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a b s t r a c t

An understanding of the hydroelastic response of a flexible circular plate to water waves is relevant
to many problems in ocean engineering ranging from offshore wave energy converters and solar
wind devices to very large floating structures such as floating airports and ice sheets. This paper
describes results from physical model tests undertaken in the COAST laboratory at the University of
Plymouth. Response amplitude operators (RAOs) of a floating flexible circular disk are determined for
incident monochromatic and irregular wave trains, the latter defined by JONSWAP spectra. Free-surface
displacements are measured using wave gauges, and the plate motion recorded using a QUALISYS

®

motion tracking system. Different basin depths and plate thicknesses are considered in order to
quantify the effects of water depth and flexural plate rigidity on the overall dynamic behaviour of
the circular disk. We present synchronous and subharmonic nonlinear responses for monochromatic
waves, and displacement spectra for irregular waves. The measured wave hydrodynamics and disk
hydroelastic responses match theoretical predictions based on linear potential flow theory.

© 2023 The Author(s). Published by ElsevierMasson SAS. This is an open access article under the CC BY
license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The analysis of the fluid loading on and response of rigid
nd flexible plates is important in developing an understanding
f many fluid–structure interaction phenomena encountered in
cean engineering, offshore renewable energy, and nature (such
s ice plates in polar waters). In recent decades, there has been
rowing interest in the use of artificial, hydroelastic marine struc-
ures for residential, industrial, and transport purposes [1]. Very
arge Floating Structures (VLFS) have been proposed for floating
irports, breakwaters, bridges, piers and docks, storage facilities,
ecreation parks, habitation, offshore wind foundation, etc., and
re essentially large, almost horizontal plates that rest on the sea
urface [2,3]. Certain other artificial structures, such as flexible
ave energy converters [4] and offshore solar farms [5], also
omprise floating plates but are smaller than VLFS. Floating sea
ce [6] is a natural plate-shaped structure found in polar waters,
nd is of particular relevance given the heating effect on the
ceans due to global climate change.
Wave scattering by a horizontal circular plate floating on the

ater free surface is a classical problem in hydrodynamics that
as been investigated by many researchers [7]. Miles and Gilbert
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[8] considered wave diffraction by a partly immersed circular
dock in water of finite depth, and reduced the problem to a
Fredholm integral equation of the first kind with symmetrical
kernel, from which they obtained a variational approximation to
the far field. Later Garrett [9] solved the same problem by trans-
forming the mathematical system into an infinite set of linear
algebraic equations of the second kind. Black et al. [10] applied
Schwinger’s variational formulation to the radiation of surface
waves by small-amplitude oscillations of a circular dock. Dorf-
mann [11] considered a circular plate lying on the water free sur-
face, which is a limiting case of the circular dock-problem. Ben-
netts and Williams [12] carried out a series of physical tests on
water wave transmission by an array of circular rigid floating
plates in a 32 m long, 16 m wide wave basin, and found that the
wave-energy transmission of the array increased monotonically
with increasing wave period.

When the plate stiffness is not very large, flexural defor-
mation of disk can significantly affect its hydroelastic response
behaviour. In such cases, the simplistic assumption of rigid mo-
tion fails, and elasticity becomes a leading order effect [4]. To
predict the response of a circular flexible ice floe subjected to
long-crested sea waves, Meylan and Squire [6] proposed two
independent theoretical techniques for a thin circular plate: one
based on directly on eigenfunction expansions, the other whereby
a more general method of eigenfunctions was used to construct
a Green’s function for the plate. Zilman and Miloh [13] derived
a three-dimensional closed-form solution for water wave inter-

action with a floating circular thin elastic plate in shallow water.
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Fig. 1. Schematic of the plate set-up in the Ocean basin at the University of Plymouth. Crosses denote the location of the four wave gauges. Four radial lines indicate
the mooring lines connected with the basin gantries.
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Their solution was based on an angular eigenfunction expansion
together with a dispersion equation-based method. Owing to the
shallow-water approximation, this theory only required three
roots of the dispersion equation in the plate-covered region. Peter
et al. [14] extended this model to solve wave scattering from a
circular elastic plate floating in finite-depth water, thus removing
the restriction of the shallow-water approximation.

In the field of marine renewable energy, an effective way to
ncrease wave power absorption is by means of a flexible wave
nergy converter (WEC) [15,16]. Michele et al. [4,17] used a dry-
ode expansion to extend linear potential flow theory to flexible
ECs, involving a series of power take-off units deployed under
free floating elastic plate in order to capture wave power. Re-
ently, Zheng et al. [18] investigated wave power extraction by a
ircular elastic plate WEC, employing a dispersion relation-based
heoretical model [19,20].

