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Alpha-Level Aggregation:
A Practical Approach to Type-1 OWA Operation

for Aggregating Uncertain Information with
Applications to Breast Cancer Treatments

Shang-Ming Zhou, Member, IEEE, Francisco Chiclana, Robert I. John, Senior Member, IEEE,

and Jonathan M. Garibaldi

Abstract—Type-1 OWA operator provides us with a new technique for directly aggregating uncertain information with uncertain weights

via OWA mechanism in soft decision making and data mining, in which uncertain objects are modelled by fuzzy sets. The Direct

Approach to performing type-1 OWA operation involves high computational overhead. In this paper, we define a type-1 OWA operator

based on the α-cuts of fuzzy sets. Then we prove a Representation Theorem of type-1 OWA operators, by which type-1 OWA operators

can be decomposed into a series of α-level type-1 OWA operators. Furthermore, we suggest a fast approach, called Alpha-Level

Approach, to implementing the type-1 OWA operator. A practical application of type-1 OWA operators to breast cancer treatments is

addressed. Experimental results and theoretical analyses show that: (i) the Alpha-Level Approach with linear order complexity can

achieve much higher computing efficiency in performing type-1 OWA operation than the existing Direct Approach, and (ii) the type-1

OWA operators exhibit different aggregation behaviours from the existing fuzzy weighted averaging (FWA) operators. (iii) the type-1

OWA operators demonstrate the ability to efficiently aggregate uncertain information with uncertain weights in solving real-world soft

decision making problems.

Index Terms—OWA operators, aggregation, fuzzy sets, type-1 OWA operators, Alpha-cuts, Alpha level, uncertain information, soft

decision making, breast cancer treatments.

F

1 INTRODUCTION

AGGREGATION operation is not only an important
research topic in knowledge and data engineering

[1]–[5], but also one of the most important steps in
dealing with multi-expert decision making, multi-criteria
decision making and multi-expert multi-criteria decision
making [6]–[8]. The objective of aggregation is to com-
bine individual sources of information into an overall
one in a proper way so that the final result of aggregation
can take into account all the individual contributions [9].
Currently, at least 90 different families of aggregation
operators have been studied [9]–[19]. Amongst them, the
Ordered Weighted Averaging (OWA) operator proposed
by Yager [18] is one of the most widely used, with
many successful applications achieved in areas such as:
decision making [6], [8], [12], [21], [22], fuzzy control
[23], [24], market analysis [25], image compression [26].
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However, the majority of the existing aggregation op-
erators, including the OWA one, focus exclusively on
aggregating crisp numbers. As a matter of fact, inherent
subjectivity, imprecision and vagueness in the articu-
lation of opinions in real world decision applications
make human experts exhibit remarkable capability to
manipulate perceptions without any measurements [20].
In these cases, the use of linguistic terms instead of
precise numerical values seems to be more adequate in
dealing with vague or imprecise information or to ex-
press experts’ opinions on qualitative aspects that cannot
be assessed by means of quantitative values [6], [21].
Thus, techniques for aggregating uncertain information
rather than precise crisp values are in high demand,
which motivated us to suggest a new OWA operator,
called type-1 OWA operator [27]. The type-1 OWA operator
is able to aggregate linguistic terms represented as fuzzy
sets via OWA mechanism, and a Direct Approach has
been suggested to perform type-1 OWA operation [27].
Interestingly, some well-known existing aggregation op-
erators, such as Yager’s OWA operator, the join and the
meet operators of fuzzy sets [41], [42] are special cases of
this type-1 OWA operator [28].

Different ways of aggregating linguistic assessments,
including the ones that follow the way of fuzzifying
Yager’s OWA operators, have been proposed in litera-
ture [13], [21], [29]–[35]. A detailed review of the state-
of-the-art research in this topic can be found in [27]
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and [28]. The type-1 OWA operator is different from
these existing methods. For example, an approach to
OWA aggregation with interval weights and interval
inputs was suggested in [32], in which two definitions
of aggregating interval arguments with interval weights
based on the rank of intervals via probabilistic measures
were given. However, different probabilistic distribu-
tions could lead to different re-orderings of the inputs
and consequently different outputs could be derived
using this approach. Ahn’s method focused on the use
of the uniform distribution, although no evidence is
provided to support that this type of distribution should
always be used [32]. The type-1 OWA operator does not
suffer from the aforementioned drawback as it is defined
according to Zadeh’s Extension Principle, only the issues
of reordering of crisp values are involved and therefore it
avoids dealing with the ranking of fuzzy sets/intervals.
Moreover, in this paper, we propose an α-level type-1
OWA operator and prove that the Alpha-Level Approach
can lead to its equivalence one obtained by the Extension
Principle. There is no evidence to support that Ahn’s
method has such property.

To the best of our knowledge, the research work by
Mitchell and Schaefer [33], and the research on fuzzified
Choquet integral [34], [35] may be the most relevant to
our research on type-1 OWA operators. Mitchell and
Schaefer also applied Zadeh’s Extension Principle to
Yager’s OWA operator, but their approach focused on
the ordering of fuzzy sets during the aggregation pro-
cess. The type-1 OWA operator avoids ordering fuzzy
sets. The Yager’s OWA operator is treated as a non-
linear function and is fuzzified to the case of having
fuzzy sets as inputs in a type-1 OWA operator. As for
the research on fuzzified Choquet integrals, the existing
approaches only consider the aggregation of fuzzy sets
with crisp weights, while the type-1 OWA operator is
able to aggregate fuzzy sets with fuzzy weights as well.

Another widely investigated fuzzified aggregation op-
erators, the fuzzy weighted averaging (FWA) operators
[36]–[38], can also be applied to the aggregation of fuzzy
sets with fuzzy weights. Noteworthily, Yager’s OWA
operator is a non-linear aggregation operator, while the
weighted averaging operator is linear. Therefore, the
type-1 OWA operator is significantly different from the
FWA operator [27], [28].

However, the Direct Approach to performing type-1
OWA operation suggested in [27] involves high com-
putational load, which inevitably curtails further ap-
plications of the type-1 OWA operator to real world
decision making. This paper focuses on how to achieve
a high computing efficiency in performing type-1 OWA
operations for aggregating uncertain information with
uncertain weights, where these uncertain objects are
modelled by fuzzy sets. To this end, the α-level type-
1 OWA operator is defined using the α-cuts of fuzzy
sets. Moreover, a fast approach to type-1 OWA operation,
called Alpha-Level Approach, with detailed theoretical
analyses is addressed. Promisingly, the complexity of

this Alpha-Level Approach is of linear order, so it can be
used in real time soft decision making, database integra-
tion and information fusion that involve aggregation of
uncertain information.

This paper is organised as follows. Section 2 describes
the definition of α-level type-1 OWA operator. Section 3
proposes the fast approach to implementing the type-1
OWA operation. The complexity of the Direct Approach
and the fast Alpha-Level Approach are analysed in Section
4. Section 5 extensively evaluates the computing effi-
ciency of the proposed approach including a practical
application of type-1 OWA operators to breast cancer
treatments. Finally, conclusions and discussion are pre-
sented in Section 6.

