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maxima (>mean+2a) 143 

Table 5.9c Sherman's statistic for core Ness 3, section 3 

maxima (>mean+2a) 144 

Table 5.10 Summary of the periodicities found by F F T analyses of cores 

Ness 3, Ness 4, and LNRl 145 

6. Data Analysis 

Table 6.1 Elements detected by E D S in sediments from Loch Ness, 

wi th their average abundance 153 

Table 6.2 Correlation between annual and seasonal precipitation 

atPort Augustus, 1886-1963 (v=78) 172 

Table 6.3 Correlation between annual precipitation, and average and 

seasonal temperatures. Fort Augusms, 1914-1995 (v=81) 173 

Table 6.4 Correlation between annual and seasonal precipitation 

at Inverness, 1890-1963 (v=71) 173 

Table 6.5 Correlation between aimual precipitation, and average and 

seasonal temperatures, Invemess, 1914-1995 (v=81) 174 

Table 6.6 Correlation between annual and seasonal precipitation 

at Inverness and Fort Augustus, 1914-1994 (v=78) 174 

Table 6.7 Correlation of annual lamination thickness from 

core LNRl with seasonal precipitation record. 

xix 



Tables 

Fort Augustus, 1886-1963 (v=78) 177 

Table 6.8 Corrélation of annual lamination thickness from 

core LNRl with seasonal précipitation record, 

Invemess, 1890-1963 (v=74) 178 

Table 6.9 Corrélation between lamination thickness from core 

LNRl, North Adantic sea surface temperamre, and the 

persistence of sea ice around the coast of Iceland and in 

the Dan i sh Sea 183 

Table 6.10 Results of corrélation analysis between three-monthly-resolved 

N A O index and lamination thickness from core LNRl 

(decadal averages) 184 

Table 6.11 Corrélation between monthly N A O index (N), and 

précipitation data for Fort Augustus (F), 1890 to 1993 (v=103) 185 

Table 6.12 Corrélation between monthly N A O index (N), and 

précipitation data for Invemess (1), 1890 to 1993 (v= 103) 186 

Table 6.13 Corrélation between lamination thickness from core 

LNRl, and tree ring data from Scotland, Ireland, 

and the Engl i sh Midlands 191 

Table 6.14 Pearson corrélation coefficients for data plotted in Figure 6.27 198 

Table 6.15 Stages of analysis during which significant errors 

may have occurred 218 

Table 6.16 Linearity of image field of Quantimet 570 image analyser 219 

XX 



Acknowledgements 

Acknowledgements 

Over the past five years I have felt extremely privileged to have been given the 

opportunity to study for a higher académie award. During this time I have had contact with 

numerons people, both at meetings and, again, on more informai occasions. Many have 

great académie standing, and I feel a sensé of honour in meeting them ai l . I am very 

grateful for ail their comments and advice. 

O f immédiate connection with this thesis, I would first and foremost extend 

my deepest thanks to my supervisors, Dr. Paddy O 'Su l l ivan and Prof. Steve Rowland. 

Without their forbearance, persévérance and great encouragement from the beginning, I 

would not be at this stage now. In pzirticular, Dr. O 'Sul l ivan must be profusely thanked 

for his input to my many attempts at producing well-written reports and articles. His 

tireless reminders of the éléments of good scientific writing have left a great impression 

upon me. Unfortunately, I am still wont to lapse from time to time. 1 am also grateful to 

him for displaying great patience and compassion throughout, but especially during the 

'difficult' period of writing up. I would also like to thank my examiners. Prof. J. J.Lowe 

and Dr. Dan Charman, for a most interesting viva voce, and for their patience in waiting 

for me to prépare this final manuscript. 

I would l ike to thank the other members of the L o c h Ness Research Group, 

especially Adr ian and Mara lyn Shine, who have worked tirelessly, often with quite 

rudimentary equipment, in order to obtain sédiment cores from what must be one of the 

most difficult on-shore sites in the U K . A warm thank-you also gœs to John MinshuU, in 

whose hands we en trust ourselves when we venture out onto the waters of the Loch. In 

addition, mention must also be made of the financial assistance provided by Swatch, of 

Switzerland, and input from Loughborough Univers i ty , i n connection with the 

construction of equipment by which the ' long' cores were recovered. 

xxi 



Acknowledgements 

Members of other academic institutions, who have long-running projects 

studying the Loch , have also been a source of great encouragement and friendship. Anne 

Wheeler and Dr. Kate Farr (University of Wolverhampton), D r Vivienne Jones ( U C L ) , 

Dr . Sylv ia Peglar (University of Bergen) and finally, Dave B u l l , Dr . Jenny Pike, Jean 

Dean, Steve Hunt, Dr. Justin D i x and Dr . Alan Kemp (University of Southampton) merit 

special mention. 

Throughout this project, daily journeys back and forth between University and 

Home were necessary, and would have been much more onerous without the regular 

companionship of a cohort of fellow passengers ('customers' in New Railspeak). 1 hold 

dear in my heart thoughts of Gareth Davey, Donna, Br ian Fossey and Sir James H i l l of 

Dawlish, who unfailingly managed to provide levity through breakdowns, delays, and the 

'wrong type of rain'. Occasional on-train appearances by Dr. Malco lm Nimmo provided 

more academically-inclined journeys, in addition to Dr. Karen Stapleton, who furnished a 

lengthy overview of Fourier Transform techniques during one particularly slow trip. 

Regular travelling also enabled me to make friends with many of the train staff of Regional 

Railways and Inter-City, who often provided 'inside information'. 

Friendships within the University were also forged, providing the camaraderie 

so often necessary when the going gets rough. Sharing an office with Dr . Helen Wilson 

and Derek Henon proved to be a great pleasure, and supplied hours of intense discussion 

about diverse topics, some even relevant to our respective projects. Dr . C. Anthony Lewis 

is to be thanked for the many times his droll sense of humour lightened the day. The other 

members of Dr. O 'Su l l ivan ' s postgraduate team, Paula Powell , Tamsin Wil l iams, Ne i l 

Salter, and Nina Matthews are also fondly remembered. I wish Mart in Nicholson well as 

the latest member, who w i l l concentrate some of his time in continuing this work. 

The technical staff at Plymouth unfailingly provided first-class support. Betty 

Fox (now retired) is warmly thanked for her photographic expertise, which enabled many 

xxii 



Acknowledgements 

fine images to be obtained from lengths of mud, and Paul Russell for introducing me to 

the pleasures and pitfalls of image analysis, both techniques, of course, essential to this 

project. I would also l ike to thank Dr. Roy Moate, Br ian and Jane of the Electron 

Microscopy Unit for assistance, guidance, tea and biscuits. In addition, Brian and Adrian, 

who built (and re-built) a new type of freeze-sampler, and Trevor Parrot, Master of the 

University vessel 'Catfish ' , are to be acknoWledged for their expertise. I would finally like 

to thank lan Doidge, A n d y Barker and A n d y Tonkin for al l their help, lan proving 

invaluable on many occasions during the construction and testing of the freeze corer, often 

obviating the need for a winch or other such lifting device. 

After I left Plymouth and gained remunerative employment at the University of 

Nottingham, others bave provided Clements of support. I would briefly like to thank Drs 

M i k e Hey, Nick M i l e s , Br ian A t k i n , Douglas Brown, Trevor Jones, Chandhu Shah, 

Gareth Brown, and in addition, Tony Hollingworth, Br ian Clarke, Dan Jackson, Piers 

Evershed, Channan Tiranarat, A l i son Blackshaw, Chris Elverson, and Phi l l Windsor. 

Friendships forged outside 'working' hours are particuliirly invaluable and 

help to provide a balance between the worlds of academia and 'real l i fe ' . I am indebted to 

Chris Jenkins, and bis wife Jan, for their friendship now and throughout the past few 

years, sometimes through times of great personal distress. Warm thoughts of past times 

together w i l l remain forever, iind I wish them luck in their new life in Australia. 

This would not be complete without thanks to my own family, who bave had 

to endure nearly eight years of difficulty in order that I might bave the opportunity to study 

for a higher degree. They bave supported me financially, physically, emotionally and 

spiritually throughout that time. Amanda, Rowan and Oliver, I give you ali my love and 

thanks. In addition, we bave also been lucky to bave had the support of our respective 

parents, who bave been a great help when necessary. 

xxiii 



Acknowledgements 

Finally, the lyrics of a song come to mind, not only for their poignancy, but, 

as the tiüe intimates, those who think that three years are more than sufficient to complete a 

P h D 

Across the evening sky 

A l l the birds are leaving... 

But how can they know 

It' s time for them to go? 

Before the winter fire 

I w i l l still be here 

I bave no thought of time 

For who knows where the time goes? 

Who knows where the the time goes? 

Sad, deserted shore 

Y o u r fickle friends are leaving... 

A h , but then you know 

Its time for them to go 

But I w i l l still be bere 

I bave no thought of leaving 

I do not count the time 

For who knows where the time goes? 

W h o knows where the time goes? 

A n d 1 am not alone 

While my love is near me 

I know it w i l l be so... 

Unti l i t ' s t imetogo 

So come the storms of winter 

A n d then the birds in spring again 

I bave no fear of time 

For who knows how my love grows? 

A n d who knows where the time goes? 

Lyrics of "Who knows where the time goes? " written by the late Sandy Benny, and 

published by NCBISandy Benny © Island Records Ltd. 1972. 
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Abstract 

Abstract 

Sédiment cores, two approximately 6 mètres and one about 1 mètre in length, 

were recovered from the profundal plain of the northem basin of L o c h Ness, Scotland. 

Examination revealed that the sédiment is compwsed of irregular séquences of pale and 

da± laminations, most sub-millimeter in thickness, some ca 5 mm thick. 

Enumeration of laminae, and détermination of lamination thickness, was 

carried out using X-radiography and image analysis. A hypothesis was developed that the 

finer laminations represent varves. This was tested by means of lamination counting, and 

by radiocarbon dating of material from one ' l ong ' core. Comparison of the two 

chronologies thus derived suggested that the hypothesis was correct, and that a non-

continuous chronology had been obtained, spanning the period ca 9000 to 1500 B P . 

Lamination thickness data derived from récent sédiments was compared with 

meteorological data, especially rainfall, in order to test the hypothesis that prevailing 

climate, together with the alignment of the L o c h with the predominantly southwesterly 

airflow, médiates in the production of the volume of allochthonous minerai material eroded 

from the catchment and its input to the water column. The resuit of this analysis bas 

proved inconclusive, and a more complex relationship may be involved. Other proxy 

climatic data were utilised in order further to investígate this aspect of the study and 

corrélations between the sédiment record and several of thèse were shown to be 

statistically significant. Spectral analysis of the lamination thickness datasets was also 

employed in order to determine i f pattems of sédimentation may be linked to periodic 

forcing processes. Cyclicities observed in récent sédiments include those of ca 210 and ca 

90 years, which are also présent in many other climatically-related records. Analysis of 

lamination thickness in the ' long' cores has proved inconclusive, producing évidence of 

many periodicities, but few of significance. It is believed that this resuit may be attributed 

to the non-stationary behaviour of forcing agents through time. 
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1. Introduction 

1.Introduction 

1.1 Scope of research 

Lake sediments provide a medium in which a record of past environments may 

be captured and stored (Pennington, 1981). Deposits which are, in addition, aimually 

laminated may be utilised in order to impose a temporal framework on any observed 

variations i n chemical or lithological properties arising from environmental change. 

Comparison of these proxy records with others from different natural systems, and from 

differing spatial locations enables a more complete synthesis of the effects of climatic 

forcing to be appreciated. 

The investigations of this project were undertaken as part of a mul t i -

institutional, multi-national group (Figure 1.1), formed with the purpose of analysing 

sediment cores recovered from Loch Ness, Scotland. When these sediments were 

discovered to be laminated, a hypothesis was formulated that the layers may represent 

annual laminae, or varves. If this proved to be the case, then other proxy records, such as 

those obtained by diatom and pollen analyses would be able to be dated to a high 

precision. L o c h Ness wou ld then represent a unique archive of data detailing 

palaeoenvironmental change in the North Atlantic region. 

Recovery of cores proved to be difficult and time-consuming, but two ca6 m 

and one ca 1 m long cores were obtained. Attempts to count laminae, both by visual 

inspection of freshly cut material and by photography, proved ineffective and it was 

decided that a combination of x-radiography and image analysis would prove suitable. 

Software was written in order to convert the results of image analysis into time series 

suitable for comparison with other palaeoenvironmental indices. 
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1. Introduction 
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Figure 1.1 Organisation of the Loch Ness Research Group ca 1995 {After O'Sullivan, 

1994a) 
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1. Introduction 

1.2 Summary of aims 

T o summarise, the aims of this study were fourfold: 

• T o utilise imaging techniques in order to enhance the sometimes indistinct 

lamination structure of the sédiments. 

• T o count the laminations using image analysis techniques and subsequently 

produce a chronology of sédimentation relevant to the coring site. 

• T o utilise the data produced above to détermine, by comparison with other 

proxy climatic datasets, whether or not the sédiments bave reflected changes in 

Holocene climatic conditions over the Scottish Highlands and the northeastem 

Atlantic Océan. 

• T o analyse the spectral signature of the time séries, in order to ascertain 

whether or not they contained periodicities which could be attributed to 

/ / extemal forcing processes. 



2. Literature Review 

2 . Literature Review 

2.1 Introduction 

The scope of this study has entailed the consideration of four main areas of 

research, in order to formulate a strategy by which the data from sediments recovered from 

Loch Ness may be analysed. These were i) the formation of laminated sediments and their 

utilisation as dating tools and palaeoclimatic indicators; ii) the concept of proxy data and 

their application to the investigation of past enviroiunents; i i i ) the study of climatic systems 

prevailing over the Nor th Atlantic region. in order to appreciate the variability of 

meteorological data and to compare signals in sedimentary sequences with possible 

climatic origins; iv) a study of the periodic nature of naturai systems, again with a view to 

understanding the nature and origins of any cyclic variation inherent in data gained from 

the study of sediments from Loch Ness. 

2.2 Laminated sediments- origins, utilisation for chronology and as 

indicators of environmental change 

2.2.1 Introduction 

Lake sediments form a record of long- and short-term variations in both the 

quantity and quality of material entering a water body from its catchment. They consist of 

authigenic, allogenicemd biogenic fractions (Engstrom & Wright, 1984; Battarbee, 1991; 

Figure 2.1). The effects upon sedimentation (in terms both of quantity and quality) caused 

by changes i n the environment extemal to a lake, including variations i n climate and 

changes to its catchment (Pennington, 1981), are complex and subject to many influences. 

These may act to vary both the quantity and quality of deposition either by effecting 

changes in the limnology of the lake so that sedimentation pattems may be disturbed, or 

by causing differing types and amounts of sediment to be deposited. 
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2. Literature Review 

In laminated lake sediments, seasonal changes of deposition in lacustrine 

Systems may be wel l preserved, giving rise to material exhibiting regular, rhythmic 

changes i n lithology, texture or other physical and/or chemical characteristics. The term 

varve may be used for the séquence of laminations representing an annual cycle of 

variation in sédimentation {Figure 2.2). In passing, it may be noted that varved sédiments 

are notconfmed to the lacustrine enviroimient, but also occur both in marine (Jonsson et 

al., 1990; Kennedy & Brassell, 1992; Kemp, 1990; Schimmelmann et al., 1992; Pike & 

Kemp, 1996; Pokras & Winter, 1987) and riverine (Sonett et al., 1992) environments. 

Discussion wi l l focus here, however, on the origins and utilisation of lacustrine laminated 

sédiments. 

Figure 2.1 Sediment dynamics within a lake and its catchment, al: sources beyond 

catchment; a2: sources within catchment; bl streams; b2: groundwater; cl: plankton; c2: 

littoral flora/fauna; c3: benthic flora/fauna; d: outflow losses {After Battarbee, 1991) 

B y carefully counting varves it is possible to date lacustrine deposits precisely 

(O'SuUivan, 1983; Zolitschka, 1991). Development of a such a chronology may aid in 

reconstruction of the palaeoenviromnent of a lake and its catchment (Battarbee, 1991), 
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2. Literature Review 

often over long f>eriods and with high temporal resolution. Anderson and Decin (1988) 

have reviewed the variations in 'style' o f varve throughout time and note that some 

elements of modem laminated sediments may be found even in the Precambrian. Changes 

in more recent examples, for instance from the Tertiary, reflect evolutionary processes 

involving the organic components. 
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Figure 2.2 Classification of laminated sediments by origin {O'Sullivan, 1983). 

2.2.2 Mechanisms of lamination formation 

Laminated sediments occur where there is rhythymic variation in the amount 

and type of material delivered to the sediment/water interface. Generally, there is a 

difference in sedimentation between seasons, with laminae deposited in winter usually-

consisting of coarse detritus with a high mineral content, and summer layers often 
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containing diatom frustules (Hakanson & Jansson, 1983) or alternatively, a high 

proportion of Calciumcarbonate (Kelts & Hsii , 1978; Ludlam, 1979). Deposits from one 

season are usually pale in appearance and others, dark. Occasionally, however, only 

minor seasonal differences in sedimentation occur, and laminae may not be visible in a 

core when initially recovered. In this case, drying of a portion of the material may lead to 

spall ing of laminae from each other, revealing the true structure (Ludlam, 1969). 

Alternatively, exposure to the air may lead to one or more components of the matrix being 

identified by oxidation, confirming seasonality (Renberg, 1981). 

Laminations are often formed in anoxic or anaerobic environments, beneath a 

permanently, or semi-permanently deoxygenated hypolimnion, where bioturbation is 

negligible, and resuspension from wind-induced mixing absent (O'Sull ivan, 1983). Thus 

many deep lakes may be found to contain laminated sediments (for example. Lake Malawi: 

Pi lskaln & Johnson, 1991; Lake Van: Kempe & Degens, 1979). Meromix i s is not a 

prerequisite, however (Dickman, 1979), since varves have been discovered in holomictic 

lakes where seasonal deoxygenation of the hypolimnion occurs (Renberg, 1981). In 

addition, morphometry of the water body is of importance, i n order to permit the 

undisturbed sedimentation of material without slumping or lateral motion (O'Sull ivan, 

1983). 

Varves may be produced in aerobic environments where sedimentation rate is 

high and faunal populations low (Lotter & Sturm, 1994). Sturm (1979) has suggested 

that for the formation of clastic (minerogenic) varves wi thin an oligotrophic lake, 

deposition must be intermittent and matched to stratification {Figure 2.3). M i l l e r (1994) 

has categorised the causes of lamination into four types, producing deposits which may be 

seasonal, occasional, lagoonal or brackish in origin. O'Sull ivan (1983) has classified 

laminated lacustrine sediments by composition and includes those produced by detrital 

sedimentation, by organic processes and by chemical methods {Figure 2.2). Lotter and 

Sturm (1994) have utilised a simplified version of this scheme to categorise deposits 
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recovered from several Swiss lakes, inc lud ing the Brienzersee (where clastic 

Sedimentation predommates), and the biochemicai deposits o f the Greifensee, the 

Zürichsee, Baldegersee, Faulenseemoos and Soppensee. The last two are reported to 

contain long sequences of varves, i n the case of Soppensee, some 15 000. Records of 

such duration and resolution provide the opportunity to investigate many aspects of 

environmental change with unprecedented accuracy. 
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Figure 2.3 Mechanism for the deposition of clcistic varves {After Sturm, 1979) 

2.2.3 Laminateci sediments as chronological tools 

O f great importance in the study of lanwnated sediments is the identification of 

a Signal of periodicity, and especially of the annual cycle of deposition. The counting of 

varves may produce a chronology which, ideally, is accurate to ±1 year, and against 

which other data illustrating enviromnental change (pollen analysis: AUison et al, 1986; 

diatom analysis: Battarbee, 1991; industriai pollution: Renberg & W i k , 1985) may be 

placed in historiceil context. Varves may thus be directly compared with tree-rings, and the 
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growth bands observed in corals. 

Enumeration of laminations is, however, fraught with difficulty. Changing 

sedimentation patterns within a water body may lead to the formation of inter-annual 

layers, or of laminae which are indistinct, ill-formed or missing entirely. Processes within 

the lake cause diagenetic changes, bioturbation, or relocation of sediments out of 

sequence, as i n the case of turbidites. M a n y techniques with which to investigate the 

structure, integrity and periodicity of laminated sediments (periodicity of pollen grains: 

Reglare/ al, 1984; succession of diatoms: Simóla, 1977; Farr et al, 1990; seasonality of 

chrysophyte cysts: Reglar et al, 1984; organic geochemistry: Farr et al, 1990; adhesive 

tape peels: Simóla, 1977; light microscopy of thin sections: Merkt , 1971; scanning 

electron microscopy: Kemp, 1990,1996; X-ray spectroscopy: Alapieti & Saamisto, 1981; 

X-radiography: Koiv i s to & Saamisto, 1978; Bodbacka, 1985) are available. Final ly , 

without some means of independent calibration, for example radiocarbon dating, or 

without detailed comparison with other comparable time series {eg tree rings), the 

investigator can never be completely certain that the signal they are examining is aimual in 

origin. 

Other, parallel, dating techniques may also be utilised in order to test whether 

or not laminations are varves (e.g. ^^°Pb: Appleby et al, 1979; ^"^C: Bjôrck, 1987; 

239,240p^. jaakkolaeí al, 1983; ^^^Cs: Stihlereí al, 1992; palaeomagnetism: Bjórck, 

1987; Thompson, 1973; Sandgren, 1993; tephrochronology: Leonard, 1995). However, 

the reverse also applies, in that accurately-counted varved sediments may be used to 

provide time scales against which chronologies derived from radiometric and other dating 

techniques, may be calibrated (Hajdas et al, 1993; Oldfíeld et al, 1994; Wohlfarth et 

al., 1993). O f current interest is the correlation of varve chronologies with those produced 

from dating by ^"^C (Bjórck et al, 1996; Goslar et al 1992; Hajdas et al, 1993; 

Zolitschka, 1991). It has been found that, owing to the variable rate of annual production 

of ^"^C (Creer, 1988; Stuiver, 1980b), the tree-ring calibration curve for this technique 
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contains plateaux where multiple calendrical dates exist for a single radiocarbon âge 

(Stuiver & Reimer, 1993). 

The intention of de Geer to correlate his 'Swedish Chronology', derived from 

séquences of glacial laminations, with annual lamination séquences globally, ultimalely 

failed owing to (a) lack of précision of the timescale then available, (b) understanding of 

the processes involved in the formation of laminae, and (c) the lack of séquences from 

sites elsewhere. Subséquent investigations have refined the Swedish T ime Scale, but 

many difficulties need to be overcome before the réalisation of an 'absolute' chronology 

for the Late Quatemary is achieved (Fromm, 1980; Tauber, 1980; Wohlfarth et al., 

1993). 

2.2.3.1 Use of geochronological tenns within the thesis 

Discussion of laminated sédiments as chronological indicators may involve 

use of différent âge scales when dating, for example, variations in determinands or events 

associated with thèse changes. Thus, documented events may conveniently be dated by 

référence to a calendar, usually the Christian one, and quoted as x A D or y B C (or CE and 

BCE). When referring to results obtained by ^^C dating, uncalibrated radiocarbon dates 

are reported as x 14C yr B P (Before Présent; 1950 A D ) or, after calibration (for instance, 

Stuiver & Reimer, 1993), as jc cal yr B P . T ime periods obtained by lamination (varve) 

counting may be quoted as jc varve years or, more properly in the case of a chronology 

determined from L o c h Ness sédiments, x Ness varve years. The équivalence of calendar 

and varve years must be proven before thèse terms may be considered interchangeable. 

The L o c h Ness chronology is, at présent, floating and the use of Ness varve years is 

implici t throughout this thesis when referring to data obtained from cores Ness 3 and 

Ness 4. Core LNRl, however, contains a marker horizon which may be correlated with 

the occurrence of a flood event in the catchment (V.J.Jones et al., 1997), and the 

chronology derived from this core may be considered fixed. Corrélation of data from this 

core with other palaeoclimatic datasets indicates that Ness varve years are probably 
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équivalent to calendrical years. 

2.2.4 Laminated sédiments as indicators of environmental change 

The utilisation of laminated sédiments in the study of enviromnental change 

may be considered to have begim around the tura of the 20th Century, with the work of de 

Geer, who, from studying glacial deposits, compiled a chronology for the retreat of the 

Baltic Ice Lake at the end of the last Glaciation (Boygle, 1993). Many investigations, from 

many régions of the world, have used the accuracy inhérent in laminated sédiments in 

order to place indicators of palaeoecological change, from both natural and anthropogenic 

causes, within a temporal framework (Lotter, 1991a). It is clearly impossible to cite every 

such investigation, but it may be instructive to select two cases with which to illustrate the 

advantages of studying this type of sédiment i n coimection with the quantification of 

change, both at càtchment and régional levels. 

2.2.4.7 Elk Lake, Minnesota 

E l k Lake is, at présent, situated in a climatic zone influenced by the position of 

the North Atlantic Polar Front ( N A P F ) , which séparâtes cold, dry Arct ic airflows from the 

warmer, moister tropical Atlantic airstreams. In addition, the région is subjected to dry 

Pacific air masses, producing intense climatic gradients across the state of Minnesota 

(Anderson, 1993). Throughout the Holocene the région bas undergone periods of 

profound climatic change as the position of the N A P F bas varied, causing shifts i n the 

location of the forest-prairie ecotone, and altering càtchment végétation cover, lake levels 

and water chemistry. Thèse have consequentially affected sédimentation within the lake, 

which took place i n three distinct phases. Thèse are superimposed upon a continuous 

laminated séquence of some 10,400 varves, which record climatic changes as variations in 

thickness and composition (Anderson, 1993; Figure 2.4). It is postulated that the varve 

record is accurate to within ±2(X) yr. Studies of modem sédimentation processes, lake 
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biogeochemistry, and indigenous flora and fauna, bave enabled reconstruction of changing 

envirorunents within the région throughout the Holocene (Bradbury & Dieterich-Rurup, 

1993; Nuhfer et al., 1993; Sanger & Hay, 1993; Whit lock et al, 1993; Zeeb «fc Smol , 

1993). 

During déglaciation, coarse sédiments, along with plîuit débris and Boréal 

aquatic ostracoda, accumulated in the newly-formed dépression in the melting ice. When 

this had completely melted, varved sédiments began to form in an enviroimient of spruce 

and birch forest. Seasonal anoxia may bave produced the altemating dark and pale, 

sharply defined laminae which persisted until, at ca 8 ka B P , forest was replaced by oak 

savanna. Then, from ca 8 ka until ca 4 ka B P (the Hypsithermal) prairie conditions 

prevailed, with an increase in clastic déposition, possibly from aeolian sources. Changes 

in lake level through this time, with release of nutrients from the sédiment, led to the 

development of regular diatom blooms. After 4 ka B P , moist conditions retumed, and 

allowed a forest of pine, birch and other hardwoods to become re-established. The volimie 

of clastic input to the lake declined. Variations in water level , and lake chemistry, were 

accompanied by altérations to diatom and ostracod assemblages, and the production of 

more complex varve structures (Anderson et al, 1993). M o d e m sédiments from E l k Lake 

provide a record of fîre frequency correlated with changes in forest type, which may in 

tum be compared with climatic variations (Clark, 1993). 

The sédiment record from Elk Lake also provides évidence for the periodicity 

of climate change and for its connection wi th variation in solar activity and the 

geomagnetic field (Anderson, 1993). Spectral analysis of time séries formed from 

séquences o f varve thickness reveals a number of periodicities, the spectral densities of 

which change in phase with the three stages i n the development o f the lake described 

previously. Early post-glacial varves exhibit periodicities of ca 22 yr, 40-50 yr and ca 200 

yr, the former two values possessing a higher spectral density. In addition, 12.5- and 5 yr 

frequencies are identified within this time period. Sédiments from the Prairie stage 
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Figure 2.4 Record of lamination thickness from E l k Lake, Minnesota, over the period 

10.2 to 7.7 ka B P {After Anderson, 1993) 

display the same periodicities more strongly, although there are systematic changes within 

discrete time slices, especially within the 40-50 yr frequency band. Evolutive frequency 

analysis reveals similarities to that derived from Ò '̂̂ C time series (Stuiver, 1980b), leading 

to the hypothesis o f a connection between cl imatic variations and the flux of solar 

particles, which gives rise to the production of ^^C (Damon & Jirikowic, 1992). 

2.2.4.2 Gosciaz, Central Poland 

Gosciaz is one member of a group of lakes- the Na Jazach complex- fed by 

the Ruda river, a tributary of the Vistula, located in Central Poland. The lake is of glacial 

origin, with a maximum depth of ca 25 m. It is dimictic, ice-covered during the winter 

months, with significant groundwater input (Churski et al., 1993) 

Cores from the deepest part of the lake are composed of black, sulphuric-

calcareous gyttja (Sandgren, 1993) and consist of an almost continuous sequence of 

laminations, terminating in basal layers of sand and peat, at a sediment thickness of ca 18 

m (Goslar, 1993). O f note in these profundal cores, is the presence o f a massive layer 
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composed of sand, which has prevented the recovery of a complete sequence (Ralska-

Jasiewiczowa et al., 1992). Shorter cores recovered from distal locations have, however, 

been observed to be entirely laminated to the basal peat layer and thus have been used to 

compile a composite varve chronology spaiming ca 12 600 years (Goslar et al, 1992). 

Thus, the sequence contains both Late Glacial and Holocene material, although it has been 

demonstrated that the varve style has not changed during this time. The record does not, 

however, reach the present. 

The sedimentary record may, therefore, be utilised in order to facilitate study 

of the effects of rapid environmental change at the Aller0dA^ounger Dryas ( Y D ) and 

YD/Preboreal boimdaries (Ralska-Jasiewiczowa al, 1992), which are recognised by 

examination of the pollen and ô^^O records (Goslar et al, 1993). In addition, the varve 

chronology from this site may be compared with the ^"^C calibration curve, in order further 

to correct the latter where there exist multiple-age 'plateaux', and to extend the calibration 

into the Late Glacial (Goslar et al., 1992). The construction of a chronology may also 

enable the duration and timing of the Younger Dryas in central Europe to be evaluated 

(Goslar et al, 1995) and to date phases of early human influence within the catchment 

(Ralska-Jasiewiczowa & van Geel, 1992). 

2.2.4.3 The sediments of Loch Ness as indicators of environmental change 

Loch Ness is influenced by the climatic regime of the North Atlantic Ocean. 

Westerly and southwesterly airflows from the ocean are the main agents which impart a 

cool maritime climate to the region. The Loch is thus located in an ideal position to record 

climate change over the North-western Atlantic seaboard. 

The North Atlantic Ocean is a major agent i n the generation and maintenance of 

much of global climate (Berger & Labeyrie, 1987; Broecker et al, 1988). Production of 

North Atlantic Deep Water ( N A D W ) is crucial to the climatic system of northern Europe, 
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1993). Thus, the effect of the Late Devensian glaciation on the sediments within the Loch 

Ness basin, is of particular interest to the continuation of this study. Peimington et al. 

(1972), have detailed variations i n pollen found in sediments from L o c h Tarff ( U K 

National Gr id reference NH425100), a small loch in the south-west catchment of Loch 

Ness). Alternate phases of climatic deterioration and amelioration have been inferred, 

commencing at the time o f the Late Glacia l Interstadial. The L o c h Lomond Stadial 

(Younger Dryas) is recorded i n the catchment by many glacial and periglacial landforms, 

which suggest an extensive renewal of icefield activity in the Western Highlands. Glaciers 

flowed along the length of the Great Glen, but terminated at the location of Fort Augustus. 

Ice-dammed lakes were formed, the evidence of which may be observed i n shoreline 

features, cross-valley moraines, and relict meltwater channels (Sutherland & Gordon, 

1993). Sissons (1979) suggested that the catastrophic collapse, at the end of the Yoimger 

Dryas, o f an ice-dammed lake in Glen Spean and Glen R o y was responsible for the 

production of a jökulhlaup which led to rapid changes loch level and in the formation of 

the Kessock narrows (NH475860) , north-Ccist of Inverness. Terrace and lacustrine 

shoreline features along the Great Glen indicate loch level changes over longer periods 

during the Younger Dryas, and have been utilised in demonstrating the effect of the 

renewal of glaciation upon isostatic recovery of the earth's crust following the melting of 

the main Late Devensian ice sheet (Sutherland & Gordon, 1993). Evidence of Holocene 

marine incursion into the loch (Merritt et al, 1995) has so far not been detected by 

analysis of diatom taxa (V.J.Jones, pers. comm.), although Permington et al (1972) have 

reported increases in halide concentration in sediments recovered from the area of Dores 

Bay. 

2.3 Proxy climatic data - sources and dating 

2.3.1 Introduction 

Studies related to palaeoclimates are conducted in many research disciplines. 
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Common sources of data include tree-rings, lake, bog and marine sediments, ice cores, 

and historical records, which may represent information spanning various periods of time. 

Palaeoclimatic records may be utilised as databases with which to validate climate models 

and to provide information in support of the study of climate change (for example, 

Holcombe, 1989). Unt i l the advent of instnmientation, historical records provide the main 

source of verifiable climatic data (Ingram et al., 1981; Ladmie, 1971). Before that time, 

information about palaeoclimates existed only in the form of proxy data, where natural 

phenomena have recorded and stored a record of climate. 

2.3.2 Types of proxy record 

Records of environmental change may be found throughout geological time, 

but many may be observed relating to climate variations during the Quaternary, and 

especially to the last 20 000 years. Data sources, with time resolution and duration are 

listed in Table 2.1. Climatically-related data from these sources may take many forms, 

including those based on oxygen isotope ratios, tree ring width, sediment lamination 

thickness, diatom, pollen and foraminiferal assemblages, dust concentrations, and 

atmospheric composition. Calibration of data, to produce time series suitable for analysis, 

may be performed by enumeration of seasonal or aimual banding (Coral: Dunbar et al., 

1994; Tudhope, 1994; Speleothems: Shopov et al., 1994; Tree-rings: D 'Ar r igo et al., 

1993; lake sediment laminae: O'SuUivan, 1983; Ice cores; Shoji & Langway, 1989), by 

correlation with historical records (Guiot, 1992; Pfister, 1992), by radiometric dating 

(Suess & L i n i c k , 1990), by correlation with orbital cycles (Martinson et al., 1987) or 

with variations in the geomagnetic field (Saarinen, 1994; Sprowl Sc. Banerjee, 1985). 

Once transformed into a time series, the primary data may then be subjected to 

both qualitative and quantitative analysis, in order to enhance and interpret the climatic 

signal contained within it. Many types of data require extensive caUbration, usually by 

comparison with a modem signal, which enables the relationship of measured values to 
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Tabk 2.1 Time resolution and duration of primary climatic proxy data sources. (After 

Holcombe, 1989) 

Data source Duration Resolution 

Ocean sediments > l M a (<) 100-5 000 yr 

Tree rings ca 10 ka ( < ) l y r 

Lake sediments 100 ka ( < ) l y r 

Bog sediments 100 ka 100-500 yrC^'^C) 

Ice cores 15fca 1-10 yr 

100 ka 100-1000 yr 

probable climatic conditions which gave rise to them, to be evaluated. One such method is 

the formulation of transfer functions, much utilised in the investigation of variations in 

water quality over time, by means of quantification of diatom assemblages (Battarbee et 

al., 1995; Fr i tz et al., 1991). Furthermore, elements of periodicity within the data 

(Berger, 1989; Hazen & Tref i l , 1991) may be investigated by the application of, for 

example, Fourier (e.g. Press et al., 1986), Maximum Entropy (e.g. Currie, 1995), or 

Wavelet (e.g. Edwards, 1996) analysis. 

2.3.3 Dating of proxy records 

Many techniques exist for the dating of proxy palaeoclimatic data. They may 

be classified into four main types: i) counting of annual or seasonal layers; ii) radiometric 

determinations; iii) correlation with documented events; iv) 'tuning' of data with orbital 

cycles or reversals of the Earth's magnetic field. 

2.3.3.1 Incremental records 

Many sources of proxy data originate from systems which are accumulative, in 
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that recent material is continually added to the archive. Where changes i n the quality or 

quantity of material occur, owing to climatic variations over seasonal or yearly cycles, 

these may be utilised for dating purposes. For example, the rings of a free consist of 

sequences of early growth, succeeded by layers of dense latewood (Schweingruber, 

1987). Cross-sections through these are subjected to treatments in Order to enhance the 

structnre and thus enable counting of the aimual layers. Similarly, lake Sediments consist 

of laminaerepresenting incrementai seasonal Sedimentation, enumeration of which enable 

an accurate chronology to be obtained (Simóla, 1991). Similar structiu-es are observed in 

ice cores, representing changes in the type of precipitation and ice formation (Shoji & 

Langway, 1989). In addition, annual dust layers and pulses of numerous chemical species 

aid the delineation of yeariy cycles of deposition (Hammer, 1989). 

Speleothems exhibit aimual banding (Baker e i al, 1993) related to the kinetics 

o f calcite deposition which is dependent upon many factors, including temperature, 

atmospheric concentration of carbón dioxide, water f i lm thickness and drip rate, and 

concentration of calcite in vadose water (Baker et al, 1995). The layers may be detected 

by luminescence at U V wavelengths, either by microscopy, photography or photodetector 

(Shopov et al, 1994). Uranium series dating has been carried out in order to demónstrate 

the correlation of speleothem growth with glacial and interglacial periods (Gordon et al, 

1989). 

Goral growth is strongly correlated with light intensity and water temperature, 

and occurs in the form of annual pairs of low- and high-density aragonite (CaCO^) layers 

(Baumgartner eí al, 1989). These are observed by x-radiography or by Illumination with 

U V radiation and therefore counted, and thus used in the construction of a chronology. 

Tudhope (1994) suggests, however, that formation of the growth bands is affected by 

many environmental factors, isolation of any single one of which has proven difficult. 

Thus density or thickness of banding may not represent an unambiguous environmental 

Signal (Druffel & Griffin, 1993). 
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2.3.3,2 Radiometric dating 

M a n y materials deposited i n a physical system contain chemical elements 

which are naturally radioactive. These may be detected and, depending on half-life, 

utilised for dating purposes. A l l material containing carbon w i l l incorporate small amoimts 

o f ^'^C, an isotope produced by interaction of extra-terrestrial particles with the Earth's 

atmosphere. Wi th a half life of ca 5730 years, it is thus suitable for the dating of 

materied up to ca 50000 a. Presence of an excess in modem material owing to nuclear 

testing and the dilution of the global ^"^C assay by fossil fuel combustion (the 'Suess 

effect'; Suess, 1970), however, makes this technique unsuitable for very recent dating. 

Typ ica l materials that may be ut i l ised by this method include bone (Arslanov & 

Svezhentsev, 1993; Hedges et al., 1995), peat (Shore et al., 1995), wood (for example, 

McCormacef al., 1995; Zaitseva, 1995), shells (Heiemielson et al., 1995), organic-rich 

muds (for instance, Preece, 1995) and algae (Maclntyre et al., 1996; Sartoretto et al., 

1996). 

Three techniques are employed for the quantification of the amounts of ^'^C 

present in a sample: gas-proportional counting (GP; Kromer & Mi inn ich , 1992), l iquid 

scintillation counting {LS; Polach, 1992), and accelerator mass spectrometry (AMS; 

Beukens, 1992). Gas counting and l iqu id scintillation are based upon the detection of p-

particles emitted through the radioactive decay of ^"^C to i^n^ the former technique by their 

immediate detection and the latter through their interaction with a chemical compound 

termed a scintillator, which fluoresces upon passage of energetic particles through it. 

Numbers o f ^"^C atoms present in a sample are determined by the A M S technique, which 

offers increased sensitivity (i.e. smaller sample size), and the ability to perform specific 

and often specialised chemical treatments on the components of a sample, prior to dating 

(Hedges, 1992). Wi th each technique, however, problems exist which may act to yield 

incorrect or inconclusive dates, including the contamination of material imder investigation 

by younger or older carbon (Hedges, 1992; Olsson et al., 1983), the 'hard water' and 
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'reservoir' effects (Olsson et al, 1983), the nature of sample pretreatment (Hedges, 

1995), and from errors introduced by the variable nature of atmospheric ^"^C production 

(Stuiver, 1989). 

Decay of the near-ubiquitous isotope ^ ^ ^ U , to ^^°Pb (Half l ife 22.26 years), 

may be used to date recent sedimentary material (Gale et al, 1995). The ^^°Pb detected 

may be classified as unsupported (out of equilibrium with its parent radionuclide, ^ ^ ^ a , 

and derived from catchment sources) or supported (produced from decay of in situ 

radionuclides, and in equilibrium with precursor ^^^Ra). B y quantifying total ^^°Pb and 

^^^Ra, the amount of unsupported ^^°Pb may be calculated. Thus, by assuming a constant 

rate of supply from the catchment, the age of the sediment may be determined (for 

instance, Appleby et al, 1979; Appleby et al, 1990; Rose et al, 1995). 

A further dating method utilises the decay of ^°Be (half life 1.6 x 10^ a), a 

radioisotope which is produced i n the atmosphere by cosmic ray-induced nuclear 

reactions. It is involatile, and is thus transported from the atmosphere by precipitation or 

dry deposition (Lorius, 1990). M u c h use is made of this technique in the analysis of ice 

cores, where the concentration o f ^°Be may be considered an indicator o f 

palaeotemperatureandpalaeoprecipitation(Yioue/ al, 1985). Correlation of this isotope 

with others of cosmogenic origin enables estimation of rates of production and thus solar 

activity (Beer et al, 1994; Oeschger and Beer, 1990; Raisbeck et al, 1990). 

M a n y other isotopes may be utilised for dating, depending on the material 

under investigation. The decay of Uranium (^^"^U; half life 250 000 a). Thorium (^^°Th; 

75 000 a), and Protoactinium (^^^Pa; 32 000 a) may be monitored in samples of marine 

detritus (for example, Slowey et al, 1996) and coral (Edwards et al, 1997; Eisenhauer 

et al, 1996; Hoang et al, 1996). The half lives of these elements are considerable, 

enabling chronologies extending back over several glacial cycles to be compiled. In 

addition, dating by the potassium/argon half life 1.3 x 10^ a) technique, applicable 
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to potassium-rich minerals, such as those of volcanic origin, enables a time frame over 

geological periods to be established (Sudo et al, 1998). 

The production of radioisotopes by nuclear testing, especially during the 

period 1954-1966, led to their incorporation into many physical systems. Many isotopes 

exhibit age/activity curves that display a bimodal distribution, wi th a pronounced 

maximima during 1962-1964 and a much less intense peak around 1958-1959 (Pennington 

et al, 1973). Thus, detection of these may aid in the formation of a chronology spanning 

the past ca 50 years. Isotopes which have been utilised include ^^^Cs and 239,240py 

(Jaakkola et al, 1983). The date of the accident at the Chemobyl nuclear power plant, 

Ukra ine , i n 1984 may be utilised as a convenient chronological marker, since an 

appreciable volume of radionuclides were released and are recorded in sediments over a 

large area of Northern Europe (Appleby, 1993; Battarbee & AUott, 1994; Callaway et al, 

1996; Pinglot & Pourchet, 1995). 

2.3.3.3 Correlation with documented events 

Recognition of a signal whose origin may be determined by documentary 

evidence may enable an unambiguous temporal reference point to be fixed within a proxy 

palaeoclimatic data series. Care must be taken, however, when interpreting historical 

records, since they often contain much subjective information, and much more reliance 

may be placed upon data which are documented independently by several reporters 

(Ingram et al, 1981). Major climatic events often leave behind some evidence of their 

occurrence, such as a sudden change in tree-ring width or a unique sedimentary structure. 

Such marker horizons may be produced by events such as volcanic eruptions (Knox , 

1994), extreme floods (Ely et al, 1993), and severe storms (L iu & Feam, 1993). Whilst 

these records are necessarily confined to recent times, they may enable the construction of 

chronologies with which to correlate for example, instrumental climate records, and to 

provide a framework within which to ascertain the periodic nature of the record under 
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investigation. In addition, the présence of a marker horizon in one time séries provides a 

fixed point i n time which may then be transferred to other data séries which have been 

validated using other criteria. 

2.3.3.4 Geomagnetic and orbitally-derived chronologies 

Many Iakes sédiments retain a characteristic signal of the Earth's magnetic field 

prevailing at the time of déposition (Thompson & Oldfield, 1986). The recovery of cores 

of known alignment enables détection of changes of both dechnation and inchnation in the 

geomagnetic fîeld over time which may be correlated with référence magnetochronologies 

(Saarinen, 1994, Sprowl & Banerjee, 1985; Verosub, 1988). In addition, varves, where 

présent, permit direct comparison of magnetic and incrémental chronologies (Bjôrck et 

al., 1987). In addition, periodic reversais in polarity of the geomagnetic field occur over 

long time periods. Thèse reversais, which have been dated utilising other techniques, 

enable a séquence of sédiments, such as deep sea or long lacustrine cores to be 

independently dated against amaster chronology (Langereis et al., 1997). 

The compilation of long chronologies, spanning hundreds of thousands of 

years, bas been imdertaken by analysis of lake sédiments (Guiot et al., 1989: Grande Pile 

and Les Echets, France, 140 ka; Hooghiemstra et al, 1993: Funza, Colombia, ca 1420 

ka), ice cores (Bamola et al, 1987; Jouzel et al., 1987: Vostok, Antarctica, 160 ka; 

Johnsen et al, 1995: G R I P , 250 ka) or lœss profiles (Tanaka et al, 1995), and may be 

hindered by imcertainties of changes in sédimentation, compaction and, in the case of ice, 

towards the base of a séquence, latéral flow. In thèse cases, it is often necessary to 

correlate derived time séries with the S P E C M A P time scale (Imbrie «fe Imbrie 1986; 

Sowers et al, 1993). Compilation of this long period chronology was originally effected 

by récognition of signais of correlated global events recorded in a suite of long deep-sea 

sédiment cores, as variations i n foraminiferîd Ô^^O. Subsequently, thèse were 

radiometrically dated, or indirectly dated by corrélation with the palaeomagnetic record. 
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Table 2.2 Proxy sources - Ice cores 

Phenomenon Proxy 

Temperature 

Precipitation Ô^H, Ô^^O, lORe 

Humidity Ô^H, ô^«0 
Aerosois Naturai A I , >Na+, Ca^^ . Na+, H+, SO^^", NO3-

Aerosols Anthropogenic SO^^"^, NO3", Pb, radionuclides 

Atmospheric circulation particulates 
Atmospheric composition N2, CO2, CH4, N ^ O , c H 3 a t 

Cosmogenic ^«Be*, 26a1*, 36ci*, ^ W , ^""Cr, 39Ar-, 

Sources: Lorius, 1989a; * Loiius, 1989b, • Khalil & Rasmussen, 1989; ' Dansgaard & Oeschger, 

1989; > Legrand & Delmas, 1987; f Hammer, 1989. 

and selected as control points. A chronology was then compiled by interpolating the 

radiometric dates of other events between these control points and submitting them to 

spectral analysis, tuning the sequence of dates to produce a signal phase-locked to 

Milankovitch orbital periods. It is considered that the resulting chronology is accurate to 

±3 ka over the past 400 ka (Imbrie et al, 1989; Martinson et al, 1987). 

2.3.4 Information gained from proxy data sources 

Proxy data take many forms, and encompass time series comprising data 

derived from micro- and macrofossil zmalysis, quantification of chemical species, stable 

and radio-isotopic analysis, sequences of lamination thickness, incidence of tephra layers 

and such bulk properties as colour, density and magnetic characteristics. It would 

therefore be fruitless to attempt to mention all incidences of the utilisation of proxy data 

series. Tables 2.2-2.5 outline many types of data which have so far been recovered and 

indicate the inferences derived from them. It is important, however, to note that many 
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Table 2.3 Proxy sources - Tree rings 

Phenomenon Proxy 

Temperature 6^H*, 6^ ^O, maximum latewood density* 

ring width# 

Precipitation 6^H, 6^^0, ring width, ring density 

Aerosols Naturai A l , Ca2+, Na+, H ^ , SO^^", NO3-

Aerosols Anthropogenic S04^' , N O ^ ' , Pb, radionuclides 

Cosmogenic 

Atmospheric circulation frost rings'^ 

Sources: • Briffa et al., 1988 ; # Briffa et al., 1990 ; f Suess & linick, 1990; * Feng & Epstein, 

1995; LaMarche & ffirschbœck. 1984. 

Table 2.4 Proxy sources - Marine 

Phenomenon Proxy 

Temperature Ô^^O,microfossil counts, a lkenones^Mg/Cal 

Sr/Ca», ostracoda. 

