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Abstract: The inclusion of machine-learning-derived models in systematic reviews of risk prediction
models for colorectal cancer is rare. Whilst such reviews have highlighted methodological issues and
limited performance of the models included, it is unclear why machine-learning-derived models are
absent and whether such models suffer similar methodological problems. This scoping review aims
to identify machine-learning models, assess their methodology, and compare their performance with
that found in previous reviews. A literature search of four databases was performed for colorectal
cancer prediction and prognosis model publications that included at least one machine-learning
model. A total of 14 publications were identified for inclusion in the scoping review. Data was
extracted using an adapted CHARM checklist against which the models were benchmarked. The
review found similar methodological problems with machine-learning models to that observed in
systematic reviews for non-machine-learning models, although model performance was better. The
inclusion of machine-learning models in systematic reviews is required, as they offer improved
performance despite similar methodological omissions; however, to achieve this the methodological
issues that affect many prediction models need to be addressed.

Keywords: machine learning; colorectal cancer; risk prediction; scoping review

1. Introduction

Colorectal cancer (CRC) is the third most common cancer worldwide, affecting both
males and females to a similar extent, with a lifetime risk of around 5% [1]. Whilst the
survival rate for CRC has improved significantly since the early 1970s [2], the number of
cases in the United Kingdom is expected to increase by up to 30% by 2035 [2,3]. Several
screening modalities are used in practice; all have been shown to prevent CRC deaths,
with colonoscopy considered the most effective method of screening [4]. Current screening
strategies are determined primarily by age [5] and family history [6]. There are harms associ-
ated with colorectal screening [7], which has led to interest in targeted risk-based screening.
Risk-based screening offers a means of minimising harm to most of the population who are
at low risk, whilst identifying those at higher risk for targeted screening [8].

Globally the uptake of colorectal screening programmes varies, but is generally less
than 65% [9]. The UK has failed to reach a 75% target despite attempts to improve uptake
of the colorectal screening programme [10]. Only 10% of cases are detected by screening
and there is an increasing number of younger (age < 50 years) individuals presenting
symptomatically [11]. This is another driver for targeted colorectal screening based on risk
stratification [12].

Risk-prediction models for cancer, including CRC are available in clinical practice both
here in the UK [13–16] and elsewhere [17,18], but translating prediction models into clinical
practice is challenging [15]. The low adoption rate of such techniques in clinical practice
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could be considered as contributing to research waste [19]. Additionally, new features to be
considered in prediction models are regularly identified and the volume and breadth of
collected data continues to increase. Prediction models that include genetic information,
such as selected single nucleotide polymorphisms [20], environmental factors [21], and
lifestyle information [22], are being developed and these features are likely to become
routinely collected data in the coming years.

Multivariable prediction models utilise two or more variables (predictors, features) to
estimate the risk or probability of an event being experienced by an individual, such as
diagnosis of a condition or a condition-related outcome (prognosis) [23]. Machine-learning
(ML) models are considered to be computation intensive, data-driven approaches, with fewer
modeller decisions and more powerful prediction capability than traditionally required [24].

To date, there have been many CRC risk-prediction models published pertaining to
unique populations and care settings and which incorporate a range of risk factors. Several
recent systematic reviews of CRC risk-prediction models have been undertaken [25–28],
which have identified common limitations in risk-prediction model publications, including:

• Lack of external validation
• Differences in how factors are measured, e.g., blood pressure
• Management of missing data related to these factors
• Lack of calibration curves

These systematic reviews have identified a wide range of factors that are considered
for inclusion in prediction models, as well as variation in the definition of a case. Apart
from a review by Grigore et al. [28], none of these systematic reviews have included models
developed using machine-learning techniques and reported only models developed using
traditional statistical techniques.

Machine-learning techniques can make use of historically collected, stored data to
create predictions for future populations or individuals. This includes determining those
at higher risk of developing cancer [29]. Two reviews of machine learning and cancer
risk [30,31] identified breast-cancer models as the most reported type of cancer-risk pre-
diction model, with reported accuracy most commonly around 70%. Both noted a lack of
appropriate publications for inclusion and identified poor or absent methodology in testing
or validating models and increasing data dimensionality. The increasing dimensionality
and the noisiness (e.g., presence of unimportant factors, missing data or gaps in the data,
outliers, duplicate or inaccurate data) of such health data are well-recognised [32,33], with
appreciation of the varied penetrance of factors across a population [34].

The lack of machine-learning models in these reviews provides a reason for assessing
the potential value of models using this approach. Understanding how and why such
models are rarely included in systematic reviews of CRC risk-prediction models can be
used to inform better reporting in publications. It is important to identify methodologies,
risk factors and limitations that can be used to inform the development of CRC risk-
prediction models that can be included in future systematic reviews. However, the promise
of machine-learning approaches in comparison to traditional methods for tackling these
problems is not without debate [35].

This literature review focuses on machine-learning derived colorectal-cancer-risk-
prediction models that utilise routinely collected health data, which are likely to be
held in health databanks. We review their strengths and weaknesses, including their
overall performance.

2. Materials and Methods

We undertook a comparison and assessment of machine-learning models for the
risk prediction of colorectal cancer (colon or rectum) or colon cancer alone. A scoping
review approach was used as it was unclear how many publications or models would
be identified. We felt there was likely to be considerable heterogeneity in the available
literature, in terms of the methodologies, variables included and the definition of routinely
collected data relating to colorectal cancer risk and prognostic models. This scoping review
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approach provided an opportunity to identify gaps in knowledge about the literature
around ML-colorectal-cancer-prediction models, as well as determining if a systematic
review is warranted [36].

