̄n)(a1, · · · ,an);
(4) Calculate µ0 = µW1

(w1)∗ · · · ∗µWn
(wn)∗µA1

(a1)∗ · · · ∗µAn
(an);

(5) If there exists yk ∈X such that ȳ = yk, update the potential membership grade

µG(yk):
µG(yk)← max

(
µG(yk),µ0

)

Otherwise, ȳ is added to X , and µG(ȳ) , µ0;

(6) Go to Step 2-(1), and continue until all weight vectors and aggregating

points are selected.

Step 3: Derive the fuzzy set G on X̂ :

µG(x̂) = sup
x̄ j∈Θx̂

(
µG(x̄ j)

)
.
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3 Linguistic quantifier guided type-1 OWA operator

The identification of an appropriate OWA operator, i.e., to determine the weight-

ing vector associated to an OWA weights, is crucial in OWA based aggregation

[25, 35, 40], because the OWA weights reflect the decision makers’ desired agenda

for aggregating the criteria. Yager [38, 40] proposed a popular method for identi-

fying the traditional OWA weights via linguistic quantifiers like “most”, “almost

all”, “at least half”, which is very useful in decision making, particularly in group

decision making with an expected soft consensus solution [15,17]. This “soft” ma-

jority (or minority) such as “most” (or “least”) is much closer to the real human

perception in decision making. Interestingly, based on Zadeh’s concept of linguistic

quantifiers [47], some of the traditional OWA operators can be used to characterise

these “soft” majority (or minority) operations [38, 40]. For example, given the lin-

guistic quantifier “most” (Q), one can consider an aggregation of a set of criteria

based on an imperative such as “most of the criteria should be satisfied”. Yager

called them as quantifier guided aggregations. As a matter of fact, the use of a

quantifier guided aggregation can be considered as a manifestation of a semanti-

cally based aggregation consideration.

Given a non-decreasing quantifier, i.e., a function Q : [0,1]→ [0,1] such that Q(0)=
0, Q(1) = 1 and if x > y then Q(x) ≥ Q(y), an OWA aggregation guided by this

function can be obtained as [38, 40]:

φQ(a1, . . . ,an) =
n

∑
i=1

wi ·aσ(i),

where aσ(i) is the i-th largest value in the set {a1, . . . ,an}; and

wi = Q

(
i

n

)
−Q

(
i−1

n

)
, i = 1, . . . ,n. (4)

Figure 5 depicts the non-decreasing fuzzy quantifiers “most”, “almost all”, and

“at least half” with membership function

Q(r) =





0, if r < a;

r−a
b−a

, if a≤ r ≤ b;

1, if r > b.

characterised by parameters (a, b) =(0.3, 0.8), (0, 0.5) and (0.5, 1) respectively

[20, 47].

9
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Fig. 5. Proportional fuzzy quantifiers (from left to right): (a)“ most”, (b) “at least half”,

(c) “as many as possible”.

3.1 Type-2 linguistic quantifiers

The existing definitions of linguistic quantifiers are all based on type-1 fuzzy sets.

The limitation is that a type-1 fuzzy set actually uses precise values to characterise

uncertainty, so if the linguistic quantifiers in the form of type-1 fuzzy sets are used

to guide type-1 OWA aggregation, then certain precise crisp weights will be in-

duced to characterise the uncertainty of linguistic variables. In order to characterise

the higher level uncertainty associated to linguistic weights, it is more reasonable

to define a linguistic quantifier by using type-2 fuzzy sets [19, 26]. Hence we pro-

pose type-2 quantifiers based on type-2 fuzzy sets and use them to determine the

linguistic weights for the type-1 OWA operator.

Definition 4 A type-2 quantifier Q̃ is characterised by a type-2 fuzzy set defined on

[0, 1], i.e.,

Q̃ =
{(

(r,u),µ
Q̃
(r,u)

)∣∣∣0≤ µ
Q̃
(r,u)≤ 1 ∀r ∈ [0,1], ∀u ∈ Jr ⊆ [0,1]

}
.

