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Abstract 

The Application of Data Analytics Technologies for the Predictive Maintenance of Industrial 

Facilities in Internet of Things (IoT) Environments 

by Thomas Rieger 

 

In industrial production environments, the maintenance of equipment has a decisive influence on costs and 

on the plannability of production capacities. In particular, unplanned failures during production times cause 

high costs, unplanned downtimes and possibly additional collateral damage. Predictive Maintenance starts 

here and tries to predict a possible failure and its cause so early that its prevention can be prepared and carried 

out in time. In order to be able to predict malfunctions and failures, the industrial plant with its characteristics, 

as well as wear and ageing processes, must be modelled. Such modelling can be done by replicating its 

physical properties. However, this is very complex and requires enormous expert knowledge about the plant 

and about wear and ageing processes of each individual component. Neural networks and machine learning 

make it possible to train such models using data and offer an alternative, especially when very complex and 

non-linear behaviour is evident. 

In order for models to make predictions, as much data as possible about the condition of a plant and its 

environment and production planning data is needed. In Industrial Internet of Things (IIoT) environments, 

the amount of available data is constantly increasing. Intelligent sensors and highly interconnected production 

facilities produce a steady stream of data. The sheer volume of data, but also the steady stream in which data 

is transmitted, place high demands on the data processing systems. If a participating system wants to perform 

live analyses on the incoming data streams, it must be able to process the incoming data at least as fast as the 

continuous data stream delivers it. If this is not the case, the system falls further and further behind in 

processing and thus in its analyses. This also applies to Predictive Maintenance systems, especially if they 

use complex and computationally intensive machine learning models. If sufficiently scalable hardware 

resources are available, this may not be a problem at first. However, if this is not the case or if the processing 

takes place on decentralised units with limited hardware resources (e.g. edge devices), the runtime behaviour 

and resource requirements of the type of neural network used can become an important criterion. 

This thesis addresses Predictive Maintenance systems in IIoT environments using neural networks and Deep 

Learning, where the runtime behaviour and the resource requirements are relevant. The question is whether 

it is possible to achieve better runtimes with similarly result quality using a new type of neural network. The 

focus is on reducing the complexity of the network and improving its parallelisability. Inspired by projects 

in which complexity was distributed to less complex neural subnetworks by upstream measures, two 

hypotheses presented in this thesis emerged: a) the distribution of complexity into simpler subnetworks leads 

to faster processing overall, despite the overhead this creates, and b) if a neural cell has a deeper internal 

structure, this leads to a less complex network. Within the framework of a qualitative study, an overall 

impression of Predictive Maintenance applications in IIoT environments using neural networks was 

developed. Based on the findings, a novel model layout was developed named Sliced Long Short-Term 

Memory Neural Network (SlicedLSTM). The SlicedLSTM implements the assumptions made in the 

aforementioned hypotheses in its inner model architecture. 



Within the framework of a quantitative study, the runtime behaviour of the SlicedLSTM was compared with 

that of a reference model in the form of laboratory tests. The study uses synthetically generated data from a 

NASA project to predict failures of modules of aircraft gas turbines. The dataset contains 1,414 multivariate 

time series with 104,897 samples of test data and 160,360 samples of training data. 

As a result, it could be proven for the specific application and the data used that the SlicedLSTM delivers 

faster processing times with similar result accuracy and thus clearly outperforms the reference model in this 

respect. The hypotheses about the influence of complexity in the internal structure of the neuronal cells were 

confirmed by the study carried out in the context of this thesis. 
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1 Introduction 

This thesis is about the use of Deep Learning with neural networks for Predictive Maintenance of 

industrial plants in IIoT environments. The focus is on time-critical applications and the question of 

how to improve runtime behaviour to reduce latency and deliver immediate results. The processing of 

complex data streams, such as complex sensor data from IIoT environments, represent the input data. 

In this thesis, the novel model architecture Sliced Long Short-Term Memory Neural Network 

(SlicedLSTM) is developed and compared to the established model in this application domain. Which 

models are currently the reference in Predictive Maintenance (PdM) applications for IIoT 

environments will be determined in a qualitative study. The improvement in runtime achieved by the 

novel model approach SlicedLSTM is to be investigated in a quantitative study using a laboratory test. 

1.1 Motivation 

Software systems for the analysis of large amounts of data are applied in more and more areas. The 

subject of Predictive Maintenance (PdM) using data analytics methods is present in industrial 

manufacturing processes, especially in combination with Industrial Internet of Things (IIoT) 

environments. Such applications are often based on established analytical techniques using distributed 

storage and processing frameworks. Analytical applications often run on purely batch-oriented 

frameworks and can suffer from hours of delays (Marz, et al., 2015). If an online system receives 

continuous data streams of large volumes, the runtime behaviour becomes an important factor. An 

application must then be able to process data at least as fast as it is continuously received in the data 

stream. If an application is not able to do this, it will continuously fall behind in the temporal 

processing of its data. 

Neural networks and Deep Learning are being used more and more in the field of PdM, which will 

also be shown in the qualitative study conducted within this thesis. An important reason for this is that 

neural networks are able to deal with unknowns and to learn themselves. When using mathematical 

models to describe the degradation of a plant, all physical conditions in regard to the behaviour of 

wear and tear must be known and described in the model. Due to increasingly complex plants in the 

industrial environment, but especially due to the increasing connectivity and more and more intelligent 

sensors, this already difficult task will become increasingly difficult to manage in the future. In 

addition, very deep expert knowledge is required for this. Neural networks can offer advantages here, 

but depending on their complexity, they also place higher demands on the required computing 

capacity. If sufficient resources (network, hardware) are available to the application, this may not be 

a problem at first. If this is not the case, fast and resource-efficient neural network models are to be 

preferred. Depending on the application case, a lower result quality of the neural network could be 

acceptable in return for better runtime behaviour. Particularly in strongly connected IIoT environments 

with decentralised and autonomous participants, there is a need to be able to carry out analyses locally 
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on decentralised units (edge computing). Such decentralised units usually have limited hardware 

resources. 

In order to further promote the use of neural networks in the application area of PdM and for the 

processing of time-critical data streams on systems with limited hardware resources, the runtime 

behaviour of neural networks will first be investigated in this thesis. The focus is on the model type 

that is most frequently used for PdM applications. Based on this, a new type of model architecture will 

be developed, which focuses on shorter runtimes with similar quality of the results. A model 

comparison with the standard model will demonstrate the runtime improvements achieved with the 

new model approach. 

1.2 Research Question 

To develop adequate research questions, formulate clear objectives or questions which can be clearly 

understood and answered within the scope of the work (Dodgson, 2020). In section 1.1 it was 

explained that the motivation of this thesis is to find a novel model approach for a neural network that 

outperforms the current standard model in terms of runtime behaviour. To this end, it is first necessary 

to find out which model represents the current standard (RQ1). The question must be clarified as to 

how the runtime behaviour of existing models, and in particular that of the standard model, is presented 

and whether there is actually a need for improvement in the application area of PdM applications in 

IIoT environments (RQ3). To this end, the circumstances and framework conditions of this area of 

application must be examined and taken into account when clarifying the question of a need for 

improvement (RQ2). Finally, it must be clarified what a new approach could look like and whether 

the desired improvement has actually been achieved (RQ4).  

Table 1 lists the research questions. The research questions RQ1 to RQ3 are to be answered by means 

of qualitative research. The answers to research questions RQ1 to RQ3 can be found in section 5.5. 

Research question RQ4 will be answered in chapter 6, especially in section 6.4. 

RQ1: Which neural network is most commonly used for Predictive Maintenance (PdM) 

applications and thus forms the current standard? 

RQ2: What are the characteristics and requirements of modern data stream processing 

infrastructures and software systems for predictive systems? 

RQ3: How well do the currently used neural networks meet runtime requirements for time-critical 

PdM applications? 

RQ4: How can a new type of neural network be constructed so that it achieves measurably better 

runtime behaviour with comparable quality of the results achieved compared to the current 

standard model? 

Table 1 - Research questions  
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1.3 Content of this Thesis 

This thesis starts with a look at the background of the topic. The importance of maintenance and 

corresponding maintenance strategies in the industrial environment and especially Predictive 

Maintenance in industrial IoT environments are explained. Reasons for the necessity of time-critical 

processing and the special features of data streams are also outlined. Details on Deep Learning in the 

IIoT environment and on Long Short-Term Memory Neural Network (LSTM) conclude the 

background chapter. 

Subsequently, related work in the subject area is discussed. The chapter on related work is divided 

into the main topics of Predictive Maintenance strategies, performance in predictive systems, fast 

predictions using Deep Learning and optimisation approaches for LSTM.  

In this thesis, the novel model architecture Sliced Long Short-Term Memory Neural Network 

(SlicedLSTM) will be developed and compared with the established models in this application area. 

Which models are currently the reference in PdM applications for IIoT environments will be 

determined in the form of a qualitative study. The improvement in runtime achieved by the novel 

SlicedLSTM model approach will then be investigated in a subsequent quantitative study using a 

laboratory test. Chapter 4 describes the basic research design of this thesis. It explains why the 

procedure of qualitative study and subsequent quantitative study was chosen for this thesis and how 

the study design is structured. 

In the following chapters, the preparation, implementation and evaluation of the qualitative and 

quantitative study are described in detail. The qualitative study takes the form of explorative expert 

interviews with a small group of eight selected experts. The aim of the qualitative study is to develop 

a general picture of the topic area, to show possibilities, to give insights and to find ideas.  

Before conducting the quantitative study, a detailed theoretical consideration of the newly developed 

model architecture of the SlicedLSTM is given in chapter 6. The quantitative study is then conducted 

in the form of laboratory tests. The study uses synthetically generated data from a NASA project to 

predict failures of modules of aircraft gas turbines. The dataset contains 1,414 multivariate time series 

with 104,897 samples of test data and 160,360 samples of training data.  

The result of the study proves that the new model architecture SlicedLSTM clearly outperforms the 

reference model Standard LSTM in the area of runtime. The study thus provides proof of the 

theoretical assumptions under the defined conditions. With the SlicedLSTM, a novel model 

architecture of neural cells is created for application areas in which runtime behaviour and processing 

time of the neural network have a higher priority than its maximum result accuracy. This thesis 

concludes with a summary and evaluation of the results obtained, as well as an outlook on subsequent 

research and application possibilities of the SlicedLSTM. 
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2 Background 

This chapter presents the relevant background information for this thesis. It starts with the general 

topic of maintenance and an explanation of the established maintenance strategies. The different 

maintenance strategies are explained by using an example from the paper production. After that, 

Predictive Maintenance in general and its role in modern industrial Internet of Things environments 

(IIoT) will be discussed. This is followed by a section regarding time critical processing, why it is 

needed and what are the current techniques. The significance of the complexity of data streams in the 

context of this thesis is then explained. This chapter closes with the topic of using neural networks for 

PdM applications. 

2.1 Maintenance Strategies 

In literature, four basic strategies to organize maintenance work are usually mentioned: Corrective 

Maintenance, Preventive Maintenance, Predictive Maintenance and Prescriptive Maintenance 

(Frederiksson, et al., 2012). The enormous added value of the correct maintenance strategy can be 

demonstrated by an example from paper production. A Fourdrinier machine used for paper production 

consists of many sub-machines which are closely connected to one another in a production process. 

Figure 1 shows this schematically (Egmason, 2010). 

 

 

Figure 1 – Paper machine (Fourdrinier) as an application example (Egmason, 2010) 

 

Modern paper machines are often 100 to 200 meters long and about 15 meters high. They usually 

consist of many subsystems with typically more than a hundred guide rolls for wires and felts as well 

as for the paper web and a large number of drying cylinders (VDW, 2022). The subsystems are strung 

together in a fixed process chain in the paper machine. The failure of a component of a subsystem in 

this process chain stops the entire paper machine and can lead to capital consequential errors and 
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damage in the other subsystems. In addition, wet material (waste paper or pulp dissolved in water 

(VDP, 2022) ) is processed in a paper machine from source material. If there is a fault in one of the 

machine's subsystems and this interrupts processing in the entire process chain, the wet material in the 

subsystems can harden. Resulting consequential damage and the expense of cleaning and restoring the 

functionality of the entire system can cause great expense. The example of the paper machine was 

chosen here because it very impressively illustrates the effects of a failure of a machine or a subsystem 

in a process chain of industrial production. 

 

If Corrective Maintenance is the only maintenance strategy, it will only react in case of an error. 

Maintenance personnel, i.e. expensive specialists, must always be available. Spare parts must be 

stored, especially if they are very specific and difficult to procure parts. In the above example of a 

Fourdrinier machine, in the event of a fault, the coil (this is what the produced paper roll is called) 

produced is incomplete and therefore scrap. In addition, unprocessed material that is still in the 

machine could overflow and harden. Other parts of the system may be damaged by the fault, resulting 

in follow-up costs and further downtime due to subsequent repairs and cleaning. 

With Preventive Maintenance, unscheduled failures are intended to be avoided through regular 

maintenance. For this, knowledge of the lifetime of the individual parts of the system is necessary. 

Maintenance is planned based on this knowledge to provide sufficient time for personnel planning and 

disposition of required individual parts. However, since Preventive Maintenance is based on 

assumptions and experience, unplanned failures can nevertheless occur. Furthermore, regularly 

unnecessary parts are exchanged. In the paper machine example, maintenance intervals are preferably 

planned for non-productive times. The entire system can be properly shut down during this time. 

Production losses and consequential damage can be avoided. Scheduling minimizes downtime to the 

time required for maintenance. 

Predictive Maintenance attempts to predict failures. The predictions are based on accumulated 

knowledge and the current conditions of the machine. The aim is to avoid breakdowns by a timely 

prediction and maximizing the service life at the same time. The advantages mentioned in Preventive 

Maintenance also apply here. To this, additional potential savings are achieved by maximizing service 

life. In the example of the Fourdrinier machine, Predictive Maintenance can minimise failures and 

thus also the enormous risk of consequential damage. 

Prescriptive Maintenance combines methods of Descriptive Analytics and Predictive Analytics. 

Descriptive Analytics tries to describe why certain things have happened. The goal is not only to 

correct errors, but also to avoid them. For example, design faults or weak points in a system can be 

permanently eliminated through targeted measures. 
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2.2 Predictive Maintenance 

In Standard EN 13306:2001 PdM is defined as a part of the Condition Based Maintenance (CBM) 

system. Relying on data collected by a CBM system, data analytics are added to predict important 

indicators. Those indicators are dedicated to productivity aspects, like Remaining Useful Lifetime 

(RUL), Mean Time to Failure (MTTF) or on-time delivery, as a consequence of a predictable 

operational reliability. Apart from this, product quality, safe working environments, system safety, 

increase of maintenance effectiveness, optimizing maintenance effort, reduction of inspection and 

repair-induced failures are also mentioned as important indicators (Heng, et al., 2009). Overall, the 

primary objective is the reduction of life cycle costs (Schmidt, et al., 2015).  

 

With PdM, maintenance costs have the potential to be reduced. Scheduled and preventive maintenance 

is much cheaper than unscheduled and reactive repair. The availability of production capacities 

becomes more reliable (eoda, 2014). Because an expensive and risky reactive maintenance strategy is 

avoidable by applying preventive and predictive strategies, more and more companies improve their 

maintenance organisation by implementing PdM systems. In addition to the usual targets like 

Remaining Useful Life (RUL) and Mean Time to Failure (MTTF), also strategic and economic 

indicators have been introduced like Total Productive Maintenance (TPM) (Fredriksson, et al., 2012). 

4  

Figure 2 - Finding the Early Warning Point (Hagenberg, 2017) 

 

Figure 3 – Best time to do maintenance, taken from (Peng, et al., 2010)  
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The main purpose of PdM is to avoid unscheduled outages of machines and plants by anticipating a 

failure before its possible occurrence. In principle, maintenance should be carried out at the latest 

possible time, in order to avoid breakdowns and maximizing the service life at the same time. 

Scheduled service during normal working hours should be the result. Figure 2 illustrates this. 

According to a paper published by the Software Competence Center Hagenberg the Early Warning 

Point is the lead time necessary to plan the maintenance, including needed specialized personnel and 

material procurement (Hagenberg, 2017). As illustrated in Figure 3, the maintenance costs are also 

taken into account as they were expected to grow rapidly while degradation (Peng, et al., 2010). 

In literature, PdM is often assigned to the topic of Reliability Centered Maintenance (RCM) (see 

Figure 4) or as a subcategory of Preventive Maintenance (PM) and Condition Based Maintenance 

(CBM) (see Figure 5). 

 

 

Figure 4 -Common applications of maintenance strategies for RCM (NASA, 2008a) 

 

Figure 5 - Maintenance overview (Straub, 2012)  
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Usually, PdM systems assume that the failure behaviour is basically predictable. The prerequisite for 

this, however, would be that ageing and wear processes are deterministic and predominantly linear. 

However, this does not correspond to their behaviour in reality. Ageing and wear are often not 

deterministic and linear. In addition, other environmental influences play a role, such as ambient 

conditions, process deviations, interactions with other systems, e.g. (Kothamasu, et al., 2006). 

2.3 Predictive Maintenance in IIoT 

From IT perspective, industrial automation systems are about managing systems and processes. 

Communication is focused on the process-, production-, and product data. According to Marz et. al. 

(2015), storing raw data and especially sensor data for later analysis has not been a priority. Reasons 

for this include the classic structure of traditional automation environments and the strict separation 

into system levels that prevails there. Furthermore, there was previously no need for raw data at the 

higher system levels. It is only through data analysis applications that raw data is required at the higher 

system levels. (Marz, et al., 2015).  

In traditional industrial environments, following the automation pyramid (Figure 6), sensors usually 

send their data over a fieldbus to a controller. According to Åkerman (2018), a hierarchical structure 

with monolithic systems and non-standardized communication protocols is one of the usual 

characteristics of such environments (Åkerman, 2018). The full and unprocessed sensor data, 

hereinafter referred to as raw data, occur only on the field level and the process level. From the 

perspective of raw data this traditional approach usually does not provide any “transparency” through 

the layers of the automation pyramid (Bauer, et al., 2017). This creates a barrier for the raw data at 

field and process level, blocking their path to the upper levels of the automation pyramid. 