2 DEFINITION OF TYPE-1 OWA OPERATORS

BASED ON α-CUTS OF FUZZY SETS

As a generalisation of Yager’s OWA operator and based
on Zadeh’s Extension Principle, the type-1 OWA oper-
ator is defined to aggregate uncertain information with
uncertain weights, when both are modelled as fuzzy sets.

First, let F (X) be the set of fuzzy sets with domain
of discourse X , a type-1 OWA operator is defined as
follows [27], [28]:

Definition 1. Given n linguistic weights
{

W i
}n

i=1
in the

form of fuzzy sets defined on the domain of discourse U =
[0, 1], a type-1 OWA operator is a mapping, Φ,

Φ: F (X)× · · · × F (X) −→ F (X)
(A1, · · · , An) 7→ Y

(1)

such that

µY (y) = sup
n

∑

k=1

w̄iaσ(i) = y

wi ∈ U, ai ∈ X

(

µW 1(w1) ∧ · · · ∧ µW n(wn)
∧µA1(a1) ∧ · · · ∧ µAn(an)

)

(2)
where w̄i = wi

∑

n

i=1 wi

, and σ : {1, · · · , n} −→ {1, · · · , n}

is a permutation function such that aσ(i) ≥ aσ(i+1), ∀i =
1, · · · , n − 1, i.e., aσ(i) is the ith highest element in the set
{a1, · · · , an}.

From the above definition, it can be seen that the
aggregation result Φ

(

A1, · · · , An
)

= Y ∈ F (X) is a fuzzy
set defined on X . However, implementation of type-1
OWA operation in aggregating a group of fuzzy sets
is not straight forward and easy. A Direct Approach to
performing type-1 OWA operation has been suggested
in [27], but it involves high computational load.

In the interests of improving computing efficiency of
type-1 OWA aggregation, in this section we describe an
alternative way of defining type-1 OWA operators based
on α-cuts of fuzzy sets. To do this, we first introduce the
concept of the α-level type-1 OWA operator guided by
α-cuts of fuzzy weights:



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2009 3

Definition 2. Given the n linguistic weights
{

W i
}n

i=1
in

the form of fuzzy sets defined on the domain of discourse U =
[0, 1], then for each α ∈ [0, 1], an α-level type-1 OWA
operator with α-level sets

{

W i
α

}n

i=1
to aggregate the α-cuts

of fuzzy sets
{

Ai
}n

i=1
is given as

Φα

(

A1
α, · · · , An

α

)

=






n
∑

i=1
wiaσ(i)

n
∑

i=1

wi

∣

∣wi ∈W i
α, ai ∈ Ai

α, i = 1, · · · , n







(3)

where W i
α = {w|µWi

(w) ≥ α}, Ai
α = {x|µAi

(x) ≥ α}, and
σ : { 1, · · · , n } → { 1, · · · , n } is a permutation function
such that aσ(i) ≥ aσ(i+1), ∀ i = 1, · · · , n − 1, i.e., aσ(i) is
the ith largest element in the set {a1, · · · , an}.

According to the Representation Theorem of fuzzy set
[40], the α-level sets Φα

(

A1
α, · · · , An

α

)

obtained via Def-
inition 2 can be used to construct the following fuzzy
set

G = ∪
0≤α≤1

αΦα

(

A1
α, · · · , An

α

)

(4)

with membership function

µG(x) = ∨
α:x∈Φα(A1

α
,··· ,An

α
)
α

α (5)

From the above definition, it can be seen that the aim
of the α-level type-1 OWA operator is to aggregate the
α-cuts of fuzzy sets

{

Ai
}n

i=1
with the α-cuts of fuzzy

set weights
{

W i
}n

i=1
. Given the fact that the α-cuts of

fuzzy numbers (i.e., normal and convex fuzzy sets on
the domain of real numbers R) are intervals, the α-
level type-1 OWA operator actually provides a way of
aggregating uncertain arguments with uncertain weights
to some extent as Ahn’s method did [32]. However,
we proceed further to aggregate uncertain information
modelled by fuzzy sets.

First, the two apparently different aggregation opera-
tors in (2) and (5), defined according to Zadeh’s Exten-
sion Principle and the α-cut of fuzzy sets respectively,
are equivalent as it is proved in the following:

Theorem 1. Given the n linguistic weights
{

W i
}n

i=1
in the

form of fuzzy sets defined on the domain of discourse U =
[0, 1], and the fuzzy sets A1, · · · , An, then we have that

Y = G

where Y is the aggregation result defined in (2) and G is the
result defined in (4).

Proof:
We need to prove that for any fuzzy sets A1, · · · , An

and α ∈ [0, 1],

Yα = Φα

(

A1
α, · · · , An

α

)

To prove Yα ⊆ Φα

(

A1
α, · · · , An

α

)

, we note that ∀y ∈
Yα, there exist w1, · · · , wn ∈ U , and a1, · · · , an ∈ X

such that y =
n
∑

i=1

w̄iaσ(i), where w̄i = wi
∑

n

i=1 wi

, and

α ≤ µW 1(w1) ∧ · · · ∧ µW n(wn) ∧ µA1(a1) ∧ · · · ∧ µAn(an).

Thus, we have that α ≤ µW i(wi) and α ≤ µAi(ai)
∀i, i.e wi ∈ W i

α, ai ∈ Ai
α, i = 1, · · · , n. As a result,

y ∈ Φα

(

A1
α, · · · , An

α

)

according to Definition 2.
To prove that Φα

(

A1
α, · · · , An

α

)

⊆ Yα, we note that ∀y ∈
Φα

(

A1
α, · · · , An

α

)

, there exist ŵ1 ∈W i
α, · · · , ŵn ∈Wn

α and

â1 ∈ A1
α, · · · , ân ∈ An

α such that y =
n
∑

i=1

ˆ̄wiâσ(i), where

ˆ̄wi = ŵi
∑

n

i=1 ŵi

. Because α ≤ µW i(ŵi) and α ≤ µAi(âi) ∀i,

then

α ≤ µW 1(ŵ1) ∧ · · · ∧ µW n(ŵn) ∧ µA1(â1) ∧ · · · ∧ µAn(ân)

As a result

α ≤ sup
n

∑

k=1

w̄iaσ(i) = y

wi ∈ U
ai ∈ X

(

µW 1(w1) ∧ · · · ∧ µW n(wn)
∧µA1(a1) ∧ · · · ∧ µAn(an)

)

= µY (y)

Hence, y ∈ Yα.
Theorem 1 is called the Representation Theorem of type-

1 OWA operators. According to this Representation The-
orem, type-1 OWA operators can be decomposed into a
series of α-level type-1 OWA operators. It provides an
effective tool for performing type-1 OWA operations.

It is noted that in fuzzy sets based soft decision mak-
ing, linguistic terms are commonly modelled by fuzzy
numbers. In what follows, we will focus on these type
of fuzzy sets, unless otherwise stated.