Salini ty 

Rainfall Ô^^C^ 

E N S O 

Aerosols Naturai A l , Ca2+, Na+, t T , SO^^", NO3-

Aerosols Anthropogenic SO^^", NO3", Pb, radionuclides, Cd'^ 

Cosmogenic Thermoluminescence* 

Cteeanic circulation oenthic planktonic ' 

''Cbentbic/^'SlanlOonic. ^ ^ ' C , Sm/NdA 

Terrestrial input 

Atmospheric circulation tephra 

Productivity Ô^^C, Cd/Ca , Ba/Ca», diatoms, Cd#, ^^e> 

Source: * Castagnoli & Bonino, 1988; • Tudhope, 1990; # Baumgartner et al., 1989; > Rutsch et al., 

1995; ' Eglinton et al., 1992; t Wood et al., 1993; Shen et al., 1987; t Dwyer et al., 1995; 

Mitsuguchi et al., 1996; A Innocent et al., 1997. 
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Table 2.5 Proxy sources - Lacustrine sediments 

Phenomenon Proxy 

Tempeiature 6^H, 6^^0, beetle assemblages*, pollen'^ 

Ptecipitation 6^H, 6^^0, lamination thickness, pollen'^ 

Palaeohydrology S^H/d^^QSf 

Salinity Mg/Ca^ 

p H diatoms 
Erosion Na^. K , . Mg^ , Fe^, M n ^ 
Redox 

Productivity ^ b ' ^ b ' ̂ b ' ^^b' Monocarboxyhc acids. 

Pigments 
Eutrophication Ca- Pa 
Sediment source (organic) Hydrocarbons, C / N , 6^^C, Sterol/stanol 
Aerosols Natural Heavy metalSp 

Aerosols Anthropogenic P C B s A , P A H s " , S C P s t , SO^^", NO3", Pb, 

radionuclides 

Atmospheric circulation tephra 

Sources: O'Sullivan, 1995: - auttngenic,, - biogenic, - allogenic; # Riketts & Johnson, 1996; 
a D C 

• Coope, 1987; Vincens et al., 1993; ' Sanders et al., 1994; A Sanders et al., 1993; t Rose et al., 

1995. 

proxy series may be derived from more than one source and may thus provide opportunity 

for correlation between data sets, forming a cornerstone of palaeoenviromnental analysis. 

2.4 Climatic context 

2.4.1 Present Climate of the British Isles 

The location of Scotland on the northwestern seaboard of Europe places it 

under the influence of one of the most powerful sources of climatic change- the North 

Atlantic Ocean. The common mechanisms which drive chmate systems; deep water 

formation; oceanic upwelling; the Polar Front; Gulf Stream, and the northerly atmospheric 
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Jet Stream, ali of which are subject to many extemal forcing factors, are ali present in this 

area (Lowe, 1993). Westerly airflows derived from atmospheric systems above the North 

Atlantic are important in determining the chinate experienced in the Scottish Highlands. In 

particular, the duration, quantity and frequency of precipitation are paramount in 

influencing the quantity and quality of sediment delivered to water bodies within the 

region. Thus, an understanding of the climatic regime which affects the region is of some 

importance to this study. 

2A.2 Lamb Weather types 

Maps recording daily weather over the Bri t ish Isles since 1873 bave been 

classified by Lamb (1950), who concluded that seven major categories of weather type 

were prevalent, according to airflow direction or isobaric pattern (Table 2.6). The origjn 

of the airflow, either maritime or Continental, polar or tropical, controls the amount of 

moisture contained in it, and thus the likelihood of precipitation. 

It has been determined that, annually, the most frequent airflow type over the 

Brit ish Isles is at present westerly (Barry & Chorley, 1992). The minimum for flows of 

this type occurs in May , when northerly and easterly types predominate. Cyclonic airflows 

are most frequent in July and August, while anticyclones are most common in June and 

September. Both occur at similar frequencies. 

Smith (1995), in comparing rainfall data for the period 1869 to the present, 

suggests that Lamb's schemé does not entirely describe the nature of precipitation over 

Scotland. Westerlies are becoming rarer in frequency over the U K , especially during 

winter, and bave been replaced by an increased incidence of cyclonic and anticyclonic 

systems (Briffaer al, 1990; Jones et al, 1993; Lamb, 1972). Mayes (1991), however, 

noted an increase in westerlies over Scotland in regional data from the mid 1970s, leading 

to increased precipitation which, again, is not represented in Lamb's more general scheme. 
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Makrogiannis et al. (1982) studied changes in atmospheric circulation over the North 

Atlantic during the period 1873-1972 by means of the zonal index, which may be defined 

as the mean pressure différence between latitudes 35° and 55**N. They identifïed three 

subperiods of differing characteristics. It was noted that the strength o f winter westerly 

airflows had decreased i n the period 1940 to présent Jones et al. (1993) foimd significant 

corrélations with Lamb's weather types and long range précipitation séries for England 

(positive r ) and Wales (négative r ). 

Table 2.6 General weather characteristics associated with Lamb "airflow types" over the 

British Isles. {Front Barry and Chorley, 1992). 

Airflow type Weather type 

Westerly Unsettled with variable wind directions as 

dépressions cross country. M i l d and stormy in 

winter, cool and cloudy in summer. 

North-westerly Cool , changeable. Strong winds and showers 

affect windward coasts. 

Northerly Cold in ail seasons, often associated with polar 

lows. Snow and sleet in winter, especially in 

North. 

Easteriy Cold in winter, sometimes severe i n east and 

south. Warm in summer, dry in west. 

Sometimes thimdery. 

Southerly Warm and thimdery in summer. M i l d and 

damp in winter when associated with Atlantic 

low. If high présent over central Europe may 

be cold and dry. 

Cyclonic Rainy, often gales and thunderstorms. M a y be 

due to rapid or persistent dépressions. 

Anticyclonic Warm and dry in siraimer. Co ld and frosty in 

winter. 
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2.4.3 Climate anomalies 

Although the types of airflow pattern described in the previous section occur 

regularly, such schemes provide an incomplete description of the climate over the British 

Isles. Some circulation pattems occur infrequently, but possess the ability to generate 

events which may be extraordinary, and thus need to be considered i n relation to the 

possible occurrence of a climatic signal in lake sédiments. The most common anomaly is 

formation of blocking conditions, associated with anticyclonic Systems (Barry & Chorley, 

1992), when the breakup of zonal (E-W) circulation in mid-latitudes causes meridional ( N -

S) circulation to occur. Blocking may occur over Fennoscandia, particularly in winter, 

when severe weather over mainland Europe and the Brit ish Isles is experienced. The 

winters of 1881, 1895, 1940 and 1947 were notable in connection with this type of 

anomaly. Location of the blocking system is important, as is illustrated by the occurrence 

in 1955 of anticyclonic activity over the North Sea, which produced a very fine siunmer. 

During the previous year blocking had developed over Fermoscandia, causing a very wet 

August. (Barry & Choriey, 1992) 

2.5 Causes and nature of variability in the climate of the North 

Atlantic sector 

2.5.1 The North Atlantic Polar Front 

A r c t i c and Polar frontal Systems are formed by différences i n the 

characteristics of neighbouring air masses. Major zones of frontal development occur, 

especially in winter, where there is a différence between the warm air over the océan, and 

cooler air over land. The location of the North Atlantic Polar Front ( N A P F ) is variable, 

extending across the Atlantic Océan from the Sci l ly Isles to the Gul f of Mexico in winter 

but retreating northwards to about 50°N in the northem hémisphère summer (Henderson-

Sellers & Robinson, 1987). The frontal system is the location for the genesis of families 
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of cyclones, which then move eastwards across the Atlantic. Successive members of each 

family travel on a more southeiiy path, the final one entering the zone of the Trade Winds, 

bringing cold Polar air to that circulation. Location of the N A P F is thus a critical factor in 

influencing the routes travelled iicross the Atlantic Ocean by these depressions, and 

consequentially the climate experienced by the British Isles, especially in terms o f storm 

frequency and strength (Taylor, 1996). Evidence presented by Lamb (1979) suggests that, 

during the Lit t le Ice A g e in the northern hemisphere {ca 1100-1900 A D ) , changes in the 

direction, intensity and frequency of storms i n the Atlantic sector may have been directly 

attributable to variations in the location of the N A P F . 

2.5.2 Oceanic circulation 

A further critical component of the climatic system over the British Isles, is 

circulation within the North Aflantic Ocean, which is part of a global system driven by 

changes i n water temperature and salinity {Figure 2.5. After Broecker, 1988). In this 

sector, warm surface waters from the tropical and equatorial regions move northwards, 

losing energy and gaining salmity. The surface water mass then sinks at high latimdes and 

returns southwards as deep water ( N A D W ) , passing around Southern A f r i c a and 

spreading into the Indian and Pacific Oceans. Here, it again warms, becomes more 

buoyant and flows back to the Atlantic as surface water (Broecker & Denton, 1990). 

Variations in this system throughout the last 18 ka B P (and beyond) have been detected, 

indicating its inherent variability and effect on the climate of the North Atlantic region 

(Keigwin and Jones, 1994). 

There is evidence that, during the last glacial cycle, the above thermohaline 

circulation was 'switched o f f (Broecker & Denton, 1990), or at least suppressed (Masl in 

et al., 1995). B y the examination of fossil assemblages, and the study of grain size in 

marine sediment cores, changes in oxygenation and current flow have been detected, 

which are indicative of variations in vertical oceanic circulation. This mechanism has been 

31 



2. Literatnre Review 
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Figure 2.5 Global oceanic thermohaline circulation involves the deep waters of the North 

Atlantic Océan (A/îe/-fîroeciter, 7988) 

adopted in order to account for short-term rapid changes in climate, such as those 

occurring throughout the glacial/Holocene transition, and for the origin of the Yçunger 

Dryas cold evenL It bas been proposed (Brœcker et al., 1989) that during déglaciation, 

meltwater released from the Laurentide ice sheet produced a cold,.low-salinity 'pond' of 

water on the surface of the North Atlantic, preVenting northward transport of beat and 

causing a temporary retirni to glacial conditions. Other investigators, however, bave found 

évidence in sédiments both from continental shelf and abyssal environments to suggest 

that such meltwater discharges were not as large as estimated, and doubt their efficacy in 

causing thermohaline disruption (Jansen & Veum, 1990; de V e m a l et al., 1996). 

Andrews et al. ( 1995) bave investigated the provenance of detrital carbonate believed to 

have been discharged to the North Atiantic at the time of the Y D (ca 11 ka ^'^C BP) . They 

bave determined its origin to be within the région of Hudson Bay . They also propose, 

however, that this discharge d id not precipitate cooling, but that, along with a similar, 

yoimger event (ca 8.2 ka B P ) , it merely represented the final collapse of the Laurentide ice 

sheet. 
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Evidence from deep sea cores suggests, however, that at other times 

throughout déglaciation, similar température fluctuations have occurred (Berger et al., 

1987), notably those during He in r i ch events (major iceberg ca lv ing events from 

continental ice sheets; Andrews et al., 1994; Broecker, 1994, Broecker et al., 1992; 

Lehman, 1996), but also at times previous to thèse (Bond Sl Lot t i , 1995). Analysis o f the 

grain size of drift sédiments from the eastem North Atiantic bas indicated that changes in 

the rate o f circulation of North Atlantic Deep Water ( N A D W ) mirrors those of North 

Atlantic Middle Water ( N A M W ) . This suggests that circulation does not halt, but switches 

mode, from that involving N A D W (warm Atiantic) to one vigorously producing N A M W 

(cold Atiantic) (McCave et al., 1995). 

Indeed, récent research may support the concept of a constantiy changing 

circulation system, variable even during warm periods. Mention may be made here of the 

'Great Salinity Anomaly ' of the late 1960s, 1970s and early 1980s, which caused a 

temporary dechne in the production of cold deep water in the Greenland and Labrador 

Seas (Hay, 1993). Ke l logg (1984) has demonstrated that, since the begiiming o f the 

Holocene, surface waters in the Denmark Strait have been affected by short-term 

oscil lat ions i n température. Koç et al. (1993) have postulated that the région 

encompassing the Greenland, Iceland and Norwegian (GIN) Seas, may respond rapidly to 

variations i n insolation. They report changes in diatom assemblages indicative of differing 

sea surface températures in that area during six time slices throughout the Holocene. The 

imphcation for the global oceanic circulation system, in which the North Atiantic plays an 

important rôle as the origin of cold, oxygen-rich water, is stressed by Schäfer et al. 

(1995). 

2.5.3 Summary of the Holocene climates of NW Europe 

The change from a glacial Late-Pleistocene to an interglacial Holocene climate 

may be considered to have begun rather abruptiy about 14 ka B P , with the rapid melting of 
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the Cordilleran and Fennoscandian Ice Sheets (Matsch, 1976). It has been demonstrated 

that, by 10 ka B P , both had disappeared, with the Laurentide Ice Sheet melting more 

slowly, lagging by ca 2 ka (Goodess et al, 1992). Around 10.3 ka B P Scotland 

experienced increased airborne particulate transport from the south owing to a weakening 

in atmospheric circulation (Tipping, 1989). 

Table 2.7 Summary of Holocene clunatic divisions. {After (t) Lamb, 1982 & (*) 

de Beaulieu et al., 1982) 

Younger Dryas 

Pre-boreal 

Boreal 

Atlantic 

Sub-boreal 

Sub-atlantic 

Medieval Warm Period 

Little Ice Age 

10700 bp* 

10300 bp* 

9000 bp* 

8000 bp* 

4700 bp* 

2600 bp* 

900-700 bpt 

500-300 bp* 

The period from complète glacial tomore temperate conditions bas been 

recognised as containing phases of widespread cooling occurring at intervais, the major 

example of which is the Younger Dryas. This was the final cooling event before complète 

déglaciation, which began about 10.8 ka B P , and was of less than 1 ka duration (Bjôrck 

et al., 1996; Goslar et al., 1995; Lotter, 1991a). Evidence suggests that the onset of this 

event may bave been extremely rapid, perhaps lasting only 100 years. Although the Y D 

was initially considered to be a European phenomenon, évidence now suggests that it was 

a global event (Reasoner et al., 1994). 

The advent of high resolution analysis of proxy climatic data bas made it 

possible to detect other transient cool ing events wh ich interrupted the process of 

déglaciation. Thèse are also believed to have had a marked effect on the climate of the 
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North Atlantic région. The Amphi-Atlantic Oscillation (Levesque et al, 1993), a ca 250-

year event has been observed in the Dye 3, G I S P and Summit ice cores from Greenland, 

i n addition to lake sédiments from Canada (Levesque et al, 1993), and continental 

Europe (Broecker er al, 1988). AUey et al (1997) bave suggested that signais observed 

from the GISF*2 ice core indicate the occurrence o f a Younger-Dryas type climatic 

perturbation at ca 8.2 ka B P , which may be correlated with similar events as distant as 

Tibet and north-west India 

B y 8.5 ka B P , owing to continued weak atmospheric circulation, Europe was 

experiencing dry, anticyclonic warm summers. Climatic gradients were pronounced in an 

east-west direction, enhanced by the still extant Laurentide Ice Sheet, wi th zonal centres 

moving further North (Lamb, 1977b). During the period ca 8-6 ka B P , winter circulation 

over northwest Europe was similar to that of the présent (Flohn & Fantechi, 1984) with 

variations in climate somewhat smaller (Lamb 1977b). Températures continued to rise, 

culminating over the period 7-5 ka B P i n the Hypsithermal. Summer températures 

throughout Europe at this time are considered to have been ca 2-3'*C higher than présent, 

leading to a rise i n global sea level as remaining ice, both on land and i n the océans, 

melted. Owing to the lag time between ice melt and sea level rise, sea levels reacbed a peak 

of 3m above présent about 4.5 ka B P . 

Around 6.5 ka B P , the North American atmospheric trough opened and 

moved further eastward, forcing westerly airflows, originating over the Atlantic Océan, 

further into Europe (Lamb, 1977b). Reduced latitudinal climatic gradients around 6 ka B P 

produced warm summer températures in Central and Northern Europe, but with cooler 

winters throughout Northwestern, Central and Southern parts (Himtley & Prentice, 1988). 

Europe experienced a steepening in climatic gradients in both latitudinal and méridional 

directions foUowing the Hypsithermal (Huntley & Bi rks , 1983), leading to increased 

storm frequency, as evidenced in Orkney aroimd 5 ka B P (Keatinge & Dickson, 1979). 
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About 4.5 ka B P , a general westward shift of surface pressure patterns in 

Europe, coupled with a weak circulation system during the winter, led to a fall in aimual 

temperatiores (Lamb, 1977b). The renewed growth of peat bogs in northern Europe during 

the period 3-2.3 ka B P (the Iron Age) is thought to indicate the onset of generally wet 

conditions which culminated i n a cold epoch, probably beginning around 2.5 ka B P 

(Lamb, 1977b). 

Colonisation of Iceland and Greenland by Norse peoples around 1000-800 a 

B P is thought to be indicative of an amelioration in climate, with summer temperatures up 

to r c warmer than present (Lamb, 1977a). This Early Medieval warm epoch may not 

have been reproduced globally, however. The Little Ice A g e began aroimd 1430 A D and 

was characterised by two periods of harsh climatic conditions interrupted by more equable 

temperatures (Lamb, 1995). A general advance of glaciers throughout Europe, A s i a and 

North A m e r i c a , and the l imits of Arc t i c pack-ice expanded, suggesting that sea 

temperatures were some 3' 'C cooler than present. Sugden (1977) has suggested the 

development of glaciers in the Cairngorms between the seventeenth and nineteenth 

centuries. Evidence o f a similar cooling in the Southern Hemisphere is not available 

although the period lfôO-1900 A D is recorded to have been generally colder than today. 

More recently, a warming trend has been detected from 1880-1940 A D , especially in the 

Northern Atlantic, although this was replaced by a cooling from 1940 to the 1970s in the 

northern hemisphere (Lamb, 1995). The latest evidence suggests a renewed wanning over 

the past few years (Figure 2.6; Parker et al., 1992). 

2.5.4 Climatic teleconnections 

These may be described as extreme climatic events which occur at the same 

time in widely separated parts of the world, usually as a result o f characteristic weather 

patterns, and which are related to flow patterns within the tropospheric westerlies (Barry 

& Chorley, 1992). They may be caused by shifts in position and number of the quasi-
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Figure 2.6 A waraiing trend revealed in recent Central England temperature series {After 

Parker et al., 1992. Additional data from: http://www.cru.uea.ac.uk/ 

~mikeh/datasets/uk/cet.htm) 

stationary Rossby waves which penetrate into tropical latitudes and which are associated 

witb blocking anticyclones (Henderson-Sellers & Robinson , 1987). Evidence for 

teleconnections i n the rainfall belt of the tropics and subtropics is related to Walker 

circulation (Barry & Chorley, 1992). O f particular interest to palaeoclimatologists is the 

recognition of similar or identical climatic signals i n proxy data obtained from sites 

throughout the globe. Bender et al. (1994) have correlated signals in both the G R I P and 

GISP2 ice cores with those recorded in the Antarctic Vostok core and have póstulated that 

northem glacial and interstadial periods affect the Southern Hemisphere only i f their 

duration is in excess of 2000 years. 

Key events which occurred during the late Quatemary w i l l now be examined 

in Order to highlight the reasons behind the examination of the climatic signal in the 
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sédiments of L o c h Ness, and its comparison wi th other proxy chmatic time séries. 

Discussion of the Younger Dryas, the Holocene Hypsithermal, the Médiéval Optimxmi, 

and the more récent Little Ice Age, w i l l demonstrate that thèse épisodes, initially detected 

in European records and assumed to be local in extent, have since been recorded globally. 

2.5.4.1 The Younger Dryas cold event (YD) 

The abrupt retum to colder conditions which interrupted the rapid warming 

after the last glacial maximum, has been determined by numerous observations to have 

occurred at ca 12 ka B P . It is apparent in many other datasets from diverse locations in 

both Northern and Southern Hémisphères (Denton & Hendy, 1994: New Zealand (but see 

Singer et a l . , 1998); Edwards et al., 1993: New Guinea; Gasse et al., 1991: Tibet; van 

Geel & van der Hammen, 1973: Colombia; Markgraf, 1993: South America, but see also 

Heine, 1993). Its signatiwe, however, is recorded most strongly in environmental records 

from Europe (Goslar et al., 1993; Lotter, 1991; Nesje & Dabi , 1993; Strômberg, 1994; 

Hajdas et al., 1995), North America (Levesque et al., 1993; Peteet et al., 1990; 

Reasoner et al., 1994) and the Arc t ic (Grootes et al., 1993; Mayewski et al., 1993; 

T a y l o r e / al., 1993). Jouzel (1994) highlights the lack of a comparable signal for this 

event in the Antarctic Vostok ice core, although other climatic fluctuations during the 

Pleistocene may be observed. Very récent data from an ice core collected at Taylor Dome, 

Antarctica, suggests that effects of the Y D may have been felt over that continent (Steig e t 

al., 1998). Goslar et al. (1995) have attempted to correlate the cooling signal across a 

number o f European datasets (German, Polish and Swedish lacustrine varves, German 

Pine chronology, GISP2 and G R I P ice cores) in order to ascertain whether or not the 

event was synchronous throughout the North Atlantic sector and Europe. 

2.5.4.2 The Holocene Hypsithermal 

The rapid rise in summer températures throughout northem Europe after the 
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Younger Dryas has been demonstrated, by the analysis of fossil beetle assemblages, to 

have been of the order of T^C (Coope, 1987), leading to the establishment of modem 

cUmatic conditions within 1000 years from the beginning of the Holocene. This rise was 

not, however, experienced in the Americas, where decline of the Laurentide ice sheet 

lagged behind its Fennoscandian counterpart by ca 2000 years (Goodess et al, 1992). 

Maximum temperatures were attained ca 8000 a B P and may have been of the order of 2°C 

in excess of modem summer values, which was sufficient to ensure the complete melting 

of many remaining polar ice caps and the retreat of many Alp ine glaciers (Leeman & 

Niessen, 1994). Tree l ine limits lay ca 200 m higher than at present in the Alps and in 

Scotland, and coniferous forests extended up to 250 km further north than at present in 

Fennoscandia and Canada (Whyte, 1995). 

The Hypsithermal appears to have been more easily detected i n records from 

the Northem Hemisphere, although ice cores from Vostok in the Antarctic reveal slight 

temjjerature increases (Jouzel et al., 1987). There appears to have occurred at the same 

time, however, a slight cooling of the Mediterranean region, owing to an increase in 

seasonality and continentality of climate. Increase of insolation elsewhere led to more 

intense heating of continental interiors and created a stronger monsoon circulation over 

Afr ica and A s i a , bringing increased rainfall over regions further north (Gasse & van 

Campo, 1994). 

The period of increased temperatures persisted until ca 5000 a B P when it was 

replaced by a cooler, less stable regime in mid-latitudes and by more arid conditions in the 

sub-tropics. Temperatures throughout the temperate regions of the Northem Hemisphere 

fell by ca VC, with consequent reduction in tree line elevation. Polar temperatures appear 

to have declined by some 3-4°C, leading to southwards movement both of coniferous 

forest limits and of the N A P F , which affected the paths of depression systems across the 

Atlantic Ocean and caused an increase in rainfall over the British Isles (Harding, 1982). 

39 



2. Literature Review 

2.5.4.3 The Early Medieval optimum 

A period of renewed warmth has been detected by an increase in élévation of 

the Alp ine tree-line, by ca 150 m, and has been dated as occurring most strongly in the 

twelfth and thirteenth centuries (Lamb, 1965). A t this time, a northward shift of both the 

N A P F and l imits of pack ice permitted voyages into northem seas and prompted 

colonisation of the Arctic lands first by Irish peoples, in the Faroes and i n Iceland, and 

then by Norse migrants, in Iceland, Greenland and Amer ica ( M c G o v e m , 1981). The 

change in climate has also been detected i n palaeoclimatic archives from both hémisphères, 

and is observed in the Bristlecone Pine {Pinus aristata Engelm.) chronology from 

CaUfomia (La Marche, 1974). In addition, investigation of the age distribution of drowned 

tree stumps from lakes located in the same région, reveáis the existence of periods of 

lower water level, the dating of which, by dendrochronology, suggests two periods of 

intense drought, from ca A D 892-1112 and A D 1209-1350. The causai mechanism for 

variation in cümate of this région is thought to he a contraction in the circumpolar vortex, 

with a probable change in its isobaric structure, owing to increased global températures. 

2.5.4.4 The Uttle Ice Age (UA) 

This event has been demonstrated neither to bave been (a) synchronous over a 

large area, or b) a period of continuously severe climate, but a more widespread and 

intermittent worsening of climate over a period of ca 500 years, with extreme conditions 

occurring more frequently than expected (Meese et al., 1994). Records suggest the 

occurrence of a global event, with évidence in data from the Americas, China and Japan 

(Lamb, 1995). These indicate that the L I A may be considered to bave been the most severe 

cold phase to bave occurred diuing the Holocene since the Y D . Indeed, some researchers 

bave viewed the event as an aborted initiation of a new glacial cycle (Kul lman, 1994; 

Whyte, 1995). In northem régions, the L I A may be considered to bave begun at the end of 

the medieval optimum, around A D 1100, but évidence suggests commencement at a later 
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time in western Europe. 

During this period settlements in Arc t ic régions were abandoned, because of 

crop and communication failures, and after many years of favourable harvests in Europe, 

wetter, colder conditions brought severe famine in the early fourteentb century. Glacier 

advances were noted throughout the Alps during the late thirteenth and early fourteenth 

centuries, wi th synchronous events in the Himalayas and New Zealand (Grove, 1988; 

Lamb, 1982). Dur ing this period, an expansion of both north and south circumpolar 

vortices occurred, causing a movement of dépression tracks towards the equator (Kreutz 

et al., 1997). The Brit ish Isles experienced more snow in winter, but generally, climate 

was drier than présent. Stormier conditions over the régions bordering the North Sea 

brought a greater incidence of severe flooding, a trend which continued throughout the 

fifteenth century. Periods of amélioration occurred, before recommencement of more 

severe climate from the sixteenth to mid-nineteenth centuries. The most extrême phase for 

many parts of Europe came in the late seventeenth century, when crop failure brought 

famine to Scotland and to Feimoscandia. Sea ice limits lay close to the northem coast of 

Scotland, indicating températures some 5°C colder than présent (Lamb, 1979). Glacia l 

advances were noted in A l p i n e régions and permanent snow lay on the Scottish 

Highlands, wi th suggestions of the renewed formation of corrie glaciers (Whyte, 1995). 

In other areas, différent phases of severe climate are recorded. In the Quelccaya ice cap 

(Peruvian Andes) a very cold period between A D 1490 and A D 1880, which both 

commenced and ended within three years, is recorded (Thompson, 1995). 

M a n y writers bave postulated possible causes for the L I A , but there is no 

unequivocal évidence (Whyte, 1995). Suggested mechanisms include atmospheric veiling 

owingto volcanicactivity (Rampinoef al, 1988), variations in solar output (Kerr, 1996; 

but see Kreutz et al, 1997) and changes in the circulation Systems within the Pacific 

(McElroy, 1994) or the Atlantic Océan (Grove, 1988). 
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2.6 The periodic nature of climatic and proxy-climatic time séries 

2.6.1 Introduction 

Numerous studies of palaeoclimatic phenomena have demonstrated that the 

climatic System of the Earth responds, over a wide range of time scales, to various forcing 

mechanisms, originating both extemally and intemally. The time periods involved range 

from orbitîil forcing over thousands of years (for example, Hays et al., 1976; Imbrie & 

Imbrie, 1979) to the passage of the seasons on a yearly basis. O n shorter time scales, the 

signal may become blurred owing to the large noise component inhérent in the processes 

which drive the global climatic system (Bamston, 1996). 

In récent décades interest bas been focused, for a number of reasons, upon the 

study and quantification of thèse climatic changes. First, récognition of periodic behaviour 

of the earth's climatic system may enable forecasting of large scale meteorological events 

(Mason, 1976), which would be advantageous for both économie and social reasons. 

Second, détermination of past climatic régimes would aid the interprétation of the fossil 

record and, further back in time, the understanding of the évolution of the earth (Y iou et 

al., 1994). Third, corrélation of présent climate with that of similar phases in the past 

would enable the séparation of natural effects from those of anthropogenic origin, thus 

highlighting imminent, possibly catastrophic, changes wrought by human activities (Lane 

et al., 1994). 

2.6.2 The nature and cause of climatic change 

2.6.2.1 Variations in the orbit ofthe Earth 

The climatic évolution of the earth bas been marked by a continuons change 

from glacial to interglacial conditions and back again. Duration and intensity of thèse 
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épisodes has varied throughout the record. Over long periods changes are thought, in part, 

to be driven by the variable nature of the earth's orbit around the sun, where factors such 

as eccentricity, inclination and precession vary with différent periodicities (respectively 96, 

42 and 21/19 ka). Change of this type leads to variation in the amount of solar radiation 

receivedat the earth's surface. This theory was originally put forward in 1860 by James 

CroU, but was again brought to the attention of the scientific Community by Mi lu t i n 

Milankovitch in 1920-30. 

The CroU-Milankovitch orbital theory of ice ages has since been extensively 

used to explain many climatically-induced natural phenomena, such as the répétition of 

lithostratigraphic units in rock formations (Hinnov & Goldhammer, 1991) and changes in 

sédimentation type within deep sea cores (Imbrie et al., 1989). In connection with the 

présent study, it is noted that Quatemary sédiments recovered from the North Atlantic 

Océan bave been shown to exhibit long-period variations of many physical properties, 

indicative of orbital changes in the Milankovitch wavebands (Mienert & C h i , 1995). Many 

researchers, however, believe that orbital effects alone may not be sufficient to drive 

glacial cycles. Indeed, changes in radiation over such long time scales affect only a 

fraction of the energy delivered by other possible agencies, such as changes in 

atmospheric composition and oceanic circulation (Berger, 1977; Broecker & Dentón, 

1990; Schäferei al, 1995; Whyte, 1995). 

2.6.2.2 Planetary effects 

The Earth is influenced by the gravitational attraction of the Moon, Sun and, to 

a lesser extent, the other planets of the solar System. The force exerted on the Earth by the 

first two is very much stronger than the combined effects of the others, but évidence 

suggests that certain planetary configurations may bave affected the Earth's climate in the 

récent past. For example, a major grouping of the outer planets at opposition (a syzygy) 

around 1660 A D , caused the Earth to move more quickly in its orbit when it was 
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approaching them than when moving away (Burroughs, 1992). The effect of this was to 

shoiten the duration of summers by about two days, with a corresponding lengthening of 

winters. Spéculation suggests that this event may bave precipitated the coldest speli of the 

Little Ice Age in the Northern Hémisphère. 

The combined gravitational attraction of the Sun and M o o n upon the Earth are 

far more powerful than that of the other planets, affecting crustal, Oceanie and atmospheric 

Systems. There also exists the possibility that the attraction of the Earth/Moon system, and 

that of the planets, may influence the circulation of the solar dynamo (Mörth & 

Schlamminger, 1979). Difficulty anses in the quantification and prédiction of solar-

tenestrial gravitational effects because of the configuration and orbitai periods of the Earth 

and Moon , long term changes occurring both in timing and relative position of perihelion 

and perigee, respectively. Evidence indicates that periodicities i n climatic time séries, 

resulting from orbitai variations, exist, these being: 

i) 8.85 a p)eriod of advance of perigee of the Moon , which détermines 

alignment with Earth's perihelion. 

ii) 18.61 a period of régression of limar orbitai nodes. This changes the 

accuracy of alignment of perihelion with perigee. 

Both processes appear to produce physical effects in the atmosphère and thus would be 

expected to influence climate. In particular, the 18.61-year period is the most widely 

observed in many time séries, including proxy data (for example, Currie, 1994a, 1994b, 

1994c, 1994d; M a n n et al., 1995). The strongest effects are considered to be exerted at 

high latitudes when the angles of the Moon's orbit and the tilt o f the Earth's axis are at 

extremes to the ecliptic (Bunoughs, 1992). 
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2.6.2.3 Solar variability 

The Sun is the primary energy source for many naturai processes occurring on 

the Earth. Its radiation output is not constant, however, as luminosity has increased by 

some 30% over the past 4 Ga (Lamb, 1977a) and both visible and U V components of this 

output are known to vary significantly over timescales from 27 days to ca. 90 years (Stix, 

1991; W i l l s o n & Hudson, 1988). The most easily observable phenomenon which 

indicates that the surface condition of the Sun is not constant, is the sunspot cycle, the past 

record of which extends for at least300 years. The basic ca 11-year cycle exhibits a 

number of higher harmonies, viz. the 22-year Haie cycle, which represents the period 

between reversais of the solar magnetic dipole, and the 80-90 year Gleissberg cycle, 

which delineates the long term modulation of sunspot mmfibers {Figure 2.7). 
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Figure 2.7 Variation in sunspot numbers 1750-1991 A D . The ca 1 l-year Haie cycle is 

illustrated by the many peaks and troughs, while ca 80-year Gleissberg cycles 

are delineated between the bold vertical lines {Source: NOAA, WDC-A) 

Sir Wi l l i am Herschel, in the early nineteenth century, suggested that changes 

in solar output may influence the weather. Schwabe quantified, in 1843, historical 
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variations in sunspot number, fuelling furtber the spéculation that the solar cycle and 

terrestrial climatic change may be linked by cause-and-effect. Si r Napier Shaw, i n bis 

Manual of Meteorology, published in 1926, mentioned that at least 100 différent cycles 

had been discovered in weather records (Burroughs, 1992). The validity of solar-

terrestrial relationships bas been extensively studied during récent décades, and bas 

invoked many possible mechanisms of action (Labitzke and van Loon , 1990; McIntyre, 

1994; Reid and Gage, 1988; Tinsley, 1988). Although many apparent instances of 

corrélations between climatic trends and solar activity have been identified, there stili 

remains suspicion that such évidence may be circumstantial (Briffa, 1995). 

Indication that changes in solar radiation may affect processes on the earth is 

most strongly observed in the production of atmospheric ^^C by cosmic ray bombardment 

of ^"^N (Oeschger & Beer, 1990; Stuiver, 1994; Stuiver & Quay, 1980; Wigley & Ke l ly , 

1990). Solar activity modulâtes the intensity of cosmic rays impinging upon the upper 

atmosphère, by causing altération of the intensity of the geomagnetic field. Periods of high 

sunspot activity are correlated with low ^"^C production and vice versa. Superimposed 

upon this signal are long term changes which may be the product of variation of the earth's 

magnetic field independent of other extemal factors. 

Markson (1981) bas posmlated that modulation of cosmic ray intensity by 

solar activity leads to variations in the electric field which act to influence thunderstorm 

activity. He bas also argued that changes in the flux of energy from the Sun are too weak 

to affect terrestrial weather Systems, and that the sometimes rapid changes observed 

require an electromagnetic explanation. Markson suggests that at high latitudes a high 

positive corrélation between solar activity and sunspot number indicates that the driving 

force is solar proton flux. A t low latitudes, however, cosmic ray modulation by magnetic 

field variations provides the Ímpetus. Together thèse produce a signal out of phase with 

solar activity. 

46 



2. Literature Review 

Interest has long been focussed on the correlation of weather records with 

sunspot variability. W i t h the application of recent advances in data manipidation and 

Statistical analysis, many instances bave been highlighted. One of the problems which has 

beset research in this area is the relatively short length of reliable climatic time series and 

the limited ränge of variables measured by histoiical solar observers. The longest reliable 

climatic t ime series available is the homogeneous temperature record, compiled by 

Professor Gordon Manley (1974), depicting Central England temperatures from 1659 to 

1973 A D (Figure 2.8). Düring the same time period, the Sun underwent 28 simspot and 

three Gleissberg cycles, with early observations being made during a quiet period of solar 

activity,termed the Maunder Minimum (Hoyter al., 1994; Mömer, 1993). 
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Figure 2.8 The temperature record for Central England, compiled by Manley (1974). This 

represents the longest reliable indicator of temperature Variation available. 

Mömer (1993) highlights a possible correlation between the length of the 

simspot cycle and mean surface temperature in the northem hemisphere. Friis-Christensen 

& Lassen (1991) bave determined that, for the last 130 years at least, shorter period 

sunspot cycles have occurred at times of relatively high surface temperature and vice 
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versa. The relationship fails, however, at times around the Maunder M i n i m u m , where 

temperatures were severe although sunspot cycles were short. 

2.6.2.4 Albedo variations 

The Earth's atmosphere is generally opaque to solar radiation, except for those 

wavelengths representing the near-ultraviolet, visible light, near-infrared, radio waves, 

and extremely energetic atomic particles. Short wavelength radiation causes heating of the 

earth's surface, leading to re-radiation of longer wavelengths back into space. Certain 

components of the atmosphere selectively absorb this long wavelength radiation, leading 

to further warming. This is termed the Greenhouse effect, without which average global 

surface temperature would fall to ca -15°C (Whyte, 1995). Additional concentrations of 

these gases are thought to enhance this effect, causing the problem of Global Warming 

(Cline, 1992). Solar magnetic changes have been implicated in the variation in atmospheric 

concentrations of chemical species, notably O^, N O ^ , N ^ O and C H ^ ^ which alter the 

radiative balance of the atmosphere and thus the surface temperature. The effects are not 

uniform, but centred on the geomagnetic poles, which themselves are origins of 

atmospheric circulation. The conrelation of variation in the temperature of the stratosphere 

{p 47) with sunspot cycle is consistent with this hypothesis. 

The presence in the atmosphere of particulate matter has also been 

demonstrated to affect global temperatures (LaMarche & Hirschboeck, 1984). The most 

common source is volcanic eruptions. The link between past eruptions and disruption of 

climatic processes has hitherto been tenuous, partially because of the scarcity of reports of 

volcanic events from remote regions of the globe and also because of the difficulty of 

assessing their strength and nature. Recent studies have, however, demonstrated that 

several well-known eruptions have manifestly affected climate in subsequent years, and 

there is growing evidence that vulcanism may be responsible for short term climatic 

change in prehistory (Baillie & Munro, 1988). 
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Lamb (1970) compiled a quantitative chronology of past volcanic activity, 

albeitconcentratedinthemid-latitudes of the northem hémisphère. This Dust Veil Index 

(DVI) considered climatic effects of vulcanism and observed that, compared with the 

preceding four centuries, there was Uttle volcanic dust in the atmosphère during the late 

nineteenth and early twentieth centuries. This prompted spéculation about the présent 

warming trend, and the possible causes of the Little Ice Age. Récent analysis of thèse data 

by Currie (1994c) bas highlighted a "possible periodicity", with éléments of 18.6 and ca 

11 year cycles inhérent in the séries. 

A n alternative to this index is one proposed by Newhall and Self (1982), and 

termed the Volcanic Explosive Index (VEI) . This is an assessment, based entirely upon 

geological criteria, of the potential for the injection into the stratosphère of material from 

volcanic events, thus determining the f)ower of respective éruptions to influence global 

climate. In addition, émission of volcanic gases, especially sulphur dioxide, may al ter. the 

opacity of the atmosphère and thus its radiation balance. Evidence of past vulcanism may 

bedetectedas tephralayers in sédiments (Dugmore, 1989; Zolitschka et al., 1995), or as 

acidic layers in ice cores (Hammer, 1980; Lorius, 1990). 

2.6.2.5 Quasi-Biennial Oscillation 

The most regular source of variation within the Earth's atmosphère is termed 

the Quasi-Biennial Oscillation (QBO). This may be defined as the regular reversai of 

stratospheric winds between east and west, which occurs with a period of about 28 

months. The effect is most strongly observed at an altitude of ca 30 km, where the 

ambient pressure is ca 20 mb. The velocity of easterly winds is greater than those blowing 

from the west, the amplitude between extrêmes being about 50 m s A s the cycle 

progresses, the winds move down into the denser, more turbulent atmosphère and 

weaken, but still appear to possess enough energy with which to influence climate, since a 

28-month periodicity is apparent in many climatic time séries (Burroughs, 1992). 
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Figure 2.9 Correlatìon of solar activity, measured as flux of 10.7 cm radiation (dashed 

lines), with mean latitude of storm tracks in the North Atlantic región (splid 

lines), separated according to phase of the stratospheric Quasi-Bieimial 

C)scillaüon(A^er Tinsley, 1988). 

Labitzke and van Loon (1990) have demonstiated that i f the two phases of the 

Q B O are considered individually, a striking correlation between stratospheric temperature 

and solar activity is observed. Further research by Tinsley (1988; Figure 2.9) has 

highlighted the correlation between solar flux at a wavelength of 10.7 cm and latitude of 

winter storm tracks across the Atlantic Ocean, when these events are separated according 

to the phase of the Q B O . 

Variations in the upper westerly circulation are closely l inked with average 

positions of weather systems at lower altitudes, especially in the North Atlantic sector 

which marks the boundary between warm tropical waters flowing poleward (Gulf Stream) 

and cold polar currents. Tay lo r (1996) has reported that the position of the north wal l of 
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the Gul f Stream and the summer abundance of zooplankton recorded in Windermere (m 

the English Lake District; 54.5°N, 3°W) appear to be correlated. He infers that this may be 

caused by variations in ocean-atmosphere heat exchange and subsequent effects on 

weather systems over the region. 

2.6.2.6 North Atlantic Polar Front 

The position of the North Atlantic Polar Front has been shown to have been 

variable throughout the last glacial cycle, when it advanced southwards to the Azores at the 

height of the glaciation, and then moved northwards as climate ameliorated {Figure 2.10: 

Ruddiman & Mclntyre, 1981). A t the time of the Hypsithermal, the Polar Front lay 

between Greenland and Iceland, although during the late seventeenth century it advanced 

south of Iceland, almost into Scottish waters (Lamb, 1977a; Whyte, 1995). 

Figure 2.10 Location of the N A P F through the last glaciation and Early Holocene {A/ter 

Ruddiman & Mclntyre, 1981). 

2.6.2.7 North Atlantic Oscillation 

In addition, interest bas recently focussed on quantification of the North 
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Atlantic Oscillation ( N A O ) , which is itself a major source of interannual climatic variability 

within the region (Hurrell, 1995). It is associated with changes i n direction and strength of 

the surface westerly winds across the North Atlantic and affects airflows over Europe, 

North America , Fennoscandia, and the Arct ic . The N A O has been observed since 1864 

and is quantified by an index, calculated by determining the difference in atmospheric 

pressmie over Iceland and the Azores {Figure 2.11). A high value indicates low pressure 

Over Iceland and high pressure over the Azores, a Situation that results in the formation of 

sti"ong westeriy airstreams over the North AÜantic Ocean. 
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Figure 2.11 North AÜantic Oscillation Index, based on the difference in atmospheric 

pressure between the Azores and Iceland, for the period 1895-1994 A D {Aßer 

Mann & Lazier, 1996) 

Analysis of the N A O index has revealed that, in addition to interannual 

variability, longer term trends are manifest, which are correlated with the persistence of 

anomalous weaüier pattems over the Continental United States and the Mediterranean 

region, and the incidence of winter storms over the U K . Mou l in et al. (1997) have utihsed 

satellite observations in order to conclude that the atmospheric export of dust from the 
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Sahara Desert is also correlateci to N A O activity. Reid et al. (1998) have demonstrated a 

connection between phytoplankton density in the North Atlantic Ocean and the North Sea, 

with changes in N A O index. D ' A r r i g o et al. (1993) have utilised dendrochronological 

data from Scandinavia and Northeast Canada in order to reveal correlations between tree 

growth, temperature and N A O index. Recent investigations suggest that the N A O may not 

solely be an atmospheric phenomenon. Variations in deep Oceanie convection, especially 

in the Greenland, Labrador, and Sargasso Seas may be implicated in the propagation of 

the atmospheric signal (Curry et al, 1998; Talley, 1996). 

2.6.2.8 Circumpolar Vortex 

The circumpolar vortex is a further source of climatic variation over the North 

Atlantic. This is a belt of rapid air movement located in the upper troposphere, circulating 

around the north polar región at altitudes of ca 10 km. Topographic barriers such as the 

North American Rocky Mountains act to steer the jet streams associated with the vortex, 

creating wave formations which are variable over many time scales. Lamb (1979) 

explained the Vciriation in circumpolar vortex in connection with the onset of the Little Ice 

Age. 

T w o extreme configurations of the vortex, one in which it contracts around the 

polar región and the flow within it is streamlined, the other where large meanders form 

and the flow is less rapid, exist. In the second state, ridges of warm air may move 

polewards or troughs of polar air equatorwards. In addition, meanders in the vortex 

become severed, creating blocking anticyclones which persist for long periods, bringing to 

western Europe dry summer conditions in summer or extremely cold weather in winter. 

The presence of blocking anticyclones over Britain often results in wetter conditions in 

Scotland, as storm tracks are diverted to the north around the high pressure zone (Barry & 

Chorley, 1992). Davis and Benkovic (1994) have studied variations in both temporal and 

spatial extent of the January circumpolar vortex and observed that from 1944 to 1990, the 
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size of the vortex expanded, leading to enhanced méridional flow over W.Europe. There 

has also been an increase in ridging over W.Europe and Fennoscandia, producing a 

strengthening in the Icelandic Low. 

2.6.2.9 El Nino Southern Oscillation (ENSO) 

Under normal conditions, the direction of the flow of air at altitude over the 

tropical and sub-tropical Pacific Océan is cîistwards, from an area of low pressure over 

Indonesia, retuming at a lower level westwards. Régions beneath the descending air 

remain dry, with rainfall occurring under the moist, rising air mass in the east. The 

persistent, retuming, air mass créâtes warm currents in the océan, sending water 

westwards towards Australia and causing cold deep water upwelling off the coast of South 

Amer ica (the Peru Upwelling Zone). Periodically, the westerly airflows weaken or fail , 

creating a backwash of warm surface water moving eastwards. The associated low 

pressure atmospheric Systems then also move eastwards, bringing heavy rainfall to the 

mid-Pacific région, or even to the normally dry westem coast of South America. 

There is some évidence that the E N S O system represents the most powerful 

source of yearly climatic variability, with attributable effects detected in rainfall records of 

the continental United States (Keppenne & G h i l , 1992), the occurrence of monsoon rains 

over Zimbabwe (Cave e i al., 1994) and India (Meehl, 1994), and possibly in weather 

anomalies over Europe (Fraedrich, 1994; Fraedrich & Müller, 1992). Taylor et al. (1998) 

bave reported that variation in the annual mean latimde of the Gulf Stream may be partly 

attributable to E N S O activity. Decreased ice cover over the Laurentian Great Lakes has 

been determinedtohaveoccurredduring récent E N S O events (Assel, 1998). Signals bave 

also been detected in the laminated sédiments from East African lakes (Johnson et al., 

1993) and from locations on the Iberian peninsula (Rodo et ai, 1997). The effect of 

E N S O variability has been invoked in the amélioration of the expected severe winter in the 

U S A during 1988/89, which was forecast employing sunspot/QBO variations. 
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The phenomenon does not appear to have been a permanent feature of 

postglacìal climate, however, and may have commenced only some 4500-5000 years ago 

(Diaz & Markgraf, 1992; Sandweiss et al, 1996; Shulmeister & Lees, 1995). Other 

studies have concluded, however, that an E N S O - l i k e feature may have existed i n the 

atmosphere of the Earth as early as the Eocene, as recorded in the lacustrine o i l shales of 

the Green River formation, Colorado (Ripepe et al, 1991). The timing and strength of the 

modem signal appears to be variable, with events occiuring on average every four years, 

but with intense episodes only every nine years (Figure 2.12). In recent years, severe E l 

Niño events have become more frequent, with consequent concern from those societies 

most exposed to their effects. 
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Figure 2.12 Chronology of E N S O activity, 1860-1974 A D (Source: NOAA, WDC-A) 
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3. Site description 

3.1 Location 

L o c h Ness (Latitude 57° 15' N , Longitude 4° 30' W , U K National Gr id 

Reference N H 285 429) is located in the Highland region of Scotland to the southwest of 

Invemess {Figure 3.1). The loch forms nearly one half the total length of the Caledonian 

Canal, which crosses the Scottish Highlands from Fort Wi l l iam to Invemess. 

Figure 3.1 Site location {Modifiedfrom Maitland, 1981). 
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3.2 Tectonic setting 

The L o c h occupies a glacially-scoured valley trending southwest/northeast, the 

I^ysical fonn of which is related to its alignment along the Great Glen Fault, a major 

tectonic feature of the Scottish Highlands (Canning et al., 1998) and part of the larger 

Great Glen Fault Zone (Harris, 1991). The area is noted as a modem source of seismic 

activity (British Geo l c^ca l Survey. Seismicity of the UK. Figure 3.2). 

