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Abstract. This survey contains a selection of topics unified by the concept
of positive semidefiniteness (of matrices or kernels), reflecting natural con-

straints imposed on discrete data (graphs or networks) or continuous objects

(probability or mass distributions). We put emphasis on entrywise operations
which preserve positivity, in a variety of guises. Techniques from harmonic

analysis, function theory, operator theory, statistics, combinatorics, and group

representations are invoked. Some partially forgotten classical roots in metric
geometry and distance transforms are presented with comments and full bib-

liographical references. Modern applications to high-dimensional covariance

estimation and regularization are included.
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Table of contents from Part I of the survey 41

This is the second part of a two-part survey; we include on p. 41 the table of
contents for the first part [9]. The survey in its unified form may be found online;
see [8]. The abstract, keywords, MSC codes, and introduction are the same for
both parts.

1. Introduction

Matrix positivity, or positive semidefiniteness, is one of the most wide-reaching
concepts in mathematics, old and new. Positivity of a matrix is as natural as
positivity of mass in statics or positivity of a probability distribution. It is a notion
which has attracted the attention of many great minds. Yet, after at least two
centuries of research, positive matrices still hide enigmas and raise challenges for
the working mathematician.

The vitality of matrix positivity comes from its breadth, having many theoret-
ical facets and also deep links to mathematical modelling. It is not our aim here to
pay homage to matrix positivity in the large. Rather, the present survey, split for
technical reasons into two parts, has a limited but carefully chosen scope.

Our panorama focuses on entrywise transforms of matrices which preserve their
positive character. In itself, this is a rather bold departure from the dogma that
canonical transformations of matrices are not those that operate entry by entry.
Still, this apparently esoteric topic reveals a fascinating history, abundant charac-
teristic phenomena and numerous open problems. Each class of positive matrices
or kernels (regarding the latter as continuous matrices) carries a specific toolbox
of internal transforms. Positive Hankel forms or Toeplitz kernels, totally positive
matrices, and group-invariant positive definite functions all possess specific positiv-
ity preservers. As we see below, these have been thoroughly studied for at least a
century.

One conclusion of our survey is that the classification of positivity preservers is
accessible in the dimension-free setting, that is, when the sizes of matrices are un-
constrained. In stark contrast, precise descriptions of positivity preservers in fixed
dimension are elusive, if not unattainable with the techniques of modern mathe-
matics. Furthermore, the world of applications cares much more about matrices of
fixed size than in the free case. The accessibility of the latter was by no means a
sequence of isolated, simple observations. Rather, it grew organically out of dis-
tance geometry, and spread rapidly through harmonic analysis on groups, special
functions, and probability theory. The more recent and highly challenging path
through fixed dimensions requires novel methods of algebraic combinatorics and
symmetric functions, group representations, and function theory.

As well as its beautiful theoretical aspects, our interest in these topics is also
motivated by the statistics of big data. In this setting, functions are often applied
entrywise to covariance matrices, in order to induce sparsity and improve the qual-
ity of statistical estimators (see [33, 34, 53]). Entrywise techniques have recently
increased in popularity in this area, largely because of their low computational
complexity, which makes them ideal to handle the ultra high-dimensional datasets
arising in modern applications. In this context, the dimensions of the matrices are
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fixed, and correspond to the number of underlying random variables. Ensuring that
positivity is preserved by these entrywise methods is critical, as covariance matrices
must be positive semidefinite. Thus, there is a clear need to produce characteri-
zations of entrywise preservers, so that these techniques are widely applicable and
mathematically justified. We elaborate further on this in the second part of the
survey.

We conclude by remarking that, while we have tried to be comprehensive in
our coverage of the field of matrix positivity and the entrywise calculus, there are
very likely to be some inadvertent omissions. Even if our survey is not complete
in terms of results and connections, we hope that it serves to impress upon the
reader the depth and breadth, the classical history and modern applications, and
the influence and beauty of the many facets of positivity.

2. A selection of classical results on entrywise positivity preservers

We begin by mentioning some results from the first part of the survey ([9]
or [8]), which are used or referred to in this part.

2.1. From metric geometry to matrix positivity. As discussed in the first
part of the survey, the study of entrywise positivity preservers naturally emerged
out of considerations of metric geometry. We recall here some early results of
Schoenberg, beginning with the following connection between metric geometry and
matrix positivity.

Theorem 2.1 (Schoenberg [55]). Let d ≥ 1 be an integer and let (X, ρ) be a
metric space. An (n+ 1)-tuple of points x0, x1, . . . , xn in X can be isometrically
embedded into Euclidean space Rd, but not into Rd−1, if and only if the matrix

(2.1) [ρ(x0, xj)
2 + ρ(x0, xk)2 − ρ(xj , xk)2]nj,k=1

is positive semidefinite with rank equal to d.

The positivity of the matrix (2.1) is equivalent to the statement that the asso-
ciated (n+ 1)× (n+ 1) matrix

[−ρ(xj , xk)2]nj,k=0

is conditionally positive semidefinite: recall that a real symmetric matrix A is con-
ditionally positive semidefinite if uTAu ≥ 0 whenever the coordinates of the real
vector u sum to zero.

Schoenberg’s Theorem 2.1 was perhaps the first time that positive and condi-
tionally positive matrices appeared in the analysis literature. It says that applying
the function −x2 entrywise transforms Euclidean-distance matrices into condition-
ally positive semidefinite matrices. A natural next step to remove the word “condi-
tionally” and ask which functions transform distance matrices, from a given metric
space (X, ρ), into positive matrices. This is precisely the definition of positive defi-
nite functions on (X, ρ).

Schoenberg showed [56] that Euclidean spaces are characterized by the prop-
erty that Gaussian kernels with arbitrary variances are positive definite on them.
He similarly showed [55] that among metric spaces of diameter no more than π, the
unit spheres Sd−1 ⊂ Rd and S∞ ⊂ `2R admit a similar characterization in terms of
just one function, cosine. Following this result, and the work of Bochner [14, 15]
in classifying positive definite functions on Euclidean and compact homogeneous
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spaces, Schoenberg was interested in understanding classes of positive definite func-
tions on these spheres.

Theorem 2.2 (Schoenberg [57]). Let f : [−1, 1]→ R be continuous.

(1) For a given dimension d ≥ 2, the function f ◦ cos is positive definite on
the unit sphere Sd−1 if and only if it has a distinguished Fourier-series
decomposition with non-negative coefficients. That is,

(2.2) f(cos θ) =

∞∑
k=0

ckP
(λ)
k (cos θ) (θ ∈ R),

where P
(λ)
k are the ultraspherical orthogonal polynomials with λ = (d−2)/2

and the coefficients ck ≥ 0 for all k ≥ 0 with
∑∞
k=0 ck <∞.

(2) The function f(cos θ) is positive definite on all finite-dimensional spheres,
or, equivalently, is positive definite on S∞, if and only if

(2.3) f(cos θ) =

∞∑
k=0

ck cosk θ,

where ck ≥ 0 for all k ≥ 0 and
∑∞
k=0 ck <∞.

By freeing the previous result from the spherical context, Schoenberg obtained
his celebrated result on positivity preservers.

Theorem 2.3 (Schoenberg [57]). Let f : [−1, 1]→ R be continuous. If the ma-
trix [f(ajk)]nj,k=1 is positive semidefinite for all n ≥ 1 and all positive semidefinite

matrices [ajk]nj,k=1 with entries in [−1, 1], then, and only then,

f(x) =

∞∑
k=0

ckx
k (x ∈ [−1, 1]),

where ck ≥ 0 for all k ≥ 0 and
∑∞
k=0 ck <∞.

2.2. Entrywise functions preserving positivity in all dimensions. The-
orem 2.3 provides a definitive answer to one version of the following central question,
which is the driving idea throughout this survey.

Which functions, when applied entrywise to certain classes of matrices, preserve
positive semidefiniteness?

The fundamental result for answering this question is the Schur product the-
orem [58]: if A and B are positive semidefinite matrices of the same size, then
their entrywise product is positive semidefinite too. As observed by Pólya and
Szegö [51], the fact that the set of positive matrices forms a closed convex cone
immediately implies, by Schur’s result, that every power series with non-negative
Maclaurin coefficients is a positivity preserver; they asked if there are any other
functions with this property. It follows from Schoenberg’s Theorem 2.3 that there
are no additional continuous functions, and Rudin [54] subsequently removed the
continuity hypothesis for real-valued functions on (−1, 1).

A similar variant was proved by Vasudeva [60], for a different domain. To state
this result, and for later, we recall some notation from the first part of the survey
[9].
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Definition 2.4. Fix a domain I ⊂ C and integers m, n ≥ 1. Let Pn(I) denote
the set of n × n Hermitian positive semidefinite matrices with entries in I, with
Pn(C) abbreviated to Pn. A function f : I → C acts entrywise on a matrix

A = [ajk]1≤j≤m, 1≤k≤n ∈ Im×n

by setting

f [A] := [f(ajk)]1≤j≤m, 1≤k≤n ∈ Cm×n.
Below, we allow the dimensions m and n to vary, while keeping the uniform notation
f [−]. We also let 1m×n denote the m × n matrix with each entry equal to one.
Note that 1n×n ∈ Pn(R).

Now we can state Vasudeva’s result.

Theorem 2.5 (Vasudeva [60]). Let f : (0,∞) → R. Then f [−] preserves
positivity on Pn

(
(0,∞)

)
for all n ≥ 1, if and only if f(x) =

∑∞
k=0 ckx

k on (0,∞),
where ck ≥ 0 for all k ≥ 0.

A final variant is for matrices with possibly complex entries. This result was
conjectured by Rudin in [54] and proved four years later.

Theorem 2.6 (Herz [37]). Let D(0, 1) denote the open unit disc in C, and sup-
pose f : D(0, 1)→ C. The entrywise map f [−] preserves positivity on Pn

(
D(0, 1)

)
for all n ≥ 1, if and only if

f(z) =
∑
j,k≥0

cjkz
jzk for all z ∈ D(0, 1),

where cjk ≥ 0 for all j, k ≥ 0.

2.3. The Horn–Loewner theorem and its variants. The first part of this
survey [9] focuses on various refinements of our central question when the matrices
under consideration are of arbitrary dimension (the “dimension-free” setting). Here,
we consider the situation where the dimension N of the test matrices is fixed. This
turns out to be highly challenging, and remains open to date for each N ≥ 3. The
following necessary condition was first published by R. Horn (who in [40] attributes
it to his PhD advisor C. Loewner), and is essentially the only general result known.

Theorem 2.7 (Horn–Loewner [40]). Let f : (0,∞) → R be continuous. Fix
a positive integer n and suppose f [−] preserves positivity on Pn

(
(0,∞)

)
. Then

f ∈ Cn−3(I),

f (k)(x) ≥ 0 whenever x ∈ (0,∞) and 0 ≤ k ≤ n− 3,

and f (n−3) is a convex non-decreasing function on (0,∞). Furthermore, if f ∈
Cn−1

(
(0,∞)

)
, then f (k)(x) ≥ 0 whenever x ∈ (0,∞) and 0 ≤ k ≤ n− 1.

This theorem has produced several variants: the arguments are purely local,
they involve low-rank matrices, and continuity need not be assumed. Another
possibility involves working with real-analytic functions, and we use this below.

Lemma 2.8 (Belton–Guillot–Khare–Putinar [6] and Khare–Tao [43]). Let n
be a positive integer, suppose 0 < ρ ≤ ∞ and let f(x) =

∑
k≥0 ckx

k be a conver-

gent power series on I = [0, ρ) that preserves positivity entrywise for all rank-one
matrices in Pn(I). Suppose further that cm′ < 0 for some m′.
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(1) If ρ <∞, then cm > 0 for at least n values of m < m′. (Thus, the first n
non-zero Maclaurin coefficients of f , if they exist, must be positive.)

(2) If ρ = ∞, then cm > 0 for at least n values of m < m′ and at least n
values of m > m′. (Thus, if f is a polynomial, then the first n non-zero
coefficients and the last n non-zero coefficients of f , if they exist, are all
positive.)

These results, and others in the literature for smooth functions, admit a com-
mon generalization that was recently obtained.

Theorem 2.9 (Khare [42]). Let a ∈ R+ and ε ∈ (0,∞), and supppose f :
[a, a+ ε) → R is smooth. Fix integers n, p, q such that n ≥ 1 and 0 ≤ p ≤ q ≤ n,
with p = 0 if a = 0, and such that f has q− p non-zero derivatives at a of order at
least p; let

mp < mp+1 < · · · < mq−1

be the orders of these derivatives.
If there exists u := (u1, . . . , un)T ∈ (0, 1)n with distinct entries and such that

f [a1n×n + tuuT ] ∈ Pn(R) for all t ∈ [0, ε), then the derivative f (k)(a) is non-
negative whenever 0 ≤ k ≤ mq−1.

The proof of Theorem 2.9 involves a determinant computation that generalizes
one by Horn and Loewner, and leads to an unexpected connection to symmetric
function theory. See Theorem 3.22 for more details.

2.4. Preservers of positive Hankel matrices. Finally for this chapter,
we consider entrywise maps preserving the set of positive Hankel matrices. A
distinguished subset of these matrices arise as moment matrices for measures on
the real line; we collect some concepts from the first part of the survey.

