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a b s t r a c t 

Chemical Vapor Deposition (CVD)-graphene has potentially been integrated with silicon (Si) substrates for devel- 

oping graphene/n-Si Schottky junction solar cells prepared with the top window structure. However, there are 

drawbacks to prepared devices such as complex silicon dioxide (SiO 2 )-etching steps, low fill factors and stability 

of doped devices. In this work, SiO 2 patterns are simply formed using a sputtering process rather than the previous 

complex method. Additionally, the fill factor for prepared devices is developed by using transferred residue-free 

multi-graphene layers. The usage of 3 graphene layers improves the power conversion efficiency ( PCE ) to 7.1%. 

A recorded PCE of around 17% with a fill factor of 74% is achieved by the HNO 3 dopant. To overcome the issue 

of stability, Poly(methyl methacrylate) as an encapsulated layer is introduced. Hence, the doped devices show 

great stability for storage in air for 2 weeks, and devices recovered about 95% of their efficiency. This work shows 

that the developed fabrication process is suitable to develop simple, low cost, stable and efficient graphene/Si 

Schottky solar cells. 
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. Introduction 

Due to the attractive characteristics of graphene, it has been used

o prepare graphene devices such as solar cells [1] . Several structures

ave been developed to develop graphene/n-silicon (Si) Schottky junc-

ion solar cells [2–4] . One of those structures is the top-window struc-

ure [2] , which has been widely reported for the fabrication process.

n this structure, Si samples are thermally oxidized SiO 2 layer and fol-

owed by selective corrosion of silicon dioxide (SiO 2 ) through the com-

lex wet-etching process using a buffered oxide etch (BOE), leading

o obtaining a patterned square window for the Schottky junction [5] .

owever, the complex wet-etching process for that essentially increases

he cost and complexity of preparing devices. To form the contact of

raphene, a SiO 2 is coated with gold (Au) using the thermal evaporation

ethod [3] . However, this method is costly, and the manufacturing pro-

ess of that will be more expensive. The efficiency of devices has been

mproved by using several approaches. For example, chemical doping

as applied to increase the built in potential and the Schottky barrier

eight. This improved the efficiency of doped-graphene/Si solar cells to

round 10% [ 3 , 6 , 7 ]. By using the optimal oxide thickness for Si sub-

trates and antireflection techniques (ARC), the performance of doped

evices has further been improved to about 15% [8] . However, the per-
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ormance of devices reduces with time. It has also been reported that

oped devices will have non-ideal (s-shape) in Current-Voltage Charac-

eristic ( J-V ) curves with time [ 2 , 4 , 9–18 ]. These disadvantages are due

o the evaporation of dopants with time [ 17 , 19 ]. This shows that this

pproach is not the right for achieving efficient and stable devices. In ad-

ition, the Poly(methyl methacrylate) (PMMA) residue also causes the

-shape and results in poor performance of devices prepared using mono-

ayer graphene [ 4 , 18 , 20 , 21 ]. In our previous work, it also confirms the

MMA residue traps electrons, and the DUV procedure was involved to

liminate the residue of graphene transferred with a PMMA concentra-

ion of 10 mg/ml [4] . This also shows that transferring multi-graphene

ayers (MGLs), which form the junction, will cause serious effects on

raphene/n-Si devices since the amount of residue will be higher in this

ase. Based on the above discussion, it can be noticed that graphene/n-

i Schottky junction solar cells are still in need of extra development to

e compared with stable, efficient and commercial silicon solar cells. 

Herein, we develop and simplify the fabrication process of devices.