For example, the linguistic quantifier “most” can be defined by the following type-

2 fuzzy set,

m̃ =


 0 0.1 0.2 0.3 0.4 . . . 0.7 0.8 0.9 1

trivial trivial trivial trivial very small . . . very big utmost utmost utmost




in which “trivial”, “very small”, . . . , “very big”, and “utmost” can be represented

as type-1 fuzzy numbers.

Before we define three different kinds of type-2 quantifiers: monotonically non-

decreasing, monotonically non-increasing and unimodal type-2 quantifiers, we first

introduce a partial ordering relation of type-1 fuzzy sets based on join and meet

operations.

10
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Given two type-1 fuzzy sets A and B, their meet (A⊓B) and join (A⊔B) are defined

as follows [31, 46]:

µA⊓B(z) = sup
x∧ y = z

x ∈DA, y ∈DB

µA(x)∗µB(y)

µA⊔B(z) = sup
x∨ y = z

x ∈DA, y ∈DB

µA(x)∗µB(y)

where DA,DB ⊆ X represent the domains of A and B respectively; ∗ is a t-norm

operator; ∧ represents the minimum operation; and ∨ represents the maximum op-

eration.

It is known that the set R of real numbers is linearly ordered and (R,min,max)
is a lattice where min and max represent the minimum and maximum operators

respectively, and for any x,y ∈ R the partial ordering relation ≥ (≤) is defined as

x≥ y ⇐⇒ max(x,y) = x

y≤ x ⇐⇒ min(x,y) = y

Based on the extension principle, it can be seen that meet and join operators are the

generalisation of the lattice min and max operators to type-1 fuzzy sets in nature.

Hence A⊓B and A⊔B are referred to as the fuzzy minimum and fuzzy maximum

of type-1 fuzzy sets A and B respectively, where A,B ∈ F(X),X ⊆ R. (F(X),⊓,⊔)
forms a distributive lattice [22] 1 describing a partial ordering relation of type-1

fuzzy sets A and B as follows:

Definition 5 Let A and B be type-1 fuzzy numbers on domain X. An ordering rela-

tion < is defined as

A < B ⇐⇒ A⊔B = A

⇐⇒ A⊓B = B
(5)

Ramik and Rimanek [32] 1 indicated that A < B if and only if there exist v1, v∗
and v2 with v1 ≥ v∗ ≥ v2, µA(v1) = µB(v2) = 1, µA(x) ≤ µB(x) for any x < v∗ and

µA(x)≥ µB(x) for any x > v∗.

We define the monotonically non-decreasing, monotonically non-increasing and

unimodal type-2 quantifiers as follows:

1 In [22] and [32], the defined m̃in and m̃ax, whose definitions are the same as the meet

(⊓) and join (⊔), are used to represent the fuzzy minimum and maximum of type-1 fuzzy

sets respectively.
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Definition 6 Given a partially ordinal relation � for type-1 fuzzy sets in F([0,1]),

a type-2 quantifier Q̃ is called

(a) Regular monotonically non-decreasing if Q̃0 = Q̃(0, ·) = 0̇, Q̃1 = Q̃(1, ·) = 1̇

and Q̃r1
= Q̃(r1, ·)� Q̃r2

= Q̃(r2, ·) when r1 > r2.

(b) Regular monotonically non-increasing if Q̃0 = 1̇, Q̃1 = 0̇ and Q̃r1
� Q̃r2

when

r1 < r2.

(c) Unimodal if Q̃0 = Q̃1 = 0̇ and Q̃r = 1̇ for a ≤ r ≤ b, and Q̃r2
� Q̃r1

when

a≥ r2 ≥ r1, and Q̃r1
� Q̃r2

when b≤ r1 ≤ r2.

where 1̇ and 0̇ are the singleton type-1 fuzzy sets

1̇(w) =





1, if w = 1;

0, otherwise.
0̇(w) =





1, if w = 0;

0, otherwise.