 

 

Figure 6 - The traditional Automation Pyramid following (Bauer, et al., 2017)  
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The term fieldbus used in Figure 6 at the process level stands for the part of the industrial computer 

networks through which the distributed units of the real-time controllers communicate with each other. 

SPS (also called PLC) stands for programmable logic controller and is a computer-based unit that is 

used to control or regulate a machine or system. A SPS virtually replaces hard-wired control logic 

with its programmable memory modules. HMI stands for Human Machine Interface. The term refers 

to digital displays that are used in the context of controlling and monitoring machines. The term MES 

is used to describe Manufacturing Execution Systems. These are production control systems for 

tracking and documenting the conversion of raw materials into finished products. Supervisory Control 

and Data Acquisition (SCADA) systems are used to control and acquire data from equipment in a 

standardised exchange format. The Enterprise-Resource-Planning (ERP) system contains the entire 

data and process chains of a company in all areas, such as finance, human resources, manufacturing, 

supply chain, services, procurement and more (SAP.com, 2022). 

 

Systems are more and more equipped with sensors delivering an ever-growing number of 

measurements of different types. Measurements are positions, temperatures, pressures, vibrations, 

flow rates, e.g. Sensors typically generate a continuous stream of data (Krawczyk, et al., 2015). The 

high volume and the high complexity of data put massive demands on existing data processing 

techniques, which will be described in section 2.5 (Zhang, et al., 2017a). 

In an IIoT environment, and in particular with Industry 4.0 (I4.0), intelligent devices are connected 

directly to the Internet and make their raw data available there. The collected (raw) data is for example 

sent to a central service, which can be a cloud service. As explained at the beginning of this section, 

the rigid hierarchy of the traditional automation pyramid blocks the path of raw data to the higher 

levels. However, applications for data analysis, and thus also Predictive Maintenance systems, are 

located at the higher levels and ideally need the raw data (Corbett, 2022). But breaking up the existing 

architecture of the automation pyramid and thus making raw data available at the higher system levels 

would mean having to change the established system architecture of an entire industrial company, 

which has usually grown over decades. The technological and economic effort required for this would 

be enormous and would significantly inhibit the spread of IIoT and I4.0. For this reason, modern IIoT 

environments typically take the path of connecting the components of the field level directly to the 

higher system levels via an additional network connection (Corbett, 2022). In that sense, sensor data 

bypasses the traditional automation pyramid. 

Continuous streams of data with high volume and high velocity are therefore available to high level 

IT-Systems. Connecting these devices in IIoT environments makes it possible to store and analyse this 

data. As a result, the use of data analytics becomes possible at the higher levels of the automation 

pyramid. For maintenance purposes, it is recommended to take into account all data of the machine 

and its environment that are available and contribute to the subject of maintenance (hereinafter also 

referred to as relevant maintenance data). This comprises condition-monitoring data, feedback from 

routine inspections, failure data, maintenance resources, work orders, overhaul and refurbishment 
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plans, e.g. (Zhang, et al., 2014). In addition to sensors, relevant maintenance data also comes from 

systems like Enterprise Asset Management (EAM) systems, Enterprise Resource Planning (ERP) 

systems, Condition monitoring Systems (CMS), Supervisory Control and Data Acquisition (SCADA) 

systems or Safety Instrumented Systems (SIS) (Zhang, 2016c).  

EAM systems contain all asset management data. In addition to investment and cost planning, as well 

as life cycle and risk management of fixed assets, an EAM can also provide maintenance management 

data according to ISO 55000 (ISO 55000, 2022). The ERP system provides versatile data that are 

relevant for the maintenance of plants, such as data from production planning or the procurement 

process. A CMS system is used for the permanent monitoring of plants. By measuring physical 

variables, the condition of plants and machines is continuously recorded and analysed. If CMS systems 

are already installed, they form a basis on which Predictive Maintenance systems can be built. This is 

explained in more detail in section 5.5 of this thesis. While CMS systems only monitor, a SCADA 

system also serves to control and collect data from plants and thus provides additional data that can 

also be relevant for Predictive Maintenance (Ahmed, et al., 2008). SIS systems focus exclusively on 

safety-critical processes and plants (IEC 61511-1, 2016). If Predictive Maintenance is carried out for 

such plants, the data from the SIS system is also relevant. 

2.4 Time critical Processing 

The process of collecting data from production, interpreting it and processing it to predict possible 

failures is very complex and places high demands on the underlying IT infrastructure. If this process 

is not fast enough, this leads to short-term planning and immediate actions in maintenance and repair. 

In IIoT and I4.0 systems the representation of data used by systems like CMB or PdM is often defined 

in the form of a virtual representation or virtual clone/twin of physical components of the factory. This 

virtual representation is running in parallel to the physical factory. A digital twin is the image of its 

physical 'asset' in the real factory and mimics its functionality, behaviour and communication. 

Especially in the context of Industry 4.0, digital twins in combination with the so-called management 

shell are a core concept for mapping real systems into the digital world. The digital twin allows the 

simulation, control and improvement of its real twin in a virtual environment (Singh, et al., 2021). The 

drivers of the virtual representation are continuous streams of raw data of the factory systems and 

sensors. If data is not transferred and processed in a reasonable time, the virtual representation will lag 

behind the physical process. With respect to a PdM system this could lead to unintentional reactive 

maintenance because of insufficient lead time to plan the maintenance tasks (Bauer, et al., 2017).  

In order to meet the high time requirements, various procedures and strategies are known. Frequently, 

dimension reduction techniques that reduce the complexity of data in a preliminary step are used. In 

machine learning, dimensionality is the number of attributes, features and input variables in the data. 

Dimensionality reduction is a method of reducing the number of these attributes, features and input 

variables in a data set. However, in order not to distort the meaning of the data, it is important that the 
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reduction method preserves as much context as possible in the original data. The reduced complexity 

makes processing easier and faster (Lee, et al., 2014). Various strategies are used to reduce complexity. 

Thus, certain approaches, such as clustering or sliding windows, aim at reducing data to be processed 

by different forms of partitioning. 

Another approach tries to evaluate if the failure of a certain component of a machine has a critical 

impact. Complex predictions are then only performed for those critical components. Figure 7 shows 

such an approach. The downtime caused by the failure of a component is shown as a function of the 

failure frequency. The aim is to define the most critical components in terms of impact and cost. 

According to Lee et al. (2014) the use of PdM is only recommended for components with low failure 

frequency and high downtime. The components that have a high failure frequency and cause high 

downtime must be eliminated "by design". All components that cause low downtime should be treated 

with standard approaches of Reactive and Preventive Maintenance. The respective definition of the 

limits as well as the classification of each component must be done by an expert, according to the 

circumstances and the desired objectives (Lee, et al., 2014). This has to be done for each application 

case as every physical machine is different. No generally accepted definition is possible. With this 

approach, the amount of data to be processed and the effort required to implement predictive analytics 

applications can be significantly reduced (Lee, et al., 2014). In addition to concentrating only on 

critical components, there are different approaches in which the prediction analytics is only performed 

in case of certain events. Events are generated in this case for defined constellations in the continuous 

stream of sensor signals and represent a relevant event for predictive analytics applications. What is 

considered relevant is manually defined by Data Scientist in so-called event schemas for sensor data 

changes. (Ait-Alla, et al., 2015). 

 

 

Figure 7 - Four quadrant chart for identifying critical components, taken from (Lee, et al., 2014)  
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In order to be able to process large amounts of data with complex and sophisticated algorithms fast, 

attempts are often made to divide a processing step into many small processing steps. This 

segmentation is intended to ensure that the individual steps can be processed in parallel on several 

computers / nodes (scale out). One approach is the vertical division of the monolithic processing 

sequence into individual steps in the form of a pipeline. These individual processing steps must be 

very simple and independent. The connection between the individual processing steps is performed 

exclusively via data (intermediate data), whereby the input data of a processing step corresponding to 

the output data of the previous processing step. When using pipelines, data must be parallelisable and 

distributable. The processing logic (algorithms) must be divisible into independent individual steps 

(Orenstein, et al., 2015).  

2.5 Complexity of Data Streams 

Performing analytics on data streams demands special considerations on the processing of the analytic 

algorithms. The types of complexities of data streams that could be potentially problematic in the 

context of this thesis are as follows: 

• High volume (both the number of features and the total amount of data), high velocity and 

high variety of data (see section 2.5.1) 

• High complexity caused by 

o High dimensionality (see section 2.5.2) 

o Non-stationary or evolving data (see section 2.5.3) 

o Non-linear data (see section 2.5.4) 

This section begins with a general consideration of the different types of complexity and their 

relevance to this thesis. In the following sections 2.5.1 to 2.5.4, the relevant types are explained in 

detail. 

 

In literature, complexity is often characterized by the three Vs, high volume, velocity and variety. 

High volume refers to the total amount of data occurring over time. Velocity means the speed of 

processing. If data streams are present, velocity also refers to the frequency with which data arrives 

for processing. The meaning of variety in this context refers to manifold data sources and data contexts 

(Montgomery, 2014). Beyer et al. (2011) adds a “c” to denote complexity in the meaning of variety, 

high dimensionality, non-stationary and non-linearity data (Beyer, et al., 2011). Zhang (2016c) also 

subsumes dimensionality, non-stationary and nonlinearity under the term of complexity. In addition, 

Zhang (2016c) assigns those characteristics in particular to maintenance data (Zhang, 2016c). In his 

paper Massive Data Analysis: Tasks, Tools, Applications, and Challenges Pusala et al. (2016) extends 

the characterizing features of data streams to the 5V’s volume, variety, velocity, variability and 

veracity. With variability primary the effect of concept drifts is meant. Veracity addresses the quality 
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of the processed data by means of relevance for analytics, integrity and right balance (Pusala, et al., 

2016). Each single complexity has an impact on the applicability of the algorithms as well as the 

underlying IT-infrastructure and must therefore be taken into account when designing data analytics 

systems. How high the impact of one of the characteristics is to a system, cannot be answered 

generally. This strongly depends on the specific application case and can vary widely between 

individual applications (Zhang, 2016c). 

Depending on the use case, immediate answers can be expected from the algorithms. In his review 

paper about data stream classification and data analytics Krawczyk et al. (2015) notes that with 

algorithms not adapted to process streaming data of huge size, data processing is not possible even 

with new and developed computer technologies. They also add that it’s not only the size but the 

increasing complexity of data streams which demands new types of algorithms, as well as distributed 

and parallel computing methods. It is also mentioned that adaptive models, able to improve 

dynamically on evolving data streams, are indispensable (Krawczyk, et al., 2015). 

2.5.1 Volume, velocity and variety 

In IIoT environments the number of connected devices and intelligent sensors is increasing 

tremendously. This leads to (raw) data available of high volume. Data streams evolve when data is 

generated constantly at a high rate, e.g. sensors measuring constantly and with high frequency. In IIoT 

environments, diverse sources of data are typically connected. The structure of data can be highly 

heterogeneous and vary between structured, unstructured and poly-structured data. Examples of the 

latter most are plain text, log files, images and image streams from monitoring systems, audio and 

video files and much more (Zhang, 2016c). 

Data streams have become an inherent feature in industrial environments. High velocity and time-

critical processing leads to the fact that algorithms performing analytics must have low computing 

complexity, low memory usage and a transient nature (Zhang, 2016c). Techniques for processing data 

streams are already established and developing more and more. Also there are many algorithms 

already optimised to the demands of stream processing (Zhang, 2016c). 

2.5.2 High dimensionality 

High dimensionality is one of the main complexities of data analytic systems in general, often referred 

to as the curse of dimensionality (Verleysen, et al., 2005). It becomes even more relevant when 

processing data streams (Chen, et al., 2014). To cope with data streams, the complexity and therefore 

the dimensionality of data should be as low as possible (Zhang, 2016c). 

Each feature of a dataset represents a dimension. For sufficient training of the model, the data of a data 

set must represent the relationships of all relevant combinations of all features to each other. Only in 

this way can the model sufficiently train the possible combinations. Adding another feature to a dataset 
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creates another possible combination of all existing features with the newly added one. Adding another 

dimension to a dataset thus exponentially increases the amount of training and test data required to 

adequately train the model. Accordingly, the processing effort and processing time for the model also 

increase sharply (Karanam, 2021). 

If a data set contains more features than the information contained in the data requires, there is a risk 

of massive overfitting of the model to be trained. The result quality of the model decreases rapidly 

despite the high training effort. As already explained, the amount of data and features is constantly 

increasing, especially in IIoT environments. The approach of collecting everything that is available 

can become a problem for the usability of machine learning. Dimensionality reduction methods are 

therefore gaining in importance (Yiu, 2019).  

In this thesis, a newly developed model architecture is compared with a reference model. All 

comparisons are made with the same data. Adverse effects due to the dimensionality of the data 

therefore affect both models in the same way and thus have no influence on the relative model 

comparison. The complexity caused by high dimensionality is therefore not considered relevant in the 

context of this thesis and is therefore not considered further. 

2.5.3 Non-stationary or evolving data 

In streaming environments with non-stationary (or evolving) data, it is imperative that algorithms must 

be able to detect concept drifts and recover from them. Concept drifts, also including concept shifts 

and recurrence, are caused by changes in data generating entities over time. For example, in case of a 

real person, this could be the changing interest and personal growth over time. In case of IIoT, concept 

drifts can be a result of direct determinants like ageing processes of equipment or materials as well as 

indirect determinants like ambient temperature or humidity. Autonomous and self-organizing 

industrial IoT-Environments are also causes of concept-drifts (Shaker, 2016). 

Detecting concept drifts is a major challenge, since data in streams can usually be scanned only once 

or only a very few times (Shaker, 2016). To allow adequate reactions to concept drifts different 

techniques are known. For example, with the so called weighting, recent data is given more impact on 

the forecast than older data (Zhang, 2016c). As a result, changed behaviour is learned faster by a neural 

network. But this leads to the fact that recent data is considered more relevant than older data. For this 

reason, fading functions were developed, putting an adjustable weighting factor to newer and older 

data when updating the model. Additionally sliding window techniques are also quite common, always 

exchanging the oldest sample by the newest one (Zhang, 2016c), (Jeng, 2010). The ability to recover 

autonomously from concept deviations becomes even more important when analyses are done online 

with an adaptive modelling approach on infinite data streams (Shaker, et al., 2013).  

In the further course of this thesis, the runtime improvements of the new model approach developed 

in this thesis are demonstrated by means of a laboratory test. Data used for this test is anonymized. 

The reason for using anonymised data and the implications for this thesis are explained on page 59 of 
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section 4.4.3. Due to anonymisation, it is not known whether concept drifts are present in the test data. 

As in the case of high dimensionality, possible effects due to concept drifts affect both models 

compared in this thesis in the same way and thus have no influence on the relative model comparison. 

Therefore, no action is taken in this thesis to respond to concept drifts. 

2.5.4 Non-linear data 

The relationship between the values of data (features) can be highly nonlinear in practice. Non-linear 

data induces additional complexity and extra efforts in the definition of an appropriate model (Göb, 

2014). In practice, attempts are often made to avoid non-linearity by approximating relationships 

between individual features. This so called linear approximation is only feasible in less complex 

situations and not appropriate if data is complex (Alippi, et al., 2014), (Zhang, 2016c). In complex 

situations, where non-linear data are a matter of fact, more sophisticated approaches are necessary to 

avoid underfitting problems. Depending on data available and the chosen training set and in addition 

with the complexity of non-linear data, underfitting and overfitting problems play an even greater role. 

2.6 Deep Learning in IIoT 

Neural networks and Deep Learning play a dominant role in the field of Predictive Maintenance (PdM) 

of industrial plants. Sensors provide permanent data streams over long periods of time. Neural 

networks are able to handle data streams comprising dependencies in data over time and store relevant 

information over time. Recurrent Neural Networks (RNN) have this ability, but only for short term 

dependencies (Cho, et al., 2014a), (Cho, et al., 2014b), (Ciresan, et al., 2012a). Long Short-Term 

Memory (LSTM), as a variant of RNN, is able to handle long term dependencies without the memory 

requirement growing steadily with time (Hochreiter, et al., 1997), especially if they learn to forget 

(Gers, et al., 1999). 

This section starts with a short introduction into Deep Learning (DL) and Artificial Neural Networks 

(ANN) applied in IIoT environments. A classification of different DL methods mentioned for the use 

in industry und IoT will then be provided. The classification will be done based on the theoretic 

approaches, application areas and strength and weaknesses in regard to the demands of Predictive 

Maintenance (PdM) in industrial IoT (IIoT) environments. 

 

Deep Learning (DL) can be defined as a subcategory of Machine Learning (ML) whereas Machine 

Learning is a segment in the field of Artificial Intelligence (AI). DL itself is often defined as a class 

of optimised Artificial Neural Networks (ANN) comprising numerous layers (hidden layers). The high 

number of layers and neurons allow the abstraction of more complex problems and support further 

characteristics like the ability for unsupervised learning or automatic feature extraction (Lee, et al., 

2015). The basic idea behind an ANN is to imitate the biological neural network in mammalian brains. 
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Components of an ANN are neurons (in ANNs also called nodes) and connections between those 

nodes. The nodes are organized in layers producing non-linear output data based on the input data. 

The connections between the nodes transfer the output of one node to the input of another node. 

Weights assigned to each connection determine the relevance of the transferred signal. As in biological 

neural networks the output signal of a neuron (node) is ruled by a threshold function. To set up an 

ANN all weights have to be set to an initial value. By training the network those weights are adjusted 

in a holistic way following a defined learning rate to achieve a valid and balanced network. ANNs are 

known for more than 50 years and various ways have been developed since. Due to the stochastic 

nature of neural networks, their setup and initialisation is usually done by simple poring (Devcoons, 

2016), (Chatfield, et al., 2014).  