When the linguistic weights and the aggregated ob-
jects are fuzzy number, the α-level type-1 OWA opera-
tor produces closed intervals, as the following theorem
states:

Theorem 2. Let
{

W i
}n

i=1
be fuzzy numbers on U = [0, 1]

and
{

Ai
}n

i=1
be fuzzy numbers on R. Then for each α ∈ [0, 1],

Φα

(

A1
α, · · · , An

α

)

is a closed interval.

Proof: Firstly, we have that

y(w1, · · · , wn, a1, · · · , an) =

n
∑

i=1

wiaσ(i)

n
∑

i=1

wi

is a continuous function of w1, · · · , wn, a1, · · · , an. Be-
cause

aσ(1) ≥

n
∑

i=1

wiaσ(i)

n
∑

i=1

wi

≥ aσ(n)

we have that y(w1, · · · , wn, a1, · · · , an) is also a bounded
function.

Secondly, because
{

W i
}n

i=1
and

{

Ai
}n

i=1
are fuzzy

numbers on U = [0, 1], their α−level sets are of the form
W i

α = [W i
α−,W i

α+], Ai
α = [Ai

α−, Ai
α+] (i = 1, · · · , n), and

therefore compact sets of R (closed and bounded). The
Cartesian product of W i

α and Ai
α is a compact subset

of R
2n. Function y(w1, · · · , wn, a1, · · · , an) is continuous
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and therefore the image of the Cartesian product of W i
α

and Ai
α is also a compact subset of R.

It is well known that a closed interval of R is a con-
nected set, and that the Cartesian product of two closed
intervals of R is a connected set of R

2. Consequently, the
Cartesian product of W i

α and Ai
α is a connected subset

of R
2n. As a result, the image of the Cartesian product

of W i
α and Ai

α is a connected subset of R. Because the
only connected subsets of R are intervals, we conclude
that the image of the Cartesian product of W i

α and Ai
α

by the continuous function y(w1, · · · , wn, a1, · · · , an) is a
closed interval [39]. Hence Φα

(

A1
α, · · · , An

α

)

is a closed
interval.

Based on this theorem, the computation of the type-
1 OWA output according to (4), G, reduces to compute
the left end-points and right end-points of the intervals
Φα

(

A1
α, · · · , An

α

)

:

Φα

(

A1
α, · · · , An

α

)

−
and Φα

(

A1
α, · · · , An

α

)

+
,

where Ai
α = [Ai

α−, Ai
α+],W i

α = [W i
α−,W i

α+].
For the left end-points, we have

Φα

(

A1
α, · · · , An

α

)

−
=

min
W i

α− ≤ wi ≤W i
α+

Ai
α− ≤ ai ≤ Ai

α+

n
∑

i=1

wiaσ(i)/
n
∑

i=1

wi (6)

while for the right end-points, we have

Φα

(

A1
α, · · · , An

α

)

+
=

max
W i

α− ≤ wi ≤W i
α+

Ai
α− ≤ ai ≤ Ai

α+

n
∑

i=1

wiaσ(i)/
n
∑

i=1

wi (7)

It can be seen that (6) and (7) are programming prob-
lems. In the next section, we will address how to solve
these problems so that the type-1 OWA aggregation
operation can be performed efficiently.

3 FAST IMPLEMENTATION OF TYPE-1 OWA
OPERATION

The objective of type-1 OWA operators is to aggregate
uncertain information modelled as fuzzy sets. In this
section, we propose a fast algorithm for type-1 OWA
operations, which can be used in real-time applications.
The idea behind this algorithm hails from the above α-
level type-1 OWA aggregations. For the type-1 OWA
operations, we only need to calculate all the necessary
α-level aggregations in (6) and (7), then based on the
Representation Theorem of fuzzy set, the final aggrega-
tion result can be constructed as shown in (4). This fast
algorithm is called the Alpha-Level Approach in this paper.

First in the following lemma, we list some basic in-
equalities as described in some textbooks that will be
used later in the paper.

Lemma 1. 1) For a ≥ 0, c ≥ 0, if b
a
≥ d

c
, then

b

a
≥

b + d

a + c
≥

d

c

2) If a ≥ c, b
a
≥ d

c
, then

b− d

a− c
≥

b

a

3) If a ≥ c, b
a
≤ d

c
, then

b− d

a− c
≤

b

a

Note that for the left end-points in (6), the function

f (wi, ai) =
n

∑

i=1

wiaσ(i)/
n

∑

i=1

wi (8)

is a monotonically non-decreasing function of ai. So

Φα

(

A1
α, · · · , An

α

)

−
= min

W i

α−
≤wi≤W i

α+

n
∑

i=1

wiA
σ(i)
α− /

n
∑

i=1

wi

= min
W i

α−
≤wi≤W i

α+

h (w1, · · · , wn)

(9)

where A
σ(1)
α− ≥ · · · ≥ A

σ(n)
α− , and

h (w1, · · · , wn) =

n
∑

i=1

wiA
σ(i)
α−

n
∑

i=1

wi

(10)

Now we construct a new function of end-points of
intervals W i

α as follows,

ρi0
α−

∆
=

i0−1
∑

i=1

W i
α−A

σ(i)
α− +

n
∑

i=i0

W i
α+A

σ(i)
α−

Ji0

(11)

where

Ji0

∆
=

i0−1
∑

i=1

W i
α− +

n
∑

i=i0

W i
α+ (12)

In particular, we have

ρ1
α−

∆
=

n
∑

i=1

W i
α+A

σ(i)
α−

J1
(13)

where

J1
∆
=

n
∑

i=1

W i
α+ (14)

Then we have the following theorem:

Theorem 3. 1) If ρi0
α− ≥ A

σ(i0)
α− , then

ρi0+1
α− ≥ ρi0

α− ≥ A
σ(i0)
α−

2) If ρi0
α− ≤ A

σ(i0)
α− , then

A
σ(i0)
α− ≥ ρi0

α− ≥ ρi0+1
α−

Proof: Denoting

E =

i0−1
∑

i=1

W i
α−A

σ(i)
α−



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2009 5

and

F =
n

∑

i=i0

W i
α+A

σ(i)
α−

then

ρi0
α− =

E + F

Ji0

and

ρi0+1
α− =

E+W
i0
α−

A
σ(i0)
α−

+F−W
i0
α+A

σ(i0)
α−

Ji0
+(W

i0
α−

−W
i0
α+)

=
E+F−(W

i0
α+−W

i0
α−

)A
σ(i0)
α−

Ji0
−(W

i0
α+−W

i0
α−

)

Because
Ji0 ≥W i0

α+ ≥W i0
α+ −W i0

α−

then according to statements 2) and 3) in Lemma 1,
results 1) and 2) can be derived.

The solution to problem (9) and thus (6) is given in
the following theorem:

Theorem 4. Let i∗0 be the minimum number in {1, · · · , n}

satisfying ρ
i∗0
α− ≥ A

σ(i∗0)
α− , then ρ

i∗0
α− is the minimum of (9).