GLs are also successfully introduced within the preparation process

o additional advance the performance of devices after eliminating the

esidue of PMMA by using the combination of DUV treatment along with

orming gas. The doping process using HNO 3 is efficiently engaged to

chieve efficient and stable devices under air conditions. 
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. Materials and methods 

.1. Device fabrication 

Si samples were firstly occupied in the KOH solution with a concen-

ration of 25 wt% for 2 min to eliminate the saw damage. After that,

n RCA procedure was introduced to for getting rid of contaminations

f the metal ion. Then, Si samples were occupied in a 2% HF solution

or 30 s to eliminate the native oxide. To achieve the passivation pro-

ess, samples were left under the ambient air for 2 h [ 8 , 22 , 23 ]. By using

 sputtering technique at 10 − 7 Torr along with conventional lithogra-

hy, substrates were coated with SiO 2 /Cr/Au layers, those layers will

orm the required window as shown in Figs. S1b, S1c and S1d. To form

he Schottky junction, a 3.3 × 3.3 mm 

2 area of monolayer graphene sup-
ig. 1. Raman spectra of transferred graphene onto SiO 2 /Si samples treated 

ith acetone, forming gas and combination processes. 

ig. 2. J-V characteristics of graphene/Si Schottky solar cells that are processed 

ith and without the combination process. 

Fig. 3. (a) J-V curves of graphene/n-Si Schottky junction solar cells prepared 

with a different number of graphene layers. (b) and (c) Developments of photo- 

voltaic factors of devices processed with a different number of graphene layers. 

p  

t  

w  

o  

f  

r  

t  

d  

S  

t  

l

2

 

b  

s  

d  

2 
orted with a PMMA layer with a concentration of 46 mg/ml concentra-

ion was transferred using a conventional wet-transfer process onto the

indow as presented in Fig. S1e. To minimalize the residue of PMMA

btained from the wet transfer process, DUV treatment was employed

or 10 min before removing the PMMA layer. Then, PMMA layers were

emoved by acetone and followed by annealing in forming gas for 3 h

o essential ensure less amount of PMMA residue. To form cathodes for

evices, substrates were sputtered with Cr/Au layers as shown in Fig.

1h. To enhance the p doping level in graphene, devices were exposed

o 65%HNO 3 for 90 s. The doped devices were coated with a PMMA

ayer to avoid the evaporation of HNO 3 with time. 

.2. Device characterization 

To examine the quality of graphene samples that were transferred

y using the combination process, Raman tool, X-ray photoelectron

pectroscopy (XPS) and Scanning Electron Microscope (SEM) were con-

ucted. The photovoltaic characteristics of prepared devices were mea-



H.A. Busaidi, A. Suhail, D. Jenkins et al. Carbon Trends 10 (2023) 100247 

Fig. 4. (a) External quantum efficiency (EQE) curves of graphene/n-Si Schottky junction solar cells manufactured with a single and 3 graphene layers. (b) Developed 

sheet resistivity as a function of multi-graphene layers, showing decreases in the sheet resistance with the number of layers. 
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4  
ured by using a key-sight B1500A Analyser under conditions of AM1.5

nd the 100 mW/cm 

2 illumination intensity after calibrating the equip-

ent. The PVE300 system was conducted to obtain the external quan-

um efficiency (EQE) of the prepared devices. 