The hydroelastic characteristics of flexible plates have also
een studied for an array of elastic plates [21,22], free float-
ng and submerged circular porous elastic plates [19,23–25],
ime-dependent transient responses of elastic plates [26,27], and
ydro-electromechanical coupled piezoelectric WECs [28,29].
Apart from the foregoing theoretical and numerical studies,
few physical model investigations have been undertaken at

aboratory scale to characterise free surface wave scattering by
hin elastic horizontal plates. To simulate the hydrodynamic re-
ponse of idealised sea ice, Sakai and Hanai [30] conducted a
eries of physical tests in a 26 m long wave flume. Ultrasonic
ensors were used to measure the deflection of elastic sheets
t several regularly spaced locations. Recently, Brown et al. [31]
nalysed the 2-D hydroelastic behaviour of a floating elastic plate
n a channel flume and showed that OpenFOAM models have
ood potential for future application to wave-driven hydroelastic
roblems. Montiel et al. [32,33] reported results from a series
f physical tests on the flexural response of a single or pair of
ircular floating thin elastic plate(s) subject to monochromatic
ravity waves in a 15.5 m long, 9.0 m wide, 1.9 m deep wave
asin. A vertical rod was suspended through a small hole in
he centre of the plate, where the frictional effects along the
entral rod could lead to unexpected nonlinearities, to eliminate
urge and drift; and an edge barrier was introduced to prevent
vertopping. Montiel et al. [32] compared the deflection data at
our points of the circular plate with predictions by a numerical
odel. Although good overall agreement was achieved between

he theoretical and experimental results, the numerical model
as found consistently to overestimate the response at all wave

requencies, with a relative difference of 5%–20%. An independent
xperimental campaign was later conducted by Meylan et al. [34]
n a 15.5 m long, 10 m wide wave basin, with a rectangular thin
lastic plate used to model an ice floe. No barrier was attached
 t

149
to the edge of the plate, and so waves were permitted to wash
over the plate. Regular incident waves were used in their study,
and the experimental data indicated that the plate’s motion was
essentially linear.

In this paper, we report results from physical tests in the
Coastal, Ocean and Sediment Transport (COAST) laboratory at the
University of Plymouth on the response of a floating hydroelastic
disk in regular and irregular waves, and examine the influence
of still water depth and plate flexural rigidity. Measured steady-
state response amplitudes are compared against predictions by
linear potential flow theory [4] (which neglects the effects of fluid
viscosity and turbulence). Second and third harmonic displace-
ments are determined in regular waves. The analysis is relevant to
nonlinear WEC hydrodynamics [35–37], nonlinear ice plate mod-
elling [38–40], and nonlinear VLFS performance [41,42]. Results
are also presented for irregular waves defined by JONSWAP spec-
tra [43] and Michele et al.’s theory [4] extended to irregular sea
states. The paper is structured as follows. Section 2 describes the
physical test facility and measurement instrumentation. Section 3
outlines the test programme. Section 4 presents a potential flow
model for predicting the response of a horizontal circular plate to
regular and irregular waves. Section 5 outlines the method used
to evaluate response amplitude operators from the experimental
data. Section 6 presents the experimental and theoretical results.
Section 7 summarises the main findings.

2. Experimental set-up

Physical model tests were undertaken on a moored floating
elastic disk in water waves in the COAST laboratory at the Uni-
versity of Plymouth. The COAST Ocean basin is of length L =

5 m and width B = 15.5 m, and has a movable floor that
ccommodates an operating depth of up to h = 3 m. Water
aves are generated by 24 individually controlled, hinged-flap,
ave-absorbing paddles. Fig. 1 provides a schematic plan view
f the basin, elastic disk, wave gauges, and mooring system. The
hotograph in Fig. 2 shows a perspective view of the model plate
ithin the Ocean basin.
The origin of the coordinate system is located at the initial disk

entre position, x is the horizontal axis parallel to the major basin
ength, y is parallel to the wavemakers, and z points vertically
pwards from still water level. The origin is located a distance
c = 14.8 m from the paddles and yc = 7.25 m from each lateral
all.
The elastic disk was fabricated from expanded polyvinyl chlo-

ide (PVC) FOREX
®
, as also used by Montiel et al. [32] in their

xperiments. To avoid strong wave interactions with the lateral
asin walls, the circular plate radius of R = 0.75 m was selected

o be much smaller than B. Two circular plates of thickness
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Fig. 2. View of the experimental set-up. The disk is placed in front of the
addles. One of the six cameras used for tracking motion is visible at the
op-right of the picture.

Fig. 3. Photograph showing connection mooring details used to avoid drift
motion. The spring at the end of each mooring removed large impulsive forces.

hp = [3; 10] mm were tested in the experiments, for which
we have hp ≪ R, and so our theoretical model is based on the
thin plate approximation. Plate density ρp and Young’s modulus
E were evaluated experimentally because of uncertainty in the
values specified by the supplier. For the 3 mm thickness plate we
found ρp = 489.64 kg m−3 and E = 508 GPa, whereas for the
10 mm thickness plate we obtained ρp = 463.87 kg m−3 and

= 854 GPa. These results are very close to values reported in
able 1 of Montiel et al. [32].
To prevent second-order plate drift, we added four horizontal

oorings, each of length 3 m, connected by four vertical beams
ixed to the basin gantries (see Figs. 1 and 2). The vertical beams
re located at 45◦ with respect to the incident wave direction,
ermitting symmetric response with respect to the horizontal
xis x. Each mooring was fitted with a spring at its end, the
pring having small stiffness ∼8.73 N m−1 to avoid impulsive
orces and large vertical reactions that are not accounted for
n the theoretical model. Fig. 3 shows details of the mooring
onnections, and Fig. 4 shows a view of the floating plate with
he mooring system.

If the plate is of thickness smaller than the wave amplitude
p ≪ A, then greenwater flooding could occur. In the experi-
ents, we fixed a black neoprene foam waterproof barrier around

he edge of the plate (see Figs. 3(a) and 4) in order to avoid this
150
Fig. 4. View of elastic disk, markers, and mooring lines connected to the
gantries. Each mooring line is located at 45◦ with respect to the direction of
incident wave propagation x.