2.1. Eligibility Criteria

The inclusion criteria were: full-text availability; English language; articles related to
colorectal or colon cancer; published between 2010 and 2019 inclusive; with explanatory
variables derived from routinely collected demographic and health data. Articles were
excluded if only rectal cancer was reported, only image assessment was included, or if
they were based on genetic material assessment. The inclusion and exclusion criteria were
defined based on whether the articles focused on colorectal or colon cancer. Date limits were
initially set for the period 1 January 2010 to 31 December 2019 and extended to 31 December
2020 as being pertinent to the availability of routinely collected data and the increasing
interest in the use of machine learning. A scoping review approach was used to ensure
broad consideration of models, included features and identification methods. The search
was not restricted to certain types of features or a maximum number of features to maximise
the opportunity to explore the diversity of features considered and methodologies applied.

2.2. Inclusion Criteria for Publications

Publications were selected for review if they:

• used one or more machine-learning methods, including comparison with logistic regression
• used at least two risk factors
• used an experimental or observational study design

2.3. Exclusion Criteria for Publications

Publications were considered ineligible for inclusion if they:

• used images or image parameters as risk factors
• included genetic information
• included molecular markers
• utilised questionnaire-derived data, e.g., nutrition questionnaires
• were designed to test performance of a risk factor for colorectal cancer
• were review articles
• were conference abstracts

2.4. Information Sources

Four databases were searched: Cochrane Library, PubMed, Web of Science and IEEE.

2.5. Search Strategy for PubMed (L3 Heading)

The search strategy related to a number of concepts: colorectal cancer, colon cancer,
prediction models (statistical models) and machine learning using a combination of MeSH
terms and free-text terms. These were combined to form the following search string:

Search: (((“Risk”[Mesh] OR risk[tw] OR hazard[tw] OR likelihood[tw] OR prob-
abil*[tw]) OR (“Prognosis”[Mesh] OR prognosi*[tw] OR prognosti*[tw])) AND ((“Col-
orectal Neoplasms”[Mesh] OR ((colorectal[tw] OR colorect*[tw]) AND (tumo*[tw] OR
cancer[tw] OR carcinom*[tw] OR neoplas*[tw] OR malignan*[tw]))) OR (“Colonic Neo-
plasms”[Mesh] OR ((colon[tw] OR bowel[tw] OR colon*[tw]) AND (neoplas*[tw] OR
tumo*[tw] OR cancer[tw] OR carcinom*[tw] OR malignan*[tw]))))) AND (((“Models, Sta-
tistical”[Mesh] OR “ROC Curve”[MESH] OR “predict* tool*”[tw] OR nomogram*[tw]
OR “predict* model*”[tw] OR decision*[tw] OR scor*[tw] OR algorithm*[tw] OR “risk
scor*”[tw] OR “sensitivity and specificity*”[tw] OR sensitivity[tw] OR specificity[tw]
OR “predictive value of tests”[tw] OR prediction*[tw] OR “receiver operating charac-
teristic curve*”[tw] OR “ROC curve*”[tw] OR “area under curve*”[tw] OR “area under
curve”[tw] OR “area under the curve*”[tw] OR AUC[tw] OR “C statistic*”[tw] OR discrim-
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inat*[tw] OR classif*[tw] OR “absolute risk*”[tw] OR brier*[tw] OR “lorenz curves”[tw]
OR calibration[tw] OR indices[tw] OR stratify*[tw] OR “c-statistic”[tw] OR “C statis-
tic”[tw] OR “statistical learning”[tw] OR “statistical-learning”[tw] OR “positive predictive
value*”[tw] OR “negative predictive value*”[tw] OR AUROC[tw] OR “c-index”[tw] OR con-
cordance[tw] OR DCA[tw])) OR ((“Machine Learning”[Mesh] OR “neural network*”[tw]
OR “decision tree*”[tw] OR “support vector machine*”[tw] OR SVM[tw] OR “random
forest*”[tw] OR “naive bayes” [tw] OR “machine learn*”[tw] OR “machine model*”[tw]
OR “Artificial Intelligence”[Mesh] OR “Deep Learning”[Mesh] OR “Supervised Machine
Learning”[Mesh] OR “supervised machine”[tw] OR “supervised learn*”[tw] OR “sup-
port vector machine”[tw] OR “relevance vector machine*”[ tw] OR “multi* layer percep-
tron*”[ tw] OR “RF classif*”[ tw] OR “bayes* network*”[tw] OR “nearest neighb*”[tw] OR
KNN[tw] OR ANN[tw] OR RNN[tw] OR RF[tw] OR NB[tw] OR CART[tw] OR DT[tw] OR
MLP[tw] OR “elastic net”[tw] OR BBN[tw] OR “deep learn*”[tw])))—Saved search Filters:
from 2010/1/1–2019/12/31 Sort by: Most Recent.

These searches returned 20,211 articles from PubMed, 858 from the Web of Science,
1124 from IEEE and 199 from the Cochrane database.

The selection process was undertaken by a single author (BB) who selected articles
based on the inclusion and exclusion criteria applied to the abstract and title. Where a
decision could not be made on the abstract and title alone, the full article was considered.
The selection of risk prediction and prognosis studies was undertaken concurrently as part
of a larger project. Prognostic models were not considered in the review.

2.6. Data Charting

Data items were extracted from the fourteen selected articles using the CHARMS
checklist [37] for assessment of applicability and the risk of bias by a single author (BB).
The extracted data were recorded in a bespoke Excel spreadsheet. Data extraction was
validated by the other authors (AB, SB, JK, SZ and MP). Disagreements and clarifications
were discussed between the reviewers. No further adjudication was required. The data
charting summary is provided as Supplementary Materials, Table S1.

Critical appraisal was based on data assessment with reference to the CHARMS
checklist and risk of bias assessment using the PROBAST tool [38,39].