For example, the fuzzy max partially ordinal relation < defined in (5) is used,

then the type-2 quantifier “most” with parameters a = 0.3,b = 0.5 and c = 0.8
as depicted in Figure 6 is regular monotonically non-decreasing.

Fig. 6. Type-2 quantifier “most”

3.2 Type-2 linguistic quantifier guided type-1 OWA operators

Non-decreasing type-2 linguistic quantifiers can be used to determine the linguistic

weights used in type-1 OWA aggregations. Indeed, given a type-2 linguistic quan-

tifier Q̃, for r ∈ [0,1],Qr = µ
Q̃
(r, ·) is a type-1 fuzzy set and µQr

(u) = µ
Q̃
(r,u). Then

the linguistic weights {Wi}
n
i=1 are induced by Q̃ via fuzzy subtraction as follows:

Wi
∆
= Qi/n−Q(i−1)/n (6)
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However, it is noted that a well-known defective property of classical interval

arithmetic and fuzzy interval arithmetic resides in the overestimation of the range

[12,23,33]. The overestimation is often caused by the dependency problem and the

wrapping effect. The dependency problem is the incapacity of fuzzy arithmetic to

identify different occurrences of the same variable, while the wrapping effect ap-

pears when in each stage of an interval process, the intermediate results have to be

wrapped into an interval. Interval arithmetic is conservative in that it guarantees to

contain the set of all possible results including those where rounding errors com-

bine in an unfavourable way, so the worst case assumption is implicitly made in

interval arithmetic or fuzzy interval arithmetic, namely that: all intervals or fuzzy

intervals are independent although most of them are not [12]. If two intervals are

known to be dependent, this information can be used to compute narrower inter-

vals that are still bounds on the set of all possible results [34]. For example, a

very promising approach to reducing the effect of overestimation is to introduce

the “requisite equality constraints” suggested by Klir [23]. In this paper, we apply

Klir’s scheme to the fuzzy interval subtraction Wi = Qi/n−Q(i−1)/n:

• If Qi/n = Q(i−1)/n, then Wi = 0̇.

• If Qi/n 6= Q(i−1)/n, then ∀w ∈ [0,1],

µWi
(w) = sup

u− s = w
u ∈ Ji/n

s ∈ J(i−1)/n

µQi/n
(u)∗µQ(i−1)/n

(s)

where ∗ is a t-norm operator, Ji/n,J(i−1)/n are primary membership grades of Q̃ at

i/n,(i−1)/n respectively.
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Fig. 7. Secondary membership

functions of the type-2 quanti-

fier “most” on the FOUs J0 and

J0.25, J0.5, J0.75, and J1
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W1 W2 W3W4

Fig. 8. Four linguistic weights

induced by the type-2 quanti-

fier-“most” (from left to right):

W1, W4, W2 and W3

Example 1 In the following, we address the procedure for inducing four linguistic

weights in the form of type-1 fuzzy sets from the type-2 quantifier “most” illustrated
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in Figure 6:

(1) Determine the footprints of uncertainty (FOUs) [26] at r = 0,0.25,0.5,0.75,1 :

J0 = [0,0],J0.25 = [0,0],J0.5 = [0,0.4],J0.75 = [0.833,0.9], and J1 = [1,1].
(2) Determine the secondary membership functions defined on the FOUs J0, J0.25,

J0.5, J0.75, and J1 as illustrated in Figure 7 respectively. The secondary mem-

bership functions on the FOUs J0 and J0.25 are equal to the singleton fuzzy set

0̇ (first fuzzy set from left to right), while the secondary membership function

on the FOU J1 is the singleton fuzzy set 1̇ (last fuzzy set from left to right).

(3) Induce the four linguistic weights as shown in Figure 8 by performing the

above fuzzy subtraction.