À 

d i m 

t 

Figure 3.2 Seismicity of Scotland and the North of England. Red circles represent foci of 

seismic activity, scaled according to magnitude. The largest rep^esent events of 

local magnitude(mi) 3, and the smallest, less than magnitude 1. 

(Source:http://www.gsrg.nmh.ac.uk/--phoh/seismap2.gif. Accessed Sept 15, 

1998). 
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3.3 Morphology and Limnology 

Lx)ch Ness is the largest body, by volume, of lentic water in tbe U K 

(Maitland, 1981). Its major morphological characteristics are listed in Table 3.1. A récent 

bathymétrie and seismic survey bas revealed a maximum depth of 226.96 m wi th the 

possibihty of sédiments ca 40 m deep in some locations (Yoimg & Shine, 1993). In cross 

section, the sides of the Loch are very steep (Figure 3.3) and the large, flat profundal plain 

is divided into two basins to the northeast and southwest of Foyers (Figure 3.4). 

Table 3.1 Simmiary of morphological characteristics of L o c h Ness (After Smith et al., 

1981). 

Area(lcm^) 56.4 

Volume (m^ x 10^ 7452 

Lengtii(km) 39.0 

Mean breadtb (km) 1.5 

Max . deptii (m) 227 

Meandeptii(m) 150.7 

Shorehne lengtii (km) 85.3 

Shore slope (m / m water fall) 3.7 

Mean élévation (m amsl) 15.8 

L o c h Ness is temperate, monomictic, and oligotrophic (Maitiand, 1981). 

Hydrological data are giyen in Table 3.2. Chemical analysis indicates that the water of the 

Loch is slightly acidic (pH 6.55), with low base cation concentrations (Ca^^, 81 f E q 1'̂ ; 

Jones et al., 1994). Nutrient concentrations (1992 values) are extremely low, below 500 

Hg (NOg)^- and 200 ^ g (PO^)^" 1'̂  (V.J.Jones et al, 1997), altiiough tiie équivalent 

unit loadings of solid and dissolved matter are greater than those of other large Scottish 

lochs, presumably because of the large catchment and the great number of streams flowing 

into the main body of water (Maitiand, 1981). Concentrations of dissolved sil icon are 

seasonally variable, but exceed 1 mg Si 1'̂  during spring. The brown waters of the loch 
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(>15 Hazen units) indicate that total organic carbon levels in the water column are high (3 

mg C r^) . Secchi disc transparency is noted to be highest for red light {ca 630 nm 

wavelength), the 1% transmission depth being4.7m (Bailey-Watts & Duncan, 1981), 

which is comparable with other northem brown-water lakes {e.g. Pääjärvi, Finland; Jones 

& Ilmavirta, 1978). 

Table 3.2 Hydrological data for L o c h Ness (After Maitland, 1981; Thorpe. 1977) 

Mean armual inflow (m s ) 84.1 

Unit loading (t a"̂ ) 2655 

Eq . Unit loading (g m"^ a" )̂ 47 

Retention time (a) 2.8 

Water level variability monthly (m) 0.27 

Seiche depth (m) 132 

Seiche period (hrs) 52 

North South 

Figure 3.3 Echo sounding of transverse section of Loch Ness, illustrating the steepness of 

the sides of the basin. The mottled area at the top of the profile represents 

acoustic retums from fish and the developed thermocline. (After Shine & 

Martin, 1988). 
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Figure 3.4 Longitudinal section through L o c h Ness, illustrating the basin-like structure of 

the profundal plain (After Maitland, 1981). 

The water column remains isothermal from late autumn until spring when a 

weak thermocline forms, descending to ca 50 m when fully developed, and possessing a 

thermal microstructure (Simpson & Woods, 1970). In comparison with other lochs in the 

region, stratification is delayed and the intensity reduced, presumably owing to the 

large volume of the basin. The theoretical water retention time has been calculated as 

2.8a, but it is recognised that wind-induced currents may increase the volume of water 

transpxjrted through the loch and that the rapid discharge of 'recent' water may occur with 

appropriate combinations of inflow and wind speed (Thorpe, 1977; Figure 3.5). The 

construction of the Caledonian Canal , completed in 1822 and the Ness pumped-storage 

hydroelectric scheme, operational since 1975, are presumed to have had an effect on the 

limnological characteristics of the loch, especially in terms of the quality and quantity of 

inputs. Although no long-term records exist with which to test this hypothesis, it appears 

that flood prevention in the Inverness area has been enhanced owing to the impoundment 

and control of excessive flows through the Ness hydro-electric scheme (Johnson, 1994). 

L o c h Ness is aligned in the direction of the prevailing south-westerly winds, 

the nature of the surrounding terrain ensuring that low level air movements are directed 

along the major axis of the water body. Thus, circulation within the loch takes place in the 
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same direction, causing the formation of internal waves or seiche (Thorpe, 1971; Thorpe 

et al., 1972; Thorpe, 1977) and a strong wind-induced mixing (R.I.Jones et al., 1995). 

Indeed, R l . Jones et al. (1995) have determined that the distribution of seston within the 

loch is dependent on recent wind history and conclude that this mechanism is the primary 

source o f variability of plankton within the water column. 
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Figure 3.5 Passage of a storm across Loch Ness. Length of arrows indicate the 

magnitudeof water flow. (After Thorpe, 1977). 

A suite of Sediment cores, collected in 1993, reveals that sedimentary patteras 

Vary throughout the loch. A t the southem end, coarse, mainly riverborae Sediments are 

found (Bennett & Shine, 1993), whereas laminated lacustrine deposits appear mainly to 

be confmed to the northem basin. This is probably because of the smaller number of 

rivers entering that pari of the Loch directly, and the effect of S W winds on the seasonal 

and spatial distribution of seston. Sediments recovered from the profundal piain of the 

northera basin possess subtle colour differences between laminae, the contrast 

increasing in cores from the shallower areas towards the northem end of the loch 
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(Bennett, 1992). Laminated sands have been retrieved from the floors of both north and 

south basins adjacent to the mid-loch rise which exhibit iron staining, indicating a 

wel l - oxygenated environment. Sediments from close to the inflows of the rivers 

Mor i s ton , O i c h and Tar f f contain organic debris-rich sands, silts and muds, an 

observation reinforced by investigation of the floor around Urquhart Bay by imderwater 

camera, which has revealed abundant organic debris, including both decomposed and 

whole vegetable matter, twigs and branches (Beimett, 1992). 

A submerged two-point mooring has been established at the coring site ( U K 

National Gr id Reference N H 256779.286 832203.627) by members of the L o c h Ness 

Project. (Figure 3.1; Shine et al, 1993). Cores were recovered from beneath 204 m of 

water. The site was chosen for its proximity to existing quay facilities, its mid-loch 

location above the profundal plain of the north basin and its relative distance from major 

riverine inputs (Shine, 1993). A submerged mooring is necessary owing to the 

recreational emd navigational nature of the loch, whilst a two-point station proved to be 

economical to construct, yet provide the stabihty needed for coring and water sampling. 

3.4 Climates of the North Atlantic Ocean & Loch Ness region 

3.4.1 Major influences on the clirruite of the region 

A s discussed i n Section 2.4, the location of Scotland on the northwestern 

seaboard of Europe places it under the influence of one o f the Earth's most powerful 

sources of climatic regulation- the North Atlantic Ocean (Lowe, 1993). Here a distinct 

boundary, termed the North Atlantic Polar Front ( N A P F ) , separates cold sub-arctic water 

to the north from temperate regions to the south. The front is marked, approximately, by 

the southern l imit of iceberg survival, and generates an active zone of ocean-atmosphere 

interaction by which frontal systems are guided eastwards across the Atlantic. The location 

of the N A P F is thus a critical factor in determining the paths travelled by depressions, and 
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consequentially tiie climate experienced by the Brit ish Isles, especially in terms of storm 

frequency and strength (Keigwin & Jones, 1994; K e l l y , 1979). Its position bas been 

variable tbroughout tbe Pleistocene and Holocene (Ruddiman & Mcintyre, 1981). 

A second critical component of the climatic system of the région, is océan 

thermohaline circulation, especially the 'North Atlant ic Conveyor ' (Brœcker et al., 

1988). This is part of a global system driven by changes in water température and salinity. 

In the Atiantic sector, warm surf^ace waters from the tropical and equatorial régions move 

northwards, losing beat and gaining salinity. This cold water mass then sinks at high 

latitudes and retums southwards at depth. The system is thus responsive to variations in 

water temjîerature and salinity, such as those experienced by the melting of the northem 

ice sheets at the end of the last glaciation, and by rates of production of deep, cold water in 

the northem seas. 

3.4.2 Deglacial climate ofthe Loch Ness région 

Fossils of land mammals bave not been found at any of the late glacial 

interstadial sites but radiocarbon dating of deposits containing coleóptera indícate that the 

chmateatabout 13000 bp was very similar to that of the présent time (Coope, 1977). A t 

Redkirk Point species dated at about 11000 bp were found to be typical of more northem 

climates, indicating a marked détérioration of climate. This bas been identified as the Loch 

Lomond stadial. Ice to the west of the Great Glen moved down Glens Arka ig , Lochy and 

Garry to fill the Great Glen with ice as far north as Fort Augustus (Sissons, 1979). 

3.4.3 Déglaciation 

The major phase of ice melting, named by Brœcker & van Donk ( 1970) 

Termination l A , and of about 1000 years duration, commenced about 15150 B P (± 270y) 

and is recorded in marine sédiments as a period of low foraminiferal production in the 
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northem Atlantic. The signais for the abundances of two benthic taxa, Neogloboquadrina 

pachyderma (sinistrally coiled), which is a circumpolar species, and Globigeroides 

bulloides, found in more temperate waters, indicate changes in sea température with input 

of large amounts of glacial meltwater, mainly from the Laurentide ice sheet but probably 

also from Scottish glacial régions. The Aller0d interstadial is marked by the reappearance 

of G. bulloides and the sudden total disappearence of N. pachyderma. Terrestrial évidence 

as to the rapid onset of this period may be found in the changes wrought i n coleopteran 

populations throughout the U K (Coope and Brophy 1972). A t the onset of the Younger 

Dryas cold period at about 10700 B P , the abundances of the foraminifera are again 

reversed, with the increase of N. pachyderma indicating fal l ing sea températures. 

Tenhination I B , which marked the period of transition from periglacial conditions to 

présent climatic régimes, began after about 10500 B P and ended ca. 6000 B P . B y 9500 

B P the températures may bave been as warm as at présent (Osbome 1975, Bishop and 

Coope 1977). 

Ruddiman et al. (1977) bave suggested that, at that time, the movement of 

the Atlantic Polar Front was about 1500 m/yr southwards, foUowed by a retreat of ca 

1650 m/yr northwards at the tennination of glaciation. Précipitation was high in the N W 

Highiands during the Younger Dryas, related to the location of the N A P F , which 

influenced the tnicks of storm dépressions, forcing them to a more southerly track than at 

présent. Thèse régions were ice-covered at that time and précipitation probably fell as 

snow (Lowe and Walker, 1984). 

3.4.4 Déglaciation around Invemess 

The effects of déglaciation in the area may be observed at a number of sites 

in the area, especially Altur l ie and Ardersier (Figure 3.6). A t the former location, a marine 

delta consisting o f wel l sorted sands and beach gravels may be found in an ice-
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proximal setting. Some of the features have been modified by marine action and some 

slumping has been caused by the melting of submerged blocks of ice (Firth, 1993). 

Figure 3.6 Sites around Invemess displaying deglacial features. {After Sutherlattd & 

Gordon, 1987. pi 50) 

The Ardersier silts, consisting of folded and faulted sand/silt beds, have 

been explained by the glacial action of a readvancing ice sheet at ca 13000 B P (Synge 

1977, Synge and Smith 1980), although Firth (1989), has suggested that the sediments 

represent in situ glàciomarine deposits. It may be possible that the sediments were 

deposited rapidly in an ice-free area surroimded by stagnant ice, formed by a retreating ice 
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front. The disrupted silts are overlain by the Hilihead beds of sands, formed i n a high 

energy, prot^bly Uttoral, environmenL There are no faunal remains to produce positive 

évidence of the provenance of these features. 

Other locations in the area exhibit other features which may illustrate other 

phases of déglaciation. A t Redcastle, a degraded cliffline may be observed, eut into late-

Devensian käme and kettle tof>ology. There is no évidence of marine incursion (Firth, 

1993). The Coulmore/Lettock area may have been occupied by ice imtil the relative sea 

level had fallen below 20 m A O D . The narrows in the Invemess Firth at Kessock (Figure 

3.6) are thought to have been formed by deposits washed through the Great Glen by the 

jökulhlaup of the ice dammed lakes in Glens Roy and G l o y (Sissons, 1981). 

3.4.5 The présent climate of the Loch Ness région 

The présent climate is characterised by prevailing southwesterly airstreams, 

and possesses a pronounced maritime bias (Figure 3.7). Rainfal l is greater over more 

westerly catchments than in the east, owing to topographie effects (Werrity et al, 1994). 

Typical distribution of précipitation and température throughout the year, calculated from 

datacoUectedat Fort Augustus during the period 1961-1994, is illustrated in Figure 3.8. 

As may be observed, températures only fall below 5 "C during December-Februaiy, with a 

broad maximum of ca 13 " C during Jime-August. Précipitation is high during autumn, 

Winter and part of spring with average values of ca 100 m m m o n t h L o w rates of 

évapotranspiration from the widespread moorland flora ensures that more than 75% of 

précipitation is converted into direct runoff, and snowmelt may additionally significantly 

increase flows in watercourses (Werrity et al., 1994). 
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Figure 3.7 Frequency and strength of airflows across the Highland Region, Scotland. 

(After Goudie and Brunsden, 1994). 
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Figure 3.8 Mean monthly precipitation and temperature, Fort Augustus 1914-1994. (Data 

supplied by the UK Meteorological Office). 
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3.5 Description of catchment 

3.5.1 Modern catchment 

The catchment of L o c h Ness (mean elevation >360 m ; Figure 3.8) Covers 

some 1800 km and, at present, consists mainly of mötmtain and moorland, with some 

arable land to the north and easL The general geology of the area is composed of rocks of 

the Moine series, although both Lower- and Middle-Devonian sandstones outcrop in some 

areas along the edge of the loch. Small granite intrusions are located to the south. 

Figure 3.9 The catchment of L o c h Ness (A/iter Maif/and, 1981). 

Maitland (1981b) divided the catchment intofour.(F/^Mre 3.9), based upon the 

watersheds of four major watercourses: the Caledonian canal, and the Rivers Enrick, 

Foyers and Moriston. It may be noted that the differences between modern catchments are 

slight with the greatest contrasts lying between the two northerly (Enrick and Foyers) and 

the two southerly (Caledonian and Moriston) basins, the former containing richer (more 

basic) soils, and relatively more arable land. 
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3.5.2 History and prehistory of catchment 

3.5.2.1 The pollen record 

A preliminary pollen diagram by Peglar (Figure 3.10, upper) from sediment 

core Ness 3, indicates that environmental changes in the catchment of L o c h Ness may not 

have been very different from those recorded at other sites i n this part of the 

Scottish Highlands. Indeed, the diagram from core Ness 3 most closely resembles that by 

Peimington et al. (1972; Figure 3.10 lower), from Loch Tarff, a small (area ca 1 km^, 

maximum depth 29 m) loch situated to the southeast of the Great G len wi th in the 

Caledonian catchment (Maitland, 1981). Peglar (pers. comm.) has commented upon the 

poor state of preservation of the pollen from core Ness 3, which she considers to indicate 

that waterbome transport of grains is a major pathway from the catchment into the loch. 

Other water bodies along the course of the rivers may act as sediment sinks, preventing 

pollen from a wider area reaching the loch via the fluvial route and restricting it to airborne 

dispersion over a limited area. 

3.5.2.2 Probable catchment history from the pollen record 

The landscape immediately after déglaciation (ca 9500 B P ) , was largely 

occupied by shrub and herbaceous taxa such as Empetrum, then Ericaceae, Artemisia 

and Armeria, growing on immature soils. Successive colonisation by Salix, Juniperus, 

Betula, and CoryluslMyrica was quickly followed by a rapid influx of Scots Pine, Pinus 

sylvestris. L . Investigations of the spread of this tree at other sites by Peimington et al. 

(1972; Lochs Clai r , Wester Ross, and Sionascaig, Assynt), B i rks (1972; Loch Maree, 

Wester Ross) and O'SulIivan (1976; Loch Pityoulish, Speyside) indicate that it took place 

during the period ca 9300-8500 B P , although it is recognised that the pines around Loch 

Maree are genetically different from those of other areas in the Scottish Highlands (Birks, 

1996). 
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% loiol lond polten ond spores 

Figure 3.10 (Upper) Summary pollen diagram, selected taxa, from sediment core Ness 3 

{After Peglar, pers comm.), (Lower) compared with that from L o c h Tarff, Scottish 

Highlands, {After Pennington et at., 1972). 
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A t the time of the hypsithermal, ca 7000 aBP, it is estimated that 50%-60% of 

the landscape, up to the treeline at ca 800 m was under woodland (Smout, 1995). The 

expansion of other species from ca 4400 B P onwards, led to the retreat of pine to 

approximately its modem distribution, although in some areas expansion occurred. This 

decline has been attributed to many causes, the most likely being a deterioration in climate 

(Bennett, 1995; Birks , 1972). Decline of Pinus was fol lowed by an increase in » 

Quercus, Ulmus and Alnus, which in tum may have suffered decline owing to utilisation 

by early settlers (Edwards, 1993). O'Sul l ivan (1976), however, suggests that, at Loch 

Pi tyoul ish, the decline i n Uhnus pol len may represent a decrease i n the general 

contribution of the taxon to the pollen spectrum of the Highlands, possibly because of a 

decline i n populations further south. A s tree species declined, an increase i n taxa typical of 

upland moor (eg Callana) occurred, in addition to those indicative of peat bog formation 

(Sphagnum sp.). 

The preliminary pollen diagram from core Ness 3 is insufficient to deterinine 

changes over short time scales and therefore may not indicate periods of recent woodland 

clearance and regeneration typical of the Neolithic/Early Bronze Age . Pennington et al. 

(1972) remark that the general zonation of succession in the Northwest Highlands may be 

compared with that of upland areas further to the south, for instance, the English Lake 

District. Recent analysis of core Ness 4 has yielded the same result (Cooper et al., in 

press). 

3.6 Prehistoric and historic human impact upon the catchment of Loch 

Ness 

3.6.1 General Chronology of settlement in Scotland from the postglacial to present 

Knowledge of the human occupation of the Scottish Highlands has increased 

over the recent few years (Price, 1983) and, primarily through pollen analytical data, it is 
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possible to reconstruct changes to the environment brought about by human activity during 

the Holocene. Evidence of the earliest htunan habitation i n Scotland has been found at 

Kinloch , on the island of Rbum, and has yielded radiocarbon dates in the región of 8590-

7570 aBP , placing it in the MesoUthic (Edwards, 1993). Folien analytical data from the 

site suggests that changes in flora were possibly caused by the forager lifestyle of the 

population, and an abundance of charcoal implies the use of fire, probably to clear 

woodland. It should be noted, bowever, that in remote áreas, Mesolithic cultures survived 

long into what is chronologically, further south, the Neoli thic, blurring the boundary 

between the two periods, but may be considered to have occiured from 6700-6300 aBP 

(Casüeden, 1992; O'Sulhvan, 1974). 

The population of Mesolithic Scotland as a whole, based upon analysis of 100 

known sites, is suggested to have been of the order of 60-70 persons (Atkinson, 1962). 

The distribution of settlements at this time was markedly coastal, possibly indicating the 

inhospitable nature of the interior of the country, although it may only reflect the ease of 

discovery of artefacts in beach and dune enviromnents. It is aiso probable that any earlier 

sites of settlement aroimd the coast may have been lost during the eustatic Postglacial 

marine transgression (Price, 1983). 

Arr ival of farming marked the change from foraging to agriculture, utilising 

domesticated livestock and cereal crops. Major changes to the enviroiunent would have 

ensued from a rapid rise i n population, supported by a more plentiful supply of food, 

enabling the construction of the earliest permanent structures in the región. Evidence, in 

the form of pottery, suggests that by the Middle Neolithic, major ceremonial sites (for 

example, Caimpapple H i l l Henge, Lx)thian, Castleden, 1992; Ring of Brodgar, Mainland, 

Orkney, Longworth, 1985) were in use by worshippers both from Scotland and England, 

indicating that travel over long distances had become feasible. It is also from this period 

that the strikingly geometric cup-and-ring markings, found on a large number of standing 

stones and cists, originate. Evidence of large-scale forest clearance in northem Scotland 
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Figure 3.11 Distribution of northern tribes in the first century A D . 

prior to the Iron Age (ca 2500 a B P ; M a c K i e , 1975) is l imited, however (Tinsley & 

Grigson, 1981). 

The earliest historically dated event in the human occupation of Scotland is the 

arrival of the first expedition of the Roman army, in ca 80 A D (MacKie , 1975). Similarity 

of artefacts discarded by the invaders with those found at sites around the Mediterranean, 

enables the construction of a cross-dated chronology for the region, and one which may be 

extended, to a limited extent, both backwards and forwards in time. The distribution of the 

northern tribes at the time of the first century A D may be noted in Figure 3.11. N o data 

exists as to population numbers, although Price (1983) suggests that they were certainly 

less than 250,000. Distribution may be estimated from the concentrations of monuments 

dated from this time and still displays a marked coastal bias {Figure 3.12). The spread of 

Roman culture over the period 200-500 A D may be illustrated by Figure 3.13, which 
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Figure 3.12 Distribution of population in Scotiand around tiie time of tiie first centiiry A D . 

Figure 3.13 Distribution of Roman finds, first century A D . 
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depicts finds of Roman origin from non-military sites. These also delineate the extent 

of Roman military incursions into the région. Contemporaiy reports describe the native 

Picts as "half-naked enemies" and, indeed, part of the fourth Century was marked by a 

séries of wars between Picts and Romans (Breeze, 1982). 

3.6.2 Evidence ofearly settlement around Invemess and northem Great Glen 

The area around Invemess contains many archaeological features, which may 

be observed on the accompanying U K Ordnance Survey map extract (Figure 3.14). These 

include Neolithic/ Bronze age burial moimds at Caipl ich ( U K National G r i d référence NH 

543386, Ordnance Survey, 1993), a vitrified fort at Dun More Cabrich (NH 535429), and 

possible broch at Castle Spynie (NH 541421). The burial cairas at Clava (NH 756443), 

consisting of three Chambers surroimded by stone circles, date from Late Neohthic/Early 

Bronze A g e (ca 48(K)-4700 aBP; Castléden, 1992), indicating that the région was 

occupied at that time, and probably earlier (Figure 3.14). Castleden (1992) estimâtes that 

the commimity which constmcted the caims may bave numbered no more than 30-40 

adults. The vitrified fort of Craig Phadrig (NH 640453), situated on a prominent hilltop 

above Invemess, was once believed to bave been a Pictish capital, but dating of material 

from the walls places its constmction as earlier. Artefacts foimd by excavation suggest 

traces of Dark Age occupation (MacKie , 1975). 

In the area around Drumnadrochit (Figure 3.15), caims (NH 383303, NH 

495315), forts (NH 500295, NH 491236 and NH 452298), Settlements and field Systems 

(NH 510321) and a cup marked rock (NH 500312) record occupation at varions times 

since the retreat of the ice. In particular, the présence of cup-marked stones illustrâtes that 

the area was inhabited around the early Bronze age, ca 4000 aBP. The siting of two forts. 

D u n Dearduil and Dun Garbh (NH 530240) above Inverfarigaig, on the south-eastem 

fringe of the L o c h indicates settlement in the catchment during the Iron Age . A t Urquhart 

Castle, on Strone Point (NH 531286) continuing occupation of the area, from the Late 
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Bronze A g e , represented by the remains of a vitrified fort, through a motte of Norman 

age, to a 14th century stone castìe, possibly one of the largest in Scotland (MacKie , 

1975), is recorded. 

3.7 Previous research on sediments from Loch Ness 

Several investigations have been undertaken i n recent years, on both the 

sediments and the water column of Loch Ness, in order to characterise this important body 

of water and to further understand the processes occurring within it. Some aspects of 

investigations into the limnology and biology of the loch have been mentioned briefly 

earlier i n this chapter. Current research into sediment characteristics w i l l now be 

described. 

3.7.1 Catchment erosion studies 

A one metre core has been analyzed for mineral magnetic and single element 

bulk geochemical properties (Jenkins, 1993). The data are thought to indicate an increase 

in catchment erosion during the Li t t le Ice A g e (500-300 a B P ; Lamb, 1979), and the 

additional input of lead to the sediments from the modem buming of fossil fuels. A t 

present, conclusions are speculative, since no dating has been carried out on this material. 

3.7.2 Atmospheric pollution 

o in 

A separate one metre core has been dated by Pb in order to produce a recent 

chronology by which to date the incidence of atmospheric radionuchde contamination. The 

record of artificial radioisotopes (^^^Cs, ^ ^ C s and ^ ^ A m ) in the sediment indicates that 

Loch Ness and its catchment has received contamination from global weapons testing over 

the last 40 years, and from the Chemobyl nuclear accident (Battarbee & AUott, 1994). 
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Spheroidal carbonaceous particles (SCP) are indicators o f industrial 

contamination (Renberg & W i k , 1991), and the combustion of coal (Rose et al., 1995). 

The S C P profile for L o c h Ness reflects national and regional trends i n fuel burning over 

the last 150 years. Polychlor inated Biphenyls (PCBs) and P o l y c y c l i c Aromat ic 

Hydrocarbons (PAHs) (Sanders et al., 1993) have also been detected in recent sediments 

recovered from the L o c h and their concentrations over the last 60 years have been 

determined. These exhibit an initial increase which may be related to industrial activity and 

burgeoning fossil fuel consumption, followed by a decrease in very recent material, which 

is thought to result from the global restrictions on their production and use. 

The diatom record of recent sediments may be utilised in this case in order to 

determine whether or not a water body has been acidified by increased sulphur loads 

(Battarbeeeï al, 1988; V.J.Jones et al, 1993). Results from L o c h Ness suggest that 

there have been recent species changes, but that taxa sensitive to acidification have not 

significantly declined. Reconstruction over the whole length of a core, probably sp>aiming 

i n excess of 400 years, shows that p H lay consistently at about 6.5 over this period 

(V.J.Jones et al, 1997). 

3.7.3 Eutrophication 

Variations in the diatom population may also be indicative of eutrophication. 

Analyses of sediments from L o c h Ness indicate that nutrient levels within the Loch are still 

extremely low but that over the last 10 years, planktonic taxa have expanded to accoimt for 

approximately 50% of the diatoms i n the sediment, indicative of increasing nutrient 

enrichment (V.J.Jones et al, 1997). 
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4. Methods 

Many techniques have been utilised for the analysis of the material recovered 

from L o c h Ness (Table 4,1), and these w i l l now be described in detail. The utilisation of 

image transforms in order to facilitate rapid characterisation and measurement of laminae 

(Cooper, 1998) is believed to be a unique facet of this study. 

Table 4.1 Techniques employed in this study, illustrating their purpose. 

Determination of dry matter & Determination of lithological variation with time 

loss on ignition and estimation of organic content of core material. 

Infrared photography Enhancement of surface features of vertically shced 

sediment cores. 

X-radiography Enhancement of lamination structure. Visualisation 

of internal structure of laminae. 

Densitometry Quantification of lamination characteristics. 

Construction of time series. 

Image analysis Enhancement of lamina structure. Determination 

of lamination thickness, construction of 

chronology and time series. 

S E M analysis Visualisation of microhthology of laminae. 

Determination of variations in elemental 

composition between layers. 

Radiometric and A M S ^ "^C Estimation of age of core material. Testing of 

dating hypothesis that laminae are varves. 

Statistical analysis ' Identification of degree of randomness of values 

within time series. Determination of variation in 

deposition rates. 

Fourier analysis Estimation of periodicity of time series. 
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4.1 Coring 

Recovery of sediment cores was carried out by members of the Loch Ness 

Project, based at Drumnadrochit, Scofland. Equipment used was dependent on the length 

of core required, and consisted of hybrid versions of Mackereth (Mackereth, 1958; 

Mackereth, 1969), KuUenberg (KuUenberg, 1947), and piston corers. One-metre cores 

were recovered using P V C drain pipe as the coring barrel, and six-metre cores with 

stainless steel tubing. Each corer has been designed to be deployed from a small boat by a 

small number of operators. 

4.1.1 One-metre cores 

These were recovered by means of a 'bucket corer', designed by Adrian Shine 

to accommodate coring tubes of up to two metres in length. The equipment may be 

deployed from a small boat. Its basis, as the name implies, is a galvanised steel bucket, 

modified to enable core tubes to be passed through its base and fixed. The corer is 

weighted by the addition of small rocks to the bucket, in order to achieve slight negative 

buoyancy to provide the coring effort. The equipment is lowered though the water column 

until a messenger weight, which is attached to a spring-loaded shackle holding the bucket 

to the support cable, touches the sediment/water interface. Bucket and coring tube are then 

released from the cable, to fall under gravity into the sediment. The entire corer is then 

recovered. It is reported that, with care, it is possible to recover an intJict sediment/water 

interface (SWI) with this device ( A . J . Shine, pers. comm.). This equipment was used to 

recover core LNRl. N o drawings are available for this device. 

4.1.2 Longer cores 

Cores Ness 3 and Ness 4 were recovered by use of a hybrid Mackereth corer, 

originally designed to penetrate up to 12 m of sediment. This device utilises the anchor 
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chamber design of the Mackereth corer, i n order to provide stabiUty while coring, while 

other elements of the design may be compared to the Kullenberg corer. 

Briefly, operation of the device is as follows. The corer is towed to the coring 

station by small boat, utilising the coring tube rotated into a horizontal position between 

the anchor chambers. Water is then admitted to these, causing the device to submerge and 

enabling the core barrel to be swung to an upright position, in preparation for coring. The 

anchor chambers are then flooded and the corer allowed to settle on to the lake bed. A 

vertical position is maintained by means of auxiliary floats attached to the corer. Water is 

then pumped out of the anchor chambers, causing them to settle further into the sediment 

and preventing the device lifting when the core barrel enters the sediment A n airlift bag of 

one-tonne capacity is then inflated to propel the core barrel into the sediment and to also 

provide an element of lift in order to recover the device to the surface after coring. Figure 

4.1 illustrates a simplified representation of this device. 

To Uft a: air/pimip line 

b:upper driving tnmnion 

c: anchor chambers 

d: central & lower trunnions 

e: core barrel & drive lines 

Figure 4.1 Elements of the Shine-designed ' long corer' {Afìer A.J.Shine, pers. comm.) 
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4.2 Determination of percentage dry matter and percentage loss on 

ignition 

4.2.1 Introduction 

Percentage dry matter (%DM) and percentage loss on ignition (%LOI) may be 

conveniently determined together after the method of Engstrom &. Wright (1984). 

Knowledge of the value of % D M throughout the length of a core enables lithostratigraphic 

variations to be identified through the detection of changes in the type of material 

deposited, which may result in variation in the porosity of the sediment % L O I values may 

be employed i n order to ascertain changes in the amoimts of organic or mineral matter 

present, which may indicate variation in such processes as biological productivity or 

catchment erosion. 

4.2.2 General 

Samples for % D M and % L O I analyses were taken from both core Ness 3 and 

Ness 4, and consisted of ca 4 cm lengths of sediment removed from the surface of each 

core. It was decided to sample at closer intervals in the upper and lower sections of both 

cores as it was thought that these sections might record evidence of more rapid changes in 

catchment and climate. 

4.2.3 Methods 

J 4.2.3.1 Dry matter and water content 

Samples of wet sediment were placed in pre-weighed, labelled porcelain 

crucibles, which were then re-weighed. The weight of each sample was then determined. 

The samples were placed in an incubator at lOS^C for 24 hours, after which they were 
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checked in order to ensure full dryness. The combined weight of crucible plus dry sample 

was then determined, and the dry mass and water content of each sample calculated by the 

formulae: 

% dry matter 

(dry sample +crucible)- (weight of crucible) x 100 (4.1) 

(wet sample +crucible)-(weight of crucible) 

% water content 

1 -(dry sample +crucible)- (weight of crucible) x 100 (4.2) 

(wet sample +crucible)-(weight of crucible) 

4.2.3.2 Ash content and percentage loss on ìgnition 

Dry samples and crucibles from previous determination were re-weighed and 

placed in a muffle fumace. A careful note of the relative positions of each sample was 

taken, since ali labelling was removed by the high temperature of the operating fumace. 

Samples were ignited at 550°C for four hours, after which the fumace was allowed to cool 

to IZO^C before they were removed and re-weighed. The weight of remaining sample, 

representing refractory inorganic material ('ash'), and percentage loss on ignition were 

determined by the foUowing: 

%ash 

(ashed sample+cmcible)-(weight of crucible) x 1(X) (4.3) 

(dry sample -i-cmcible)-(weight of cracible) 
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%LOI 

1 - (ashed sample+crucible)-(weight of cnicible) x 100 (4.4) 

(dry sample -i-crucible)-(weight of crucible) 

4.3 Infrared photography 

4.3.1 General 

Infrared radiation may be generally classified as that electromagnetic radiation 

with a wavelength of between ca 10"^ - 10"'*m, and may be generated by a number of 

processes. Detection of infrared radiation may be carried out by the exposure of 

photograpbic f i lm sensitive to tbose wavelengths (Figure 4.2), although an optical filter 

a l lowing only a narrow band of wavelengths to pass through is additionally placed 

between subject and f i lm in order to diminish extraneous radiation. Normal Photographie 

techniques may be employed and the resultant image indicates the efficiency of the subject 

in reflecting or emitting infrared radiation. For this study, sediment cores were illuminated 

with Photographie flash lighting. The Images obtained indicate the emissive or the 

reflective properties of the sediment material i n the wavebands under consideration 

{Figure 4.2) and may be correlated with lamination structure viewed in visible light. 

4.3.2 Photographic Method 

Sections of core, ca Im in length, were imaged at various magnifications, 

utilising studio flash equipment synchronised with a trijxxl-mounted 35mm S L R camera 

loaded with Kodak High-Speed Infrared f i lm {Eastman Kodak Corp., Rochester, USA). 

Test photographs were initially taken in order to ascertain the homogeneity of lighting, 

film response and development time. Critical determination of the distribution of light from 
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the flash units was carried out by measuring the deviation of exposure time determined at 

fixed points across the photographic field, from that at the centre of the field {Figure 4.3). 

Gross deviations (>0.5 f-stop) were addressed by the repositioning of one or both of the 

heads of the flash units and the process repeated imtil all points within the photographic 

field were determined to be equally (<0.5 f-stop) illuminated. This procedure was 

followed at the beginning of each photographic session to ensure continuity between 

different sets of images. 

Figure 4.2 Spectral response of Kodak High-speed Infrared F i l m , with (solid line) pass 

band of Kodak W I O filter, and (dashed line) typical reflectivity curve for a 

clay mineral, montmorillonite {After Eastman Kodak, 1972; Drury, 1988). 

Images were obtained using a 50mm lens utilising various subject-camera 

distances, depending on the type of image required (wide-angle or close-up). A series of 

macro images were obtained but were deemed unsatisfactory owing to spurious reflections 

from the irregular siuface of the sediments, even following extensive preparation. Images 

were obtained in all cases with an indication of scale by the positioning of a white ruler 

alongside each core section. Development and printing of the images was carried out in 

accordance with the manufacturers recommendations. 
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Figure 4.3 Diagram illustrating the method employed in order to ensure imifonn 

illumination of tiie photographie field. 

4.3.3 Sediment préparation 

Prior to each photographie session, sédiment cores were removed from cold 

storage, unwrapped and allowed to warm slightiy in the laboratory. For each initial 

session, ca l -2mm of sédiment was removed from tiie surface of each core by means of a 

taut stainless steel wire pulled across each section in the direction of the laminae. The 

freshly eut surface was then carefuUy smoothed, again in the direction of the fabric of the 

sédiment, by dragging over it the edge of a glass microscope slide (Renberg, 1981). Waler 

(a powerful absorber of Infrared radiation) présent on or just beneath the surface of the 

material was demonstrated not to affect the imaging process by photographing, in close-

up, a section of sédiment of which half the surface remained untieated. The other half was 

maintained in a moist State by allowing water to stand on it for ca 10 minutes before taking 

the photograph. No différences were detected. 
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4.4 X-radiography 

4.4.1 Introduction 

X-radiography has been employed in many studies in order to reveal the 

internal structure of sediment cores, and offers high resolution (of the order of 0.1mm; 

Algeoe f al., 1994) when comparatively thin sections (cm-scale) of material are analysed. 

It may be utilised to determine rates of accumulation, variation in lithology, gas content, 

onset o f eutrophication and to illustrate variation in sedimentary style, for example, from 

laminated to non-laminated sediments (for examples of these applications see, for instance, 

Axelsson, 1983; Bodbacka, 1985; Boespflug et al., 1995; Koivis to & Saamisto, 1978; 

Schimmelmannera/. , 1992). 

4.4.2 General 

X-ray plates (AGFA Curix, blue sensitive type C. Agfa-Geveart AG, 

Leverkusen, Germany) were stored according to manufacturers recommendations 

(<10''C) and loaded into a light-proof f i lm cassette under darkroom conditions (Safelight 

filter type 206). The cassette employed contained scintillation screens comprising an 

organic fluorescing agent producing vis ible blue radiation upon absorption of x-ray 

quanta. This mechanism generates a latent photographic image upon the x-ray plate, which 

may be then developed by conventional photographic techniques. 

Orientation of the sediment sections was achieved by the adoption of a 

consistent work pattern, aided by the labelling of the clingfilm wrapping of each section 

and the marking of each section diiring x-ray exposure by an identification number made 

from x-ray opaque material, which was always placed at the base of each section. 
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4.4.3 Exposure détermination 

Test exposures were carried out with a random sélection o f pre-sampled 

sédiment sections to ascertain the optimum conditions for x-ray imaging. It was found that 

while small (ca 10 k V ) changes in x-ray energy had a very marked effect on the détection 

of the structure of the laminae, exposure times were not so critical. Source-sample distance 

was ïdso varied and observations of changes in resolving power, based upon fine détail 

visible, were noted. A n exposure time of ca. 0.4 s, at a source-sample distance of 1.9 m, 

produced good lamination détail and a wide range of photographie density from an x-ray 

energy o f 40kV. This latter value was the lowest obtainable from the unit used. After 

examination of the x-radiographs by image analysis, however, it was decided that images 

of sections near to the tops of the sédiment cores were perhaps a little over-exposed (too 

much radiation), while those near the base were under-exposed. Repeat images were then 

obtained from thèse sections by adjustment of exposure times by -0.1 s and +0.05 s, 

respectively. 

Increasing the distance of the x-ray source from the sédiment did not resuit i n 

an increase in photographie resolution as might be expected (Algeo et. al., 1994). This 

was attributed to possible interférence o f the transmission of the x-radiation by the 

coUimating baffles at the exit window of the x-ray unit. Whilst it is realised that, from the 

geometry of the equipment, a theoretical resolution of only 0.26 mm (section length 10 

cm, allowing for 5cm overiap between sections; équation 4.5) is possible at the specified 

source-sample distance, it was decided that owing to the contrast between laminations, the 

finest détail observable from the plates d id indeed delineate the darkest (and often the 

thirmest) laminae in the sédiments and that only in the lowest, early Holocene, section of 

the core, may x-radiography not prove conclusive. 

resolution = L tan(a) {4.5) 
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where: t= thickness of section 

a= angle of radiation normal to the sédiment surface 

with référence to Figure 4.4. 

X-ray head 

Lead shield 

Figure 4.4 Détermination of resolution of x-radiographic technique. Distance between 

f i lm plane and sédiment section is negligible compared with that between x-

ray source and section. 

4.4.3 Development of x-ray plates 

After exposure, the plates were returned to a darkroom for photographie 

development, again under safelight conditions. Plates were prewashed in water to aid 

uptake of developing solution prior to immersion, with constant agitation, in developer 

(Agfa G150, Agfa-Geveart NV, Belgium) at 22°C for 3min. They were then removed to a 

stop bath, in this case water, to hait development before immersion in fixer for a further 
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1.5inin. After rinsing, they were finally washed in Surfactant solution. Plates were air 

dried at 60°C for 30min , after which contact prints were produced for illustrative 

purposes. 

4.5 Image analysis 

4.5.1 Introduction 

The use of image analysis for the examination of the structiu-e of unlaminated 

Sediments and soils is wel l documented (Dartnell & Gardner, 1993; Glasbey & Horgan, 

1995; McBra tney et al., 1992). Walanus & Goslar (1993), working with varved 

Sediments from the Pol i sh lake Gosciaz, have demonstrated that it is possible to count 

laminations using image transforms. Ripepe et al. (1991) have utilised densitometric 

analysis of tape peels from oi l shales of Eocene age i n order to detect E N S O and simspot 

cycles. More recently, Schaaf and Thurow ( 1994) have employed the technique in order to 

produce high resolution time series from drill cores £md rock samples. 

For this study it was decided to obtain primary Images of Sediment from Loch 

Ness which exhibited unambiguous lamination detail and to further submit these to image 

analysis in order to count the layers. Details of this stage, utilising X-radiography, may be 

found in Section 4.4. A dedicated image analyser (Quantimet 570, Leica, Cambridge, 

UK) was employed in order to digitise the primary Images, and enabled the application of 

transforms to each (Cooper, 1998), prior to densitometric measurement and lamination 

counting, in order to facilitate: 

i) . dehneation of the laminated structure of the sediment 

ii) . measurement of the mean thickness of each lamination 

ii i) . measurement of the average grey level of each lamination. 
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4.5.2 Measurement and densitometry 

Perhaps the simplest technique of image analysis to perform is direct 

measurement of features from the digitised image. The technique has been widely applied 

to the study of laminated sediments (for example Boespflug et al., 1995; Dean et al., 

1994; Koivisto & Saamisto, 1978; Schimmelmann & Lange, 1996; Schimmelmann et al., 

1992) and allows calibration of distances within an image to correspond to the actual 

distance in the real worid. Within the Quantimet enviroimient, this procedure is performed 

by invoking a movable line profile which is positioned between two points whose actual 

distance apart is known. Other distances in that image may then be easily computed. For 

laminated sediments, this procedure may be utilised in order to to measure lamination 

thickness, although where many laminae are to be quantified, this would be very time 

consuming. 

A n alternative approach was utilised in this study, which simultaneously 

furnished both lamination thickness and mean Grey Leve l ( G L ) , that of densitometric 

analysis. Here a transect, shown as a sl im rectangular frame superimposed on the 

sediment image and perpendicular to the laminae (Plate 4.1), was selected and the grey 

level of each pixel in the profile determined. A trace such as Figure 4.5 was produced, 

where large grey values represented pale laminae and smal l values, dark ones. 

Examination of rates of change of grey values, large values of which occurred where there 

were lamination boundaries, enabled the calculation of lamination position and thickness. 

4.5.3 Image enhancement 

Several processing techniques were employed in order to enhance images, and 

to facilitate detection of weak or ill-defined laminae. A major source of error in counting 

was uncertainty in the unequivocal detection of laminae caused by insufficient perceived 
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Plate 4.1 Image of an x-radiograph of a section of laminated sédiment. Pale areas 

represent more radio-transparent material. The white frame superimposed 

upon the x-radiograph is an 8-pixel-wide window within which grey level 

measurements are taken. 

spatial or grey level resolution up>on digitisation. Images of laminated sédiments, whether 

obtained by photography or x-radiography, consist of areas of varying tones of grey level, 

each characterised by a quantifiable set of parameters. O f particular interest was 

characterisation o f laminae i n terms of grey level , thickness and location in the 

stratigraphie séquence. Measurement of thèse values was aided either directly or indirectly 

by the zqjphcation of one or more image processing opérations. O f particular interest was 

the use of smoothing algorithms, and of filter matrices (kernels), in order to enhance 

lamination perception. 
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Figure 4.5 Densitometiic trace derived from the x-radiograph in Plate 4.1, data being 

taken from within the 8-pixel-wide measurement frame. Note that a 

conspicuous noise component, manifest as a high frequency, low amplitude 

signal, exists within the data. 

4.5.4 Smoothing and averaging 

Random noise produced by electronic circiiitry (Marion, 1991) was decreased 

by averaging eight frames of the same image during acquisition, but these still contained 

minor defects owing to, for example, detector noise, as well as to those features inherent 

in the subject, such as photographic grain. A smoothing transform was thus applied to 

each image in order to remove, or at least gready to decrease, these defects. Median 

filtering was found to be well suited to this purpose, since the natiu-e of the filter ensured 

that boundaries were not moved and that grey level differences across them remained. 

Densitometry of this image revealed that the noise levels had decreased (Figure 4.6) after 

application of this transform. 
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Figure 4.6 Densitometric trace derived from Plate 4.1, after the appUcation of median 

filtering, illustrating the diminution of high frequency noise within the image. 

4.5.5 Histogram equalisation 

Many images did not contain a full range of all possible grey level values and 

histogram equalisation was employed i n order to spread grey levels more evenly (Russ, 

1992). W i t h this technique, differences in brightness between pixels was maintained, but 

G L values were shifted, leading to the enhancement of detail indiscernible in the original 

image. Although useful generally, it was foimd in many cases to degrade image quality to 

the point where densitometry was deemed unreliable, and was thus only sparingly utilised. 

4.5.6 Dilation and Erosion 

Dilat ion is the addition of pixels of the same G L to the boundaries 

delineating an object from its backgroimd. The operation thus replicated pixels around the 

periphery of, and also tended to remove 'holes' within, an object. Dilations performed 

parallel to the fabric of the laminae were found to be the most useful in the context of this 

study. 

In practice, a transect, a few pixels wide and aligned parallel to the frame of 
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the image analyser, was copied into another image memory, producing a narrow image 

containing information about G L changes along that transect caused by the lamination 

structure. The image was then dilated parallel to the laminae, enlarging the transect. N o 

extra information was added by this operation, the oniy effect being to rephcate the data 

contained within the originai transect {Piate 4.2). Thus ali positional, G L and dimensionai 

information was retained. The process was then repeated utilising another transect, 

leading to formation of another dilated image. One was then subtracted from the other, 

resulting i n the production of a nuli image (or nearly so) and acted as a test to ensure that 

the originai image was aligned with the image frame and that the laminae within each 

transect were identical. Individuai transects were then averaged in order to produce an 

further image for densitometric analysis {Figure 4.7). 

Piate 4.2 Image of a transect from Piate 4.1, after undergoing a series of horizontal 

dilation transforms. Each lamina is now homogeneous across the width of the 

image. 
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Figure 4.7 Densitometric analysis of a transect of an image {Plate 4.2) after dilation 

4.6 Scanning Electron Microscopy (SEM) 

4.6.1 Introduction 

Many texts describe the principles of operation of this technique, both as a tool 

for imaging, u t i l i s ing both secondary and backscattered electrons, and for the 

determination and quantification of chemical elements present (see, for example, 

Coldstream et ai, 1992). The application of S E M to the study of laminated sediments 

may be divided between that of imaging in order to determine microlithological variations 

(for example, Brodie & Kemp, 1994; Kemp, 1990; K e m p et al., 1996), observation of 

fossil microfauna (for example. Dean et al., 1984; Schimmelmann et al., 1992), and 

elemental analysis, which may ascertain changes in chemical composition (Alapieti & 

Saamisto, 1981), between layers. 
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4.6.2 Sample preparation 

Eight sections of sediment, representing material deposited at different times 

within the last ca 8.5 ka, and consisting of ca 20 laminae were removed from both long 

cores. Each section was divided vertically into two and material in each prepared for 

analysis by different procedures. A l l samples were air dried i n ambient conditions, and 

one from each section was impregnated with epoxy resin (Pike & K e m p , 1996; Spurr's 

resin; Polysciences Inc., 1993). Several sections were rough polished but others 

remained unimpregnated and unpolished. A l l were vacuum-coated ( V G Isogas, Horsham, 

UK) with gold or carbon in order to improve the electrical conductivity of the specimen. 

4.6.3 Imaging and elemental analysis 

Sections were examined by S E M {JEOL6100, JEOL Ltd., Tokyo, Japan), at 

20 K V electron energy, and at various magnifications. Both secondary and backscattered 

electrons were detected, with additional Electron Dispersive X- ray analysis, utilising the 

E D S detector attached to the instrument and associated software {Link Analytical Ltd., 

High Wycombe, UK; Oxford Instruments Ud., Oxford, UK). Identification of sediment 

samples is listed i n Table 4.2. Transects of each sample, perpendicular to the fabric of the 

laminae, were scanned in order to ascertain whether or not there appeared to be any 

variations in microlithology between layers, or i f there existed visible chemges in number 

or type of microfossils within laminae. 