Proof: Starting with i0 = 1 we check the relation

between ρi0
α− and A

σ(i0)
α− until the first pair

{

ρ
i∗0
α−, A

σ(i∗0)
α−

}

satisfying ρ
i∗0
α− ≥ A

σ(i∗0)
α− is found. This search process is

guaranteed to produce such a first pair because

ρn
α− =

n−1
∑

i=1

W i
α−A

σ(i)
α− + Wn

α+A
σ(n)
α−

Ji0

≥ A
σ(n)
α−

Next we prove that ρ
i∗0
α− is the minimum of (9).

According to the above search process, for any j ∈

{1, · · · , i∗0 − 1} we have that ρj
α− ≤ A

σ(j)
α− . Theorem 3

implies that

ρ
i∗0
α− ≤ ρ

i∗0−1
α− ≤ · · · ≤ ρ2

α− ≤ ρ1
α−

On the other hand, the application of Theorem 3 to

ρ
i∗0
α− ≥ A

σ(i∗0)
α− leads to

ρ
i∗0+1
α− ≥ ρ

i∗0
α− ≥ A

σ(i∗0)
α−

Because A
σ(i∗0)
α− ≥ A

σ(i∗0+1)
α− then we have that ρ

i∗0+1
α− ≥

A
σ(i∗0+1)
α− , and therefore

ρ
i∗0+2
α− ≥ ρ

i∗0+1
α− ≥ A

σ(i∗0+1)
α−

Following a similar reasoning, we get

...

ρn
α− ≥ ρn−1

α− ≥ A
σ(n−1)
α−

So,
ρn

α− ≥ · · · ≥ ρ
i∗0+1
α− ≥ ρ

i∗0
α−

and therefore ρ
i∗0
α− is the minimum of {ρ1

α−, · · · , ρn
−}. In

the following, we prove the minimum of h (w1, · · · , wn)
is in the form of ρi0

α−.

Because

∂h(w1,··· ,wn)
∂wi

=
A

σ(i)
α−

(

n
∑

i=1
wi

)

−
n
∑

i=1
wiA

σ(i)
α−

(

n
∑

i=1
wi

)2

=
A

σ(i)
α−

−h(w1,··· ,wn)
n
∑

i=1

wi

(15)

so, if A
σ(i)
α− ≥ h (w1, · · · , wn), then ∂h(w1,··· ,wn)

∂wi

≥ 0, i.e., if

A
σ(i)
α− ≥ h (w1, · · · , wn), then h (w1, · · · , wn) is monoton-

ically non-decreasing on each one of its arguments wi.

As a result, A
σ(i)
α− ≥ h (w1, · · · , wn) leads to minimising

h (w1, · · · , wn) at W i
α− in the direction of wi, i.e.,

h
(

w1, · · · , wi−1,W
i
α−, wi+1, · · · , wn

)

≤ h (w1, · · · , wn) .

Similarly, A
σ(i)
α− ≤ h (w1, · · · , wn) leads to minimising

h (w1, · · · , wn) at W i
α+ in the direction of wi.

Assume that A
σ(i0−1)
α− ≥ h (w1, · · · , wn) ≥ A

σ(i0)
α− .

Because A
σ(1)
α− ≥ · · · ≥ A

σ(n)
α− , then h (w1, · · · , wn) reaches

its minimum at w1 = W 1
α−, · · · , wi0−1 = W i0−1

α− , wi0 =
W i0

α+, · · · , wn = Wn
α+, that is to say, the minimum of

h (w1, · · · , wn) can be expressed in the form of ρi0
α−.

Hence, ρ
i∗0
α− is the solution of (9).

For the right end-points, the monotonicity of function
(8) implies that

Φα

(

A1
α, · · · , An

α

)

+
= max

W i

α−
≤wi≤W i

α+

n
∑

i=1

wiA
σ(i)
α+ /

n
∑

i=1

wi

= max
W i

α−
≤wi≤W i

α+

g (w1, · · · , wn)

(16)
where A

σ(1)
α+ ≥ · · · ≥ A

σ(n)
α+ , and

g (w1, · · · , wn) =

n
∑

i=1

wiA
σ(i)
α+

n
∑

i=1

wi

(17)

In order to find the solution of (7) and (16), we
construct a new function of end-points of intervals W i

α

as follows,

ρi0
α+

∆
=

i0−1
∑

i=1

W i
α+A

σ(i)
α+ +

n
∑

i=i0

W i
α−A

σ(i)
α+

Hi0

(18)

where

Hi0

∆
=

i0−1
∑

i=1

W i
α+ +

n
∑

i=i0

W i
α− (19)

in particular,

ρ1
α+

∆
=

n
∑

i=1

W i
α−A

σ(i)
α+

H1
(20)

where

H1
∆
=

n
∑

i=1

W i
α− (21)

Then we have the following theorem:
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Theorem 5. 1) If ρi0
α+ ≥ A

σ(i0)
α+ , then

ρi0
α+ ≥ ρi0+1

α+ ≥ A
σ(i0)
α+

2) If ρi0
α+ ≤ A

σ(i0)
α+ , then

A
σ(i0)
α+ ≥ ρi0+1

α+ ≥ ρi0
α+

Proof: Let

C =

i0−1
∑

i=1

W i
α+A

σ(i)
α+

and

D =

n
∑

i=i0

W i
α−A

σ(i)
α+

then

ρi0
α+ =

C + D

Hi0

and

ρi0+1
α+ =

C+W
i0
α+A

σ(i0)
α+ +D−W

i0
α−

A
σ(i0)
α+

Hi0
+(W

i0
α+−W

i0
α−

)

=
C+D+(W

i0
α+−W

i0
α−

)A
σ(i0)
α+

Hi0
+(W

i0
α+−W

i0
α−

)

Because Hi0 ≥ 0, then according to the statement 1) in
Lemma 1, results 1) and 2) can be derived.

The solution to problems (7) and (16) is given in the
following theorem:

Theorem 6. Let i∗0 be the minimum number in {1, · · · , n}

satisfying ρ
i∗0
α+ ≥ A

σ(i∗0)
α+ , then ρ

i∗0
α+ is the maximum of (17),

and thus the solution of (7).

Proof: Starting with i0 = 1 we check the relation

between ρi0
α+ and A

σ(i0)
α+ until the first pair

{

ρ
i∗0
α+, A

σ(i∗0)
α+

}

satisfying ρ
i∗0
α+ ≥ A

σ(i∗0)
α+ is found. This search process is

guarantee to produce such a first pair because

ρn
α+ =

n−1
∑

i=1

W i
α+A

σ(i)
α+ + Wn

α−A
σ(n)
α+

Hi0

≥ A
σ(n)
α+

Next we prove ρ
i∗0
+ is the maximum of (17).