3. Results
3.1. Article Selection

The search terms focused on methodology relating to machine learning. A broad
inclusion of terms was used to avoid missing potential articles and included both risk
prediction and prognostic algorithms. In the absence of a definition of “routinely collected
data”, further limits to the searches were not possible and relied on manual search of titles
and abstracts. The PubMed search retrieved 20,350 publications for assessment, the Web
of Science retrieved 1490 publications for assessment, and the Institute of Electrical and
Electronic Engineers (IEEE) database retrieved 1124 publications. A total of 199 publications
were retrieved from the Cochrane database. An initial manual review of the abstracts and
titles excluded 21,547 articles and identified 1620 for further screening. Further screening
involved manually removing remaining articles that were not relevant to the inclusion
criteria. This left 65 reports that were assessed in detail, thirty of which were removed
because of inclusion of omics or biomarker variables, use of natural language processing,
utilisation of locally developed questionnaires or missing information. An additional
eight reports were identified from the references of the remaining 65 reports and assessed
for inclusion. Three were excluded for not meeting the inclusion and exclusion criteria.
This provided 40 relevant reports of which 14 were related to risk-prediction models, the
remainder being prognostic models. The 14 reports that included risk-prediction models
were included in the scoping review.

A PRISMA flow diagram is provided as Figure 1.
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3.2. Model Descriptions

The approaches undertaken are summarised in Table 1.

Table 1. Summary of basic model details.

Lead Author
Machine-
Learning

Technique
Variables Assessed

Development (with Internal
Validation)/Development

with External
Validation/Validation Only

Outcome Case Definition

Wan, J.-J. 2019
[40] Multiple 1

50 features assessed from
endoscopic report, patient
history and blood sample,

age, gender, smoking
history, and drinking

history, endoscopic features
(e.g., lesion location, polyp
size, and no leaf) and blood
attributes (e.g., white blood

cells and haemoglobin)

Development
No external validation

Prediction in 2
years (unclear)

Colonoscopy report
confirmed neoplasia

Wu, H.-C. 2014
[41] DT

20 parameters;
demographic data (age, sex,
body height, body weight,

and body mass index),
reasons for colonoscopy

(bloody stool, abdominal
pain, constipation, bowel

habit change, anemia,
tenesmus, positive faecal
occult blood test (FOBT),

colon polyp history, family
history of CRC, or elevation

in carcinoembryonic
antigen level, and patient’s
habits (smoking, drinking,
betel nut chewing, or tea or

coffee consumption)

Development
No external validation

Adenoma
presence

Screening app 2

Colonoscopy
pathology,

adenomatous
neoplasm
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Table 1. Cont.

Lead Author
Machine-
Learning

Technique
Variables Assessed

Development (with Internal
Validation)/Development

with External
Validation/Validation Only

Outcome Case Definition

Kinar, Y. 2016
[42] DT/RF Sex, birth year and blood

counts (20 parameters) Development and validation
Prediction up to
2 years prior to

diagnosis

CRC diagnosis in
Israeli Cancer

Registry/The Health
Improvement

Network (THIN)
general practice

database

Hsieh, M.-H.
2018 [43] DNN

Demographic data,
comorbidity and

medication use; age, mean
(SD) year, gender,
urbanisation level,

occupation, hypertension,
hyperlipidemia, stroke,
congestive heart failure,

colorectal polyps, obesity,
chronic obstructive
pulmonary disease,

coronary artery disease,
asthma, smoking,

inflammatory bowel
disease, irritable bowel

syndrome, alcohol-related
illness, chronic kidney

disease, diabetes
complication (aDCIs

component), retinopathy,
nephropathy, neuropathy,

cerebrovascular,
cardiovascular, peripheral

vascular disease, metabolic,
mean aDCIs score onset,
end of follow-up, statins,

insulin, sulfonylureas,
metformin, thiazolinedione,

other antidiabetic drugs
and mean follow-up for

endpoint. Selection of input
features ND, the abstract
states “All the available
possible risk factors for

CRC were also included in
the analyses”

Development
No external validation

Prediction,
timeframe

unclear

CRC diagnosis
recorded in National

Health Insurance
Research Database

(NHIRD)

Wang, Y.-H. 2019
[44] CNN

Comorbidity and
medication use with age

and sex

Development
No external validation

Prediction
within 3 years

CRC diagnosis
recorded in Registry

for Catastrophic
Illness Patient

Hornbrook, M.C.
2017 [45] DT/RF

Gender, age, and blood
count (number of

parameters—at least one)
Validation of Kinar 2016

Prediction
within 6 months

to 1 year

CRC diagnosis in
Kaiser Permanente

Tumor Registry

Birks, J. 2017 [46] DT/RF Gender, age, and blood
count (20 parameters) Validation of Kinar 2016 Prediction in

18–24 months

CRC diagnosis
recorded in Clinical

Practice Research
Datalink (CPRD)

Kinar, Y. 2017
[47] DT/RF

Gender, age, and blood
count (20 parameters) at 2

timepoints
Evaluation of Kinar 2016 Prediction

within 6 months

CRC diagnosis in
Israeli Cancer

Registry
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Table 1. Cont.

Goshen, R. 2017
[48]

Linear
Regression

Gender, age, blood count,
liver function, metabolic

blood tests, and iron, folic
acid, and vitamin B12

levels.

Development, extension of
Kinar 2016

Prediction
within 6 months

CC diagnosis in
Israeli Cancer

Registry

Hilsden, R.J. 2018
[49] DT/RF

Gender, age, and blood
count; one or more from

haemoglobin, haematocrit,
mean corpuscular volume,

mean corpuscular
haemoglobin, mean

corpuscular haemoglobin
concentration, red blood
cell count, red blood cell
distribution width, white
blood cell count, platelets,

% neutrophils, lymphocytes,
monocytes, eosinophils,
and basophils—up to 15

variables.

Validation of Kinar 2016
Prediction
within 12
months

Colonoscopy result
of CRC or high-risk

polyp.