Elemental analysis was carried out by scanning the primary electron beam over 

a small {ca 3000 \im'^) area of the sample, in order to average the signal. For each 

analysis, sample stage height within the instrument remained constant at 17mm and 

integration time of the analysis was 100 seconds. A beam intensity appropriate for ca 25% 

detector dead time was maintained. Examination of both pale and dark laminae was 

undertaken. Preliminary examination of the samples was initially carried out in order to 
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Table 4.2 Sample designations for S E M analyses. 

Sample Approx. Impregnated Polished Coating 
age (ka BP) 

c l 2 V V c 

c2 4 V c 

c3 5 V V c 

c4 7 c 

g l 2 V V A u 

g2 4 V A u 

g3 5 V V A u 

g4 7 A u 

ascertain which elements were present, and variation in composition between samples was 

determined by calculating the ratios of those elements. Detection software was then 

configured to quantify those elements present. Samples coated with gold were zinalysed 

utilising the detector covered with a thin window, allowing elements as light as carbon to 

be quantified. Results from the analysis of polished sections were corrected using the Z A P 

method i n order to negate effects due to atomic number, absorption and fluorescence 

(Coldstream er a/., 1992). 

4.7 Acquisition and analysis of densitometric traces 

4.7.1 Introduction 

X-radiographs of sections of sediment were produced by methods previously 

detailed i n Section 4.4. They were then digitised, enhanced utilising image analysis 

transforms, and densitometrically analysed as described in Section 4.5. A software routine 
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was written in order to facilitate conversion of the densitometric data contained within the 

digitised X-radiographs into a form which could then be processed by further software 

specifically written for the purpose of detecting the position of leiminae within the 

sedimentary séquence and for quantifying their characteristics. Lamination thickness data 

were then assembled into chronological séquence in order to produce time séries for 

investigation by Fourier Transform spectral analysis, and for comparison with other 

palaeoclimatic datasets. 

4.7.2 Acquisition of densitometi'ic data 

A computer program, written by the author in the QuicBasic programming 

language {Version 2.1. Leica, Cambridge, UK. 1995), was utilised in order to acquire and 

quantify gney level values along a longitudinal transect of an image. The rationale behind 

the method may be found in Section 4.5, and it is only intended hère briefly to discuss the 

program and explain its structure. 

4.7.3 Program opération 

A n array of 512 éléments was set up, the maximum allowed by the image 

analyser, which was utilised as data space for the densitometric measurements. Array 

éléments not filled were set to zéro. The program stores calibration data, and time/date 

stamps the ou^ut in order to provide a record for the user. Measurements in either vertical 

or horizontal directions were accommodated by altering the aspect ratio of the measuring 

frame. User input consisted of identification of the image frame to be measured, and 

enabled a suite of images to be consecutively quantified at one time. 
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4.7.3.1 Program listing 

10 REM**** nessiaeas - measurement of greyscale **** 
20 REM**** values from photos/radiographs of Loch Ness 

sediment cores **** 
30 REM**** 1994 February 24. Mick Cooper. Env Sci **** 
40 REM* 
50 input 'Enter data f i l e name:',ifile$ 
60 ifile$='B:•+ifile$ 
70 open#l i f i l e $ 
80 riasettings 'cal_value' k 
90 PRINT 'Calibrated (Y/N)?'; 
100 INPUT cal$ 
110 IF cal$ = "N" OR cal$ = "n" THEN k = 0 
120 print #1: date$,time$ 
130 print #1:'pixel sizes',k 
140 riasettings 'mframex' xl 
150 riasettings 'mframey' y l 
160 riasettings 'mframeh' hi 
170 riasettings 'mframew' wl 
180 mframe xl y l wl hi 
190 sl=0 
200 input 'Enter image for measurement: ',pl 
210 DIM x(512) 
220 i f wKhl then sl=hl:goto 240 
230 i f wl>hl then sl=wl:goto 260 
240 vprof pi x l y l wl hi x(l) 
250 goto 270 
260 hprof pi xl y l wl hi x(l) 
270 for n=l to s i 
280 print #1: x(n) 
290 NEXT n 
300 close#l 
310 END 

4.7.4 Program stincture 

The basic structure of the program may be smnmarised as follows: 

1) Set up variables and dimension data storage. 

2) Ask user for file name 

3) Ask user i f data is cahbrated. Set calibration to zero i f no t 

4) Ask user for image number to measured 

5) Check on aspect ratio of measurement frame and select appropriate greyscale 

measuring routine- vprof: vertical profile; hprof: horizontal profile. 
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6) Write data tooutput file 

The program was configured to measure only one image at a time, since the 

Quantimet operating system dœs not al low for the backgroimd opération of QuicBasic. 

Thus, the program needed to be re-run for each image to be measured, which incidentally 

alleviated the need to include reinitialisation routines since ail variables are declared and 

cleared each time. The inclusion of the request for image identification dœs, however, 

enable the user to acquire many images, manipulate them, and then perform densitometric 

analysis without retuming to the Quantimet operating System between each set of 

measurements. 

4.7.5 Analysis of densitometric traces 

The task of determining the position of 'highs' and ' lows ' within a séries of 

sequential digital measurements is a problem common to many discipl ines. The 

quantification of the signal from a detector affixed to a gas or liquid chromatograph as it 

responds to the elution of différent chemical compounds, and the location and translation 

of bar code markings by a checkout scaimer at a supermarket are two examples. Many 

mathematical techniques may be utilised i n order to standardise the perceived signal and 

extract the required data (peak location, intensity and width in the former example, and bar 

thickness and séquence in the latter), but most employ algorithms which define, in the 

signal stream, points of rapid change in intensity and thus the location of the digital 'peaks 

and troughs'. Mathematically, many procédures involve the calculation of the first 

derivative of the signal, although calculation of the second derivative bas been shown to be 

advantageous where pooriy-defined peaks are prévalent (Grant & Bhattacharyya, 1985). 

For simplicity of programming, however, it was felt that utilisation of image processing 

techniques, prior to densitometric analysis, would obviate the requirement of second 

differential arithmetic and thus it was decided to calculate the first differential of the signal 

over four consécutive pixels within a sliding data window. 
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4.7.6 Computer program 

The computer program, written by the author in Microsoft QBasic {Version 

1.1. Microsoft Corporation, Seattle, USA. 1987-1992), quantifies densitometric data and 

produces séquences of lamination thickness, average greylevel and lamination position. 

The root algorithm has been designed to recognise the portions of a densitometric trace 

where large, rapid changes in greylevel occur. Thèse are invariably related to the 

boimdaries between laminae. Quantification of their characteristics may then be determined 

by fiagging thèse and calculating thickness, average greylevel and position of the laminae 

by the simple simimation of the qualities of intervening pixels. 

4.7.7 Program opération 

Routines are included to recognise the range of greylevels in a dataset and to 

adjust the lamination récognition parameters to compensate. Peripheral to the main 

calculation algoriflmi is the ability to select input and output devices and filenames in order 

to enable the user to output results directly to a printer or v ia an intermédiare file in tab-

delimited format, which may be exported to commercial statistical packages for further 

processing. Data may be input from files residing on both fioppy and hard disks. 

4.7.7.1 Program listing 

The program is necessarily complex. It consists of some 750 lines of code, 

and for brevity w i l l not be reproduced here. A copy (Macintosh format) may found on the 

3.5 inch disk included on the rear cover of this thesis. The file may be viewed by loading 

into any word processor, after first setting the input file type to 'text'. 

103 



4. Methods 

4.7.8 Program structure 

The basic structure of the program may be summarised as follows: 

1) Set up variables and dimension data storage. Display introduction i f program 

has just loaded. 

2) A s k user for input device 

3) Ask user for data file name 

4) Lx>ad file and display file header information 

5) Calculate differences in greylevel between successive pixels 

6) H a g large differences 

7) Determine the greylevel range of dataset and set tolerance for lamination 

detection accordingly 

8) Display results, calculating thickness, location and average greylevel of each 

lamination. 

9) Ask for output destination 

10) Write data to output device. If printer, maintain page mmibering and line 

format information 

11) Clear data store and associated variables. Keep input and output 

environments 

12) Return to step 3) 

A t present, the program is configured to run in a linear fashion from data input to output of 

results. Many of the variables relating to the discrimination of laminae are preset and hence 

unalterable during run-time. 

The algorithm has been tested against both contrived and genuine data sets, 

with satisfactory results. A contrived densitometric trace, consisting of four 'peaks' was 

constructed with Microsoft Exce l {Version 4, Microsoft Corp. Seattle, USA), and 
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subjected to analysis by this method. A furtber test involved tbe digitisation and 

densitometric analysis of an image of laminated sediment from Holzmaar, Germany. 

Laminae in tbe oríginzd image were counted visually and the result compíired with that 

derived from application of this algorithm. 

4.8 Compilation of dataseis 

4.8.1 General 

A t this point it should be made olear that the study necessitated the compilation 

of two sets of data. One set is represented by sequences of grey level determinations 

derived from the densitometric analysis of X-radiographs, and the other by lamination 

thickness measurements calculated from those data. The valúes contained within the first 

dataset possess units of 'per pixel ' and those in the second set, 'per year'. 

4.8.2 Sequencing of grey level determinations 

The Quantimet image analyser possesses an image frame of 512x512 pixels. 

Thus, only 512 grey level measurements may be determined at one time. A t the image 

scale employed in this study, it was found necessary to acquire and measure several 

images, each offset by ca 4 cm, of every 15 cm core section. Fol lowing each analysis, 

raw grey level data was input to Microsoft Excel and a densitometric curve plotted. Exact 

matching of overlapping sections was achieved by moving each 512-pixel dataset relative 

to the others imtil a good visual fit was achieved. G L data for the entire section was then 

written to a file for processing by lamination detection software. Similar procedures were 

employed for data which sparmed overlapping 15 cm core sections. 
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4.8.3 Sequencing of lamination thickness determinations 

After processing by lamination detection software, lamination data derived 

from individual 15 cm core sections were again sequenced utilising Microsoft Excel. Since 

adjustment o f data owing to overlapping sections had already been carried out i n the 

previous step {Section 4.7.1), further processing was deemed unnecessary and 

measurements were simply 'stacked' in chronological order. Excel was then utilised to 

calculate core distance, mean lamination thickness, and estimated ('varve') age from the 

data inputted. 

4.9 Time series analysis 

4.9.1 Introduction 

Standard statistical techniques may be utilised for the analysis of time series 

derived from many physical processes, and include the determination of the mean, mode, 

standard deviation and variance, tests for normality and correlation between different 

series. O f particular interest, however, is the extent to which the signal exhibits elements 

of periodic behaviour, the evolution of the signal over time, and the determination of the 

magnitude of 'randomness' inherent in it. 

4.9.2 Estimation of randomness of extreme events 

The apparent cyclicity of climatic events may be conveniently expressed in the 

repetition of extreme events. The assessment of the statistical significance of the spacing of 

these may be performed by employing Sherman's statistic (Burroughs, 1993). 

If n extreme events occur at dates d^, d j , d^ d^, in chronological order, 

and that d_ and d , are the start and end dates of the complete time series under 
0 n+l ^ 
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consideration, then the total time covered by the series, D , is 

(4.6) 

10 20 30 40 50 

Sample size, n 

Figure 4.8 Confidence limits for interpretation of Sherman's Statistic (After 

Burroughs, 1993). Increasing values indicate a greater likelihood of 

extreme values from a time series being a product of chance, rather than 

from some underlying periodicity. 

The average time between extremes may be expressed as D/(n+l ) and 

Sherman's statistic may then be defined as: 

j=n 

co= 0.5D 2 I (dj-d. - D/(n+l) I (4.7) 

j = i 
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This provides a measure of the difference between each of the actual intervals 

between extremes and the average interval. The probabihty of w being the product of 

Chance, for n extreme events, may be determined by reference to Figure 4.8. For this 

study, intervals between extreme values of lamination thickness (>2a, < l a from the 

mean), from each of the cores, were determined and subjected to this test 

4.9.3 Fourier analysis 

A physical process may be described either in terms of change as a function of 

time or by change i n terms of frequency (Chatfield, 1989). Thus, the same function may 

be thought as being represented in both the time and the frequency domains and 

conversion between the two may be carried out by utilisation of the Fourier transform 

equations {4.8 and 4.9). 

H(f) =/h(t) e^Pf* dt {4.8) 

h(t)=Jh(0e-2p^^ df (4.9) 

This method may be described as the 'classical ' technique for the analysis of 

underlying periodidty in time-resolved data sets. The rationale may be found in most texts 

dealing with the analysis of data in the frequency domain (for example, Chatfield, 1989), 

and wi l l be explained only briefly here. 

The technique seeks to resolve data into a series of sine expressions, from 

which the original series may be recreated by an inverse procedure. Thus it is possible to 

determine Clements of periodicity within a time series, and to assign values of significance 

to them. A Variation of the classical Fourier method (which is also termed a Discrete 

Fourier Transform), and which permits more rapid caiculation, is the Fast Fourier 

Transform ( F F T ) . This method is used for the preliminary investigation of periodicity 

108 



4. Methods 

within the time series considered in this study. 

W i t h the advent of fast, powerful Computers, other techniques have been 

recently developed to improve on many of the shortcomings of the classica! method of 

determining periodic trends. These have been utilised by many researchers, but are only 

recently being included in commercially available Statistical analysis applications. Specific 

improvements embodied in newer techniques may be cleissified into the main groups of i) . 

reduction of spectral leakage; i i ) . the increase of resolution at high or low frequencies; i i i ) . 

the improvement to spectral density estimates; and, iv). the reduction of artefact Signals. 

To these ends, the foUowing techniques bave been applied to the problem by various 

researchers: 

Blackman-Tukey analysis (ETA) 

Maximum entropy spectral analysis (MESA) 

Thomson multitaper spectral analysis (TMT) 

Minimum cross-entropy spectral analysis (MCESA) 

Discrete Wavelet transforms (DWT) 

O f interest bere is the study by Berger et al. (1990), which sought to compare 

six methods of spectral analysis, in order to elucidate the most significant periodicities in 

the time series derived from the Observation of sunspot numbers from A D 1700 to A D 

1986. Evolutive analysis was also carried out in order to illustrate changes in the phase of 

calculated periodicities within the data. It was noted that although each method enhanced 

different features of the power spectrum, most detected the same periodicities as the initial, 

classical, Fourier transform. 

It was decided therefore to confine spectral analysis to the determiuation of the 

FFT Spectrum, with fine tuning of transform parameters dependant upon the time series 

under consideration. A number of commercial statistics packages were evaluated and it 
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was decided to employ SPSS (SPSS Inc.1990. Chicago, USA), which contains a wide 

sélection of customisation parameters for F F T , in addition to a full set of descriptive 

Statistical routines. Output from Fourier analysis was further manipulated in Microsoft 

Excel. For initial screening of the spectral properties of time séries, the software package 

ProFit {QuantumSoft, 1990-1994. Zürich, Switzerland), was utilised. This is extremely 

user-friendly and simple to configure for rapid analysis. 

4.9.4 Methods 

T i m e séries were constnicted as detailed in Section 4.7 and submitted to 

preliminary spectral analysis using Pro-Fit. Examination of the spectral characteristics of 

the data then enabled the parameters of SPSS to be adjusted according to the criteria of 

Chatfield (1989), i n order to produce the optimal spectral analysis. In the case of Core 

Ness 3, where continuons data were not available, analysis was optimised for eadi 

individuai section. 

Confidence limits were calculated for each spectrum by considering the 

number of degrees of freedom of the window utilised to process the data and applying 

équation 4.10 (Chatfield, 1989; Koopmans, 1974) to each of spectral density estimâtes. 

For the 100(1-a) % confidence interval: 

nf(w) 

x \ , a / 2 

to nf (w) 
2 

X n, l-a/2 

{4.10 ) 

Evolutive spectral analysis was performed by first d iv id ing time series into discrete 

subseries, each of 128 data points (years), and subjecting each to Fourier analysis. Results 
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were then 'stacked' in chronological order into a Microsoft Exce l spreadsheet and 

plotted as a contour diagram, where regions which share common spectral density 

estimates i n a 2-dimensional time/frequency space are linked. The resultant diagram 

illustrates changes in the periodic nature of sedimentation as exhibited i n cores Ness 3, 

Ness 4andLNRl. 
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5. Results 

5.1 Sediment description 

In this investigation three cores, two almost 6 m in length, one ca 0.8 m long, 

were studied {Table 5.1). A l l three are laminated dark brown/black, with paler shades of 

olive/brown, almost throughout. Both long cores are laminated to ca 4.3 m and terminate, 

with sharp contact, i n a basal grey clay. A distinctive section, consisting of blocks of 

chaotically-arranged, laminated sediment, surroimded by unlaminated dark brown gyttja, 

was observed at ca 1.5 m in both long cores. A s the position of these features vis a vis 

the sediment/water interface is uncertain, measurements are given in distance from the top 

of each core. 

Table 5.1 Designation of sediment cores analysed in this study. 

Designation Length (m) Notes 

LNRl 0.787 'Utilised to investigate recent 

sediments. 

Ness 3 5.67 Initial ' long core'. Laminae 

distorted in some places. 

Ness 4 5.37 Better quality laminations. 

5.1.1 Core LNRl (Figure 5.1) 

The total length of sediment recovered was 0.787 m. Many prominent pale laminae 

were noted. Of particuleir interest is a layer, ca 5 mm thick at 0.153 m, which is believed 

to represent material deposited during the well-documented flood of A D 1868 (Inverness 

Courier, 1868). Below, two further pale laminae, at 0.157 and 0.16 m, may be observed. 
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another pair at 0.286 and 0.289 m, and a further three at 0.584, 0.603 and 0.616 m. N o 

further prominent layers were noted below about 0.65 m. A number of dark laminae, at 

0.333, 0.413, 0.417, 0.514, and 0.565 m, were also identified. None of these were as 

thick as the paler laminations. 

0.153 
0.157 
0.160 

0.272 
0.286 
0.289 

0.333 

Palelaminae 

Thick, pale laminae 

Darklaminae 

0.364 

0.413 
0.417 

0.514 
0.520 
0.522 
0.525 

0.565 

0.584 
0.591 
0.595 
0.603 

Laminatìon positions in metres 

0.616 

Figure 5.1 L o g of core LNRl, indicating locations of prominent laminations. 
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5.1.2 Core Ness 3 (Plate 5.1 ) 

The total length of core recovered was 5.67 m. The distance to the contact 

between gyttja and basal clay was 4.315 m. The sediment was extruded into six, one 

meter sections (Table 5.2). Above 0.61 m, they were very soft and contained much water. 

Upon extrusion and sectioning, these tended to f low, causing destruction of the 

laminations. Below 0.61 m , the sediment became much firmer, retained good lamination 

detail, and consisted of brown (Munsell code 5YR7/1) gyttja interspersed with pale 

cream/olive (10YR7/2-3) and dark brown/black (2GR3/2) laminations of varying 

thickness. Below ca 3.15 m the predominant colour became paler ( 10YR3/2), changing to 

10YR5/2 below 3.83 m. The basal clay was pale grey, and estimated to be 7YR7/1 . 

Table 5.2 Subdimensions of core Ness 3. Designations are those used to describe x-ray 

images. 

Section Length Cumulative 

(m) length (m) 

311 0.96 0.96 

312 0.99 1.95 

3/3 0.94 2.89 

3/4 0.94 3.83 

3/5 0.91 4.75 

3/6 0.92 5.67 

A t 0.66 m a prominent brown band was observed. The core continued to be well 

laminated to 1.14 m, where severe disruption of the stratigraphy began, persisting to 1.53 

m. This section appeared to consist of blocks of laminated sediment chaotically arranged 

within a non-laminated matrix. Appearance of the matrix was identical to that of the brown 

gyttja found throughout the rest of the core. Between 1.14 and 1.38 m, the sediment was 
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Piate 5.1 Monochromelnfrared photogn^h of core Ness 3. The base of the core is 

iocated at the bottoni right of the image, the upper section to the top left. 

more gritty in texture than the remainda- of the core. From 1.53 m, laminations continued 

to 2.35 m, with prominent pale layers at 1.82 and 2.34 m. A change i n lithology at 2.35 

m, taking the form of homogeneous, fìne-grained sediment. marked the location of the 

jo in between the coring tubes. It was jMBSumed that this material leaked into the core barrel 
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under pressure during coring. Laminations recommenced at 2.42 m and continued, with 

good définition, to the day/gyttja boundary at 4.31 m. A sand layer, consisting mainly of 

quartz grains, was observed between 4.36 and 4.37 m. Homogeneous grey clay then 

continued to the base of the core. 

5.1.3 CoreNess4 (Plate 5.2) 

The total length recovered was 5.15 m, with a distance of 4.08 m to the 

claylgyttja contact The material was agîûn extruded into six, one mètre, sections (Table 

5.3) and consisted of brown gyttja laminated with pale olive/cream layers. Laminations 

existed from the top of the core, the texture of the material there being very f irm, 

although above 0.14 m they were noted to be indistinct A n air gap in the core, some 4 

mm thick, was observed at 0.33 m. Prominent ohve coloured laminae (Mimsell 10YR7/2) 

were noted at 0.48, 0.50, 0.52 m, the last some 0.75 mm thick and discontinuons across 

the section. Weak bands of the same colour were observed at 0.82, 0.88 and 0.93 m. A 

chaotic section, similar to that observed in core Ness 3, occurred between 1.4 and 1.57 

m. 

Table 5.3 Summary of sectional lengths of core Ness 4. Section désignations are 

those used to describe x-ray images. 

Section Length Cumulative 

(m) length (m) 

4/1 0.95 0.95 

4/2 0.96 1.92 

4/3 0.97 2.89 

4/4 0.95 3.84 

4/5 0.97 4.82 

4/6 0.33 5.15 
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Piate 5.2 MoDochrcmie Infrared photograph of core Ness 4. The base ci the core is 

located at the bottoni right of the image, with ibe u f^ rn io s t sections towards 

the top lefL 

Fragments of wood, conformale wjth the bedding of the laminae, were 

recorded at depths 1.57 m , 2.67 m, and 3.12 m. Many crfive-coloured laminatiMis were 

observed, as were black tayers. A small pebbJe, diameter ca 4 mm, was discovered at 

3.4<B m. Laminae were noted to be distinct and undistorted throughout the remainder of 
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the core, the boundary between the gyttja and basal clay occurring at 4.08 m. A coarse-

grained sand layer was again noted, at ca 4.1 m. 

5.2 Physical properties 

5.2.1 Percentage Dry Matter and Loss on Ignition 

5.2.1.1 Core Ness 3 Percentage Dry Matter (Figure 5.2) 

Percentage Dry Matter ( % D M ) remains low almost throughout the entire 

length of core Ness 3, but decreases from 32% at the contact between basal clay and 

gyttja, to about 20% at the top. Typical results from the grey basal clay are of the order of 

80%. Values of 28% are recorded at 3.25 and 2.4 m, which represent increases of the 

Order of 10% above those figures obtained from the surroimding sediment. A slight peak 

(to ca 27%) may also be observed in the section from ca 1.1 m to 1.4 m, which contains 

the chaotic layer. 

Depth (m) 

Figure 5.2 Percentage Dry Matter and percentage Loss On Ignition, core Ness 3. 
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5.2.1.2 Core Ness 3 Percentage Loss on Ignition (Figure 5.2) 

Loss on ignition (%LOI) for core Ness 3 exhibits a trend from small values 

(ca 20%) at the base of the gyttja, to about 30-40% at the top. The signal contains larger 

fluctuations, many at the same horizons, than for % D M . In general, decline i n % L O I is 

matched by an increase in % D M . The grey basal clay exhibits very little loss on ignition 

(ca 2-3%), values increasing steeply across the clay/gyttja contact. A n immediate decline 

to 15% is observed at 4.1 m, but is rapidly followed by an increase to ca 30% at 3.7 m. A 

prominent 'plateau' in values may be observed in the section from 3.8 to 2.7 m. The 

signal declines to ca 20% at two sampling points within the chaotic section from 1.6 to ca 

1.0 m. Values in the topmost one metre of the core remain around 30-40%, with minor 

fluctuations, which may be artefacts of the sampling process. 

5.2.1.3 Core Ness 4 Percentage Dry Matter (Figure 5.3) 

The % D M content of core Ness 4 is similar to that of core Ness 5, but the 

profile is much more complex. Values of % D M from the basal grey clay are again high, 

some 60-70%, which decline rapidly across the clay/gyttja boundary at 4.08 m. The 

signal continues to fall, less quickly, until large increases in % D M occur at ca 2.8 m, and 

again at ca 2.3 m. Core Ness 4 does not display a pronounced increase in % D M 

within the chaotic section at 1.57-1.39 m, as was noted for core Ness 3. A decline in 

% D M is measured at 1.0 m but this is transitory, and i n the uppermost 0.5 m of the core 

% D M rises with only minor fluctuations towards the top, where a comparatively large 

value of 46% is observed. 

5.2.1.4 Core Ness 4 Percentage Loss on Ignition (Figure 5.3) 

Similar values of % L O I were found in core Ness 3, but many fluctuations 

occur i n core Ness 4 which are not observed in the former. Very low levels are 
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90 r 

80 -

70 -

Depth (m) 

Figure 5.3 Percentage Dry Matter and percentage Loss On Ignition, core Ness 4 

observed within the grey clay, with subsequent rapid increase across the clay/gyttja 

contact. Values remain fairly low, however, (less than 20%) until 3.6 m , where they 

increase to ca 27%. Large fluctuations in % L O I , notably at 2.75 and 2.3 m, are observed, 

the values of which increase from ca 30% to 50%-70%. % L O I declines to ca 20% within 

the chaotic section, and increases rapidly to ca 60% in the region of 1.2 m. A 'plateau' of 

values of ca 35-40% are measured from 1.0 to 0.5 m, declining to ca 20% from 0.5 to 

0.2 m. Large values, ca 60%, are observed at the extreme top of the core. 

5.3 Imaging 

5.3.1 Photography of core sections 

A black-and-white, infrared image of a section of core Ness 3 is shown in 

Plate 5.3. The general fabric of the sediments and lamination structure are better 

delineated in infrared photographs than in colour, but reveal a noticeable 'graininess' 
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within each lamina. This is presumably owing to the 'p lucking ' of individuai grains 

during the smoothing of the sediment surface. This effect was foimd very difficult to 

avoid, and could not be alleviated by use of [bastìe film or rigid i^astic sheet (Renberg, 

1981). Tbus Ibis was eventually abandoaed as a method for the counting of laminalioas. 

Piate 5.3 Pliotograph. with mcmocluDme Infrared sensitive film, illustrating a section a( 

coK Ness 3. 

t 

Infrared photographs of long core sections are shown in Plates 5.1 and 5.2. 

The negatives were carefully exposed in order to ensure imiform i l l imiinalion and [Minted 

with regard to producing a near-uniform background. The images obtained were then 

subjected to image analysis, in order to quantify variation in greylevel throughout each 

core {Figures 5J and 5.6) 
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200 r 

1 2 3 4 5 

Depth (m) 

Figure 5.4 Variation of Grey Level throughout core Ness 3, determined from an Infrared 

image of the core. 

300 r 

0 1 2 3 4 5 

Depth (m) 

Figure 5.5 Variation of Grey Level throughout core Ness 4, determined from an Infrared 

image of the core. 
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5.3.2 X-radiography 

X-radiographs were obtained of 0.15 m sections from Cores Ness 3, Ness 4 

and LNRl. Contact prints made from thèse are illustrated in Appendices A , B , and C . For 

reproduction, the prints were processed on to a 'hard' grade of photographie paper (Ilford 

Multigrade, Ilford Photographie Ltd. , Mobberley, U K ) in order to accentuate subtle détail 

as much as possible. This bas given, however, a 'grainy' appearance to each plate. 

Radiographs from core Ness 3 illustrate the variable quality of laminae, which 

was also be noted in the infrared images. Many layers appear distorted and some sections 

exhibit a diffuse, undefined structure, where contrast between laminations is indistinct. 

Infrared photography, however, suggested that thèse features are genuine, resulting, 

perhaps, from lack of contrast in bulk density between laminations. Thèse indistinct 

sections were not included in the chronology, since it was not possible in thèse cases to 

enhance the structure by image analysis. 

5.3.3 Scanning Electron Microscopy 

S E M analysis employed both secondary ( S E S E M ) and backscattered (BSEI) 

électrons in order to form an image. In addition, elemental analysis was performed by 

Energy Dispersive X - R a y Spectroscopy (EDS) . Attempts to distinguish between pale and 

dark laminae by examination of microlithology, both by qualitative estimation of variation 

in grain size, and by distribution of diatom frustules, generated images typified by Plate 

5.^, and proved inconclusive. This image illustrâtes par tofa clay-rich lamina iupper), 

grading into silt-rich (lower). No changes in appearance of the lithology, or of diatom 

type or number, are seen. 

Elemental analysis of a number of samples, extracted from différent sections 

of core Ness 3, and thus representing sédiments deposited during différent periods of the 
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Piale 5.4 Photomosaic of SES E M images illustiaüng the lack of change in l i t h o l c ^ 

between (upper images) dark clay-rich, and (lower images) pale silt-nch, 

laminae. 
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Holœene, were carried out by E D S . Both pale and dark laminae were included in the 

analyses, in order to test for variations in ratios of elements and differences in absolute 

quantities, between pale and dark laminae. Both rough-surfaced and semi-polished 

sections were analysed, ratios of elements calculated from data gained from the former. 

Results from polished sections were subjected to correction by Z A P ( Z A F - 4 B ; L i n k 

Analytical, 1992). Table 5.4 illustrates results of EDS analysés. Little difference in spectra 

obtained from pale and dark laminae were noted. A typical spectrum, acquired £is a screen 

dimip directly from the S E M , is illustrated in Figure 5.6. In addition, ZAF-corrected E D S 

analysis was carried out on material collected from dried, dissected individual laminae, on 

behalf of M s L.A.Wheeler, of the University of Wolverhampton (Unpubl. P h D thesis). 

X-RFIV: 0 - 20 keU 
L i v e : 100s P r e s e t : i00s Remaining: Os 
Rea l : 146s 32'4 Dead 

3.103 keU 8.2 > 
FS= 16K ch 165= 543 . c t s 
MEM1 : 

Figure 5.6 Screen dump of a typical E D S spectrum of material from core Ness 3. 

Elements detected are aimotated. 
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Table 5.4 (Left) Results of E D S analyses of unpolished, impregnated samples. (Right) 

Results of ZAF-corrected E D S analyses. 
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5.4 Chronology 

5.4.1 Densitometry of x-radiographs 

Analysis of each X-radiograph produced curves representing variation of 

image density, exemplified in Figure 5.7. Further processing of these data by custom-

written software, described previously, yielded data on lamination thickness and varve 

counts, such as those displayed in Table 5.5. For core Ness 3, these were put together in 

order to compile an intermittent, floating chronology comprising a total of 5546 lamination 

pairs {Figure 5.8). Only a discontinuous chronology could be assembled, owing to the 

presence of sections of laminations not amenable to x-radiography and image analysis. 

Core Ness 4 yielded 6155 laminae pairs and produced a continuous, floating, chronology 

(Figure 5.9). Correlation between the two cores is, however, at present imcertain. 
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Figure 5.7 Typical densitometric trace obtained from analysis of x-radiographs. 
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Figure 5.8 Variation of lamination thickness in core Ness 3. 
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Figure 5.10 Variation of lamination thickness in core LNRl. 
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Table 5.5 Typical output data produced by the lamination detection software. 

Analysis of f i l e : a:4143 
Analysis date: 03-05-1996 17:17:15 
Pix e l size (mm): .152672 
Frame size ( p i x e l s ) : 199 
No. of laminations: 31 

Lamination data 

lamination Position Thickness Ave 
number mm imn 
1 0.31 0.31 110 
2 0.92 0.61 88 
3 1.53 0.61 123 
4 3.21 1.68 86 
5 4.73 1.53 99 
6 5.65 0.92 69 
7 6.56 0.92 105 
8 7.33 0.76 91 
9 7.48 0.15 136 
10 7.63 0.15 93 
11 9.47 1.83 106 
12 10.08 0.61 94 
13 11.45 1.37 98 
14 11.76 0.31 

Average lamination thickness for both long cores were found to be different; in core Ness 

3, 0.45 mm a"̂  , and i n core Ness 4, 0.61 mm a L a m i n a e in short core LNRl, 

recovered from the same site as the long cores, were also examined and counted, in order 

to develop a more recent record (Figure 5.10). A complete suite of data for all cores 

analysed may be found, as text files, on the floppy disk inside the back cover of this 

thesis. 

5.4.2 Core Ness 3 

The lamination record from this core was found to be very variable, enabling 

only a discontinuous, segmented chronology to be determined. This is presented as a 

time/depth curve illustrated in F/^Mre 5.11. Since no definitive datable reference horizons 

existed within the long cores, the following method was adopted in order to facilitate the 

construction of the diagram (Cooper et al, in press). The average, aimual, lamination 
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thickness was determined over the three sequences analysed and plotted on the depth/time 

chart. This line did not pass through the origin, but was positioned as i f a loss of 0.5 m 

from the top of the core had occtirred. It has been observed that the long corer does not 

recover topmost sediments, although the absolute value of this loss is uncertain. 

Individual sequences of laminae were then plotted along this average l ine, in the 

appropriate positions. 

T w o suites of ^^C dates were obtained, the first a series of three determined 

by A M S and kindly donated to the study by D r Ewan Lawson of A N S T O , Mena i , 

Austral ia; the second, six radiometric dates, determined by Dr . D . D . Harkness of the 

N E R C Radiocarbon Laboratory and one A M S date, determined by the Radiocarbon 

Laboratory at the University of Tucson, A r i z o n a These latter dates were supported by the 

N E R C Steering Committee. In Figure 5.11 the dates are superimposed upon the 

depth/time curve. The dates prefixed ' O Z B ' represent the A N S T O data, and those labelled 

' S R R ' the results from the N E R C laboratory. A A - 2 1 8 5 2 was measured at the A M S 

facility. University of Tucson, Arizona. The data are simimarised in Table 5.6. 

Samples submitted for radiocarbon dating consisted of bulk sediment taken 

from core Ness 3. Particular care was taken to avoid sampling sediment which had been 

in contact with the storage container, in order to minimise possible inclusion of particles of 

plastic w h i c h by possessing an infinite radiocarbon age, may have biassed the 

determinations. Similar ly , the core from which the samples were removed had been 

primarily wrapped with aluminium foi l , and then overwrapped with plastic c l ing film, 

again in order to obviate contact between sediment and plastic. Each sample comprised 

about 50 lamination pairs, in order to minimise additional errors in age determination 

associated wi th sampling. This strategy, however, resulted in only small amounts of 

carbon present for dating, necessitating lengthy analysis times. Sample characteristics are 

noted in Table 5.7. 
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Table 5.6 Summary of radicDcarbon age determinations from core Ness 3. 

Laboratory 

Reference 

Average 

Depth (m) 

Agei'^'C 

Years BP) 

CalAge 

(Years BP) 

lorange 

(CalyrBP) (%c) 

SRR-5735 1.03 2730+50 2776 2880-2744 -28.7 

SRR-5736 1.98 3350±60 3620, 3585 3723-3460 -26.6 

O / H 2 6 0 U * 2.26 4000+90 4499 4625-4373 -26.9 

SRR-5737 3.26 5305+60 6170, 6143 6211-5981 -25.6 

SRR-5738 3.58 6050+70 6899 7092-6775 -25.1 

0 / ,H259U* 3.83 7600±110 8484 8587-8381 -26.9 

SRR-5739 3.90 6715+70 7547 7667-7470 -25.0 

0 7 R 2 5 8 U * 4.07 8580+220 9495 9649-9340 -26.9 

SRR-5740 4.30 8435+85 9437 9526-9206 -27.2 

AA-21852* 4.33 9450+110 10424 10918-10279 -26.6 

* denotes an AMS determination. Calendrical dates were calculated using the Radiocarbon Calibration 

program 3.03c (Stuiver & Reimer, 1993), utilising calibration fite 1NTCAL93.14C, and are expressed 

as a 2a ränge. Italics denote dates calculated using the program calibETH, expressed as a la ränge. 

analyses ofsamples dated by ANSTO were undertaken by Dr. Martin Jones at the University oj 

Newcastle, UK. 

5.4.3 Core Ness 4 

The lamination sequence from core Ness 4 proved to be complete, although 

examination of lamination counts and thickness reveals discrepancies between this core 

and core Ness 3. Densitometrie analysis of X-radiographs from this core suggests that the 

average annual lamination thickness is 0.61 mm and that there are 6651 lamination pairs, 

generating the depth/time plot illustrated in Figure 5.12, construction was by the same 

method as described for core Ness 3 in Section 5.3.2. 
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Table 5.7 Summary of characteristics of samples submitted for i ^ c analysis. 

Laboratory 

Reference 

Average 

Depth (m) 
Wet weight 

(g) 

LOI (ave) 
(%)* 

Carbon 
available (%)t 

SRR-5735 1.03 45.25 32 9.3 

SRR-5736 1.98 30.64 30 12.0 

O Z B 2 6 0 U 2.26 - 27 § 

SRR-5737 3.26 32.89 28 12.0 

SRR-5738 3.58 33.93 29 11.1 

07 ,B259U 3.83 - 27 § 

SRR-5739 3.90 35.45 18 9.3 

0 / , H 2 5 8 U 4.07 - 18 § 

SRR-5740 4.30 41.30 10 4.9 

AA-21852 4:33 47.92 5 0.1 

* Determined at University of Plymouth ^Determined at radiocarbon laboratory, expressed as 

percentage of weight ofdried material after sample pretreatment. § Data not available. 

5.4.4 Core LNRl 

Laminae were counted throughout the interval ca 0.07 m to 0.75 m, yielding a 

total of 1284 individuai layers (642 varves). Although no SWI was recovered, a 

prominent pale lamination (the thickest in the core) was assumed to represent deposition 

by the 1868 flood, dated to 1868 by ^^°Pb by V.J.Jones et al. (1997), from a third, 

independently recovered, short core, NESS90. This date enabled an absolute chronology 

between the years 1963 and 1321 A D to be constructed. Average annual lamination 

thickness for this core was calculated to be 1.08 mm a T h e depth/time curve for this 

core is illustrated in Figure 5.13. 
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Figure 5.11 Time/depth plot derived from lamination measurements from core Ness 3. 

The overiay illustrates the results of l^C dating. Italic titles indicate A M S 

dates. Calibrated ages are presented. 
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Figure 5.12 Time/depth plot derived from lamination measurements from core Ness 4. 

Age estimates are fixed to that of the clayIgyttja boimdary in core Ness 3. 
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Figure 5.13 Time/depth plot derived from lamination measurements from core LNRl. 

Age estimates are based on a prominent layer dated by ^^^Pb by V.J.Jones 

et al, 1997. 
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5.4.5 Uncertainties in chronology 

Sources of error pertaining to the techniques employed in this study, and to 

the site, are discussed in Chapter 6, but it is useful to briefly describe here other 

considerations which may need to be taken into account when compil ing a varve 

chronology. Since the laminae in Loch Ness have been deduced to be of a clastic origin, 

processes relating to biogenic varve formation wi l l not be discussed. 

Varves contain two types of information (Zolitschka, 1996). B y counting, an 

internal chronology may be constructed, but since the sediment-water interface is often 

recovered only wi th diff iculty, some external method of absolute dating is usually 

required. This may include radiometric methods, and the correlation of marker horizons. 

Thickness variations and composition of yearly laminae provide information on the 

response of the sedimentological system to a variety of forcing processes. Climatic 

variation is important but may also control catchment processes, such as erosion, 

transportation of material and growth of vegetation. The study of the entire system is 

required in order to fully characterise and understand the dataset obtained (Bradley et al., 

1995). For example, the record from Skilak Lake, A laska (Perkins & Sims, 1983) 

contained anomalous depositional events which were originally misinterpreted as annual 

laminae. In addition, correlation of a climatic signal with varve thickness may only hold 

good i f the boundary conditions of the catchment are constant throughout the time j)eriod 

studied. Furthermore, anthropogenic influences over the last 3000 years may be 

superimposed over the climatic signal (Zolitschka, 1996). 

The signals of grey level variations throughout the cores recovered from Loch 

Ness are complex, and on this basis alone it is not possible to ascertain with certainty that 

anomalous layers do not exist in the sedimentary record from this site. The close 

correlation of lamination thickness with N A O signal indicates, however, that over the past 

ca 100 years few, i f any, laminae are missing or are intra-annual. Comparison of the 
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time/depth curve obtained from core Ness 3 with that derived from ^^C dating supports 

this theory, as does the comparison of pollen zone data with those from other sites in the 

region. Correlation of cores Ness 3 and Ness 4, and closure of the L o c h Ness chronology 

w i l l enable an accurate assessment of the errors involved, but at present these are 

considered to be less than 10%. It is noted that Zolitschka (1996) has estimated the error 

in the Holzmaar chronology to be less them 2%, based on the study of multiple cores. 

5.5 Time series analysis 

5.5.1 Sherman's statistic 

This test was employed in order to determine whether or not the observed 

distribution of very thick and very thin laminae in the sedimentary record may be 

considered random. Data employed in this test, for core LNRl, may be found i n Tables 

5.8a and 5.8b. Lamination thickness greater than {mean+2a) and less than (mean-Id) 

were considered, resulting in 24 events conforming to the former criterion and 90 to the 

latter. Both were recorded from within a total time period of 643 years. Similar analyses 

for core Ness 3 are illustrated in Tables 5.9a, 5.9b, and 5.9c. 

5.5.2 Spectral analysis of the sediment record 

F F T spectra were obtained from analysis of entire sequences of lamination 

thickness determinations from all cores, and are presented in Chapter 6, Figures 6.31-

6.40. A summary of the results from these analyses may be found in Table 5.10. Periodic 

elements within core Ness 3 are illustrated by three spectra, representing the three separate 

sequences determined from that core. N o attempt has been made to isolate any perceived 

forcing agent by 'windowing' of the data, apart from the utilisation of a Parzen window 

inherent in the F F T procedure. 

139 



5. Results 

Table 5.8a Sherman's statistic for core LNRl maxima (> mean+2a) 

Year (AD) Difference Year(AD) Difference Year(AD) Difference 

1945 1859 2 1548 123 

1939 6 1854 5 1499 49 

1892 47 1773 81 1491 8 

1868 24 1766 7 1480 11 

1867 1 1762 4 1476 4 

1866 1 1756 6 1451 25 

1862 4 1718 38 1450 1 

1861 1 1671 47 1404 46 

Average period (a) = 26.79 

to = 0.438 (significantat95%) 

In addition, evolutive spectral analysis was carried out on lamination data from 

allcores, by 'stacking' individuai FFT spectra derived from sequences of 128 years and 

displaying these as a contour plot (for example. Figure 5.14 ). Thus, time runs vertically, 

with spectra derived from more recent sediments toward the tops of the figures, while the 

frequency domain exists horizontally, with low frequency events represented by regions 

to the left of the page and higher frequency events to the right. Aga in , results of these 

analyses are presented in Chapter 6 (Figures 6.41-6.43). 
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Table 5.8b Sherman's statistic for core LNRl minima (< mean-la) 

Year(AD) Diff. Year(AD) Diff. Year(AD) Diff. Year(AD) Diff. 

1938 1730 6 1618 3 1522 4 

1923 15 1703 27 1607 11 1514 8 

1920 3 1697 6 1601 6 1472 42 

1916 4 1673 24 1600 1 1471 1 

1913 3 1669 4 1591 9 1446 25 

1910 3 1661 8 1587 4 1444 2 

1895 15 1660 1 1585 2 1436 8 

1846 49 1658 2 1562 23 1423 13 

1838 8 1657 1 1558 4 1386 37 

1833 5 1656 1 1556 2 1372 14 

1830 3 1655 1 1555 1 1365 7 

1828 2 1654 1 1551 4 1364 1 

1819 9 1652 2 1550 1 1363 1 

1818 1 1645 7 1549 1 1356 7 

1813 5 1635 10 1547 2 1355 1 

1810 3 1631 4 1543 4 1348 7 

1801 9 1629 2 1540 3 1347 1 

1799 2 1627 2 1538 2 . 1345 2 

1785 14 1626 1 1534 4 1344 1 

1783 2 1625 1 1530 4 1339 5 

1772 11 1624 1 1529 1 1327 12 

1751 21 1623 1 1528 1 

1736 15 1621 2 1526 2 

A verage period (a) = 7.14 

(0 = 0.412 (significantat95%) 
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Table 5.9a Sherman's statistic for core Ness 3, section 1 maxima (>mean+2a) 

Case Value Case -
n 

Case , 
n-l 

Case Value Case -
n 

Case , 
n-l 

Case Value Case^ 

Case 
n-

6 1.25 308 1.95 17 772 1.41 1 

7 1.11 1 326 1.25 18 773 1.69 1 

9 1.11 2 329 1.11 3 776 1.13 3 

38 1.39 29 397 1.25 68 788 1.83 12 

53 1.25 15 442 1.25 45 834 1.27 46 

60 1.53 7 509 1.25 67 836 1.27 2 

68 2.37 8 532 1.11 23 862 1.41 26 

131 1.11 63 557 1.53 25 949 1.13 87 

148 1.25 17 568 1.25 11 954 1.13 5 

149 1.39 1 573 1.11 5 977 1.27 23 

152 1.39 3 592 1.81 19 982 1.97 5 

156 1.39 4 594 1.11 2 983 1.41 1 

160 1.11 4 678 1.15 84 987 1.83 4 

201 2.09 41 682 1.18 4 990 1.97 3 

212 1.25 11 716 1.21 34 994 1.13 4 

213 1.11 1 722 1.13 6 1017 1.13 23 . 

221 1.11 8 727 1.27 5 1023 1.41 6 

241 1.25 20 728 1.41 1 1030 1.69 7 

252 1.39 11 735 1.13 7 . 1080 1.13 50 

265 1.39 13 740 1.27 5 1096 1.41 16 

274 1.11 9 742 1.83 2 1136 1.27 40 

281 2.23 7 753 1.55 11 1148 1.13 12 

286 1.67 5 759 1.13 6 1262 1.13 114 

291 1.95 5 771 1.83 12 

Average period (a) = 18.25 
0) = 0.442 (significant at 98%) 
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Table 5.9b Sherman's statistic for core Ness 3, section 2 maxima (>mean+2o) 

Case Value Case -
n 

Case , 
n-l 

Case Value Case -
n 

Case , 
n-l 

Case Value Case -
n 

Case , 
n-l 

14 1.27 0 665 1.27 13 1375 1.5 13 

92 1.27 78 672 1.79 7 1390 1.36 15 

95 1.69 3 679 1.38 7 1402 1.36 12 

110 1.41 15 692 1.79 13 1424 1.5 22 

128 1.55 18 704 1.51 12 1447 1.36 23 

151 1.41 23 708 1.93 4 1470 1.5 23 

171 2.25 20 111 1.51 9 1477 1.77 7 

2.25 52 lAl 1.38 30 1492 2.05 15 

231 1.27 8 787 1.93 40 1495 1.5 3 

263 2.96 32 812 1.65 25 1500 1.64 5 

289 2.68 26 842 1.93 30 1507 1.64 7 

293 1.27 4 845 1.79 3 1514 1.36 7 

346 1.27 53 874 1.79 29 1568 2.05 54 

351 1.97 5 884 1.51 10 1573 1.91 5 

352 1.41 1 885 1.79 1 1578 1.36 5 

356 1.83 4 967 2.05 82 1625 1.36 47 

359 1.97 3 1023 2.32 56 1632 1.36 7 

392 1.41 33 1046 1.36 23 1647 1.36 15 

399 1.69 7 1051 1.36 5 1650 3 3 

455 1.69 56 1077 1.36 26 1667 1.77 17 

469 1.69 14 1098 1.77 21 1676 1.91 9 

486 1.27 17 1110 1.5 12 1689 2.05 13 

487 1.41 1 1127 1.64 17 1704 1.36 15 

489 1.27 2 1140 1.36 13 . 1736 1.5 32 

519 1.55 30 1174 1.36 34 1746 1.64 10 

584 1.41 65 1175 1.5 1 1781 1.5 35 

616 1.27 32 1185 1.36 10 1800 1.36 19 

630 1.27 14 1262 1.5 77 1812 1.5 12 

652 2.11 22 1362 1.91 100 

Average period (a) = 9.62 
to = 0 . 3 4 8 (significant at 50%) 
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Table 5.9c Sherman's statistic for cxjre Ness 3, sectìon 3 maxima (>mean+2a) 

Case Value Case -
n 

Case , 
n-l 

Case Value Case -
n 

Case , 
n-l 

Case Value Case -
n 

Case , 
n-l 

14 1.38 0 818 1.65 80 1804 2.2 44 

27 1.52 13 866 1.52 48 1807 1.93 3 

61 2.75 34 897 1.53 31 1811 1.38 4 

120 1.79 59 958 1.81 61 1907 1.52 96 

191 1.38 71 1027 1.53 69 1925 1.65 18 

193 1.93 2 1033 1.39 6 1974 1.65 49 

218 1.52 25 • 1088 1.67 55 1985 1.79 11 

245 2.34 27 1177 2.37 89 2012 1.81 27 

283 1.38 38 1198 1.67 21 2037 1.39 25 

302 1.52 19 1217 1.39 19 2040 1.39 3 

329 1.65 27 1251 1.95 34 2044 1.39 4 

353 3.31 24 1258 1.95 7 2075 2.09 31 

359 1.38 6 1273 1.53 15 2090 1.67 15 

360 1.38 1 1311 1.67 38 2117 1.39 27 

367 1.38 7 1363 1.95 52 2148 1.39 31 

381 1.79 14 1409 1.53 46 2149 1.53 1 

392 1.52 11 1423 1.38 14 2160 1.39 11 

410 1.79 18 1497 1.52 74 2162 1.81 2 

411 1.38 1 1500 1.65 3 2203 1.67 41 

412 1.65 1 1503 1.38 3 2231 1.93 28 

427 1.79 15 1550 1.52 47 2261 1.79 30 

444 1.38 17 1556 1.52 6 2278 1.65 17 

467 1.79 23 1564 1.38 8 2282 2.75 4 

490 2.2 23 1574 1.79 10 2286 1.79 4 

532 1.38 42 1627 1.38 53 2288 2.34 2 

569 1.38 37 1632 1.52 5 2297 1.79 9 

616 1.93 47 1645 1.79 13 2301 1.65 4 

620 1.52 4 1646 1.38 1 2307 2.75 6 

645 1.38 25 1654 1.79 8 2313 2.62 6 

656 1.52 11 1677 1.52 23 2330 2.07 17 

661 1.38 5 1691 1.65 14 2345 1.65 15 

Columns continued on next page 
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Table 5.9c Sherman's statistic for core Ness 3, section 3 maxima (>mean+2a) contd. 