In Mohammadi et al. (2018) the following DL models are listed for the use in IoT application: Auto-

encoder (AE), Recurrent Neural Network (RNN), Restricted Boltzmann Machine (RBN), Deep Belief 

Network (DBN), Long Short-Term Memory (LSTM), Convolutional Neural Network (CNN), 

Variational Auto-encoder (VAE), Generative Adversarial Network (GAN) and Ladder Net. The DL 

models are categorized by Mohhammadi et al. (2018) into the three main groups of generative 

approaches (AE, RBM, DBN, VAE), discriminative approaches (RNN, LSTM, CNN) and hybrid 

(GAN, Ladder Net) as a combination of the two approaches mentioned before. This categorisation 

mainly refers to the underlying learning method whereas generative approaches basically follow the 

principle of unsupervised learning and discriminative approaches follow the principle supervised 

learning. Beside the definition of the required number of layers the underlying learning method is a 

decisive factor for the selection of a DL approach. The categorization in generative and discriminative 

approaches chosen by Mohammadi et al. (2018) can be fundamentally found in many other works 

(Mohammadi, et al., 2018). Different DL models are also categorized by their suitability in IoT 

applications. The relevant characteristics mentioned are the ability to work with (partially) unlabelled 

data, the magnitude of needed training dataset, dimensionality reduction abilities, the ability to deal 

with noisy data and time series data and their general performance classification (Mohammadi, et al., 

2018). For the reduction of high dimensional data and to cope with unlabelled data the combination 

of RNN with Deep Belief Networks (DBN) and Auto-encoders (AE) is recommended. If the system 

is meant to make predictions like in PdM systems, DBN and AEs are often used as an upfront layer 

providing classified data to a subsequent RNN (Mohammadi, et al., 2018). 

Especially when the data develops sequentially, RNNs are recommended, as they show competitive 

results here. However, if the data also contains long-term dependencies, RNNs are not recommendable 

because they can only remember previous states for a short time (Song, et al., 2016). Song et al. (2016) 

describes how to handle sequential data streams from human mobility and transportation transition 

models containing long term dependencies. The described solution is a combination of simple RNN 

and LSTM in the form of a specialized RNN architecture. Besides the ability to handle long term 

dependencies the LMST also adds labelling and predictive functionality to that combination. The 

LSTM and its numerous variants are mentioned as the most frequently used neural network for 
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handling data streams or time series with long-term dependencies (such as certain behaviours or wear 

and tear of machines) (Song, et al., 2016). This is also confirmed in many other works (Mocanu, et 

al., 2016), (Gensler, et al., 2016), (Ibrahim, et al., 2016). 

In his paper IoT Data Analytics Using Deep Learning Xie et al. (2017) describes how to select the 

right ANN to archive predictions from data streams and time-series data. To retrieve trends and 

predictions and also validate those trends and predictions in parallel by anomaly detection, a 

combination of LSTM with Naive Bayes models is proposed. The LSTM produces the predictions on 

data streams whereas the Naive Bayes model is responsible for anomaly detection performed on the 

results of the LSTM (Xie, et al., 2017). This paper also reflects on the fact that Simple Feedforward 

Artificial Neural Networks (FNN) like Single-layer Perceptron (SLP) and Multi-layer Perceptron 

(MLP) using standard backpropagation (BP) for training are often not a recommendable choice 

because they do not perform well in complex situations and on data streams especially with long-term 

dependencies. This is especially true when the aim of the model is to predict future events or trends. 

Data streams and time-series data usually have dependencies over time. Such dependencies are typical 

for IoT data and provide relevant insights. In simple ANNs data moves straight through the layers with 

the assumption that input data is independent from output data. Because of this, there is no way to 

remember previous input and output states (previous results). This is particularly disadvantageous 

when previous data is linked to current data. Using RNN instead can archive better results in data 

streams and time-series data. Since the connections between nodes in an RNN take the form of 

sequences or loops, it is possible to remember previous states, but only a few. Therefore, only short-

term dependencies are recognized. Because of this Mocanu et al. (2016) recommends the application 

of LSTM in complex IoT environments to recognize long-term dependencies in data. LSTM are a 

variant of RNN introducing gated memory units. Those memory units can remember important 

previous states and forget the unimportant ones (Mocanu, et al., 2016). 

Another paper in the field of energy management also emphasizes the very powerful forecasting 

abilities of DL. The application of Auto-encoder (AE) and LSTM is described for predicting the power 

generation of solar systems. The result quality reached by a combination of AE and LSTM (Auto-

LSTM) is compared to other neural networks (namely MLP) as well as to a physical model (Gensler, 

et al., 2016). The benchmark data is taken from 21 real solar power plants. The following 

measurements are taken as benchmarks: average root-mean-square deviation (RMSD), average mean 

absolute error (MAE), average absolute deviation (Abs. Dev.), average BIAS and average correlation. 

The measured results demonstrate that all ANN- and DL-based models show far better results than the 

physical model. Among all ANN and DL-based models, Auto-LSTM is the best choice in this specific 

scenario with the specific data. 
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2.7 Long Short-Term Memory (LSTM) 

Three evolutionary steps led to the current standard architecture of an LSTM (Graves, et al., 2005). 

The introduction of the forget gate meant that an LSTM is also capable of forgetting and can thus also 

deal with infinite data streams as input data (Gers, et al., 1999). The introduction of peepholes 

improved the ability of an LSTM not only to remember information over a long period of time, but 

also to take into account the temporal occurrence and its frequency (Gers, et al., 2000). For use in 

image processing, an LSTM was extended by the convolutional technique (Convolutional LSTM) 

(Cho, et al., 2014b), (Chiu, et al., 2016). In the following, the first two evolutionary optimisation steps 

for LSTM are described. Convolutional LSTM is not considered, as it is specialised in image 

processing and thus does not represent a use case in the context of PdM and the thesis presented here. 

 

One of the first and most fundamental optimisations of LSTM was the introduction of forget gates by 

Gers, Schmidhuber and Cummins (Gers, et al., 1999). In the paper Learning to Forget: Continual 

Prediction with LSTM, it is explained that the introduction of LSTM by Hochreiter and Schmidhuber 

(Hochreiter, et al., 1997) was an enormous advance in that an LSTM is also able to learn long term 

dependencies in data and take them into account. Recurrent Neural Networks (RNN) are also able to 

handle dependencies in data over time, but only over relatively short periods of time. The paper states 

that a well-dimensioned RNN can remember relevant dependencies over a maximum of 5-10 epochs. 

Beyond that, remembered information is lost, even if it is still relevant. An LSTM, on the other hand, 

does not have this limitation. In addition to the internal layer for generating the output values, an 

LSTM has two additional layers that manage the memory (cell state) of the LSTM. One of these two 

layers decides which of the current input values (input vector comprising input data and hidden data) 

should be remembered. The second layer determines a weighting vector which, multiplied by the 

output of the first layer, determines the relevance of each value for the cell state (how strongly a value 

should be remembered). The input vector generated in this way is added to the cell state of the last 

epoch and results in the new cell state. In other words, these two layers learn which information will 

be needed again later and how important it is. Dependencies between samples over 1,000 epochs and 

more are no longer a problem. The memory requirement is ultimately determined only by the amount 

of relevant information. The temporal aspect has no influence on the memory requirement (Hochreiter, 

et al., 1997). 

One problem with the original version of the LSTM according to Hochreiter and Schmidhuber 

(Hochreiter, et al., 1997) is that with data sets over time and with continuous data streams, the cell 

state can become very large. This is due to the fact that the LSTM can only decide what should be 

remembered from the current input and how relevant the different entries in the memory are. There is 

no way to forget values once they have been memorised. In the experiments conducted by Hochreiter 

and Schmidhuber (Hochreiter, et al., 1997), several datasets with a limited amount of data were used. 

At the beginning of each new epoch, the cell states were automatically reset. With continuous data 
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streams, this implicit reset of the cell states does not happen since data arrive infinitely, or at least 

continuously over a very long period of time. Therefore, the idea was developed to introduce another 

internal layer inside the LSTM that decides what can be forgotten. This led to the introduction of the 

forget gate, which is now an integral part of a standard LSTM (Gers, et al., 1999), (Graves, et al., 

2005). The forget gate enables an LSTM to deal with data sets over very long periods of time and also 

with unlimited data streams. The values that are no longer relevant are reset in the memory. In other 

words, the forget gate learns what can be forgotten and ensures that it is forgotten. This prevents the 

cell state from increasing continuously over time. In contrast to the input gate, the forget gate consists 

of only one layer (Gers, et al., 1999). 

Figure 8 shows the inner architecture of a LSTM with forget gate, input gate, tanh gate and output 

gate. The cell state is indicated by the letter c, where ct-1 is the cell state before and ct is the cell state 

after it was updated in the current processing step. The hidden states ht-1 and ht are accordingly. The 

letter x stands for the current input data of the LSTM cell at the current time t (xt). The activation 

functions used for the layers of the LSTM are the sigmoid function (𝜎) and the tangent hyperbolicus 

function (tanh), shown in orange rectangles. The green circles determine the component-wise 

multiplication and addition of the gate results into the cell state and the hidden state. 

 

Figure 8 – Standard LSTM according to (Hochreiter, et al., 1997) 

 

  



    

  

20 2  Background 

 

 

Another basic optimisation approach for LSTMs is described in the paper Recurrent Nets that Time 

and Count (Gers, et al., 2000). LSTMs are generally described in this paper as the best available 

solution when dependencies in data over time are relevant. In contrast to classical RNNs, an LSTM 

can handle long term dependencies and thus solve tasks that a standard RNN cannot. However, the 

question of whether an LSTM is also able to draw conclusions purely from the duration of the temporal 

intervals of certain results and the frequency of occurrence remains unresolved. In a series of tests, it 

was investigated whether an LSTM is able to measure the temporal intervals of certain events over 

long periods of time and count their occurrence. Furthermore, it was investigated whether an LSTM 

can predict temporal intervals. The dataset used for this test shows a spike in data values every 50 

cycles. Nothing worth mentioning happens in the 49 cycles between two spikes. The investigations 

were carried out with a standard LSTM with forget gate (Gers, et al., 1999) and with an adapted LSTM. 

In the adapted LSTM, the forget gate and input gate were additionally connected to the stored cell 

state (memory state before the present input was processed). The output gate was additionally 

connected to the new cell state (memory state after processing the present input). Each of these three 

connections was also assigned a bias. The three introduced connections were called peephole 

connections. Figure 9 shows the inner architecture of a Peephole LSTM. 

 

Figure 9 - Peephole LSTM according to (Gers, et al., 2000) 

 

In a standard LSTM, the forget gate and the input gate only receive the hidden state (result) of the last 

processing and the current input values. Through the peephole connection to the cell state, these two 

gates now also receive access to the entire information stored in the cell state and its relevance. 
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Likewise, when determining the current result (hidden state), the new cell state with the newly 

remembered information and without the just forgotten information is also taken into account. This is 

also referred to as letting the gate layers look at the cell state. Hence the name peepholes (Gers, et al., 

2000). 

As a result, the peepholes significantly improve the property of an LSTM to handle temporal 

relationships and count the number of occurrences of events in a temporal context. The results of the 

investigations described in the paper Recurrent Nets that Time and Count prove this (Gers, et al., 

2000). To store the temporal aspects of the measured signal and their frequency over time, two 

different strategies were used in the tests. Firstly, the values were increased at each occurrence in such 

a way that the temporal intervals could be determined from that value. The second approach led to 

oscillating cell states whose temporal courses could be derived from their oscillation. Both approaches 

led to comparable results (Gers, et al., 2000). It should be mentioned that the overhead of the peephole 

connections is considered very low in the context of the overall complexity of the LSTM cell. The 

complexity of the network is only increased by three additional connections, each with a bias. Adding 

the cell states increases the input vectors accordingly, which in itself does not increase the complexity 

of the network but does increase the number of vector operations (Gers, et al., 2000). Peephole 

Connections for LSTM have established itself as a form of optimisation in many application areas. 

For example, multi-dimensional LSTM with peephole connections are used in computer vision, video 

processing or medical imaging. In a test with video streams containing X-ray data from air cargo, the 

introduction of peephole connections led to significant improvements in the detection of recurring, 

temporally related events (Graves, et al., 2013a). 
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3 Related Work 

In this chapter, the related research most relevant to this thesis is presented. The literature was selected 

according to its relevance to this thesis. Over all, the literature chosen covers a detailed discussion 

about the topics mentioned. Especially papers describing prediction algorithms using neural networks 

and novel approaches to improve established models have been chosen. This chapter is divided into 

four sections. The first section explains basic strategies for PdM that are important in the context of 

this thesis. The second section focuses on the issue of performance, followed by a section on the use 

of Deep Learning methods. The last section of this chapter deals with recent work discussing 

optimisation approaches specifically for the LSTM model, which emerged in the qualitative study as 

the most important model for current PdM applications with neural networks. 

3.1 Predictive Maintenance Strategies 

This section discusses related work on the basic classification and the strategies used in the field of 

maintenance and especially PdM. The maintenance goals are a result of those strategies. The 

Remaining Useful Lifetime (RUL) is one such goals. As will be explained later, RUL is used as the 

result value in this thesis and thus draws on the findings from related work described in this section. 

 

In Lee et al. (2014) the selection of the appropriate maintenance strategy is carried out on the basis of 

the complexity and uncertainty of the underlying system and its data. Uncertainty includes 

measurement errors, incomplete data and the shortage of expert knowledge as well as errors caused 

by the methods used. Figure 10 illustrates this. Accordingly, Condition Based Maintenance (CBM) 

can be used for systems that are deterministic and stationary/static and also have meaningful data with 

low dimensionality. Reliability Centered Maintenance (RCM) approaches are suitable for probabilistic 

systems. PdM is seen in both of these fields and thus comprises both CBM and RCM (Lee, et al., 

2014). 

Similarly to Lee et al. (2014), Sikorska et al. (2011) assigns PdM to Diagnostic (e.g. CBM) and 

Prognostic (e.g. RCM), describing the prognostic as highly dependent on the diagnostic. The main 

difference according to Sikorska et al. (2011) is that diagnostic is mainly used for the identification 

and analysis of errors, whereas prognostic tries to predict errors in time before they occur. Therefore, 

diagnostic is retrospective in nature, while prognostic is prospective in nature (Sikorska, et al., 2011). 

In the paper Prognostic modelling options for remaining useful life estimation by industry four groups 

are defined to classify the relevant methods for making predictions (Sikorska, et al., 2011). In this 

analysis, the forecast is based exclusively on the prediction of the Remaining Useful Lifetime (RUL). 

The described groups are shown in Figure 11.  
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Figure 10 - Maintenance transformation map (Lee, et al., 2014) 

 

 

Figure 11 - Groups of RUL methods, summarised from (Sikorska, et al., 2011)  
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Knowledge-based models compare the degree of conformity of a current pattern with known, 

classified patterns. Life expectancy models, on the other hand, consider each individual relevant 

component of a system separately and determine the probability of failure under various operating 

conditions. Artificial Neural Networks (ANN) are known to mimic the functioning of the mammalian 

brain in learning processes. The learning process is mainly based on observing and evaluating the 

impact of calculated predictions rather than on expert knowledge. In contrast, physical models 

calculate wear or ageing processes over the entire life cycle of a system, based on mathematical 

functions. Physical models require exact expert knowledge of material properties and physical 

processes. They have to be specifically developed for each application case and cannot be adapted. 

For this reason, physical models are hardly used for prediction systems and PdM and are therefore not 

taken into account (Sikorska, et al., 2011). 

 

For the prediction of RUL in PdM-Systems Sikorska et al. (2011) especially recommends methods 

from the area of Artificial Neural Networks (ANN). This is due to the fact that ANNs handle complex 

and non-linear data very well. This also applies if data available for training is limited. ANNs do not 

necessarily require comprehensive expert knowledge and can also exploit limited or selective expert 

knowledge. This is helpful because fewer and fewer proven experts with in-depth technical and 

process knowledge are available in industry (Sikorska, et al., 2011). 

As examples of established and widely used ANN methods Sikorska et al. (2011) mentions Multi-

Layer Perceptron (MLP), Radial Basis Function (RBF) Network and General Regression Neural 

Network (GRNN). Simple recurrent networks (SRN) are also mentioned because they are able to 

remember previous results, at least for a short time. LSTMs are mentioned best when long-term 

dependencies are relevant. In addition to data analytics and pattern recognition, Recurrent Networks 

are also suitable for reducing complexity through clustering (Sikorska, et al., 2011). 

 

 

Figure 12 - Prediction models classification, taken from (Schmidt, et al., 2015) 
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In Schmidt et al. (2015) a similar grouping of the methods for PdM is carried out as in Sikorska et al. 

(2011). Figure 12 shows a diagram that summarises the categories of PdM as proposed in the paper 

Predictive Maintenance: Literature Review and Future Trends (Schmidt, et al., 2015). 

 

Unlike Sikorska et al. (2011), Schmidt et al. (2015) defines the class of data-based models to which 

he assigns stochastic models, statistical models and ANNs. In addition, it is pointed out that model 

combinations are often used in real applications. In Figure 12, method combinations are indicated by 

the fourth group Hybrid. Knowledge-based models are described as expert systems comprising mainly 

fixed rules. Historical data is only used for data-driven models. ANNs are particularly recommended 

when there is no in-depth expert knowledge of the system and the underlying process, but knowledge 

is available in the form of historical data (Schmidt, et al., 2015). However, Schmidt et al. (2015) 

considers that an acceptable quality of the predictions can only be achieved if sufficient training data 

is available, whereas in Sikorska et al. (2011) applicability even with incomplete training data was 

mentioned. 

Statistical methods are mostly used if sufficient information about the system is already available. 

According to Schmidt et al. (2015), statistical methods are often used when CBM systems already 

exist, and their knowledge can be reused. Common statistical methods for PdM include trend 

extrapolation, regression methods, Support Vector Machines (SVM), as well as Autoregressive 

Moving Average (ARMA) and Autoregressive Moving Average with Exogenous Inputs (ARMAX) 

from the autoregressive models (Schmidt, et al., 2015). 