Kop, R. 2016 [50] RF/CART

Age and gender with
medical-record-based data

for consultations,
medication, referral,

diagnoses and lab. test
results; drugs for
constipation; iron

deficiency anaemia; lipid
modifying agents (s); drugs
for constipation; age; drugs
for acid-related disorders
(s); drugs for constipation;

diabetes
non-insulin-dependent;

abdominal pain/cramps
general; diabetes

non-insulin-dependent (s);
diabetes

non-insulin-dependent;
beta-blocking agents (s) ;
drugs for constipation;

hypertension
uncomplicated (s) ;

hypertension
uncomplicated; agents

acting on the
renin–angiotensin system
(s); drugs for constipation;
diuretics; flu vaccination
(a); agents acting on the

renin–angiotensin system
(s); Antithrombotic agents;
abdominal pain localized
other; general consult (s);

agents acting on the
renin–angiotensin system
(s) ; drugs for acid-related
disorders; agents acting on

the renin–angiotensin
system

Development
No external validation ND

CRC diagnosis in
general practice

dataset

Cooper, J.A. 2018
[51] ANN

Age, sex, deprivation index,
screening history, FIT test

result

Development
No external validation

Predict
CRC/high risk

adenoma versus
none following

FIT

Bowel cancer
screening database
record of CRC or

advanced adenoma
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Table 1. Cont.

Nartowt, B.J.
2019 [52] ANN

Health questionnaire
responses; current or cancer
age, hypertension, number

of first-degree relatives
with CRC (NHIS years 2000,
2005, 2010, and 2015 only),

coronary heart disease,
pooled heart conditions,

myocardial infarction,
diabetes (non-gestational),
heart condition/disease,

vigorous exercise frequency,
angina pectoris, ulcer

(stomach, duodenal, peptic),
Hispanic ethnicity, stroke,

emphysema, American
Indian, African American,
other, or multiple race, sex
(male), body-mass index,

smoking frequency

Development
No external validation

Risk score
generation

Confirmed colorectal
cancer (any) in NHIS

dataset

Shi, Q. 2019 [53] CART

Rate of albumin to globulin,
albumin, alanine

transaminase, aspartate
transaminase, percent

basophils, calcium,
creatinine, percent

eosinophils, glucose,
hematocrit, high-density
lipoprotein-cholesterol,

haemoglobin, potassium,
low-density

lipoprotein-cholesterol,
percent lymphocytes, mean
corpuscular haemoglobin,

mean corpuscular
haemoglobin concentration,
mean corpuscular volume,
percent monocytes, mean
platelet volume, percent
neutrophils, phosphorus,

platelet large cell ratio,
plateletcrit, platelet

distribution width, platelet,
red blood count, variable

coefficient of red blood cell
distribution width,

standard deviation of red
blood cell distribution

width, total bilirubin, total
cholesterol, triglyceride,
total protein, uric acid,

white blood count
Final model used: age,

albumin, haematocrit, %
lymphocytes

Development, internal
validation.

Risk score
generation

Confirmed colorectal
cancer

(1) Multiple machine-learning methods assessed; support vector machine (SVM), k-nearest neighbours (KNN),
ensembles for boosting, random forest, convolutional neural network, recurrent neural network, recursive neural
network. (2) A screening app for Android smartphones was derived from the model. Abbreviations: CRC—
colorectal cancer, CC—colon cancer, ND—not described, DT—decision tree, RF—random forest, DNN—deep
neural network, CNN—convolutional neural network, ANN—artificial neural network, CART—classification
and regression tree.

3.3. Model Purpose and Population Description

The purpose of all the models was related to colorectal cancer, except for one which
considered only colon cancer [48]. A summary of the population for each model is provided
in Table 2.
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Table 2. Summary of model purpose, study population and data source(s).

Lead Author Age Range (Years) Sample Size Data Source

Wan, J.-J. 2019 [40] ND ND China, Jiangsu Provincial Hospital of Traditional
Chinese Medicine

Wu, H.-C. 2014 [41] Cases 21–80
Controls 34–80 225 (97 cases) Taiwan, single centre, unnamed

Kinar, Y. 2016 [42] Cases > 40
Controls 50–75 Complex (*) UK, The Health Improvement Network (THIN)

database/Israel, Maccabi Health Services

Hsieh, M.-H. 2018 [43] >20
1,315,899 train

337,410 test
(14,867 cases)

Taiwan, subset of National Health Insurance
Research Database (NHIRD) and Longitudinal

Cohort of Diabetes Patients (LHDP)

Wang, Y.-H. 2019 [44] >20 47,967 controls, 10,185 cases Taiwan, National Health Insurance Research
Database (NHIRD)

Hornbrook, M.C. 2017 [45] 40–89 10,008 (900 cases) USA, Single Institution Registry, Kaiser
Permanente Northwest Region

Birks, J. 2017 [46] >40 2,220,108 (25,430 cases) UK, Clinical Practice Research Datalink (CPRD)

Kinar, Y. 2017 [47] 50–75 112,584 (133 cases) Israel, Maccabi Health Services and Israeli
Cancer Registry

Goshen, R. 2017 [48] 40–75
105,067 (2294 cases)

1755 cases and 54,730
matched controls in study

Israel, Maccabi Health Services and Israeli
Cancer Registry

Hilsden, R.J. 2018 [49] 50–75
17,676 (60 CRC, 1104 high

risk polyps—cases)
(screened)

Canada, Alberta Health Services Forzani and
MacPhail Colon Cancer Screening Centre in
Calgary, AB, Canada by linking the Centre’s
electronic medical records with provincial

laboratory data.

Kop, R. 2016 [50] ≥30 263,879 (1292 cases)

Netherlands, Julius General Practitioners’
Network, Utrecht; Academic Network of

General Practice, VU University Medical Center
Amsterdam (ANH VUmc); Leiden General

Practitioner Registration Network RNUH-LEO,
LUMC, Leiden.