Case Value Case - Case Value Case - Case Value Case -
n n n 

Case , Case , Case 
n-l n-1 n-. 

682 1.65 21 1705 1.52 14 2399 1.38 54 

729 1.38 47 1720 1.65 15 

738 1.52 9 1760 1.38 40 

Average period (a) = 24.21 
(0=0.347 (significant at 50%) 

Table 5.10 Summary of the periodicities found by F F T analyses of cores Ness 3, 

Ness 4, and LNRl. 

Ness 

3/1 

3/1 

(10)* 
Ness 

3/2 

3/2 

(10)* 

Ness 

3/3 

3/3 

(10)* 

Ness 

4 

LNRl 

342 343 609 167 161 161 2197 214 

205 206 166 80 93 93 550 92 

31 79 64 43 78 200 46 

22 54 54 34 45 183 27 

6 44 42 27 36 137 9.5 

5.2 33 37 23 35 129 

3.9 29 33 20 28 115 

3.75 22 21 16 96 

2.8 20 15 84 

2.5 19 

2.4 17 

2 

* (10) represents periodidties calculated from decadal totals of annual lamination 

thickness 
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Figure 5,14 A n example of the result from evolutive analysis of lamination thickn^s in 

core LNRl. 
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6. Data Analysis 

6.1 Objectives 

Analys i s of the data was performed i n order to provide answers to the 

following questions: 

i) . D i d couplets o f pale and dark laminae represent aimual deposition? If so, 

over what time period did the long and short cores represent? What were the 

compositions of the layers? Could the subtle variations in shade, observed 

within each long core, be quantified by digital image analysis and could this 

signal be correlated with long-term proxy records? 

i i ) . Was it possible to correlate lamination thickness measurements with 

modem meteorological records, in order to determine whether or not local 

climatic variation was a forcing agent of deposition? Could the analysis be 

extended to a regional synthesis, and could the sediment record from L o c h 

Ness be compared with other published regional proxy records? C o u l d 

analysis of lamination thickness data reveal elements of periodicity within the 

time series? 

In order to answer question i) , lithological and microlithological analyses of 

sediment material were performed, in order to record changes in the moisture and organic 

content, and to determine the nature of the differences between pale and dark laminae. 

Techniques employed included the determination of loss on ignition, Backscatter Scarming 

Electron Microscopy, and Energy Dispersive Spectroscopy. Digi tal image analysis was 

employed as a tool with which the laminae could be counted, and radiocarbon dating was 

utilised as a framework against which the success of the resultant chronology could 

judged. D I A was also used in order to measure variations in greylevel throughout the long 

cores. 
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Question ii) was addressed by the construction of time séries of lamination 

thickness and grey level by digital image analysis. Lamination thickness data were 

compared with local meteorological records, in order to détermine the response of 

sédimentation in the loch to variations in local climate. Palaeoclimatic datasets derived 

from areas around the north-eastem Atlantic seaboard were also compared with Loch Ness 

data in order to ascertain whether or not thèse régional climatic changes were recorded by 

variations in sédimentation. Proxy data relating to longer-period forcing processes were 

also correlated with both lamination thickness and grey level data, in order to détermine 

the jxîssible effects of thèse on both quantity and quality of sédimentation. Spectral 

analyses of variations in lamination thickness were performed in order to detect the 

présence of f)eriodicity which may indicate further the nature of forcing processes acting 

on sédimentation. 

6.2 Sédiment characteristics 

6.2.1 General characteristics ofPercentage Dry Matter (%DM) I Percentage Loss On 

Ignition (%LOI) 

Both dry matter and loss on ignition values exhibit variations throughout each 

ca 6 m core, although there is some difficulty in correlating between them. % D M values 

are consistently low in each core, indicating that the sédiments remain high in moisture, 

even at depth. For both cores the average value of % L O I is of the order of 30%, indicating 

an abundance of organic material. L o c h Ness is classified as an unproductive lake, and 

most organic matter found in the water column has been determined to be of terrestrial 

origin (R.l.Jones et al., 1997) Increases in % L O I in core Ness 4 at ca 2.7 and 2.3 m may 

be comparable to those observed i n core Ness 3 ai ca 3 and 1.9 m , although the 

magnitude of increase in Ness 4 is much greater. Variations at the base of each core, 

representing possibly the first 2ka after déglaciation, dénote increasing organic content of 
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the sediment, probably relating to changing inputs from a maturing catchment and lake 

system. Both cores exhibit a slight increase i n % L O I at the location of the boundary 

between the laminated gyttja and basal clay. 

6.2.2 Core Ness 3, Percentage Dry Matter (Figure 5.2) 

Variations i n this determinand may reflect compression of the sediments 

towards the base, since they generally decline towards the top of the core. Velde (1996) 

has suggested, however, that for most clay-rich sediments compaction is complete within 

the uppermost 20-30 cm. A n alternative hypothesis is that there exists a change i n 

sediment composit ion with depth, resulting in fewer voids containing water. This 

explanation may be borne out by considering the image of the core acquired in the Infrared 

(Plate 5.1), where a gradual lightening of the tone of the core material towards the base 

may be observed, indicating perhaps a higher silt content during the Ear ly Holocene, 

when soils would have been less mature and erosion facilitated by the lack of vegetation. 

A n abrupt increase occurs at the contact between brown laminated gyttja and the grey 

basal clay, which contains only about 20% water. The prominent excursion at ca. 1.25 m, 

to values typical of the lower sections of sediment, coincides with the chaotic section 

described i n Section 5.1. Other, smaller, increases in % D M may be explained by 

presence of numerous pale, silt laminae which, because of their low porosity, would be 

expected to contain less water. 

6.2.3 Core Ness 3, Percentage Loss On Ignition (%LOI; Figure 5.2) 

A g a i n , this relationship may be understood by suggesting that changes in 

% L 0 1 are indicative of variations in lithology of the sediment and that the depositional 

regime of silt particles is sufficiently different from that prevalent during clay/organic 

particle sedimentation. Indeed, the premise that the fine laminae recorded through the 

cores represent seasonality of sedimentation, where silts are washed into the loch during 
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winter causes the corollary that orgauic particles would be less numerous in those layers 

deposited at other times of the year. 

The decrease in % L O I from the claylgyttja boundary to a maximum at ca 3.0 

m would be consistent with growing maturity of catchment soils after déglaciation and 

perhaps an increase i n nutrient status of the water body with time. The initial input of 

allogenic material, which would bave followed the melting of the ice, bas also been 

recorded by an increase in in-lake organic productivity by M s J .M.Dean (unpubl.), in that 

greater nimibers of diatoms have been observed in early Holocene sédiments than in more 

récent ones. Values then rise steadily to a maximum of ca 34% at 3 m. This section of 

core bas been dated as containing material deposited during the Hypsithermal and may 

thus indicate a true rise in in- loch productivity conséquent upon increased water 

température, or an increase in végétation cover in the catchment. A décline in % L O I is then 

observed, with a brief retum to larger values at 1.9 m (3.7 ka BP) and corresponding to a 

period within the European Neolithic and Bronze Ages (ca 4.5 to 3 ka B P ) , until a 

minimum is reached within the chaotically-laminated section at ca 1.3 m. This contains 

little organic material, and may consist of rebedded material of Early Holocene âge, since 

pollen analysis (Ms S.M.Peglar, pers. comm.) demonstrates an abundance of Pine. 

Values rise in the topmost Im of the core, with slight fluctuations which may 

reflect changes in the loch and/or catchment during the past two millennia, a time scale 

which indicates that human influence may be the root cause. 

6.2.4 Core Ness 4, Percentage Dry Matter (Figure 5.3) 

This exhibits several large variations which are not repeated i n core Ness 3. 

The base of the core, from ca 3 m to the gyttja/clay boundary, exhibits few déviations, 

with water content increasing slightly from the boundary itself to 3.0 m. A n increase at ca 

2.8 m may be explained by this sample being taken from the end of a guttering section. 
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from sédiment which may have suffered dehydration from evaporation or drainage. The 

apparent decrease in water content is mirrored, however, by an increase i n loss on 

ignition. This observation is contrary to the relationship noted in core Ness 3 and to Ihe 

notion that low water content is related to porosity, siU-rich sédiment being of low 

porosity and clay/organic gyttja, highly porous. A large increase in dry matter at ca 2.3 m 

does not correlate with any prominent featare depicted in infrared photographs, although a 

séquence of faint pale laminae occurs in this segment of core. A n increase i n loss on 

ignition also may be observed at this point Core Ness 4 dœs not display the pronoimced 

decrease in water content within the chaotic section at 1.39-1.57 m, previously noted for 

core Ness 3. The uppermost 50 cm of core exhibits an increase of % D M towards the top, 

which may again indicate that moisture bas been lost, possibly by drainage through the 

endcaps of the storage guttering. This is not observed, however, in core Ness 3, although 

both cores were wrapped and stored in similar conditions. 

6.2.5 Core Ness 4, Percentage Loss On Ignition (Figure 5.3) 

% L O I values are low at the base of this core, within the grey unlaminated 

clay, owing to the barren nature of the material. A narrow, positive 'peak' in % L 0 1 , also 

présent in the record for core Ness 3, is observed from material situated at the boimdary 

o f gyttja and clay, and suggests that an influx of nutrients may have lead to increased 

productivity, following déglaciation. This hypothesis bas been corroborated by lamination 

thickness measurements and by observations of diatom numbers by S E M , and w i l l be 

discussed in the relevant sections. Values rise steadily, indicating increasing organic 

content with time, from ca 20% at 4 m to some 30% at 3.5 m, with a subséquent large 

increase to 50% at 2.7 m. The steady rise is also observed in core Ness 5 at ca 3 m and 

may thus indicate a genuine increase in organic material in the water column. A further 

rapid increase and décline at ca 2.25 m is not satisfactorily explained i n terms of 

productivity or increased inwash of organic matter, since no distinct sedimentary 

structures or variations in colour of the sédiments are observed. It may thus resuit from 
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sediment deterioration due to oxidation at the end of a section of storage guttering. Valúes 

fall slightly within the chaotic section, but not to the same extent as observed in core Ness 

3. 

Variations above the chaotic section of the core indicate a dechne in organic 

matter content from about 40% at 1 m to a minimum of 19% at 0.2 m, which may be 

connected wi th catchment changes in recent times, leading to decreased erosión and 

reduced input of nutrients to the loch. It remains to be seen, however, whether this 

represents a genuine effect in the amount of organic materied in the water column or is an 

artefact of sampling. O f further note is the increase in % L O I at the extreme top of this 

core, which is not observed in Ness 3. A possible explanation is that the equivdent 

section of core Ness 3 is not complete, consisting of an unlaminated ooze which appears 

to have broken up during extrusión, whereas this core appears completely laminated. 

6.3 Microlithological examination (Plates 5.4 and 6.1) 

Microscopic examination of sediment structure was carried out using S E M 

techniques described i n Section 4.6. Add i t iona l analyses, by B S E I and optical 

microscopy, on thin sections from various ages from each of the three cores imder 

d i scuss ion , have also been carried out, by M s J . M . D e a n at the Southampton 

Oceanography Cenü-e. 

It was observed, by secondary electrón scanning electrón microscopy 

( S E S E M ) of air-dried bulk material, that there is little obvious difference between palé and 

dark laminae in terms of grain size and general appearance. Observations carried out, by 

the author at Plymouth, along random transects perpendicular to the fabric of the sediment 

failed to reveal appreciable changes in diatom taxa between laminae, although particles of 

mica were found to be more abundant within the palé silt-rich laminae, than in the darker 

clay-rich layers. Dean has also observed that some of the micas are deposited conformably 
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wi th laminae and others not. Presumably, this is indicative of the energy of the 

enviroimient of deposition and/or evidence of resuspension. 

Table 6.1 Elements detected by E D S in sediments from Loch Ness, with their average 

abundance. 

Element Abundance % 

Si 47.5 

Fe 23.0 

A l 16.4 

Ca 2.9 

N a 2.6 

M g 1.6 

M n 0.7 

P 0.6 

Attempts, by the author at Plymouth, to test for periodicity v ia changes in 

elemental composition, as determined by Energy Dispersive X-ray Spectroscopy (EDS) 

on bulk sediments, were unsuccessful, indicating that the most abundant chemical 

elements in the fabric of the sediments are continuously deposited throughout the year. 

These elements are typical of those contained within detrital clay minerals derived from the 

catchment {Table 6.1). Thin window E D S was also employed, in order to test for 

variations in abundance of light elements such as carbon, but did not produce significantly 

different spectra. ZAF-corrected spectra from gold-coated polished bulk specimens, and 

from material collected from the dissection of individual laminae, reinforce this 

conclusion. 

B S E I , carried out on sediments in thin section by Dean, provided the most 

iriformative images {for example, Plate 6.1), illustrating the contrasts between pale and 
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dark laminae. Investigations indicate that four styles of lamina predominate, identified as 

a) , silt-rich 

b) . silt-poor 

c) . clay 

d) . stonn deposits - i) . graded bedding, with coarse base 

ii) . without coarse base. 

The subdivision of case d) is believed to illustrate the variability of the energy 

of the depositional enviromnent, and thus may act as an indication of storm intensity, 

duration, or location. Observation of the orientation of mica particles within laminations 

indicates that they are bedded conformably within 'normal ' laminae but not within storm 

layers, suggesting that the latter were deposited by events of higher energy. 

Although diatom frustules exist throughout the sédiment column (Cooper et 

al., submitted; L.A.Wheeler , Unpubl.), Dean bas determined that Early Holocene sections 

contain a greater abundance than récent sédiments, and that laminae from the Ear ly 

Holocene are thicker than those from the Late Holocene. This may be indicative of initially 

larger amounts of detrital minerai input to the loch, providing a correspondingly large 

influx of nutrients to the water column, which then subsequently declined when catchment 

végétation and soils matured. 

6.4 Photography and Image analysis 

Colou r photographs of cores failed to enhance the fine-scale lamination 

structure, although they may be utilised to illustrate the contrast between the pale, thick 

flood-derived laminae, and the more abundant, brown-coloured gyttja. The numerous 

fine, black layers are not well recorded, except in close-up photographs. 
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Plaie 6.1 A frfiotOTiœaic B S H image of a section from core Ness 4. The sediment is of 

Mid-Holoceneage Dean, pers. comm.). 
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Photographs taken with film sensitive in the infrared reveal, however, a host 

of features not readily visible in real colour images. In addition, reflections from the 

surface o f the material are greatly reduced, further increasing contrast. It is uncertain 

whether the final image represents an indication of the true thermal emissivity of the 

components of the sediment, or merely the reflectivity of each of the laminations in those 

wavebands. 

Analysis o f images of both long cores (Plates 5.1 and 5.2) reveals a non

linear change i n 'Grey L e v e l ' (GL) with depth. On a scale of 0 (black) to 255 (white), 

basal sediments possess G L s ca 150, which decreases to minimum of ca 25 at about 2.50 

m. More recent sediments exhibit a G L of ca 45 which indicates that paler sediments exist 

at the base of each core, with darker material at the top. M i d Holocene deposits appear 

quite dark i n comparison. Very high G L readings are obtained from the pale grey, basal 

clay. Thus, it may be presumed that infrared G L values are indicative of variations in 

lithological composition of the sediment, with low values indicating dark, organic-rich 

clays and large readings, pale organic-poor clays and silts. 

X-radiography offers a convenient method for visualisation of the laminated 

structure o f sediments. Features such as irregular boundaries between layers may be 

detected (which may be indicative of erosion), in addition to the internal structure of some 

of the thicker laminae. Densitometry of digitised x-radiographs of sections of sediment 

from each core, using image analysis, has enabled the determination of lamination 

thickness. In addition, utilisation of image transforms has facilitated quantification of 

Izmiinae wi thin sections where visual quality was observed to be poor, and where x-

radiography alone proved unsuccessful at optimising contrast between layers. The 

application of image transforms to analysis of laminated sediment has served to enhance 

perception of structural units, and produced images which are more amenable to analysis 

and contain fewer errors which may have compromised accuracy and reproducibility 

(Cooper, 1998). The technique was thus utilised as a method for rapid quantification of 
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visual characteristics of laminated sediments, although there remained sections, especially 

within core Ness 3, where reliable densitometric measurements could not be performed. 

These sections were thus omitted from the development of a chronology (Appendices A, 

B,andQ. 

In addition, digital image analysis could not by itself, for example, identify 

turbidite layers where they were not already visually apparent. It is therefore recognised 

that investigators still need an intimate knowledge of the material imder analysis and may 

even require recourse to other techniques, such as the production of tape peels (e.g. 

Simóla, 1977) and thin sections (for instance, Mehl & Merkt , 1990), in order fully to 

characterise a sediment core. 

6.5 Chronology 

Construction of a chronology may be discussed in terms both o f lamination 

coimting and radiocarbon dating of the sediments. It was hoped to: a) test the hypothesis 

that the laminae present in the sediments from Loch Ness are varves; b) demonstrate that 

the deficiencies of the methods utilised, (which have been previously outlined), have not 

seriously compromised accuracy; c) verify inconsistencies between cores. 

6.5.1 Lamination counting 

Figure 5.11 illustrates a tentative time/depth relationship for core Ness 3. 

Construction of the line, uti l ising ten-year averages of lamination thickness has been 

described previously (Section 5.3.2). The line has not been plotted through the origin, 

since it is known that, owing to the mode of operation of the corer, the uppermost 

sediments were not sampled. The amount of loss is not known with any certainty, but 

photographs by A.J.Shine (impubl.) of the corer in position on the bed of the loch prior to 

samphng, may indicate that it is driven into the sediment ca 0.5 m. This value has 
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therefore been employed as representing the approximate distance between the top of core 

Ness 3 and the S W l . The lithological composition of the chaotic layer present i n both 

cores Ness 3 and Ness 4 suggests that it may have been deposited as an instantaneous 

event. It is therefore represented on the plot by a vertical line. 

6.5.2 Radiocarbon dating 

A close correspondence between the chronology derived from lamination 

coimting and the radiocarbon dates may be observed. Differences between the two sets of 

dates are quantified in Figure 6.1. It may be observed that varying the assumed depth of 

settling of the corer in the sediment, by moving the intersection of the line and the 

abscissa, would enable a much closer relationship to be obtained, especially in the 
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Figure 6.1 Comparison of varve and l'*^C calibrated ages from core Ness 3. 

section representing the Mid-Holocene. Differences between the two sets of dates increase 

at the base of the core, probably owing to lack of resolution of the X-radiographs, and to 

the decreasing contrast between adjacent laminae in the early Holocene. Both of these 

factors may be instrumental in causing large errors when counting by image analysis. 
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/ ' toe 6.2 BSEI pholomosaic of early-Holocene material, obtained by Dean (Unpubl.). 

The general lack of contrast between layers is well displayed. 
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since laminae w i l l be ill-defined. The lack of contrast between laminae from the early 

Holocene is wel l displayed in Plate 6.2, a B S E I photomosaic obtained by J .M.Dean 

(Unpubl.) . The type of sediment deposited in the loch may have been more or less 

constant throughout the seasons during this period, owing to the presence of still-melting 

ice in the catchment, and increased erosion owing to immaturity of the soils. In addition, 

movement of the time/depth line would cause sample SRR-5735 (consisting of material 

taken from the upper section of this core) to exhibit an older date, which, considering that 

this material originated after human occupation of the catchment, may indeed contain 

reworked, radiometrically 'o ld ' carbon (O'Sull ivan et al., 1973). 

O f further note are the differences between A M S and 'conventional' dates, 

particularly at the base of the core. These may merely be due to sample pretreatment 

processes, which differed between laboratories (Cooper et al., 1998). Samples dated at 

A N S T O (OZB- prefix) were subjected to two alkaline extractions, which probably 

removed humic material and therefore produced slightly older dates. In contrast, samples 

indicated by an SRR- prefix were treated by acid extraction only, thus retaining those 

compounds. Ô^^C values for all samples, irrespective of laboratory, lay in the range ca 

-25 to -29%o, which indicates, especially in view of the comparative lack of primary 

productivity in the water column, that the material dated was probably obtained from 

terrestrial sources (Boutton, 1991). 

Core Ness 3 was chosen as the primary material from which to derive a 

time/depth relationship by lamination counting, since sub-sampling for pollen and diatom 

anidyses had also been performed upon the same core. These analyses were carried out 

prior to radiocarbon dating, and simultaneously with digital image analysis. The results 

from preliminary pollen analysis were employed in deciding the sampling strategy for 

radiocarbon dating. Thus, the fragmented nature of the lamination record i n this core was 

not discovered until after pollen and diatom analyses were completed, and samples already 

submitted for radiocarbon dating. 
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Dating of core LNRl was carried out by lamination œunting from X -

radiographs, and corrélation of the tbickest layer présent in the most récent sections with 

the 1868 flood. A chronology was then constructed from this datum, wi th each year 

defined by two laminae. The total period represented was thus calculated to be 1321 to 

1963 A D . 

6.5.3 Lamination thickness 

Lamination thickness is représentative of the amount of sédiment deposited 

within a year and may thus indicate variations from year to year i n environmental 

conditions within and over the catchment of the loch. Thèse factors may be considered 

over many time scales but w i l l be discussed here i n terms of annual, decadal, and 

centeimial changes. It may again be noted that the record from core Ness 3 appears 

fragmented, owing to the présence of the chaotic layer at ca 1.2 to 1.5 m and the inability 

to résolve laminae in x-radiographs of sections at ca 2.9 m. 

6.5.3.1 Lamination thickness, core Ness 3 (Figure 5.8) 

Déterminations of annual thickness of laminae reveal that fo l lowing 

déglaciation, déposition rates were high. Thick layers (ca 1.5 to 3.5 mm) occur at the base 

of the core, above the clay/gyttja boundary (Figure 6.2). Sédimentation rates in the core 

then declined, although there were brief intervais where increases occurred, in addition to 

sustained periods of higher déposition. Many large 'spikes' in the record exist, notably 

those at ca 3.3, 3.1, 2.65 and 1.8 m, corresponding, respectively, to âges of ca 6.4, 5.5, 

4.8, and 2.3 ka cal B P . Gloser inspection reveals periodicities within the record, and that 

average sédimentation rates seem to bave declined over the period represented by the core, 

especially in the most récent section. 
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Figure 6.2 Illustration of lamination thickness at the base of core Ness 3. 

Approx age (yr BP) 

2000 3000 3500 4500 5500 6500 7500 8500 

Depth (m) 

Figure 6.3 Record of decadal averages of lamination thickness from core Ness 3. 
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Decadal lamination thickness data reveal long-term variations in sedimentation 

over time (Figure 6.3). O f immediate note are the large values (ca 1.1 mm) at the base of 

the core, at about 9.5 ka cal B P , persisting for nearly a century before terminating abruptly 

i n a shorter period of near-average deposition with very little variation. There then follows 

a further phase of near-average sedimentation, lasting from 8.5 to 6.5 ka B P , which is 

punctuated by abrupt (decadal-scale) extremes. Periods of alternate low and high 

sedimentation then take place from ca 6.5 ka to 5.7 ka B P , including an extended period 

o f higher than average sedimentation at ca 6 ka B P . 

Data for the Mid-Holocene again exhibit near-average values but also display 

abrupt variations on a decadal scale. O f note are the large 'spikes' denoting increased 

lamination thickness atea 5 ka and 4.2 ka B P , and the trend to lower values towards the 

begiiming of that section. More recent sediments (from ca 3 ka to 2.2 ka B P ) exhibit 

generally below-average values, but with pronounced cyc l ic variations o f ca 200-300 

years, which are easily detected by Fourier analysis (^Section 6.8.2, Figure 6.31). 
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Figure 6.4 Record of centennial totals of lamination thickness from core Ness 3. 
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Averaging of lamination thickness over centeimial timescales enhances the 

perception of periodicity (Figure 6.4), revealing maxima at ca 8.5, 6, and 4.5 ka B P , in 

addition to the trend towards generally smaller, but more variable, values around 2.8 ka 

B P . This increase in variability might be considered as being less of an indicator of 

climatic change than, perhaps, o f anthropogenic influence, since this period marks the 

beginning of the British Iron Age. If average lamination thickness is calculated over 200-

year timeslices, instead of by determining running means, a more graphic representation 

of variability is obtained (Figure 6.5). Here the 200-year periodicity, previously 

discussed, is well observed, in addition to a period from ca 7 ka to 4 ka, when lamination 

thickness was consistently greater than the average calculated for the entire core. This 

section is considered to represent deposition throughout the Hypsithermal (Whyte, 1995). 

6.5.3.2 Lamination thickness record in core Ness 4 (Figure 5.9) 

Owing to the present uncertain chronology of this core is not possible to 

comment on the pattern of variation of sedimentation with age, with any certainty. 

2000 3000 3500 4500 5500 

Approx age (yr BP) 

6500 7500 8500 

Depth (m) 

Figure 6.5 Record of 200-year averages of lamination thickness from core Ness 3. 

164 



6. Data Analysis 

Approx âge (yr BP) 

8400 8600 8800 9000 

3.85 3.9 3.95 4 4.05 4.1 

Depth (m) 

Figure 6.6 Illustration of lamination thickness at the base of core Ness 4. 

Discussion w i l l thus focus upon changes in lamination thickness with depth, although the 

timescale derived from core Ness 3 may still be used as an approximate guide, by utilising 

the chaotic zone and claylgyttja boundary as markers. There exist, however, extrêmes of 

déposition, as with core Ness 3, including the présence of similarly thick laminae at the 

base of the claylgyttja {Figure 6.6). The record from this core appears to be more 

'spikey' than that from core Ness 3. 

Averaging over ten-laminae intervais aids the interprétation of trend within the 

signal (Figure 6.7). Lamination thickness from the claylgyttja contact to ca 3.9 m is of 

the order of 0.8 mm, with large values occurring at ca 3.9 m. For the next 10-15 cm 

(3.9- 3.75 m) thickness déclines to ca 0.5 mm, before increasing to ca 0.8 mm, briefly, at 

3.65 m . Decreasing lamination thickness follows over the section 3.55 - 3.15 m, 

recording only ca 0.5 mm. The signal expands again at ca 3.1 m, where average 

measurements of over 1 mm are recorded. A sustained interval of thinner laminae is then 
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Figure 6.7 Record of the moving average of thickness of ten laminae from core Ness 4. 

observed in the section 3.0-2.75 m, with typical values of 0.5-0.6 mm, followed again by 

a brief increase at 2.4 m. Further episodes of increased lamination thickness are observed 

at 1.8 m and 1.6 m, before the record is interrupted by the chaotic section at 1.5-1.4 m. 

A similar pattern emerges in the upper 1.5 m of core with alternating periods 

of rapid and slow sedimentation, the average upper values of lamination thickness being 

of the order of 1 mm and the lower, 0.5 mm. Average values in the top 0.5 m are ca 0.8 

mm, which suggests an increase in the rate of deposition, a trend not observed in core 

Ness 3. Pol len analytical data suggests, however that core Ness 4 contains more recent 

material than core Ness 3, and thus may contain evidence of human impact, namely 

increasing erosion, within the catchment of the loch. 

Further averaging of lamination thickness data from core Ness 4, employing 

windows of 100 and 200 laminae, begins to highlight features which may possibly be 
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Figure 6.8 Record of centennial averages of lamination thickness, core Ness 4. 

used for correlation between this core and Ness 3. For example, the large 'peak' in 

lamination thickness at ca 3. Im, and enhanced by averaging over 200 laminae {Figure 

6.9) may be correlated with a similar, but less intense, feature appearing in the core Ness 

3 data at ca 3.2 m {Figure 6.6). Further features which may be employed for correlation 

are missing from Ness 3, owing to the fragmented chronology. It is noted that, however, 

there exists a trend of increasing lamination thickness, from ca 3 m to the base of the 

chaotic zone, in core Ness 4, whereas the same segment of core Ness 3 exhibits no such 

trend. A decrease in lamination thickness after the deposition of the chaotic layer, 

followed, in more recent sediments, by oscillations in deposition rate, occur in both long 

cores. 
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Approx age (yr BP) 
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Figure 6.9 Record of 200-year averages of lamination thickness, core Ness 4. 

6.5.3.3 Lamination thickness record in core LNRl (Figure 5.10) 

Lamination thickness in this core exhibits many variations which may be 

correlated with cl imatic events recorded in other studies, and from instrumental and 

historical records. O f prime importance is the presence of extreme values during the 1850s 

and 1860s A D , including material thought to be from the Great R o o d at Inverness of 1868 

(Inverness Courier, 1868). 

The record in core LNRl spans both the Medieval Warm Period ( M W P ; ca 

A D 1400 to 1550 ) and the Little Ice Age ( L I A ; various periods from A D 1550 to ca A D 

1900; Bradley, 1994). The effect of these episodes on sedimentation in the loch may be 

observed by considering variations in lamination thickness. Above average values are 

encountered from A D 1400 to 1500, followed by a period from A D 1520 to 1660, when 

laminae are persistently thin. These may represent response to climatic variation owing, 

respectively, to the M W P and the L I A . The decline in thickness values observed in the 

section dating from A D 18(X) to 1840 may be due to a further L I A cool episode. Similar 

variations have been detected in the varve record from the Finnish lake Pyhajärvi (Itkonen 
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& Salonen, 1994), where thick layers are observed between the 14th and 16th Centuries 

( M W P ) , and thinner laminae from A D 1600 to 1800 (LIA) . This pattern is also displayed 

in the accumulation record of the GISP2 ice core and is believed to be indicative of a 

lowering of temperature (Meese et al., 1994). Lamb (1988), also reports a lowering of 

North Atlantic sea surface temperature during the 17th Century. There then follows a short 

(ca 40 year) period of much increased average lamination thickness, from about the mid-

A D 1840s almost to 1880, which includes the 1868 Inverness flood. The Potato Famine 

in Scotland occurred at about this time, a period characterised by warmth and wetness, 

which encouraged the growth of spores of the potato blight, borne on easterly winds from 

continental Europe (Roberts, 1995). 

Overpeck^i al. (1997), who describe variation in Arct ic climate over the last 

400 years, have found that many records indicate that 1600 to ca 1680 A D , and 1800 to 

1900 A D , were cold, wi th the intervening period, and especially 1730 to 1800 A D , 

warmer. Comparison of these results with the record from core LNRl, again suggests 

that low temperamres equate with thin laminations, and warmer temperatures with 

increased lamination thickness. 

6.6 Analysis of local climatic records 

Rainfall patterns over the Scottish Highlands are affected by weather systems 

prevalent within the North Atlantic (Barry & Chorley, 1992). The derived proxy record 

may thus be indicative of variations in these systems. O f particular importance is the 

location of the North Atlantic Polar Front ( N A P F ) , which controls movement of frontal 

systems across the Atlantic Ocean (Taylor & Yates, 1967). 

Analysis of precipitation (1886-1995) and temperature (1914-1995) records 

for Fort Augustus and Inverness (Meteorological Office, Scotland) has been performed, in 

order to test whether they correlate with the sedimentary record obtained from Loch Ness, 

169 



6. Data Analysis 

and whether, therefore, lamination thickness represents a proxy record of climate in 

general, and of precipitation in particular. The two sites were chosen because they 

represent weather conditions prevailing at the northem and southern extremes of the loch. 

O f immediate note, however, are the many gaps in the data from both sites, especially for 

the early and mid- 1920's, the period 1947-1951, and surprisingly, half of the record for 

the 1970's. 

6.6.1 Precipitation record 

Examination of a five-year running mean of data from Fort Augustus {Figure 

6.10) reveals that precipitation falls into three phases, with values prior to 1915 slightly 

above average, those between 1915 and 1978 generally below, while the period from 

1978 to present is continually wetter. These trends are representati ve of those described by 

Smith (1995), which record the temporal variability of precipitation over Scotland in 

general. Analysis of data from Invemess {Figure 6.11) indicates quasi-periodic variations 

of above- and below-average precipitation of ca 20 year duration. Both locations, 

however, appear to bave experienced a decline in precipitation around 1970, followed by 

an increase leading to a maximum around 1990. 

10 2 
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Figure 6.10 Temporal variation of precipitation and temperature, Fort Augusms 1914-

1994 A D . 
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Fo r Fort Augustus, significant positive correlations between winter 

(December, January, and February; DJF^ and spring (March, A p r i i , M a y ; M A M ) data, 

and between summer (June, July, August; J JA) and autumn (September, October, and 

November; SON) precipitation data, bave been calculated, (Table 6.2), although no 

others yield similar results. Comparison between annual and seasonal figures reveals 

that winter and spring precipitation are more representative of annual data than are summer 

and autumn. Figures for Invemess {Table 6.4) indicate a high degree of correlation 

between aimual precipitation and that of winter, spring and autumn, the latter exhibiting 

the highest vcdue of r. Summer precipitation is inversely correlated with spring. 

S 200 L — . 1 . 1 . L 
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Year(AD) 

Figure 6.11 Temporal variation of precipitation and temperature, Invemess 1914-

1994 A D . 

Correlations bave also been calculated between the two sets of data {Table 

6.6) revealing that variations in precipitation at the two locations are strongly positively 

correlated when considering both aimual and seasonal values. Only summer precipitation 

over the two sites appears not to be correlated. Annual, winter, spring and autumn figures 

yield very high correlations at the 1% significance level. 

Comparison of data on precipitation with annual temperature for Fort 

Augustus for the period 1970-1994, yields a correlation coefficient, r=0.3288 (v=24. 
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signif. 10%). When this is extended over periods suffering from a lack of data (for 

example, the 1920s), the coefficients decrease but attain greater sigiiificance levels (1914-

1994, r=0.2765, v=Sl, signif. 5%; Table 6.3). The highest correlation exists between 

spring precipitation and annual temperature (0.7355; significant at <1%). Thus, warm 

years appear associated with increased precipitation, and colder years with less. 

Table 6.2 Correlation between annual and seasonal precipitation at Fort Augustus, 

1886-1963 (v=78) 

DJF MAM JJA SON Ann. 

ppt 

DJF 

MAM 0.2693* -

JJA 0.1098 0.0691 

SON -0.0076 -0.0123 0.3230** -

Ann. ppt 0.5593** 0.5124** 0.3684** 0.4496** -

* - significant at less than 5% ** - significant at less than 1% (2-tailed) 

Analysis of unfiltered data from Invemess, 1914-1995, indicates the existence 

of only a weak negative correlation between average precipitation and temperature (r^ 

-0.1330, not significant, v=81), the highest correlation being between summer 

temperature and annual precipitation (r=-0.3067, significant at 1%, v=8r , Table 6.5). 

Hence, these data exhibit characteristics opposi te to those from Fort Augustus, 

presumably because of the lower altitude of the site, its near-coastal location, and to 

possible rain shadow effects. 
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Table 6.3 Correlation between annual precipitation, and average and seasonal 

temperatures. Fort Augusms, 1914-1995 (v=81) 

AvTemp DJF MAM JJA SON AnnPpt 

AvTemp 

DJF 

MAM 

JJA 

SON 

AnnPpt 

0.1826 

0.7355** 0.1080 

0.5402** -0.1825 0.1247 

0.3451** -0.2045 0.0209 

0.2765* 0.2416* 0.1452 

0.0773 

0.0472 0.0125 

* - síguiñcant at less than 5% • - significant at less than 1% (2-tailed) 

Table 6.4 Correlation between annual and seasonal precipitation at Inverness, 1890-

1963 (v=71) 

DJF MAM JJA SON Ann. 

ppt. 

DJF _ 

MAM 0.1675 -

JJA -0.0761 -0.2486* -

SON 0.0284 -0.0087 -0.0126 -

Ann. ppt. 0.3793** 0.4120** 0.1020 0.4542** -

* - significant at less than 5% '• - significant at less than 1% (2-tailed) 
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Table 6.5 Correlation between annual precipitation, and average and seasonal 

temperatures, Inverness, 1914-1995 (v=81) 

AvTemp DJF MAM JJA SON AnnPpt 

AvTemp -

DJF 0.3369** -

MAM 0.6478** -0.2517* -

JJA 0.5305** 0.0876 0.2458* -

SON 0.5409** -0.2185 0.1463 0 .2542* -

AnnPpt -0.1330 0.0168 -0.1450 -0.3067** -0.1514 -

- significant at less than 5% ** - significant at less than 1% (2-tailed) 

Table 6.6 Correlation between annual and seasonal precipitation at Inverness and Fort 

Augustus, 1914-1994 (v=78) 

Fness Ann.ppt. DJF MAM JJA SON 

Fort Augustus 

Ann.ppt. 0.5467** 0.2065 0.2070 0.0262 0.2937* 

DJF 0.2950* 0.7715** 0.3009* -0.0430 -0.0866 

MAM 0.1213 0.0200 0.5295** -0.1873 -0.0923 

JJA 0.3225** -0.0440 -0.1450 0.0600 0.1089 

SON 0.4331** -0.0529 -0.0114 -0.0541 0.6956** 

* - significant at less than 5% ** - significant at less than 1 % (2-tailed) 
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The winter precipitation record for Fort Augustus (Figure 6.27) exhibits 

pronounced maxima during the years 1894, 1903, 1916, 1928, 1943, and 1957, yielding 

peaks at a frequency of 12.7 (76/6 ) years, which is close to the mean periodicity of the 

solar cycle (11.1 years; Currie 1994). Indeed, actual sunspot maxima occurred in 1893, 

1905 (double maximum with 1907), 1917, 1928, 1938, and 1957 (Source: NOAA, WDC-

A). The data for Inverness similarly yie ld maxima for winter precipitation for the years 

1894, 1899, 1903, 1916, 1920, 1925, 1937, 1950, 1957, 1975, and 1990, most of 

which coincide with periods of maximum solar activity. This connection has also been 

reported by several other researchers, and from other locations (for example Currie, 1994; 

Thomas, 1993) and merits investigation into possible periodicity of forcing mechanisms 

prevalent at L o c h Ness, which will be discussed in Section 6.8. 

6.6.2 Comparison of precipitation with streamflow 

Comparison between discharge (m^s"^) of the River Ness at U K National 

Gr id reference NH26458425 (Highland River Purification Board, Inverness, 1995), and 

precipitation (mm) at Fort Augustus (Figure 6.12), generates a highly significant 

correlation coefficient at the 0.1% level (0.961, v=21). 

t — • — . — • — . — I — , — , — , — — . — . — . — . — • — I — . — . — . — . — i 0 Co 
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Figure 6.12 Comparison of precipitation at Fort Augustus with streamflow on the River 

Ness, 1974-1994 
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6.6.3 Occurrence offloods 

Studies into the recurrence of flooding within the catchment, undertaken by 

the Consulting Engineers Mott McDonald (1991), reveal no trend in river flow over the 

period 1929-present, although many of the data for the 1960's are absent. Flooding at 

Inveraess has, however, occurred at regular intervals over the past 200 years (Mott 

McDona ld , 1991) including the years 1815, 1829, 1834, 1849, 1868 (two sepárate 

events: high rainfall in January, tidal flooding in February), 1892, 1920, 1977 (tidal), 

1989 and 1990. O f these, only the 1868 flood is recorded in the sediments with any 

certainty (V.I.Jones et al., 1997) and only that of 1990 is marked by an extreme in the 

precipitation record for Invemess (Meteorological Office, Scotland). These data may 

therefore indícate that precipitation records are not fully indicative of sediment influx to the 

loch. The hypothesis that the sedimentary record is indicative of precipitation is, however, 

reinforced by the observations by R.I.Jones et al. (1996), of amounts of seston collected 

by sediment traps over a year, compared with the record of monthly rainfall at Fort 

Augustus over the same period of time (Figure 6.13). 

•̂  5000 

92/9/17 92/11/2 93/2/10 93/4/6 93/5/5 93/6/30 93/8/10 93/9/30 

1992 1993 Sampling date 

Figure 6.13 Comparison of monthly rainfall, Fort Augustus, 1992-1993, with amounts of 

seston collected by sediment traps (AfterR.I.Jones^Z a/., 1996). 
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6.7 The sedimentary record as a proxy of cUmatic variation 

6.7.1 Comparison of the sédiment record with précipitation 

Corrélation of lamination thickness of core LNRl with précipitation data from 

Fort Augustus for the period 1886-1963 reveals, however, no significant long-term 

relationship (-0.158,v=78). Analysis of seasonal précipitation data similarly produces httle 

corrélation (raè/e 6.7). Analysis of similar data from Invemess for the period 1890 to 

1963 {Figure 6.11) yields a corrélation of -0.0655, not significant with v=74, with a 

further lack of évidence for relationships between seasonal data and lamination thickness 

from core LNRl {Table 6.8). 

Table 6.7 Corrélation of annual lamination thickness from core LNRl with seasonal 

précipitation record. Fort Augustus, 1886-1963 (v=78). 

DJF MAM JJA SON Ann. ppt. 

LNRl -0.0640 -0.1168 -0.1680 -0.1125 -0.1576 

- significant at less than 5% ** - significant at less than 1% 

Errors in the dating of this core may explain the lack of corrélation between 

précipitation and lamination thickness. This may be especially relevant owing to the lack 

of prominent marker, or other easily datable, horizons within this core. A s wi l l be noted 

later, however, other climatic indices do yield significant corrélations with the sedimentary 

record, thus indicating that the chronology may be substantially correct. 
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Table 6.8 Corrélation of annual lamination thicloiess from core LNRl wi th seasonal 

précipitation record, Invemess, 1890-1963 (v=74). 

DJF MAM JJA SON Ann. ppt. 

LNRl -0.0260 -0.1079 -0.0224 -0.0128 -0.0655 

- significant at less than 5% ** - significant at less than 1% 

6.7.2 Comparison of the sédiment record with temperature 

Data on mean annual temperature for Fort Augustus (Meteorological Office, 

Scotland), for the period 1914-1995, are displayed in Figure 6.10. A s wi th the 

précipitation record, gaps in the data are apparent. Corrélation with the lamination 

thickness record from core LNRl, over the period 1914-1963, yields a coefficient of 

0.180 {v=47, not significant) 

Comparison between the sédiment record from core LNRl, and mean annual 

temperature for Invemess, (Figure 6.11), over the period 1914 to 1963, produces little 

corrélation (r=0.0638, v=51, not significant). When carried out on a seasonal basis, 

however, the relationship is slightly stronger for winter (r=-0.2192, not significant), and 

summer (r=0.228, not significant), than for spring and autumn. 

6.7.3 The sédiment record as a climatic proxy 

It would appear, therefore, lamination thickness in core LNRl directly reflects 

neither précipitation, as recorded at Fort Augustus and Invemess, or temperature. Other 

studies, notably those by Dean et al. (1994; E lk Lake, Minnesota), Desloges (1994; Ape, 
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Berg & Nostetuko Lakes, Canada), Hardy et al. (1996; Taconite Inlet Lakes, Canada), 

Itkonen & Salonen (1994; Lakes Paajarvi, Paijanne, and Pyhajarvi, Finland), Leeman & 

Niessen (1994; Oeschinensee, Switzerland), Leonard (1986; Hector Lake , Canada), 

Perkins & Sims (1983; Skilak Lake, Alaska) , and Renberg et al. (1984; Judesjon, N . 

Sweden) have revealed connections between sedimentary and climatic variables (especially 

precipitation and temperature), although many of these sites are situated wi th in 

mountainous regions or at high latitude, with consequent importance of glacial processes, 

ice cover, snowmelt and ice ablation. Others contain sediments high in authigenic organic 

content, vciriations in which are related to changes in insolation. 

Several studies (for example, Perkins & Sims, 1983) note that multiple effects 

often need to be invoked in order to account for variation in lamination thickness. This 

observation suggests that the signal within the lamination record from the loch may not 

represent one single environmental variable, but the sum of several, including perhaps, 

precipitation, temperature, and location of storm tracks across, and origin of input of 

eroded material from, the catchment. These factors wi l l achieve paramount importance 

where catchment or lake, or both, are spatially extensive and sediment recovery is limited. 

A n analogy may be drawn with the study by L i u & Feam (1993), of evidence of hurricane 

strikes recorded in the sediments of the coastal Lake Shelby, Alabama. Here, they 

conclude that lithologically distinct deposits represent only those extreme events which 

had passed within ca 50 km of the coring site. 

It is not possible, from the meteorological data obtained, to distinguish 

between periods of intense, but brief, rainfall, which may lead to influx of large amounts 

o f material, and those months wh ich experience prolonged, but relatively light 

precipitation. In addition, in view of the contrasting topographic locations of the weather 

recording sites, the role of wind direction may need to be more closely considered. South-

westeriy airstreams (maritime, warm and wet) may predominate in the precipitation record 

at Fort Augustus, which may further enjoy orographic effects from the surrounding 
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elevated niCK)rlands. Inverness, however, situated in a more open, coastal location, may 

equally be more strongly influenced by polar maritime (cold and wet) and continental 

(warm and cold, but drier) airflows. Furthermore, comparisons between climatic and 

sediment records are limited to that period of time where anthropogenic effects may have 

affected the discharge characteristics of the catchment. These effects may not be generally 

significant, however, owing to the relatively small area of cultivated land existing in the 

catchment (Mott McDonald, 1991). 

In spite of these caveats there remains the indication, especially from the study 

by R.I.Jones et al. (1996), that the amount of material recovered from sediment traps in 

the water column of the loch is dependent on seasonal variation in rainfall and streamflow. 

It is thus believed that lamination thickness may still be considered a proxy for climate 

over the L o c h Ness catchment, although the connection would appear to be more complex 

than those applicable to some other sites. 

6.8 Correlation with other time series 

Time series compiled from data collected from one site, represent the response 

of that site to palaeoenvironmental variations. Comparison of these with similar series 

collected from other sites, enables an overview of change over a wide area to be 

synthesised (Goslar et al., 1993). In addition, other well-established time series may be 

utilised for the purposes of comparison, in order that consistent temporal assignment of 

environmental events within a region (for example, Goslar et al., 1995) may be carried 

out. Aga in , the differences between proxy records from comparatively recent times and 

the signal derived from Loch Ness sediments may be due to an increasing anthropogenic 

influence upon its catchment, which may have acted to decrease its sensitivity to climatic 

variations, possibly to the exclusion of all but the most severe, or most local, events. 
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6.8.1 Other proxy palaeoclimate records 

The record of lamination thickness in the Sediments of Loch Ness may also be 

compared with other proxy climatic time series from regions influenced by the North 

Atlant ic Ocean. O f particular interest are those derived from measurements of the 

persistence of sea ice in North Atlantic waters, the location of the N A P F , the phase of the 

N A O , and dendrochronological and stable isotope studies. 