. Results and discussion 

A sputtering technique with conventional lithography was intro-

uced to simplify the manufacture of the top-window structure of

raphene/Si solar cells as presented in Fig. S1. To ensure efficiently re-

uce the PMMA residue, the combination process including DUV and

orming gas was developed for transferring residue-free graphene sam-

les in this work. The combination process was used since forming gas

lone for minimizing the PMMA residue is not efficient [4] . Raman

nd XPS techniques were conducted to examine the quality and PMMA

esidue left on transferred graphene samples. Fig. 1 shows Raman data

f graphene samples, and it can be detected that the spectrum of trans-

erred graphene that was treated with acetone (red line) verifying the

onolayer nature of graphene samples. It is also displayed that the 2D

nd G bands are at 2697 and 1602 cm 

− 1 , respectively. The intensity ra-

io (I 2D /I G ) is around 1.7. It can also be realized that there is a slight D

eak at 1356 cm 

− 1 , which is indicating to the defects [24–26] . After an-

ealing samples in forming gas, it is clear there is a shift in the spectrum

blue line) in comparison with the spectrum of samples processed with

cetone, showing the intensity ratio of 1. After applying the combina-

ion process, a red shift in the spectrum of graphene is obtained, indi-

ating that the PMMA residue is reduced. In addition, the intensity ratio

ncreased after using the combination process, showing the higher qual-

ty that was annealed in forming gas. The reduction of PMMA residue

as also been confirmed by the XPS tool as shown in Fig. S4. As pre-

ented in this figure, there is a clear enhancement in the sp 2 component

red curve) that belongs to graphene. in the residue of PMMA unlike
Table 1 

Comparison study for the high performance of doped graphene/Si Schottky 

junction solar cells that have been reported. 

Applied techniques PCE (%) References 

Top grid with doping 5.9 3 

Top grid with Directly grown graphene and doping 9.18 7 

Back contact with texturing process and doping 14.1 4 

Top window with Interfacial Oxide, doping and ARC 15.6 22 

Top window with MGL, doping and ARC 17 This work 
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3 
ther components related to the residue after introducing the combina-

ion process. Fig. 2 illustrates the current density-voltage ( J-V ) curves of

olar cells that were processed with and without the combination pro-

ess, where these samples were prepared with optimum 250 nm SiO 2 .

or the processed device with acetone, the fill factor ( FF ), power con-

ersion efficiency ( PCE ), open circuit voltage ( V OC ) and short-circuit

urrent density ( J SC ) are 23%, 1.4%, 0.41 V and 14.7 mA/cm 

2 , respec-

ively. For the processed device with forming gas treatment, the V OC ,

 SC , FF and PCE were 25 mA/cm 

2 , 0.413 V, 27% and 2.9%, respectively.

he samples processed with the combination process show a remarkable

evelopment compared with other samples. In this case, the J SC , V OC ,

F and PCE were 26.9 mA/cm 

2 , 0.4 V, 37% and 4%, respectively. This

evelopment is achieved due to minimalizing the residue of PMMA. It

an clearly be observed in Fig. 2 , there is an ideal J-V curve of samples

reated with the combination technique in comparison with other curves

or samples that were processed with forming gas and acetone. This also

hows the residue causes the s shape and reduces the performance of

evices. In addition, it is confirmed that forming gas (90% Ar/10% H 2 )

lone is not enough to efficiently eliminate the residue, which is also in

ood agreement with reported works [24–27] . It has also been reported

hat the residue reasons for the recombination process of carriers at the

nterface of graphene/Si devices, which leads to the s-shape in the J-V

urve [ 4 , 21 ]. After minimalizing the residue of PMMA by the combina-

ion procedure and optimizing the SiO 2 thickness, multi-graphene layers

MGL) were employed to extra advance the fill factor. In this circum-

tance, the combination procedure was applied after transferring each

raphene layer to effectively ensure the PMMA residue-free graphene

urface. Figs. 3 a and S5 demonstrate the J-V curves of MGL/Si devices.

s observed, devices manufactured with 3 graphene layers express a

ignificant development compared with that of other devices. The pho-

ovoltaic parameters of this device increased to 38.8 mA/cm 

2 , 0.415 V,

5% and 7.3% respectively. This signs that the PCE and FF developed by

round 85% and 30%, respectively. To the best of our thought, the PCE

f 7.2% is a new record for devices manufactured without doping, tex-

uring process and anti-reflection coating reported to date [ 3 , 4 , 8 , 28 , 29 ].

his indicates that removing the PMMA residue is essential to improve

he performance of MGL/Si Schottky junction solar cells. Fig. 3 b and

 c show the developed photovoltaic parameters for devices prepared

ith MGL. As observed, the parameters for samples prepared with more

han 3 graphene layers show a marginal reduction, which indicates that

he optical transparency of more than 3 graphene layers is reduced

5] . 
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Fig. 5. J-V characteristics for graphene/Si Schottky junction solar cells prepared 

with 3 graphene layers before and after the doping process. 
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This means that 3 graphene layers are optimum for developing the

fficiency of devices. The EQE results of devices also verify that there

s a remarkable improvement in the performance of devices after in-

roducing 3 graphene layers, compared with that of devices processed

ith a single graphene layer as shown in Fig. 4 a. This improvement

s in an excellent agreement with those obtained from the J-V curves.