Cooper, J.A. 2018 [51] 60–74

1810 (548 cases—cancer,
high or intermediate risk

polyps)
(screened patients only)

UK, two regional cancer screening hubs (NHS
Bowel Screening)

Nartowt, B.J. 2019 [52] 18–85
(18–49, 50–75)

525,394 train (1269 cases)
58,376 test (140 cases) USA (National Health Interview Survey) (**)

Shi, Q. 2019 [53] ND

PUCH
81,310 (4211 cases

70:30 train:test
PUSH

57,235 (436 cases)
80:20 train:test

Validated on PUCH test set

China: Peking University Cancer Hospital
(PUCH) and

Peking University Shougang Hospital (PUSH)

* Sample size for Kinar et al., 2016 included populations from two countries with the Israeli population split into
a derivation set and validation set and a UK dataset for validation only. ** A dataset curated by the Center for
Diseases Control. Abbreviations: CRC—colorectal cancer, CC—colon cancer, ND—not described.

3.4. Model Performance

The assessment of model performance utilised a range of measures and was not
consistently reported across the included studies; it is summarised in Table 3. The most
frequently reported measure was sensitivity, with accuracy only reported in one study [40].
Values were not always reported in the article text; access to Supplementary Materials
was required in some instances and was not always accessible. Corresponding authors
provided some missing Supplementary Materials, but this was not always complete. The
confidence intervals for model performance measures were not always reported.
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Table 3. Summary of Model Performance Measures—“best” model where multiple models tested.

Reference Model
Type

Model Performance Measure

AUROC Sensitivity Specificity PPV NPV FPR FNR Accuracy Precision F1 Score OR Misc

Wan, J.-J.
2019 [40]

Neural
network

(ECP)
0.6 0.7321 0.8148 0.8571 0.7059

Wu, H.-C.
2014 [41]

Decision
tree 0.937 0.825 0.922 0.078 0.175 26

(+/− 5)

Kinar, Y.
2016 [42] Combined

0.82
(+/− 0.01)

0.88
(+/− 0.02) 0.005 40

(+/− 6)
FPR and OR
at 50% case
detection

0.81 0.94
(+/− 0.01)

Hsieh,
M.-H.

2018 [43]
Neural

Network
0.7

(0.674–
0.727)

0.886 0.98 0.929 Test set
values

Wang,
Y.-H. 2019

[44]
Neural

network
0.922
(SD

0.0004)
0.837 0.867 0.532

* Horn-
brook,

M.C. 2017
[45]

Combined 0.8
(0.79–0.82)

34.7
(28.9–
40.4)

OR at 99%
specificity

* Birks, J.
2017 [46] Combined

0.776
(0.771–
0.781)

3.91
(3.4–4.48)

82.73
(82.68–
82.78)

0.088 0.996

* Kinar, Y.
2017 [47] Combined 0.173

21.8
(13.8–
34.2)

At 1%
percentile of
scores, yield

2.1%

** Goshen,
R. 2017

[48]

Logistic
regression

0.31 0.95 0.073 males

0.24 0.95 0.042 females

* Hilsden,
R.J. 2018

[49]
Combined

0.081
(0.064–
0.098)

5.1
(2.3–8.9)

At 95%
specificity,
OR versus
no findings

Kop, R.
2016 [50]

Logistic
regression 0.891 0.642 0.03 0.058

Cooper,
J.A. 2018

[51]
ANN

0.686
(0.659–
0.712)

0.3515 0.8557 0.5147 0.7519
10.66% CRC

detection
rate

Nartowt,
B.J. 2019

[52]
Neural

net
0.80

(+/− 0.05)
0.57

(+/−
0.03)

0.89
(+/− 0.02)

NPV and
PPV in
abstract

Shi, Q.
2019 [53] CART 0.88

(0.87–0.90)
0.622

(0.581–
0.662)

Sensitivity
at 99%

specificity

* Validation studies, ** extension study. Abbreviations: ANN—artificial neural network, CART—classification
and regression tree, combined—gradient boosted model and random forest ensemble, AUROC—area under the
receiver operator curve, PPV—positive predictive value, NPV—negative predictive value, FPR—false positive
rate, FNR—false negative rate, OR—odds ratio.

3.5. Model Comparison and Benchmarking with CHARM Criteria

The review identified fourteen prediction models that utilised ML techniques for CRC
prediction. Whilst examples of prediction models that included ML methods were limited,
they provided some interesting results.

The search retrieved several validation studies for one ML model included in the
review [42]. All models utilised some form of registry data. Consecutive recruitment
could not be confirmed but was unlikely; however, for one of the single-institution-derived
models, recruitment was via a clinic and patients were followed prospectively, which was
unique amongst the articles reviewed [41]. The type of data source registry varied, ranging
from national health questionnaires [52,54] to screening hubs [51]. Combining different
datasets, such as the addition of a diabetes dataset [43] or multi-country datasets [42],
during development and external validation was also observed. Indeed, only one ML
model included both development and validation in the same study [42]. All the ML
models provided information on the inclusion and exclusion criteria, apart from one
study that was only available as an abstract [54]. The data collection periods covered the
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1990s and 2000s for a variety of time periods, the shortest being the prospective study
of Wu et al. [41].

There was also variety in the outcomes for the studies, both in terms of the period
over which prediction was made to the outcome measure, with a range from cancer
development, high-risk polyps, cancer risk following colonoscopy or based on direct
screening decisions. These differences defined the variation in the variables considered for
inclusion in the various models. Comorbidity and symptoms were frequently included; all
ML models included age and gender. The number of variables included in the final model
was also diverse, ranging up to 20 variables where reported, although actual numbers
were rarely provided, and selection was inherent to the ML technique, such as random
forest or neural networks. Determination of which variables to include in the model used
different approaches, such as univariate and multivariate regression to ML methods. Some
feature selection was part of the model development process, such as that observed with
the tree-based methods. The actual number of variables used was not always reported,
so, determining the event per variable ratio was not always possible. The suggested
minimum of 100 events and 100 non-events [55] or an event-per-variable rate minimum of
10 [56] were not always possible to determine [40] and were not always met [41,44].