Table 1
Wave gauge coordinates.

Gauge 1 Gauge 2 Gauge 3 Gauge 4

x (m) 2.32 0 −2.71 5.52
y (m) 0 2.245 0 0

highly nonlinear phenomenon [44] which was not included in our
mathematical model. Viscous adhesive and silicon were used to
prevent water filtration which could affect overall response and
marker reflectivity. The neoprene had negligible stiffness and a
material density of 120 kg m−3, which is much smaller than that
of the plates (489.64 kg m−3 and 463.87 kg m−3, respectively, for
the 3 mm and 10 mm thickness plates), and so its contribution to
plate dynamics is expected to be rather small, especially for the
10 mm thickness plate, and could be neglected.

Free-surface elevation time series were recorded using four
wave gauges located in the region close to the elastic plate. The
gauge locations are listed in Table 1, and indicated in Fig. 1.

Measurements were also collected in the wave basin in the
absence of the plate and support structures. This facilitated mea-
surement of the undisturbed incident wave amplitude in the disk
region. With the plate present, its response amplitude operator
(RAO) was then determined. Plate movement was recorded by a
motion tracking device developed by QUALISYS

®
to an accuracy

of O(10−6) m. A sampling frequency of 128 Hz was implemented
and all the data were analysed using MATLAB. The movement
measurement system comprised six infrared cameras that cap-
tured the three-dimensional positions of markers. Each marker
consisted of a 30 mm diameter polystyrene sphere covered with
retro-reflective tape, and glued to the top surface of the disk. The
plate motion was excited by incident waves whose direction was
parallel to the x-axis in order to produce a symmetric response by
the disk. A total of 29 markers were fixed to the disk covering half
its surface y ≥ 0; all were visible at all times by the six cameras.
The markers were distributed radially in accordance with the
theory described in Section 4 which is based on radial and circular
eigenfrequencies.

Fig. 5(a) shows the location of the six cameras placed above
the Ocean basin. Fig. 5(b) shows the marker radial distribution
above the plate, whereas Fig. 6 represents the location of the 29
markers. For brevity, in the subsequent analyses, we present the
oscillations recorded only by markers 0 (located at the origin), 22,
25, and 28 (located close to the neoprene barrier). Table 2 lists the
coordinates of these markers.
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Fig. 5. Plate motion tracking system (a) Locations of six QUALISYS
®

cameras
long the side wall of the Ocean basin; and (b) radial distribution of the 29
arkers on the top surface of the plate.

. Tests summary

Two series of tests were undertaken. The first series investi-
ated synchronous and subharmonic plate responses to
onochromatic regular waves. The second series examined the
late in irregular waves (defined according to a prescribed wave
nergy spectrum). The experimental results were then used to
alidate the theoretical model developed by Michele et al. [4] (see
ection 4).

.1. Regular waves

Tests were carried out separately on two elastic disks of differ-
nt thicknesses hp in regular monochromatic waves of constant
mplitude A and frequency f . Data were collected for different
ave frequencies in the range f ∈ [0.4; 1.9] Hz with frequency

increment ∆f = 0.05 Hz. Two basin depths were considered, h =

1.5; 3] m. A constant wave amplitude was selected, A = 0.03
. In the smaller depth case, h = 1.5 m, measurements were

ecorded for a reduced wave amplitude A = 0.02 m in order to
nvestigate possible nonlinear responses that were not propor-
ional to A. Table 3 summarises the three cases investigated for
ach plate thickness; for the single disk, a total of 186 tests were
erformed.
151
Fig. 6. Plan view of disk, neoprene foam barrier, and marker locations. Results
from markers 0, 22, 25 and 28 are used to determine the plate dynamic
behaviour.

Table 2
Locations of markers used in theoretical and experimental analyses.

Marker 0 Marker 22 Marker 25 Marker 28

x (m) 0 0.685 0 −0.685
y (m) 0 0 0.685 0

Table 3
Wave amplitude A and basin depth h for the regular wave cases. Each case has
been considered for each plate thickness hp .

Case 1 Case 2 Case 3

A (cm) 3 3 2
h (m) 1.5 3 1.5

3.2. Irregular waves

In the second series of tests, irregular waves were defined by
the JONSWAP energy spectrum Sζ given by Goda [43] as:

Sζ (ω) =
αH2

s

ω

(ωp

ω

)4
exp

[
−1.25

(ωp

ω

)4
]

γ
exp

[
−(ω/ωp−1)2/(2σ2)

]
,

(1)

in which Hs is the significant wave height, ωp = 2π/Tp denotes
the peak spectral frequency, ω = 2π f is the wave frequency, Tp
is peak period, and

α =
0.0624(1.094 − 0.01915 ln γ )

0.23 + 0.0336γ − 0.185(1.9 + γ )−1 ,

σ =

{
0.07 : ω ≤ ωp

0.09 : ω > ωp
, γ = 3.3.

(2)

The basin depth was fixed at h = 3 m and significant wave height
Hs = 0.04 m to avoid possible overtopping by waves of elevation
above the crest of the neoprene barrier. Five values of peak period
Tp = [0.8; 0.9; 1.0; 1.1; 1.2] s were considered for each disk in
order to analyse the effects of plate flexural rigidity and wave
peak period on the plate response spectrum.