ig.4b represents the sheet resistivity values for multi-graphene layers.

t can be recognized that there is minimizing of the sheet resistivity

alues with increasing the number of graphene layers. It can also be

ealized that the sheet resistivity of 3 graphene layers was reduced to

round half of that of one transferred-graphene layer, which showed

he highest performance of prepared devices. For additional develop-

ent, devices were doped by HNO 3 . The doping process in this case

as applied for 90 s. Fig. 5 displays the J-V curve of the treated de-

ice with HNO 3 . It can be noticed that the J-V curve for doped de-

ices expresses an important enhancement in performance compared

ith that of un-doped devices. In this case, the V OC and J SC developed

o 0.53 V and 39.5 mA/cm 

2 , respectively after doping. In addition, the

F and PCE increased to 69% and 14.3%, respectively. The developed

erformance of doped devices indicates the conductivity of transferred

raphene enhanced after doping [ 21 , 30 ]. Although the effective PCE

as obtained after the doping process, the performance of doped de-

ices with HNO 3 reduces with time since this dopant will be evaporated

 17 , 19 ]. Hence, prepared devices were coated with a PMMA layer as

hown in Fig. 6 a. to ensure the efficient stability of the doped devices.

his will prevent the evaporation of HNO 3 during this time. There is

nother advantage of the usage of the PMMA layer, which is for re-
ig. 6. (a) Schematic of MGL/Si Schottky junction solar cell coated with PMMA lay

ith PMMA layer. 

4 
ucing the reflection of light. Fig. 6 b shows J-V curves of coated de-

ices with and without a layer of PMMA after the doping process. The

btained photovoltaic parameters in the case of coated samples were

2.8 mA/cm 

2 , 0.53 V, 74% and 16.8%, respectively. It can be noticed

rom this figure that J SC increased from 39.5 to 42.8 mA/cm 

2 after coat-

ng, compared with that of the uncoated sample. This indicates that the

eflection from Si samples is reduced by the PMMA layer as shown in

ig. S6. This results in an improvement in the PCE and FF . It can also

e recognized that the obtained PCE of 16.8 is the highest efficiency

eported so far based on the best of our understanding as displayed in

able 1 [ 3 , 4 , 7 , 8 , 28 , 29 , 31–37 ]. After that, samples coated with and with-

ut PMMA layers were left in the air for 2 weeks. Then, the performance

f these devices was measured after 2 weeks. The PCE of the coated de-

ices was 15.9%, which indicates that the device retained 95% of its

erformance. In contrast, the PCE of un-coated devices was 10%, which

ndicates that the device retained 70% of its initial performance after

toring. This also shows that doped devices displayed the highest sta-

ility compared with doped devices with HNO 3 in the reported works

 4 , 17 ]. Hence, introducing the layer of PMMA plays a central role in ob-

aining stable and efficient doped graphene/Si Schottky junction solar

ells. 

. Conclusions 

In this work, a sputtering technique was engaged to simplify and

educe the cost of the fabrication procedure of graphene/n-Si Schottky

unction solar cells. This technique along with conventional lithography

lso avoided the complex etching process of SiO 2 . In addition, the fill

actor was efficiently developed by introducing multi-graphene layers

ather than monolayer graphene to obtain the Schottky junction for de-

ices after minimizing the PMMA residue, leading to an enhancement in

fficiency. The performance of devices further increased after including

he doping process by HNO 3 , resulting in a development in the PCE of

4.3%. The doped devices also displayed excellent performance with a

CE of 16.8% and stability for 2 weeks after introducing an encapsulated

MMA layer. 
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er. (b) J-V curves for MGL/Si Schottky junction solar cells coated without and 
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