6.8.1.1 Sea ice, sea surface temperature (SST), NAO, and other climatic indices 

The persistence of sea ice in northem waters is an indication of sea surface 

temperature and location of the N A P F (Lowe, 1993). T w o time series, from the coast of 

Iceland, and from the Danish Sound, bave been considered (Lamb, 1977a). Correlations 

between these and the sedimentary record for core LNRl bave been calculated. In 

addition, these indices bave been further compared with North Atlantic SST data (Lamb, 

1987), in Order to ascertain whether or not there may be a l ink between al l three. The 

results are presented in Table 6.9 and the relevant data plotted in Figures 6.14 to 6.16. 

When 5-year moving averages are considered, strong correlations between the 

sedimentary record of core LNRl, the number of ice days observed from the coast of 

Iceland {Figure 6.14; 0.5234, significant at <1%), and the Danish Sound (Figure 6.15; 

0.5853, significant at < 1%), are observed. These results would seem to indicate that there 

exists a strong influence by the N A P F on deposition within the loch, presumably by 

varying the path of weather Systems across the North Atlantic Ocean, and hence Northem 

Scotland (Taylor & Yates, 1967). No such correlation exists between the sediment record 

and N A S S T , however, which may indicate that the area of ocean over which 

temperatures were measured (the Southwestem Approaches; 45-50°N, 5-10°W; Lamb, 

1977a) remained substantially unaffected by movements of the N A P F , and thus 

inappropriate for this type of analysis. 
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Figure 6.14 Annual lamination thickness in core LNRl, compared with the number of 

days sea ice was observed off the coast of Iceland over the period 1610 to 

1963. 
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Figure 6.15 Armual lamination thickness from core LNRl compared with the number of 

days when sea ice was observed in the Danish Sound, over the period 

1764 to 1930. 
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Table 6.9 Correlation between lamination thickness from core LNRl, North Atlantic sea 

surface temperature, and the persistence of sea ice around the coast of Iceland 

and in the Danish Sea. 

Dice 

Dice 

DIceS 

NA_SST 

LNRl 

Ll_Av5 

llcece 

IlceS 

DIceS NA_ 
SST 

LNRl 

0.3960** -0.0207 0.0374 

0.0808 0.1111 

0.1543 

Ll_ 
Av5 

lice IlceS 

0.0888 0.0470 0.3202** 

0.3078* 0.4518** 0.5853** 

0.0641 0.1169 0.1246 

0.6097** 0.2835* 0.3419** 

0.3643** 0.5234** 

0.5321** 

* - significant at less than 5% ** - significant at less than 1% 

Dice:- number ofdays with ice in the Danish Sound.DlceS:- 5-yearly averages. 

NA_SST:- average North Atlantic Sea Surface Temperature over the area 45-50°N, 5-10°W. 

LNRl:-lamination thickness from core LNRl. Ll_Av5:- 5-yearly averages. 

lice:- number ofdays with ice off the coast of Iceland. IlceS:- 5-yearly averages 

Comparison of the same sedimentary record with data on the annual index of 

the North Atlantic Oscillation (NAO) index, representing the period 1890 to 1963, has 

been carried out (Figure 6.17). Positive values of N A O index are indicative of periods 

when the atmospheric low pressure system over Iceland deepens, which acts to induce a 

northward movement in the path of moisture-rich westerly airstreams over the Atlantic 

Ocean(Mouliner a/., 1997). 

Comparison of both sets of data reveals that both are dose to average except 

during the interval 1902 to 1929, when lamination thickness declined from ca 1.3 mm to 

ca 0.5 mm while N A O index generally changed from negative to positive, except for a 
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brief return to negative values around 1917. More striking comparisons may be observed 

when seasonal N A O data are considered. Table 6.10 illustrates that significant 

correlations are generated when comparing decadally-averaged seasonal N A O data with 

the lamination thickness record from core LNRl. Figures 6.18 and 6.19 compare 

lamination thickness from core LNRl, with those three-monthly N A O indices which 

yielded the largest coefficients of correlation, as displayed in Table 6.10. 

Table 6.10 Results of correlation analysis between three-monthly-resolved N A O index 

and lamination thickness from core LNRl (decadal averages). 

LNRl 

DJF -0.2874** 

JFM -0.3616** 

FMA -0.3253** 

MAM -0.3386** 

AMJ -0.0506 

MJJ 0.3160** 

JJA 0.5229** 

JAS 0.3125** 

ASO 0.1270 

SON 0.0597 

OND 0.0247 

*indicates significance at 5% level ,** significant at 1% level (two-tailed) 

Significant negative correlations may be observed with N A O indices 

averaged over winter months, especially January, February and March , and positive 

correlations for summer indices, especially June, June and August. Further analysis of 

correlations between N A O index and precipitation at Fort Augustus and Inverness yielded 

the results displayed in Tables 6.11 and 6.12. 
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Table 6.11 Correlation between monthly N A O index (N), and precipitation data for 

Fort Augustus (F), 1890 to 1993 (v=103). 

NJan NFeb NMar NApr NMay NJun 

FJan 0.7364** 0.2486* 0.1395 0.1791 -0.2147* -0.1044 

FFeb 0.1690 0.7099** 0.2317* 0.1582 -0.1091 -0.0476 

FMar 0.1516 0.2063* 0.7041** 0.0886 0.0375 0.1096 

FApr 0.0037 -0.1061 -0.0621 0.4509** 0.0053 0.0187 

FMay 0.0537 0.1087 -0.0069 -0.0443 0.2305* 0.0403 

FJun -0.0293 0.0181 0.1016 0.1878 -0.1037 0.2207* 

FJul -0.1045 -0.1035 -0.1517 -0.0902 -0.1591 -0.0720 

FAug 0.0554 0.0615 0.0507 -0.0163 -0.0780 -0.1203 

FSep -0.0389 -0.1170 -0.1266 -0.0643 -0.1416 -0.1858 

FOct 0.0961 -0.0063 -0.0501 -0.1286 -0.1443 -0.0778 

FNov -0.1170 0.0035 0.1542 -0.1985 0.0910 0.1848 

FDec -0.0635 -0.1357 0.0775 0.1068 0.0504 -0.0383 

NJul NAug NSep NOct NNov NDec 

FJan 0.0365 0.0805 -0.1196 0.1186 0.0651 -0.0142 

FFeb -0.0079 0.1302 -0.1377 -0.0577 0.0578 -0.0539 

FMar -0.0479 0.0732 -0.1220 -0.0639 0.1297 0.0032 

FApr -0.0198 -0.2387* 0.0558 -0.0514 -0.0540 -0.1005 

FMay 0.0445 -0.0811 -0.0214 0.0876 0.1560 0.0161 

FJun -0.0965 -0.0755 0.0938 -0.0305 0.0415 0.0562 

FJul 0.1198 0.0646 0.0269 -0.0264 0.0190 0.0720 

FAug -0.0262 0.0710 0.0688 0.0022 0.0366 0.1381 

FSep -0.0221 0.1873 0.4576** 0.0610 -0.1216 -0.0873 

FOct 0.0846 0.1161 0.0845 0.5036** 0.0022 -0.0624 

FNov 0.0706 -0.0993 -0.0086 0.1354 0.5207** 0.1189 

FDec -0.0145 -0.0953 -0.0512 0.0381 0.0205 0.5427** 

•indicates significance at 5% level ,** significant at 1% level (two-tailed) 
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Table 6.12 Correlation between monthly N A O index (N), and precipitation data for 

Inverness (I), 1890 to 1993 (v=103). 

NJan NFeb NMar NApr NMay NJun 

IJan 0.5652** 0.1557 0.1134 0.1422 -0.2199* -0.1527 

IFeb 0.2391* 0.4728** 0.0788 0.1617 -0.1241 -0.0384 

IMar 0.1896 0.1875 0.4688** 0.1137 -0.0354 -0.0261 
lApr 0.0056 -0.0089 -0.0517 0.0649 -0.1198 -0.0634 

IMay 0 .0578 0.0212 -0.1290 0.0240 -0.1340 -0.0873 

lJun -0.1333 -0.0944 0.1126 0.1338 -0.0397 -0.0050 
lJul -0.1070 -0.0565 -0.1827 -0.2131* 0.0178 -0.0867 

lAug -0.0574 -0.0021 -0.0083 -0.0087 0.0103 -0.0312 

ISep 0.0816 -0.0898 -0.1581 0.0750 -0.1222 -0.0638 

lOct 0.0378 -0.0038 0.0405 -0.2097* -0.1794 0.0032 

INov -0.1011 0.0349 -0.0455 -0.0153 0.0701 0.0875 

IDec -0.0208 -0.1159 -0.0745 0.0489 -0.0353 -0.1376 

NJul NAug NSep NOct NNov NDec 

IJan 0.0559 0.0051 -0.0853 -0.0024 0.0788 0.0141 

IFeb 0.0387 0.0339 -0.0856 -0.0595 -0.0799 -0.1857 

IMar -0.0179 0.0489 -0.1721 -0.0902 0.0245 -0.0622 

lApr 0.1161 -0.1371 0.1090 0.0250 -0.1378 -0.1408 
IMay 0.0657 -0.0470 -0.0673 0.0296 0.0400 -0.0609 

lJun -0.0770 -0.1590 -0.0601 -0.0606 0.0317 0.0689 

lJul -0.0554 0.0104 -0.0244 -0.0247 0.0231 0.0771 

lAug 0.0156 -0.1224 0.1314 0.0118 0.0420 0.1637 

ISep 0.0290 0.0539 0.1541 0.0576 -0.1538 -0.1165 

lOct 0.1916 0.1258 0.0881 0.1731 0.0699 -0.1278 

INov -0.0563 -0.0863 0.1578 0.1397 0.1588 0.1221 

IDec -0.0783 -0.0488 -0.0987 0.0225 0.0196 0.3745* 

•indicates significance at 5% level ,** significant at 1% level (two-tailed) 
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Correlations between monthly N A O index and precipitation at Fort 

Augustus are positive and mostiy highly significant (at the 1% level). They range from ca 

0.45 in Apr i l and September, to ca 0.73 in January. Data for the summer months (May to 

August) are not as significant. Positive correlations are recorded between N A O index and 

Inverness precipitation data from December to March {ca 0.4 to 0.6, significant at 1%). 

Analysis of the remaining months yields both positive and negative, but non-significant, 

results. 

In addition, there exist striking similarities between annual lamination 

thickness in core LNRl and the N A O {Figure 6.19), when the index for the quarter-year 

June to August is plotted. It would thus appear that lamination thickness may be 

influenced by the occurrence of westerly airflows, originating from the North Atlantic 

Ocean, but that these are negatively correlated in winter and positive in summer. Hence, 

the occurence of wet summers may be a significant factor in the formation of laminae. 

The recent sedimentary record was also compared qualitatively with winter 

severity indices for Paris and London (Lamb, 1977a). There, it is noted that warm 

conditions existed during the late 15th century and that many winters during the 16th and 

17th centuries were cold. A n amelioration occurred around A D 1700 which has persisted 

to the present, although with a brief return to more severe conditions around A D 1800. 

This record is similar to that of core LNRl, in that thick laminae occur throughout most of 

the 15th century (especially in the latter half), and again after ca A D 1660. Prolonged 

periods, during which thinner laminations were deposited, took place from ca A D 1520 to 

A D 1660, and around A D 1800. Studies of glacier movements throughout Iceland also 

indicate warmer conditions during the 18th century, followed by a readvance in the early 

1800s (Lamb, 1977a). 
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Figure 6.16 Annual lamination thickness from core LNRl compared with North Atlantic 

Sea Surface Temperature (NA SST), over the period 1864 to 1963. 
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Figure 6.77Comparison of the North Atlantic Oscillation index (top, after Mann & 

Lazier, 1996) with lamination thickness from core LNRl (bottoni), over the 

period 1890 to 1963. 
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Figure 6.18 Comparison of annual lamination thickness from core LNRl with winter 

(DJF) N A O index (decadal averages). 
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Figure 6.19 Comparison of annual lamination thickness from core LNRl with summer 

(JJA) N A O index (decadal averages). 
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6.8.1.2 Dendrochronological studies 

Several chronologies based upon tree ring records have been considered for 

comparison with time séries derived from measurements on Loch Ness sédiments. Séries 

are derived from studies of one site, in addition to averaged data representing entire 

régions. Professor M . G . L . B a i l l i e , of the Queen's University Belfast, bas k indly 

provided three régional chronologies, représentative of Ireland, Scotland, and the English 

Midlands, for comparison with the record from core LNRl (Figure 6.20). 

2000 1900 1800 1700 1600 1500 1400 1300 

Year(AD) 

Figure 6.20 Régional tree ring records, A D 1300-1963. a) the English Midlands, b) 

Scotland, and c) Ireland. {After Baillie; pers corrun, 1977a, 1977b), 

compared with lamination thickness from core LNRl (d). A i l 

dendrochronological séries are plotted to the same scale, but offset for clarity. 
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Visual ly , the three tree ring series have httle in common with each other, 

although statistically ali correlations between them are positive and significant at less than 

the 1% level (Table 6.13). Each exhibits a brief increase in ring width value just prior to 

1800, and marked decreases during the late 14th century, and around 1820. Correlation 

with data from core LNRl is also included in Table 6.13, and indicates that comparison 

with the English Midland time series yields a coefficient significant at less than the 1% 

level. 

Table 6.13 Correlation between tree ring data from Ireland, the English Midlands, 

Scotland and lamination thickness from core LNRl. 

Bel Belli Mid Midll Scò Scoli LNRl LNRll 

Bel - 0.7308** 0.1024** 0.1147** 0.0252 0.1719** 0.0134 0.0594 

Belli - - 0.1266** 0.1543** 0.1453** 0.2788** 0.0541 0.0682 

Mid - - - 0.7678** 0.1095** 0.1803** 0.1025** 0.1321** 

Midll - - - - 0.1300** 0.2265** 0.0848* 0.1726** 

Sco - - - - - 0.6082** -0.0100 0.0032 

Scoli - - - - - - 0.0131 0.0534 

LNRl - - - - - - - 0.4934** 

LNRll - - - - - - - -

*indicates signifìcance at 5% level ,** significant at 1% level (two-tailed). 

Bel- Belfast chronology 
Belli - Belfast chronology, U-year running mean 
Mid- English Midlands chronology 
Midll- English Midlands chronology, 11-year running mean 
Sco - Scottish chronology 
Scoli- Scottish chronology, 11-year running mean 
LNRl- Sediment record, core LNRl 
LNRll- Sediment record, core LNRl, 11-year running mean 
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Figure 6.21 Record of normalised ring widths from Eurof>ean Larch {Larix decidua 

Miller) located at Mar Lodge, Highlands (Analyst F.Schweingruber. Source 

NOAA, WDC-A), compared with annual lamination thickness from core 

LNRl. 

Figure 6.21 (top) illustrates a time series derived from analysis of ring widths 

of European Larch (Larix decidua M i l l e r ; analyst F.Schweingruber; source N O A A , 

W D C - A ) growing at Mar Lodge, Deeside, Scottish Highlands (latitude 57° N, longitude 

3° 30' W), some 85 km S E of Loch Ness. This sequence spans ca 140 years, and may be 

compared with annual lamination thickness in core LNRl (Figure 6.21, bottom). Some 

similarities may be observed, especially around the period of the intense 1868 flood in the 

Loch Ness catchment, when both series exhibit large variations from the mean (core 

LNRl: ca + 4 sd; dendro: ca + 2 sd). Overall , a correlation of 0.2676 is exhibited 

between these curves, rising to 0.477 when smoothed by a 5-yr moving window. For 115 

data points the value for the raw data is significant at less than 1%, while that for 
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smoothed data is significant at the 0.1% level. 

Data frbm dendrochronological studies carried out within Continental Europe 

may also be compared with lamination thickness sequences in order to explore the spatial 

extentof climatic influence. Schweingruber (1988) highlights the existence of significant 

correlations between tree ring series derived from a wide area of West, Central and 

Southern Europe (Figure 6.22). Figure 6.23 plots a German Oak (Quercus petraea L. ) 

chronology developed by Huber & Giertz-Siebenlist (Lamb, 1977a), originating from the 

Spessart Forest area of Central Germany (latilude 50° 10' N, longitiide 9° 20' E) and 

lamination thickness in core LNRl. Correlation coefficients for the entire sequence are 

low (0.0325 for raw data; -0.0008 for U - y r averages; -0.0075 for 22-yr averages), 

although extremes, such those prevalent during part of the Li t t le Ice Age (the 17th 

Century; Lamb, 1977a), but admittedly of different duration, are well represented in both. 

O f note is the period of both increased Sedimentation and ringwidth after A D 1650, and by 

the decrease in both signals during the early 19th Century. From then to recent times the 

records diverge substantially, with the extreme events in core LNRl for the late A D 1860s 

not replicated in the tree-ring data. 

Figure 6.22 Spatial extent of correlation between dendrological datasets in Europe. 

{After Schweingruber, 1988). 
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Figure 6.23 Tree-ring chronology, 1945 A D to 1320 A D , derived from German Gak 

{Querem petraea L . ) growing in the Spessart Forest, Germany {After Huber 

& Giertz-Siebenlist {Lamb, 1977a), upper), compared with annual 

lamination thickness from core LNRl {lower). 

Many other studies have utilised tree-ring records in order to determine 

indications of palaeoclimate over the North Atlantic region. Two wi l l be briefly mentioned 

here, and their results compared to the record from Loch Ness. 

Briffa et al. (1990b) have employed both ring-width and latewood density of 

l iving and fossil Scots pine {Pinus sylvestris L.) sampled within the Tometräsk region of 

Sweden in order to reconstruct summer temperatures in Fennoscandia over the past 1400 

years. Events such as the Medieval Warm Period and Little Ice A g e do not figure 

prominently in their Interpretation, and they conclude that these episodes were not as 

pronounced in that region, as reported from the rest of Europe. Their record suggests that 

the L I A lasted only from ca A D 1570 to A D 1650 and that the M W P was confined only to 

the latter half of the twelfth Century. The record of lamination thickness from core LNRl 

194 



6. Data Analysis 

exhibits low values from ca A D 1510 until A D 1650, which may correspond to an L I A 

signal on the basis of warm-wet/cold-dry climatic model. In addition, they note that "the 

proxy evidence for spatially coherent century-timescale climate fluctuations around the 

North Atlantic basin is relatively weak" (j? 439). 

Over a timescale comparable to that spanned by the long sediment cores from 

L o c h Ness, Bridge et al. (1990) examined the abundance of fossil Scots pine i n peat 

haggs. They identified a number of reductions in abundance of trees around 5700-5250 a 

B P , 3800-3500 a B P , and post-3250 a B P , which they attribute to deteriorating climate, in 

that pine was probably more prolific during warm, dry conditions, and peat accumulation 

increased at times of cold, wet weather. Their selection of these three periods seems 

arbitrary, however, since their data also exhibit similar dearths of trees around 6.3 and 4.8 

ka B P . The record from core Ness 3 displays an increase in lamination thickness around 

ca 6200, 4800, and 3500 a B P , but not during the other periods mentioned. 

6.8.1.3 Stable isotope record 

Analysis of variations in isotopie composition of water contained in ice cores 

has been shown to provide a proxy for temperature at the time of deposition (Dansgaard e t 

al., 1984). Studies of 6^^0 in material recovered from the Greenland Ice Sheet, especially 

by the G R I P team, have furnished data which enable the construction of a proxy 

temperature record for the past 200,000 years. Examination of the record from 10 ka B P 

to the present may indicate, amongst other processes, variations in location of the North 

Atlantic Polar Front, and also storm tracks across the Atlantic Ocean. 

Figure 6.24 illustrates a comparison between lamination thickness in long core 

Ness 3, and the Ò^^O isotope record from the G R I P core (source: NOAA, WDC-A). 

Owing to the fragmented nature of the lamination thickness data, it is difficult to compare 

the curves fully, although weak maxima in both series occur at ca 7600, 5200, and 2700 
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B P , and min ima at around 7100 and 5000 B P . In addition, however, deviations of 

opposite sign may be noted in both signals around 8700 B P . The correlation coefficient 

between the oldest and longest continuous section of the lamination thickness curve (ca 

6300 to 9000 B P ) , and the comparable section of the G R I P curve is -0.237, hardly 

significant at any level withv=14. Comparison of lamination thickness in core LNRl, and 

variations i n ö^^O from C a m p Century , Greenland (Figure 6.25), reveals 

contemporaneous low values in both records during the periods ca A D 1500, A D 1580 to 

A D 1660, and ca A D 1830 (Johnsen et al., 1970; Moseley-Thompson, 1993). 
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Figure 6.24 G R I P 0^ record compared with lamination thickness data from core 

Ness 3. 

6.8.1.4 Other isotope records 

In Figure 6.26, are shown comparisons of grey level, derived from digital 

Images of both long cores (Ness 3 and 4), variations in Ö^^O from the G R I P ice core 

(source: NOAA, WDC-A), and atmospheric ^"^C concentrations (Stuiver and Reimer, 

1993). A l l curves are smoothed by calculating ca 200-yr averages, in order to match the 

sampling frequency of the G R I P data. Correlations are displayed in Table 6.14. 
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Figure 6.25 Camp Century ô^^O record compared with lamination thickness data from 

core LNRl. (Decadal averages; Source www.ngdc.noaa.gov/paleo/icecore/ 

greenland/gisp/campcentury/campe _data.html) 
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Figure 6.26 Comparison of grey level in long core Ness 3, atmospheric Ô '̂̂ C, and ô^^O 

in the G R I P ice core. 
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Table 6.14 Pearson correlation coefficients for data plotted in Figure 6.26 

Ness 3 GL Ó^^C Ò^^O 

0.24421 0.3807* 

0.3114* 

*indicates signifìcance at 5% level ,** significant at 1% level (two-tailed). 

t a correlation coefficient of 0.242 has been obtained when comparing these data, utilising 

non-smoothed data. This is significant at the 1% level for v=506 in the originai data set. 

The record of ò^^O variations from an ice core indicates the temperature 

prevaihng at the lime of formation (Jouzel et al., 1997). More positive values indicate 

warmer, and more negative values colder, conditions. Positive correlation between these 

data and grey level, which generally indicates the type of sediment deposited rather than 

lake productivity, would seem to imply that warm episodes on the Greenland ice cap 

correspond to an increase in deposition of paler silts, and cooler conditions by the 

predominance of darkerclay/^y??/a. Pale, silty material is washed into the loch during late 

winter (R.I.Jones et al., 1997), so that a preponderance of such material suggests 

increased storminess over Loch Ness and Northern Scotland. This observation reinforces 

the earlier conclusion that the long-term climate history of the region was characterised by 

altemating cold/dry emd warm/wet phases. 

Atmosphericò^'^C is a measure of the amount of that isotope produced by 

solar (short term) and geomagnetic (long term) variations (Siegenthaler & Beer, 1988). 

Over the last 10 ka, the long term trend in this record has indicated that production of 

atmospheric ^"^C briefly declined around 7.5 ka B P , increased to a maximum at 6 ka B P 

before decaying to a minimum during the last millenium. A small increase to the present 

Ness 3 GL 
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has also occurred. Positive corrélation between G L data and ô C time séries is, however, 

difficult to explain only in terms of geomagnetic field variation. Changes in solar output 

may further lead to variation in lake productivity, producing darker ^yttya-rich sédiments 

at periods of higher, and paler, silt rich deposits during times of lower radiation output. 

This is not borne out, however, by the observation that many periods of increased solar 

activity may be correlated with épisodes of higher rainfall (Figure 6.27), which resuit in 

the influx of a greater proportion of silt-rich material to the loch, producing paler-coloured 

sédiments possessing high G L s . In addition, primary productivity in the modem loch is 

low, the majority of the organic matter in the sédiment originating from allochthonous 

terrestrial material (R.I.Jones et al., 1997). It is unlikely, therefore, that variation in solar 

output would produce significant changes in sédiment type, and by implication, colour. 

6.8.1.5 Other records 

Comparison of records of winter précipitation over Fort Augustus with 

sunspot indices reveals that local maxima in the rainfall data bave tended to fall at or near 

times of maximum sunspot activity (Figure 6.27). Corrélation of thèse data, utilising a 5-

yr mnning average to smooth the précipitation figures, yields a coefficient of 0.202, 

significant at the 5% level, v=104. Although the corrélation between lamination thickness 

and précipitation has been demonstrated to be slight, comparison of sunspot record and 

lamination thickness from core LNRl yields a corrélation coefficient of 0.32, significant at 

the 1% level, v= 202 (Figure 6.28). 

Tinsley (1988), complementing the research of Labitzke & van Loon (1990), 

determined that during the period A D 1921 to A D 1976, relative to their positions at 

solar minimum, storm tracks over the North Atlantic Océan were displaced, on average, 

2.5° in latitude to the south during periods of maximum solar activity. When using the 

methods of Labitzke & van Loon, who separated data according to the directional phase of 

the Q B O , Tinsley further noted that storm tracks across the North Atlantic could vary by 
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Figure 6.27 Fort Augustus winter precipitation record (up/jer) compared with sunspot 

number (lower), A D 1884 to A D 1994. 
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Figure 6.28 Comparison of lamination thickness record from core LNRl (upper), with 

annual sunspot number (lower), A D 1750 to A D 1963. 
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up to S" latitude during its west phase. He suggested that this movement of storm tracks 

might be mediated by changes in position of the jet stream above the North Atlantic Ocean 

owing to variations in planetary wave dynamics and possibly by the further strengthening 

of the dynamic coupling between stratosphere and troposphere. These mechanisms may 

be employed to explain variation of precipitation over Loch Ness with the solar cycle. 

6.9 Spectral analysis 

Comparison of the sedimentary record with other periodic time series, such as 

the solar cycle, suggests that there may exist elements of cycl ic i ty within the varve 

thickness data from L o c h Ness. Fast Fourier Transform spectral analysis has been 

employed in order to investigate whether or not external climatic and extraterrestrial 

forcing events have influenced sedimentation through the time period represented by the 

long and short cores. 

Spectral analysis of lamination thickness data from a range of sites and 

locations reveals periodicities which occur within many of the frequency bands associated 

with climatic forcing agents. Data display a diversity of outcomes when subjected to this 

analysis. Sonnett et al. (1992) report a cyclicity of deposition of riverine varves, possibly 

influenced by the Quasi-Biennial Oscillation (QBO) , which is detected at periods of ca 

2.2 to 2.8 years, or 0.45 to 0.35 cycles per year (Burroughs, 1992). Other studies may 

also be considered, particularly those of Renberg et al. (1984) at Judesjön, Sweden, who 

report periodicities of 11, ca 20 and ca 37 years, and Zoli tschka (1992) at Holzmaar, 

where periodicities of ca 3 and 11 years have been observed. 

6.9.1 Spectral analysis of precipitation records 

The results of spectral analyses of seasonal and annual precipitation records 

for Fort Augustus and Inverness are presented in Figures 6.29 and 6.30. O f immediate 
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Figure 6.29 Fast Fourier Transform spectra of seasonal and annual preci pi tati on. Fort 

Augustus, 1886-1994. Dark shading indicates periodicities in the solar 

cycle frequency band, and light shading those attributable to the Q B O . 
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Figure 6.30 Fast Fourier Transform spectra of seasonal and annual precipitation. 

Inverness, 1890-1994. Dark shading indicates periodicities in the solar 

cycle frequency band, and light shading those attributable to the Q B O . 
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note is the multiphcity of peaks generateci, and the general low level of significance of 

most of them. 

In detail, all spectra generated in this study possess high density at low 

frequency, particularly around 0.05 cycles per year (20-year periodicity), which may be 

associated either with the 22-year Haie solar, or the 18.6-year Luni-solar (the Saros), 

cycles (for example Currie, 1994a,b,c,d; Nicholson, 1985). This periodicity is apparent 

inmany climatictime séries, and is the second most common cycle reported, after the 

Q B O (Burroughs, 1992). In addition, a peak at ca 0.12 cycles per year (8.3-year period) 

appears conunon, and may be a higher harmonie of the solar cycle. Spectral power at mid-

range frequencies are not consistent through ail analyses. Some, such as the Fort 

Augustus summer record, are almost featureless. H igh frequency periodicity is well 

displayed i n the Fort Augustus winter and autumn records, however, where significant 

peaks appear at 0.45 cycles (winter; 2.2-year cycle), and 0.35 cycles (autumn; 2.9-year 

cycle) per year. Both of thèse fall within that frequency range ascribed to the Q B O . 

6.9.2 Spectral analysis of the sédiment record 

Fast Fourier Transform analysis bas also been performed on the record of 

lamination thickness from both long cores, and from short core LNRl. M a n y spectra 

exhibit large noise components which serve to decrease resolution, spreading spectral 

estimâtes over neighbouring frequency bands. Spectra displaying some 'peaks' around the 

11-year frequency band typical of solar activity may clearly be observed, however, in 

addition to higher frequencies possibly indicative of the Q B O . Spectral analysis of decadal 

totals of lamination thickness was employed in order to enhance longer-period variations. 

6.9.2.1 Core Ness 3 

The three sections of this core for which distinct lamination images were 
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obtained by X-radiography, were analysed individually. Each yielded quite different 

spectra. For brevity the sections w i l l be denoted by Ness 3/1, Ness 3/2 and Ness 3/3. 

Ness 3/1 represents recent sediments and Ness 3/3 those at the base of the core. 

Analysis of Ness 3/1 (Figures 6.31 and 6.32) yielded many signals, most of 

little significance. Periodicities were indicated at : 342, 205, 147, 31, 22, 18, 8, and 6 

years, in addition to a plethora of signals within the 2-3 year band. Clearly, little of any 

certainty may be discussed when such multiple periodicities are observed, but the 

detection of those signals at 205-, 22-, 18-, and sub 3-year periods, is of some interest. 

These periodicities have been identified in many proxy time series and have been 

attributed, respectively, to oceanic influences, the solar Hale cycle, lunar nodal cycle, and 

the Q B O phenomenon. The strong signal at ca 6 years is situated within a frequency band 

often attributed to a harmonic of the solzir cycle (Burroughs, 1992). 
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Figure 6.31 Fast Fourier Transform spectrum of lamination thickness data, core Ness 3, 

section 1 (ca 2.5 ka to 3.2 ka B P ) . 
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Figure 6.32 Fast Fourier Transform spectrum of decadal totals of lamination thickness, 

core Ness 3, section 1. 
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Figure 6.33 Fast Fourier Transform spectrum of lamination thickness data, core Ness 3, 

section 2 (ca 3.2 ka to 4.9 ka B P ) . 

206 



6. Data Analysis 

Analysis of Ness 3/2 {Figure 6.33 ) results in a spectrum exhibiting a great 

number of peaks, none of which appear significant. The largest signals are situated 

between the periods of 3 and 10 years and may represent, i f genuine, a weak response to 

atmospheric forcing processes such as the Q B O , or else harmonics of lower frequency 

events. Consideration of decadal totals {Figure 6.34) produces significant peaks at ca 33 

and 22 years. 
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Figure 6.34 Fast Fourier Transform spectrum of decadal totals of lamination thickness, 

core Ness 3, section 2. 

The time series derived from Ness 3/3 {Figure 6.35) represents the longest 

sequence wi th in core Ness 3 to be analysed and consists of some 1200 Fourier 

frequencies. It is not surprising, therefore, that this FFY spectrum also exhibits many 

peaks. Analysis of decadal totals does little to clarify the spectrum {Figure 6.36), although 

several peaks, representing periods of ca 160, 45, 36, 33 and 28 years, become 

statistically significant. Many can be explained as possible harmonics of an 11- or 22 year 

period. 
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Figure 6.35 Fast Fourier Transform spectrum of lamination thickness data, core Ness 3, 

section 3 (ca 5.9 ka to 8.7 ka BP) . 
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Figure 6.36 Fast Fourier Transform spectrum of decadal totals of lamination thickness, 

core Ness 3, section 3. 
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6.9.2.2 Core Ness 4 

Analys is of the time series of lamination thickness for this core does not 

present conclusive evidence of any significant cyc l ic i ty (Figure 6.37). However , 

assuming that the data represent a continuous series of annual layers, this is the only core 

to exhibit very long periodicities, of the order of 2200 years. Whi le caution must be 

exercised in its interpretation, it may be of interest to note that Bond et al. (1997) have 

identified cyclicities of 1470 years in Glacial and Holocene climatic data sets compiled 

from locations throughout the North Atlantic region, and Barber et al. (1994) have 

commented on an implied ca 800-year cycle of variation in moisture in cores from a raised 

bog near Carl is le (Cumbria, U K ) . The extreme length of the series from core Ness 4 

(6651 data points) may act to blur any periodic behaviour, since many forcing processes 

have been discovered to vciry in phase through time, thus decreasing the spectral power 

contribution and resolution of each component (Currie, 1994a). In addition, the integrity 

of the record is in doubt, and the absence of laminae, or presence of extra ones, w i l l 

render the analysis unreliable. 
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Figure 6.37 Fast Fourier Transform spectrum of lamination thickness data, core Ness 4. 
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6.9.2.3 Core LNRl 

Fast Fourier Transform analysis of the entire time series derived from core 

LNRl indicates that long period variations in lamination thickness predominate {Figure 

6.38). A particularly intense signal is observed at ca 90 years, within the frequency band 

for the solar Gleissberg cycle {ca 88 years). This has also been detected in a number of 

other records, including the Central England temperature series (Burroughs, 1992; 

Manley, 1974). A further comparable peak in the spectrum is that for a period of 214 

years, which is again observed in many series including the Bristlecone pine chronology 

(Burroughs, 1992; L ibby & Pandolfi, 1977; Suess & Lin ick , 1990), sunspot series, and 

lunar tidal data (Burroughs, 1992). Aaby (1976) has detected a similar periodicity in the 

stratigraphy of Danish bogs {ca 260 years), as bave Johnsen et al. (1970; 78 and 181 

years) in data from the Camp Century, Greenland, ice cores and Stuiver (1994) from 
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Figure 6.38 Fast Fourier analysis of lamination thickness from core LNRl, over the 

period 1321-1963 A D . 
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analysis of the spectrum of abundance of radiocarbon in tbe atmosphère (87 and 206 year 

periods). Variation in conœntration of calcium ions in the GISP2 core (Mayewski et al., 

1993a) also displays ca 55 and ca 160 year periodicities, which are considered to indicate 

changes in atmospheric circulation or cycles of continental érosion. Lamination thickness 

in sédiments from Lake Turkana, from 4000 a B P to présent, bave also been found to 

exhibit 78- and 200-year periodicities (Halfman & Johnson, 1988), as bave varved 

sédiments from Holzmaar, Germany (Vos et al., 1997). Signais of shorter period from 

core LNRl lack the spectral power of thèse long period cyclicities. 

6.9.2.4 Spectral characteristics of the NAO signal and its comparison with 

précipitation and lamination thickness records 

In view of the strong corrélation between lamination thickness from core 

LNRl, N A O activity, and précipitation over Fort Augustus and Invemess {section 6.6), 

spectral analysis of annual N A O index was performed, in order to further investigate the 

possibility that this phenomenon may be considered a forcing agent of climate, leading to 

variations in déposition {Figure 6.39). Analysis of monthly N A O index revealed no 

cohérent seasonal pattem. A periodicity of ca 66 years is apparent in late winter/early 

spring and again in July, and one of ca 44 years, again in spring, and in November. 

Cyclicities typical of the double Haïe solar cycle {ca 22 to 26 years) are detected. Periods 

indicative of the Luni-solar cycle (18.6 years; Currie, 1994) are sparse, occurring only in 

Apr i l {ca 16 years), September {ca 19 years), and October {ca 16 years). The 11-year 

solar cycle may be represented by periods of around 8 to 11 years which are apparent in 

N A O indices for February, A p r i l to August, and for December. Short period (QBO-like) 

cyclicities are noted within each monthly data séries. 

The F F T spectrum obtained from core LNRl was compared with that obtained 

from the N A O index {Figure 6.40), although exact comparisons of Fourier periods were 

not possible, owing to différences in sizes of the data sets. Similarities were noted in the 
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Figure 6.39 Fast Fourier Transform spectrum of the annual N A O index, 1876-1996. 

ca 40-year period ( L N R l : 46 yr, N A O : 44 yr), ca 25-year (27 yr, 26 yr) and the solar 

cycle period (9.5 yr, 9-12 years). Although not conclusive, the results suggest that the 

N A O may indeed have been influential in the variation of déposition within the loch over 

the past 600 years. 

6.9.2.5 Evolutive spectral analysis (Figures 6.41 to 6.43) 

Analysis performed on time séries derived from lamination measurements 

from cores Ness 3 and Ness 4 reveal very little information, since spectral power is 

generally very low, and features are indistinct. Of note is the trend for periodicities to shift 

from longer to shorter timescales. It is not certain whether this effect is an artefact of data 

processing or a genuine phenomenon representing, perhaps, the ability of the System, in 

récent times, to respond more rapidly to change. Data derived from a small set of proxy 

température reconstructions spanning the period 1750-1950 A D (Mann a/. 1995) also 

display this type of frequency shift when analysed by évolutive spectral analysis. The drift 

in periodicity is noted, but not explained. 
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Figure 6.40 tt'i spectrum from core LNRl (upper) compìired with that from analysis of 

the annual N A O index (lower). 

The F F T spectrum from core LNRl suggests that analyses performed upon 

shorter sequences of lamination thickness highlight periodicities inherent in the data better 

than those vvhich involve series consisting of many thousands of measurements. This may 

be caused by changes in phase of periodic Clements over time, which wil l act to blur any 

Signal they produce (Currie, 1994a; Mayewski et al., 1993a). In order to investigate the 

temporal Variation of any periodic behaviour in lamination thickness, evolutive spectral 

analysis was performed over consecutive periods of 128 years. The maximum Fourier 

period, 64 years, is well represented throughout, especially in the period 1321-1447 A D , 

where it is accompanied by a slightly weaker signal at 4.9 years and a very strong one at 

3.8 years, both of which may be higher harmonics of an 11-year period. Short cycles, of 

two to five years, are observed in all time slices and may represent response to Q B O 

forcing. Medium-period cyclicities seem only to be observed during the time periods 
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1450-1575, and 1S35-1963 A D . Thus, it may be observed, that throughout tbe periods 

analysed, at no time do these signals persist, and they are, in addition, occasionally weak 

in terms of spectral density. These analyses, however, are difficult to reconcile with that 

derived from the whole series, since the Fourier frequencies are calculated differenlly, and 

periods longer than 64 years wi l l be summed into that frequency. Thus, there exists a need 

to balance tempora! and frequency resoiutions, since the greater the number of time slices 

analysed, the better the understanding of variation of cycl ic behaviour, but at a reduced 

frequency resolution. 
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Figure 6.41 Evolutive Fourier spectrum elements of periodicity ccMitained within core 

Ness 3. 
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6.10 Summary of analyses 

The average value for loss on ignition was determined to be 25% in core Ness 

3 and almost 4 0 % i n core Ness 4. Both cores exhibit low values of % L O I from early 

Holocene sediments, but the record derived from core Ness 4 was noted to be more 

complex than that obtained from core Ness 3. 

Grey level varied throughout each ' long' core, with paler sediments occurring 

in the lower sections and darker material from about two to three metres. Recent sediments 

were noted to be paler than those from the mid-Holocene. 

Microli thological examination revealed differences between pale and dark 

layers, and identified four styles of lamination, although E D S failed to resolve differences 

in elemental composition. It was thus concluded that the variation in sedimentation was 

derived primarily from the alternating deposition of clay- and silt-rich material, both of 

which are derived from catchment material. 

Comparison of time series was performed with varying degrees of success. 

Local meteorological records did not provide significant coefficients of correlation with 

lamination thickness, although precipitation was well correlated with streamflow in the 

River Ness (r=0.961; signif 0.1%). Data on the deposition of seston from the water 

column (R.I Jones et al, 1996) exhibits a close similarity to variations in precipitation. 

Regional palaeoclimatic datasets yielded some significant correlations with 

lamination thickness, indicating that some climatic forcing processes may be implicated in 

sedimentation in the loch. The incidence of sea ice around Iceland, and in the Danish 

Sound, which is indicative of the movement of the N A F F , was found to be significantly 

correlated (r=0.5234 and 0.5853 respectively; signif <1%) with lamination thickness. 

Summer N A O index was highly significantly correlated with lamination thickness in core 
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LNRl (r=0.5229; signif 1%) while winter N A O index was negatively correlated (r=-

0.3253; signif 1%), indicating that N A O may be instnmiental in providing a substantial 

forcing component to sedimentation. 

Comparison of both lamination thickness and grey level with ^^C and ^^O 

records revealed similarities between lamination thickness in core LNRl and 6 '^O form 

the Camp Century ice core, which further reinforces the premise that sedimentation in the 

loch is partially driven by N A P F movement. Correlation of solar output, v ia the ^"^C 

record indicates that at times of increased insolation, paler silts tend to be deposited, 

possibly through increased precipitation, since periods of maximum rainfall tend to 

coincide with increased sunspot number, most likely via movement of storm tracks by the 

Q B O . 

Spectral analysis of the sediment record reveals the presence of long period 

(214 -and 90- year) variations in core LNRl and comparable 342-, 205-, 147- and 6- year 

periodicities from the upper part of core Ness 3. Many of these periods have been 

observed in other proxy time series, and indicate that they may be widespread in climatic 

processes and that sedimentation in Loch Ness is a system able to record them. 

6.11 Estimation of errors 

A t every stage of an analysis, errors may be introduced and certain 

assumptions made. It is imjxjrtant to be able to quantify these, in order to estimate the 

overall accuracy of the analysis, and to ascertain whether or not these errors and 

assumptions have added significant distortion to any conclusions drawn. In this study, the 

topics which have been identified as possibly having some significant effect on the results 

are presented in Table 6.15. 

217 



6. Data Analysis 

Table 6.15 Stages of analysis during which significant errore may have occurred 

Photography and X-radiography 

Image analysis 

Determination of lamination position and thickness 

Compilation of chronology 

Suitability of coring site and understanding of mechanisms of deposition of 

sediment 

6.11.1 Photography and x-radiography 

Both techniques are reliant upon both the quality and amount of radiation 

employed for illumination, and on the quality of the recording medium and associated 

developing and printing processes. Careful setting-up of the photographic stage enabled 

uniform illumination to be obtained, emd developing and printing wcis undertaken by the 

same, skil led individuai (Ms Betty Fox) each time. X-radiography was carried out 

ut i l is ing plates from one production batch and employing Constant conditions of 

exposure, which were electronically controlled. This operation was, however, performed 

over a considerable period of time, and utilised a machine which was used by other 

researchers, and may thus have suffered variation in performance during the period of 

study. Gross changes, in terms of resolution or uniformity of illumination were, however, 

not noticed upon examination of X- ray plates. It is thus considered that operations 

performed on photographs and X-radiographs wi l l suffer negligible errors. 

6.11.2 Image analysis 

Efforts to minimise errors within this step are achieved by averaging images at 

each stage of analysis. Thus, random errors are effectively eliminated. The techniques 

chosen in order to enhance images are co-ordinate invariant, and hence do not affect the 

relative positions of lamination boundaries within an image. Grey level determinations are 
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constant for each image and errors have been determined by the repeated acquisition and 

analysis of the same x-radiograph, under identical conditions. In addition, the same 

camera and lens combination was employed for every analysis, further ensuring 

reproducibility. 

Calibration of the image analyser was performed at the beginning of each 

session, employing an engraved steel ruler as a standard measure. Calibration data were 

stored within each file of Grey Level measurements. Linearity of measurement within the 

image field was ascertained by determining the number of pixels between millimetre 

divisions of the engraved ruler. The results are presented in Table 6.16 and Figure 6.44 

The process of digitisation does, however, incur a penalty when analysing 

images which contain details with dimensions close to the limit of optical resolution. Here, 

small changes in size may result in measurement errors of+1 pixel, resulting, in this case, 

in errors in lamination thickness of, perhaps, ±100%. The effect of such variations may 

be considerable when comparisons between cores are considered. 

Table 6.16 Linearity of image field of Quantimet 570 image analyser 

Initial pixel position: x=279 y=lll; Calibration= 0.099 mm pixel 

ruler mark (mm)= 21.0 y= 111 (mm) =20.2 y= 191 

20.9 121 20.1 201 

20.8 131 20.0 211 

20.7 141 19.9 221 

20.6 151 19.8 230 

20.5 161 19.7 241 

20.4 171 19.6 250 

20.3 181 19.5 260 
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Figure 6.44 Graphical presentation of the linearity of the image field of the Quantimet 

image analyser. 

6.11.3 Computer program 

Errors in the determination of lamination boundaries by computer algorithm 

are a function of the correct location and form of the boundary itself, usually marked by a 

rapid change in grey level and of the estimation of the 'noise' inherent i n the image of the 

sediment. This influences the selection of a threshold over which it is certain that a change 

in grey level represents a lamination boundary. 

The algorithm utilised for this smdy represents, however, a rather simplistic 

estimation of lamina properties, but addresses the question of errors above. Consideration 

of signal noise within an image is achieved by determining an average grey level for the 

image under consideration and adjusting, on the basis of this, the mínimum change in grey 
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level which wi l l be accepted as representing a boundary. Laminae wbich record a constant 

gradation from one to another are located by determining pixel positions mid-way between 

a 'peak' and subséquent 'trough' in the grey level signal. The algorithm is configured to 

consider only laminae which are assumed to represent varved sédiments, in that they 

correspond to the classical '2 laminae per varve' type. 

6.11.4 Chronology 

Errors in counting may arise as a resuit of limitations in the image analysis 

method and from sedimentological processes which may produce laminae with indistinct 

boundaries. In addition, there are laminations which are deposited by extrême events, 

such as sublacustrine slumping or by seismic disturbance, within the water body. Thèse 

'extraordinary' laminae wi l l remain undetected by x-radiography i f their properties 

resemble those of 'normal ' layers and may only be recognised upon analysis of thin 

sections by microscopy. 

Différences between cores Ness 4 and Ness 3 are presently under study, grey 

scale data from both being compared by utilisation of tree-ring corrélation software under 

the supervision of Dr . Mart in Br idge , at University Collège London, and by Dr . 

Christopher Ramsey at the Universi ty of Oxford, by 'wiggle matching' lamination 

thickness data using the software program Oxcal (Ramsey, 1995). The nature of the 

différences are uncertain, since prominent laminae may be identified in images of both 

cores, although at différent locations. It is thought that small scale différences between 

cores, owing to variation in lamination thickness and structure, may be due to their being 

recovered from slightly différent locations, where contrasting sedimentary régimes may 

prevail. 
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6.11.5 Suitability of coring site 

The location of the coring site, and the rationale for its situation, was outlined 

within Section 3.4 . The results of an acoustic survey (Shine & Martin, 1988), indicated 

the suitability of the site for the recovery of sediment cores owing to its remoteness from 

riverine inputs and from the steep sides of the loch. It is, however, located at the base of 

the slope to the northern outflow, and a recent sonar survey, carried out at high resolution 

by the Department of Oceanography at the University of Southampton, U K , now indicates 

that the site may not be ideal in terms of sublacustrine profile. It may be useful, therefore, 

in the light of this recent evidence, to discuss processes which may be considered to 

inhibit or alter the formation of cmnual laminations. 

The littoral zones of the longitudinal shores of Loch Ness plunge quickly into 

the profundal with an average slope of 33%. The northern outlet of the loch rises 

somewhat more gently, from -200 m to 10 m A O D over a distance of about 7300 m, a 

slope of 2.9% (Ordnance Survey, 1993). The severity of the gradients on each side of the 

loch poses questions as to the stabiHty of sediments accumulating there, especially during 

episodic flooding, and in the event of tectonic movements (Mirecki, 1996; Shilts & Clague 

1992), of which there is a long record (Brit ish Geological Survey. Seismic Act iv i ty 

Reports). In fact, it is postulated that the chaotically-structured sediments observed in the 

upper sections of both 4.5 m cores may be derived from such an event, by causing older 

laminated sediments, deposited in a quasi-stable location on the steep flanks of the loch, to 

slide downslope onto younger ones. This problem is also discussed by Digerfeldt (1979), 

Shilts & Clague (1992), and is described in detail by Bennett (1986), for sediments 

recovered from H a l l Lake, Canada. Evidence from the L o c h Ness record for this 

mechanism includes pollen analytical data which display changes in arboreal pollen taxa, 

including a large increase in Pinus, a taxon much more abundant during the early 

Holocene, associated with the chaotic zone (S.M.Peglar , unpubl.). Investigations by 

submarine sampling of such sediments indicates that two main types exist, a brown gyttja 
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overlying a yellow/ochre clay (A.J.Shine, unpubl.)-

The coring site is situateci to the north-east of Urquhart Bay (Grid Referenc^e 

530295), which rec^eives riverine inputs from the rivers Coiltie and Enrick. Both rivers 

drain the Balmacaan Forest, an area of high moorland (mean elevation, ca 450 m) of some 

148 km^, while the Enrick additionally receives material from high ground (mean 

elevation ca 280 m, area ca 64 km^) to the north of Glen Urquhart. The River Enrick also 

passes through Loch Meiklie, at Gr id Reference 435302, which may act as a sediment trap 

(McManus & Duck, 1988), although no data are available to support this hypothesis. The 

sublacustrine structure of Urquhart Bay has been determined by sonar studies, which 

indicate the presence of a delta dissected by Channels from the two rivers previously 

described (Shine & Martin, 1988). Thus it is thought that both sediment deposition and 

erosion occur within the delta, which may bave implications for the integrity of the 

temporal sequence of Sedimentation on the profunda! piain. 