In addition to the utilisation of context data, knowledge management and the selection of a systematic 

approach, Schmidt et al. (2015) agrees with Lee et al. (2014) that dealing with "uncertainty" is one of 

the major challenges of a PdM system. The sources for "uncertainty" include measurement errors, 

missing data and a lack of expert knowledge, as well as conceptual or implementation errors in applied 

methods. Here neural networks have advantages (Schmidt, et al., 2015), (Lee, et al., 2014). 

In Heng et al. (2009) the various models are also arranged quite similarly. Figure 13 summarises the 

arrangement described. Data-driven models are also given greatest importance since they can develop 

and continuously improve models on the basis of collected (and historical) data. Moreover, 

comprehensive expert knowledge of the system and the process is not a must for all variants of data-

driven models (Heng, et al., 2009). 

 

A decisive factor for the successful use of Preventive Maintenance as a maintenance strategy is the 

knowledge of how long the durability, and thus the serviceability, of individual components of a 

system are. With this knowledge, optimum maintenance intervals can be determined. Only if the 

required knowledge is available, the strategy is implementable. However, there is still a risk of 

unplanned breakdowns, for example due to material failure, because no analysis of current machine 

data in the sense of condition monitoring is included in this maintenance strategy. Freitag et al. (2015) 
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accordingly proposes a strategy in which Preventive Maintenance is chosen as the main strategy, but 

maintenance intervals are continuously adjusted dynamically by using Predictive Maintenance 

(Freitag, et al., 2015). 

 

 

Figure 13 - Classification of Prediction Methods following (Heng, et al., 2009) 

 

Data-driven models are subdivided by Peng et al. (2010) into statistical approaches and AI approaches. 

In contrast to other statements in the literature Peng et al. (2010) refers to ANNs as the only practicable 

approach for complex, high-dimensional, dynamic and non-linear data (Peng, et al., 2010). 

3.2 Performance in Predictive Systems 

This section discusses related work that specifically addresses runtime behaviour and performance 

issues in traditional predictive applications. Strategies and mechanisms for reducing the processing 

effort and complexity represent the basic approach of all related work explained below. 

Since the cost of setting up and operating a predictive system such as PdM is high, many papers like 

Tran et al. (2022) or Lee et al. (2014) suggests that PdM should only be performed for the most critical 

components and that less critical components should be treated with less complex procedures. This 

applies in particular to limited computational resources and when rapid response times are required 

(time-sensitive systems). To define the most critical components, all components in the system that 

could potentially fail and whose failure should be prevented by timely maintenance are to be identified. 

In the next step, all components are evaluated according to their failure frequency and the expected 

downtime due to their failure. Only for components with low failure frequency and high downtime is 

the use of PdM procedures recommended. The components that have a high failure frequency and 

cause high downtime must be eliminated "by design". All components that cause low downtime should 

be treated with standard approaches of Reactive Maintenance and Preventive Maintenance. The 

respective limits for classification into high or low downtime must be determined by an expert, 

depending on the circumstances and the desired objectives (Tran, et al., 2022), (Lee, et al., 2014). 
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Table 2 - Relevant algorithms for PdM, according to (Lee, et al., 2014) 

 

This approach aims on reducing the complexity and therefore the effort involved in calculating 

predictions in an upstream step. Optimisation in the calculation of the predictions by adapting the 

algorithms or the underlying IT processes is not considered (Tran, et al., 2022), (Lee, et al., 2014). 

The algorithms considered as relevant for PdM by Lee et al. (2014) are listed in the Table 2. According 

to that table, approximately 67% of these algorithms are suitable for data of high complexity and high 

dimensionality. Almost the same number has adaptive abilities and can react dynamically to changes 

Algorithms suitable for PdM,

extract from (Lee et al. 2014)
Comments

Wavelet Packet Energies (WPE) x x x
Very powerful for non-stationary signal analysis; not easy to 

handle

Hilbert–Huang Transform (HHT) x x x x
Adaptive and unsupervised method for non-stationary/nonlinear 

signals; high computational load

Principal Component Analysis 

(PCA)
x

Reduces dimensionality implicitly; occasional poor performance; 

requires linear data

Fisher Linear Discriminant (FLD) x
Reduces dimensionality implicitly; stores superordinate 

relationships; requires linear data

Gaussian Process 

Regression/Prediction
x Can learn and adapt; only suitable for Gaussian likelihood

Particle Filter (PF) x
For non-linear/non-Gaussian data; high accuracy; very high 

computation costs

Kalman Filter (KF) x
Corrective by each measurement; only works with linear systems 

and Gaussian noise

Feature map pattern matching 

(Selforganizing Maps)
x Unsupervised learning methods; lack of standard algorithm

Bayesian Networks x
Reduces dimensionality implicitly; intensive training and domain 

knowledge necessary

Neural Network (NN / ANN) x x x x
Adaptive, suitable for complex, non-linear and unstable systems; 

no standards, high computational costs

Autoregressive Moving Average 

(ARMA)
x x

For linear time-invariant systems; utilizes historical data; limited 

when non-linear and complex

Fuzzy Logic (FL) x x
For complex/unknown systems; could be unprecise under 

specific conditions

Match Matrix (MM) x x x x
Better longterm predictions; needs sufficient historical data 

(including degradation data) 

Support Vector Machine (SVM) x x
Efficient for large datasets and real-time analysis; the selection of 

an appropriate kernel method is needed

Hidden Markov Model (HMM) x x x
For dynamic systems and high dimensionality; complex 

modelling is needed
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in data. In contrast, only about 40% of the algorithms are suitable for non-linear data and only about 

33% are able to react adequately to concept-drifts. Table 2 shows that methods based on neural 

networks are well suited in 4 of the 5 categories. Only for real-time applications Lee et al. (2014) does 

not consider neural networks to be suitable (Lee, et al., 2014). 

 

The strategy of reducing complexity in an upstream step was found very frequently in the literature 

reviewed. However, the proposed methods used to reduce complexity differ significantly from one 

another. Decomposition is another popular strategy, especially for processing data streams, but could 

lead to insights based only on local dependencies. (Krawczyk, et al., 2015). 

In the paper Real-time fault detection for advanced maintenance of sustainable technical systems Ait-

Alla et al. (2015) describes how real-time requirements can be achieved in the area of fault detection. 

Error detection methods, like methods for predicting future errors, are very complex and therefore not 

in themselves suitable for time-critical applications. Ait-Alla et al. (2015) explains how this problem 

can be solved by an additional pre-processing step. Other approaches attempt to reduce the complexity 

of data. In Ait-Alla et al. (2015) however, the pre-processing step acts as a sort of filter. By using 

Complex Event Processing (CEP) methods, events are generated on the incoming data. The elaborate 

fault detection algorithms are only triggered when specific events occur. Depending on the event type, 

only the relevant data is included. The generation of events is based on a dynamic event scheme, which 

is created with the help of data mining methods and adapts dynamically in parallel to the event 

processing. Ait-Alla et al. (2015) describes this method as an event-driven fault detection system (ED-

FDS). This approach could also be interesting for time-critical PdM applications, especially in 

combination with other approaches like the concentration on critical components as mentioned in 

Lee et al. (2015) and Freitag et al. (2015) (Ait-Alla, et al., 2015), (Lee, et al., 2015), (Freitag, et al., 

2015). Other event-driven approaches similar to the ED-FDS can also be found in the literature, such 

as focusing on specific time intervals instead of data-related events (Pan, et al., 2021). 

As with Lee et al. (2014), Freitag et al. (2015) also try to assess the individual components of a system 

by how critical the failure of a component is. Depending on this classification, less critical components 

are monitored very simple by means of threshold values, while for critical components, diagnostics 

and predictions are performed as a combination of condition monitoring and predictive analytics. In 

the case of critical components, Freitag et al. (2015) draws a further distinction between those whose 

wear and tear or aging course are known and should ideally be linear and those whose course is 

unknown or non-deterministic. For the first group, Fourier transformation, Wavelet analysis and 

Weibull distributions are mentioned as possible methods. The use of neural networks is recommended 

for the second group (Freitag, et al., 2015). 

As Ait-Alla et al. (2015) explains in his paper, the approach of the event-driven fault detection system 

(ED-FDS) also has disadvantages. These are, in particular, the additional effort that the pre-processing 

approach requires. The event rules and the system for event-driven fault detection are set up and 
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parameterised manually in the current ED-FDS. It can be assumed, however, that the parameterisation 

of the error detection is not only necessary initially during the system setup, but continuously during 

the entire operation. In his paper, Ait-Alla et al. (2015) mentions that an automatic and continuous 

updating of the event rules is required. However, Ait-Alla et al. (2015) makes no statement in his paper 

about how this should be done. The paper only points out that the approach of the ED-FDS is limited 

to the manually predefined event rules and does not address event rules beyond these. In the practical 

application of the ED-FDS, this probably represents a further limitation of this approach. 

In his paper, Ait-Alla et al. (2015) also states that the event-driven fault detection system can detect 

changes in real time. However, the requirements for a system environment regarding real-time 

processing of event-driven fault detection are not explained.  

As already explained in this section, the widely used decomposition approach has the serious 

disadvantage that it can lead to findings that are only based on local dependencies. Since the ED-FDS 

does not reduce the data itself, but the processing frequency (only for certain events), the ED-FDS 

should not be affected by this disadvantage. In the context of the ED-FDS, it would be interesting if 

there were further studies on this. 

 

In his work Big Data Analytics for Fault Detection and its Application in Maintenance Zhang (2016c) 

covers the problematic caused by data streams and exemplifies the significance of high complexity 

(namely volume and velocity, high dimensionality, non-stationary and non-linearity), combined with 

the fact, that the volume of heterogeneous data from arbitrary sources is “exploding” in industrial 

systems (Zhang, 2016c). In the paper An Angle-based Subspace Anomaly Detection Approach to High-

dimensional Data: With an Application to Industrial Fault Detection Zhang et al. (2016a) introduces 

the Angle-Based Outlier Detection (ABOD) algorithm for high-dimensional spaces. In a 

corresponding paper, focusing on fault detection in data streams, Zhang (2016c) recommends a 

Principal Component Analysis (PCA) algorithm. The initial intent of PCA is dimensionality reduction, 

but it’s also widely used in practice for anomaly detection. Following Zhang (2016c) conventional 

PCA algorithms are not adaptive and therefore inadequate for performing analytics on data streams. 

For that reason, a recursive PCA approach (RPCA) was introduced updating the PCA model 

recursively when new data is available. Because the PCA was designed to work in a batch-oriented 

system and always performs on the entire data sets, it treats all data with the same priority when 

updating the model. To further improve the PCA/RPCA the idea was taken into account that in data 

streams with varying context over time recent data could be more relevant than older data. For this 

reason fading functions were developed. As an example, an exponentially weighted PCA (EWPCA) 

was mentioned, putting an adjustable weighting factor to newer and older data when recursively 

updating the model. Sliding window PCA (SWPCA) was mentioned, using a window of fixed size 

and trying to exchange the oldest sample by the newest one identified as normal (Zhang, 2016c), 

(Zhang, et al., 2016a).  
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In the paper Sliding Window-based Fault Detection from High-dimensional Data Streams Zhang et 

al. (2017a) developed a new approach for analysing data streams by extending an Angle-Based 

Subspace Anomaly Detection (ABSAD) approach with sliding window functionality. Additionally, 

the process of fault detection was divided into two steps to improve parallelization and scalability. To 

measure the efficiency of the adapted ABSAD approach, measurements were conducted by applying 

different established approaches beside the adapted ABSAD approach on a synthetic data set. The 

approaches chosen by Zhang et al. (2017a) are primitive ABSAD, primitive LOF and sliding window 

LOF. The synthetic data was loaded in a stream fashion and divided into normal and faulty samples 

whereby parts of the normal samples change to faulty samples over time (concept drift). The evaluation 

of the binary classification was done by measuring the degree of improvement of the so-called Type I 

error and Type II error. The Type I error is defined as the false positive rate quantifying the quality by 

which the faulty samples are determined as such. The Type II error (false negative) quantifies the 

failure to detect a faulty sample. The result of this research presented in Zhang et al. (2017a) shows 

that the Type I error could be lowered significantly in all cases, whereas Type II error improvements 

could only be achieved for the LOF-based approaches. Even if the research stated in 

Zhang et al. (2017a) is dedicated to fault detection it was mentioned that this could also be true for 

predictions (Zhang, et al., 2017a). 

It would have been interesting to know what share of the results is accounted for by the recursive 

approach of PCA alone. This is not clear from the papers Zhang et al. (2016a), Zhang (2016c) and 

Zhang et al. (2017a). Through the combination with established sliding window techniques, it is not 

clear what share the recursive PCA has in the results achieved by the ABOD/ABSAD, RPCA and 

SWPCA algorithms. The recursive processing of the PCA algorithm presumably leads to a 

significantly more complex system structure. It can be assumed that the application of 

ABOD/ABSAD, RPCA and SWPCA is complex, making their comprehensibility and applicability 

more difficult. One result of the study conducted in this thesis is that very simple algorithms are often 

used in practical applications. Existing disadvantages of simple algorithms are often accepted in order 

to achieve an overall setup that is still manageable and comprehensible (see section 5.5). However, 

the algorithms ABOD/ABSAD, RPCA and SWPCA described in the papers Zhang et al. (2016a), 

Zhang (2016c) and Zhang et al. (2017a) increase the overall complexity of a setup. It would have been 

interesting to see how Zang assesses this. However, no statement is made on this in the two papers 

listed. 

 

In the paper Classifying Data Streams with Skewed Class Distributions and Concept Drifts 

Gao et al. (2008) states, that for processing high-speed data streams granularity-based techniques like 

specialized sampling methods have been developed. Regarding this Gao et al. (2008) states that 

reduction techniques are more or less the standard when high volumes of data have to be processed in 

real-time. This is applies even more if data is of high dimensionality. There are only a few studies 
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about processing high dimensional data in real-time. This is a gap that needs to be closed by further 

research (Gao, et al., 2008). 

 

In summary, Table 3 lists all the related work discussed in this fundamental section with the respective 

methods. 

 

Reference Methods to improve Performance Relevance 

(Tran, et al., 2022),  

(Lee, et al., 2014) 

Concentration on relevant methods, PdM 

only for the most critical components 
Complexity reduction 

(Pan, et al., 2021),  

(Ait-Alla, et al., 2015) 

Event-driven filtering of incoming data in 

a pre-processing step, parallel processing, 

concentration on critical components 

Complexity reduction 

(Zhang, et al., 2017a), 

(Zhang, 2016c), (Zhang, 

et al., 2016a) 

Decomposition of data by fading 

functions, Sliding window for data 

streams 

Complexity reduction 

Reducing incoming data 

(Krawczyk, et al., 2015). Decomposition of data 

Complexity reduction  

Split incoming data, parallel 

processing of parts of data 

(Gao, et al., 2008), 

(Tenenbaum, et al., 

2000), (Roweis, et al., 

2000). 

 

Granularity-based and sampling 

techniques, reduction techniques in 

general 

Complexity reduction 

Reducing incoming data 

Table 3 – List of the discussed related work 

 

As shown in this section, the applied algorithms are very diverse and there is no general rule for 

applying specific algorithms. When performance is relevant, reduction techniques can be regarded as 

the common approach in the viewed literature. ANN’s are mentioned when high complexity and 

uncertainty is present. Research related to this thesis regarding Deep Learning and ANNs in the field 

of PdM is discussed in the next sections. 
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3.3 Fast Predictions using DL 

PdM applications can benefit from DL, especially when it comes to high complex, non-linear and 

unlabeled (unknown) data. Especially with PdM applications being used in connected smart factories, 

low latency predictions are essential. For this reason, processing time is becoming increasingly 

important and must therefore be taken into account when constructing deep networks and selecting 

the neuronal cell types used. This section provides an analysis of related literature applying Deep 

Learning (DL) techniques and Artificial Neural Networks (ANN) in the field of industrial IoT (IIoT) 

to produce fast predictions of maintenance issues. 

In many IoT applications, fast processing of the incoming data is essential. For example, in a PdM 

system high latency could lead to unintentional reactive maintenance because of insufficient lead time 

to plan the maintenance tasks (Bauer, et al., 2017). This is particularly the case when data arrives in 

continuous data streams. How fast the processing needs to be, strongly depends on the application 

case, the incoming data and the complexity of the task. According to Rippel et al. (2017) in micro 

manufacturing systems, where vast volumes of micro parts are manufactured with high speed, the term 

real-time means microseconds. In his paper he shows that with systems for fault detection and PdM 

the rejection rate of the manufactured micro parts decrease by increasing processing speed (Rippel, et 

al., 2017). In other scenarios, the term of real-time can mean seconds, minutes or hours. For example, 

in PdM Applications for offshore wind turbines the frequency with which data is available is mostly 

minutes and hours (Freitag, et al., 2015). 

In his paper Metro Density Prediction with Recurrent Neural Network on Streaming CDR Data Liang 

et al (2016) describes the implementation of a real-time public transportation crowd prediction system 

using a weight-sharing recurrent neural network in combination with parallel streaming analytical 

programming (Liang, et al., 2016). Fast response time to emergent situations (e.g. entrance records in 

metro stations combined with telecommunication data) demand real-time analysis. The use of a 

powerful neural network model with strong learning capability offers a wide range of new insights but 

contrast with the need for fast response time. The way to meet this goal is described in the paper in 

three steps: a) adopting a RNN model to improve its ability to work on data streams, b) implement 

strategies for parallelization of RNNs and c) the use of parallel streaming analytical algorithms over a 

cloud-based stream processing platform. In the project described each metro station is modelled by an 

independent RNN. Shared layers are introduced to share weights from stations which are in similar 

situations (e.g. downtown stations during rush hour) and across several models dynamically (Liang, 

et al., 2016). 

Especially with streams of sensor data, LSTM and the Gated Reccurent Unit (GRU) provide better 

performance than other models. Such Sensor data is dominating in most PdM applications (Pusala, et 

al., 2016). In order to be able to develop and permanently adapt models on massive data comprising 

the behaviour of people and their spatial and temporal attributes together with transportation 

capacities, fast processing and fast learning approaches are essential. Song et al. (2016) describes a 
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multi-task deep LSTM learning architecture. The basic idea of this concept is not to use a joint feature 

vector, but various LSTM tasks separated by their domain (e.g. respectively a separate task for 

mobility and transportation mode prediction). This architecture performs parallel learning whereas the 

results are aggregated depending on the intended insights (Song, et al., 2016).  