Information on how much missing data was present and how this was managed
was frequently not described. A range of techniques for managing missing data was
reported. Exclusion was a common first step, followed by imputation techniques, whilst
the prospective study relied on scrutiny of records to complete missing or suspicious values.
Hornbrook et al. [45] employed substitution of controls where data was missing.

A range of performance measures was reported. Importantly, none of the measures
relied solely on an AUC or c-index. Comprehensive performance measure reporting was
common. The best reported models were those from Kinar et al. [42] and Nartowt et al. [52],
which included calibration plots. Odds ratios were frequently included in validation
studies as part of performance measurement. Nomograms were not present in any of
these publications.

Two authors compared multiple ML techniques [40,50]. These comparisons resulted
in the best performance being attributed to neural networks. Of the remaining publications,
eight used tree-based models and four used neural networks. Of the neural networks,
the model proposed by Kinar et al. [42] was validated in multiple populations [45–47,49],
including adaptation by inclusion of additional blood test results [48]. Interestingly one
study utilised the same variables within a logistic regression model and achieved sim-
ilar performance [48]. The studies using an approach of combining age, gender and
blood counts utilised varying sizes of population dataset. The initial development model
was trained on 466,107 patients. Of these, 2437 were diagnosed with CRC (control-to-
case ratio of approximately 190:1), whilst the test set had a control-to-case rate of 200:1;
with external validation, this was reduced to 5:1. Later validation and expansion stud-
ies for this model utilised control-to-case ratios ranging from 18:1 [45] up to 850:1 [47].
Hornbrook et al. [45] validated this on US data with 10 controls per case. Hilsden et al. [49]
screening only individuals in Canada had a ratio of 17 controls per case. The expansion
of the algorithm by Goshen et al. [48] used a ratio of 30 controls per case. With the excep-
tion of the Hilsden et al. [49] article all the studies had colorectal cancer as their outcome.
Beyond this, the reported models had populations with a wide range of control-to-case
ratios, from 3:1 [41,51] up to 400:1 [52]. The majority utilised a significantly imbalanced
control-to-case ratio, but this was more representative of the colorectal cancer prevalence
within a population of around 1%, equivalent to 100 controls per case.

Of the remaining tree-based models, Wu et al. [41] adopted a prospective approach,
collecting data from patients referred for colonoscopy rather than from an asymptomatic
population, with colorectal cancer diagnosis as the outcome measure. This prospective
approach limited the population size, particularly as this was a single tertiary referral
(specialised) institution, potentially accounting for the higher-than-average event rate,
reflecting the non-standard risk pattern of the population.
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Kop et al. [50] adopted a previously published approach [57] and compared a random
forest and classification and regression tree (CART) approach with logistic regression, again
using colorectal cancer diagnosis as the outcome measure. They also discussed the potential
for using the change in values or rate of change as a variable, but decided not to include
this due to the increased granularity of the data, a significant potential issue that may have
a negative impact due to reduction in the population size from a lack of multiple recordings.
The authors also recognised the potential for missing or incorrect data, including that
relating to the CRC diagnosis. Interestingly, they used age and gender as their simplest
comparison model and achieved comparable performance with more complex models,
including logistic regression and machine-learning approaches.

The four remaining models used neural networks. Nartowt et al. [52] used a
questionnaire-sourced dataset [58] covering a twenty-year period, with 583,770 controls
and 1409 cases, with diagnosis within four years of the survey date and around 400 controls
per case. This approach is interesting because it does not require any invasive techniques
to collect data. The output risk score (between 0 and 1) was categorised into one of three
risk levels rather than the low- and high-risk levels proposed by the US screening guide-
lines [59]. These authors compared the performance of their neural network with a range
of screening methods, including colonoscopy and FIT, against which, unsurprisingly, it
compared unfavourably. Although this review did not include screening ML algorithms,
such as those proposed by Semmler et al. [60], it is important to recognise that ML ap-
proaches are frequently criticised when considered as an alternative to diagnostic screening,
primarily because it is not understood which features distinguish cancers that require
intervention and those that do not.

The neural network developed by Cooper et al. [51] utilised data from a UK bowel
cancer screening programme, from two hubs over a six-month period during 2014. The
cases included both CRC and high-risk adenomas. The study was designed to compare
two different screening methods: faecal occult blood test and faecal immunohistochemistry
test. The neural network combined the FIT result with routinely collected data, including
response to previous screening invitation; cases were confirmed using colonoscopy or
alternative diagnostic test result within fourteen days. Of note, the authors included an
equation for the resultant risk scores and provided details on how to manage applying
the equation to new data with the need for standardisation of some of the variables. They
did not undertake any external validation but did note the increased yield in positive
colonoscopy results. This could have significant benefits where access to colonoscopy is an
issue, including in the UK, where waiting lists have increased significantly, in part due to
increasing demand [61].

Wang et al. [44] developed their neural network on a Taiwanese health insurance
dataset. They noted the limitations of the data source, in particular, the lack of information
on smoking status, alcohol intake, diet, and exercise. Interestingly, they used comorbidi-
ties as surrogates for these risk factors, for example, the use of smoking cessation clinic
attendance and concurrent chronic obstructive pulmonary disease as confirmation of an
individual as a “smoker”.

Missing or incomplete model information from the data extraction was commonly
observed. Following the PRISMA guidelines for reporting on models was occasionally
cited [51,52], but this was the exception rather than the rule. A lack of detail on handling
missing data, inclusion, and exclusion criteria, and even the absence of calibration plots,
was observed. Most studies included strengths and weaknesses of their approach, although
comparison with other models was less frequent.