According to the above search process, for any j ∈

{1, · · · , i∗0 − 1}, we have that ρj
α+ ≤ A

σ(j)
α+ . Theorem 5

implies

ρj
α+ ≤ ρj+1

α+ ≤ A
σ(j)
α+

So
ρ1

α+ ≤ ρ2
α+ ≤ · · · ≤ ρ

i∗0
α+

On the other hand, the application of Theorem 5 to

ρ
i∗0
α+ ≥ A

σ(i∗0)
α+ leads to

ρ
i∗0
α+ ≥ ρ

i∗0+1
α+ ≥ A

σ(i∗0)
α+

Because A
σ(i∗0)
α+ ≥ A

σ(i∗0+1)
α+ then we have that ρ

i∗0+1
α+ ≥

A
σ(i∗0+1)
α+ , and therefore

ρ
i∗0+1
α+ ≥ ρ

i∗0+2
α+ ≥ A

σ(i∗0+1)
α+

Following a similar reasoning, we get

...

ρn−1
α+ ≥ ρn

α+ ≥ A
σ(n)
α+

So,
ρ

i∗0
α+ ≥ ρ

i∗0+1
α+ ≥ · · · ≥ ρn

+

and therefore ρ
i∗0
α+ is the maximum of {ρ1

α+, · · · , ρn
α+}. In

the following, we prove the maximum of g (w1, · · · , wn)
is in the form of (18).

An analysis of function g (w1, · · · , wn) similar to the
one applied to function h (w1, · · · , wn) in Theorem 3

produces the following: (i) If A
σ(i)
α+ ≥ g (w1, · · · , wn) then

function g (w1, · · · , wn) is monotonically non-decreasing
on each of its arguments,wi, and the maximum of
g (w1, · · · , wn) in the direction of wi is achieved at W i

α+ :

g
(

w1, · · · , wi−1,W
i
α+, wi+1, · · · , wn

)

≥ g (w1, · · · , wn) .

(ii) If A
σ(i)
α+ ≤ g (w1, · · · , wn) then function g (w1, · · · , wn)

is monotonically non-increasing on each of its argu-
ments, wi, and the maximum of g (w1, · · · , wn) in the
direction of wi is achieved at W i

α− :

g
(

w1, · · · , wi−1,W
i
α−, wi+1, · · · , wn

)

≥ g (w1, · · · , wn) .

Assume that A
σ(i0−1)
α+ ≥ g (w1, · · · , wn) ≥ A

σ(i0)
α+ . Because

A
σ(1)
α+ ≥ · · · ≥ A

σ(n)
α+ , then g (w1, · · · , wn) reaches the

maximum at w1 = W 1
α+, · · · , wi0−1 = W i0−1

α+ , wi0 =
W i0

α−, · · · , wn = Wn
α−, that is to say, this maximum can be

expressed in the form of (18). Hence ρ
i∗0
α+ is the maximum

of g (w1, · · · , wn), i.e. the solution of (7) and (16).
Theorem 4, Theorem 6, and their proofs actually in-

dicate the procedures for finding the values ρ
i∗0
α− and

ρ
i∗0
α+ respectively. Given n linguistic weights

{

W i
}n

i=1
,

the procedure to aggregate
{

Ai
}n

i=1
by a type-1 OWA

operator via the α-level aggregation scheme is given
in Figure 1, in which the α values are required to
cover all the available membership grades {µW i(wi)}
and {µAi(ai)}.

Example 1. Assume the following numerical domains U =
{0.0, 0.5, 1.0} and X = {0.0, 1.0, 2.0}. Let the given linguis-

tic weights W =

(

ui

µW (ui)

)

ui∈U

on U be

W 1 =

(

0.0 0.5 1.0
1.0 0.5 0.0

)

; W 2 =

(

0.0 0.5 1.0
0.0 1.0 0.0

)

;

W 3 =

(

0.0 0.5 1.0
0.0 0.5 1.0

)

and the aggregated objects on X be

A1 =

(

0.0 1.0 2.0
0.0 0.5 1.0

)

; A2 =

(

0.0 1.0 2.0
1.0 0.5 0.0

)

;

A3 =

(

0.0 1.0 2.0
0.0 1.0 0.0

)

To calculate the α-cuts of W i and Ai(i = 1, 2, 3), the
following set of α values will be used: {0, 0.5, 1.0}. We use
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Step 1. To set up the α- level resolution in [0, 1].
Step 2. For each α ∈ [0, 1],

Step 2.1. To calculate ρ
i∗0
α+

1) Let i0 = 1;
2) If ρi0

α+ ≥ A
σ(i0)
α+ , stop, ρi0

α+ is the solution; otherwise go to Step 2.1-3.
3) i0 ← i0 + 1, go to Step 2.1-2.

Step 2.2. To calculate ρ
i∗0
α−

1) Let i0 = 1;
2) If ρi0

α− ≥ A
σ(i0)
α− , stop, ρi0

α− is the solution; otherwise go to Step 2.2-3.
3) i0 ← i0 + 1, go to step Step 2.2-2.

Step 3. To construct the aggregation resulting fuzzy set G based on all the available intervals
[

ρ
i∗0
α−, ρ

i∗0
α+

]

:

µG(x) = ∨
α:x∈

[

ρ
i
∗

0
α−

, ρ
i
∗

0
α+

]

α

Fig. 1: Procedure of the Alpha-Level Approach to type-1 OWA operation

the type-1 OWA operator ΦW 1,W 2,W 3 to aggregate the sets
A1, A2, A3 according to the procedure in Figure 1:

G = ΦW 1,W 2,W 3(A1, A2, A3)

So, we need to get the α-levels of G at α = 0, 0.5 and 1.0
respectively.
Case I. α = 0.0

Obviously, the α-levels of Ai and W i(i = 1, 2, 3) are

A1
α = A2

α = A3
α = {0.0, 1.0, 2.0}

and
W 1

α = W 2
α = W 3

α = {0.0, 0.5, 1.0} ,

respectively. Thus, we have

A1
α− = A3

α− = A3
α− = 0.0,

A1
α+ = A2

α+ = A3
α+ = 2.0;

W 1
α− = W 2

α− = W 3
α− = 0.0,

W 1
α+ = W 2

α+ = W 3
α+ = 1.0

• Computation of ρ
i∗0
α−.

Because A1
α− = A2

α− = A3
α−, the permutation operator

is σ = (1, 2, 3). Then

1) i0 = 1. According to the equation (13), we have

ρi0
α− =

W 1
α+A

σ(1)
α−

+W 2
α+A

σ(2)
α−

+W 3
α+A

σ(3)
α−

W 1
α++W 2

α++W 3
α+

= 0.0

≥ A
σ(i0)
α−

= A1
α−

So, we get ρ
i∗0
α− = 0.0.

• Computation of ρ
i∗0
α+.

Because A1
α+ = A2

α+ = A3
α+, the permutation operator

is σ = (1, 2, 3). Then

1) i0 = 1. According to the equation (20), we have

ρi0
α+ =

W 1
α−

A
σ(1)
α+ +W 2

α−
A

σ(2)
α+ +W 3

α−
A

σ(3)
α+

W 1
α−

+W 2
α−

+W 3
α−

= 0.0

< A
σ(i0)
α+

= A1
α+

So, we should continue this procedure by letting i0 =
2.