Definition 2.10. A measure µ with support in R is said to be admissible if µ
is non-negative and all its moments are finite:

sk(µ) :=

∫
R
xk dµ(x) <∞ (k ∈ Z+).

The sequence s(µ) :=
(
sk(µ)

)∞
k=0

is the moment sequence of µ, and the moment
matrix of µ is the semi-infinite Hankel matrix

Hµ :=


s0(µ) s1(µ) s2(µ) · · ·
s1(µ) s2(µ) s3(µ) · · ·
s2(µ) s3(µ) s4(µ) · · ·

...
...

...
. . .

 .
A function f : R→ R acts entrywise on moment sequences, so that

f [s(µ)] := (f
(
s0(µ)

)
, . . . , f

(
sk(µ)

)
, . . .),

and f [Hµ] = Hσ if f [s(µ)] = s(σ) for some admissible measure σ.

Working with positive moment matrices and their entrywise preservers provides
a route to proving stronger versions of Vasudeva’s and Schoenberg’s theorems. We
conclude this section by stating these results.

Theorem 2.11 (Belton–Guillot–Khare–Putinar [7]). Suppose I = (0,∞) and
f : I → R. The following are equivalent.
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(1) The entrywise map f [−] preserves positivity on Pn(I) for all n ≥ 1.
(2) There exists u0 ∈ (0, 1) such that f [−] preserves positivity for all moment

matrices of the form Hµ, where µ = aδ1 + bδu0 and a, b ∈ I.
(3) The function f has a power-series representation

∑∞
k=0 ckx

k valid for all
x ∈ I, where the Maclaurin coefficients ck ≥ 0 for all k ≥ 0.

Theorem 2.12 (Belton–Guillot–Khare–Putinar [7]). Suppose 0 < ρ ≤ ∞, let
I = (−ρ, ρ) and suppose f : I → R. The following are equivalent.

(1) The entrywise map f [−] preserves positivity on Pn(I), for all n ≥ 1.
(2) The entrywise map f [−] preserves positivity on the set of Hankel matrices

in Pn(I) of rank at most 3, for all n ≥ 1.
(3) The function f is real analytic, and absolutely monotonic on (0, ρ), so

that f(x) =
∑∞
k=0 ckx

k for all x ∈ I, with ck ≥ 0 for all k ≥ 0.

3. Entrywise polynomials preserving positivity in fixed dimension

Having discussed at length the dimension-free setting, we now turn our atten-
tion to functions that preserve positivity in a fixed dimension N ≥ 2. This is a
natural question from the standpoint of both theory as well as applications. This
latter connection to applied fields and to high-dimensional covariance estimation
will be explained below in Chapter 5.

Mathematically, understanding the functions f such that f [−] : PN → PN
for fixed N ≥ 2, is a non-trivial and challenging refinement of Schoenberg’s 1942
theorem. A complete characterization was found for N = 2 by Vasudeva [60]:

Theorem 3.1 (Vasudeva [60]). Given a function f : (0,∞)→ R, the entrywise
map f [−] preserves positivity on P2

(
(0,∞)

)
if and only f is non-negative, non-

decreasing, and multiplicatively mid-convex:

f(x)f(y) ≥ f
(√
xy
)2

for all x, y > 0.

In particular, f is either identically zero or never zero on (0,∞), and f is also
continuous.

On the other hand, if N ≥ 3, then such a characterization remains open to
date. As mentioned above, perhaps the only known result for general entrywise
preservers is the Horn–Loewner theorem 2.7 or its more general variants, some of
which are stated above.

In light of this challenging scarcity of results in fixed dimension, a strategy
adopted in the literature has been to further refine the problem, in one of several
ways:

(1) Restrict the class of functions, while operating entrywise on all of PN
(over some given domain I, say (0, ρ) or (−ρ, ρ) for 0 < ρ ≤ ∞). For
example, in this survey we consider possibly non-integer power functions,
polynomials and power series, and even linear combinations of real powers.

(2) Restrict the class of matrices and study entrywise functions over this class
in a fixed dimension. For instance, popular sub-classes of matrices include
positive matrices with rank bounded above, or with a given sparsity pat-
tern (zero entries), or classes such as Hankel or Toeplitz matrices; or in-
tersections of these classes. For instance, in discussing the Horn–Loewner
and Schoenberg–Rudin results, we encountered Toeplitz and Hankel ma-
trices of low rank.
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(3) Study the problem under both of the above restrictions.

In this chapter we begin with the first of these restrictions. Specifically, we
will study polynomial maps that preserve positivity, when applied entrywise to
PN . Recall from the Schur product theorem that if the polynomial f has only
non-negative coefficients then f [−] preserves positivity on PN for every dimension
N ≥ 1. It is natural to expect that if one reduces the test set, from all dimensions
to a fixed dimension, then the class of polynomial preservers should be larger.
Remarkably, until 2016 not a single example was known of a polynomial positivity
preserver with a negative coefficient. Then, in quick succession, the two papers [6,
43] provided a complete understanding of the sign patterns of entrywise polynomial
preservers of PN . The goal of this chapter is to discuss some of the results in these
works.

3.1. Characterizations of sign patterns. Until further notice, we work
with entrywise polynomial or power-series maps of the form

(3.1) f(x) = c0x
n0 + c1x

n1 + · · · , with 0 ≤ n0 < n1 < · · · ,

and cj ∈ R typically non-zero, which preserve PN (I) for various I. Our goal is
to try and understand their sign patterns, that is, which cj can be negative. The
first observation is that as soon as I contains the interval (0, ρ) for any ρ > 0, by
the Horn–Loewner type necessary conditions in Lemma 2.8, the lowest N non-zero
coefficients of f(x) must be positive.

The next observation is that if I 6⊂ R+, then, in general, there is no structured
classification of the sign patterns of the power series preservers on PN (I). For
example, let k be a non-negative integer; the polynomials

fk,t(x) := t(1 + x2 + · · ·+ x2k)− x2k+1 (t > 0)

do not preserve positivity entrywise on PN
(
(−ρ, ρ)

)
for any N ≥ 2. This may be

seen by taking u := (1,−1, 0, . . . , 0)T and A := ηuuT for some 0 < η < ρ, and
noting that

uT fk,t[A]u = −4η2k+1 < 0.

Similarly, if one allows complex entries and uses higher-order roots of unity,
such negative results (vis-a-vis Lemma 2.8) are obtained for complex matrices.

Given this, in the rest of the chapter we will focus on I = (0, ρ) for 0 < ρ ≤ ∞.1

As mentioned above, if f as in (3.1) entrywise preserves positivity even on rank-one
matrices in PN

(
(0, ρ)

)
then its first N non-zero Maclaurin coefficients are positive.

Our goal is to understand if any other coefficient can be negative (and if so, which
of them). This has at least two ramifications:

(1) It would yield the first example of a polynomial entrywise map (for a
fixed dimension) with at least one negative Maclaurin coefficient. Recall
the contrast to Schoenberg’s theorem in the dimension-free setting.

(2) This also yields the first example of a polynomial (or power series) that
entrywise preserves positivity on PN (I) but not PN+1(I). In particu-
lar it would imply that the Horn–Loewner type necessary condition in
Lemma 2.8(1) is “sharp”.

1That said, we also briefly discuss the one situation in which our results do apply more
generally, even to I = D(0, ρ) ⊂ C (an open complex disc).
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These goals are indeed achieved in the particular case n0 = 0, . . . , nN−1 = N−1
in [6], and subsequently, for arbitrary n0 < · · · < nN−1 in [43]. (In fact, in the
latter work the nj need not even be integers; this is discussed below.) Here is a
‘first’ result along these lines. Henceforth we assume that ρ <∞; we will relax this
assumption midway through Section 3.5 below.

Theorem 3.2 (Belton–Guillot–Khare–Putinar [6] and Khare–Tao [43]). Sup-
pose N ≥ 2 and n0 < · · · < nN−1 are non-negative integers, and ρ, c0, . . . , cN−1
are positive scalars. Given εM ∈ {0,±1} for all M > nN−1, there exists a power
series

f(x) = c0x
n0 + · · ·+ cN−1x

nN−1 +
∑

M>nN−1

dMx
M

such that f is convergent on (0, ρ), the entrywise map f [−] preserves positivity on
PN
(
(0, ρ)

)
and dM has the same sign (positive, negative or zero) as εM for all

M > nN−1.

Outline of proof. The claim is such that it suffices to show the result for
exactly one εM = −1. Indeed, given the claim, for each M > nN−1 there exists

δM ∈ (0, 1/M !) such that
∑N−1
j=0 cjx

nj + dxM preserves positivity entrywise on

PN
(
(0, ρ)

)
whenever |d| ≤ δM . Now let dM := εMδM for all M > nN−1, and define

fM (x) :=

N1∑
j=0

cjx
nj + dMx

M and f(x) :=
∑

M>nN−1

2nN−1−MfM (x).

Then it may be verified that |f(x)| ≤
∑N−1
j=0 cjx

nj + 2nN−1ex/2, and hence f has
the desired properties. �

Thus it suffices to show the existence of a polynomial positivity preserver on
PN
(
(0, ρ)

)
with precisely one negative Maclaurin coefficient, the leading term. In

the next few sections we explain how to achieve this goal. In fact, one can show a
more general result, for real powers as well.

Theorem 3.3 (Khare–Tao [43]). Fix an integer N ≥ 2 and real exponents
n0 < · · · < nN−1 < M in the set Z+ ∪ [N − 2,∞). Suppose ρ, c0, . . . , cN−1 > 0 as
above. Then there exists c′ < 0 such that the function

f(x) = c0x
n0 + · · ·+ cN−1x

nN−1 + c′xM
(
x ∈ (0, ρ)

)
preserves positivity entrywise on PN

(
(0, ρ)

)
. [Here and below, we set 00 := 1.]

The restriction of the nj lying in Z+ ∪ [N − 2,∞) is a technical one that is
explained in a later chapter on the study of entrywise powers preserving positivity
on PN

(
(0,∞)

)
; see Theorem 4.1.

Remark 3.4. A stronger result, Theorem 3.15, which also applies to real pow-
ers, is stated below. We mention numerous ramifications of the results in this
chapter following that result.

The proofs of the preceding two theorems crucially use type-A representation
theory (specifically, a family of symmetric functions) that naturally emerges here
via generalized Vandermonde determinants. These symmetric homogeneous poly-
nomials are introduced and used in the next section.
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For now, we explain how Theorem 3.3 helps achieve a complete classification
of the sign patterns of a family of generalised power series, of the form

f(x) =

∞∑
j=0

cjx
nj , nj ∈ Z+ ∪ [N − 2,∞) for all j ≥ 0,

but without the requirement that that exponents are non-decreasing. In this gener-
ality, one first notes that the Horn–Loewner-type Lemma 2.8 still applies: if some
coefficient cj0 < 0, then there must be at least N indices j such that nj < nj0 and
cj > 0. The following result shows that once again, this necessary condition is best
possible.

Theorem 3.5 (Classification of sign patterns for real-power series preservers,
Khare–Tao [43]). Fix an integer N ≥ 2, and distinct real exponents n0, n1, . . . in
Z+ ∪ [N − 2,∞). Suppose εj ∈ {0,±1} is a choice of sign for each j ≥ 0, such that
if εj0 = −1 then εj = +1 for at least N choices of j such that nj < nj0 . Given any
ρ > 0, there exists a choice of coefficients cj with sign εj such that

f(x) :=

∞∑
j=0

cjx
nj

is convergent on (0, ρ) and preserves positivity entrywise on PN
(
(0, ρ)

)
.

Notice this result is strictly more general than Theorem 3.2, because the se-
quence n0, n1, . . . can contain an infinite decreasing sequence of positive non-integer
powers, for example, all rational elements of [N − 2,∞). Thus Theorem 3.5 covers
a larger class of functions than even Hahn or Puiseux series.

Theorem 3.5 is derived from Theorem 3.3 in a similar fashion to the proof of
Theorem 3.2, and we refer the reader to [43, Section 1] for the details.

3.2. Schur polynomials; the sharp threshold bound for a single ma-
trix. We now explain how to prove Theorem 3.3. The present section will discuss
the case of integer powers, and end by proving the theorem for a single ‘generic’
rank-one matrix. In the following section we show how to extend the results to
all rank-one matrices for integer powers. The subsequent section will complete the
proof for real powers, and then for matrices of all ranks.

The key new tool that is indispensable to the following analysis is that of Schur
polynomials. These can be defined in a number of equivalent ways; we refer the
reader to [16] for more details, including the equivalence of these definitions shown
using ideas of Karlin–Macgregor, Lindström, and Gessel–Viennot. For our purposes
the definition of Cauchy is the most useful:

Definition 3.6. Given non-negative integers N ≥ 1 and n0 < · · · < nN−1, let

n := (n0, . . . , nN−1)T , and nmin := (0, 1, . . . , N − 1)T ,

and define V (n) :=
∏

0≤i<j≤N−1(nj − ni).
Given a vector u = (u1, . . . , uN )T and a non-negative integer k, let u◦k :=

(uk1 , . . . , u
k
N )T , and let u◦n be the N ×N matrix with (j, k) entry u

nk−1

j .
The Schur polynomial in variables u1, . . . , uN of degree n is given by

(3.2) sn(u) :=
det u◦n

det u◦nmin
.
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Notice that the numerator is a generalized Vandermonde determinant, so a
homogeneous and alternating polynomial, while the denominator is the usual Van-
dermonde determinant in the indeterminates uj . Hence their ratio sn(u) is a homo-
geneous symmetric polynomial in Z[u1, . . . , uN ]. It follows that Schur polynomials
are well defined when working over any commutative unital ring.