Lee et al (2015) mentions that because of the demands for real-time processing, the organization of 

layers and connections have changed. Fully connected networks where each node of a layer is 

connected to all nodes of the subsequent layer can handle complex problems but also demand a lot 

computing power (Lee, et al., 2015). Dropout those connections not really influencing the result is a 

strategy to reduce the complexity of a DL network, and therefore its computing demand, without 

decreasing result quality in a relevant manner. Besides dropout also max pooling layers, batch 

normalization and transfer learning are mentioned as additional strategies for performance 

optimization (Lee, et al., 2015). 

 

Despite all the mentioned papers discussing performance enhancements and real-time abilities of DL 

models, Canziani et al. (2016) considers that highest accuracy still stands over all in mostly all current 

DL projects (Canziani, et al., 2016). In his paper An Analysis of Deep Neural Network Models for 

practical Applications he argues that numerous DL approaches described in literature are simply not 

suitable for practical use. This is for example because of their long processing time or excessive power 

consumption. In his paper he demands to spend more attention to performance issues because they are 

key factors in practical DL applications. The paper compares 14 different specific DL projects like 

AlexNet or GoogLeNet by comparing their accuracy, memory footprint, parameters, operations count, 

inference time, and power consumption. The paper shows that a small increase in accuracy lead to an 

enormous increase in computational power and computation time. The paper recommends defining a 

maximum energy consumption for each DL project and adjusting the quality of results accordingly 

(Canziani, et al., 2016). 

 

This section has shown that the use of DL in IoT and PdM is a vital topic in industry. Many different 

applications are in use in practice and are constantly being developed and improved. Frequently 

reported are combinations of different DL models to combine different advantages and strengths in 

one application. Also, the need for real-time processing of complex data and data streams has been 

demonstrated in certain application scenarios. This include in particular applications for predictions 

such as PdM. In order to increase the real-time capability, concepts of parallel DL networks using a 

final aggregation layer, or intermediate layers for the reduction of complexity are frequently used. 

Although many activities can be observed in the area of real-time processing of DL models, there are 

also critical voices criticizing the absolute focus on result quality and calling for a greater focus on 

performance and lighter applications suitable for practical use. Almost all reports agree that a lot of 

research is still needed in this area. 
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3.4 Optimisation Approaches for LSTM 

In this section we will look at related work that deals specifically with optimizing the performance of 

LSTMs. The application area considered is not limited to PdM applications. LSTM optimisations from 

other application areas are also explained, as these also provide inspiration for the construction of the 

SlicedLSTM. Even though hardware-related optimisations represent the majority of the work found, 

they are not considered here because hardware optimization is not in the focus of this thesis. Hardware 

optimisations accelerate the processing of software. In the field of machine learning and neural 

networks, hardware optimisations often focus on parallel processing on Graphics Processing Units 

(GPU) (Stollenga, et al., 2015). All software-side optimisations for LSTM described in this section 

can benefit from hardware optimisations as additional optimisation potential. 

The optimisation approaches listed here as related work are all software based. They can be divided 

into two basic categories: optimisation of the training performance and optimisation of the runtime 

performance. Optimisations in training an LSTM are mainly related to mitigating the problem of 

vanishing and exploding gradients (Hochreiter, et al., 1997). The runtime optimisations presented here, 

on the other hand, are based on reducing the complexity of the network or the amount of processing 

at a given processing step. This section ends with a tabular representation and classification of the 

related work discussed. 

 

In the paper Parallel Multi-Dimensional LSTM, With Application to Fast Biomedical Volumetric 

Image Segmentation Stollenga et al. (2015) describes an optimization approach for LSTM to reduce 

model complexity and thereby optimise the performance of Multi-Dimensional LSTM (MD-LSTM) 

(Stollenga, et al., 2015). The tests relate to the processing of 2D and 3D images and videos. The task 

of the LSTM is to segment foreground from background pixel by pixel in the 2D and 3D image data. 

Multi-dimensional means that all layers of a neural network are connected to each other. In a two-

dimensional data space (2D image or video), for example, each cell (pixel) has two connections, one 

to the cell on the right and one to the cell below it. Each cell processes one pixel in the image. Using 

the information from the neighbouring pixels, edges can be detected and thus the currently processed 

pixel can be segmented. The segmentation in the example here is into pixels that belong to the 

foreground or background of the image. The approach of multi-dimensional NN for processing 2D 

and 3D volumetric data sources is a well-known method in image processing. Mostly, Convolutional 

Neural Networks (CNN) are used. The method with multi-dimensional CNNs is described in detail in 

the paper Multi-Dimensional Recurrent Neural Networks (Graves, et al., 2013a) and in the paper 

ImageNet Classification with Deep Convolutional Networks (Krizhevsky, et al., 2012), among others. 

One application of this method is in the medical field, such as in the processing of computer 

tomography images in neurology (Wang, et al., 2015), (Ciresan, et al., 2012a), (Liu, et al., 2014). The 

adaptation of this method using LSTMs instead of CNNs has also been done. The significant 

advantage of LSTM in contrast to CNN is that a multi-dimensional LTSM can perceive the entire 
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spatio-temporal context of each pixel in a few passes through all pixels due to its cell state (Byeon, et 

al., 2015). 

 

Even though there are advantages of using LSTM instead of CNN as a multidimensional mesh, they 

can hardly be parallelised on a GPU due to their structure. Therefore, the novel approach of Pyramidal 

Multi-Dimensional LSTM (PyraMiD-LSTM) was developed based on MD-LSTM. The idea is to 

reduce the number of neighbours in volumetric data, i.e. the number of connections in the mesh that a 

data point (pixel) has. This is done by recursively determining the environment of a data point (pixel) 

no longer for the horizontal (pixel on the right) and vertical (pixel below) neighbours, but only for the 

respective diagonal neighbour (always from left to right). The recursive evaluation of the context thus 

takes place at a 45° angle. In a 2D image, this means that the context of a pixel no longer includes the 

pixel to the right and below, but only the one pixel diagonally to the right. The processing of the 

context information of a pixel in a two-dimensional data space therefore no longer takes place in the 

form of a rectangular grid, but in a triangular form. In a 3D image, the processing is accordingly no 

longer in a cubic form, but in a pyramidal form. If one uses one LSTM for each pixel to be evaluated 

in a 3D image, one needs at least 8 LSTMs to fill a cubic shape and 6 LSTMs to fill a pyramidal shape. 

For any given dimension d, an MD-LSTM thus requires 2d LSTMs, whereas a Pyra-LSTM requires 

only 2d LSTMs. In other words, an MD-LSTM grows exponentially with its dimension, whereas a 

Pyra-LSTM grows only linearly. The larger such a mesh is, the more pronounced the effect of the 

Pyra-LSTM. If fewer LSTMs are required to process data of the same dimension, the number of 

required computational operations in each processing step is reduced and thus the complexity of the 

mesh as a whole. In addition, the pyramidal structure is mentioned to be much more suitable for 

parallel processing on GPU hardware (Stollenga, et al., 2015). The fact that this leads to a measurable 

improvement in performance compared to a standard MD-LSTM was proven by means of test series. 

The tests were carried out with two different datasets with 3D image data from the medical field. The 

first dataset comprises neurological images of a fruit fly, which are to be segmented into their 

individual structures (Cardona, et al., 2010). The second dataset includes data from Magnetic 

Resonance (MR) brain images, as well as an associated evaluation framework for brain image 

segmentation in 3-tesla magnetic resonance imaging (3T MRI) as a reference (Mendrik, et al., 2015). 

The PyraMiD-LSTM optimises the previous MD-LSTM in two areas. On the one hand, the pyramidal 

arrangement of the LSTM mesh reduces the number of LSTM cells required, the more so as the mesh 

becomes more complex. On the other hand, the pyramidal arrangement can be better parallelised and 

thus optimises the processing time on a GPU (Stollenga, et al., 2015). 

However, the Pyra-LSTM approach can only be applied to volumetric data sources where the context 

of a data point depends on its direct neighbours. For 2D and 3D image and video data, the segmentation 

into foreground or background (and thus the detection of edges) can be determined by evaluating the 

pixels surrounding that pixel. In contrast, the thesis presented here relates to the analysis of sensor data 

from industrial plants with neural networks. Such sensor data are to be used to draw conclusions about 
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wear and special events in a plant and to initiate maintenance measures at an early stage. The 

arrangement and sequence of data in the input vector of such a system do not allow any conclusions 

to be drawn a priori. The relationship "direct neighbour" does not have a firmly defined context, as is 

the case with image data. Therefore, multi-dimensional approaches are generally not suitable for PdM 

applications. The Pyra-LSTM is not applicable for PdM and thus does not represent an optimisation 

concept in this area. 

 

A model inspired by the LSTM model but with a much simpler structure is the Gated Recurrent Unit 

(GRU) (Lu, et al., 2017). In the paper Learning Phrase Representations using RNN Encoder-Decoder, 

Cho et al. (2014a) describes a newly developed approach for translating texts (Cho, et al., 2014a). The 

model consists internally of two neural networks (encoder and decoder). The encoder divides a text 

into sequences of fixed length, which are then translated directly into the target language by the 

decoder. This novel model layout thus combines the two steps of encoding and decoding in one cell. 

With texts that are to be translated from English into French, Cho et al. (2014a) achieved significantly 

better translation results than with a standard RNN (Cho, et al., 2014a). Based on the internal 

architecture of an LSTM, he then extended the RNNs used in the encoders and decoders by two gates 

in a further step. This resulted in a new type of model layout, which is called a gated recurrent unit 

(GRU) (Cho, et al., 2014a). Unlike the LSTM, however, the GRU uses only the hidden state as internal 

memory and does not introduce an additional cell state. With each processing, the hidden state of the 

previous processing (ht-1) is transferred to a new hidden state (ht). The GRU manages the hidden state 

with the help of two gates, the update gate and the reset gate. The update gate decides how strongly 

the hidden state ht-1 and the results of the current processing step (candidate states) are to influence 

the new hidden state ht. The Reset Gate deletes entries from the hidden state ht-1 beforehand. This 

achieves an effect similar to that of the LSTM. The GRU is thus also able to decide which previous 

information should continue to be remembered, which new information is relevant enough to be 

remembered and which should be forgotten (Cho, et al., 2014a). 

 

In his test series, Cho et al. (2014a) compares the newly introduced RNN encoder-decoder based on 

standard RNN and with a version using GRUs (Cho, et al., 2014a). An existing series of tests 

comparing the use of neural networks in the field of language translation with established approaches 

and demonstrating the advantages of neural networks in this field was used as the basic test setup 

(Kalchbrenner, et al., 2013), (Sutskever, et al., 2014). The tests by Cho et al. (2014a) clearly show that 

the results are many times better when using the GRU as opposed to RNN. This confirms the 

effectiveness of the concept adapted from the LSTM of controlling the memory of an RNN via gates. 

The GRU thus takes the idea of the LSTM but implements it in a much simpler way. This simplified 

internal structure compared to the LSTM makes the GRU easier to handle and train. In certain use 

cases, such as the translation of texts, the GRU achieves very comparable results despite its simpler 

structure (Cho, et al., 2014a). In another paper, Cho et al. (2014b) introduces a next optimisation step 
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for his GRU approach, in which he extends the GRU with convolutional techniques. The resulting 

Gated Recursive Convolutional Neural Network (grConv) is again compared to the RNN-based 

encoder-decoder model. In the paper On the Properties of Neural Machine Translation: Encoder-

Decoder Approaches the test series again consists of text translations from English to French. As a 

result, it was found that the already confirmed gate functions are essential for comparable results. In 

addition, the grConv shows comparable results in learning grammatical structures in the texts 

independently (Cho, et al., 2014b). 

That the introduction of gates brings a decisive improvement in contrast to simple RNNs is also 

described by Bahdanau et al. (2015) in his paper Neural Machine Translation by Jointly Learning to 

Align and Translate (Bahdanau, et al., 2015). The research conducted in this paper also relates to the 

translation of texts. Gated Recurrent Units, i.e. GRU and LSTM, clearly outperform comparable 

approaches without gates in this use case (Bahdanau, et al., 2015). 

Whether GRU and LSTM also outperform RNNs without gating units in other application areas is 

investigated by Chung et al. (2014) in his paper Empirical Evaluation of Gated Recurrent Neural 

Networks on Sequence Modeling (Chung, et al., 2014). His research is based on the assumption that 

deep neural networks have the potential to replace classical approaches in almost all application areas 

(Sutskever, et al., 2014), (Bahdanau, et al., 2015). Chung et al. (2014) mentions that almost all studies 

that make this statement in the results were not carried out with simple neural networks (like FFNN), 

but with recurrent neural networks. Very often, models were used that can deal with long term 

dependencies. The paper of Chung et al. (2014) describes an empirical evaluation based on tests with 

different data sets. The test data are three data sets from the field of polyphonic music and two data 

sets with raw speech data. These test data were processed for comparison with a standard RNN, with 

a GRU and with an LSTM. The focus was on how the different approaches can deal with sequential 

data (data streams) and how well they are able to notice connections over long temporal distances in 

data. As a result, it was clear that the models with gated units outperformed those without. This was 

particularly noticeable in the processing of speech data. The comparison of GRU and LSTM, on the 

other hand, showed no clear winner. Both models performed slightly differently in different scenarios. 

In certain scenarios, the much simpler GRU showed equivalent or even better results than the LSTM. 

However, Chung et al. (2014) clearly states in his paper that he did not investigate further the causes 

for when LSTM or GRU performed better and cannot provide a reason or rule for this. The aim of his 

study was to show that GRU and LSTM outperform classical RNNs in areas other than text translation. 

In general, however, it can be stated that GRU and LSTM perform similarly well in most cases. 

However, GRU, which has a much simpler structure, also has the advantage of being easier to use and 

required significantly less CPU time in the tests (Chung, et al., 2014). 

GRU has been considered in great detail here. This is justified by the fact that GRU is now a very 

popular and widespread form of gated RNNs (Cho, et al., 2014a), (Cho, et al., 2014b), (Chung, et al., 

2014), (Jozefowicz, et al., 2015) (Yao, et al., 2015). Moreover, the GRU impressively demonstrates 
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that performance benefits can be achieved by reducing the complexity of the inner architecture of a 

model based on LSTM (Chung, et al., 2014). This insight contributed to the basic idea for this thesis. 

 

In the paper LSTM: A Search Space Odyssey Greff et. al. (2017) gives an overview of known 

optimisation options for LSTMs and compares their performance using an extensive test series (Greff, 

et al., 2017). The comparison was made with a test setup that was kept as simple as possible with three 

differently structured datasets from different application areas (acoustic modelling, handwriting 

recognition, and polyphonic music modelling). A total of 5,400 experimental runs were carried out 

with all variants and all datasets. According to the author, the tests would require about 15 years of 

CPU time on a standard PC hardware and can thus be classified as one of the most extensive test series 

in this environment. The measured results are exclusively relative values and serve the empirical 

comparison of the different variants. A standard LSTM (Graves, et al., 2005) serves as the starting 

point for all comparisons. In accordance with the numerous variants of LSTMs that have arisen 

through adjustments to the gates or the internal structures and links, eight variants of an LSTM were 

generated, to each of which only one adjustment was made in order to isolate the resulting effect. For 

this reason alone, the test results are not comparable in absolute terms, but only relatively within the 

study. Well-known optimisation approaches for LSTM, such as the introduction of a forget gate (Gers, 

et al., 1999), the use of peephole connections (Gers, et al., 2000) or gated recurrent units in neural 

networks (Chung, et al., 2014) form the basic idea for the eight adapted variants that are compared 

here. The tested variants were labelled NIG (No Input Gate), NFG (No Forget Gate), NOG (No Output 

Gate), NIAF (No Input Activation Function), NOAF (No Output Activation Function), CIFG 

(Coupled Input and Forget Gate), NP (No Peepholes) and FGR (Full Gate Recurrence) (Greff, et al., 

2017). 

As a result of the comparative values, it was found that the standard LSTM used as a baseline showed 

competitive performance on all three datasets. For the variants NIG, NOG, NIAF, CIFG, NP and FRG, 

no significantly better performance values of a particular variant were evident in the direct comparison. 

Removing the forget gate (NFG) or the output activation function (NOAF), on the other hand, led to 

a significant deterioration in performance. It should also be mentioned that the connection of the input 

gate with the forget gate (CIFG) led to a significant simplification of the LSTM network, without 

leading to worsened performance values in terms of accuracy of the network. For complex tasks, it is 

conceivable that this variant could outperform due to its simpler structure (Greff, et al., 2017). 

 

LSTM is reported as the most common form of RNNs. Gated Recurrent Unit (GRU) Neural Network, 

as a more recent optimisation form for RNN, is becoming increasingly popular (Jozefowicz, et al., 

2015). In the paper An Empirical Exploration of Recurrent Network Architectures the motivation of 

the authors was described as searching for a novel architecture that outperforms both LSTM and GRU. 

The authors pose the fundamental question of whether LSTM and GRU are indeed the perfect 
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architectures, or whether there are unknown architectures that perform significantly better. In addition, 

the question was raised whether the existing architecture of an LSTM is already optimal and whether 

all components of an LSTM are actually necessary. In addition to new architectures, experiments were 

also conducted with LSTM variants in which parts of the LSTM were omitted (Jozefowicz, et al., 

2015). Furthermore, an LSTM version was tested in which the forget gate was initialised with a bias 

of 1 (Gers, et al., 2000). 