2) i0 = 2. According to the equation (18), we have

ρi0
α+ =

W 1
α+A

σ(1)
α+ +W 2

α−
A

σ(2)
α+ +W 3

α−
A

σ(3)
α+

W 1
α++W 2

α−
+W 3

α−

= 1.0×2.0+0.0×2.0+0.0×2.0
1.0+0.0+0.0

= 2.0

≥ A
σ(i0)
α+

= A2
α+

So, we get ρ
i∗0
α+ = 2.0. As a result, Gα = [0.0, 2.0]∩X =

{0.0, 1.0, 2.0}.

Case II. α = 0.5
The α-levels of Ai and W i(i = 1, 2, 3) are

A1
α = {1.0, 2.0} , A2

α = {0.0, 1.0} , A3
α = {1.0}

and

W 1
α = {0.0, 0.5} ,W 2

α = {0.5} ,W 3
α = {0.5, 1.0} ,

respectively. Thus, we have

A1
α− = 1.0, A1

α+ = 2.0;

A2
α− = 0.0, A2

α+ = 1.0;

A3
α− = 1.0, A3

α+ = 1.0;

and
W 1

α− = 0.0,W 1
α+ = 0.5;

W 2
α− = 0.5,W 2

α+ = 0.5;



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2009 8

W 3
α− = 0.5,W 3

α+ = 1.0

• Computation of ρ
i∗0
α−.

Because A1
α− ≥ A3

α− ≥ A2
α−, the permutation operator

is σ = (1, 3, 2). Then

1) i0 = 1. According to the equation (13), we have

ρi0
α− =

W 1
α+A

σ(1)
α−

+W 2
α+A

σ(2)
α−

+W 3
α+A

σ(3)
α−

W 1
α++W 2

α++W 3
α+

= 0.5×1.0+0.5×1.0+1.0×0.0
0.5+0.5+1.0

= 0.5

< A
σ(i0)
α−

= A1
α−

So, we should continue this procedure by letting i0 =
2.

2) i0 = 2. According to the equation (11), we have

ρi0
α− =

W 1
α−

A
σ(1)
α−

+W 2
α+A

σ(2)
α−

+W 3
α+A

σ(3)
α−

W 1
α−

+W 2
α++W 3

α+

= 0.0×1.0+0.5×1.0+1.0×0.0
0.0+0.5+1.0

= 1
3

< A
σ(i0)
α−

= A3
α−

So, we should continue this procedure by letting i0 =
3.

3) i0 = 3. According to the equation (11), we have

ρi0
α− =

W 1
α−

A
σ(1)
α−

+W 2
α−

A
σ(2)
α−

+W 3
α+A

σ(3)
α−

W 1
α−

+W 2
α−

+W 3
α+

= 0.0×1.0+0.5×1.0+1.0×0.0
0.0+0.5+1.0

= 1
3

> A
σ(i0)
α−

= A2
α−

So, we get ρ
i∗0
α− = 1

3 .

• Computation of ρ
i∗0
α+.

Because A1
α+ > A2

α+ ≥ A3
α+, the permutation operator

is σ = (1, 2, 3). Then

1) i0 = 1. According to the equation (20), we have

ρi0
α+ =

W 1
α−

A
σ(1)
α+ +W 2

α−
A

σ(2)
α+ +W 3

α−
A

σ(3)
α+

W 1
α−

+W 2
α−

+W 3
α−

= 0.0×2.0+0.5×1.0+0.5×1.0
0.0+0.5+0.5

= 1.0

< A
σ(i0)
α+

= A1
α+

So, we should continue this procedure by letting i0 =
2.

2) i0 = 2. According to the equation (18), we have

ρi0
α+ =

W 1
α+A

σ(1)
α+ +W 2

α−
A

σ(2)
α+ +W 3

α−
A

σ(3)
α+

W 1
α++W 2

α−
+W 3

α−

= 0.5×2.0+0.5×1.0+0.5×1.0
0.5+0.5+0.5

= 4
3

≥ A
σ(i0)
α+

= A2
α+

So, we get ρ
i∗0
α+ = 4

3 . As a result, Gα =
[

1
3 , 4

3

]

∩ X =
{1.0}.

Case III. α = 1.0
The α-levels of Ai and W i(i = 1, 2, 3) are

A1
α = {2.0} , A2

α = {0.0} , A3
α = {1.0}

and
W 1

α = {0.0} ,W 2
α = {0.5} ,W 3

α = {1.0} ,

respectively. Thus, we have

A1
α− = A1

α+ = 2.0;

A2
α− = A2

α+ = 0.0;

A3
α− = A3

α+ = 1.0;

and
W 1

α− = W 1
α+ = 0.0;

W 2
α− = W 2

α+ = 0.5;

W 3
α− = W 3

α+ = 1.0

Following a similar computation process as in the two previous

cases, we get ρ
i∗0
α− = ρ

i∗0
α+ = 1

3 . As a result, Gα =
{

1
3

}

∩X =
∅.

Now we proceed to compute the membership grades of G
according to the equation (5):

µG(0) = ∨
α:0.0∈Gα

α = 0.0

µG(1.0) = ∨
α:1.0∈Gα

α = 0.0 ∨ 0.5 = 0.5

µG(2.0) = ∨
α:2.0∈Gα

α = 0.0

Hence, the result of aggregating the fuzzy sets A1, A2, A3 by
the type-1 OWA operator ΦW 1,W 2,W 3 is

G =

(

0.0 1.0 2.0
0.0 0.5 0.0

)

.

4 COMPLEXITY ANALYSES OF THE Direct Ap-
proach AND THE PROPOSED Alpha-Level Ap-
proach TO TYPE-1 OWA OPERATIONS

Given n fuzzy set
{

Ai
}n

i=1
to be aggregated by a type-

1 OWA operator associated with n uncertain weights
{

W i
}n

i=1
, in this section we analyse the complexity of the

Direct Approach [27] and Alpha-Level Approach to type-1
OWA operations, which was not addressed yet in [27].

In the Direct Approach, assume the domain U = [0, 1]
be discretised with nu points and the domain X with
nx points. For each combination of w1 ∈ U, · · · , wn ∈
U, a1 ∈ X, · · · , an ∈ X , the type-1 OWA aggregation in
the Direct Approach will involve 2(n − 1) additions, n
multiplications, 1 division, 2n−1 t-norm operations and
1 maximum operation. Hence the total operations for
each combination of w1, · · · , wn, a1, · · · , an is

2(n− 1) + n + 1 + 2n− 1 + 1 = 5n− 1 (22)

Then (nu)n(nx)n combinations of w1, · · · , wn, a1, · · · , an

lead to the number of operations involved in a Direct
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Approach to type-1 OWA operator to aggregate
{

Ai
}n

i=1
to be

(nunx)n (5n− 1) = O (Kn) (23)

where K is a constant. Hence the complexity of the Direct
Approach to type-1 OWA operation is in exponential
order.