Schur polynomials are an extremely well-studied family of symmetric functions.
Their appeal lies in the important observation that they are the characters of all
irreducible (finite-dimensional) polynomial representations of the complex Lie group
GLn(C) (or of the Lie algebra sln+1(C)). In this setting, the definition of Cauchy
is a special case of the Weyl character formula. Thus, its specialization yields the
corresponding Weyl dimension formula, which will be of use below:

(3.3) sn((1, . . . , 1)T ) =
∏

0≤i<j≤N−1

nj − ni
j − i

=
V (n)

V (nmin)
.

An alternate proof of (3.3) comes from the principal specialization formula: for
a variable q, one has that

(3.4) sn
(
(1, q, . . . , qN−1)T ) =

∏
0≤i<j≤N−1

qnj − qni

qj − qi
;

this follows from (3.2) because now the numerator is also a standard Vandermonde
determinant. We also refer the reader to [48] for many more results and properties
of Schur polynomials.

Returning to polynomial positivity preservers, we wish to consider functions of
the form

f(x) = c0x
n0 + · · ·+ cN−1x

nN−1 + c′xM ,

with non-negative integers n0 < · · · < nN−1 < M and positive coefficients c0, . . . ,
cN−1. We are interested in characterizing those c′ ∈ R for which the entrywise
map f [−] preserve positivity on PN

(
(0, ρ)

)
. By the Schur product theorem, this is

equivalent to finding the smallest c′ such that f [−] is a preserver. We may assume
that c′ < 0, so we rescale by t := |c′|−1 and define

(3.5) pt(x) := t

N−1∑
j=0

cjx
nj − xM .

The goal now is to find the smallest t > 0 such that pt[−] preserves positivity on
PN
(
(0, ρ)

)
. We next achieve this goal for a single rank-one matrix.

Proposition 3.7. With notation as above, define

nj = (n0, . . . , nj−1, n̂j , nj+1, . . . , nN−1,M)T

for 0 ≤ j ≤ N − 1. Given a vector u ∈ (0,∞)N with distinct coordinates, the
following are equivalent.

(1) The matrix pt[uuT ] is positive semidefinite.
(2) det pt[uuT ] ≥ 0.

(3) t ≥
N−1∑
j=0

snj
(u)2

cjsn(u)2
.

In particular, this shows that for a generic rank-one matrix in PN
(
(0, ρ)

)
, there

does exist a positivity-preserving polynomial with a negative leading term.
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In essence, the equivalences in Proposition 3.7 hold more generally; this is
distilled into the following lemma.

Lemma 3.8 (Khare–Tao [44]2). Fix w ∈ RN and a positive-definite matrix H.
Fix t > 0 and define Pt := tH −wwT . The following are equivalent.

(1) Pt is positive semidefinite.
(2) detPt ≥ 0.

(3) t ≥ wTH−1w = 1− det(H −wwT )

detH
.

We refer the reader to [44] for the detailed proof of Lemma 3.8, remarking
only that the equality in assertion (3) follows by using Schur complements in two

different ways to expand the determinant of the matrix

[
H w
wT 1

]
.

Now Proposition 3.7 follows directly from Lemma 3.8, by setting

H =

N−1∑
j=0

cju
◦nj (u◦nj )T and w = u◦M ,

where H is positive definite because of the following general matrix factorization
(which is also used below).

Proposition 3.9. Let f(x) =
∑M
k=0 fkx

k be a polynomial with coefficients in
a commutative ring R. For any integer N ≥ 1 and any vectors u = (u1, . . . , uN )T

and v = (v1, . . . , vN )T ∈ RN , it holds that

f [tuvT ] =

M∑
k=0

fkt
ku◦k(v◦k)T(3.6)

=


1 u1 · · · uM1
1 u2 · · · uM2
...

...
. . .

...
1 uN · · · uMN



f0 0 · · · 0
0 f1t · · · 0
...

...
. . .

...
0 0 · · · fM t

M




1 v1 · · · vM1
1 v2 · · · vM2
...

...
. . .

...
1 vN · · · vMN


T

,

where 1 is a multiplicative identity which is adjoined to R if necessary.

Now to adopt Lemma 3.8(3), this same equation and the Cauchy–Binet for-
mula allow one to compute det(H −wwT ) in the present situation, and this yields

precisely that t ≥
N−1∑
j=0

snj
(u)2

cjsn(u)2
, as desired.

3.3. The threshold for all rank-one matrices: a Schur positivity re-
sult. We continue toward a proof of Theorem 3.3. The next step is to use Propo-
sition 3.7 to achieve an intermediate goal: a threshold bound for c′ that works for
all rank-one matrices in PN

(
(0, ρ)

)
, still working with integer powers. Clearly, to

do so one has to understand the supremum of each ratio Rj := snj
(u)2/sn(u)2, as

u runs over vectors in (0,
√
ρ)N with distinct coordinates. More precisely, one has

to understand the supremum of the weighted sum
∑
j Rj/cj .

2The work [44] is an extended abstract of the paper [43], but some of the results in it have
different proofs from [43].
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This observation was first made in the work [6] for the case nj = j, that is, n =
nmin. It led to the first proof of Theorem 3.3, with all of the denominators being the
same: snmin(u) = 1. We now use another equivalent definition of Schur polynomials,
by Littlewood, realizing them as sums of monomials corresponding to certain Young
tableaux. Every monomial has a non-negative integer coefficient. It follows by the
continuity and homogeneity of snj

and the Weyl Dimension Formula (3.3), that the

supremum in the previous paragraph equals the value at (
√
ρ, . . . ,

√
ρ)T , namely

sup
u∈(0,√ρ)N

snj
(u)2 =

V (nj)
2

V (nmin)2
ρM−nj .

Since all of these suprema are attained at the same point
√
ρ(1, . . . , 1)T , the weighted

sum in Proposition 3.7(3) also attains its supremum at the same point. Thus, we
conclude using Proposition 3.7 that

f(x) =

N−1∑
j=0

cjx
nj + c′xM

preserves positivity entrywise on all rank-one matrices uuT ∈ PN
(
(0, ρ)

)
if and

only if

c′ ≥ −
(N−1∑
j=0

V (nj)
2

cjV (nmin)2
ρM−nj

)−1
.

In fact, if n = nmin then the entire argument above goes through even when one
changes the domain to the open complex disc D(0, ρ), or any intermediate domain
(0, ρ) ⊂ D ⊂ D(0, ρ). This is precisely the content of the main result in [6].

Theorem 3.10 (Belton–Guillot–Khare–Putinar [6]). Fix ρ > 0 and integers
M ≥ N ≥ 2. Let

f(z) =

N−1∑
j=0

cjz
j + c′zM , where c0, . . . , cN−1, c

′ ∈ R,

and let I := D(0, ρ) be the closed disc in the complex plane with centre 0 and radius
ρ. The following are equivalent.

(1) The entrywise map f [−] preserves positivity on PN (I).
(2) The entrywise map f [−] preserves positivity on rank-one matrices in PN

(
(0, ρ)

)
.

(3) Either c0, . . . , cN−1, c′ are all non-negative, or c0, . . . , cN−1 are positive
and

c′ ≥ −
(N−1∑
j=0

V (nj)
2

cjV (nmin)2
ρM−j

)−1
,

where nj := (0, 1, . . . , j − 1, ĵ, j + 1, . . . , N − 1,M)T for 0 ≤ j ≤ N − 1.

This theorem provides a complete understanding of which polynomials of degree
at most N preserve positivity entrywise on PN

(
(0, ρ)

)
and, more generally, on any

subset of PN
(
D(0, ρ)

)
that contains the rank-one matrices in PN

(
(0, ρ)

)
.

Remark 3.11. Clearly (1) =⇒ (2) here, and the proof of (2) ⇐⇒ (3) was
outlined above via Proposition 3.7. We defer mentioning the proof strategy for
(2) =⇒ (1), because we will later see a similar theorem over I = (0, ρ) for more
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general powers nj . The proof of that result, Theorem 3.15, will be outlined in some
detail.

Having dealt with the base case of n = nmin, as well as n = (k, k + 1, . . . , k +
N − 1) for any k ∈ Z+, which holds by the Schur product theorem, we now turn to
the general case. In general, sn(u) is no longer a monomial, and so it is no longer
clear if and where the supremum of each ratio snj

(u)2/sn(u)2, or of their weighted

sum, is attained for u ∈ (0,
√
ρ)N . The threshold bound for all rank-one matrices

itself is not apparent, and the bound for all matrices in PN
(
(0, ρ)

)
is even more

inaccessible.
By a mathematical miracle, it turns out that the same phenomena as in the

base case hold in general. Namely, the ratio of each snj
and sn attains its supremum

at
√
ρ(1, . . . , 1)T . Hence one can proceed as above to obtain a uniform threshold

for c′, which works for all rank-one matrices in PN
(
(0, ρ)

)
.

Example 3.12. To explain the ideas of the preceding paragraph, we present
an example. Suppose

N = 3, n = (0, 2, 3), M = 4, and u = (u1, u2, u3)T .

Then

n3 = (0, 2, 4),

sn(u) = u1u2 + u2u3 + u3u1,

and sn3
(u) = (u1 + u2)(u2 + u3)(u3 + u1).

The claim is that sn3
(u)/sn(u) is coordinatewise non-decreasing for u ∈ (0,∞)3;

the assertion about its supremum on (0,
√
ρ)N immediately follows from this. It

suffices by symmetry to show the claim only for one variable, say u3. By the
quotient rule,

sn(u)∂u3
sm(u)− sm(u)∂u3

sn(u) = (u1 + u2)(u1u3 + 2u1u2 + u2u3)u3,

and this is clearly non-negative on the positive orthant, proving the claim. As
we see, the above expression is, in fact, monomial positive, from which numerical
positivity follows immediately.

In fact, an even stronger fact holds. Viewed as a polynomial in u3, every
coefficient in the above expression is in fact Schur positive. In other words, the
coefficient of each uj3 is a non-negative combination of Schur polynomials in u1 and
u2:

(u1 + u2)(u1u3 + 2u1u2 + u2u3)u3 =
∑
j≥0

pj(u1, u2)uj3,

where

pj(u1, u2) =


2s(1,3)(u1, u2) if j = 1,

s(0,3)(u1, u2) + s(1,2)(u1, u2) if j = 2,

0 otherwise.

In particular, this implies that each coefficient is monomial positive, whence numer-
ically positive. We recall here that the monomial positivity of Schur polynomials
follows from the definition of sn(u) using Young tableaux.

The miracle to which we alluded above, is that the Schur positivity in the
preceding example in fact holds in general.
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Theorem 3.13 (Khare–Tao [43]). If n0 < · · · < nN−1 and m0 < · · · < mN−1
are N -tuples of non-negative integers such that mj ≥ nj for j = 0, . . . , N −1, then
the function

fm,n : (0,∞)N → R; u 7→ sm(u)

sn(u)

is non-decreasing in each coordinate. Furthermore, if

(3.7) sn(u)∂uN
sm(u)− sm(u)∂uN

sn(u)

is considered as a polynomial in uN , then the coefficient of every monomial ujN is
a Schur-positive polynomial in u1,. . . , uN−1.

The second, stronger part of Theorem 3.13 follows from a deep and highly
non-trivial result in symmetric function theory (or type-A representation theory)
by Lam, Postnikov, and Pylyavskyy [45], following earlier results by Skandera. We
refer the reader to this paper and to [43] for more details. Notice also that the
first assertion in Theorem 3.13 only requires the numerical positivity of the expres-
sion (3.7). This is given a separate proof in [43], using the method of condensation
due to Charles Lutwidge Dodgson [18].3 In this context, we add for complete-
ness that in [43] the authors also show a log-supermodularity (or FKG, or MTP2)
phenomenon for determinants of totally positive matrices.

3.4. Real powers; the threshold works for all matrices. We now return
to the proof of Theorem 3.3, which holds for real powers. Our next step is to
observe that the first part of Theorem 3.13 now holds for all real powers. Since
one can no longer define Schur polynomials in this case, we work with generalized
Vandermonde determinants instead:

Corollary 3.14. Fix N -tuples of real powers n = (n0 < · · · < nN−1) and
m = (m0 < · · · < mN−1), such that nj ≤ mj for all j. Letting u◦n := [u

nk−1

j ]Nj,k=1

as above, the function

f : {u ∈ (0,∞)N : ui 6= uj if i 6= j} → R; u 7→ det u◦m

det u◦n

is non-decreasing in each coordinate.

We sketch here one proof. The version for integer powers, Theorem 3.13, gives
the version for rational powers, by taking a “common denominator” L ∈ Z such

that Lmj and Lnj are all integers, and using a change of variables yj := u
1/L
j . The

general version for real powers then follows by considering rational approximations
and taking limits.