In the study conducted, a wide variety of RNN architectures were programmatically generated and 

tested (Jozefowicz, et al., 2015). Each variant generated in this way had to prove a required minimum 

quality in basic test runs. If this was achieved, more extensive test runs were carried out with three 

different datasets. The datasets addressed very different areas in which the performance of each variant 

was measured. One dataset included numeric values and arithmetic tasks. Another dataset included 

XML fragments that needed to be completed correctly by the RNN. The third dataset contained 

polyphonic music data sets that had to be transcribed. In total, more than ten thousand RNN 

architectures were generated and tested in this test. Based on the results, a top 100 list was created, 

which lists the best variants with the respective measurement results in the three different datasets. In 

addition, different variants of an LSTM were tested, as well as a GRU (Jozefowicz, et al., 2015). The 

LSTM variants included a standard LSTM (Gers, et al., 1999), an LSTM-f without forget gate, an 

LSTM-i without input gate, an LSTM-o without output gate, and an LSTM-b where the bias of the 

forget gate was initialised to 1. The architecture of the tested GRU corresponded to the currently 

common structure (Cho, et al., 2014a), (Chung, et al., 2014). 

All five variants of the LSTM and the GRU achieved top rankings in the top 100 list. The top three 

ranked architectures besides the LSTMs and the GRU showed comparable results with strengths and 

weaknesses in different areas. Notably, these top 3 architectures were all very similar to the GRU. The 

comparison of the different LSTM variants showed that the forget gate and the input gate are 

indispensable components of an LSTM. Removing the output gate, on the other hand, had little 

influence on the measurement results (Jozefowicz, et al., 2015). These results were also confirmed in 

other studies (Greff, et al., 2017). It was particularly emphasised that initialising the bias of the forget 

gate with a positive bias of 1 or greater significantly improved the training performance of the LSTM. 

In general, this should be done every time an LSTM is used (Jozefowicz, et al., 2015), (Gers, et al., 

2000). 

 

To obtain a temporal context in data, the bidirectional approach is already known from standard RNNs. 

In the bidirectional approach one network goes through data from the beginning to the end (standard 

forward path) of all network layers and another goes backwards through all the layers from the end to 

the beginning (backward path). The result at a certain point in time is always determined from the 

output of both networks (Schuster, et al., 1997). If one uses an LSTM in this form instead of an RNN, 

the ability of the network to establish connections in data over a long period of time is added. The 

backward path through the network layers means that not only information from the past but also from 
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the future will be considered (Graves, et al., 2013b). Bi-LSTM are therefore always used when the 

greatest possible context is required. Natural Language Processing (NLP) represents such an area of 

application. Without the backward pass, models applied to Text and Speech Recognition or Named 

Entity Recognition (NER) have a limited context that often makes it impossible to solve the task at 

hand (Graves, et al., 2013b). A typical application example is the completion of cloze texts, where 

often not only the beginning of the sentence but also the end of the sentence after the cloze must be 

known in order to determine the missing word. Figure 14 shows such an example. 

 

Figure 14 - Cloze text example, taken from (Aggarwal, 2019) 

In the field of NER, Chiu et al. (2016) also uses a Bi-LSTM to recognise proper names and to classify 

them (e.g. person, company, ...). In the paper Named Entity Recognition with Bidirectional LSTM-

CNNs he described the application and highlights the advantages of the extended context of a Bi-

LSTM on the basis of extensive test series (Chiu, et al., 2016). His work is based on a series of tests 

using a standard LSTM for NER (Hammerton, 2003), with the results of which he compares his 

approach. Another practical use case of Bi-LSTM is described in the paper Predicting the Objective 

and Priority of Issue Reports in Software Repositories. Here, descriptions of issues are used to make 

a multiclass classification into different categories (bug, improvement, ...) and predict their 

importance. Here, too, the Bi-LSTM shows better results than a standard LSTM due to its extended 

context (Izadi, et al., 2021). Besides NLP and NER, anomaly detection is also one of the known 

application areas of Bi-LSTM (Lee, et al., 2021). 

A major limitation for the application of Bi-LSTM is that the entire dataset must be known. This is 

usually the case while training. However, if a trained network is fed with data streams in which data 

arrive sequentially on a continuous basis, only data up to the current point in time are available. 

Because of this, Bi-LSTM cannot be used on streaming data for PdM applications in IIoT (Chiu, et 

al., 2016). 

 

Another optimisation approach found in literature is to connect the Input Gate and the Forget Gate. 

The forget gate usually receives the inverted value of the input gate (f=1-i with f=forget gate and 

i=input gate and sigmoid as activation function) and is often referred to as Coupled Input and Forget 

Gate (CIFG) (van der Westhuizen, et al., 2018). CIFG shows competitive performance in some special 

application areas of NLP or NER. However, no general advantages are attributed to the CIFG, although 

in many cases it does not worsen the results compared to the standard LSTM (Greff, et al., 2017). 
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Another optimisation approach groups the cells of the layers of a multi-layer LSTM (stacked LSTM), 

in order to execute them at different frequencies (Fernandez, et al., 2007), (Graves, et al., 2009), 

(Graves, et al., 2013a). The grouping criterion is the duration of the temporal dependencies that the 

cells are to process. The groups formed are assigned a repeat rate, which determines at which periods 

the cells of this group are active. In recurrent processing, not all but only the cells of the network 

assigned to the current period are processed in one processing step. For example, the cells of a group 

with a repeat rate of 2 are only processed in every second period. This is also referred to as operating 

subsets of cells at different rates (Koutník, et al., 2014). This significantly reduces the overall 

processing effort. Subsets that tend to remember long-term relationships are operated at a low speed, 

subsets for short-term relationships at a high speed. This optimisation approach is called Clockwork 

RNN (CW-RNN) (Koutník, et al., 2014). In the paper A Clockwork RNN this setup is described and 

tested using a series of tests with audio signals for recognising spoken words. In this application 

scenario, better results were obtained than with an RNN and LSTM. By reducing the number of 

processing steps per period, a significant performance gain was also observed. With a minimum repeat 

rate greater than 1, it was also possible to eliminate noise in data and thus implicitly add a kind of low-

pass filter (Koutník, et al., 2014). A similar method, in which parts of the RNN network are omitted 

in a processing step, is the Temporal Kernel Recurrent Neural Network (TK-RNN) (Sutskever, et al., 

2009). As with CW-RNN, parts of the network are executed in different frequencies. Unlike the CW-

RNN, the TK-RNN controls the temporal clocking via an additional connection of each neuron to 

itself. These connections have a decreasing weighting over time. Improvements in performance have 

also been achieved with the TK-RNN. The TK-RNN's ability to handle dependencies over longer 

periods of time is reported to be roughly equivalent to the standard LSTM. However, compared to the 

CW-RNN, the TK-RNN creates more complexity in the network and thus overhead (Sutskever, et al., 

2009). 

 

Another approach in which activations and thus updates of the inner cells are controlled by a clock at 

a certain frequency is phased LSTM (Neil, et al., 2016). In CW-RNN and TK-RNN, the inner clock 

is there to make updates to the inner memory in relation to dependencies in data over time. For the 

periods in between, when there is no relevant information in data for a particular effect, the relevant 

cells remain inactive. This reduces the overhead of the network at runtime and reduces typical 

problems in training very long-term relationships, such as vanishing or exploding gradients (Koutník, 

et al., 2014), (Sutskever, et al., 2009). The phased LSTM approach is particularly aimed at application 

areas in which continuous data streams are processed. This type of data is especially found in sensor 

data in industrial applications and IIoT. If a network receives information from many different sensors, 

these sensors typically deliver their data in different frequencies based on their sampling rate. In a 

standard LSTM, all inner units are updated every cycle. A standard LSTM must therefore set its 

processing cycle to the shortest data cycle and thus to the highest frequency. This results in many 

unnecessary processing steps. CW-RNN and TK-RNN improve this by being able to classify neurons 
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into groups of different speeds. A current trend, especially in modern IIoT environments, is event-

based communication. Events are usually data-driven. Sensors only deliver information when there is 

a reason to do so. In contrast to the permanent transmission of the sensor signal in a fixed frequency, 

the communication effort is significantly reduced with the event-based approach. In order to be able 

to decide which data might be of interest, when and for whom, sensors need intelligence, context and 

self-sufficiency (Uffelmann, et al., 2021). Phased LSTM is not only able to form groups of different 

speeds, but also to handle individual asynchrony in data. For this purpose, the phased LSTM contains 

an additional time gate. Through the time gate, the internal memory of the cell is cyclically updated, 

whereby the cell is able to learn the asynchronous behaviour in data (Neil, et al., 2016). In test series 

with synthetically generated asynchronous sensor data, it was demonstrated that the phased LSTM is 

able to adapt to the different temporal behaviour of data in a data stream at a very fine granular level. 

The tests showed a 95% reduction in the number of internal processing steps at runtime for a phased 

LSTM cell compared to a standard LSTM cell, given optimal data structures. Despite this dramatic 

reduction, the accuracy of phased LSTM was often even better compared to standard LSTM (Neil, et 

al., 2016). The reduced number of internal updates further improves the ability of the phased LSTM 

to handle very long relationships in data. The effect here is roughly comparable to the application of 

the concept of leaky integrator neurons, which is used for example in Structurally Constrained 

Recurrent Network (SCRN). The optimisation here refers to the structure of the deep network and not 

to a single cell (Mikolov, et al., 2015). 

 

In the optimisation approaches listed so far, gated connections were often introduced within a cell of 

an RNN. These connections and gates served to remember and forget information and thus to manage 

the internal memory (Gers, et al., 1999), (Hochreiter, et al., 1997), (Graves, et al., 2005), (Greff, et al., 

2017). In addition, such internal connections were introduced in order to be able to include information 

stored by the cell in its current processing step. Peephole connections represent an example of such 

connections (Gers, et al., 2000). Connecting cells across layers of a deep neural network is another 

approach that has led to different optimisation models. Here, the focus is not on a single cell and its 

internal structure, but on a network of many stacked and interwoven cells (deep neural network) 

(Fernandez, et al., 2007), (Graves, et al., 2009), (Graves, et al., 2013a). In a so called Depth-Gated 

LSTM (DGLSTM), the cell state of one LSTM is connected to the cell state of the LSTM above it in 

the network. The connection has a gate and optionally an additional activation function (Yao, et al., 

2015). With these connections, relevant long-term information is stored not only within the cells, but 

also exchanged across the layers of a network. If a standard LSTM only receives the output of the 

underlying layer as input (xt
L+1 = ht

L, with x=input and h=hidden state at time t and layer L), a 

DGLSTM additionally receives memory information of the underlying layer (ct
L -> ct

L+1, where "->" 

stands for a gated connection with optional activation function) (Yao, et al., 2015). In the paper Depth-

Gated LSTM, a DGLSTM is compared with an LSTM and a GRU. One of the test series was done 

with Chinese text to be translated into English. A comparison test annotated the syntactic structure of 
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a text (Penn TreeBank). In both test series, the DGLSTM outperformed the other two models (Yao, et 

al., 2015). 

The Highway Network approach is similar to the DGLSTM. With the Highway Network, in addition 

to the connection to the memory cell, another connection is established between the output of the cell 

below and the input of the cell above. Test series with image data have shown that the highway 

network approach can be advantageous for very deep neural networks (Srivastava, et al., 2015). A 

similar approach is also being pursued by Kalchbrenner et al. (2015) with the Grid Long Short-Term 

Memory (GrLSTM) (Kalchbrenner, et al., 2015). In contrast to the aforementioned approaches with 

stacked LSTMs, a multidimensional arrangement of the cells is chosen here in order to achieve a deep 

architecture. The approach is thus based on the model of the Multi-Dimensional LSTM (MD-LSTM) 

(Stollenga, et al., 2015) and extends it, as with the DGLSTM and GrLSTM, by several gated 

connections. The gated connections also create additional connections across the layers of the network 

and thus strengthen the network's ability to train and process spatiotemporal dimensions in data. Tests 

with algorithmic tasks and language translations showed better results than with a standard LSTM in 

the cases tested. Tests with sensor data were not carried out in the papers mentioned (Srivastava, et 

al., 2015). 

 

With the so-called Structurally Constrained Recurrent Network (SCRN), Mikolov et al. (2015) 

propose an optimisation approach based on a simple RNN (SRN) that can nevertheless handle data 

streams with long term dependencies. Due to the much simpler structure of an SRN compared to an 

LSTM, the complexity of the resulting network is reduced. This is particularly advantageous in cases 

where the size of a network or the available hardware resources are limited. With an SRN, significantly 

more complex tasks can be learned and processed in such cases than is the case with an LSTM. In 

order to be able to use an SRN for dealing with longer-term contexts in data, it is extended by a second 

hidden layer. This second layer is called the context layer (Mikolov, et al., 2015). Since the hidden 

layer is always completely updated with each recurring processing step in an SRN, it is only able to 

remember dependencies over a maximum of 5-10 processing steps (Gers, et al., 1999). Thus, it only 

remembers the short-term dependencies in data. The context layer added in SCRN, on the other hand, 

is updated much less frequently and is thus able to store long-term dependencies. The idea of SCRN 

is based on the concept of leaky integrator neurons. The SCRM is significantly less complex and thus 

easier to handle and faster to process (Mikolov, et al., 2015). In an empirical comparison with data 

from the field of language modelling, similarly results were achieved with SCRN than with LSTM. 

This approach also achieves the effect of being able to store long-term correlations through slower or 

weaker updates of the hidden layer (Jaeger, et al., 2007). For a comparison with the SCRN, test results 

of a test series were used in which an SRN was extended by leaky integrations (Bengio, et al., 2012). 

The comparison test with the same data confirmed significantly better results for the SCRN (Mikolov, 

et al., 2015). 
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In his paper The unreasonable Effectiveness of the Forget Gate van der Westhuizen et al. (2018) 

mentions that many existing optimisation approaches for LSTM further improve the properties of an 

LSTM, but in doing so again significantly increase the complexity of the inner structure of the cells 

(van der Westhuizen, et al., 2018). In this category, he includes the Tensorized LSTM (He, et al., 

2017), the concept of Sequential Neural Models with Stochastic Layers (Fraccaro, et al., 2016), a 

mechanism called Zoneout to influence activations (Krueger, et al., 2017), or the application of 

variational methods for RNN and LSTM (Graves, 2011), (van der Westhuizen, et al., 2018). Since 

performance aspects are in the foreground in this thesis, approaches that lead to higher complexity 

will not be explored further. 

 

In addition to optimising the internal architecture of LSTMs, some performance optimisation 

approaches focus on arranging and processing neural networks in parallel. In this case, the input data 

is divided into several subsets in a preliminary step. Each network receives only one subset at a time. 

The networks are processed in parallel. The results are combined in a final aggregation layer. 

One frequent application of this approach is the processing of video streams for activity recognition. 

The video data is divided into different classes. Video data is split according to spatial and temporal 

information in the image data and forms two input classes from this. The spatial data contain the actual 

image data in the classical sense. The temporal data includes the optical flow of the video data, that is 

the differences in value between the individual pixels of successive video frames. After data has been 

divided into spatial and temporal information, it is then loaded into two separate, parallel neural 

networks. Particularly with video data, which is usually very extensive and also represents a 

continuous stream of data, high-performance processing is crucial in many applications. The approach 

is usually referred to as two-way deep neural networks. Significant performance improvements are 

reported by the application of this approach (Jin, et al., 2022), (Ertan, 2021), (Bouaziz, et al., 2017), 

(Zhang, et al., 2017b), (Ding, et al., 2021). Another strategy of segmentation of video data divides the 

input vector into global and local image information. Global image information is image content that 

describes the overall context of the image or represents main components. Local image contents, on 

the other hand, are detailed aspects in the form of a subset of a global feature (Huang, et al., 2016). In 

the field of mobility and traffic forecasting, input data is often also segmented by location data (e.g. 

underground/bus/train stations) and context data on the mode of travel (e.g. walking, cycling, traveling 

by car or train) (Liang, et al., 2016), (Song, et al., 2016). 

In addition to the field of image processing, Wang et. al 2019 describes the application of parallel 

LSTM for performance optimisation of forecasts for electric power generators and energy 

consumption. He also divides data into two groups, which are processed in parallel LSTMs. The first 

group represents the forecast data for decentralised energy producers (mainly wind power and 

photovoltaic). The second group models the interaction between source (energy producer) and load 

(energy demand) based on user-driven behavioural data (Wang, et al., 2019). 
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Because of its memory cells LSTM models are predestined if data comprises long-term dependencies. 

If data structure allows the separation of single entities with their specific behaviour as well as the 

formation of groups of entities, it could be then possible to process each entity and every group with 

its own neural network. This opens up parallel processing possibilities of the single neural networks. 

Normally each single and parallel processed neural network provides its result to an aggregation layer 

aggregating all outputs to an overall result. In his paper A Hierarchical Deep Temporal Model for 

Group Activity Recognition Ibrahim et al. (2016) describes how to recognize situations in a volleyball 

match. One LSTM model per player predicts the behaviour of this player, remembering his previous 

behaviour in the match (long-term dependencies). Each single situation of the match is then modelled 

as a group of the players. The LSTMs are hierarchically ordered where the LSTM models of all 

involved players are subordinated to a scene. The scenes and the players behaviour is extracted based 

on images using CNN (Ibrahim, et al., 2016). This basic idea of segmentation and parallel processing 

in less complex subnets inspired the development of the SlicedLSTM. 

 

However, there is also criticism of the approach of splitting input data into multiple sub-packages for 

parallel processing. Also based on the use case of activity recognition in video data, Ma et al. (2018) 

state that by splitting the video data into spatial and temporal subsets and executing them in parallel 

networks, the correlations between data of the parallel networks are not taken into account. As a result, 

information is lost in data. In the present case, this concerns temporal information on the separated 

image information. In addition, it is criticised that current projects mostly use two-way Convolutional 

Neural Networks (TW-CNN). CNNs are not able to recognise long-term dependencies in data. This 

results in further disadvantages besides the loss of temporal correlations due to the segmentation of 

the video data. With continuous video data, the temporal sequences of events, as well as the knowledge 

of earlier events in the video stream, do have relevance and must be considered. Ma et al., (2018) 

therefore recommends the use of LSTM instead of CNN. By further segmenting the spatial data in 

terms of their temporal dimension into individual time buckets, the temporal references are brought 

back into the spatial data. The result is called Two-Stream Long Short-Term Memory (TS-LSTM). 

Like all two-way approaches mentioned here, the TS-LSTM does not represent a model optimisation. 