In the proposed Alpha-Level Approach, assume the
number of α values in [0, 1] be nα, and the domain
X be discretised with nx points. For each α value, the
operations in each round of the total i∗0 involved in
the computation of each right end-point ρi0

α+ of an α-
cut include 2(n − 1) additions, n multiplications, and 1
division. So, the total number of operations to compute
the right end-point ρi0

α+ is

i∗0 (2(n− 1) + n + 1) = i∗0 (3n− 1) (24)

Similarly, the total number of operations to compute the
left end-point ρi0

α− is i
′

0 (3n− 1). Therefore, the computa-

tion of each α-cut

[

ρ
i
′

0
α−, ρ

i∗0
α+

]

involves
(

i∗0 + i
′

0

)

(3n− 1)

times of operations. Considering there exist nx (nα − 1)
operations to obtain the membership grades of the nx

points in X , the total number of operations involved in
the Alpha-Level Approach is

nα

(

i∗0 + i
′

0

)

(3n− 1) + nx (nα − 1) = O(n) (25)

That is to say, the complexity of the Alpha-Level Ap-
proach is in linear order. Hence the Alpha-Level Approach
achieves much higher computing efficiency than the
Direct Approach.

5 EXPERIMENTAL RESULTS

In this section, we first evaluate the computing efficiency
of the proposed scheme in comparison with the Direct
Approach [27], in which eight different kinds of type-
1 OWA operators are designed to aggregate a group
of fuzzy sets. Then we provide a practical example for
breast cancer treatment in which type-1 OWA operators
are used. In these examples, the proposed type-1 OWA
operators are compared with another widely investi-
gated aggregation operator, the FWA operator [36]–[38].

5.1 Evaluation of computing efficiency and compar-
isons with Direct Approach

As Yager’s OWA operators do, type-1 OWA opera-
tors also depend on the choices of linguistic weights
{

W i
}n

i=1
. By choosing appropriate uncertain weights

modelled as fuzzy sets, we can obtain a type-1 OWA
operator with desired properties. In this subsection, eight
different type-1 OWA operators are designed to aggre-
gate the fuzzy sets shown in Figure 2. These eight type-
1 OWA operators are the meet operator, two meet-like
operators, the join operator, two join-like operators, the
mean operator, and a mean-like operator.

The meet and join operators of fuzzy sets were pro-
posed by Zadeh [41] and named in [42]. Interestingly, as
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Fig. 2: Three aggregated fuzzy sets (from left to right):
A1, A2 and A3

indicated in [27] and [28], the meet and join operations
of fuzzy sets can be performed by type-1 OWA operators
with singleton weights. For example, a type-1 OWA
operator of dimension 3 becomes a meet operator if the
following singleton weights are used: W i = 0̇ (i 6= 3),
W 3 = 1̇ , i.e.,

µW 3(w) =

{

1 w = 1
0 others

(26)

µW i(w) =

{

1 w = 0
0 others

(i 6= 3) (27)

whilst the singleton weights W i = 0̇ (i 6= 1), W 1 = 1̇
make the type-1 OWA operator into a join operator.
As a matter of fact, the meet of fuzzy sets yields the
fuzzified minimum whilst the join of fuzzy sets yields
the fuzzified maximum [27].

The traditional mean operator is a particular type of
Yager’s OWA operator with weights all equal to 1/n.
Therefore, the type-1 OWA operator with all weights in

the form of singleton fuzzy sets ˙1/n

µG(y) = sup

1
n

n
∑

i=1

ai = y

ai ∈ X

µA1
(a1) ∗ · · · ∗ µAn

(an) (28)

can be seen as an extended mean operation on fuzzy sets
[27], [28].

Meet-like type-1 OWA (MLT1OWA) operators [27],
[28] can be obtained by selecting appropriate linguistic
weights: the last linguistic weight is to approach to the
singleton fuzzy set 1̇, and the rest of linguistic weights
are to approach to the singleton fuzzy set 0̇ in turn.
The MLT1OWA operator of dimension 3 with linguistic
weights W 1 = W 2 = L0, W 3 = L1 depicted in Figure 3
is denoted as MLT1OWA 1. Figure 4 shows linguistic

weights
{

W i
}3

i=1
that guide another meet-like type-1

OWA operation, which is denoted as MLT1OWA2.
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Fig. 3: Linguistic weights
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Fig. 4: Linguistic weights for MLT1OWA2 (from left to
right): W 1, W 2, and W 3

Join-like type-1 OWA (JLT1OWA) operators can also
be obtained by selecting appropriate linguistic weights
[27], [28]. Indeed, this is the case when the first linguistic
weight is close to the singleton fuzzy set 1̇, and the rest
are close to the singleton fuzzy set 0̇ in turn. One exam-
ple of linguistic weights chosen for JLT1OWA operator
is to set W 1 = L1, W 2 = W 3 = L0, in which the L0 and
L1 are depicted in Figure 3. This JLT1OWA is denoted as
JLT1OWA1, whereas Figure 5 illustrates another case of
linguistic weights chosen for JLT1OWA operator, which
is denoted as JLT1OWA2.
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Fig. 5: Linguistic weights for JLT1OWA2 (from right to
left): W 1, W 2, and W 3

Mean-like type-1 OWA (MALT1OWA) operators can
be obtained by selecting the linguistic weights appro-
priately. For example, Figure 6 shows three linguistic
weights in the forms of triangular fuzzy numbers whose
cores locate at 1/3 as follows,

µW i(u) = max {0, min (3u, 2− 3u)} (29)
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Fig. 6: Linguistic weights with cores locating at 1/3: W i

(i = 1, 2,3)

After choosing the above associated weights respec-
tively, we can use the proposed Alpha-Level Approach to
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implement these eight type-1 OWA operators for aggre-
gating the fuzzy sets depicted in Figure 2, and compare
with the Direct Approach [27] in terms of computing
efficiency respectively. Table 1 shows the corresponding
time costs of the proposed Alpha-Level Approach and the
Direct Approach in completing these operations. It can be
seen that the computing efficiency achieved by the Alpha-
Level Approach is much higher than the one achieved by
the Direct Approach.

5.2 Comparisons of the type-1 OWA operators with
the FWA operators

In this subsection, we further compare type-1 OWA
operators using the proposed α-level approach with
FWA operators [36]–[38] in aggregating fuzzy sets. In
our experiments, the type-1 OWA operators and FWA
operators use the same uncertain weights to aggregate
the same groups of fuzzy sets, then we evaluate what
different aggregation results can be achieved.

In the first example, a FWA operator with linguistic
weights W 1,W 2 and W 3 being the fuzzy sets from
right to left given in Figure 5 is used to aggregate the
three fuzzy sets depicted in Figure 2. Figure 7 illustrates
the aggregation results obtained with the FWA and the
corresponding type-1 OWA operator for the same set of
weights, the JLT1OWA2 operator.