Corollary 3.14 helps prove the real-power version of Theorem 3.3, just as The-
orem 3.13 would have shown the integer powers case of Theorem 3.3. Namely, first
note that Proposition 3.7 holds even when the nj are real powers; the only changes
are (a) to assume that the coordinates of u are distinct, and (b) to rephrase the
last assertion (3) to the following:

t ≥
N−1∑
j=0

(det u◦nj )2

cj(det u◦n)2
.

3This article by Dodgson immediately follows his better-known 1865 publication, Alice’s
Adventures in Wonderland.



16 A. BELTON, D. GUILLOT, A. KHARE, AND M. PUTINAR

These arguments help prove the first part of the following result, which is the
culmination of these ideas.

Theorem 3.15 (Khare–Tao [43]). Fix an integer N ≥ 1 and real exponents
n0 < · · · < nN−1 < M , as well as scalars ρ > 0 and c0, . . . , cN−1, c′. Let

f(x) :=

N−1∑
j=0

cjx
nj + c′xM .

The following are equivalent.

(1) The function f preserves positivity entrywise on all rank-one matrices in
PN
(
(0, ρ)

)
.

(2) The function f preserves positivity entrywise on all Hankel rank-one ma-
trices in PN

(
(0, ρ)

)
.

(3) Either the coefficients c0, . . . , cN−1 and c′ are non-negative, or c0, . . . ,
cN−1 are positive and

c′ ≥ −
(N−1∑
j=0

V (nj)
2

cjV (n)2
ρM−nj

)−1
,

where V (n) and nj are as defined above.

If, moreover, the exponents nj all lie in Z+ ∪ [N − 2,∞), then these assertions
are also equivalent to the following.

(4) The function f preserves positivity entrywise on PN
(
(0, ρ)

)
.

Before sketching the proof, we note several ramifications of this result.

(1) The theorem completely characterizes linear combinations of up to N + 1
powers that entrywise preserve positivity on PN

(
(0, ρ)

)
. The same is true

for any subset of PN
(
(0, ρ)

)
that contains all rank-one positive semidefi-

nite Hankel matrices.
(2) As discussed above, Theorem 3.15 implies Theorem 3.5, which helps in

understanding which sign patterns correspond to countable sums of real
powers that preserve positivity entrywise on PN

(
(0, ρ)

)
(or on the subset

of rank-one matrices). In particular, the existence of sign patterns which
are not all non-negative shows the existence of functions which preserve
positivity on PN but not on PN+1.

(3) Theorem 3.15 bounds A◦M in terms of a multiple of
∑N−1
j=0 cjA

◦nj . More
generally, one can do this for an arbitrary convergent power series instead
of a monomial, in the spirit of Theorem 3.2. Even more generally, one
may work with Laplace transforms of measures; see Corollary 3.17 below.

For completeness, we also mention two developments related (somewhat more
distantly) to the above results.

• A refinement of a conjecture of Cuttler, Greene, and Skandera (2011) and
its proof; see [43] for more details. In particular, this approach assists with
a novel characterization of weak majorization, using Schur polynomials.

• A related “Schubert cell-type” stratification of the cone PN (C); see [6] for
further details.

We conclude this section by outlining the proof of Theorem 3.15.
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Proof. Clearly, (4) =⇒ (1) =⇒ (2). If (2) holds, then, by Lemma 2.8,
either all the cj and c′ are non-negative, or cj is positive for all j. Thus, we suppose
that cj > 0 > c′.

Note that if u(u0) := (1, u0, . . . , u
N−1
0 )T for some u0 ∈ (0, 1), then

A(u0) := ρu20u(u0)u(u0)T

is a rank-one Hankel matrix and hence in our test set. Repeating the analysis in
Section 3.2, using generalized Vandermonde determinants instead of Schur polyno-
mials and rank-one Hankel matrices of the form A(u0),

|c′|−1 ≥ sup
u0∈(0,1)

N−1∑
j=0

(det[
√
ρu0u(u0)]◦nj )2

cj(det[
√
ρu0u(u0)]◦n)2

=

N−1∑
j=0

lim
u0→1−

N−1∑
j=0

(det u(u0)◦nj )2

cj(det u(u0)◦n)2
(ρu20)M−nj ,

where the equality follows from Corollary 3.14 above. The real-exponent version
of (3.4) holds if q ∈ (0,∞) \ {1} and the exponents nj are real and non-decreasing:

det u(q)◦n =
∏

0≤i<k≤N−1

(qnk − qni) = V (q◦n).

Applying this identity, the above computation yields

|c′|−1 ≥ lim
u0→1−

N−1∑
j=0

V (u
◦nj

0 )2

V (u◦n0 )2
(ρu20)M−nj

cj
=

N−1∑
j=0

V (nj)
2

cjV (n)2
ρM−nj .

Thus (2) =⇒ (3). Conversely, that (3) =⇒ (1) follows by a similar analysis
to that given above, using Corollary 3.14 and the density of matrices uuT , where

u ∈
(
0,
√
ρ
)N

has distinct entries, in the set of all rank-one matrices in PN
(
(0, ρ)

)
.

It remains to show that (1) =⇒ (4) if all the exponents nj ∈ Z+ ∪ [N − 2,∞).
We proceed by induction on N . The case N = 1 is immediate. For the inductive
step, we apply the extension principle of the following Proposition 3.16 with h =
f , which requires verification that f ′[−] preserves positivity on PN−1. This is a
straightforward calculation via the induction hypothesis. �

The following extension principle was inspired by work of FitzGerald and
Horn [25].

Proposition 3.16 (Khare–Tao [43]). Suppose 0 < ρ ≤ ∞, and I = (0, ρ),
(−ρ, ρ) or the closure of one of these sets. Let h : I → R be a continuously
differentiable function on the interior of I. If h′[−] preserves positivity entrywise
on PN−1(I) and h[−] does so on the rank-one matrices in PN (I), then h[−] in fact
preserves positivity on all of PN (I).4

Proposition 3.16 relies on two arguments found in [25]: (a) every matrix in PN
may be written as the sum of a rank-one matrix in PN , and a matrix in PN−1 with
its last row and column both zero, and (b) applying the integral identity

h(x)− h(y) =

∫ y

x

h′(t) dt =

∫ 1

0

(x− y)h′(λx+ (1− λ)y) dλ

4An analogous version of this results holds for I = D(0, ρ) or its closure in C, with h : I → C
analytic. This is used to prove the corresponding implication in Theorem 3.10 above.
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entrywise to this decomposition. See [43, Section 3] for more details. The original
use of these arguments was when h is a power function; this is explained in Chapter 4
below.

3.5. Power series preservers and beyond; unbounded domains. In the
remainder of this chapter, we use Theorem 3.15 to derive several corollaries; thus,
we retain and use the notation of that theorem. As discussed following Theo-
rem 3.15, the first consequence extends the theorem from bounding monomials

A◦M = (xM )[A] by a multiple of
∑N−1
j=0 cjA

◦nj , to bounding f [A] for more general
power series. Even more generally, one can work with Laplace transforms of real
measures on R.

Corollary 3.17 (Khare–Tao [43]). Let the notation be as for Theorem 3.15,
with cj > 0 for all j. Suppose µ is a real measure supported on [nN−1 + ε,∞) for
some ε > 0, and let

(3.8) gµ(x) :=

∫ ∞
nN−1+ε

xt dµ(t).

If gµ is absolutely convergent at ρ, then there exists a finite threshold tµ > 0 such
that, for all A ∈ PN

(
(0, ρ)

)
, the matrix

tµ

N−1∑
j=0

cjA
◦nj − gµ[A]

is positive semidefinite.

Proof. By Theorem 3.15 and the fact that PN (R) is a closed convex cone, it
suffices to show the finiteness of the quantity∫ ∞

nN−1+ε

N−1∑
j=0

V (nj)
2

cjV (n)2
ρM−nj dµ+(M),

where µ+ is the positive part of µ. This follows from the hypotheses. �

We now turn to the ρ = ∞ case, which was briefly alluded to above. In other
words, the domain is now unbounded: I = (0,∞). As in the bounded-domain
case, the question of interest is to classify all possible sign patterns of polynomial
or power-series preservers on PN (I) for a fixed integer N .

Similar to the above discussion for bounded I, the crucial step in classifying sign
patterns of power series (or more general functions, as in Theorem 3.5) is to work
with integer powers and precisely one coefficient that can be negative. Thus, one
first observes that Lemma 2.8(2) holds in the unbounded-domain case I = (0,∞).
Hence given a polynomial

f(x) =

2N−1∑
j=0

cjx
nj + c′xM ,

where

0 ≤ n0 < · · · < nN−1 < M < nN < nN+1 · · · < n2N−1,

if f [−] preserves positivity on PN
(
(0,∞)

)
, then either all the coefficients c0, . . . ,

c2N−1, c′ are non-negative, or c0, . . . , c2N−1 are positive and c′ can be negative. In
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this case, an explicit threshold is not known as it is in Theorem 3.15, but we now
explain why such a threshold exists.

We start from (3.6) and repeat the subsequent analysis via the Cauchy–Binet
formula. To find a uniform threshold for c′ that works for all rank-one matrices
in PN

(
(0,∞)

)
, it suffices to bound, uniformly from above, certain ratios of sums

of squares of Schur polynomials. This may be done because of the following tight
bounds.

Proposition 3.18 (Khare–Tao [43]). If n := (n0, . . . , nN−1) and u := (u1, . . . , uN ),
where n0 < · · · < nN−1 are non-negative integers and u1 ≤ · · · ≤ uN are non-
negative real numbers, then

(3.9) un−nmin ≤ sn(u) ≤ V (n)

V (nmin)
un−nmin ,

where nmin := (0, . . . , nN−1). The constants 1 and V (n)/V (nmin) on each side
of (3.9) cannot be improved.

We refer the reader to [43, Section 4] for further details, including how Propo-
sition 3.18 implies the existence of preservers f as above for rank-one matrices with
c′ < 0. The extension from rank-one matrices to all of PN

(
(0,∞)

)
is carried out

using the extension principle in Proposition 3.16.
In a sense, Proposition 3.18 isolates the ‘leading term’ of every Schur polyno-

mial. This calculation can be generalized to the case of non-integer powers,5which
helps extend the above results for the unbounded domain I = (0,∞) to real powers.
This yields the desired classification, similar to Theorem 3.5 in the bounded-domain
case.

Theorem 3.19 (Khare–Tao [43]). Let N ≥ 2, and let {αj : j ≥ 0} ⊂ Z+ ∪
[N − 2,∞) be a set of distinct real numbers. For each j ≥ 0, let εj ∈ {0,±1} be a
sign and suppose that, whenever εj0 = −1, then εj = +1 for at least N choices of j
such that αj < αi0 and also for at least N choices of j such that αj > αi0 . There
exists a series with real coefficients,

f(x) =

∞∑
j=0

cjx
αj

which converges on (0,∞), preserves positivity entrywise on PN
(
(0,∞)

)
, and is

such that cj has the same sign as εj for all j ≥ 0.

Note that, in particular, Theorem 3.19 reaffirms that the Horn–Loewner-type
conditions in Lemma 2.8(2) are sharp.

3.6. Digression: Schur polynomials from smooth functions, and new
symmetric function identities. Before proceeding to additional applications of
Theorem 3.15 and related results, we take a brief detour to explain how Schur
polynomials arise naturally from any sufficiently differentiable function.

Theorem 3.20 (Khare [42]). Fix non-negative integers m0 < m1 < · · · <
mN−1, as well as scalars ε > 0 and a ∈ R. Let M := m0 + · · ·+mN−1 and suppose

5We refer the reader again to [43, Section 5] for the details, which use additional concepts
from type-A representation theory: the Harish-Chandra–Itzykson–Zuber integral and Gelfand–

Tsetlin patterns.
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the function f : [a, a + ε) → R is M -times differentiable at a. Given vectors u,
v ∈ RN , define ∆ : [0, ε′)→ R for a sufficiently small ε′ ∈ (0, ε) by setting

∆(t) := det f [a1N×N + tuvT ].

Then,
(3.10)

∆(M)(0) =
∑
m`M

(
M

m0,m1, . . . ,mN−1

)
V (u)V (v)sm(u)sm(v)

N−1∏
k=0

f (mk)(a),

where the first factor in the summand is a multinomial coefficient, and we sum
over all partitions m = (m0, . . . ,mN−1) of M with unequal parts, that is, M =
m0 + · · ·+mN−1 and 0 ≤ m0 < · · · < mN−1.

In particular, ∆(0) = ∆′(0) = · · · = ∆((N
2 )−1)(0) = 0.

Remark 3.21. As a special case, if f : R→ R is smooth at a, and u, v ∈ RN ,
then defining ∆(t) := det f [a1N×N + tuvT ] gives a function ∆ which is smooth
at 0, and Theorem 3.20 gives all of these derivatives via the formula (3.10). The
general version of Theorem 3.20 is a key ingredient in showing Theorem 2.9, which
subsumes all known variants of Horn–Loewner-type necessary conditions in fixed
dimension.