As with the aforementioned approaches, the optimisation also lies in the entire system structure and 

not in the neural network itself. With the TS-LSTM, the input data is also segmented manually or 

semi-automatically in a preliminary step in order to then be processed in parallel on standard neural 

networks (here LSTM) and finally aggregated (Ma, et al., 2018). 
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Goal Approach Method Reference 

Improve context and long- 

term dependencies 

bidirectional processing BI-LSTM (Chiu, et al., 2016), (Graves, 

et al., 2013b), (Izadi, et al., 

2021), (Lee, et al., 2021), 

(Chiu, et al., 2016) 

special cell/layer structures Depth-Gated LSTM (Yao, et al., 2015) 

GrLSTM (Kalchbrenner, et al., 2015) 

Reduction of the processing 

effort through grouping 

only process required parts Phased LSTM  (Neil, et al., 2016) 

SCRN (Mikolov, et al., 2015) 

TK-RNN (Sutskever, et al., 2009) 

special cell/layer structures CW-RNN (Koutník, et al., 2014) 

Multi-layer LSTM/Stacked 

LSTM 

(Fernandez, et al., 2007) 

special layers SCRN (van der Westhuizen, et al., 

2018) 

Reduction of the processing 

effort in general 

special layers Zoneout  (Krueger, et al., 2017) 

split data set TS-LSTM (Ma, et al., 2018) 

TW-Deep Neural Networks (Jin, et al., 2022), (Ertan, 

2021), (Bouaziz, et al., 

2017), (Zhang, et al., 

2017b), (Ding, et al., 2021), 

(Huang, et al., 2016), 

(Liang, et al., 2016), (Song, 

et al., 2016), (Wang, et al., 

2019) 

Reduction of the processing 

effort by reduced model 

complexity 

special cell/layer structures Deep MD-LSTM/CNN (Krizhevsky, et al., 2012), 

(Wang, et al., 2015), 

(Ciresan, et al., 2012a), 

(Liu, et al., 2014), (Byeon, 

et al., 2015) 

Multi-Dimensional LSTM  (Graves, et al., 2013a) 

special gating grConv (Cho, et al., 2014b) 

GRU (Lu, et al., 2017), (Chung, et 

al., 2014) 

LSTM and Variants (Greff, et al., 2017), 

(Jozefowicz, et al., 2015) 
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RNN- and GRU-based 

Encoder-Decoder 

(Cho, et al., 2014a) 

Reduction of the processing 

effort by simplified net 

structure 

special cell/layer structures PyraMiD-LSTM (Stollenga, et al., 2015), 

(Cardona, et al., 2010), 

(Mendrik, et al., 2015) 

special gating CIFG (van der Westhuizen, et al., 

2018), (Greff, et al., 2017) 

special layers SCRN (Mikolov, et al., 2015) 

SNMSL (Fraccaro, et al., 2016) 

Tensorized LSTM  (He, et al., 2017) 

Table 4 - Summary of Optimisation Approaches for LSTM 

 

All the approaches discussed in this section are summarized in Table 4. The approach, the applied 

methods and the according references are listed by the respective goals regarding the optimisation of 

an LSTM. 

In summary, it can be said that the reduction of complexity is the basic idea in the majority of the 

papers presented here. Some of the papers presented here reduce complexity by splitting the data into 

independent subpackets, which then additionally favour their parallel processing. In other papers, the 

complexity is reduced by internal machanisms for switching off subnetworks for certain processing 

steps. The basic idea presented in those papers and the various approaches to implementing complexity 

reduction inspired the idea of SlicedLSTM. 
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4 Research Methodology 

This chapter describes the selection of the research methodology used and its characteristics. For this 

thesis, a Mixed Method Research (MMR) approach with a sequential arrangement of a qualitative and 

a quantitative study is chosen. The qualitative study is used to get a close picture about the use of 

neural networks in PdM systems. The subsequent quantitative study aims to prove the runtime 

improvements archived by the novel model developed within this thesis compared to the established 

standard model in PdM applications. The design, setup, implementation and evaluation of the 

qualitative study is described in chapter 5. Section 6.3 addresses accordingly with the quantitative 

study within the MMR study design. 

4.1 Fundamental Research Design 

The motivation behind this research is to develop a novel approach of a neural network model that 

will better meet time-critical requirements in Predictive Maintenance (PdM) applications. This new 

model will be based on the model that experts consider to be the state of the art, or the standard model 

in current PdM applications. This standard model will be determined with the help of research. 

Additionally, the goal of the marked research is to find out which models are generally common in the 

field of Predictive Maintenance and IIoT environments and how their performance can be evaluated 

and compared. Using the strengths and weaknesses of the identified models, it is necessary to 

determine for which data and application areas these models were more or less suitable. In doing so, 

it is also necessary to consider the special requirements of data stream processing in IIoT 

environments. Based on the results of the research, the model that has proven to be the most suitable 

at present and probably also in the future will be used as the standard model for further consideration 

in this thesis. Most suitable in this context means, above all, that this model is the most popular and 

most frequently used model in current research and industrial projects. This most suitable model will 

then be used as a basis for further optimisation in this thesis. The determination of what constitutes an 

expert in the context of the qualitative study conducted in this thesis is explained in detail in section 

5.1 (Selection of Experts). 

Optimisation here refers exclusively to the modification or extension of the standard model (here 

synonymously also referred to as standard model) for software-side performance enhancement. 

Optimisations on the hardware side are not considered in this thesis. To receive significant and 

comparable results, it is necessary to determine a defined and limited application scenario, which will 

be considered exclusively. This will also to be determined through research in this thesis. Optimisation 

in the sense of the present thesis is then given, if the new model approach lead either to improved 

time-sensitive behaviour (reduced response times, reduced resource requirements) without affecting 

the quality of the results, or improved quality of the results with similar time behaviour. An important 

question to be determined in this thesis therefore is how to measure and evaluate the results of different 
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models and approaches in a representative way. The evaluation of the new model in comparison to the 

standard model is done with the help of quantitative research as described later on. 

The research methodology in this thesis therefore requires a two-step approach. The first step is to 

show, on the basis of expert opinions, which models are used in PdM applications and how their 

relevance is assessed by the experts. The task of qualitative research is to show possibilities, give 

insights and find ideas (Johnson, et al., 2008), (Lichtman, 2006). Qualitative research is therefore the 

right method for this step. The research methodologies used in this thesis are consistent with those of 

qualitative research. Thus, the intended study goals of identifying opportunities, providing insights 

and finding ideas coincide with those of qualitative research. The target groups of qualitative research 

methodology are smaller groups that are randomly selected. In the study conducted here, it is a group 

of eight people. They are referred to as experts. The definition of the term expert is given in section 

5.1 of this thesis. Another characteristic of qualitative research methodology is that the studies focus 

on a set of issues as a whole and not on specific details. This is also in line with the requirements of 

the study conducted here, in which an overall picture of the use of neural networks in the environment 

of Predictive Maintenance systems is to be shown. One of the typical methods for data collection in 

qualitative studies is the collection in text form, audio or images. In the study within the scope of this 

thesis, the statements of the experts are documented on the basis of an interview guide and validated 

by means of an audio recording of the interview. The evaluation of the results of the interviews 

conducted in the context of this thesis is carried out by identifying interrelated topics and similar 

statements in the form of common motifs. This approach to data evaluation is consistent with the 

methodology of qualitative studies. Similarly, the documentation of the study findings in the form of 

a narrative report with contextual description and direct quotes from the study participants aligns with 

qualitative research methodology (Johnson, et al., 2008), (Lichtman, 2006). Table 5 summarises the 

features of the research methodology. 

 

In the second step of the study design of this thesis, the performance of a newly developed model 

approach compared to the standard model will be evaluated. This has to be done with measurable, 

quantitative methods, taking into account the specified scope of application and the defined framework 

conditions. The tasks of a quantitative study are to prove hypotheses, to look at their cause and effect 

in detail and to make predictions (Johnson, et al., 2008), (Lichtman, 2006). In contrast to qualitative 

studies, quantitative studies collect data, for example in the form of numbers and statistics. In the study 

described here, these are specifically measured values and their progressions, which are recorded 

within the framework of the laboratory tests. The data collection method used in the study described 

here of collecting quantitative data based on precise measurements with structured and validated data 

collection instruments is in line with the requirements of a quantitative research methodology 

(Johnson, et al., 2008), (Lichtman, 2006). 
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The fundamental research design for the primary research of this thesis is therefore based on the Mixed 

Method Research (MMR) approach and is structured into both qualitative and quantitative research 

activities. MMR is defined as a method of research in which researchers can combine quantitative and 

qualitative techniques in a single study (Ngulube, 2015). For this work, the MMR approach is ideal as 

it requires both a qualitative study to determine what experts consider relevant and what is considered 

standard practice, and a quantitative analysis in the form of measurements of the results of a laboratory 

experiment. The MMR approach and its application in this thesis is described in more detail in the 

following sections 4.2, 4.3 and 4.4. 

4.2 The Mixed Method Approach 

Until the 1990s, quantitative and qualitative research processes were two opposing approaches within 

the scientific discussion as alternatives for action with incompatible paradigms. (Kuß, et al., 2012). 

The purists in both camps defended passionately their respective paradigm as being the only suitable 

primary research method. The focus has always been on the differences of the two methods (Ngulube, 

2015). However, this somewhat uncompromising attitude has been changing for quite some time. For 

many years now, qualitative and quantitative approaches have no longer been seen as irreconcilable 

opposites that cannot be combined, but rather as complementary methods that both have their own 

strengths and specific relevance for certain areas of application (Creswell, 2014). The earlier emotional 

debates about the method have given way to a process of factual consideration and constructive 

engagement with the respective other approach (Hafsa, 2019). 

As a result of these developments, the mixed methods research approach has come to the fore as a 

research procedure. Mixed method research is defined as a method of research in which researchers 

mix or combine quantitative and qualitative techniques, methods, approaches, concepts or languages 

within a single study. This represents an attempt to combine the strengths of both approaches and to 

offset the relevant weaknesses (Creswell, 2014), (Ngulube, 2015), (Hafsa, 2019). The following Table 

5 shows a comparison of the qualitative and quantitative research methods based on different criteria. 

The content in Table 5 was summarized by Xavier University (Xavier Unversitiy Library , 2016) based 

on the work of Johnson and Lichtman (Johnson, et al., 2008), (Lichtman, 2006).  
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Criteria  Qualitative Research  Quantitative Research 

Purpose  Show possibilities, provide 

insights, find ideas 

Test hypotheses, look at cause & 

effect & make predictions. 

Group Studied  Smaller & not randomly selected Larger & randomly selected 

Variables  Study of the whole, not variables.  Specific variables studied 

Type of Data 

Collected  

Words, images, or objects Numbers and statistics 

Form of Data 

Collected  

Qualitative data such as open- 

ended responses, interviews, 

participant observations, field 

notes & reflections 

Quantitative data based on precise 

measurements using structured & 

validated data-collection 

instruments 

Type of Data 

Analysis  

Identify patterns, features, themes, 

common motifs, e.g. 

Identify statistical relationships 

Objectivity, 

subjectivity and 

representativeness  

Subjectivity is expected, 

psychological representativeness 

Objectivity is critical, 

statistical representativeness 

Results  Particular or specialized findings 

that are less generalizable 

More generalizable findings that 

can be applied to other 

populations 

Scientific Method  Exploratory or bottom–up, the 

researcher generates a new 

hypothesis from data collected 

Confirmatory or top-down, the 

researcher tests the hypothesis and 

theory with data 

View of Human 

Behaviour  

Dynamic, situational, social and 

personal 

Regular & predictable 

Most Common 

Research Objectives  

Explore, discover, & construct Describe, explain, & predict 

Focus  Wide-angle lens; examines the 

breadth and depth of phenomena.  

Narrow-angle lens; tests specific 

hypotheses. 

Final Report  Narrative report with contextual 

description and direct quotations 

from research participants 

Statistical report 

Table 5 - Qualitative versus quantitative research, summarized by (Xavier Unversitiy Library , 2016), 

originally taken from (Johnson, et al., 2008) and (Lichtman, 2006)  



    

  

52 4  Research Methodology 

 

 

It is often postulated that the mixed method approach should be viewed as an independent approach 

in addition to purely qualitative and quantitative methods, and that, just as with the other paradigms, 

it represents a superior approach under certain framework conditions (Ngulube, 2015).  

 

As described in the following in this section exploratory interviews are conducted as the qualitative 

research method within this thesis. Here, the focus is placed on an extensive and complete gathering 

of thematically-relevant information in the form of problem-oriented expert discussions. The 

qualitative research will then be followed by a subsequent quantitative evaluation in terms of 

laboratory tests and evaluations. In the sense of a mixed method approach, this leads to a sequential 

progression of the two methods. With regard to the underlying typology of MMR, the approach chosen 

corresponds to the procedure of conducting a qualitative study (QAL), which then forms the basis for 

a subsequent quantitative study (QUAN). This is also referred to as the QUAL=>QUAN approach 

(Ngulube, 2015). Figure 15 illustrates this. 

 

 

Figure 15 - Research design following the Mixed Method approach according to (Ngulube, 2015) 

 

The selection of the QAL=>QAN approach in this thesis was based on a number of considerations. 

Apart from the conviction of the general strengths of the approach, thematically-specific requirements, 

like the ability to sequentially combine a qualitative study with a quantitative test, also spoke in favour 

of the mixed method approach. Thematically-specific difficulties, include novelty and complexity, 

result in the requirement of specific expert knowledge and the emergence of a high degree of freedom 

amongst expert opinion. In order not to influence the respondents in their opinion regarding the most 

suitable method, the respondents had to be given the greatest possible freedom to contribute their own 

knowledge and experience. The high information requirement of the subject area as well as the goal 

of identifying personal experience, induced an exploratory and qualitative approach with problem-

centred interview techniques.  
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Another indicator for a qualitative approach was the fact that a large number of systems and software 

suites already exist in the field of predictive analytics and the higher-level discipline of machine 

learning (hereinafter referred to as tools). Due to the rapidly increasing popularity of predictive 

analytics in a variety of fields, such tools increasingly focus on user types hereinafter referred to as 

“business users”. Business users are not necessarily data science specialists who want to deal with the 

pure analytic methods and algorithms. Such users rather expect modern tools to feature comfortable 

and intuitive user interfaces, wizards and automated help functions which, for example, automatically 

recommend suitable methods on the basis of data or apply them implicitly (MacLennan, 2012). Results 

are processed by such tools automatically and presented in easy-to-understand forms, most often 

graphs. Business users are therefore often not aware of the predictive methods used under the bonnet 

of their tool, because they do not need this knowledge for their activities either. For this reason, it is 

necessary to determine the knowledge and practical experience of data science experts in this area by 

means of expert interviews. For the qualitative study within this thesis, business users were also 

admitted as experts, as they are not expected to have in-depth knowledge, but important information 

from practical application. 

However, Häder (2015) warned against using the results of qualitative studies as the sole basis for 

analysis or decisions. Especially in the case of novel and complex topics, as well as highly 

heterogeneous target groups, Häder (2015) points out that the results of qualitative explorative 

research are usually difficult to generalise. This problem opposes the justified interest in obtaining an 

adequate picture of a sufficiently large group of persons (Häder, 2015). Although qualitative methods 

cannot replace a representative survey, they are very important in providing information as an 

upstream instrument. Qualitative research is thus an indispensable part. Without the characteristics 

and advantages of qualitative studies, many research projects would not be feasible. Quantitative 

studies, which build on qualitative studies, concretise explorative results and subject them to 

verification by a more representative whole (Häder, 2015). 

It can be assumed that the so called group of business users usually cannot make reliable statements 

about the methods used, since the question of method selection does not usually arise with the tools 

used by this group. It can also be assumed that this group has little interest in the underlying methods, 

even if the selected methods are visible in their tool. In addition, Predictive Maintenance and streaming 

analytics is subject to further specific requirements and framework conditions, which are only known 

to experts in this industrial application field. From this argumentation, it can be deduced that a possibly 

planned subsequent quantitative study on a representative sample of well-trained experts would exceed 

the possibilities of this thesis due to the recruitment effort alone. How the experts interviewed in the 

course of the qualitative study were selected and recruited is described in section 5.1 of this thesis. 

How the content of the interviews was evaluated is described in detail in section 5.4. 

 

Within the MMR approach, a distinction is often made as to whether more weight is given to the 

qualitative or the quantitative part in the study design. Figure 16 shows a representation of the three 
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basic research methodologies as well as transitional forms between them (Johnson, et al., 2007). Here, 

the pure mixed approach represents the middle of the three basic variants. The purely qualitative and 

quantitative methods each form the opposite ends and are to be regarded as equivalent within a study 

design. Qualitative Mixed (or Qualitative Dominant) and Quantitative Mixed (or Quantitative 

Dominant) approaches are presented in between, as subtypes in the MMR study design. In these 

subtypes a certain method dominates the course of the study. In Qualitative Dominant Mixed Methods 

Research (QUAL+QUAN), a qualitative study forms the starting point. The subsequent quantitative 

study then provides supplementary data or confirms qualitative statements (Johnson, et al., 2007). 

 

Figure 16 - Three Major Research Paradigms, Including Subtypes, taken from (Johnson, et al., 2007) 

 

In this thesis, a qualitative study is conducted to find out the standard model in modern PdM 

applications for IIoT environments. A new model approach is then defined based on the standard 

model. In a subsequent quantitative study, the improvements in processing time of the new model are 

compared with the standard model. This quantitative study consists of measurements and evaluations 

in a laboratory environment. According to subtypes of MMR defined by Johnson et al. (2007), the 

study design of this thesis can be classified as Qualitative Dominant Mixed Methods Research 

(QUAL+QUAN). 