Coring has taken place towards the northem end of the loch, which has a long 

fetch owing to the predominantìy southwesterly direction of the prevailing winds. These 

influence both water and seston movement within the loch (R.I.Jones et al., 1995; 

Thorpe, 1971), generating a net flow of both towards the north, although sediment close 

to the floor of the loch may not be transported across the profunda! rise at Foyers. Material 

already present in the northem basin may, however, be driven upslope towards the 

outflow and then be transported by eddy flow back into the loch, to be deposited over an 

unquantified timespan at unknown locations. Under strong wind conditions, material 

entering the loch from Urquhart Bay w i l l be transported at an angle to right of the wind 

direction owing to the Coriolis force (Home & Goldman, 1994), which, at depth, may be 

as great as 45°. 

The large fetch is also responsible for the Initiation of the well-documented 

internal wave or seiche within the loch, which induces a ' r ock ing ' motion of the 
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thermocline, in both longitudinal and latitudinal axes, with a periodicity of some 54 hours 

(Mortimer, 1974; Thorpe, 1977). A s a resuit, water in the hypolimnion undergoes a 

reversai in its direction of motion every half-period, with possible implications for the 

dismrbance and resuspension of previously settled material, especially fine clay particles. 

This observation must be tempered by highlighting that data conceming water movement 

over the profundal plain of the loch are scarce. Further investigation may be needed if the 

mechanism of lamination formation i n the sédiments of L o c h Ness is fully to be 

understood. 
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7. Conclusions 

This section wil l present conclusions as to the nature of the sediment recovered 

from L o c h Ness, the accuracy of the chronology postulated, its suitability for the study of 

the palaeoclimate of the region, and of elements of periodicity which may be contained 

within it. 

7.1 Factors influencing the formation of laminations in the sediments 

of Loch Ness 

It is now established that sediments from the north basin of Loch Ness consist 

of fine laminae, alternating dark and pale brown in colour. Pale layers are rich in silt, 

while the darker laminations are clay-rich and contain more organic matter. These are 

occasionally interspersed with thicker pale layers which have been determined, by their 

internal structure, to represent deposition by major floods (Dean, unpublished). It is 

believed that the fine pale laminae are deposited during late winter and early spring and that 

the darker layers represent sedimentation throughout the rest of the year. 

Several factors seem implicated in the formation of the laminations: 

a) The L o c h is unproductive, and organic matter, which is mainly found in the 

fine, dark laminae, is almost entirely allogenic (R.I. Jones et al., 1997). 

b) The amount of sediment present in the water column has been correlated 

with precipitation (R.I. Jones et al., 1996). 

c) Precipitation over the region is correlated with the Ñ A O index, and this 

phenomenon is undoubtedly instrumental in the formation of the signal 

observed, in recent sediments at least. 

d) Storm tracks over the region are influenced by the location of the N A P F 

(Taylor & Yates, 1967) and are additionally linked to solar activity via the 
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Q B O (Tinsley, 1988). These would, therefore, be expected to influence the 

frequency and distribution of the thick pale layers observed in the sediment 

record. 

e) Wind direction is also affected by the N A O . A high index signifies 

predominantly moist, southwesterly airstreams, while a low index indicates 

drier easterly ones (Hurrell, 1995). 

f) Distribution of seston within the water column has been detertnined to be 

affected by wind stress (R.I. Jones et al, 1995), with some materials settling 

out evenly across the bed of the Loch, while others are preferentially deposited 

in the northem basin. 

Further factors, which may influence the pattern of sediment deposition, 

include the presence of deep currents in the profundal of the L o c h (Wedderbum & 

Watson, 1909). In addition, large scale movement of water in the basin takes place during 

storms (Thorpe, 1977), which may lead to sediment being lost at the outflow of the Loch 

before deposition can occur. The presence of seiche may also affect sedimentation, 

especially of fines held above the thermocline (Thorpe, 1971). 

Ana lys i s o f cores by image processing techniques has a l lowed the 

classification of sediments in terms of Grey Level (GL) . 'Storm layers' (thick, silt-rich 

laminae) possess high G L values, whereas darker, clay-rich laminations are assigned low 

G L s . Thus G L datasets which bave been derived from whole core images indicate 

variations in the predominant sediment type with depth. 

When these data are compared with palaeoclimatic and extraterrestrial records 

several points follow. The high G L values observed in sediments of the early Holocene 

probably indicate input of fresh, minerogenic, glacially-derived material. Then, in the mid-

Holocene, there is an increase in the deposition of dark clay-rich gyttja. G L of cores has 

been demonstrated to be positively correlated with Ò^^O from the G R I P core, and also 
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with atmospheric ô^^C (Stuiver & Reimer, 1993). There exists, therefore, a strong 

indication that during periods of warm climate, for example during the mid-Holocene, 

there is an increase in the deposition of dark clay-rich gyttja. Furthermore, during these 

periods values are low, indicating increased solar activity, with a greater intensity of 

radiation incident on the Earth. This may, in m m , have acted to increase the amount of 

al logenic organic material in the water column, possibly through an increase in 

temperature, and precipitation. It is not possible to determine the effect on G L of the 

distribution of individual storm layers, owing to insufficient resolution of the images used 

in this analysis. 

Taken together, consideration of both lamination thickness and G L indicates 

that the mechanism of deposition of material in the Loch is influenced by the location of 

the N A F F , by insolation, and more recently, by the configuration of the N A G , especially 

during summer. The preceeding discussion may be summarised as a flow chart {Figure 

7.1). 

It may thus be suggested that the sediment record consists of a 'continuum' of 

alternating fine silt, and allochthonous organic carbon and clay-sized layers deposited 

through the year, and which is infrequently punctuated by large influxes of eroded material 

brought in by severe storms. The amount of sediment deposited has been, i n recent times, 

primarily affected by the action of the N A O during the summer and, to a lesser degree, by 

insolation, although during the early Holocene insolation may have been the prevalent 

agent. Since recent sedimentation appears to be correlated with the N A O , anthropogenic 

forcing of sedimentary processes within the Loch may still be negligible. 

7.2 Summary 

It is believed that the laminated sediments recovered from the profunda! plain 

of L o c h Ness are composed of clastic varves. Thin , pale layers are deposited during the 

227 



7. Conclusions 
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material 

Allogenic inorganic 
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Figure 7.1 R o w chart summarising the factors influencing the formation of annually • 

laminated sediments in the north basin of Loch Ness. 
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late Winter and spring, with darker clay-rich laminae representing material sedimented 

throughout the rest of the year. Examination of X-radiographs and B S E I / S E M images 

reveals no reason to reject the hypothesis that only two laminae are produced each year, 

although annual examination of the sediment/water interface has not been carried out in 

Order to test this. Resvdts from radiocarbon dating of sédiments appear to substantiate the 

assumption that lamination pairs are annual. Varve counting bas produced a similar 

age/depth relationship to that obtained by dating, especially in sédiment representing 

the Middle to Late Holocene. 

Time séries derived from lamination thickness measurements may not solely 

represent the effect of one climatic variable, but may be the product of several. Only weak 

corrélations were found between lamination thickness and local climatic indices. The 

signal contained within time séries derived from lamination thickness measurements, 

however, exhibits éléments of periodicity which suggest that extemal forcing processes 

may affect sédimentation within the Loch . This is further borne out by the corrélation 

between summer N A O index and lamination thickness from core LNRl, and by 

corrélation of sunspot index and précipitation at Fort Augustus over the last Century. 

It bas been demonstrated that the utilisation of image transforms may be 

employed in this type of study, enabling rapid characterisation and enumeration of 

laminated sédiments. It is recognised, however, that more traditional types of analysis may 

still be more amenable and that image analysis be considered as a useful adjunct to them. 

It is finally suggested that the north basin of Loch Ness be utilised as a site for 

the further recovery of annually laminated sédiments, as thèse appear to exhibit a response 

to variations in climate within the North Atlantic région. This response has also been 

correlated with other climatically-dependent time séries. 
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8. Further work 

Further study wi l l be necessary in order to clarify and expand upon the many 

questions raised by this investigation. In general, it is considered that the dynamic 

processes acting in the profimdal environment of L o c h Ness are poorly understood on all 

scales, and i n particular, that a recent acoustic survey has highlighted possible 

shortcomings inherent in the present coring site. 

Clear ly , the dynamics of a system of such dimensions cannot be fully 

addressed by the study of two or three sediment cores from one location. Indeed, 

Hakanson & Jansson (1983), suggest that the minimum number of cores (n) required in 

such an investigation may be expressed as 

n= 2.5+0.5 Va.f {8.1) 

where a represents the area of the water body in km^, and f is a factor indicating the degree 

of shoreline development. Substituting the dimensions of the Loch into this equation, six 

cores are deemed to be necessary, and probably this number may be considered sufficient 

only to study processes acting in the immediate vicinity of the coring site. 

The utilisation of the initial sediment core to be recovered, core Ness 3, may 

be criticised, since it eventually became clear that the quality of laminae is variable and 

many distortions and defects are present. Study of this material by diatom and pollen 

analyses may be justified by considering that problems encountered with coring at that 

time, cast doubt on the possibility of ever recovering further material. It was thus decided 

to utilise this core. It is recognised, however, that the chronology so far obtained needs to 

be extended, expanded and converted into a fixed timescale in order that a complete time 

series can be constructed for further analysis. Further scope also exists for the 

continuation of the chronology into the Late Pleistocene, for it is believed that ca 40 m of 
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sediment exist at the bottom of the Loch (Shine, pers. comm.). 

Li t t le is understood of the processes taking place in Lx»ch Ness, especially 

those concerned with the deposition and resusf>ension of material in profunda! areas. 

Influences of riverine inputs, wind stress and of circulation patterns have not been studied 

in detail and their effects on sediment depxjsition may only be estimated. The correlation 

between precipitation and seston deposition highlighted by R.I.Jones et al. (1996) does 

not directly imply that the thickness of sediment deposited in the profunda! of the Loch be 

similarly correlated, since no studies of year-on-year variations at the S W I have been 

performed. In addition, erosion of surficial sediment has been assumed, for convenience, 

to have been constant, or even absent, throughout the seasons and throughout the time 

p)eriod represented by the cores, which is most probably not the case. 

Thus, it is recommended that further study of sedimentation processes be 

attempted on an annual or sub-annual basis and these results correlated with climatic 

variables measured over the same time period. Further, investigation into processes acting 

at the sediment/water interface need to be fully understood, with special attention being 

focused upon variation of rates of erosion on a seasonal level and the effect of large 

volumes of water input to the Loch over short time periods, for example during flood 

events. The effect of sediment input from flooding in remote areas of the catchment may 

also require study in order to ascertain whether or not the thick, pale, silt-rich laminae 

(such as that produced by the 1868 flood) represent only local storm events. 

Recovery of further material from the L o c h may be considered of paramount 

importance in order to complete and verify the chronology derived from lamination 

counting. The utilisation of annually laminated sediments in the verification of radiocarbon 

dating has already been mentioned. Furthermore, it has been demonstrated that 

fractionation of the various forms of organic carbon within sediments may be performed, 

in order that these may be dated separately and the results analysed to ascertain which 

231 



8. Further work 

fraction yields the date closest to that obtained by lamination counting (Eglinton et al., 

1998). L o c h Ness may be an important site within the U K from which to proceed with 

this type of investigation, in addition to its rôle as an archive of the palaeoclimate of the 

region. 

232 



9. References 

9. References 

Aaby B. 1976. Cyc l i c climatic variations in climate over the past 5,500 yr reflected in 

raised bogs. Nature. 263. 281-284. 

Alapieti T. & Saamisto M . 1981. Energy Dispersive X - R a y Microanalysis of Laminated 

Sediments from Lake Valkiajarvi, Finland. Bulletin of the Geological Society of 

Finland. 53. 3-9. 

A l g e o T . J . , Phil l ips M . , Jaminski J. & Fenwick M . 1994. High-resolution x-radiography 

of laminated sediment cores. Journal of Sedimentary Research. A64. 665-669. 

A l l e y , R . B . , Mayewski P . A . , Sowers T. , Stuiver M . , Taylor K . C . & Clark P . U . 1997. 

Holocene climate instability: A prominent, widespread event 8200 yr ago. Geology. 

25. 483-486. 

Al l i son T .D. & Moeller R . E . 1989. Organic laminations and detailed chronology for 

Holocene sediment at Pout Pond, New Hampshire, U S A . Archiv fiir 

Hydrobiologie. 116. 161-180. 

Al l i son T .D . , Moel ler R . E . & Davis M . B . 1986. Pollen in laminated sediments provides 

evidence for a Mid-Holocene forest pathogen outbreak. Ecology. 67. 1101-1105. 

Anderson R . Y . 1993. The varve chronometer in E l k Lake: record of climatic variability 

and evidence for solar-geomagnetic-^'^C-climate coimection. In Bradbury J.P. & 

Dean W . E . {eds) 1993. Elk Lake, Minnesota: Evidence for rapid climate change 

in the North-Central United States. USGS Special Paper 276. United States 

Geological Survey. 45-67. 

233 



9. References 

Anderson R . Y . , Dean W . E . , Bradbury J.P. & Love D . 1985. Meromictic Lakes and 

Varved Sediments in North America. U . S . Geological Survey Bulletin 1607. U S 

Government Printing Office, Washington. 

Anderson R . Y . , Linsley B . K . & Gardner J .V . 1990. Expression of seasonal and E N S O 

forcing in climate variability at lower than E N S O frequencies: evidence from 

Pleistocene marine varves off California. Paleogeography, Paleoclimatology, 

Paleoecology. 78. 287-300. 

Anderson R . Y . & Dean W . E . 1988. Lacustrine Varve Formation Through Time. 

Paleogeography, Paleoclimatology, Paleoecology. 62. 215-235. 

Anderson R . Y . , Dean W . E . & Bradbury J.P. 1993. E l k Lake in perspective. In Bradbury 

J.P. & Dean W . E . {eds) 1993. Elk Lake, Minnesota: Evidence for rapid 

climate change in the North-Central United States. USGS Special Paper 276. 

United States Geological Survey. 1-6. 

Andrews J.T., Erlenkeuser H . , Tedesco K . , A k s u A . E . & Jull A . J .T . 1994. Late 

Quaternary (Stage 2 and 3) Meltwater and Heinrich Events, Northwest Labrador 

Sea. Quaternary Research. 41. 26-34. 

Anthony R.S. 1977. Iron-rich rhythmically laminated sediments in the Lake of the 

Clouds, northeastern Minnesota. Limnology arul Oceanography. 22. 45-54. 

Appleby R G . , Oldfield F. , Thompson R., Huttunen R & Tolonen K . 1979. ^^^Pb 

dating of armually laminated lake sediments from Finland. Nature. 280. 53-55. 

Appleby P . G . , Richardson N . , Nolan P.J. & Oldfield F . 1990. Radiometric dating of the 

United Kingdom S W A P sites. Philosophical Transactions of the Royal Society of 

234 



9. References 

London. B327. 233-238. 

Appleby P .G. , Richardson N . , Smith J. 1993. The use of radionuclide records from 

Chernobyl and weapons test fallout for assessing the reliability of ^^°Pb in dating 

very recent sediments. Verhandlungen der Internationalen Vereinigung fur 

Theoretische and Angewandte lAmnologie. 2 5. 266-269. 

Arslanov K . A . & Svezhentsev Y . S . 1993. A n Improved Method for Radiocarbon Dating 

Fossil Bones. Radiocarbon. 35. 387-391. 

Assel R. A . 1998. The 1997 E N S O event and implication for North American Laurentian 

Great Lakes winter severity and ice cover. Geophysical Research Letters. 25. 

1031-1033. 

Axelsson V . 1983. The use of X - R a y radiographic methods in studying sedimentary 

properties and rates of sediment accumulation. Hydrobiologia. 103. 65-69. 

Bailey-Watts A . E . & Duncan P. 1981. Chemical chziracterisation-a one-year comparative 

study. In Maitland P.S. {ed.) The Ecology of Scotland's Largest Lochs. Lomond, 

Awe, Ness, Morar and Shiel. Monographiae Biologicae. 44. Dr. W.Junk 

Publishers, The Hague. 67-87. 

Bai l l ie M . G . L . 1977a. A n Oak Chronology for South Central Scotland. Tree-Ring 

Bulletin. 37. 33-44. 

Bailhe M . G . L . 1977b. The Belfast Oak Chronology to A D 1001. Tree-Ring Bulletin. 

37. 1-12. 

235 



9. References 

Bai l l ie M . G . L . & Munro M . A . R . 1988. Irish tree rings, Santorini and volcanic dust veils. 

Nature. 332. 344-346. 

Baker A . , Smart P .L . , Edwards R . L . & Richards D . A . 1993. Annual growth banding in a 

cave stalagmite.//a/wre. 36 4. 518-520. 

Baker A . , Smart P . L . , Barnes W . L . , Edwards R . L . & Farrant A . 1995. The Hekla 3 

volcanic eruption recorded in a Scottish speleothem? Tifee Holocene. 5. 336-342. 

Barber K . E . , Chambers F . M . , Maddy D . , Stoneman R. & Brew J.S. 1994. A sensitive 

high-resolution record of late Holocene climatic change from a raised bog in 

northern England. The Holocene. 4. 198-205. 

Bamola J . M . , Raynaud D . , Korotkevich Y . S . & Lorius C . 1987. Vostok ice core 

provides 160,000 year record of atmospheric CO^. Nature. 329. 408-414. 

Bamston A . G . 1996. Time-scales of variability of the atmosphere. International Journal 

of Climatology. 16. 499-535. 

Barry R . G . & Choriey R . J . 1992. Atmosphere, Weather and Climate. Routledge, 

Lx)ndon and New York . 392 pp. 

Battarbee R . W . 1991. Recent paleolimnology and diatom-based environmental 

reconstruction. In Shane L . C . K . & Gushing E.J . (eds) Quaternary Landscapes. 

Belhaven Press, London. 129-174. 

Battarbee R .W. & A U o t t T . E . H . 1994. Palaeolimnology. In Mait land P.S. , Boon P.J . & 

McLusky D.S. (eds)The Fresh Waters of Scotland: A National Resource of 

International Significance. J .Wiley & Sons Ltd. 113-130. 

236 



9. References 

Battarbee R . W . , Hower R.J . , Stevenson A . C . , Jones V . J . , Harriman R. and Appleby 

P .G . 1988. Diatom and chemical evidence for reversibility of acidification of 

Scottisb lochs. A^aiwre. 3 3 2. 530-532. 

BaumgartnerT.R., Michaelson J . , Thompson L . G . , Shen G.T. , Soutar A . & Casey R . E . 

1989. The recording of interannual cHmatic change by high-resolution natural 

Systems: Tree-rings, coral bands, glacial ice layers and marine varves. In 

Peterson D . H . {ed.) Aspects of climate variability in the Pacific and the 

western Americas. Geophysical Monograph 55. American Geophysical Union, 

Washington, U S A . 1-14. 

Beer J. , Joos L . , Lukasczyk C , Mende W . , Rodriguez J., Siegenthaler U . & Stellmacher 

R. 1994. ^°Be as an indicator of solar variability and climate. In Nesme-Ribes E . 

(ed.) The Solar Engine and its Infiuence on Terrestrial Atmosphere and Climate. 

NATO ASI Series. 125 . Springer-Vertag Beriin. 221-233. 

Belasco J .E. 1952. Characteristics of air masses over the British Isìes.Geophysical 

Memoirs. 11. (87). Meteorológica! Office, London. 34pp. 

Bender M . , Sowers T., Dickson M . - L . , Orchardo J. , Grootes R , Mayewski P . A . & 

Meese D . A . 1994. Climate correlations between Greenland and Antárctica during 

thepast 100,000 years. Nature. 3 7 2. 663-666. 

Be imet tK .D. 1986. Coherent slumping of early postglacial lake Sediments at Hal l Lake, 

Ontario, Canada, ßoreaj. 15. 209-215. 

Bennett K . D . 1995. Post-glacial dynamics of Pine (Pinns sylvestris L . ) and pinewoods in 

Scotland. In Aldhous J.R. (ed.) Our Pinewood Heritage. Forestry Commission, 

Royal Society for the Protection of Birds and Scottish Natural Heritage. 23-39. 

237 



9. References 

Bennett S. 1992. Pattern and process of sedimentation in Loch Ness. B S c . (Hons) 

dissertation. University of Staffordshire. U K . 

Bennett S. & Shine A . J . 1993. Review of current work on Loch Ness sediment cores. 

Scottish Naturalist. 105. 55-63. 

Berger A . 1977. Power and hmitation of an energy-balance climate model as applied to 

the astronomical theory of paleoclimates. Paleo geography, Paleoclimatology, 

Paleoecology. 21. 227-235. 

Berger A . 1989. The spectral characteristics of Pre-Quatemary climatic records, an 

example of the relationship between the astronomical theory and geo-sciences. In 

Berger A . , Schneider S. & Duplessy J . -C. (eds) Climate and Geo-Sciences. A 

Challenge for Science and Society in the 21st Century. NATO ASI Series C: 

Mathematical and Physical Sciences. 285. Kluwer Academic Publishers, 

Dordrecht. 47-76. 

Berger W . H . & Labeyrie L . D . 1987. Abrupt climatic change- an introduction. In Berger 

W . H . & Labeyrie L . D . (eds) Abrupt Climatic Change. NATO ASI Series C. 

Mathematical and Physical Sciences. 2 1 6 . D.Reidel Publishing Company, 

Dordrecht. 3-22. 

Berger A . , Mélice J .L . ,Van Der Mersch I. 1990. Evolutive spectral analysis of sunspot 

data over the past 300 years. Philosophical Transactions of the Royal Society of 

London. A 3 3 0 . 529-541. 

Berger W . H . , Burke S. & Vincent E . 1987. Glacial-Holocene transition: climate 

pulsations and sporadic shutdown of N A D W production. In Berger W . H and 

Labeyrie L . D . (eds) Abrupt Climatic Change. NATO ASI Series C. Mathematical 

238 



9. References 

and Physical Sciences. 216. D.Reidel Publishing Company, Dordrecht. 279-

297. 

Beukens R .P . 1992. Radiocarbon accelerator mass spectrometry: background, precision 

and accuracy. In Taylor R .E , Long A . & K r a R.S . {eds). Radiocarbon After Four 

Decades. An Interdisciplinary Perspective. Springer-Verlag. New York. 230-

239. 

Birks H . H . 1972. Studies in the vegetational history of Scotland 111. A radiocarbon-dated 

pollen diagram from Loch Maree, Ross and Cromarty. New Phytologist. 7 1 . 731-

754. 

Bi rks H . J . B . 1996. Great Britain-Scotland. In Berglund B . E . , Birks H.J .B . , Ralska-

Jasiewiczowa M . and Wright H . E . (eds) Palaeological Events During the Last 

15,000 Years: Regional Syntheses of Palaeoecological Studies of Lakes and 

Mires in Europe. John Wiley and Sons L td . Chichester, U K . 95-143. 

Bishop W . W . & Coope G.R. 1977. Stratigraphical and faunal evidence for late glacial and 

early Flandrian environments in South West Scotland. In Gray J . M & Lowe J.J. 

{eds) Studies in Scottish Late Glacial Environments. Pergamon Press, Oxford. 

61-88. 

Bjerkness J. 1969 Atmospheric teleconnections from the equatorial Pacific. Monthly 

Weather Review. 97 . 163-72. 

Björck S., Sandgren P. & Holmquist B . 1987. A magnetostratigraphic comparison 

between ^"^C years and varve years during the Late Weichselian, indicating 

significant differences between the time-scales. Journal of Quaternary Science. 2. 

133-140. 

239 



9. References 

Björck S., Kromer B . , Johnsen S., Bennike O. , Hammarlund D . , Lemdahl G . , 

Possnert G . , Rasmussen T . L . , Wohlfarth B . , Hammer C U . & Spurk M . 1996. 

Synchronized terrestrial-ataiospheric deglacial records around the North Atlantic. 

Science. 2 7 4. 1155-1160. 

Bodbacka L . 1985. Annually laminated sediments in two basins of Lake Mälaren (L i l l a 

Ullfjärden and Stora UUfjärden) studied by X-ray radiography. Geografiska 

Annaler. 61 A. 145-150. 

Boespflug X . , Long B . F . N . & Occhietti S. 1995. CAT-scan in marine stratigraphy: a 

quantitative approach. Mar/n^ Geology. 122: 281-301. 

Bond G . C & Lotti R. 1995. Iceberg discharges into the North Atlantic on millenial time 

scales during the last glaciation. Science. 261. 1005-1010. 

Bond G . , Showers W. , Cheseby M . , Lotti R. , Almas i P. , deMenocal R , Priore P., 

Gullen H . , Hajdas 1. & Bonani G . 1997. A pervasive millenial-scale cycle in North 

Atlantic Holocene and Glacial chmates. Science. 2 7 8. 1257-1266. 

Boulton G.S . , Peacock J.D. & Sutheriand D . G . 1991. Quaternary. In Craig G . Y . (ed.) 

The Geology of Scotland. 3rd edition. The Geological Society, London. 503-541. 

Boutton T . W . 1991. Stable Carbon isotope ratios of natural materials: II. Atmospheric, 

terrestrial, marine, and freshwater environments. In Coleman D. & Fry B . (eds) 

Carbon Isotope Techniques. Academic Press Inc., New York. 173-185. 

Boygle J. 1993. The Swedish varve chronology-a review. Progress in Physical 

Geography. 17. 1-19. 

240 



9. References 

Boyko-Diakonow M . 1979. The laminateci Sediments of Crawford Lake, southern 

Ontario, Canada. In Schlüchter C. (ed.) Moraines and varves. Originsl Genesis/ 

Classification. Balkema, Rotterdam. 303-307. 

Bradbury J.P. & Dean W . E . (eds). 1993. Elk Lake, Minnesota: Evidence for rapid 

carnate change in the North-Central United States. USGS Special Paper 276. 

United States Geologica! Survey. 336 pp. 

Bradbury J.P & Dieterich-Rurup K . V . 1993. Holcx;ene diatom paleolimnology of E lk 

Lake, Miimesota. In Bradbury J.P. & Dean W . E . (eds) Elk Lake, Minnesota: 

Evidence for rapid climate change in the North-Central United States. USGS 

Special Paper 276. United States Geologica! Survey. 215-238. 

Bradley R.S. 1994. Perspectives on the climate of the last 500 years. In Nesme-Rih)es E . 

(ed.) The Solar Engine and its Influence on Terrestrial Atmosphere and Climate. 

NATO ASI Series. 125 . Springer-Vertag, Beri in. 437-447. 

Bradley R.S & Jones P .D . (eds) 1995. Climate since A.D. 1500. 2nd Edition. 

Routledge, London. 706 pp. 

Bradley R.S.,Retelle M . J . , Ludlam S.D., Hardy D .R . , Zolitschka B . , Lamoureux S.F. & 

Douglas M . S . V . 1996. The Taconite Inlet Lakes Project: a Systems approach to 

paleoclimatic recx)nstruction. JoMr/ia/o/Pa/eo/imwo/o^y. 16. 97-110. 

Breeze D.J . 1982. The northern frontiers of Roman Britain. St.Martin's Press Inc., 

New Y o r k . 188 pp. 

Bridge M . C . , Haggart B . A . & Lowe J.J. 1990. The history and palaeoclimatic 

significance of subfossil remains of Pinus sylvestris in blanket peats from 

241 



9. References 

Scotland. Journal of Ecology. 78. 77-99. 

Briffa K . R . 1994. Grasping at shadows? A selective review of the search for sunspot-

related variability i n tree rings. In Nesme-Ribes E . {ed.) The Solar Engine and its 

Influence on Terrestrial Atmosphere and Climate. N A T O A S I Series. 125. 

Springer-Veriag, Beri in. 417-435. 

Briffa K . R . , Jones P .D. & Schweingruber F . H . 1988. Summer Temperature Patterns 

over Europe: A Reconstruction from 1750AD. Based on Maximum Latewood 

Density Indices of Conifers. Quaternary Research. 30. 36-52. 

Briffa K . R . , Jones P .D. & K e l l y P . M . 1990a. Principal component analysis of the Lamb 

catalogue of daily weather types: part 2, seasonal frequencies and update to 1987. 

International Journal of Climatology. 10. 549-563. 

Briffa K . R . , Jones P .D . & Schweingruber F . H . 1988. Summer Temperature Patterns 

over Europe: A Reconstruction from 1750AD. Based on Maximum Latewood 

Density Indices of Conifers. Quaternary Research. 30. 36-52. 

Briffa K . R . , Bartholin T .S . , Eckstein D. , Jones P . D . , Karlen W . , Schweingruber F . H . 

& Zetterberg P. 1990b. A 1,400-year tree-ring record of summer temperatures in 

Fennoscandia. Nature. 346. 434-439. 

Brodie 1. & K e m p A . E . S . 1994. Variation in biogenic and detrital fluxes and formation of 

laminae in late Quaternary sediments from the Peruvian coastal upwelling zone. 

Marine Geology. 116. 385-398. 

Broecker W . S. 1994. Massive iceberg discharges as triggers for global climate change. 

Nature. 3 7 2. 421-424. 

242 



9. References 

Brœcker W . S . & Denton G . H . 1990. The role of ocean-atmosphere reorganisations in 

glacial cycles. Geochimica et Cosmochimica Acta. 53. 2465-2501. 

Brœcker W . S . & van Donk. 1970. Insolation changes, ice volumes and the ^^O record in 

deep-sea cores. Review of Geophysics and Space Science. 8. 169-198. 

Brœcker W . S . , Bond G . , Klas M . , Clark E . & McManus J. 1992. Origin of the northern 

Atlantic's Heinrich events. Climate Dynamics. 6 . 265-273. 

Brœcker W . S . , Andrée M . , Wolf l i W . , Oeschger H . , Bonani G . , Kennett J. & Peteet D . 

1988. The chronology of the last déglaciation: implications to the cause of the 

YoungerDryas event Paleoceanography. 3. 1-19. 

Burroughs W.J . 1992. Weather cycles. Real or imaginary? Cambridge University Press. 

Cambridge, U K . 210 pp. 

Callaway J .C. , Delaune R . D . & Patrick W . H . 1996. Chernobyl Cs-137 used to determine 

sediment accretion rates at selected Northern European coastal wetlands. 

Limnology and Oceanography. 41. 444-450. 

Canning J .C. , Henney P.J . , Morrison M . A . , van Calsteren P . W . C . , Gaskarth J .W. & 

Swarbrick A . 1998. The Great Glen Fault: a major vertical lithospheric boundary. 

Journal of the Geological Society. 155. 425-428. 

Castagnoli G . C . & Bonino G . 1988. Solar imprint in sea sediments: the 

thermoluminescence profile as a new proxy record. In Stephenson F .R and 

Wolfendale A . W . {eds)Secular Solar and Geomagnetic Variations in the Last 

10,000 Years. NATO ASI series C. Mathematical and Physical Sciences. 236. 

243 



9. References 

Kluwer Academic, Dordrecht. 341-348. 

Castleden R. 1992. Neolithic Britain: new stone age sites of England, Scotland and 

Wales. Routledge, London. 432 pp. 

Cave M . A . , Eshel G . & Buckland R.W. 1994. Forecasting Zimbabwean maize yield 

using eastern equatorial Pacific sea surface temperature. Nature. 37 0. 204-205. 

Chatfield C . 1989. The analysis of time series. An introduction. 4th edition. Chapman 

& H a l l , London. 241 pp. 

Churski Z . , Marszelewski W . & Szczepanik W . 1993. The dynamic and conditions of 

sedimentation in Lake Gosciaz. In Ralska-Jasiewiczowa M . {ed) Polish Botanical 

Study. Guidebook Series . 8. 15-28. 

Clark J.S. 1993. Fire, climate, and forest processes during the past 2000 years. In 

Bradbury J.P. & Dean W . E . {eds) Elk Lake, Minnesota: Evidence for rapid 

climate change in the North-Central United States. USGS Special Paper 276. 

United States Geological Survey. 295-308. 

Cline W . R . 1992. Global Warming: Estimating the economic benefits of abatement. 

O E C D . Paris. 69 pp. 

Coldstream J.I., Newbury D.S . , Echl in P., Joy D . C . , Romig A . D . , Lyman C . E . , F ior i 

C . & Lifsh in E . 1992. Scanning Electron Microscopy and X-ray analysis. Plenum 

Press. N e w York . 2nd edition. 820 pp. 

Coope G .R . 1977. Fossil coleopteran assemblages as sensitive indicators of climatic 

changes during the Devensian (Last) cold stage. Philosophical Transactions of the 

244 



9. References 

Royal Society of London. B 2 8 0 . 313-337. 

Coope G.R. 1987. Fossil beetle assemblages as evidence for sudden and intense climatic 

changes in the Bri t ish Isles during the last 45,000 years. In Berger W . H . and 

Labeyrie L . D . (eds) Abrupt Climatic Change. NATO ASI Series C. Mathematical 

and Physical Sciences. D . Reidel Publishing Company, Dordrecht 216 . 147-

150. 

Coope G.R. and Brophy 1972. Late glacial environmental changes indicated by 

coleopteran succession from North Wales, ßoreas. 1. 97-142. 

Cooper M . C . 1998. The Use of Image Analysis techniques in the study of laminated 

Sediments. Journal of Paleolimnology. 19. 33-40. 

Cooper M . C , O 'Sul l ivan P .E . & Shine A . J . The record of climatic variability in the 

Holocene laminated Sediments of Loch Ness, Scotland. Paper presented at the 2nd 

arniual Workshop o f the European Lakes Dri l l ing Program, Krakow, Poland. 23-26 

October 1997. Submitted to Quaternary International. 

Cooper M . C , O 'Su l l ivan P .E . , Harkness D . D . , Lawson E . M . , B u l l D . J . , K e m p A . E . S . , 

Peglar S . M . , Matthews N . M . , Jones R.I. & Shine A . J . 1998. Radiocarbon dating 

of laminated Sediments from Loch Ness, Scotland. Paper presented at the X V I t h 

International Radiocarbon Conference, Groningen, The Netherlands. 16-20th June, 

1997. Radiocarbon. 40 . 781-793. 

Cooper M . C , O 'Su l l ivan P .E . , Shine A . J . , Peglar S . M . , Matthews N . M . , Salter N . C . J . , 

Henon D . N . , Jones V . J . , Wil l iams T . S . C , Nicholson M . J . , Sandford R . E . & 

Morris A . (In press) The enviroimiental record in the Holocene laminated 

Sediments of L o c h Ness, Scotland- an outline. Submitted to Jourrml of 

245 



9. References 

Paleolimnology. 

Creer K . M . 1988. Geomagnetic Field and Radiocarbon Act ivi ty through Holocene time. 

In Stephenson F . R and Wolfendale A . W . {eds) Secular Solar and Geomagnetic 

Variations in the Last 10,000 Years. NATO ASI series C. Mathematical and 

Physical Sciences. 236. Kluwer Academic, Dordrecht. 381-397. 

Currie R . G . 1994a. Luni-solar 18.6- and solar cycle 10-11-year signals in U S A air 

temperature records. International Journal of Climatology. 13. 31-50. 

Currie R . G . 1994b. Luni-solar 18.6- and 10-11-year solar cycle signals in South African 

rainfall. International Journal of Clirrmtology. 13. 237-256. 

Currie R . G . 1994c. Luni-solar 18.6- and 10-11-year solar cycle signals in H . H . Lamb's 

DustYeiWndex. International Journal of Climatology. 14. 215-226. 

Currie R . G . 1994d. Variance contribution of Luni-solar and Solar cycle signals in the St. 

Lawrence and Ni le river records. International Journal of Climatology. 14. 843-

852. 

Currie R . G . 1995. Luni-solar 18.6- and Solar cycle 10-11-Year signals in Chinese 

Dryness-Wetaess Indices. International Journal of Climatology. 15. 497-515. 

Curry R . G . , McCartney M . S . & Joyce T . M . 1998. Oceanic transport of subpolar climate 

signals to mid-depth subtropical waters. Nature. 391. 575-577. 

Cwynar L . C . 1978. Recent history of fire and vegetation from laminated sediment of 

Greenleaf Lake, Algonquin Park, Ontario. Canadian Journal of Botany. 56. 10-

21. 

246 



9. References 

Damon P . E . & Jirikowic J .L . 1992. Solar Forcing of Global Climate Cbange? In 

Taylor R . E . , Long A . & K r a R.S. (eds) Radiocarbon After Four Decades. An 

Interdisciplinary perspective. Springer-Verlag. New York . 117-129. 

Dansgaard W . & Oeschger H . 1989. Past environmental long-term records from the 

Arct ic . In Oeschger H . & Langway C . C . {eds)The Environmental Record in 

Glaciers and Ice Sheets. Report of the Dahlem Workshop, Berlin 1988, March 

13-18. Research repor t 8. J .Wiley & Sons, Chichester, U K . 287-318. 

Dansgaard W. , Clausen H . B . , Gundestrup N . , Hammer C . U . , Johnsen S.F., 

Kristinsdottir P . M . & Rech N . 1984. A new Greenland deep ice core. Science. 

2 1 8. 1273-1277. 

D'Arr igo R . D . , Cook E .R . , Jacoby G . C . & Briffa K . R . 1993. N A O and Sea Surface 

Temperature Signatures in Tree-Ring records from the North Atlantic Sector. 

Quaternary Science Reviews. 12. 431-440. 

Dartnell P and Gardner J. V . 1993. Digital imaging of sediment cores for archives and 

research. Journal of Sedimentary Petrology. 63. 750-752. 

Davis R . E . & Benkovic S.R. 1994. Spatial and temporal variations of the January 

Circumpolar Vortex over the Northern Hemisphere. International Jourruil of 

Climatology. 14. 415-428. 

Dean J . M . (unpubl.) PhD thesis. University of Southampton. U K . (In preparation). 

Dean W . E . , Bradbury J.P., Anderson R . Y . , Ramirez Bader L . , & Dieterich-Rurup K . 

1994. A High-Resolution Record of Climatic Change in Elk Lake, Minnesota for 

the Last 1500 Years. US Geological Survey Open-file Report 94-578. U S G S , 

247 



9. References 

Denver, U S A . 127 pp. 

Dean W . E . , Bradbury J.P., Anderson R . Y . & Bamosky C . W . 1984. The variabihty of 

Holocene chmate change: evidence from varved lake sediments. Science. 226. 

1191-1194. 

de Beaulieu J .L , Pons A . and Reille M . 1982. Recherches pollenanalytiques sur l'histoire 

de la vegetation de la bordure Nord du massif du Cantal (France). Pollen et Spores. 

24 . 251-300. 

Denton G . H . & Hendy C H . 1994. Younger Dryas Age Advance of Franz Josef Glacier 

in the Southern Alps of New Zealand. Science. 264. 1434-1437. 

Desloges J.R. 1994. Varve deposition and the sediment yield record at 3 small lakes of the 

southern Canadian Cordillera. Arctic and Alpine Research. 26. 130-140. 

Desloges J.R. & Gilbert R. 1995. The sedimentary record of Moose Lake: implications 

for glacier activity in the Mount Robson area, British Columbia. Canadian Journal 

of Earth Science. 32 . 65-78. 

de Vernal A . , Hillaire-Marcel C. & Bilodeau G . 1996. Reduced meltwater outflow from 

the Laurentide ice margin during the Younger Dryas. Nature. 3 8 1 . 774-777. 

Devine T . M . 1988. The Great Highland Famine. John Donald, Edinburgh. 

Diaz H . F . & Markgraf V . {eds). 1992. El Niño. Historical and Paleoclimatological 

Aspects of the Southern Oscillation. Cambridge University Press. 476 pp. 

Dickman M . D . 1979. A Possible Varving Mechanism for Meromictic Lakes. Quaternary 

248 



9. References 

Research. 1 1 . 113-124. 

Digerfeldt G . , Battarbee R. W . & Bengtsson L . 1975. Report on annually laminated 

sediment in lake Järlasjön, Nacka, Stockholm. Geologiska Fó'reningens i 

Stockholm Förhandlingar. 97.29-40. 

Druffel E . R . M . & Griff in S. 1993. Large variations of surface ocean radiocarbon -

evidence of circulation changes in the Southwestem Pacific. Journal of 

Geophysical Research-Oceans. 98 . 20249-20259. 

Drury S.A. 1993. Image Interpretation in Geology. 2nd edition. Chapman & Hal l , 

London. 283 pp. 

Dugmore A . 1989. Icelandic volcanic ash in Scotland. Scottish Geographical Magazine. 

105. 168-172. 

Dunbar R . B . , Wellington G . M . , Colgan M . & Glynn P .W. 1994. Eastern Pacific climate 

variability since A D 1600: stable isotopes in Galapagos corals. Paleoceanography. 

9. 291-315. 

Duplessy J.C., Delibrias G . , Turón J .L . , Pujol C. & Duprat J. 1981. Deglacial warming 

of the northeastem Atlantic ocean: correlation with the paleoclimatic evolution of the 

European continent. Palaeogeography, Palaeoclimatology, Palaeoecology. 3 5. 

121-144. 

Dwyer G.S. , Cronin T . M . , Baker P . A . , Raymo M . E . , Buzas J.S. & Corrège T. 1995. 

North Atlantic Deepwater temperature change during Late Pliocene and Late 

Quatemaryclimaticcycles. 5ctence. 270. 1347-1351. 

249 



9. References 

Eastman Kodak Company. 1972. Infrared and Ultraviolet photography. First 

Combined edition.Kodak Technical Publication No. M-27/28-H. Kodak 

Technical Publications, Rochester, New York. U S A . 88 pp. 

Edwards C. 1996. Wavelet analysis transforms data processing. Scientific Computing 

World. June. 19-24. 

Edwards K . J . 1993. Human impact on the prehistoric environment. In SmoutT .C . (ed.). 

Scotland since Prehistory. Natural change and human impact. Scottish Cultural 

Press, Edinburgh. 17-27 

Edwards R . L . , Cheng H . , Murrel l M . T . «fe Goldstein S.J. 1997. Protoactinium-231 

dating of carbonates by Thermal Ionization Mass Spectrometry: Implications for 

Quaternary climate change. Science. 276. 782-786. 

Edwards R . L . , Beck J.W., Burr G .S . , Donahue D.J . , Chappell J . M . A . , B loom A . L . , 

Druffel E . R . M . & Taylor F . W . 1993. A Large Drop in Atmospheric ^"^C/^^C and 

Reduced Melting in the Younger Dryas, Documented with ^ ^ ^ h Ages of Corals. 

Science. 26 0. 962-968. 

Eglinton G . , Bradshaw S.A. , Roseli A . , Samthein M . , Pflaumann U . & Tiedemann R. 

1992. Molecular record of secular sea surface temperature changes on 100-year 

timescales for glacial terminations I, II, and IV. Nature. 356. 423-426. 

Eglinton T.I. , Benitez-Nelson B . C . , Pearson A . , McNicho l A . P . , Bauer J .E. & Dmffel 

E . R . M . 1997. Variability in the radiocarbon ages of individual organic compounds 

from marine sediments. Science. 277. 796-799. 

Eglinton T.I . , Pearson A . , Benitez-Nelson B . C . , M c N i c h o l A . P . , Ertel J.R., Bauer J.E. 

250 



9. Références 

& Druffel E . R . M . 1998. l'HH measurements of individual sedimentary organic 

compounds: a tool for developing refined sédiment chronologies and imderstanding 

source inputs. Radiocarbon. 39 /40 . (In press). 

Eisenhauer A . , Z h u Z . R , Collins L . B , WyrwoU K . W . & Eichstatter R.. 1996. The last 

interglacial sea-level change-new évidence from the Abrolhos Islands, West 

Australia. Geologische Rundshau. 8 5 . 606-614. 

Ely L . L . , Enzel Y . , Baker V . R . & Cayan D.R . 1993. A 5000-Year Record of Extrême 

Floods and Climate Change in the Southwestem United States. Science. 262 . 410-

412. 

Engstrom D.R . & Wright H . E . 1984. Chemical stratigraphy of lake sédiments as a record 

of environmental change. In Haworth E . Y . & Lund J .W.G. {eds). Lake 

Sédiments and Environmental History. Leicester University Press. 11-69. 

Farr K . M . , Jones D . M . , O'SuUivan P.E. , Eglinton G . , Tarling D . H . & Hedges R . E . M . 

1990. Pcdeolimnological studies of laminated sédiments from the Shropshire-

Cheshire mères. Hydrobiologia. 214. 279-292. 

Feng X . & Epstein S. 1995. Climatic temperature records in ôD data from tree rings. 

Geochimica et Cosmochimica Acta. 5 9. 3029-3037. 

Firth C .R . 1989. Raised shorelines and ice limits in the inner Moray Firth, northem 

Scoûand. Boreas. 18. 5-21. 

Firth C .R . 1993. Invemess area (Dores). In Gordon J .E and Sutheriand D . G . (eds) 

Quaternary of Scollane. Chapman and Ha l l , London. 196-199. 

251 



9. References 

H o h n H . and Fantechi R.1984. The Climate of Europe: Past Present and Future. 

Natural and man-induced climatic changes. A European perspective. D . Reidel, 

Dordrecht. 

Flower R . J . , Mackay A . W . , Rose N . L . , Boyle J .L . , Dearing J .A . , Appleby P . G . , 

Kuzmina A . E . & Granina L . Z . 1995. Sedimentary records of recent environmental 

change in Lake Baikal , Siberia. The Molacene. 5. 323-327. 

Fraedrich K . 1994. A n E N S O impact on Europe? A review. Tellus. 46. 541-552. 

Fraedrich K . & Müller K . 1992. Climatic anomalies in Europe associated with E N S O 

extremes. International Journal of Climatology. 1 2 . 25-31. 

Friis-Christensen E . & Lassen K . (1991). Length of the solar cycle: an indicator of solar 

activity closely associated with climate. Science. 254. 698-700. 

Fritts H . 1976. Tree rings and climate. Academic Press, London, U K . 567 pp. 

Fri tz S.C., Juggins S., Battarbee R . W . & Engstrom D.R. 1991. Reconstruction of past 

changes in salinity and climate using a diatom-based tremsfer function. Nature. 

352 . 706-708 

Fromm E. 1980. A n estimation of errors in the Swedish varve chronology. In 

Glisson I .U. (ed.) Nobel Symposium 12, Radiocarbon Variations and Absolute 

Chronology. Wiley Interscience, New York. 163-172. 

Gale S.J., Haworth R.J . 8l Pisanu P .C. 1995. The ^ ̂ °Pb chronology of Late Holocene 

def»sition in an eastern Australian lake basin. Quaternary Science Reviews 

252 



9. References 

(Quaternary Geochronology). 14. 395-408. 

Gasse F. & V a n Campo E . 1994. Abrupt post-glacial climate events in West As i a and 

North A f r i c a monsoon domains. Earth arui Planetary Science Letters. 126. 435-

456. 

Gasse F . , A r n o l d M . , Fontes J .C. , Fort M . , Gilbert E . , Hue A . , Bingyan L . , Yuanfang 

L . , Qing L . , Melieres F. , Van Campo E . , Fubao W . & Qingsong Z . 1991. A 

13,000-year climate record from western Tibet. A^afwre. 3 5 3. 742-745. 

Gerety E . J . , Wallace J . M . & Zerefos C S . 1977. Sunspots, geomagnetic indices and the 

weather, across spectral analysis between sunspots, geomagnetic activity and global 

weather data. Journal of Atmospheric Science. 34. 673-678. 

Glasbey C A & Horgan G . W . 1995. Image Analysis for the Biological Sciences. John 

Wi ley and Sons. Chichester, U K . 218 pp. 

Godwin H . 1975. The History of the British Flora. Cambridge University Press, 

Cambridge. 

Goodess C M . , Palutikof J.P. & Davies T . D . 1992. The Nature and Causes of Climate 

Change. Belhaven Press, London. 248 pp. 