The key determinant computation required to prove the original Horn–Loewner
necessary condition in fixed dimension (see Theorem 2.7) is the special case of The-
orem 3.20 where u = v and mj = j for all j. In this situation, sm(u) = sm(v) = 1,
so Schur polynomials do not appear. The general version of Theorem 3.20 decou-
ples the vectors u and v, and holds for all M > 0 if f is smooth (as in Loewner’s
setting). Moreover, it reveals the presence of Schur polynomials in every other case

than the ones studied by Loewner, that is, when M >
(
N
2

)
.

While Theorem 3.20 involves derivatives of a smooth function, the result and
its proof are, in fact, completely algebraic, and valid over any commutative ring.
To show this, an algebraic analogue of the differential operator is required, with
more structure than is given by a derivation. The precise statement and its proof
may be found in [42, Section 2].

We conclude this section by applying Theorem 3.20 and its algebraic avatar to
symmetric function theory. We begin by recalling the famous Cauchy summation
identity [48, Example I.4.6]: if f0(x) := 1 + x + x2 + · · · is the geometric series,
viewed as a formal power series over a commutative unital ring R, and u1, . . . , uN ,
v1, . . . , vN are commuting variables, then

(3.11) det f0[uvT ] = V (u)V (v)
∑
m

sm(u)sm(v),

where the sum runs over all partitions m with at most N parts.6

A natural question is whether similar formulae hold when f0 is replaced by
other formal power series. Very few such results were known; this includes one due
to Frobenius [26], for the function fc(x) := (1− cx)/(1−x) with c an scalar. (This

6Usually one uses infinitely many indeterminates in symmetric function theory, but given the

connection to the entrywise calculus in a fixed dimension, we will restrict our attention to uj and

vj for 1 ≤ j ≤ N .
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is also connected to theta functions and elliptic Frobenius–Stickelberger–Cauchy
determinant identities.) For this function,

det fc[uvT ] = det
[1− cujvk

1− ujvk

]N
j,k=1

= V (u)V (v)(1− c)N−1

×
( ∑
m:m0=0

sm(u)sm(v) + (1− c)
∑

m:m0>0

sm(u)sm(v)
)
.(3.12)

A third, obvious identity is if f is a ‘fewnomial’ with at most N − 1 terms. In
this case, f [uvT ] is a sum of at most N−1 rank-one matrices, and so its determinant
vanishes.

The following result extends all three of these cases to an arbitrary formal power
series over an arbitrary commutative ring R, and with an additional Z+-grading.

Theorem 3.22 (Khare [42]). Fix a commutative unital ring R and let t be
an indeterminate. Let f(t) :=

∑
M≥0 fM t

M ∈ R[[t]] be an arbitrary formal power

series. Given vectors u, v ∈ RN , where N ≥ 1, we have that
(3.13)

det f [tuvT ] = V (u)V (v)
∑

M≥(N
2 )

tM
∑

m=(mN−1,...,m0) `M

sm(u)sm(v)

N−1∏
k=0

fmk
.

The heart of the proof involves first computing, for each M ≥ 0, the coefficient
of tM in det f [tuvT ], over the “universal ring”

R′ := Q[u1, . . . , uN , v1, . . . , vN , f0, f1, . . .],

where uj , vk and fm are algebraically independent over Q. These coefficients

are seen to equal ∆(M)(0)/M !, by the algebraic version of Theorem 3.20. Thus,
(3.13) holds over R′. Then note that both sides of (3.13) lie in the subring
R0 := Z[u1, . . . , uN , v1, . . . , vN , f0, f1, . . .], so the identity holds in R0. Finally,
it holds as claimed by specializing from R0 to R.

An alternate approach to proving Theorem 3.22 is also provided in [42]. The
identity (3.6) is applied, along with the Cauchy–Binet formula, to each truncated
Taylor–Maclaurin polynomial f≤M of f(x). The result follows by taking limits in
the t-adic topology, using the t-adic continuity of the determinant function.

3.7. Further applications: linear matrix inequalities, Rayleigh quo-
tients, and the cube problem. This chapter ends with further ramifications
and applications of the above results. First, notice that Theorem 3.15 implies the
following linear matrix inequality version that is ‘sharp’ in more than one sense:

Corollary 3.23. Fix ρ > 0, real exponents n0 < · · · < nN−1 < M for some
integer N ≥ 1, and scalars cj > 0 for all j. Then,

A◦M ≤ C
(
c0A

◦n0 + · · ·+ cN−1A
◦nN−1

)
,

where C =

N−1∑
j=0

V (nj)
2

cjV (n)2
ρM−nj ,
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for all A ∈ PN
(
(0, ρ)

)
of rank one, or of all ranks if n0, . . . , nN−1 ∈ Z+∪[N−2,∞).

Moreover, the constant C is the smallest possible, as is the number of terms N on
the right-hand side.

Seeking a uniform threshold such as C in the preceding inequality can also
be achieved (as explained above) by first working with a single positive matrix,
then optimizing over all matrices. The first step here can be recast as an extremal
problem that involves Rayleigh quotients:

Proposition 3.24 (see [6, 43]). Fix an integer N ≥ 2 and real exponents
n0 < · · · < nN−1 < M , where each nj ∈ Z+ ∪ [N − 2,∞). Given positive scalars
c0, . . . , cN−1, let

h(x) :=

N−1∑
j=0

cjx
nj

(
x ∈ (0,∞)

)
.

Then, for 0 < ρ <∞ and A ∈ PN
(
[0, ρ]

)
,

(3.14) t h[A] � A◦M if and only if t ≥ %(h[A]†/2A◦Mh[A]†/2),

where %[B] and B† denote the spectral radius and the Moore–Penrose pseudo-
inverse of a square matrix B, respectively. Moreover, for every non-zero matrix
A ∈ PN

(
[0, ρ]

)
, the following variational formula holds:

%(h[A]†/2A◦Mh[A]†/2) = sup
u∈(kerh[A])⊥\{0}

uTA◦Mu

uTh[uuT ]u
≤
N−1∑
j=0

V (nj)
2

V (n)2
ρM−nj

cj
.

Proposition 3.24 is shown using the Kronecker normal form for matrix pencils;
see the treatment in [27, Section X.6]. When the matrix A is a generic rank-one
matrix, the above generalized Rayleigh quotient has a closed-form expression, which
features Schur polynomials for integer powers. This reveals connections between
Rayleigh quotients, spectral radii, and symmetric functions.

Proposition 3.25. Notation as in Proposition 3.24; but now with nj not neces-
sarily in Z+∪ [N −2,∞). If A = uuT , where u ∈ (0,∞)N has distinct coordinates,
then h[A] is invertible, and the threshold bound

(3.15) %(h[A]†/2A◦Mh[A]†/2) = (u◦M )Th[uuT ]−1u◦M =

N−1∑
j=0

(det u◦nj )2

cj(det u◦n)2
.

In fact, the proof of the final equality in (3.15) is completely algebraic, and
reveals new determinantal identities that hold over any field F with at least N
elements.

Proposition 3.26 (Khare–Tao [43]). Suppose N ≥ 1 and 0 ≤ n0 < · · · <
nN−1 < M are integers, and u,v ∈ FN each have distinct coordinates. Let cj ∈ F×

and define h(t) :=
∑N−1
j=0 cjt

nj . Then h[uvT ] is invertible, and

(v◦M )Th[uvT ]−1u◦M =

N−1∑
j=0

det u◦nj det v◦nj

cj det u◦n det v◦n
.

The final result is a variant of the matrix-cube problem [49], and connects to
spectrahedra [13, 61] and modern optimization theory. Given two or more real
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symmetric N × N matrices A0, . . . , AM+1 for the corresponding matrix cube of
size 2η > 0 is

U [η] :=
{
A0 +

M+1∑
m=1

umAm : um ∈ [−η, η]
}
.

The matrix-cube problem is to find the largest η > 0 such that U [η] ⊂ PN (R). In
the present setting of the entrywise calculus, the above results imply asymptotically
matching upper and lower bounds for the size of the matrix cube.

Theorem 3.27 (see [6, 43]). Suppose M ≥ 0 and 0 ≤ n0 < n1 < · · · are
integers. Fix positive scalars ρ > 0, 0 < α1 < · · · < αM+1, and cj > 0 ∀j ≥ 0, and
define for each N ≥ 1 and each matrix A ∈ PN

(
[0, ρ]

)
, the cube

(3.16) UA[η] :=


N−1∑
j=0

cjA
◦nj +

M+1∑
m=1

umA
◦(nN−1+αm) : um ∈ [−η, η]

 .

Also define for N ≥ 1 and α > 0:

(3.17) Kα(N) :=

N−1∑
j=0

V (nj(α,N))2

V (n(N))2
ρα−nj

cj
,

where n(N) := (n0, . . . , nN−1)T , and

nj(α,N) := (n0, . . . , nj−1, nj+1, . . . , nN−1, nN−1 + α).

Then for each fixed N ≥ 1, we have the uniform upper and lower bounds:

η ≤
(
Kα1(N) + · · ·+KαM+1

(N)
)−1

=⇒ UA[η] ⊂ PN for all A ∈ PN
(
[0, ρ]

)
=⇒ η ≤ KαM+1

(N)−1.

(3.18)

Moreover, if the nj grow linearly, in that

αM+1 − αM ≥ nj+1 − nj for all j ≥ 0,

then the lower and upper bounds for η = ηN in (3.18) are asymptotically equal as
N →∞:

lim
N→∞

KαM+1
(N)−1

M+1∑
m=1

Kαm
(N) = 1.

3.8. Entrywise preservers of totally non-negative Hankel matrices.
The first part of this survey discusses entrywise preservers of totally positive and
totally non-negative matrices; these turn out to be very rigid in nature. If, instead,
we consider the subfamily of totally non-negative matrices which are Hankel, then
a richer class of preservers emerges, as well as a parallel story to that of entrywise
positivity preservers on all matrices.

Definition 3.28. A real matrix A is said to be totally non-negative or totally
positive if every minor of A is non-negative or positive, respectively. We will denote
these matrices, as well as the property, by TN and TP.

In the recent article [22] by Fallat, Johnson, and Sokal, the authors study when
various classes of totally non-negative (TN) matrices are closed under taking sums
or Schur products. As they observe, the set of all TN matrices is not closed under



24 A. BELTON, D. GUILLOT, A. KHARE, AND M. PUTINAR

these operations; for example, the 3 × 3 identity matrix and the all-ones matrix
13×3 are both TN but their sum is not.

It is of interest to isolate a class of TN matrices that is a closed convex cone,
and is furthermore closed under taking Schur products. Indeed, it is under these
conditions that the observation of Pólya–Szegö (see Section 2.2) holds, leading to
large classes of TN preservers.

Such a class of matrices has been identified in both the dimension-free as well
as fixed-dimension settings. It consists of the TN Hankel matrices. In a fixed
dimension, there is the following classical result from 1912.

Lemma 3.29 (Fekete [24]). Let A be a possibly rectangular real Hankel matrix
such that all of its contiguous minors are positive. Then A is totally positive.

Recall that a minor is said to be contiguous if it is obtained from successive
rows and successive columns of A.

If A is a square Hankel matrix, let A(1) be the square submatrix of A obtained
by removing the first row and the last column. Notice that every contiguous minor
of A is a principal minor of either A or A(1). Combined with Fekete’s lemma, these
observations help show another folklore result.

Theorem 3.30. Let A be a square real Hankel matrix. Then A is TN or TP if
and only if both A and A(1) are positive semidefinite or positive definite, respectively.

Theorem 3.30 is a very useful bridge between matrix positivity and total non-
negativity. A related dimension-free variant (see [2, 28]) concerns the Stielt-
jes moment problem: a sequence (s0, s1, . . . , ) is the moment sequence of an ad-
missible measure on R+ (see Definition 2.10) if and only if the Hankel matrices
H := (sj+k)j,k≥0 and H(1) (obtained by excising the first row of H, or equivalently,
the first column) are both positive semidefinite. By Theorem 3.30, this is equivalent
to saying that H is totally non-negative.

With Theorem 3.30 in hand, one can easily show several basic facts about
Hankel TN matrices; we collect these in the following result for convenience.

Lemma 3.31. For an integer N ≥ 1 and a set I ⊂ R+, let HTNN (I) denote the
set of N ×N TN Hankel matrices with entries in I. For brevity, we let HTNN :=
HTNN

(
R+).

(1) The family HTNN is closed under taking sums and non-negative scalar
multiples, or more generally, integrals against non-negative measures (as
long as these exist).

(2) In particular, if µ is an admissible measure supported on R+, then its

moment matrix Hµ :=
(
sj+k(µ)

)∞
j,k=0

is totally non-negative.

(3) HTNN is closed under taking entrywise products.
(4) If the power series f(x) =

∑
k≥0 ckx

k is convergent on I ⊂ R+, with

ck ≥ 0 for all k ≥ 0, then the entrywise map f [−] preserves total non-
negativity on HTNN (I), for all N ≥ 1.