4. Mathematical model of the response of a disk to regular and
irregular waves

Following Michele et al. [4] we define W as the vertical dis-
placement of the disk above still water level and Φ as a complex
velocity potential that satisfies Laplace’s equation in the fluid
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omain. The system is forced by monochromatic incident waves
f frequency ω, and so we introduce the following harmonic
xpansion

Φ,W } = Re
{
(φ, w)e−iωt} , (3)

here φ is the scalar velocity potential, i is the imaginary unit,
nd t is time. Here, the plate undergoes symmetrical motion,
scillating through a combination of axisymmetric modes. Hence,

= ζhwh + ζpwp +

∞∑
m=0

∞∑
n=0

ζmnwmn, (4)

where the first two terms represent heave and pitching, the series
denote elastic bending modes, and ζα denotes the complex am-
litude of each modal shape wα . Let (r, θ ) be radial and angular
oordinates with θ = 0 corresponding with the x axis and θ
ositive counterclockwise. Heave and pitch modal shapes are
imply

h = 1, wp = r cos θ. (5)

lastic dry mode eigenfunctions are given by [45]

mn = cos nθ
[
Jn

(
λmnr
R

)
− In

(
λmnr
R

)
Tmn

]
,

n = 0, 1, . . . , m = 0, 1, . . .
(6)

where

Tmn =
J ′′n

(
λmnr
R

)
−

n2ν

R2
Jn

(
λmnr
R

)
+

ν
R J

′
n

(
λmnr
R

)
I ′′n

(
λmnr
R

)
−

n2ν

R2
In

(
λmnr
R

)
+

ν
R I

′
n

(
λmnr
R

) ⏐⏐⏐⏐⏐
r=R

, (7)

in which Jn and In are the Bessel function and modified Bessel
function of order n, primes indicate the derivative with respect
to the radial coordinate r , λ4

mn = ρhhpR4ω2
mn/D is the eigenvalue,

and ωmn is the relative eigenfrequency.
Following [46] we decompose the velocity potential φ into

diffraction and radiation components, i.e.

φ = φD + ζhφh + ζpφp +

∞∑
m=0

∞∑
n=0

ζmnφmn, φD = φI + φS, (8)

where the incident wave potential is

φI = −
iAg
ω

∞∑
n=0

ϵninJn (k0r)
cosh k0 (h + z)

cosh k0h
cos nθ, in Ωe, (9)

he wavenumber k0 is the real root of the dispersion relation
2

= gk0 tanh(k0h), g is the acceleration due to gravity, φS is
he scattering potential, φD is the diffraction potential, φh is the
eaving radiation potential, φp is the pitching radiation potential,
nd φmn is the radiation potential related to the mn-th elastic
ode.

.1. Diffraction velocity potential

The general solution for the diffraction potential beyond the
isk where r > R is

(e)
D = −

iAg
ω

∞∑
n=0

cos nθ

⎧⎨⎩ cosh k0(h + z)
cosh k0h

×

⎡⎣ϵninJn(k0r) + AD
0n

H (1)
n (k0r)

H (1)′
n (k0r)

⏐⏐⏐
r=R

⎤⎦
+

∞∑
l=1

AD
ln
Kn(klr) cos kl(h + z)

K ′
n(klr)

⏐⏐
r=R cos klh

⎫⎬⎭ , (10)
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where kl denotes the roots of the following dispersion relation
related to the evanescent components

ω2
= −gkl tan klh, (11)

(1)
n is the Hankel function of first kind and order n, Kn is the
odified Bessel function of second kind and order n, and Aln
re unknown complex constants. Similarly, the solution for the
iffraction potential in the fluid domain below the circular plate
s given by

(i)
D = −

iAg
ω

∞∑
n=0

cos nθ

×

{
BD
0n

( r
R

)n
+

∞∑
l=1

BD
ln
In(µlr) cosµl(h + z)
I ′n(µlr)

⏐⏐
r=R cosµlh

}
, µl =

lπ
h

,

(12)

here BD
ln are unknown coefficients which are determined nu-

erically as by Linton and McIver [7] and Michele et al. [4].

.2. Radiation velocity potential

The general solution in the region r > R for each radiation
elocity potential α is

(e)
α =

∞∑
n=0

cos nθ

×

⎧⎨⎩Aα
0n

H (1)
n (k0r) cosh k0(h + z)

H (1)′
n (k0r)

⏐⏐⏐
r=R

cosh k0h
+

∞∑
l=1

Aα
ln
Kn(klr) cos kl(h + z)

K ′
n(klr)

⏐⏐
r=R cos klh

⎫⎬⎭
,

(13)

where the value of the subscript α refers to heave, pitch, or
mnth bending elastic mode. The radiation potential solution in the
region below the plate where r < R is given by the homogeneous
part φ

(i)
αh in addition to a particular solution that accounts for the

plate vibration. The homogeneous component is [7]

φ
(i)
αh =

∞∑
n=0

cos nθ

{
Bα
0n

( r
R

)n
+

∞∑
l=1

Bα
ln
In(µlr) cosµl(h + z)
I ′n(µlr)

⏐⏐
r=R cosµlh

}
,

µl =
lπ
h

,

(14)

whereas the structure of each particular solution is independent
of the others. Applying separation of variables, the particular
solution for the rigid heave and pitching modes is [47]

φ̃h = −
iω
2h

[
z2 + 2hz −

r2

2

]
,

˜p = −
iωr cos θ

8h

[
4z2 + 8hz − r2

]
,

(15)

nd the particular solution for each bending elastic mode is

˜mn = −iωR
cos nθ
λmn

×

{
cosh λmn(h+z)