A type-1 OWA operator associated with the above four induced linguistic weights

can be defined and used to aggregate type-1 fuzzy sets, Figure 9 shows an example

of aggregating four type-1 fuzzy sets using this induced type-1 OWA operator.
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Fig. 9. Aggregation of type-1 OWA operator associated with the linguistic weights in Figure

8 - solid lines: fuzzy sets to be aggregated; dashed line: aggregation result

When the secondary grades of a type-2 quantifier are unity, the type-2 quantifier

is called an interval type-2 quantifier, and therefore is fully characterised by its

FOU. An example of the FOU of the interval type-2 quantifier “most” is depicted

in Figure 10, in which a = 0.3,b = 0.5 and c = 0.8.

For an interval type-2 quantifier Q̃, we have µ
Q̃r

(u) = 1, ∀r, and therefore µWi
(w) =

1. This implies that the domain of Wi fully depends on the primary membership

grades Ji/n and J(i−1)/n. Because the common case is that Ji/n is an interval, so the

domain of Wi can be fully characterised by the interval obtained by performing the

interval subtraction:

W i = Ji/n− J(i−1)/n (7)
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Fig. 10. FOU of interval type-2 quantifier “most”

However, as stated above, a drawback of classical interval arithmetic is the over-

estimation of the range. In interval arithmetic, the computation of bounds that are

as narrow as possible is a member of the class of extremely difficult computing

problems, called NP-hard [34]. A wide interval does not prove that a convention-

ally computed result is wrong, but it does indicate a risk [18]. Therefore, in this

paper, Klir’s scheme [23] is used to conduct the interval subtraction W i to avoid

overestimation: when two operand intervals are equal the resulting subtraction of

the two intervals is zero.

In the following we derive the interval weights induced from the non-decreasing

interval type-2 quantifier given in Figure 10. We note that if the two straight line

equations used are

L1 : u = s1r +m1

L2 : u = s2r +m2

with 0≤ a≤ b ≤ c ≤ 1, where a = −m2/s2, b = −m1/s1, and c = (1−m1)/s1 =
(1−m2)/s2, then it can be easily proved that s1 ≥ s2 > 0, m1 ≤ m2 ≤ 0, s1 =
1/(c− b),m1 = −b/(c− b), s2 = 1/(c− a) and m2 = −a/(c− a). We have the

following cases:

• If
i

n
≤ a or

i−1

n
≥ c, then Ji/n = J(i−1)/n = [0,0] or [1,1] and therefore W i = 0.

• If
i−1

n
≤ a≤

i

n
, then J(i−1)/n = [0,0] and therefore W i = Ji/n.

• If a≤
i−1

n
<

i

n
≤ b, then J(i−1)/n =

[
0,L2

(
i−1

n

)]
, Ji/n =

[
0,L2

(
i
n

)]
and there-

fore

Ji/n =

[
0,L2

(
i−1

n

)
+

s2

n

]
=

[
0,L2

(
i−1

n

)]
+

[
0,

s2

n

]
= J(i−1)/n +

1

n
[0,s2]
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By considering the “requisite equality constraints” [23], we obtain W i as fol-

lows 2

W i = Ji/n− J(i−1)/n =
(

J(i−1)/n− J(i−1)/n

)
+

1

n
[0,s2] =

1

n
[0,s2]

• If a ≤
i−1

n
≤ b ≤

i

n
≤ c, then J(i−1)/n =

[
0,L2

(
i−1

n

)]
, Ji/n =

[
L1

(
i
n

)
,L2

(
i
n

)]

and therefore

W i = Ji/n− J(i−1)/n =

[
L1

(
i

n

)
−L2

(
i−1

n

)
,L2

(
i

n

)]

• If b≤
i−1

n
<

i

n
≤ c, then J(i−1)/n =

[
L1

(
i−1

n

)
,L2

(
i−1

n

)]
, Ji/n =

[
L1

(
i
n

)
,L2

(
i
n

)]

and therefore

Ji/n−
1

n
[s2,s1] =

[
L1

(
i

n

)
−

s1

n
,L2

(
i

n

)
−

s2

n

]