Gordon D . , Smart P . L . , Ford D . C , Andrews J . N . , Atkinson T . C , Rowe P.J. & 

Christopher N . J . 1989. Dating of Late Pleistocene interglacial and interstadial 

periods in the United Kingdom from speleothem growth frequency. Quaternary 

Research. 31. 14-26. 

Goslar T. 1993. Varve chronology of laminated sediments of Lake Gosciaz. In 

253 



9. References 

Ralska-Jasiewiczowa M . {ed.) Polish Botanical Study. Guidebook Series. 8. 105-

119. 

Goslar T. , Arnold M . & Razdur M . F . 1995. The Younger Dryas cold event- was it 

synchronous over the North Atlantic region? Radiocarbon. 3 7. 63-70. 

Goslar T. , Kuc T. , Pazdur M . F . , Ralska-Jasiewiczowa M . , Rózanski K . , Szeroczynska 

K . , Walanus A . , W i c i k B . , Wieckowski K . , Arno ld M . «& Bard E . 1992. 

Possibilities for Reconstructing Radiocarbon Level Changes During the Late Glacial 

by using a laminated sequence of Gosciaz Lake. Radiocarbon. 34. 826-832. 

Goslar T. , Kuc T., Ralska-Jasiewiczowa M . , Rozanski K . , Arnold M . , Bard E . , Van 

Geel B . , Pazdur M . F . , Szeroczynska K . , Wicik B . , Wieckowski K . & Walanus A . 

1993. High-resolution lacustrine record of the Late Glacial/Holocene transition in 

Central Europe. Quaternary Science Reviews. 12. 287-294. 

Goudie A . S . & Brunsden D . 1994. The Environment of the British Isles. An Atlas. 

Clarendon Press, Oxford. 184 pp. 

Grant A . & Bhattacharyya P . K . 1985. Application of derivative spectroscopy to the 

determination of chromatographic peak purity. Journal of Chromatography. 347. 

219-235. 

Gronlimd E. 1991. Sediment characteristics in relation to cultivation history in two varved 

lake sediments from East Finland. Hydrobiologia. 214. 137-142. 

Grootes P . M . , Stuiver M . , White J .W.C . , Johnsen S. & Jouzel J. 1993. Comparison of 

oxygen isotope records from the GISP2 and G R I P Greenland ice cores. Nature. 

3 6 6. 552-554. 

254 



9. References 

Grove J . M . 1988. The Little Ice Age. Routledge, London. 498 pp. 

Guiot J . 1992. The combination of histórica! documents and biologica! data in the 

reconstruction of cümate variations in space and time. In I f ister C. and Glaser B . 

(eds) European Climate Reconstt-ucted Front Documentary Data: methods and 

results. ESE project "European Climate and Man". Spedai Issue 2. G . 

Fischer, Stuttgart, Jena, New York . 93-104. 

Guiot J . , Rons A . , de Beaulieu J .L . & Rei l le M . 1989. A 140,000 year continental climate 

reconstruction from two European poUen records. Nature. 338. 309-313. 

Hajdas I., Ivy S.D. , Beer J. , Bonani G . , Imboden D . , Lotter A . F . , Sturm M . & Suter M . 

1993. A M S radiocarbon dating and varve chronology of Lake Soppensee: 6000 to 

12000 ^"^C years B R Climate Dynamics. 9. 107-116. 

Hajdas I., Zolitschka B . , Ivy-Ochs S.D. , Beer J. , Bonani G . , Leroy S . A . G . , Negendank 

J .W. , Ramrath M . & Suter M . 1995. A M S radiocarbon dating of annually laminated 

Sediments from Lake Holzmaar, Germany. Quaternary Science Reviews. 14. 137-

143. 

Häkanson L . & Jansson M . 1983. Lake Sedimentólogy. Springer-Verlag, Berlin. 

316 pp. 

Halfman J.D. & Johnson T .C . 1988. High-resolution record of cyclic climatic change 

during the past 4ka from Lake Turkana, Kenya. Geology. 16. 496-500. 

Hammer C . U . 1980. Acidity of Polar Ice Cores in Relation to Absolute Dating, Past 

Volcanism, and Radio-echoes. Journal ofGlaciology. 25. 359-372. 

255 



9. References 

Hammer C . U . 1989. Dating by Physical and Chemical Seasonal variations and Reference 

Horizons. In Oeschger H . & Langway C . C . (eds) The Environmental Record in 

Glaciers and Ice Sheets. Report of the Dahlem Workshop, Berlin 1988, March 

13-18. Resea rch repor t 8. J.Wiley «fe Sons, Chichester, U K . 99-121. 

Harding A . F . {ed.) 1982. Climatic Change During Later Prehistory. Edinburgh 

University Press, Edinburgh. 

Hardy D . R . , Bradley R.S. & Zolitschka B . 1996. The climatic signal in varved sediments 

from Lake C 2 , northern Ellesmere Island, Canada. Journal of Paleolimnology. 16. 

227-238. 

Harris A . L . 1991. The growth and structure of Scotland. In Craig G . Y . (ed.) Geology of 

Scotland. The Geological Society. London. 3rd edition. 1-24. 

Hay W . H . 1993 The role of polar deep water formation in global climate change. Annual 

Review of Earth and Planetary Science. 2 1 . 227-254. 

Hays J .D. , Imbrie J & Shackleton N.J . 1976. Variations in the earth's orbit: Pacemaker of 

the ice ages. Science. 194. 1121-1131. 

Hazen R. & Trefi l J. 1991. Sciences greatest hits take their lumps. Science. 2 5 1 . 1308-

1309. 

Hedges R . E . M . 1992. Sample treatment strategies in radiocarbon dating. In Taylor R . E , 

L o n g A . & K r a R.S. (eds). Radiocarbon After Four Decades. An 

Interdisciplinary Perspective. Springer-Verlag. New York. 165-183. 

Hedges R . E . M . 1995. Problems in recovering information from archaeological bone. 

256 



9. Références 

Abstracts ofpapers of the American Chemical Society. 209. 17. 

Hedges R . E . M . , Leethorp J . A . & Tuross N . C . 1995. Is tooth enamel carbonate a 

snitable material for radiocarbondating?/îarfiocarton. 37. 285-290. 

Henderson-Sellers A . & Robinson P.J. 1987. Contemporary Climatology. Lx)ngman, 

Hariow, U K . 439 pp. 

Heiemielsen S., Conradsen K . , Heinemeier J . , Knudsen K . L . , Nielsen H . L . , Rud N . & 

Sveinbjomsdottir A . E . 1995. Radiocarbon dating of sbells and foraminifera from 

tbe Skogen-core, Denmark-evidence of reworking. Radiocarbon. 3 7. 119-130. 

Heine J.T.. 1993. A Réévaluation of the Evidence for a Younger Dryas Climatic Reversai 

in the Tropical Andes. Quaternary Science Reviews. 12. 769-779. 

Hinnov L . A . & Goldhammer R . K . 1991. Spectral analysis of the Middle Triassic Latemar 

Limestone. Journal of Sedimentary Petrology. 61. 1173-1193. 

Hoang C.T. , Dalongeville R. & Sanlaville P. 1996. Stratigraphy, tectonics and 

paleoclimatic implications of Uranium-series-dated coral-reefs from the Sudanese 

coast of the Red Sea. Quaternary Interrmtional. 31. 47-51. 

Holcombe T . L . 1989. Paleoclimate data for studies of global climate change and Earth 

system science. In Berger A . , Schneider S. & Duplessy J . -C. {eds) Climate and 

Geo-Sciences. A Challenge for Science and Society in the 21st Century. NATO 

ASI Séries C: Mathematical and Physical Sciences. 285. Kluwer Académie 

Publishers, Dordrecht. 173-177. 

Hooghiemstra H . , Mel ice J.L„ Berger A . & Shackleton N. J . . 1993. Frequency-spectra 

257 



9. References 

and paleoclimatic variability of the high-resolution 30-1450 ka Funza I pollen record 

(Eastern Cordillera, Colombia), ßaaiernary Science Reviews. 12. 141-156. 

H o m e A . J . & Goldman C R . 1994. Limnology. 2nd Edition. M c G r a w - H i l l , Inc., New 

York . 576 pp. 

Hoyt D . V . , Schatten K . H . & Nesme-Ribes E . 1994. A new reconstruction of solar 

activity, 1610-1993. In Nesme-Ribes E . (ed.)The Solar Engine and its Influence 

on Terrestrial Atmosphere and Climate. N A T O A S I Series. 125. Springer-

Veriag, Beri in. 57-69. 

Huntley B . & Birks H.J .B . 1983. An Atlas of Past and Present Pollen Maps for 

Europe, 0-13000 Years Ago. Cambridge University Press, Cambridge. 

Huntley B . & Prentice I .C. 1988. July temperatures in Europe from pollen data - 13000 

yr B P to present. Science. 241, 687-689. 

Hurrell J .W. 1995. Decadal trends in the North Atlantic Oscillation, regional temperatures 

and precipitation. Science. 269. 676-679. 

Imbrie J. & Imbrie K . P . 1986. Ice Ages: solving the mystery. Harvard University 

Press, Cambridge, U S A . 2nd edition. 224 pp. 

Imbrie J . , Mclntyre A . & M i x A . 1989. Oceanic response to orbital forcing in the late 

Quatemary: Observational and experimental strategies. In Berger A . , Schneider S., 

Duplessy J .-C. (eds) Climate and Geo-Sciences. A Challenge for Science and 

Society in the 21st Century. NATO ASI Series C: Mathematical and Physical 

Sciences. 285. Kluwer Academic Publishers, Dordrecht. 121-164. 

258 



9. Referenœs 

Ingram M . J . , Underhill D.J . & Farmer G . 1981. The use of documentary sources for the 

smdy of past climates. In Wigley T . M . L . , Ingram M . J . & Farmer G . (eds) Climate 

and History. Cambridge University Press, Cambridge. 180-213. 

Innocent C , Fagel N . , Stevenson R . K . & Hillaire-Marcel C. 1997. Sm-Nd signature of 

modem and Late Quatemary sediments from the northwest North Atlantic: 

Implication for deep current changes since the Last Glacial Maximum. Earth and 

Planetary Science Letters. 146. 607-625. 

Itkonen A . & Salonen V . - P . 1994. The response of sedimentation in three varved 

Icicustrine sequences to air temperature, precipitation and human impact. Journal of 

Paleolimnology. 11. 323-332. 

Jaakkola T., Tolonen K . , Hutmnen P. & Leskinen S. 1983. The use of fallout i37Cs and 

239,240Pu for dating of lake sédiments.//yrfroö/o/og/a. 103. 15-19. 

Jain A . K . 1989. Fundamentais of digital image processing. Prentice-Hall Inc. New 

Jersey, U S A . 569 pp. 

Jansen E . & Veum T. 1990. Evidence for two-step déglaciation and its impact on North 

Atlantic deep-water circulation. A^aîwrg. 343. 612-616. 

Jenkins P . H . 1993. L o c h Ness sédiments: a preliminary report. The Scottish Naturalist. 

105. 65-86. 

Johnsen S.J., Clausen H . B . , Dansgaard W . , Gundestrup N . S . , Hammer C . U . & Tauber 

H . 1995. The Eem stable isotope record along the G R I P ice core and its 

interpreXation. Quaternary Research. 43. 117-124. 

259 



9. References 

Johnsen S.J, Dansgaard W . , Clausen H . B . , Langway C . C . 1970. Climatic oscillations 

1200-2000 A D . Nature. 227. 482-483. 

Johnson F . G . 1994. Hydro-electric Generation. In Maitland P.S. , Boon P.J. & M c L u s k y 

D.S. {eds) The Fresh Waters of Scotland: A National Resource of International 

Significance. John W i l e y & Sons Ltd. Chichester, U K . 297-316. 

Johnson T . C . {ed) 1993. IDEAL: An International Decade for the East African Great 

Lakes. Science and implementation plan. PAGES Working Report series 93-2. 

39 pp. 

Jones P.D. , Hulme M . & Briffa K . R . 1993. A comparison of Lamb circulation types with 

an objective classification scheme. International Journal of Climatology. 13. 655-

663. 

Jones R.I. & Ilmavirta V . 1978. Vertical and seasonal variation of phytoplankton 

photosynthesis in a brown-water lake with winter ice cover. Freshwater Biology. 

8 . 561-572. 

Jones R.I . , Fulcher A . S . , Jayakody J . K . U . , Layboum-Parry J . , Shine A . J . , Walton 

M . C . & Young J . M . 1995. The horizontal distribution of plankton in a deep, 

oligotrophic lake - L o c h Ness, Scotland. Freshwater Biology. 33. 161-170. 

Jones R.I. , Young J . M . , Hartley A . M . & Bailey-Watts A . E . 1996. Light limitation of 

phytoplankton development in an oligotrophic lake - Loch Ness, Scotland. 

Freshwater Biology. 35. 533-543. 

Jones R.I. , Layboum-Parry J . , Walton M . C . & Young J . M . 1997. The form and 

distribution of carbon in a deep, oligotrophic lake (Loch Ness, Scotland). 

260 



9. References 

Verhandlungen der Intematioruilen Vereinigung für Theoretische and 

Angewandte Limnologie. 26. 330-334. 

Jones R.I . , Grey J., Sleep D . & Quarmby C. 1998. A n assessment, using stähle isotopes, 

of the importance of allochthonous organic carbon sources to the pelagic food web 

in L o c h Ness. Proceedings of the Royal Society of London. B 256. 105-111. 

Jones V . J . , Rower R . J . , Appleby R.J . , Natkanski J . , Richardson N . , Rippey B . , 

Stevenson A . C . & Battarbee R . W . 1993. Palaeolimnological evidence for the 

acidification and atmospheric contamination of lochs in the Caimgorm and 

Lochnagar areas of Scotland. Journal ofEcology. 8 1 . 3-24. 

Jones V . J . , Battarbee R . W . , Rose N . L . , Curtis C , Appleby P.J. , Harriman R. & Shine 

A . J . 1997. Evidence for the poUution of Loch Ness from the analysis of its recent 

Sediments. Science of the Total Environment.. 203 . 37-49. 

Jonsson R , Carman R. & Wulf f F . 1990. Laminated Sediments in the Balt ic- A tool for 

evaluating nutrient mciss balances. Ambio. 19. 152-158. 

Jouzel J . , Lorius C , Petit J.R., Genthon C , Barkov N.I . , Kotlyakov V . M . & Petrov 

V . M . 1987. Vostok Ice Gore: A continuous isotope temperature record over the last 

climatic cycle (160,000 years). Nature. 3 29 . 403-408. 

Jouzel J . , AUey R . B . , Caffey K . M . , Dansgaard W. , Grootes R , Hoffmann G . , Johnsen 

S.J., Koster R .S . , Peel D . , Shuman C A . , Sieivenend M . , Stuiver M . & White J. 

1997. Validity of temperaure reconstruction from water isotojjes in ice cores Journal 

of Geophysical Research. O 1 0 2 . 26471-26487. 

Joyce Loebl . 1985. Image Analysis. Principles and Practice. Joyce Loebl . Gateshead, 

261 



9. References 

U K . 250pp. 

Keatinge T . H . and Dickson J . H . 1979 Mid-Flandrian changes in Vegetation on mainland 

Orkney. A^ew Phytologist. 82 . 585-612. 

Ke igwin L . D . & Jones G . A . 1994. Western North Atlantic evidence for millenial-scale 

changes in ocean circulation and climate. Journal of Geophysical Research. C99. 

12397-12410. 

Kel logg T .B . 1984. Late-glacial Holocene high-frequency climatic changes in deep-sea 

cores from the Denmark Strait. In Mömer N - . A . & Karlen W . {eds) Climatic 

changes on a Yearly to Millenial Basis. Riedel, Dordrecht. 

Ke l ly P . M . 1979. Solar Influence on North Atlantic Mean Sea Level Pressure. In 

McCormac B . M . and Se l i gaT .A . (eds) Solar-Terrestrial Inßuences on Weather 

and Climate. D.Reidel Publishing Company, Dordrecht, Holland. 297-298. 

Kelts K . & Hsü K . J . 1978. Freshwater carbonate Sedimentation. In Lerman A . (ed.) 

iM^Ices: Geology, Chemistry and Physics. Springer-Verlag, New York. 295-323. 

Kemp A . E . S . 1990. Sedimentary fabrics and Variation in lamination style in Peru 

Continental margin upwelling Sediments. In Suess E . , von Heune R. et al. (eds) 

Proceedings ofthe Ocean Drilling Program, Scientific Results. 112. 43-58. 

Kemp A . E . S . 1996. Laminated Sediments as palaeo-indicators. In K e m p A . E . S . (ed.) 

Palaeoclimatology and Palaeoceanography from Laminated Sediments. 

Geologica! Society Special Publication. 116. The Geologica! Society, London, v i i -

x i i . 

262 



9. References 

Kemp A . E . S . , Baldauf J .G. & Rearce R .B . 1996. Origins and palaeoceanographic 

significance of laminated diatom ooze from the eastern equatorial Pacific Ocean. In 

K e m p A . E . S . (ed.) Palaeoclimatology and Palaeoceanography from Laminated 

Sediments. Geological Society Special Pubhcation. 116. The Geological Society, 

London. 243-252. 

Kempe S. & Degens E . T . 1979. Varves in the Black Sea and Lake Van (Turkey). In 

Schlüchter C. {ed.) Moraines and Varves. Balkema, Rotterdam. 309-318. 

Kennedy J . A . & Brassell S.C. 1992. Molecular records of twentieth-century E l Niño 

events in laminated sediments from the Santa Barbara basin. Nature. 357 . 62-64. 

Keppenne C . L . & G h i l M . 1992. Extreme weather events. Nature. 3 5 8 . 547. 

Kerr R . A . 1996. New dawn for Sun-Climate links? Science. 271 . 1360. 

Khal i l M . A . K . & Rasmussen R . A . 1989. Temporal variations of trace gases in ice cores. 

In Oeschger H . & Langway Jr. C .C . {eds) The Environmental Record in Glaciers 

and Ice Sheets. Report of the Dahlem Workshop, Berlin 1988. March 13-18. 

Research repor t 8. J .Wiley & Sons, Chichester, U K . 193-205. 

Knox R . W . O ' B . 1994. Tephra layers as precise chronostratigraphical markers. In 

Hai lwood E . A . and K i d d R . B . {eds) High Resolution Stratigraphy. Geological 

Society Special Publication No.70. 169-186. 

K09 N . Jansen E . & Haflidason H . 1993. Palaeoceanographic reconstructions of surface 

ocean conditions in the Greenland, Iceland and Norwegian Seas through the last 

14ka based on diatoms. Quaternary Science Reviews.!!. 115-140 

263 



9. References 

Koivis to E . & Saamisto M . 1978. Conventional Radiography, Xerography, Tomography 

and contrast enhancement in the study of laminated sediments. Preliminary report. 

Geografiska Annaler. 6OA. 55-61. 

Koopmans L . H . 1974. The spectral analysis of time series. Academic Press Inc. New 

York , U S A . 366 pp. 

Kreutz K . J . , Mayewski P . A . , Meeker L . D . , Twickler M . S . , Whit iow S.I. & Piflalwala 

1.1., 1997. Bipolar changes in atmospheric circulation during the Little Ice Age. 

Science. 27 7. 1294-1296. 

Kromer B . & Miinnich K . O . 1992. CO2 gas proportional coimting in radiocarbon dating-

Review and perpsective. In Taylor R . E , Long A . & K r a R.S . {eds). Radiocarbon 

After Four Decades. An Interdisciplinary Perspective. Springer-Verlag. New 

York . 184-197. 

Kullenberg B . 1947. The piston core sampler. Svenska Hydrografisk-Biologiska 

Kommissionens Skrifter. Ser ies 3. 1-46. 

KuUman L . 1994. Climate and environmental change at high latimdes. Progress in 

Physical Geography. 18. 124-135. 

Labitzke K . & van Loon H . 1990. Associations between the 11-year solar cycle, the 

Quasi-Biennial Oscillation and the atmosphere: a summary of recent work. In 

Pecker J . -C. & Runcorn S .K. (eds) The Earth's Climate and Variability of the 

Sun Over Recent Millenia : Geophysical, Astronomical and Archaeological 

Aspects. The Royal Society / Cambridge University Press. 179-190. 

264 



9. References 

L a Marche V . C . 1974. Paleoclimatic inferences from long tree-ring records. Science. 

183. 1043-1048. 

LaMarche Jr. V . C . & Hirschboeck K . K . 1984. Frost rings in trees as records of major 

volcanic eruptions. A^arwre. 307. 121-126. 

Lamb H . H . 1950. Types and spells of weather around the year in the British Isles: annual 

trends, seasonal structure of the year, singulìirities. Quarterly Journal ofthe Royal 

Meteorological Society. 76. 393-438. 

Lamb H . H . 1965. The early medieval warm epoch and its sequel. Palaeogeography, 

Palaeoclimatology, Palaeoecology. 1. 13-37. 

Lamb H . H . 1970. Volcanic dust in the atmosphererwith a chronology and assessment of 

its meteorological significance. Philosophical Transactions of the Royal Society 

of London. A266. 425-533. 

Lamb H . H . 1972a. Climate Past Present and Future. V o i I. Methuen, London. 613 pp. 

Lamb H . H . 1972b. British Isles weather types and a register of the daily sequences of 

circulation pattems 1861-1971. Geophysical Memoirs. 116. London. 

Lamb H . H . 1977a. Climate Past Present and Future, Climate history and the future. 

V o i II. Methuen, London. 835 pp. 

Lamb H . H . 1977b. The Late Quatemary history of the climate of the British Isles. In 

Shotton (ed.) British Quaternary Studies. Clarendon Press, Oxford. 283-298. 

Lamb H . H . 1979. Climatic Variation and Changes in the Wind and Ocean Circulation: 

265 



9. Références 

The Little Ice Age in the Northeast Atlantic. Quaternary Research. 11. 1 -20. 

Lamb H . H . 1995. Climate, History and the Modem World. Routledge, New York . 2nd 

Edition. 443 pp. 

Lane L . J . , Nichols M . H . & Osbom H . B . 1994. Time Séries Analyses of Global Change 

Data. Environmental Pollution. 8 3 . 63-68. 

Langereis G . G . , Dekkers M . J . , deLange G.J . , Paterne M.«fe van Santvoort P . J . M . 1997. 

Magnetostratigraphy and astronomical calibration of the last 1.1 M y r from an eastem 

Mediterranean piston core and dating of short events in the Brunhes. Geophysical 

Jourruil International. 129. 75-94. 

Lassen K . & Friis-Christensen E . 1995. Variability of the solar cycle length during the 

past five centuries and the apparant association with terrestrial climate. Journal of 

Atmospheric and Terrestrial Physics. 5 7. 835-845. 

Leemann A . & Niessen F. 1994. Varve formation and the climatic record in an Alpine 

proglacial lake: calibrating annually laminated sédiments against hydrological and 

meteorologica! data. TÄe/fo/ocene. 4. 1-8. 

Legrand M . & Delmas R.J . 1987. Enviromnental changes during Last Déglaciation 

inferred from chemical analysis of the Dome C ice core. In Berger W . H and 

Labeyrie L . D . (eds) Abrupt Climatic Change. NATO ASI Séries C. Mathematical 

and Physical Sciences. 216 . D.Reidel Publishing Company, Dordrecht. 247-259. 

Lehman S. 1996. True grit spells double trouble. Nature. 3 8 2. 25-27. 

Leonard E . M . 1986. Varve studies at Hector Lake, Alt)erta, Canada, and the relationship 

266 



9. Références 

between glacial activity and sédimentation, gimfórnary ÄejearcÄ. 25. 199-214. 

Leonard E . M . 1995. A varve-based calibration of tbe Bridge River tephra fall. Canadian 

Journal ofEarth Sciences. 32 . 2098-2102. 

Le Roy Ladurie E . 1972. Times of Feast, Times of Famine: a history of climate since 

the year 1000. Bray B . (translator). George A l l e n and Unwin , London. 428 pp. 

Levesque A . J . , Mayle F . E . , Walker I.R. & Cwynar L . C . 1993. The Amphi-Atlantic 

Oscillation: A pro|X)sed Late-Glacial climatic event. Quaternary Science Reviews. 

12. 629-643. 

Libby L . M . & Pandolfi L . J . 1977. Climate periods in tree, ice and tides. Nature. 266. 

415-417. 

L i u K . & Feam M . L . 1993. Lake-sediment record of late Holocene hurricane activities 

from coastal Alabama. Geology. 21. 793-796. 

Longworth I .H . 1985. Prehistoric Britain. British Musuem Publications, London. 

72 pp. 

Lorius C.J . Polar ice cores and climate. 1989. In Berger A . , Schneider S., Duplessy J . - C . 

{eds) Climate and Geo-Sciences. A Challenge for Science and Society in the 21 st 

Century. NATO ASI Series C: Mathematical and Physical Sciences. 285 . 

Kluwer Académie Publishers, Dordrecht 77-103. 

Lorius C. 1990. Enviroimiental records from polar ice cores. Philosophical Transactions 

ofthe Royal Society of London. A 3 3 0 . 459-462. 

267 



9. References 

Lorius C , Raisbeck G . , Jouzel J. & Raynaud D . 1989. Long-term environmental records 

from Antarctic ice cores. In Oeschger H . & Langway C .C . (eds) The 

Environmental Record in Glaciers and Ice Sheets. Report of the Dahlem 

Workshop, Berlin 1988, March 13-18. Research repor t 8. J .Wiley & Sons, 

Chichester, U K . 343-361. 

Lotter A . F . 1991a. H o w long was the Younger Dryas? Preliminary evidence from 

annually laminated sediments of Soppensee (Switzerland). Hydrobiologia. 214. 

53-57. 

Lotter A . F . 1991b. Absolute dating of the Late-Glacial period in Switzerland using 

annually laminated sediments. ß"fli^''wary/íe^earcA. 35. 321-330. 

Lotter A . F . & Sturm M . 1994. The study of environmental dynamics by means of 

laminated sediments: Results from Switzerland. In Hicks S., Mi l l e r U . & Saamisto 

M . (eds) Laminated Sediments. Symposium held at the European University 

Centre for the Cultural Heritage, Ravello. June, 1991. 41. P A C T Belgium, 

Rixensart. 15-24. 

Lowe J.J. 1993. Setting the scene: an overview of climatic change. In Smout T .C . (ed.) 

Scotland since Prehistory. Natural change and human impact. Scottish Cultural 

Press, Edinburgh. 1-16. 

Lowe J.J. & Walker M . J . C . 1984. Reconstructing Quaternary Environments. 

Longman, London. 389 pp. 

Ludlam S.D. 1969. Fayetteville Green Lake, New York. III. The Laminated Sediments. 

Limnology and Oceanography. 14. 848-857. 

268 



9. References 

Ludlam S.D. 1979. Rhythmite deposition in lakes of the northeastern United States. In 

Schluchter C . {ed.) Moraines and Varves. Origin/Genesis/Classification. 

Balkema, Rotterdam. 295-302. 

Mackereth R J . H . 1958. A portable core sampler for lake deposits, limnology & 

Oceanography. 3. 181-191. 

Mackereth R J . H . 1969. A short-core sampler for sub-aqueous deposits. Limnology & 

Oceanography. 14. 145-151. 

M a c K i e E . W . 1975. Scotland: An Archaeological Guide. Faber & Faber, London. 

309pp. 

Maitland R S . 1981. Introduction and catchment analysis. In Maitland R.S. {ed.) The 

Ecology of Scotland's Largest Lochs. Lomond, Awe, Ness, Morar and Shiel. 

Monographiae Biologicae. 44. Dr. W.Junk Rublishers, The Hague. 1-27. 

Makrogiaimis T.J . , Bloutsos A . A . & Giles B . D . 1982. Zonal index and circulation 

change in the North Atlantic area, 1873-1972. Journal of Climatology. 2. 159-169. 

Manley G . 1974. Central England temperatures: monthly means 1659 to 1973. Quarterly 

Journal of the Royal Meteorological Society. 100. 389-405. 

Mann K . H . & Lazier J . R . N . 1996. Dynamics of Marine Ecosystems: Biological-

Physical Interactions in the Oceans. 2nd edition. Blackwell Science, Boston. 

394 pp. 

Mann M . E . , Park J. & Bradley R.S. 1995. Global interdecadal and century-scale climate 

269 



9. References 

oscillatìons during the past five centuries. Nature. 378. 266-270. 

Marion A . 1991. An Introduction to Image Processing. Chapman & H a l l , London, U K . 

314 pp. 

Markgraf V . 1993. Younger Dryas in Southemmost South America - A n Update. 

Quaternary Science Reviews. 12. 351-355. 

Markson R. 1981. The effect of cosmic rays on the electric field of the Harth. Nature. 

291. 304-308. 

Marr D . & Hildreth E . 1980. Theory of edge detection. Proceedings ofthe Royal 

Society of London. B30. 499-505. 

Martinson D . G . , Pisias N . G . , Hays J.D., Imbrie J . , Moore j m . T . C . & Shackleton N . J . 

1987. A g e dating and the Orbital Theory of the Ice Ages: Development of a high-

resolution 0 to 300,000-year chronostratigraphy. Quaternary Research. 27. 1-29. 

Masl in M . A . , Shackleton N . J . & Plaumann U . 1995. Surface-water temperature, salinity, 

and density changes in the Northeast Atlantic during the last 45,000 years - Heinrich 

events, deep-water formation and climatic rebounds. Paleoceanography. 10. 527-

544. 

Mason B.J . 1976. Towards the understanding and prediction of climatic variations. 

Quarterly Journal of the Royal Meteorological Society. 102. 473-498. 

Matsch C . L . 1976. North America and the Great Ice Age. McGraw H i l l Inc. New 

York . 131 pp. 

270 



9. References 

Mayer L . , Pisias N . , Janacek T. & Leg 138 Shipboard Sedimentologists and Scientific 

Party. 1992. Color reflectance spectroscopy: a tool for rapid characterisation of 

deep-sea sediments. Proceedings of the Ocean Drilling Program, Initial Reports. 

138. 67-77. 

Mayes J.C. 1991. Regional airflow patterns in the British Isles. International Journal of 

Climatology. 11. 473-491. 

Mayes J. 1996. Spatial and temporal fluctuations of monthly rainfall in the British Isles 

and variations in the mid-latitude westerly circulation. International Journal of 

Climatology. 16. 585-596. 

Mayewski P . A . , Meeker L . D . , Morrison M . C . , Twickler M . S . , Whit low S., Feriand 

K . K . , Meese D . A . , Legrand M . R . & Steffensen J .R 1993a. Greenland Ice core 

"signal" charcteristics: an expanded view of climate change. Journal of Geophysical 

Research-D. 98. 12839-12847. 

Mayewski R A . , Meeker L . D . , Whit low S., Twickler M . S . , Morrison M . C . , A l l ey R . B . , 

Bloomfield P. & Taylor K . 1993b. The atmosphere during the Younger Dryas. 

Science. 261. 195-197. 

McBratney A . B . , Moran C.J . , Stewart J .B . , Catüe S.R. & Koppi A . J . 1992. 

Modifications to a method of rapid assessment of soil macropore structure by image 

analysis. Geoderma. 53. 255-274. 

McCormac F . G . , Bail l ie M . G . L . , Pilcher J.R. & K a l i n R . M . 1995. Location dependent 

differences in the C-14 content of wood. Radiocarbon. 37. 395-407. 

M c E l r o y M . B . 1994. Climate of the Earth- A n overview. Environmental Pollution. 83. 

271 



9. References 

3-21. 

M c G o v e m J .H. 1981. The economics of extinction in Norse Greenland. In Wigley 

T . M . L . , Ingram M . J . & Farmer G . (eds) Climate and History. Czmibridge 

University Press, Cambridge, U K . 404-430. 

Mcintyre M . E . 1994. The Quasi-Biennial Oscillation (QBO): some points about the 

terrestrial Q B O and the possibility of related phenomena in the solar interior. In 

Nesme-Ribes E . {ed.) The Solar Engine and its Influenae on Terrestrial 

Atmosphere and Climate. N A T O A S I Series. 125. Springer-Verlag Berlin. 293-

320. 

McManns J. & Duck R . W . 1988. Scottish freshwater lochs and reservoirs: a physical 

perspective. Scottish Geographical Magazine. 104. 97-107. 

Meehl G . 1994. Coupled land-ocean-atmosphere processes and South Asian monsoon 

variability. 5de«ce. 26 6. 263-267. 

Meese D . A . , Gow A . J . , Grootes R , Mayewski P . A . , Ram M . , Stuiver M. ,Taylor K . C . , 

Waddington E . D . & Ziel inski G . A . 1994. A n accumulation record from the GISP2 

core as an indicator of climate change throughout the Holocene. Science. 266. 

1680-1682. 

Mehl J. & Merkt J. 1990. X -ray radiography applied to laminated lake Sediments. In 

Saamisto M . & Kahra A . {eds) Proceedings ofthe Workshop at Lammi Biological 

Station, 4-6 June, 1990. Geological Society of Finland Special Paper 14. 77-85. 

Merkt J. 1971. Zuverlässige Auszählungen von Jahressschichten in Seesedimenten mit 

Hilfe von Groß-Düimschliffen. Archiv fiir Hydrobiologie. 69. 145-154. 

272 



9. References 

Merritt J .W., Auton C . A . & Firth C .R . 1995. Ice-proximal glaciomarine sedimentation 

and sea-level change in the Inverness area, Scotland: A review of the déglaciation of 

a major ice stream of the British Late Devensian ice sheet. Quaternary Science 

Reviews. 14. 289-329. 

Mienert J. & Chi J. 1995. Astronomical time-scale for physical property records from 

Quatemary sediments of the northern North kÛaniic.Geologische Rundschau. 84. 

67-88. 

M i l l e r U . 1994. Laminae formation in the long- and short- term perspectives. In Hicks S., 

Mi l l e r U . & Saamisto M . {eds) Laminated Sediments. Symposium held at the 

European University Centre for the Cultural Heritage, Ravello. June, 199L 41. 

R A C T Belgium, Rixensart. 9-11. 

Mi reck i J .E. 1996. Recognition of the 1811-1812 New Madrid earthquakes in Reelfoot 

Lake, Tennessee sediments using pxjllen data. Journal of Paleolimnology. 15. 183-

191. 

Mitchel l J .F .B. , Grahame N.S . & Needham K . J . 1988. Climate simulations for 9000 

years before present: seasonal variations and effect of the Laurentide Ice Sheet 

Journal of Geophysical Research D. 93. 8283-8303. 

Mitsuguchi T., Matsumoto E . , Abe O. , U c h i d a T . & Isdale R J . 1996. M g / C a 

thermometry in coral skeletons. Science. 27 4. 961-963. 

M o m e r N . - A . 1993. The Maunder Min imum. In Frenzel B . , Pfister C. & Glaser B . (eds) 

European climate reconstructed from documentary data: methods and results. 

E S F project European Palaeoclimate and Man. Special issue 2. Gustav Fischer 

Veriag, Stuttgart. 1-8. 

273 



9. References 

Mömer N . - A . Wal l in B . 1977. A 10,000 Year Temperature Record From Gotland, 

Sweden. Palaeogeography, Palaeoclimatology, Palaeoecology. 21.113-138. 

Mörth H . T . & Schlamminger L . 1979. Planetary Motion, Sunspots and Climate. In 

McCormac B . M . and Seliga T . A . {eds) Solar-Terrestrial Influences on Weather 

and Climate. D.Reidel Publishing Company. 193-207. 

Mott McDonald . 1992. Highland region flooding incidents in the Great Glen, Loch 

Ness, River Ness. Department of Water and Sewerage, Highland Regional 

Counci l . 

M o u l i n C. Lambert C . E . , Dulac F. & Dayan U . 1997. Control of atmospheric export of 

dust from North Afr ica by the North Atlantic Oscillation. A^arwre. 3 8 7 . 691-694. 

Nesje A . & Dahl S.O. 1993. Lateglacial and Holocene Glacier Fluctuations and Climate 

Variations in Western Norway: A Review. Quaternary Science Reviews. 12. 255-

261. 

Newhall C G . & Self S. 1982. The Volcanic Explosivity Index (VEI): an estimate of 

explosive magnitude for historical volcanism. Journal of Geophysical Research. 

87 . 1231-1238. 

Nicholson I. 1982. The Sun. Mitchell Beazley Publishers/ Royal Astronomical Society, 

London. 40-41. 

Nuhfer E . B . , Anderson R . Y . , Bradbury J.P. & Dean W . E . 1993. Modem sedimentation 

in E l k Lake, Clearwater County, Minnesota. In Bradbury J.P. & Dean W . E . (eds) 

Elk Lake, Minnesota: Evidence for rapid clinmte change in the North-Central 

274 



9. References 

United States. USGS Special Paper 276. United States Geological Survey. 75-96. 

Oeschger H . & Beer J. 1990. The past 5000 year history of solar modulation of cosmic 

radiation from ^ ^ e a n d ^"^C studies. Philosophical Transactions ofthe Royal 

Society of London. A330. 471-480. 

Oldfield F . , Crooks P.R.J . , Appleby P . G . & Renberg I. 1994. The use of laminated 

Sediments to test methods of dating and palaeoenviroimiental reconstruction. In 

Hicks S., M i l l e r U . & Saamisto M . {eds) Laminated Sediments. Symposium held 

at the European University Centre for the Cultural Heritage, Ravello. June, 

199L 41. R A G T Belgium, Rixensart. 57-62. 

Olsson I .U . , El-Daoushy F. & Vasari Y . 1983. Säynäjälampi and the difficulties inherent 

in the dating of Sediments in a hard-water lake. Hydrobiologia. 103. 5-14. 

Ordnance Survey. 1993. Landranger Map 26. Ordnance Survey of Great Britain. 

Southampton, U K . 

O'Sul l ivan P .E . 1974. Radiocarbon dating and prehistoric forest clearance on Speyside 

(East-Central Highlands of Scotland). Proceedings ofthe Prehistoric Society. 40. 

206-208. 

O 'Sul l ivan P .E . 1976. Pollen analysis and radiocarbon dating of a core from Loch 

Pityoulish, Eastem Highlands of Scotland. Journal ofBiogeography. 3. 293-302. 

O'Sullivan P .E . 1983. Annually-laminated lake Sediments and the study of Quatemary 

environmental changes - a review. Quatemary Science Reviews. 1. 245-313. 

275 



9. References 

O'Sullivan R.E . 1994a. Slide shown at the Inaugral meeting of I G C P 374. University of 

Southampton. 7-9 September. 

O'Sull ivan R.E . 1994b. Improving the accuracy of radiocarbon dates using annually 

laminated Sediments. In Hicks S., M i l l e r U . & Saamisto M . (eds) Laminated 

Sediments. Symposium held at the European University Centre for Guttural 

Heritage, Ravello. June, 1991. 41. R A G T Belgium, Rixensart. 63-88. 

O'Sull ivan P . E . 1995. Palaeolimnology. In Nierenberg W . A . {ed.) Encyclopedia of 

Environmental Biology. 3. Academic Press, Inc. New York , U S A . 37-58. 

O 'SuUivan P . E . , Cooper M . C . , Shine A . J . , B u l l D . , Kemp A . E . S . , Jones R.I . , 

Harkness D . D . , Lawson E . M . , Peglar S . M . , Matthews N . M . , Salter N . C . J . , 

Henon D . N . , Wil l iams T.S .C. , Cooke D . A . & Rowalnd S.J. 1996. The holocene 

environmental record in the Sediments ofLoch Ness, Scotland. Paper presented 

at the Ist Annual Workshop, European Lakes Dri l l ing Project ( E L D P ) , Le 

Bischenburg, near Strasbourg. 24-27 October, 1996. 

Overpeck J . , Hughen K . , Hardy D. , Bradley R.S. , Gase R., Douglas M . , Finney B . , 

Gajewski K . , Jacoby G . , Jennings A . , Lamoureux S., Lasca A . , MacDonald G . , 

Moore J . , Retelle M . , Smith S., Wolfe A . & Ziel inski G . 1997. Arctic 

enviroimiental changeof the last fourcenturies. Science. 27 8. 1251-1256. 

Parker D . E . , Legg T . P . & Folland C . K . 1992. A new daily Central England 

Temperature series, 1712-1991. International Journal of CUmatology. 12. 317-

342. 

Peglar S . M . , Fri tz S.C. , Alapieti T. , Saamisto, M . & Birks H. J .B . 1984. Composition 

276 



9. References 

and formation of laminated sediments in Diss Mere, Norfolk, England. Boreas. 13. 

13-28. 

Rennington W . 1981. Records of a lake's life in time: the sediments. Hydrobiologia. 79. 

197-219. 

Pennington W . , Haworth E . Y . , Bonny A . P . & Lishman J.P. 1972. Lake sediments in 

Northern Scotland. Philosophical Transactions of the Royal Society of London. 

B 2 6 4 . 191-294. 

Perkins J . A . & Sims J.D. 1983. Correlation of Alaskan varve thickness with climatic 

parameters, and use in paleoclimatic reconstruction. Quaternary Research. 20. 

308-321. 

Peterson L . C . , Overpeck J.T. & Murray D . W . 1995. Anoxic basin records detailed 

climate history. JOI/USSAC Newsletter. 8. 10-13. 

Peteet D . M . , Vogel J.S., Nelson D . E . , Southon J.R., Nickmann R.J . & Heusser L . E . 

1990. Younger Dryas climatic reversal in northeastern U S A ? A M S ages for an old 

problem. Quaternary Research. 33. 219-230. 

Pfister C. 1981. A n analysis of the Little Ice A g e climate in Switzerland and its 

consequences for agricultural production. In Wigley T . M . L . , Ingram M . J . & 

Farmer G . (eds) Climate and History. Cambridge University Press, Cambridge. 

214-248. 

Pike J. & K e m p A . E . S . 1996. Preparation and analysis techniques for studies of 

laminated sediments. In Kemp A . E . S . (ed.) Palaeoclimatology and 

Palaeoceanography from Laminated Sediments. Geological Society Special 

277 



9. References 

Rublicatìon. 116 . The Geological Society, London. 37-48. 

Pike J. & K e m p A . E . S . 1997.Early Holocene decadal-scale ocean variability recorded in 

Gul f of California laminated sediments. Paleoceanography. 12. 227-238. 

Pilskaln C . H . & Johnson T . C . 1991. Seasonal Signals in Lake Malawi sediments. 

limnology and Oceanography. 36. 544-557. 

Pinglot J.F. & Pourchet M . 1995. Radioactivity measurements applied to glaciers and lake 

sediments. Science of the Total Environment. 173 . 211-223. 

Pokras E . M . & Winter A . 1987. Variability of Holocene diatom assemblages in laminated 

sediments near Walvis Bay, Southwest Africa. Marine Geology. 7 6. 185-194. 

Polach A . H . 1992. Four decades of progress in î HH dating by liquid scintillation counting 
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Appendix A . Core Ness 3 

Core Ness 3 x-radiograph, 0.0-0.15 m 
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Core Ness 3 x-radiograph, 0.14-0.29 m 

Appendix A . Core Ness 3 
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Core Ness 3 x - rad iogr^h , 0.27-0.42 m 

Appendix A . Core Ness 3 
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Core Ness 3 x-radiograph, 0.40-0.55 m 

Appendix A . Core Ness 3 
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Core Ness 3 x-radiograph, 0.55-0.70 m 

Appendix A . Core Ness 3 
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Core Ness 3 x-radiograph, 0.69-0.84 m 

Appendix A . Core Ness 3 
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Core Ness 3 x-radiograph, 0.83-0.98 m 

Appendix A . Core Ness 3 
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Core Ness 3 x-radiograph, 0.97-1.12 m 

Apf)endix A . Core Ness 3 
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CoreNess 3 x-radiograph, 1.09-1.24 m 

Appendix A - Core Ness 3 
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CoicNess 3 x-radiograph, 1.18-1.33 m 

Appendix A . Core Ness 3 
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Com Ness J x-radiograph, 1.32-1.47 m 

Appendix A . Core Ness 3 
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CoreNess 3 x-radiograph, 1.44-1.59 m 

Appendix A . Core Ness 3 
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Core Ness 3 x-radiograph, 1.59-1.62 m 

Appendix A . Core Ness 3 
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Com Ness J x-radiograph, 1.62-1.79 m 

Appendix A . Core Ness 3 
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Appendix A . Core Ness 3 

Core Ness J x-radiograph, 1.78-1.93 m 
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Coie Ness 3 x-radiogr^h, 1.92-2.07 m 

Appendix A . Cove. Ness 3 
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Core Ness 3 x-radiograph, 2.05-2.20 m 

Appendix A . Core Ness 3 
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Appendix A . Core Ness 3 

Core Ness 3 x-radiograph, 2.20-2.35 m 
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Appendix A . Core Ness 3 
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Core Ness 3 x-radiograph. 3.59-3.74 m 

Appendix A . Core Ness 3 
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Core Ness 3 x-radiograph, 3.73-3.88 m 

Appendix A . Coie Ness 3 
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Com Ness 3 x-radiograph, 3.86-4.01 m 

Appendix A . C(xe Ness 3 
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Appendix A . Core Ness 3 
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Core Ness 3 x-radiograph, 4.13-4.28 m 

Appendix A . Core Ness 3 
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Appendix A . Core Ness 3 

Core Ness 3 x-radiograph, 4.23-4.38 m. Claylgyltja contacl. The image on the left is 

overexposed, illustrating laminations within the uppermost 1 cm of the clay, and the 

granularity of the sand layer beneath i t 
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Appendix A . Core Nexs 3 

Core Ness 3 x-radiograph, 4.36-4.51 m. Unlaminated grey clay. 
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Core Ness 4 x-radiograph, 0.0-0.15 m 

Appendix B . Core Ness 4 
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Appendix B . Core Ness 4 

Core Ness 4 x - rad iogr^h , 0.14-0.29 m 
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Core Ness 4 x-radiogr^h, 0.28-0.43 m 

Appendix B . Core. Ness 4 
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Core Ness 4 x-radiognqih, 0.42-0.58 m 

Appendix B . Core Ness 4 
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Core Ness 4 x-radiograph, 0.56-0.71 m 

Appendix B . Core Ness 4 
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Core Ness 4 x-radiograph, 0-70-0.85m 

Appendix B . Core Ness 4 
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Core Ness 4 x-radiograph, 0.85-1.00 m 

Appendix B . Core Ness 4 
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Appendix B . Core Ness 4 
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Appendix B . Core Ness 4 

CoreNess 4 x - r a d i o g r ^ h , 1.15-1.30m 
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Appendix B . Core Ness 4 

Core Ness 4 x-radiograph, 1.30-1.45 m 
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Appendix B . Core Ness 4 
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CoKNess 4 x-radiograpfa, 1.57-1.72 m 

Appendix B . Core Ness 4 
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Core Ness 4 x-radiograph, 1.71-1.86 m 

Appendix B . Core Ness 4 
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Appendix B. Core Ness 4 

Core Ness 4 x-radiograph, 1.85-2.00 m 
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Core Ness 4 x-radiograph, 2.00-2.15 m 

Appendix B . Core Ness 4 
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Appendix B . Core Ness 4 

Core Ness 4 x-radiograph, 2.14-2.29 tn 

n I. 
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Core Ness 4 x-radiograph. 2.2S-2A3 m 

Appendix B . Core Ness 4 
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Appendix B . Core Ness 4 
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Core Ness 4 x - rad iogr^h , 2.55-2.70 ra 

Appendix B. Core Ness 4 
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Core Ness 4 x-radiograph, 2.69-2.84 m 

Appendix B. Core Ness 4 
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Appendix B. Core Ness 4 
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Appendix B . Core Ness 4 

Core Ness 4 x-radiograph, 3.11-3.26 m 

P/0 
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Core Ness 4 x-radiograph, 3.25-3.40 m 

Appendix B . Core Ness 4 
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Appendix B. Ccw« Ness 4 
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Core Ness 4 x-radiograph. 3.52-3.67 m 

Appendix B. Core Ness 4 
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Core Ness 4 x - rad iogr^h , 3.66-3.81 m 

Appendix B. Core Ness 4 

1 
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Appendix B . Core Ness 4 

Core Ness 4 x-radiograph, 3 .8S4.00 m 
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Appendix B . Core Ness 4 

Core Ness 4 x-radiograph, 3.99-4.14 m. Clayfgyttja contact 
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Core LNRl x-radiograph, 0.04-0.19 m 

Appendix C . Core LNRl 
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Appendix C . Core LNRl 
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Appendix C . Core LNRJ 
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Appendix C. Core LNRl 

Core LNRl x-radiograph, 0.36-0.51 m 

(X-radiograph produced by D . B u i l , University of Southampton) 
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COK LNRl x-radiograph, 0.5-0.65 m 

Appendix C. Core LNRl 
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Core LNRl x - r a d i o g r ^ , 0.6-0.75m 

Appendix C . Core LNRl 
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