Given Lemma 3.31(4), which is identical to the start of the story for positivity
preservers, it is natural to expect parallels between the two settings. This does in
fact occur, in both the dimension-free and the fixed-dimension settings, and we now
elaborate on both of these. For example, one can ask if a Schoenberg-type phenom-
enon also holds for preservers of total non-negativity on

⋃
N≥1HTNN

(
[0, ρ)

)
with
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0 < ρ ≤ ∞. This is indeed the case; we set ρ = ∞ for ease of exposition. From
Theorem 2.12 and the subsequent discussion, it follows via Hamburger’s theorem
that the class of functions

∑
k≥0 ckx

k with all ck ≥ 0 characterizes the entrywise
maps preserving the set of moment sequences of admissible measures supported on
[−1, 1]. By the above discussion, in considering the family of matrices HTNN for
all N ≥ 1, we are studying moment sequences of admissible measures supported on
I = R+, or the related Hausdorff moment problem for I = [0, 1]. In this case, one
also has a Schoenberg-like characterization, outside of the origin.

Theorem 3.32 (Belton–Guillot–Khare–Putinar [7]). Let f : R+ → R. The
following are equivalent.

(1) Applied entrywise, the map f preserves the set HTNN for all N ≥ 1.
(2) Applied entrywise, the map f preserves positive semidefiniteness on HTNN

for all N ≥ 1.
(3) Applied entrywise, the map f preserves the set of moment sequences of

admissible measures supported on R+.
(4) Applied entrywise, the map f preserves the set of moment sequences of

admissible measures supported on [0, 1].
(5) The function f agrees on (0,∞) with an absolutely monotonic entire func-

tion, hence is non-decreasing, and 0 ≤ f(0) ≤ limε→0+ f(ε).

Remark 3.33. If we work only with f : (0,∞)→ R, then we are interested in
matrices in HTNN with positive entries. Since the only matrices in HTNN with
a zero entry are scalar multiples of the elementary square matrices E11 or ENN
(equivalently, the only admissible measures supported in R+ with a zero moment
are of the form cδ0), the test set does not really reduce, and hence the preceding
theorem still holds in essence: we must replace HTNN by HTNN

(
(0,∞)

)
in (1)

and (2), reduce the class of admissible measures to those that are not of the form
cδ0 in (3) and (4), and end (5) at ‘entire function’. These five modified statements
are, once again, equivalent, and provide further equivalent conditions to those of
Vasudeva (Theorems 2.5 and 2.11).

In a similar vein, we now present the classification of sign patterns of polynomial
or power-series functions that preserve TN entrywise in a fixed dimension on Hankel
matrices. This too turns out to be exactly the same as for positivity preservers.

Theorem 3.34 (Khare–Tao [43]). Fix ρ > 0 and real exponents n0 < · · · <
nN−1 < M . For any real coefficients c0, . . . , cN−1, c′, let

(3.19) f(x) :=

N−1∑
j=0

cjx
nj + c′xM .

The following are equivalent.

(1) The entrywise map f [−] preserves TN on the rank-one matrices in HTNN
(
(0, ρ)

)
.

(2) The entrywise map f [−] preserves positivity on the rank-one matrices in
HTNN

(
(0, ρ)

)
.

(3) Either all the coefficients c0, . . . , cN−1, c′ are non-negative, or c0, . . . ,
cN−1 are positive and c′ ≥ −C−1, where

(3.20) C =

N−1∑
j=0

V (nj)
2

V (n)2
ρM−nj

cj
.
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If nj ∈ Z+ ∪ [N − 2,∞) for j = 0, . . . , N − 1, then conditions (1), (2) and (3) are
further equivalent to the following.

(4) The entrywise map f [−] preserves TN on HTNN
(
[0, ρ]

)
.

In particular, this produces further equivalent conditions to Theorem 3.15.
Notice that assertion (2) here is valid because the rank-one matrices used in proving

Theorem 3.15 are of the form cuuT , where u = (1, u0, . . . , u
N−1
0 )T , u0 ∈ (0, 1), and

c ∈ (0, ρ), so that cuuT ∈ HTNN
(
(0, ρ)

)
.

The consequences of Theorem 3.15 also carry over for TN preservers. For
instance, one can bound Laplace transforms analogously to Corollary 3.17, by re-
placing the words “positive semidefinite” by “totally non-negative” and the set
PN
(
(0, ρ)

)
by HTNN

(
(0, ρ)

)
. Similarly, one can completely classify the sign pat-

terns of power series that preserve TN entrywise on Hankel matrices of a fixed
size:

Theorem 3.35 (Khare–Tao [43]). Theorems 3.5 and 3.19 hold upon replac-
ing the phrase “preserves positivity entrywise on PN

(
(0, ρ)

)
” with “preserves TN

entrywise on HTNN
(
(0, ρ)

)
”, for both ρ <∞ and for ρ =∞.

We point the reader to [43, End of Section 9] for details.
To conclude, it is natural to seek a general result that relates the positivity

preservers on PN (I) and TN preservers on the set HTNN (I) for domains I ⊂ R+.
Here is one variant which helps prove the above theorems, and which essentially
follows from Theorem 3.30.

Proposition 3.36 (Khare–Tao [43]). Fix integers 1 ≤ k ≤ N and a scalar
0 < ρ ≤ ∞. Suppose f : [0, ρ) → R is such that the entrywise map f [−] preserves
positivity on PkN

(
[0, ρ)

)
, the set of matrices in PN

(
[0, ρ)

)
with rank no more than

k. Then f [−] preserves total non-negativity on HTNN
(
[0, ρ)

)
∩ PkN

(
[0, ρ)

)
.

4. Power functions

A natural approach to tackle the problem of characterizing entrywise preservers
in fixed dimension is to examine if some natural simple functions preserve positiv-
ity. One such family is the collection of power functions, f(x) = xα for α > 0.
Characterizing which fractional powers preserve positivity entrywise has recently
received much attention in the literature. One of the first results in this area reads
as follows.

Theorem 4.1 (FitzGerald and Horn [25, Theorem 2.2]). Let N ≥ 2 and let
A = [ajk] ∈ PN

(
R+

)
. For any real number α ≥ N − 2, the matrix A◦α := [aαjk] is

positive semidefinite. If 0 < α < N − 2 and α is not an integer, then there exists a
matrix A ∈ PN

(
(0,∞)

)
such that A◦α is not positive semidefinite.

Theorem 4.1 shows that every real power α ≥ N − 2 entrywise preserves posi-
tivity, while no non-integers in (0, N − 2) do so. This surprising “phase transition”
phenomenon at the integer N − 2 is referred to as the “critical exponent” for pre-
serving positivity. Studying which powers entrywise preserve positivity is a very
natural and interesting problem. It also often provides insights to determine which
general functions preserve positivity. For example, Theorem 4.1 suggests that func-
tions that entrywise preserve positivity on PN should have a certain number of
non-negative derivatives, which is indeed the case by Theorem 2.7.
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Outline of the proof. The first part of Theorem 4.1 relies on an ingenious
idea that we now sketch. The result is obvious for N = 2. Let us assume it holds
for some N − 1 ≥ 2, let A ∈ PN (R+), and let α ≥ N − 2. Write A in block form,

A =

[
B ξ
ξT aNN

]
,

where B has dimension (N − 1)× (N − 1) and ξ ∈ RN−1. Assume without loss of
generality that aNN 6= 0 (as the case where aNN = 0 follows from the induction
hypothesis) and let ζ := (ξT , aNN )T /

√
aNN . Then A− ζζT = (B − ξξT )/aNN ⊕ 0,

where (B − ξξT )/aNN is the Schur complement of aNN in A. Hence A − ζζT is
positive semidefinite. By the fundamental theorem of calculus, for any x, y ∈ R,

xα = yα + α

∫ 1

0

(x− y)(λx+ (1− λ)y)α−1 dλ.

Using the above expression entrywise, we obtain

A◦α = ζ◦α(ζ◦α)T +

∫ 1

0

(A− ζζT ) ◦ (λA+ (1− λ)ζζT )◦(α−1) dλ.

Observe that the entries of the last row and column of the matrix A− ζζT are all
zero. Using the induction hypothesis and the Schur product theorem, it follows
that the integrand is positive semidefinite, and therefore so is A◦α.

The converse implication in Theorem 4.1 is shown by considering a matrix
of the form a1N×N + tuuT , where a, t > 0, the coordinates of u are distinct,
and t1 is small. Recall this is the exact same class of matrices that was useful in
proving the Horn–Loewner theorem 2.7 as well as its strengthening in Theorem 2.9.
The original proof, by FitzGerald and Horn [25], used u = (1, 2, . . . , N)T , while a
later proof by Fallat, Johnson and Sokal [22] used the same argument, now with

u = (1, u0, . . . , u
N−1
0 )T ; the motivation in [22] was to work with Hankel matrices,

and the matrix a1N×N + tuuT is indeed Hankel. That said, the argument of
FitzGerald and Horn works more generally than both of these proofs, to show that,
for any non-integral power α ∈ (0, N − 2), a > 0, and vector u ∈ (0,∞)N with
distinct coordinates, there exists t > 0 such that (a1N×N + tuuT )◦α is not positive
semidefinite. �

In her 2017 paper [41], Jain provided a remarkable strengthening of the result
mentioned at the end of the previous proof, which removes the dependence on t
entirely.

Theorem 4.2 (Jain [41]). Let

A := [1 + ujuk]Nj,k=1 = 1N×N + uuT ,

where N ≥ 2 and u = (u1, . . . , uN )T ∈ (0,∞)N has distinct entries. Then A◦α is
positive semidefinite for α ∈ R if and only if α ∈ Z+ ∪ [N − 2,∞).

Jain’s result identifies a family of rank-two positive semidefinite matrices, every
one of which encodes the classification of powers preserving positivity over all of
PN
(
(0,∞)

)
. In a sense, her rank-two family is the culmination of previous work

on positivity preserving powers for PN
(
(0,∞)

)
, since for rank-one matrices, every

entrywise power preserves positivity: (uuT )◦α = u◦α(u◦α)T .
An immediate consequence of these results is the classification of the entrywise

powers preserving positivity on the N × N Hankel TN matrices. Recall from the
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results in Section 3.8 (including Lemma 3.31(4)) that there is to be expected a
strong correlation between this classification and the one in Theorem 4.1.

Corollary 4.3. Given N ≥ 2, the following are equivalent for an exponent
α ∈ R.

(1) The entrywise power function x 7→ xα preserves total non-negativity on
HTNN (see Lemma 3.31).

(2) The entrywise map x 7→ xα preserves positivity on HTNN .
(3) The entrywise map x 7→ xα preserves positivity on the matrices in HTNN

(
(0,∞)

)
of rank at most two.

(4) The exponent α ∈ Z+ ∪ [N − 2,∞).

Proof. That (4) =⇒ (2) and (2) =⇒ (1) follow from Theorems 4.1 and 3.30,
respectively. That (1) =⇒ (2) and (2) =⇒ (3) are obvious, and Jain’s theorem 4.2
shows that (3) =⇒ (4). �

A problem related to the above study of entrywise powers preserving positivity,
is to characterize infinitely divisible matrices. This problem was also considered by
Horn in [40]. Recall that a complex N ×N matrix is said to be infinitely divisible
if A◦α ∈ PN for all α ∈ R+. Denote the incidence matrix of A by M(A):

M(A)jk = mjk :=

{
0 if ajk = 0

1 otherwise.

Also, let

L(A) := {x ∈ CN :

N∑
j,k=1

mjkxjxk = 0},

and note that L(A) is the kernel of M(A) if M(A) is positive semidefinite.
Assuming the arguments of the entries are chosen in a consistent way [40], we

let

log#A := M(A) ◦ log[A] = [µjk log ajk]Nj,k=1,

with the usual convention 0 log 0 = 0.

Theorem 4.4 (Horn [40, Theorem 1.4]). An N × N matrix A is infinitely
divisible if and only if (a) A is Hermitian, with ajj ≥ 0 for all j, (b) M(A) ∈ PN ,

and (c) log#A is positive semidefinite on L(A).

4.1. Sparsity constraints. Theorem 4.1 was recently extended to more struc-
tured matrices. Given I ⊂ R and a graph G = (V,E) on the finite vertex set
V = {1, . . . , N}, we define the cone of positive-semidefinite matrices with zeros
according to G:

(4.1) PG(I) := {A = [ajk] ∈ PN (I) : ajk = 0 if (j, k) 6∈ E and i 6= j}.

Note that if (j, k) ∈ E, then the entry ajk is unconstrained; in particular, it is
allowed to be 0. Consequently, the cone PG := PG(R) is a closed subset of PN .

A natural refinement of Theorem 4.1 involves studying powers that entrywise
preserve positivity on PG. In that case, the flavor of the problem changes signifi-
cantly, with the discrete structure of the graph playing a prominent role.
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Definition 4.5 (Guillot–Khare–Rajaratnam [30]). Given a simple graph G =
(V,E), let

(4.2) HG := {α ∈ R : A◦α ∈ PG for all A ∈ PG(R+)}.

Define the Hadamard critical exponent of G to be

(4.3) CE(G) := min{α ∈ R : [α,∞) ⊂ HG}.

Notice that, by Theorem 4.1, for every graph G = (V,E), the critical exponent
CE(G) exists, and lies in [ω(G)− 2, |V | − 2], where ω(G) is the size of the largest
complete subgraph of G, that is, the clique number. To compute such critical
exponents is natural and highly non-trivial.