R Jn
(

λmnr
R

)
sinh λmnh

R

+
cos λmn(h+z)

R In
(

λmnr
R

)
sin λmnh

R

Tmn

}
,

n = 0, 1, . . . (16)

As before, the unknowns Aα
ln, B

α
ln have to be determined numeri-

cally.
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.3. Plate motion

The modal amplitudes are obtained from the equation of mo-
ion of the disk. Assuming that the mooring system and neoprene
oam rigidity have negligible effects, the dynamic equation can be
ritten as

∇
4W + ρphpWtt + ρgW + ρΦt = 0, (17)

here D = Eh3
p/12(1−ν2) is the flexural rigidity, E is the Young’s

modulus of the plate material, ν = 0.3 is Poisson’s ratio [32], ∇4

denotes the biharmonic operator in cylindrical–polar coordinates,
ρ is the fluid density, and the subscripts denote differentiation
with respect to the relevant variable. By substituting dry mode
decomposition (4) in (17) we obtain a system expressed in terms
of complex modal amplitudes ζh, ζp and ζmn. The resulting linear
system is then written in the following matrix form

M {ζ } = {F} , (18)

here M is the coefficient matrix, {F} is the exciting force vector,
nd {ζ } is a vector of unknown modal amplitudes. Additional
etails about the numerical procedure are given by [4,7,48]. Once
he complex amplitudes are evaluated, the marker displacement
s simply given by substituting the coordinates in Table 2 into
xpression (4).

.4. Theoretical response amplitude operator for irregular incident
aves

Noting that the theoretical model is based on a linear as-
umption, the time-dependent oscillation of the flexible disk in
rregular waves can be written as [17]

=

∞∑
n=1

√
2Sζ (ωn) ∆ω RAO (ωn, r, θ) cos (ωnt + δn) , (19)

where ωn is the nth component of the discretised spectrum, ∆ω

is the frequency interval, δn is a random phase related to ωn, and
AO is the Response Amplitude Operator for the plate defined as

AO (ωn, r, θ) =
|W |

A
. (20)

The theoretical response spectrum is consequently given by

Sw = Sζ × RAO2. (21)

For a prescribed wave spectrum and known RAO, the response
to irregular waves is given by expression (21) - used later for
comparisons against the experimental results.

5. Evaluation of experimental response amplitude operator

Fourier analysis was used to derive the experimental RAO from
measured time-series of wave elevation and plate displacements.
Following Mei [49] we assume the Fourier series expansion,

η =
a0
2

+

∞∑
n=1

(
an cos

[
nπ (2t − t2 − t1)

t2 − t1

]
+ bn sin

[
nπ (2t − t2 − t1)

t2 − t1

])
,

(22)

here η refers to the recorded time series of marker or free
surface vertical displacements, and the parameters (t1, t2) define
he time interval required to reach steady state by which time
ransient effects become negligible. The Fourier coefficients a , b
n n s
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with n ≥ 1 represent plate oscillations and are evaluated from the
integral relationships,

an =
2

t2 − t1

∫ t2

t1

η(t) cos
[
nπ (2t − t2 − t1)

t2 − t1

]
dt, (23)

nd

n =
2

t2 − t1

∫ t2

t1

η(t) sin
[
nπ (2t − t2 − t1)

t2 − t1

]
dt. (24)

The generalised raw response amplitude spectrum is finally given
by

An =

√
a2n + b2n. (25)

6. Results and discussion

6.1. Regular incident waves

In this Section, we analyse the synchronous and subharmonic
responses of the plate by examining the RAOs of markers 0, 22,
25, and 28 for the cases listed in Table 3. Results are reported for
plate thicknesses of hp = 3 mm and hp = 10 mm.

6.1.1. Wave amplitude in the disk region
Water wave propagation is affected by nonlinearity, fluid vis-

cosity, and basin geometry [46,50–53], and so the wave am-
plitude in the disk region might not be the same as the input
assigned for wavemaker motion. Experimental values of wave
amplitude Aexp(f ) without the disk are determined by Fourier
analysis of the time-series recorded by the wave gauges and
averaging the nth synchronous component n = f (t2 − t1) of the
orresponding spectrum (25). We consider a time interval of 80
from t1 = 40 s to t2 = 120 s, during which steady state has
een reached and transient effects from the initial wave front and
railing waves can be neglected [46].

Fig. 7(a) presents recorded free-surface wave amplitude versus
ave frequency, f ∈ [0.4; 1.9] Hz, for the cases listed in Table 3.