In the second example, Figure 9 shows the correspond-
ing aggregation results obtained using the FWA and
type-1 OWA operator associated with the same linguistic
weights depicted in Figure 8b to aggregate the same
group of fuzzy sets shown in Figure 8a.

From the above examples it can be seen that type-1
OWA operators and the FWA operators exhibit different
aggregation behaviours, which resembles the different
behaviours Yager’s OWA operators and the weighted
averaging operators have associated when data is crisp.

5.3 Type-1 OWA based fuzzy inferences for breast
cancer treatments

In this subsection, we further apply type-1 OWA opera-
tors to the aggregation of non-stationary fuzzy sets for
diagnoses of breast cancer patients.

Non-stationary fuzzy sets [43], [44] have been pro-
posed to model intra-expert variability and inter-expert
variability exhibited in multi-expert decision making,
in which the membership function of a non-stationary
fuzzy set may alter over time. As a result, given a prob-
lem, a non-stationary fuzzy system may generate differ-
ent output fuzzy sets in different runs [45]. This means
that some additional components become necessary be-
sides the commonly used in the standard fuzzy sys-
tem: fuzzifier, rule base, rule engine, defuzzifier. Among
them, an important additional component is to aggregate
these output sets into an overall one. In the following,
we use the type-1 OWA operator as uncertain operator
to aggregate the output sets, which leads to a type-1
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(a) FWA aggregation result
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(b) Type-1 OWA aggregation result

Fig. 7: Comparison of type-1 OWA operator with FWA
operator: solid lines represent aggregated fuzzy sets,
dashed line represents the aggregation results.

OWA based non-stationary fuzzy system (T1ONFS) as
depicted in Figure 10.

Generally speaking, the T1ONFS works as follows. In
each run, crisp input values first feed into the system
through the fuzzifier by which the fuzzification of these
inputs is carried out in a singleton or non-singleton way.
The fuzzified non-stationary fuzzy sets then activate the
inference engine and rule base to yield an output set
by performing the union and intersection operations of
fuzzy sets and compositions of relations. This process
repeats n times. So n output sets are generated. Then a
type-1 OWA operator is applied to these output sets to
generate an overall set. Finally, this overall fuzzy set is
defuzzified to produce a crisp output.

In our study towards the design of a non-stationary
fuzzy expert system for breast cancer treatments, 12
initial fuzzy rules are acquired [46] according to the
professional clinical guidelines provided by Nottingham
University Hospitals NHS Trust Breast Directorate, i.e.,
the fuzzy rule base is obtained from human experts’
knowledge, which is different from the scheme of in-



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2009 12

TABLE 1: Comparison of computing efficiency of Alpha-Level Approach and Direct Approach to type-1 OWA operations

Type-1 OWA operators Alpha-Level Approach Direct Approach
Meet 0.13 seconds 200.81 seconds
MELT1OWA1 0.16 seconds 8313.72 seconds
MELT1OWA2 0.16 seconds 10824.67 seconds
Join 0.13 seconds 208.61 seconds
JLT1OWA1 0.14 seconds 7671.46 seconds
JLT1OWA2 0.14 seconds 11270.19 seconds
Mean 0.12 seconds 52.75 seconds
MALT1OWA 0.17 seconds 11552.68 seconds

Fig. 10: Type-1 OWA based non-stationary fuzzy system

ducing fuzzy rules from a dataset [52]. These guide-
lines include various treatment decisions based on many
patients’ assessment results. In our study, 1310 breast
cancer cases are considered. Each cancer case is to be
diagnosed by the non-stationary fuzzy system that runs
10 times, then the diagnosis result is to be compared with
the doctor’s recommendations. The system performance
will be evaluated in terms of the rate of agreement with
the doctor’s judgments. Also, the proposed method will
further compare with the FWA operator.

In this study, we use the meet-like type-1 OWA oper-
ator with W 10 = L1, W i = L0 (i = 1, · · · , 9), as depicted
in Figure 3, to aggregate the 10 output sets for breast
cancer treatments. This meet-like type-1 OWA operator
is denoted as MLT1OWA3. Table 2 and Table 3 are the
confusion matrices of the agreements of the different ag-
gregation operators based non-stationary fuzzy systems
with doctor’s judgments, in which the MLT1OWA3 and
FWA based non-stationary fuzzy systems are used to
provide soft decision supports for breast cancer treat-
ments respectively. It can be seen that the non-stationary
fuzzy system with type-1 OWA operator MLT1OWA3
can achieve better performance. However, like in the case
of Yager’s OWA operator [47]–[51], the identification of
appropriate weights for type-1 operators is an important
research topic.

All computations in these experiments were carried
out using the R-software environment in version 2.4.0
[55]. The source codes of type-1 OWA operations in this
paper are available upon request.

TABLE 2: Confusion matrix obtained by MLT1OWA3
based fuzzy decision

Confusion Matrix
Clinician Decision
No Maybe Yes

Model Decision

No 79% 4.1% 14.6%
Maybe 0.2% 0.0% 0.0%
Yes 1.8% 0.0% 0.3%

TABLE 3: Confusion matrix obtained by FWA based
fuzzy decision

Confusion Matrix
Clinician Decision
No Maybe Yes

Model Decision

No 75% 3.8% 13.9%
Maybe 1.6% 0.0% 0.2%
Yes 4.5% 0.3% 0.8%

6 DISCUSSION AND CONCLUSIONS

This paper first defined the α-level type-1 OWA operator
to aggregate the α-cuts of fuzzy sets. The Representation
Theorem of type-1 OWA operators was proved. Accord-
ing to the Representation Theorem, type-1 OWA operators
can be decomposed into its α-level type-1 OWA oper-
ators, which led to the proposal and development of a
fast approach to implementing type-1 OWA operations.
Promisingly, the complexity of the Alpha-Level Approach
is in linear order, it can achieve much higher computing
efficiency in performing type-1 OWA operation than the
Direct Approach, and therefore it provides an efficient
way of aggregating uncertain information via OWA
mechanism in real time applications.

It is known that in Yager’s OWA aggregation, the
identification of appropriate OWA weights is a very
active research topic [47]–[51]. We have a similar issue in
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Fig. 8: (a)-Four aggregated fuzzy sets (from left to right):
A1, A2, A3 and A4; (b)-Four linguistic weights (from left
to right): W 1,W 2,W 3 and W 4

the case of the type-1 OWA operators, i.e., how to deter-
mine type-1 OWA weights to reflect the decision makers’
desired agenda for aggregating the criteria/preferences.
Type-2 linguistic quantifiers have been proposed for this
purpose [27], although further schemes are worth inves-
tigating for different situations. Other interesting issues
include the possibility of applying type-1 OWAs to the
merging of similar fuzzy sets for improving fuzzy model
interpretability/transparency and parsimony [52]–[54],
as well as their applications to multi-expert decision
making and multi-criteria decision making.
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Fig. 9: Comparison of type-1 OWA operator with FWA
operator: solid lines represent aggregated fuzzy sets,
dashed line represents the aggregation results.
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