FitzGerald and Horn proved that CE(Kn) = n−2 for all n ≥ 2 (Theorem 4.1),
while it follows from [31, Proposition 4.2] that CE(T ) = 1 for every tree T . For
a general graph, it is not a priori clear what the critical exponent is or how to
compute it. A natural family of graphs that encompasses both complete graphs
and trees is that of chordal graphs. Recall that a graph is chordal if it does not
contain an induced cycle of length 4 or more. Chordal graphs feature extensively in
many areas, such as the theory of graphical models [46], and in problems involving
positive-definite completions (see [59]). Examples of important chordal graphs
include trees, complete graphs, Apollonian graphs, band graphs, and split graphs.

Recently, Guillot, Khare, and Rajaratnam [30] were able to compute the com-
plete set of entrywise powers preserving positivity on PG for all chordal graphs G.
Here, the critical exponent can be described purely combinatorially.

Theorem 4.6 (Guillot–Khare–Rajaratnam [30]). Let K
(1)
r denote the complete

graph with one edge removed, and let G be a finite simple connected chordal graph.
The critical exponent for entrywise powers preserving positivity on PG is r − 2,

where r is the largest integer such that Kr or K
(1)
r is an induced subgraph of G.

More precisely, the set of entrywise powers preserving PG is HG = Z+ ∪ [r− 2,∞),
with r as before.

The set of entrywise powers preserving positivity was also computed in [30] for
cycles and bipartite graphs.

Theorem 4.7 (Guillot–Khare–Rajaratnam [30]). The critical exponent of cy-
cles and bipartite graphs is 1.

Surprisingly, the critical exponent does not depend on the size of the graph
for cycles and bipartite graphs. In particular, it is striking that any power greater
than 1 preserves positivity for families of dense graphs such as bipartite graphs.
Such a result is in sharp contrast to the general case, where there is no underlying
structure of zeros. That small powers can preserve positivity is important for
applications, since such entrywise procedures are often used to regularize positive
definite matrices, such as covariance or correlation matrices, where the goal is to
minimally modify the entries of the original matrix (see [47, 63] and Chapter 5
below).

For a general graph, the problem of computing the set HG or the critical ex-
ponent CE(G) remains open. We now outline some other natural open problems
in the area.

Problems.
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(1) In every currently known case (Theorems 4.6, 4.7), CE(G) is equal to

r − 2, where r is the largest integer such that Kr or K
(1)
r is an induced

subgraph of G. Is the same true for every graph G?
(2) Is CE(G) always an integer? Can this be proved without computing

CE(G) explicitly?
(3) Recall that every chordal graph is perfect. Can the critical exponent be

calculated for other broad families of graphs such as the family of perfect
graphs?

4.2. Rank constraints and other Loewner properties. Another approach
to generalize Theorem 4.1 is to examine other properties of entrywise functions such
as monotonicity, convexity, and super-additivity (with respect to the Loewner semi-
definite ordering) [38, 29]. Given a set V ⊂ PN (I), recall that a function f : I → R
is

• positive on V with respect to the Loewner ordering if f [A] ≥ 0 for all
0 ≤ A ∈ V ;

• monotone on V with respect to the Loewner ordering if f [A] ≥ f [B] for
all A, B ∈ V such that A ≥ B ≥ 0;

• convex on V with respect to the Loewner ordering if f [λA+ (1− λ)B] ≤
λf [A] + (1− λ)f [B] for all λ[0, 1] and all A, B ∈ V such that A ≥ B ≥ 0;

• super-additive on V with respect to the Loewner ordering if f [A + B] ≥
f [A] + f [B] for all A, B ∈ V for which f [A+B] is defined.

The following relations between the first three notions were obtained by Hiai.

Theorem 4.8 (Hiai [38, Theorem 3.2]). Let I = (−ρ, ρ) for some ρ > 0.

(1) For each N ≥ 3, the function f is monotone on PN (I) if and only if f is
differentiable on I and f ′ is positive on PN (I).

(2) For each N ≥ 2, the function f is convex on PN (I) if and only if f is
differentiable on I and f ′ is monotone on PN (I).

Power functions satisfying any of the above four properties have been charac-
terized by various authors. In recent work, Hiai [38] has extended Theorem 4.1 by
considering the odd and even extensions of the power functions to R. For α > 0,
the even and odd extensions to R of the power function fα(x) := xα are defined
to be φα(x) := |x|α and ψα(x) := sign(x)|x|α. The first study of powers α > 0
for which φα preserves positivity entrywise on PN (R) was carried out by Bhatia
and Elsner [10]. Subsequently, Hiai studied the power functions φα and ψα that
preserve Loewner positivity, monotonicity, and convexity entrywise, and showed for
positivity preservers that the same phase transition occurs at n− 2 for φα and ψα,
as demonstrated in [25]. The work was generalized in [29] to matrices satisfying
rank constraints.

Definition 4.9. Fix non-negative integers n ≥ 2 and n ≥ k, and a set I ⊂ R.
Let Pkn(I) denote the subset of matrices in Pn(I) that have rank at most k, and let

Hpos(n, k) := {α > 0 : xα preserves positivity on Pkn(R+)},

Hφpos(n, k) := {α > 0 : φα preserves positivity on Pkn(R)},(4.4)

Hψpos(n, k) := {α > 0 : ψα preserves positivity on Pkn(R)}.
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Similarly, let HJ(n, k), HφJ(n, k) and HψJ (n, k) denote sets of the entrywise powers
preserving Loewner properties on Pkn(R+) or Pkn(R), where J ∈ {monotonicity, convexity, super-additivity}.

The set of entrywise powers preserving the above notions are given in the table
below (see [29, Theorem 1.2]).

J HJ (n, k) HφJ (n, k) HψJ (n, k)

Positivity

k = 1 R R R
G–K–R G–K–R G–K–R

N ∪ [n− 2,∞) 2N ∪ [n− 2,∞) (−1 + 2N) ∪ [n− 2,∞)

2 ≤ k ≤ n FitzGerald–Horn Hiai, Bhatia–Elsner, Hiai, G–K–R
G–K–R

Monotonicity

k = 1 R+ R+ R+

G–K–R G–K–R G–K–R

2 ≤ k ≤ n N ∪ [n− 1,∞) 2N ∪ [n− 1,∞) (−1 + 2N) ∪ [n− 1,∞)
FitzGerald–Horn Hiai, G–K–R Hiai, G–K–R

Convexity

k = 1 [1,∞) [1,∞) [1,∞)
G–K–R G–K–R G–K–R

2 ≤ k ≤ n N ∪ [n,∞) 2N ∪ [n,∞) (−1 + 2N) ∪ [n,∞)

Hiai, G–K–R Hiai, G–K–R Hiai, G–K–R

Super-additivity

1 ≤ k ≤ n N ∪ [n,∞) 2N ∪ [n,∞) (−1 + 2N) ∪ [n,∞)
G–K–R G–K–R G–K–R

Table 1. Summary of real Hadamard powers preserving Loewner
properties, with additional rank constraints. See Bhatia–Elsner
[10], FitzGerald–Horn [25], Guillot–Khare–Rajaratnam [29], and
Hiai [38].

5. Motivation from statistics

The study of entrywise functions preserving positivity has recently attracted
renewed attraction due to its importance in the estimation and regularization of
covariance/correlation matrices. Recall that the covariance between two random
variables Xj and Xk is given by

σjk = Cov(Xj , Xk) = E
[
(Xj − E[Xj ])(Xk − E[Xk])

]
,

where E[Xj ] denotes the expectation of Xj . In particular, Cov(Xj , Xj) = Var(Xj),
the variance of Xj . The covariance matrix of a random vector X := (X1, . . . , Xm),
is the matrix Σ := [Cov(Xj , Xk)]mj,k=1. Covariance matrices are a fundamental tool
that measure linear dependencies between random variables. In order to discover
relations between variables in data, statisticians and applied scientists need to ob-
tain estimates of the covariance matrix Σ from observations x1, . . . , xn ∈ Rm of
X. A traditional estimator of Σ is the sample covariance matrix S given by

(5.1) S = [sjk]mj,k=1 =
1

n− 1

n∑
i=1

(xi − x)(xi − x)T ,
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where x := 1
n

∑n
i=1 xi is the average of the observations. In the case where the

random vector X has a multivariate normal distribution with mean µ and covariance
matrix Σ, one can show that x and n−1

n S are the maximum likelihood estimators
of µ and Σ, respectively [3, Chapter 3]. It is not difficult to show that S is an
unbiased estimator of Σ. More generally, under weak assumptions, one can show
that the distribution of

√
n(S −Σ) is asymptotically normal as n→∞. The exact

description of the limiting distribution depends on the moments and the cumulants
of X (see [12, Chapter 6.3]). For example, in the two-dimensional case, we have
the following result.

Let Nm(µ,Σ) denote the m-dimensional normal distribution with mean µ and
covariance matrix Σ.

Proposition 5.1 (see [12, Example 6.4]). Let x1, . . . , xn ∈ R2 be an inde-
pendent and identically distributed sample from a bivariate vector X = (X1, X2)
with mean µ = (µ1, µ2) and finite fourth-order moments, and let S be as in Equa-
tion (5.1). Then

√
n

 s21s12
s22

−
 σ2

1

σ12
σ2
2

 d−→ N3(0,Ω),

where Ω is the symmetric 3× 3 matrix

Ω =

 µ
1
4 − (µ1

2)2 µ12
31 − µ12

11µ
1
2 µ12

22 − µ1
2µ

2
2

µ12
31 − µ12

11µ
1
2 µ12

22 − (µ12
11)2 µ12

13 − µ12
11µ

2
2

µ12
22 − µ1

2µ
2
2 µ12

31 − µ12
11µ

1
2 µ2

4 − (µ2
2)2

 ,
and µik = E[(Xi − µi)k] and µijkl = E[(Xi − µi)k(Xj − µj)l].

In traditional statistics, one usually assumes the number of samples n is large
enough for asymptotic results such as the one above to apply. In covariance es-
timation, one typically requires a sample size at least a few times the number of
variables m for that to apply. In such a case, the sample covariance matrix provides
a good approximation of the true covariance matrix Σ. However, this ideal setting is
rarely seen nowadays. Indeed, our systematic and automated way of collecting data
today yields datasets where the number of variables is often orders of magnitude
larger than the number of instances available for study [19]. Classical statistical
methods were not designed and are not suitable to analyze data in such settings.
Developing new methodologies that are adapted to modern high-dimensional prob-
lems is the object of active research. In the case of covariance estimation, several
strategies have been proposed to replace the traditional sample covariance matrix
estimator S. These approaches typically leverage low-dimensional structures in the
data (low rank, sparsity, . . . ) to obtain reasonable covariance estimates, even when
the sample size is small compared to the dimension of the problem (see [52] for a
detailed description of such techniques). One such approach involves applying func-
tions to the entries of sample covariance matrices to improve their properties (see
e.g. [5, 11, 21, 35, 36, 47, 53, 63]). For example, hard thresholding a matrix en-
tails setting to zero the entries of the matrix that are smaller in absolute value than
a prescribed value ε > 0 (thinking the corresponding variables are independent, for
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example). Letting

(5.2) fHε (x) =

{
x if |x| > ε,

0 otherwise,

thresholding is equivalent to applying the function fHε entrywise to the entries of the
matrix. Another popular example that was first studied in the context of wavelet
shrinkage [20] is soft thresholding, where fHε is replaced by

fSε : x 7→ sign(x)
(
|x| − ε

)
+

with y+ := max{y, 0}.

Soft thresholding not only sets small entries to zero, it also shrinks all the other
entries continuously towards zero. Several other thresholding and shrinkage proce-
dures were also recently proposed in the context of covariance estimation (see [23]
and the references therein).

Compared to other techniques, the above procedure has several advantages.
Firstly, the resulting estimators are often significantly more precise than the sam-
ple covariance matrices. Secondly, applying a function to the entries of a matrix
is very simple and not computationally intensive. The procedure can therefore be
performed in very high dimensions and in real-time applications. This is in contrast
to several other techniques that require solving optimization problems and often be-
come too intensive to be used in modern applications. A downside of the entrywise
calculus, however, is that the positive definiteness of the resulting matrices is not
guaranteed. As the parameter space of covariance matrices is the cone of positive
definite matrices, it is critical that the resulting matrices be positive definite for
the technique to be useful and widely applicable. The problem of characterizing
positivity preservers thus has an immediate impact in the area of covariance esti-
mation by providing useful functions that can be applied entrywise to covariance
estimates in order to regularize them.

Several characterizations of when thresholding procedures preserve positivity
have recently been obtained.

5.1. Thresholding with respect to a graph. In [33], the concept of thresh-
olding with respect to a graph was examined. In this context, the elements to
threshold are encoded in a graph G = (V,E) with V = {1, . . . , p}. If A = (ajk) is
a p× p matrix, we denote by AG the matrix with entries

(AG)jk =

{
ajk if (j, k) ∈ E or j = k,

0 otherwise.

We say that AG is the matrix obtain by thresholding A with respect to the graph
G. The main result of [33] characterizes the graphs G for which the corresponding
thresholding procedure preserves positivity. Denote by P+

N the set of real symmetric

N ×N positive definite matrices and by P+
G the subset of positive definite matrices

contained in PG (see Equation 4.1).