n each case, the behaviour is quite similar, with the wave ampli-
ude declining as the wave frequency increases. This is primarily
ue to hydrodynamic damping. Wavemaker calibration is there-
ore required for the actual amplitude to match the input target
alue. In undertaking the comparison between experimental and
heoretical RAOs in the next section, recorded values (Fig. 7(a))
re used to represent the amplitude of the forcing incident field.
The experimental wave steepness is defined as ϵ = Aexpk,

here k is the wavenumber satisfying the linear dispersion re-
ation ω2

= gk tanh(kh). For ϵ ≪ 1, nonlinear quadratic and
ubic products in the boundary conditions at the free-surface
nd plate boundaries can be neglected and the linearised leading
rder term is valid [46]. Nonlinear contributions are represented
y second-order O(ϵ) and third-order O(ϵ2) effects. In Case 1 and
ase 3 the wavelengths are λ ∈ [8.04; 0.43] m. In the deeper
ater of Case 2 the wavelength λ ∈ [9.4; 0.43] m, and the deep
ater approximation can be applied at large frequencies because
no longer depends on h.
Fig. 7(b) shows the rise in measured wave steepness with

ncident wave frequency, as the wavelength shortens. Over the
ange of frequencies considered, ϵ < 0.27, i.e. much smaller than
nity. This confirms the dominance of the linear contribution.
ote also that at large frequencies there could be some wave
reaking in the region close the wavemaker. This clearly affects
avetrain propagation and causes the wiggles for f > 1.6 Hz

hown in Fig. 7.
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Fig. 7. Figure (a) recorded wave amplitude in the disk region Aexp , and (b) wave steepness ϵ versus wave frequency f for cases in Table 3.
Fig. 8. Response amplitude operator versus frequency at marker locations 0, 22, 25 and 28 for h = 1.5 m and A = 0.03 m: (a) hp = 3 mm, and (b) hp = 10 mm.
olid lines depict the analytical solution whereas symbols represent the experimental results.
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.1.2. Synchronous linear response to monochromatic waves
We now compare theoretical predictions and experimental

easurements of the plate vertical displacements. The plate re-
ponse at leading order is synchronous with incident wave fre-
uency; hence the nth component is extracted from the am-
litude spectrum (25), such that n = f (t2 − t1), where f is

the assigned incident wave frequency. Once the nth spectrum
component of marker displacements wexp and wave elevation
n the disk region Aexp have been determined, the experimental
value of synchronous RAO for each marker is then evaluated using
measured data from

RAOexp(ω) =
wexp

Aexp
. (26)

Consider Case 1 with basin depth h = 1.5 m and incident
ave amplitude A = 0.03 m. Fig. 8 presents the response
mplitude operator versus wave frequency for markers 0, 22,
5, and 28, and two plate thicknesses hp = 3 mm and hp =

0 mm. Bearing in mind the limitations of the theoretical model,
ood agreement is achieved between the theoretical RAO curve
rom Eq. (20) and the experimental RAOexp values, especially
or the larger thickness case (Fig. 8(b)). Peaks related to res-
nant rigid and bending modes are properly captured except
154
or the highest frequency peak for marker 22 in Fig. 8(a). An
xplanation follows. Theoretical eigenfrequency values are deter-
ined numerically by equating to zero the determinant of the
oefficient matrix M in Eq. (18). The first eigenfrequencies are
= [0.80; 1.03; 1.25; 1.43; 1.49; 1.77; 1.85] Hz for the 3 mm

disk and f = [0.82; 1.06; 1.59] Hz for the 10 mm disk when
= 1.5 m. Here, the first two values correspond to heave

nd pitch resonances, and depend only on plate geometry and
ensity. The remaining eigenfrequencies relate to bending modes
nd thus also depend on flexural rigidity D. Hence, the theoretical
odel over-predicts the plate response, especially when higher
ending mode resonance occurs. This occurs primarily because
ydrodynamic viscous damping and viscoelastic behaviour of the
isk are neglected. Even so, the mathematical model properly
eproduces the experimental rigid modes and first bending mode
esonance locations; this is due to the larger added mass arising
rom the plate motion, which reduces damping. Furthermore, the
hinner the plate, the lighter and more flexible it is, making it
ore sensitive to the green water at the plate skirt outside the
eoprene foam barrier, the effect of which is neglected in the
heoretical model. In addition, the discrepancies in the theoretical
esults, especially for the thinner plate at high frequencies, could
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Fig. 9. Response amplitude operator versus frequency at marker locations 0, 22, 25 and 28 for h = 1.5 m and A = 0.02 m: (a) hp = 3 mm, and (b) hp = 10 mm.
olid lines depict the analytical solution whereas symbols represent the experimental results.
Fig. 10. Normalised higher harmonic response contributions versus wave frequency at marker locations 0, 22, 25 and 28 for hp = 3 mm, h = 1.5 m and A = 0.03
m: (a) second harmonic response 2f ; and (b) third harmonic response 3f .
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also be due to nonlinear deformations of the plate. Indeed, a thin
plate is generally rather deformable, and nonlinear effects always
arise in wave tanks, even if small.

Fig. 9 compares theoretical and experimental RAO results for
Case 3 where h = 1.5 m and the wave amplitude is smaller,
A = 0.02 m. The remarkable similarity between Figs. 8 and 9
reflects the dominance of linear effects whereby the RAO does
not depend strongly on A.

The results given by the Case 2 are not reported here for
brevity. We anticipate that they are very similar to those in Fig. 8
because of dominant deep-water dynamics across the frequency
range for h ≥ 1.5 m.