4. Discussion
4.1. Models of Note

Among the retrieved models, the most attractive is the one proposed by Kinar et al.
(2016), which used an ensemble of decision (regression) trees. It has been evaluated in
a wide range of situations and has even been subject to adjustment by variable addition.
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Datasets from Israel and the UK were used for the classification of CRC risk. The variables
considered were limited to age, sex, and full blood count (FBC). Whilst age and sex data
were complete, there was a significant lack of FBC from the UK THIN dataset (fewer reports
per patient and more partial reports), yet this did not significantly affect the performance of
the model when performance between the two datasets was compared. It has been further
validated for a different UK dataset, the Clinical Practice Research Datalink (Birks et al.,
2017). The model has also been evaluated in a wide range of situations and has been subject
to adjustment by variable addition. The use of blood test result data is certainly interesting,
but, as noted in their initial validation on UK data (THIN dataset), the availability of
that information may be an issue. How well the UK dataset reflects standard practice in
terms of the proportion of the population with an FBC and completeness of data is unclear.
Assessing the level of availability of this information in other datasets would be a key part
of adopting this approach. The study by Kop et al. [50] achieved good results using only
age and gender, providing good evidence that applying this to other databank datasets,
such as those in SAIL (Secure Anonymised Information Linkage), is a worthwhile initial
step to take [56].

Another attractive approach utilises a neural network to stratify risk, with the clinical
aim of informing screening test choice [52]. This study used the United States National
Health Interview Survey dataset of personal health, a self-reported health questionnaire, to
create a cohort of 525,394 (1269 cases) for the training set and 58,376 (140 cases) for the test
set. The factors included had a strong correlation with colorectal cancer incidence but had
to be mapped to the interval (0, 1) before using the neural network.

Smoking frequency had four categories and was assigned four values. The model
was 10-fold cross-tested. The report misclassification rates were much lower than those
obtained by following the USPSTF guidelines. Although it is not a screening model, the
results suggest that stratification of the screening approach is possible and plausible. There
are some limitations to the study, primarily including a lack of colonoscopy-confirmed
cancer and the separation of the population into screened for training and not-screened
for testing. The model performed better when family history was included, which is
clinically unsurprising given a high correlation between family history and colorectal
cancer diagnosis. There are some dataset-based limitations, such as the four-year cut-off
between diagnosis and NHIS for discarding data and a lack of information on the CRC
diagnosis. The model still requires validation and assessment of generalisability.

The model also includes comorbidity information and smoking status and identified
diabetes as an important comorbid condition for colorectal cancer risk. However, assess-
ment of diabetes severity, by creating an aggregated variable of diabetes complications as a
sole predictor of colorectal cancer, performed poorly [43], but highlighted another potential
iterative step in developing a prediction model. Adding a comorbidity measure (score) may
be achievable with a range of datasets. For example, a modified Charlson index algorithm
available within the SAIL (Secure Anonymised Information Linkage) gateway has been
developed and used in non-cancer studies from this data [62] and takes account of missing
comorbidity information, including the lack of routine availability of HIV status in the
dataset. Several comorbidity measures were used in practice [63]. Even when only using
administrative data [64,65], multiple versions of the Charlson index were available, and
confirmation of the exact version used is necessary when reporting [66]. Indeed, choosing
the correct comorbidity index requires significant consideration, despite the review by
Stirland et al. [63], which has been subject to some criticisms, including regarding omitted
algorithms [67]. The optimal algorithm for a comorbidity index remains unclear. The
incorporation of morbidity indices in both CRC prediction and CC prognosis has been
reviewed [68,69]; they were considered useful additions to existing algorithms [68], as well
as increasing the likelihood of identifying emergency presentation and diagnosis [69].

It is worth noting that one study [41] developed a prospective model using a decision
tree with only five features to predict adenomatous polyposis risk. Whilst the decision
tree outperformed regression, this symptomatic population is very different to the general
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population or an asymptomatic at-risk population in its control-to-case ratio, so a similar
performance in such a population is unlikely. The relatively small population also limits
utilisation, but the results suggest that prospective studies are feasible. The authors noted
that the decision tree did not utilise some established colorectal cancer risk factors, such as
smoking and family history. Despite a decision tree providing “understandable” rules, it
may remain difficult to understand clinically.

Finally, Kop et al. [50] discussed their development of a pre-processing pipeline. They
identified key issues with data preparation, including ensuring that field entries were of
uniform length, but, importantly, also noted limitations when excluding features that may
not have a known association with the disease being predicted and the missed potential
for discovering new predictors. This, perhaps, exemplifies the challenges and potential
for machine-learning approaches in colorectal cancer risk prediction, the complexity of
data preparation for model development, and the potential to discover yet undetected
associations and risk factors for colorectal cancer development.

4.2. Main Discussion

From this scoping review focusing on machine-learning techniques, some common
themes were identified. Whilst the limitations noted for models created with traditional
methodology were also present for these ML-based models, differences in approach were
also evident. Where ML-based models differ from traditional statistical techniques is in the
use of extensive clinical data, including, but not limited to, comorbidity, medication, and
blood testing, with generally larger numbers of variables considered, 1931 variables in one
case [44]. The number utilised or included in the final model may be significantly reduced
through feature selection techniques, or, in the case of neural network models, they can all
be utilised, though their individual importance and use may be unclear due to the “black
box” nature of such models. Model performance in terms of AUROC commonly exceeded
0.75, a value higher than that reported for models in the non-ML systematic reviews.

There is a need to overcome inertia in the clinical adoption of risk prediction and
prognosis models in colorectal cancer. The reasons for poor utilisation are complex and not
restricted to their performance or clinical acceptance [15]. A lack of randomised clinical
trials of such models may not help their adoption, but research to develop novel ways of
implementing such tools is taking place [70], with some requirement for early consideration
of implementation strategies during predictive model development [71]. There have been
few randomised controlled trials of algorithms, those that have been performed being
limited to the assessment of medical images and related features [72].

Any colon-cancer prediction model needs to be able to accurately predict colorectal
cancer risk, ideally at least three years prior to any potential diagnosis. The purposes of any
cancer prediction model should include giving sufficient time to allow for modifications
in risk or implementation of an appropriate monitoring strategy. The likelihood of risk
modifications being applied in colon-cancer risk, or the level of benefit gained over a
three-year period, is not known, although risk modification has been suggested to have the
potential for significant impact [73]. A model should also be able to assess risk differences
based on age at assessment and the likelihood of colorectal cancer during the highest risk
period, the screening window, relating to age 50–75 years. That non-ML approaches predict
risk with acceptable accuracy up to 15 years [14] from assessment is a challenge that none
of the models reviewed are close to matching.