Theorem 5.2 (Guillot–Rajaratnam [33, Theorem 3.1]). The following are
equivalent:

(1) AG ∈ P+
N for all A ∈ P+

N ;

(2) G =
⋃d
i=1Gi, where G1, . . . , Gd are disconnected and complete compo-

nents of G.
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The implication (2) =⇒ (1) of the theorem is intuitive and straightforward,
since principal submatrices of positive definite matrices are positive definite. That
(1) =⇒ (2) may come as a surprise though, and shows that indiscriminate or ar-
bitrary thresholding of a positive definite matrix can quickly lead to loss of positive
definiteness.

Theorem 5.2 also generalizes to matrices that already have zero entries. In that
case, the characterization of the positivity preservers remains essentially the same.

Theorem 5.3 (Guillot–Rajaratnam [33, Theorem 3.3]). Let G = (V,E) be an
undirected graph and let H = (V,E′) be a subgraph of G, so that E′ ⊂ E. Then
AH is positive definite for every A ∈ P+

G if and only if H = G1 ∪ · · · ∪ Gk, where
G1, . . . , Gk are disconnected induced subgraphs of G.

5.2. Hard and soft thresholding. Theorems 5.2 and 5.3 address the case
where positive definite matrices are thresholded with respect to a given pattern
of entries, regardless of the magnitude of the entries of the original matrix. The
more natural case where the entries are hard or soft-thresholded was studied in
[33, 34]. In applications, it is uncommon to threshold the diagonal entries of esti-
mated covariance matrices, as the diagonal contains the variance of the underlying
variables. Hence, for a given function f : R → R and a real matrix A = [ajk], we
let the matrix f∗[A] be defined by setting

f∗[A]jk :=

{
f(ajk) if j 6= k,

ajk otherwise.

Theorem 5.4 (Guillot–Rajaratnam [33, Theorem 3.6]). Let G be a connected
undirected graph with n ≥ 3 vertices. The following are equivalent.

(1) There exists ε > 0 such that, for every A ∈ P+
G , we have (fHε )∗[A] ∈ P+

n .

(2) For every ε > 0 and every A ∈ P+
G , we have fHε [A] ∈ P+

n .
(3) G is a tree.

The case of soft-thresholding was considered in [34]. Surprisingly, the charac-
terization of the thresholding levels that preserve positivity is exactly the same as
in the case of hard-thresholding.

Theorem 5.5 (Guillot–Rajaratnam [34, Theorem 3.2]). Let G = (V,E) be a
connected graph with n ≥ 3 vertices. Then the following are equivalent:

(1) There exists ε > 0 such that for every A ∈ P+
G , we have (fSε )∗[A] ∈ P+

n .

(2) For every ε > 0 and every A ∈ P+
G , we have fSε [A] ∈ P+

n .
(3) G is a tree.

An extension of Schoenberg’s theorem (Theorem 2.3) to the case where the
function f is only applied to the off-diagonal entries of the matrix was also obtained
in [34].

Theorem 5.6 (Guillot–Rajaratnam [34, Theorem 4.21]). Let 0 < ρ ≤ ∞ and
f : (−ρ, ρ)→ R. The matrix f∗[A] is positive semidefinite for all A ∈ Pn

(
(−ρ, ρ)

)
and all n ≥ 1 if and only if f(x) = xg(x), where

(1) g is analytic on the disc D(0, ρ);
(2) ‖g‖∞ ≤ 1;
(3) g is absolutely monotonic on (0, ρ).

When ρ = ∞, the only functions satisfying the above conditions are the affine
functions f(x) = ax for 0 ≤ a ≤ 1.
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5.3. Rank and sparsity constraints. An explicit and useful characteriza-
tion of entrywise functions preserving positivity on PN for a fixed N still remains
out of reach as of today. Motivated by applications in statistics, the authors in
[31, 32] examined the cases where the matrices in PN satisfy supplementary rank
and sparsity constraints that are common in applications.

Observe that the sample covariance matrix (Equation (5.1)) has rank at most
n, where n is the number of samples used to compute it. Moreover, as explained
in Chapter 5, it is common in modern applications that n is much smaller than
the dimension p. Hence, when studying the regularization approach described in
Chapter 5, it is natural to consider positive semidefinite matrices with rank bounded
above.

An immediate application of Schoenberg’s theorem on spheres (see Equation (2.2))
provides a characterization of entrywise positivity preservers of correlation matrices
of all dimensions, with rank bounded above by n. Recall that a correlation matrix is
the covariance matrix of a random vector where each variable has variance 1, so is a
positive semidefinite matrix with diagonal entries equal to 1. As in Equation (2.2),

we denote the ultraspherical orthogonal polynomials by P
(λ)
k .

Theorem 5.7 (Reformulation of [57, Theorem 1]). Let n ∈ N and let f :
[−1, 1]→ R. The following are equivalent.

(1) f [A] ∈ PN for all correlation matrices A ∈ PN
(
[−1, 1]

)
with rank no more

than n and all N ≥ 1.

(2) f(x) =
∑∞
j=0 ajP

(λ)
j (x) with aj ≥ 0 for all j ≥ 0 and λ = (n− 1)/2.

Proof. The result follows from [57, Theorem 1] and the observation that
correlation matrices of rank at most n are in correspondence with Gram matrices
of vectors in Sn−1. �

In order to approach the case of matrices of a fixed dimension, we introduce
some notation.

Definition 5.8. Let I ⊂ R. Define Sn(I) to be the set of n × n symmetric
matrices with entries in I. Let rankA denote the rank of a matrix A. We define:

Skn(I) := {A ∈ Sn(I) : rankA ≤ k},

Pkn(I) := {A ∈ Pn(I) : rankA ≤ k}.

The main result in [32] provides a characterization of entrywise functions map-
ping P ln into Pkn.

Theorem 5.9 (Guillot–Khare–Rajaratnam [32, Theorem B]). Let 0 < R ≤ ∞
and I = [0, R) or (−R,R). Fix integers n ≥ 2, 1 ≤ k < n − 1, and 2 ≤ l ≤ n.
Suppose f ∈ Ck(I). The following are equivalent.

(1) f [A] ∈ Skn for all A ∈ P ln(I);
(2) f(x) =

∑r
k=1 ctx

it for some ct ∈ R and some it ∈ N such that

(5.3)

r∑
t=1

(
it + l − 1

l − 1

)
≤ k.

Similarly, f [−] : P ln(I) → Pkn if and only if f satisfies (2) and ct ≥ 0 for all t.
Moreover, if I = [0, R) and k ≤ n − 3, then the assumption that f ∈ Ck(I) is not
required.
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Notice that Theorem 5.9 is a fixed-dimension result with rank constraints.
This may be considered a refinement of a similar, dimension-free result with rank
constraints shown in [4], in which the authors arrive at the same conclusion as
in part (2) above. We compare the two settings: in [4], (a) the hypotheses held
for all dimensions N rather than in a fixed dimension; (b) the test matrices were
a larger set in each dimension, compared to just the positive matrices considered
in Theorem 5.9; (c) the test matrices did not consist only of rank-one matrices,
similar to Theorem 5.9; and (d) the test functions f in the dimension-free case
were assumed to be measurable, rather than Ck as in the fixed-dimension case.
Thus, Theorem 5.9 is (a refinement of) the fixed-dimension case of the first main
result in [4].7

The (2) =⇒ (1) implication in Theorem 5.9 is clear. Indeed, let i ≥ 0 and

A =
∑l
j=1 uju

T
j ∈ P ln(I). Then

A◦i =
∑

m1+···+ml=i

(
i

m1, . . . ,ml

)
wmwT

m where wm := u◦m1
1 ◦ · · · ◦ u◦ml

l

and

(
i

m1, . . . ,ml

)
is a multinomial coefficient. Note that there are exactly

(
i+l−1
l−1

)
terms in the previous summation. Therefore rankA◦i ≤

(
i+l−1
l−1

)
, and so (1) easily

follows from (2). The proof that (1) =⇒ (2) is much more challenging; see [32]
for details.

In [31], the authors focus on the case where sparsity constraints are imposed to
the matrices instead of rank constraints. Positive semidefinite matrices with zeros
according to graphs arise naturally in many applications. For example, in the the-
ory of Markov random fields in probability theory ([46, 62]), the nodes of a graph
G represent components of a random vector, and edges represent the dependency
structure between nodes. Thus, absence of an edge implies marginal or conditional
independence between the corresponding random variables, and leads to zeros in
the associated covariance or correlation matrix (or its inverse). Such models there-
fore yield parsimonious representations of dependency structures. Characterizing
entrywise functions preserving positivity for matrices with zeros according to a
graph is thus of tremendous interest for modern applications. Obtaining such char-
acterizations is, however, much more involved than the original problem considered
by Schoenberg as one has to enforce and maintain the sparsity constraint. The
problem of characterizing functions preserving positivity for sparse matrices is also
intimately linked to problems in spectral graph theory and many other problems
(see e.g. [39, 1, 50, 17]).

As before, for a given graph G = (V,E) on the finite vertex set V = {1, . . . , N},
we denote by PG(I) the set of positive-semidefinite matrices with entries in I and
zeros according to G, as in (4.1). Given a function f : R → R and A ∈ S|G|(R),

7We also point out the second main result in loc. cit., that is, [4, Theorem 2], which classifies

all continuous entrywise maps f : C → C that obey similar rank constraints in all dimensions.
Such maps are necessarily of the form g(z) =

∑p
j=1 βjz

mj (z)nj , where the exponents mj and nj
are non-negative integers. This should immediately remind the reader of Rudin’s conjecture in

the ‘dimension-free’ case, and its resolution by Herz; see Theorem 2.6.
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denote by fG[A] the matrix such that

fG[A]jk :=

{
f(ajk) if (j, k) ∈ E or j = k,

0 otherwise.

The first main result in [31] is an explicit characterization of the entrywise
positive preservers of PG for any collection of trees (other than copies of K2).
Following Vasudeva’s classification for PK2

in Theorem 3.1, trees are the only other
graphs for which such a classification is currently known.

Theorem 5.10 (Guillot–Khare–Rajaratnam [31, Theorem A]). Suppose I =
[0, R) for some 0 < R ≤ ∞, and f : I → R+. Let G be a tree with at least 3 vertices,
and let A3 denote the path graph on 3 vertices. The following are equivalent.

(1) fG[A] ∈ PG for every A ∈ PG(I);
(2) fT [A] ∈ PT for all trees T and all matrices A ∈ PT (I);
(3) fA3

[A] ∈ PA3
for every A ∈ PA3

(I);
(4) The function f satisfies

(5.4) f
(√
xy
)2 ≤ f(x)f(y) for all x, y ∈ I

and is super-additive on I, that is,

(5.5) f(x+ y) ≥ f(x) + f(y) whenever x, y, x+ y ∈ I.

The implication (4) =⇒ (1) was further extended to all chordal graphs: it is
the following result with c = 2 and d = 1.

Theorem 5.11 (Guillot–Khare–Rajaratnam [30]). Let G be a chordal graph
with a perfect elimination ordering of its vertices {v1, . . . , vn}. For all 1 ≤ k ≤
n, denote by Gk the induced subgraph on G formed by {v1, . . . , vk}, so that the
neighbors of vk in Gk form a clique. Define c = ω(G) to be the clique number of
G, and let

d := max{degGk
(vk) : k = 1, . . . , n}.

If f : R → R is any function such that f [−] preserves positivity on P1
c (R) and

f [M + N ] ≥ f [M ] + f [N ] for all M ∈ Pd and N ∈ P1
d , then f [−] preserves

positivity on PG(R). [Here, P1
d denotes the matrices in Pd of rank at most one.]

See [30] for other sufficient conditions for a general entrywise function to pre-
serve positivity on PG for G chordal.

To state the final result in this section, recall that Schoenberg’s theorem (The-
orem 2.3) shows that entrywise functions preserving positivity for all matrices (that
is, according to the family of complete graphs Kn for n ≥ 1) are absolutely mono-
tonic on the positive axis. It is not clear if functions satisfying (5.4) and (5.5) in
Theorem 5.10 are necessarily absolutely monotonic, or even analytic. As shown in
[31, Proposition 4.2], the critical exponent (see Definition 4.5) of every tree is 1.
Hence, functions satisfying (5.4) and (5.5) do not need to be analytic. The second
main result in [31] demonstrates that even if the function is analytic, it can in fact
have arbitrarily long strings of negative Taylor coefficients.

Theorem 5.12 (Guillot–Khare–Rajaratnam [31, Theorem B]). There exists
an entire function f(z) =

∑∞
n=0 anz

n such that

(1) an ∈ [−1, 1] for every n ≥ 0;
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(2) The sequence (an)n≥0 contains arbitrarily long strings of negative num-
bers;

(3) For every tree G, fG[A] ∈ PG for every A ∈ PG
(
R+

)
.

In particular, if ∆(G) denotes the maximum degree of the vertices of G, then there
exists a family Gn of graphs and an entire function f that is not absolutely mono-
tonic, such that

(1) supn≥1 ∆(Gn) =∞;
(2) fGn

[A] ∈ PGn
for every A ∈ PGn

(R+).
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