6.1.3. Second and third harmonic response
In this section, we evaluate the plate subharmonic behaviour

in monochromatic waves. By following a perturbation approach,
quadratic and cubic nonlinear terms are included in the boundary
conditions, leading to contributions of order O(ϵ) or smaller [46].
In the present experiments ϵ ≪ 1, and so we expect the sub-
harmonic responses to be less pronounced than the linear syn-
chronous behaviour. Following Mei [49], we use Fourier analysis
to obtain the second harmonic 2f and third harmonic 3f response
components to incident waves of frequency f . The components
155
have indexes:

n = 2f (t2 − t1), n = 3f (t2 − t1). (27)

erein, the response amplitude operators of the second and third
armonics are denoted by RAO2 and RAO3.
Fig. 10 displays experimental subharmonic RAO according to

ncident wave frequency for Case 1 where hp = 3 mm, h =

.5 m, and A = 0.03 m at marker locations 0, 22, 25, and
28. The subharmonic response is significantly smaller than the
linear response in Fig. 8(a). This is because subharmonics are at
most O(ϵ) order effects and the wave steepness is very small
in this case. Moreover, the third order harmonic response 3f is
much smaller than the second harmonic response 2f for ϵ ≪ 1.
Even so, as shown in Fig. 10(a), the second harmonic component
can be important as evidenced by RAO2 approaching ∼0.25 for
f = 1.05 Hz. This peak, recorded at marker 28 at the back stern
of the plate, warrants further theoretical investigation through
weakly nonlinear approaches. We believe the peak arises from
the presence of several natural bending modes in the frequency
range of interest where multi-resonance is possible.

Fig. 11 depicts the subharmonic response operators when hp
s altered to 10 mm, i.e. a plate of larger thickness and flexural
igidity. The RAOs are much smaller than in the previous case,
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Fig. 11. Normalised higher harmonic response contributions versus wave frequency at marker locations 0, 22, 25 and 28 for hp = 10 mm, h = 1.5 m and A = 0.03
m: (a) second harmonic response 2f ; and (b) third harmonic response 3f .
Fig. 12. Normalised higher harmonic response contributions versus wave frequency at marker locations 0, 22, 25 and 28 for hp = 3 mm, h = 1.5 m and A = 0.02
m: (a) second harmonic response 2f ; and (b) third harmonic response 3f .
Fig. 13. Normalised higher harmonic response contributions versus wave frequency at marker locations 0, 22, 25 and 28 for hp = 10 mm, h = 1.5 m and A = 0.02
m: (a) second harmonic response 2f ; and (b) third harmonic response 3f .
see Fig. 10, with the second harmonic response reaching a value
of ∼0.1. Again, the plate region at the incident wave side (in-
cluding marker 28) is most affected by nonlinear effects. This also
warrants further investigation.
156
Figs. 12 and 13 show the subharmonic response for Case 3
with smaller incident wave amplitude A = 0.02 m. RAO2 and
RAO3 are overall smaller than shown in Figs. 10 and 11 because
of the smaller A. Subharmonic displacements related to nonlinear
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Fig. 14. Normalised response spectrum for incident wave frequency equal to 1 Hz, hp = 3 mm, h = 1.5 m and marker 28. Figure (a) A = 0.03 m; and (b) A = 0.02
m.
Fig. 15. Theoretical JONSWAP wave energy spectra prescribed by Eq. (1) and experimental wave energy spectra at wave gauge 2 without the disk present for
s = 0.04 m and peak wave period: (a) Tp = 0.8 s and (b) Tp = 1.2 s.
effects are therefore different to the synchronous responses in
that their behaviour depends on wave amplitude.

We point out that the second and third harmonic responses for
Case 2 result very similar to that in Figs. 10 and 11 respectively
and are not reported here for brevity. This confirms that basin
depth played a minor role for still water depth h ≥ 1.5 m.

To further analyse the behaviour of the subharmonic com-
onents, let us define the normalised response spectrum RAOn

as the ratio between the displacement spectrum and the syn-
chronous component n = f (t2−t1) of the incident wave spectrum.
ig. 14 shows the behaviour RAOn of marker 28 for fixed incident
ave frequency equal to 1 Hz and two wave amplitudes A = 0.03
(Case 1) and A = 0.02 m (Case 3), respectively. The first

eak corresponds to the synchronous RAO shown in Figs. 8(a)
nd 9(a), whereas the second and third peaks correspond to the
ubharmonic RAOs shown in Figs. 10 and 12, for f = 1 Hz.
ote that the larger the frequency component the smaller the
orresponding peak. This is consistent with a perturbation ap-
roach in terms of wave steepness ϵ. Furthermore, by comparing
igs. 14(a) to 14(b) we note that the response spectrum decreases
ith the incident wave amplitude. As already explained above,
157
this is due to nonlinear dependence of subharmonic components
with respect to Aexp.

6.2. Irregular waves

This section considers the response of the circular hydroelastic
disk to irregular waves by interpreting the disk response spectra
at marker locations 0, 22, 25, and 28. Results are reported only
for the two cases Hs = 0.04 m and Tp = [0.8; 1.2] s.

6.2.1. Wave field in the region of the disk
As discussed previously for monochromatic wave generation,

the actual wave amplitude is invariably somewhat different from
the target input amplitude supplied to the wavemaker. For the
irregular wave field, empty basin tests were necessary in order
to extract the forced incident wave field. Fig. 15 shows that
there is a good match between the theoretical energy spectra Sζ

prescribed by Eq. (1) and raw experimental energy spectra of the
undisturbed wave field for Hs = 0.04 m and Tp = [0.8; 1.2] s.