=

[
L1

(
i−1

n

)
,L2

(
i−1

n

)]
= J(i−1)/n

By considering the “requisite equality constraints” [23], W i = 1
n
[s2,s1] is ob-

tained 3

• If
i−1

n
≤ c≤

i

n
, then J(i−1)/n =

[
L1

(
i−1

n

)
,L2

(
i−1

n

)]
, Ji/n = [1,1] and therefore

W i =

[
1−L2

(
i−1

n

)
,1−L1

(
i−1

n

)]

Then the domains of the linguistic weights Wi, Ŵi, used in type-1 OWA aggregation

are identified as follows:

Ŵi = W i∩ [0,1]

Example 2 The interval weights induced from the interval type-2 quantifier “most”

are obtained as follows:

(1) Determine the FOUs at r = 0,0.25,0.5,0.75,1: J0 = [0,0],J0.25 = [0,0],J0.5 =
[0,0.4],J0.75 = [0.833,0.9], and J1 = [1,1].

2 If the “requisite equality constraints” are ignored, certain overestimated intervals would

be induced as Ji/n − J(i−1)/n =
[
−L2

(
i−1

n

)
,L2

(
i
n

)]
=

[
−L2

(
i−1

n

)
,L2

(
i−1

n

)]
+ 1

n
[0,s2] ⊇

1
n
[0,s2]

3 If the “requisite equality constraints” are ignored, certain overestimated inter-

vals would be induced as Ji/n − J(i−1)/n =
[
L1

(
i
n

)
−L2

(
i−1

n

)
,L2

(
i
n

)
−L1

(
i−1

n

)]
=[

L1

(
i
n

)
−L2

(
i
n

)
+ s2

n
,L2

(
i
n

)
−L1

(
i
n

)
+ s1

n

]
=

[
L1

(
i
n

)
−L2

(
i
n

)
,L2

(
i
n

)
−L1

(
i
n

)]
+

1
n
[s2,s1]⊇

1
n
[s2,s1]
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(2) Determine the interval weights W i = Ji/n− J(i−1)/n:

W 1 = [0,0],W 2 = [0,0.4],W3 = [0.433,0.9],W4 = [0.1,0.167].

Then the above induced interval weights can be used to define a type-1 OWA oper-

ator, Figure 11 shows an example of aggregating four type-1 fuzzy sets using this

induced operator.
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Fig. 11. Aggregation of type-1 OWA operator associated with the induced interval weights

- solid lines: fuzzy sets to be aggregated; dashed line: aggregation result

4 Conclusion

In this paper, by extending Yager’s OWA operator, a new type of OWA operator,

called the type-1 OWA operator, is proposed in the interests of aggregating lin-

guistic information via OWA mechanism for decision making. The type-1 OWA

operator is capable of aggregating type-1 fuzzy sets with type-1 fuzzy set weights

in the aggregation process. Moreover, type-2 linguistic quantifiers are suggested

to identify the linguistic weights used in the OWA aggregation of linguistic infor-

mation. The procedure for performing quantifier guided type-1 OWA operations is

provided.

We believe that the proposed new type of OWA operator will lead to some new

research areas. These include

• the relationship between the aggregation of the α-cuts of the fuzzy sets to be ag-

gregated via a type-1 OWA operator and the resulting fuzzy set obtained via

the procedure presented in the present paper. Because interval analysis tech-

niques [8] has been adapted to fuzzy interval computation where ending-points
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of intervals are changed into left and right fuzzy bounds, the α-cut based interval

analysis techniques would also possess the great potentials of being applied to

improving the efficiency of type-1 OWA operation for real-time decision making.

• whether the properties of the traditional OWA operator remain in the proposed

new type of OWA operator;

• how to aggregate type-2 fuzzy sets [19, 26] and non-stationary fuzzy sets [9, 10]

via OWA mechanism;

• the possibility of applying the type-1 OWA operator to merging similar fuzzy sets

for improving fuzzy model interpretability/transparency and parsimony [49,50].

Additionally, the new type-1 OWA operator could have great potential in being

applied to multi-expert decision making and multi-criteria decision making. These

topics will receive much attention in our future research.
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