The prospective validation of ML models is uncommon, though, for CRC, the study
by Wu et al. [41] shows that this is possible. Such validation is not without challenges,
particularly in terms of data curation and the development of a pre-processing pipeline, as
undertaken by Kop et al. [50]. Ensuring that the impact of feature differences over time
are tested before continuing the use of even prospectively validated models is complex.
By collecting data in advance of the first screening date, it may be possible to prospec-
tively collect data to develop a prediction model. This could then be followed by further
prospective validation. Whilst issues around take up of screening and, therefore, response
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to any data collection request are important considerations, routinely collected data, such
as that found in a databank or registry, may provide an opportunity to apply this approach,
including by use of linked resources, such as that being developed for the CORECT_R
project [74]. CORECT-R aims to provide a single point for the linkage of data across the
United Kingdom relating to cancer registry, hospital, treatment, patient experience and
outcomes, with these being added to with other data, such as cancer waiting times and
diagnostic imaging. Such “research ready” data provides opportunities to develop and test
multiple models, including those utilising machine-learning techniques.

The choice of ML technique to adopt remains unclear from this review. Where multi-
ple ML techniques have been used, tree-based models have tended to outperform other
models, such as neural networks, and are more interpretable. The reason for this improved
performance may be the ability to manage both linear and non-linear relationships between
variables in the models [75]. Neural networks can consider a higher number of variables
in CRC prediction. It is reasonable to include and compare multiple models, assess them
and then identify the best performing models for further development. That there is no
clear preferred technique may provide an opportunity for additional research. Comparing
an interpretable and “black box” ML approach with similar performance for clinical use
would be helpful. Is the ability to explain, both for the clinician and patient, more important
than differences in performance? The choice of an ML technique may be determined by
the type of data available, for example categorical versus continuous variables, to avoid
manipulation of variables.

The generalisability of ML models is often mentioned and portability across countries
and health systems suggested as the goal. Based on this review, this could inhibit the
maximisation of a models’ performance within the environment for which it was specifically
developed. The aim, therefore, should be to include data from all populations under
consideration for which the model will be trained and tested. As shown in the various
validation studies of the Kinar et al. [42] model, adaptation and extension were prevalent,
without these amendments being checked in the original development population. Such
amendments, whilst improving performance on the “new” population, lack an assessment
of generalisability, nor do they consider what, how or where data is collected or data
availability. This must be acknowledged by those making model adjustments. Importantly,
the databanks for each country vary in their content and the level of population contributing
to the data. The datelines and the data quality and availability across those datelines are
also variable. Balancing data quantity and the contemporaneousness of information is
very challenging. Changes in what data is collected and how tests are carried out are
frequent. This means that those models utilising data collected over prolonged periods,
which was common in the studies included in this current review, require a process to
manage these changes and to equate differing values and normal ranges. Rather than being
generalisable, a model should be responsive, identifying input data that does not match that
of the training or test set. A model that can be adapted and revalidated with appropriate
version control and data requirements may be more useful than a model developed in
situation A and applied to situation B. The most generalisable model will be based on the
fewest variables and involve the most regulated data collection, rather than those that may
nuance the prediction of colon cancer within that specific population. What is required is
that the model represent all parts of the population equally well, ensuring that the model
can handle extremes of values within that population.

There has been criticism that using existing reporting guidelines for machine-learning
approaches is flawed. To this end, extensions of the TRIPOD and PROBAST guidelines
specifically for artificial-intelligence-based models are welcome [76,77]. It remains unclear
whether application of the current TRIPOD and PROBAST guidelines impact negatively
on the inclusion of ML models in previous systematic reviews. It is hoped that use of
these AI-specific guidelines will increase the likelihood of machine-learning models being
included in systematic reviews to allow assessment of a wider range of risk prediction
models, regardless of the methodological approach.
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Limitations of this review relate to definitions of routinely collected data and the
blurring of machine-learning and traditional algorithm approaches. The initial literature
search retrieved over 20,000 articles, the vast majority of which were excluded despite
key words relating to machine learning in the search terms being used. This highlights
the difficulty in identifying search terms and why machine-learning models were rarely
identified in previous systematic reviews. Only 14 articles met the required inclusion
criteria, which vindicated our scoping review approach. Heterogeneity in the health
systems in which these models were developed was reflected in the variety of the variables
that were considered and included in a final model. Routinely performed investigations
and the subsequently collected data were as much a function of the health system as the
selection process for their inclusion. Routine blood tests are not a feature in the United
Kingdom but are performed elsewhere and, as such, the performance of a blood test in the
United Kingdom may indicate that an illness or suspected illness is present and may not be
considered as “routinely collected”. Furthermore, the search identified that an increasing
volume of omics data is being collected, reflecting a change in “routine’ investigations as
new technology is developed and the costs of performing such investigations fall. Therefore,
it may not be possible to adequately define “routinely collected data” within a review that
does not limit the health systems or locations considered.

5. Conclusions

This scoping review revealed the need to follow appropriate reporting guidelines,
such as TRIPOD [78], during the planning, development, and application phases of any
model. Robust assessment of performance is required with consideration given to the
future prospective validation of any model that is developed.

Whilst external validation was rarely performed on the models reported, this can
inform interpretation of generalisability. However, randomised controlled trials to confirm
model performance may be more useful, particularly in terms of influencing
clinical adoption.

Data-driven ML models were shown to perform well, generally performing at least as
well as, or better than, traditional statistical models when compared with these.

ML techniques can provide a useful additional option to develop health models for
CRC; however, it is unclear if they can be translated into clinical practice.
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