To further investigate the behaviour of recorded Sζ , we evalu-
ate the measured significant wave height from [43]
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Fig. 16. Vertical displacement spectra for Hs = 0.04 m, Tp = 0.8 s and plate thickness hp = 10 mm at (a) Marker 0, (b) Marker 22, (c) Marker 25, and (d) Marker
8. The red line corresponds to theory, and the black line is obtained from the measured displacement time series. (For interpretation of the references to colour
n this figure legend, the reader is referred to the web version of this article.)
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s,exp ∼ 4
√
2πm0, (28)

here m0 is the zeroth spectral moment,

m0 =

∫
∞

0
Sζ df . (29)

y applying this expression to the data in Fig. 15 we obtain
s,exp = [0.031; 0.033] m for the peak periods considered. This
eans that even in the case of irregular waves, the actual wave

ield has smaller free-surface displacements than the assigned
avemaker input Hs = 0.04 m.

.2.2. Response to irregular waves
We next examine disk smoothed response spectra obtained by

nalysing the measured vertical displacements of markers 0, 22,
5, and 28. The experimental incident wave spectra adopted for
heoretical comparisons are given by the black curves shown in
ig. 15, whereas smoothing of the theoretical and experimental
pectra is performed by applying the averaging method to the
aw spectra Sw(f ). In this work we apply the simple rectangular
moothing and choose 31 adjacent values [43].
Figs. 16 and 17 compare the smoothed experimental and the-

retical response spectra (21) obtained at each marker for hp =

0 mm and two peak periods Tp = [0.8; 1.2] s (corresponding
o peak frequencies f = [1.25; 0.833] Hz). The theoretical model
p

158
red lines) properly represents the experimental response (black
ines) in irregular waves. The response amplitude increases with
eak period because resonant heaving occurs at small frequencies
lose to f ∼ 0.8 Hz and the RAO is thus maximised.
Figs. 18 and 19 display the superimposed experimental and

heoretical response spectra Sw prescribed by Eq. (21) at each
arker for smaller plate thickness hp = 3 mm but the same peak
eriods Tp as Figs. 16 and 17. The overall agreement between the
heoretical and experimental data is again very good.

For each marker, we evaluate the measured significant vertical
isplacement height,

s ∼ 4

√
2π

∫
∞

0
Sw df . (30)

Table 4 summarises the theoretical and experimental signifi-
cant responses obtained for each marker, peak period, and plate
thickness. The agreement is very good throughout, with the max-
imum error having an order of magnitude of about O(1) mm.
The plate response depends on marker location, having larger or
smaller amplitude than the measured significant incident wave
height, Hs,exp = [0.031; 0.033] m. In Figs. 8 and 9, the marker
response amplitude operators have values that are obviously
dependent on where the peak frequency is located.
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Fig. 17. Vertical displacement spectra for Hs = 0.04 m, Tp = 1.2 s and plate thickness hp = 10 mm at (a) Marker 0, (b) Marker 22, (c) Marker 25, and (d) Marker
8. The red line corresponds to theory, and the black line is obtained from the measured displacement time series. (For interpretation of the references to colour
n this figure legend, the reader is referred to the web version of this article.)
Table 4
Measured and theoretical significant responses Ws (m) at each marker for plate thickness hp = 10 mm and 3 mm.

Marker 0 Marker 22 Marker 25 Marker 28

Measured Theoretical Measured Theoretical Measured Theoretical Measured Theoretical

hp = 10 mm Tp = 0.8 s 0.0095 0.0083 0.0208 0.0185 0.0155 0.0161 0.0231 0.0221
Tp = 1.2 s 0.0226 0.0211 0.0375 0.0388 0.0272 0.0268 0.0375 0.0390

hp = 3 mm Tp = 0.8 s 0.0169 0.0183 0.0275 0.0297 0.0169 0.0208 0.0263 0.0252
Tp = 1.2 s 0.0294 0.0315 0.0361 0.0368 0.0304 0.0327 0.0350 0.0359
7. Conclusions

Experimental data on the hydroelastic response of a flexible
ircular floating plate in regular and irregular waves were ob-
ained from physical tests conducted in the COAST laboratory
t the University of Plymouth. The effect of rigid and flexible
ending modes on overall disk motion was elucidated. The tests
overed a wide range of wave frequencies and different still water
epths and wave amplitudes. Very close agreement was obtained
etween experimental response spectra and their counterparts
redicted using linear potential flow theory. This was particularly
ncouraging given the complexity of the hydroelastic problem.
ome discrepancies occurred especially at large values of wave
159
frequency and for higher natural flexible modes. Future studies
are recommended to investigate the effects of disk viscoelastic-
ity, nonlinear wave propagation, fluid viscosity, mooring forces,
and the presence of an edge barrier on plate behaviour. Using
Fourier analysis, second and third sub-harmonics of the disk
response were determined from the measured displacement time
series. The results revealed second-order sub-harmonic resonant
peaks of significant amplitude. In practice, this would cause addi-
tional internal stresses, plate deformation, and external forces on
the mooring lines. Good agreement was also achieved between
experimental and theoretical disk responses to irregular waves
defined by JONSWAP spectra. The results support the use of
potential flow theory as a tool to predict flexible body motion
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Fig. 18. Vertical displacement spectra for Hs = 0.04 m, Tp = 0.8 s and plate thickness hp = 3 mm at (a) Marker 0, (b) Marker 22, (c) Marker 25, and (d) Marker
28. The red line corresponds to theory, and the black line is obtained from the measured displacement time series. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)

Fig. 19. Vertical displacement spectra for Hs = 0.04 m, Tp = 1.2 s and plate thickness hp = 3 mm at (a) Marker 0, (b) Marker 22, (c) Marker 25, and (d) Marker
28. The red line corresponds to theory, and the black line is obtained from the measured displacement time series. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)
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