A further classification into subtypes of MMR methods is made according to the order in which 

qualitative and quantitative methods are used. With the term Convergent Parallel Mixed Methods, 

Chreswell (2014) and Hafsa (2019) define a study design in which qualitative and quantitative 

methods are mixed up in one study. In contrast, conducting separate and sequential studies are referred 

to as sequential MMR approaches. The term Exploratory Sequential Mixed Method Research is used 
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by Chreswell (2014) and Hafsa (2019) to describe a study design in which the opinions of the study 

participants are first ascertained using a qualitative study. The results of the qualitative study 

decisively define and structure the content of the subsequent quantitative study. Expert groups in 

particular are considered suitable as study participants. The results of the subsequent quantitative study 

is classified as often numerical in nature and taken from narrowly limited data, such as measurements 

and test results (Creswell, 2014), (Hafsa, 2019). The study design chosen in this thesis, using MMR 

in the form of a preceding qualitative expert study and a quantitative study based on it, is in line with 

the definition of Exploratory Sequential Mixed Method Research (ESMMR). 

4.3 Expert Interviews as a Qualitative Procedure 

According to Bogner et al. (2014), the expert interview is very popular as a qualitative survey tool 

within social research, even though, among the followers of qualitative research, it is not universally 

accepted as an independent acquisition method (Bogner, et al., 2014). This circumstance, inter alia 

makes it noticeable, that the expert interview is frequently mentioned only briefly, or not at all, in 

relevant basic literature. In particular, the analysis of such interviews is little dealt with. The literature 

discusses the question of how to gain appropriate access to the field and how to conduct an interview 

(Finkbeiner, 2016). 

One reason for this is the fact that the expert interviews are comparatively less theoretically and 

methodologically examined and supported. There are different definitions for the concept according 

to experts. Furthermore, there is criticism that the interviewer often fails to meet the criteria of 

openness and not influencing the experts (Bogner, et al., 2014). 

Some authors rate the slight methodological foundation as uncritical. Although methodological 

concepts can provide support for specific research projects, their specific implementation requires an 

adaptation of the methodological specifications to the respective research context (Kassner, et al., 

2002). This results in highly divergent interaction structures during the interview, which is why it is 

impossible to develop a committed model for expert interviews (Bogner, et al., 2014). Instead, there 

are a large number of targeted approaches, which must primarily be adapted to the research context 

(Kassner, et al., 2002). 

In the present case, the implementation of expert interviews was obvious for two reasons. On one 

hand, the aim of the qualitative marked research is to obtain a comprehensive picture of the opinions 

of experts. On the other hand, it is also important to gather different opinions and experiences from 

experts on Predictive Analytics and the specific requirements for methods in the application area of 

Predictive Maintenance (PdM) in IIoT environments. Furthermore, expert knowledge of the evaluation 

and validation of models is important. This knowledge will become very important for the subsequent 

evaluation. 
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In contrast to focus groups, the expert interviews allow different experts to be addressed in different 

ways and to develop guidelines from interview to interview based on feedback. The basic idea of 

expert interviews in qualitative research is to determine an idea or overall picture from the knowledge 

of interviewed experts, their opinions and hints. The expert interview is therefore not an instrument to 

develop generalisable statements (Flick, et al., 2004 S. 203-206). For this reason, small samples are 

also sufficient. The moment a repetition of a statement occurs in the form of an analogous statement, 

this is already sufficient for the formation of an idea or an overall picture. Group sizes of less than ten 

participants are common in expert interviews (Newington, et al., 2014). Apart from concerns regarding 

to the incompatibility of the various experts, the comparatively reduced organisational effort 

demonstrated the benefit of conducting expert interviews. In the study conducted as part of this thesis, 

a total of seven experts were interviewed, five of them from the group of experts and two from the 

group of professionals. 

According to the convergent parallel mixed-methods research design chosen in this thesis, the 

qualitative study is the first step of the studies conducted separately and consecutively. 

4.4 Experimental Study as a Quantitative Procedure 

In the sections 4.1 and 4.2, the research methodology MMR and its subtype ESMMR were selected as 

the underlying research design. The qualitative study in chapter 5 develops a picture of how current 

PdM applications in IIoT environments are structured and which of the models can be called the 

standard. Building on the results of the qualitative study, a quantitative study will be conducted. Based 

on the standard model selected, a new model approach will be developed within the framework of this 

thesis. The aim of the new model approach is to improve the runtime behaviour and its suitability for 

time-critical PdM applications compared to the model defined as standard. The quantitative study 

serves to prove the potential for improvement achieved by the new model. Based on the research 

question RQ4 “How can a new type of neural network be constructed so that it achieves measurably 

better runtime behaviour with comparable quality of the results achieved compared to the current 

standard model?” (see section 1.2) two hypothesis are formulated to be proven by quantitative marked 

research: 

• Hypothesis 1: If the input data of a neural cell is divided into several simpler sub-layers, the 

neural cell can process data faster overall despite the resulting overhead and with comparable 

quality of results. 

• Hypothesis 2: If a neural cell has a deeper inner structure, this leads to less complex networks. 

 

In order to be able to carry out a quantitative evaluation, information must either be directly available 

numerically or collected in such a way that it can be converted into a numerical representation. Already 

in the study design, care must be taken that all aspects that are to be part of the quantitative evaluation 
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fulfil this criterion. Possible data collection methods are observations, measurements, self-report 

procedures (e.g. questionnaires) or tests. It is also recommended to use similar studies and their results 

as a comparison in order to avoid errors. The study design should at least answer the following 

questions: which collection method is used, how is the selected collection method applied and how 

are the results validated (Duckett, 2021). 

4.4.1 Collection Method used 

In this thesis, a newly developed model approach of an artificial neural network (hereinafter referred 

to as new Model) is to be compared with the model approach considered as standard (hereinafter 

referred to as Standard Model). The aim is to prove that the newly developed model requires shorter 

runtimes than the standard model. The new model should achieve the same level of quality of 

outcomes as the standard model. This is to be proven with the quantitative study. It can be clearly 

deduced that measurements are chosen as data collection method. The values to be measured are the 

runtimes and the achieved level of quality of outcomes of the two models to be compared. The exact 

definition of quality of outcomes of a model will be done in the definition of the experimental study 

in chapter 6. 

4.4.2 Application of the Collection Method 

Measuring the runtimes of software does not make any special demands on the measurement setup. 

The software components used and the underlying operating system provide established instruments 

for this purpose, such as time stamps. Ultimately, start and end times must be recorded under always 

the same conditions and the resulting runtime calculated. 

4.4.3 Validation and Comparability of Results 

The data collection method (measurements) and its application (time measurement via timestamp) are 

thus defined. Now it remains to be defined how the measured results are validated. Duckett (2021) 

summarizes the statements regarding the term validity made by Shadish et al. (2002) as follows: "We 

use the term validity to refer to the immediate truth of a conclusion. When we say that something is 

valid, we are making a judgement about the extent to which the relevant evidence supports that 

conclusion as true or correct." (Duckett, 2021 S. 457ff). The validity of a study and its results can be 

divided into the groups of internal validity, external validity, statistical conclusion validity and 

construct validity. Internal validity of a study refers to the validity of conclusions based on causal 

relationships between the experiment and its outcome. External validity of studies refers to the 

generalisability of the results of a study. This is often justified by their cause-effect relationship. 

Statistical conclusion validity refers to the validity of statements made about the results of an 

experiment. The construct validity of a study often refers to a psychological process or a characteristic 
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of individual or group-related differences (Duckett, 2021). Based on this typification, the quantitative 

study carried out in the context of this thesis can be assigned to the type of statistical conclusion 

validity. 

 

In the field of Deep Learning with artificial neural networks, no approach exists for measurement, 

evaluation and benchmarking which can be classified as standard and generally valid (Märtens, et al., 

2019). In the case of classifications (binary classification is used in the laboratory test in this work) 

cross-validation methods are mainly used to evaluate performance, predictive ability and model 

accuracy. Cross-validation methods apply a so-called Train-Test-Split, in which data is divided into 

subsets for training and testing. There are various strategies for the split, such as simple-, stratified-, 

group-, leave-one-out- or n-fold-cross-validation, subsampling, the holdout-method and many more 

(Krawczyk, et al., 2015). However, cross-validation is only possible if validation data is available 

containing the classification results. In many projects, however, this is not the case, which is why 

synthetically generated data is often used. The vast majority of known and publicly available studies 

ultimately rely on the subjective judgement of the respective experts. Typical expert statements are 

"the model performed well under the conditions...", or "in many cases model A outperformed model 

B". There are very few attempts to define standards for the comparability and benchmarking of Deep 

Learning projects with artificial neural networks. One example is the OpenML Curated Classification 

Benchmarking Suite 2018 (OpenML-CC18). This platform initially started as an exchange platform 

where scientists can upload and share their projects (Bischl, et al., 2021 S. 10). The OpenML-CC18 

platform was described by Bischl et al. (2021) as the first practical usable benchmarking suite (Bischl, 

et al., 2021 S. 1). There are no general valid standards for the comparability and benchmarking of 

Deep Learning projects with artificial neural networks (Krawczyk, et al., 2015), (Chung, et al., 2014), 

(Heng, et al., 2009). Heng et al. (2009) consider it one of the challenges of Deep Learning that must 

be overcome in order to be able to compare and evaluate different methods at all (Heng, et al., 2009). 

On of the main hurdles is to find an appropriate layer configuration (in the following referred to as 

model setup) and the fact that an evaluation can only be made specifically for a certain use case with 

its specific data (Heng, et al., 2009). There are no fixed rules for the model selection and the setup of 

the dimensions of a network and its hyperparameters. According to the current state of the art, this is 

done empirically by the expert. Dimensions and hyperparameters, such as the learning rate, are simply 

determined through systematic trial and error and the experience of the data scientist (Märtens, et al., 

2019). 

In the experimental study defined here it is meant to use cross validation as validation method and a 

synthetically generated dataset comprising sufficient classification data. For each of the two model 

types to be compared a neural network with a layer configuration that is considered suitable has to be 

defined. The layer configuration determines the dimension of the inner layers of the neural network 

using either the newly developed model or the standard model as cells. In machine learning, it is state 

of the art that layer configurations are defined empirically by trial and error (Jeyakumar, et al., 2020). 
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Since it will probably not be possible to find a layer configuration that provides exactly the same 

conditions for both models, measurements should be carried out with several different configurations. 

In addition, several runs are to be carried out for each selected configuration. This should compensate 

for disturbing influences and identify outliers. The minimum required system processes of the 

operating system and the hardware of the test computer in particular are to be mentioned as disturbing 

influences. 

The data used are decisive for the results of the study. Only with comprehensive and sufficiently 

classified data with regard to the outcome class can meaningful and robust results be achieved. As 

explained, data from industrial projects are hardly available and usually anonymised. Anonymising 

data means that it is no longer possible to draw conclusions about the quality of the classifications 

made. However, this is not considered a disadvantage for the study in this thesis. If the classification 

data do not correspond to the real conditions of the underlying plant or machine under consideration, 

they are still suitable for the relative model comparison. The use of a synthetically generated and 

anonymised data set and the associated lack of verifiability of the classification information given in 

data therefore does not impair the validity of this study. Another requirement of the study design is 

random allocation to experimental and control groups. In the present study, this is the division of data 

into test and validation datasets. This should be taken into account when selecting data for this study. 

 

In order to obtain comparable values for the quality of the results achieved, the respective expected 

result of a processing is required. The data set used for the tests must therefore be classified with regard 

to the expected values. If the expected result is known, the deviation from the respective result of a 

model can be easily calculated. In the quantitative study of this thesis, a binary classification task is to 

be solved. In PdM, the result of a processing step is typically assigned to one of the two time groups 

before or equal to a certain time and after a certain time. In section 2.2 of this thesis, the Early 

Warning Point (Hagenberg, 2017) and the Best time to do maintenance (Peng, et al., 2010) were 

described as such times in the context of different maintenance strategies. 

The two models compared in this thesis provide as a class or type of result that is a numerical value, 

indicating the number of cycles remaining until failure. This class of result is assigned to one of the 

two result subclasses RUL <= 30 cycles and RUL > 30 cycles. The quality of the results is to be 

measured in terms of classification accuracy. In the field of machine learning, classification accuracy 

refers to a special type of quality measurement of classification tasks. Classification accuracy is 

calculated as the percentage of predictions made correctly by the model in relation to the total number 

of predictions made (Bu, et al., 2017), (Pranckevicius, et al., 2017). 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
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However, there is also criticism of using classification accuracy alone as a percentage value for quality. 

In binary classifications, an evaluation of the classification results according to the four classes True 

Positive (TP), True Negative (TN), False Positive (FP) and False Negative (FN) is also common. 

Positive stands for the positive class defined in the binary classification (1), negative for the negative 

class (0). True and false indicate whether the respective class was predicted correctly or not. In this 

form, the prediction made by the model is not only evaluated as correct or incorrect. It is also 

determined in which of the two result classes how many correct or incorrect predictions lie. The 

evaluation in this procedure is usually carried out using a confusion matrix (Sokolova, et al., 2009) 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(TP + TN)

(TP + FP + FN + TN)
 

 

In addition to accuracy, other key figures such as precision can be determined with this form of 

evaluation. Precision is the number of TP instances in relation to all positively labelled instances: 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 

However, determining the accuracy according to TP, TN, FP, FN only offers a better evaluation of the 

results if the result classes are unevenly distributed in data (no balanced dataset) and if the negative 

results FP and FN cause different effects in the underlying use case. Otherwise, the determination of 

the classification accuracy in the form of the percentage value is sufficient for a model evaluation 

(Sokolova, et al., 2009), (Bu, et al., 2017), (Pranckevicius, et al., 2017). 

In this thesis, a standard model is to be compared with a newly developed model. Initially, we will 

only compare the accuracy of the predictions made by the models. The effect of a FP or FN prediction 

is not the subject of the investigation and depends on the application and the respective data. For the 

investigations within the scope of this thesis, therefore, only the simple classification accuracy in the 

form of the percentage of predictions made correctly by the model in relation to the total number of 

predictions made is used and considered to be a sufficiently comparable measure for the model 

comparison and evaluation. In the following, the term accuracy or classification accuracy will 

exclusively be used to refer to the simple classification accuracy of the binary classification task 

determined as a percentage. 

Why the way in which the measurements of runtime and accuracy are considered valid and comparable 

under the conditions of the study design has thus been explained. It should be mentioned that the 

quantitative study aims to compare the newly developed model with the standard model. The 

comparison of the two models therefore has only relative significance. Absolute or generally valid 

values are not achieved within the framework of the study conducted in this thesis. When designing 

the quantitative study, it is therefore a priority to ensure that all comparisons are carried out under the 

same conditions (data, study setup, environment).  
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5 PdM in IIoT- a qualitative primary Research 

This chapter describes the definition, preparation, implementation and evaluation of the qualitative 

study. The following steps of the study are described in detail below: Selection of Experts, creation of 

the Interview Guidelines, conducting the Interviews, evaluation of the Interviews and the summary of 

the results and implications. The Appendix chapter A contains all materials used for the preparation 

and implementation of the study. 

The aim of this qualitative study is to obtain a comprehensive picture of predictive systems and PdM 

in the field of IIoT. The currently most relevant neural models for predictive systems and their 

application and framework conditions are to be found out on the basis of expert opinions. The results 

of the qualitative study form the basis for the further steps in this thesis. A new type of model will be 

developed on the basis of the insights and results gained here. This new type of model is intended to 

achieve increased performance at runtime, with the accuracy of the results being as comparable as 

possible. In the sense of the selected MMR approach and its subcategory Qualitative Dominant Mixed 

Methods Research (QUAL+QUAN) and Exploratory Sequential Mixed Method Research, proof of 

the effect of the novel model approach will be provided in the form of a subsequent quantitative study. 

5.1 Selection of Experts 

The selection of experts is highly relevant for qualitative surveys (Glende, et al., 2011). First of all, it 

is important to clarify who can be regarded as an expert within the framework of the respective 

research context. The most extensive definition of experts is based on the evidence that every human 

being is an expert in coping with his individual daily life (Bogner, et al., 2014). In this sense, for 

example, chronically ill patients can be regarded as experts on their disease since they have a wealth 

of experience (Silverman, 2016). According to Bogner et al. (2014), an expert has three different types 

of knowledge: 

• Technical knowledge in the sense of specialist knowledge 

• Process knowledge, which is acquired from practical experience in the context of his 

professional activities 

• Interpretative knowledge in the sense of interpretation and explanation patterns 

(Bogner, et al., 2014) 

Experts can be the immediate target group of the study or represent a complementary action unit for 

the target group. In the latter case, the experts have the function of providing information on the action 

context of the affected target group (Finkbeiner, 2016). They may also refer to other relevant 

interlocutors with similar or competing opinions and provide contacts. Such experts also serve as 

nucleation points of insider knowledge and are interviewed in place of a large number of actors to be 
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questioned (Bogner, et al., 2014). In this thesis, the persons described as ”business users” should have 

represented the complimentary user group for data scientists. However, business users do not meet the 

listed criteria of an expert. Therefore, in the present study, persons generally designated as experts 

were divided into two target groups, described in the following. Although those two target groups are 

less complementary to each other, they still have different views on the problem and meet the 

requirements of an expert. 

Experts from the field of research and teaching functioned as one target group of experts in the survey. 

To distinguish these persons linguistically, this target group is referred to as “specialists” in the present 

study. Persons of this target group deal intensively with the relevant topics in this area. This target 

group is employed at colleges and universities, scientific institutes and research facilities. The target 

group therefore deals with the topic from a more theoretical and scientific point of view. Usually, 

practical experience is also gained in the context of application-oriented projects and project co-

operations with companies. 

The individual persons of this target group have different focal points within the relevant knowledge 

area, which usually result from their professional background. Specialists with a focus on data science 

were able to provide comprehensive information on predictive analytics, methods and algorithms. 

Specialists with an IT background have provided the most basic knowledge on streaming analytics 

and real-time systems. Specialists, whose technical background is in mechanical engineering and 

systems engineering, in particular provided knowledge about Predictive Maintenance processes and 

approaches, as well as about general questions such as the relevance of real-time for maintenance 

processes. All in all, all specialists demonstrated extensive expertise. 

When sampling specialists, various criteria were taken into consideration. Due to the limited time 

frame, willingness to participate and time availability in terms of "convenience sampling" were the 

decisive criteria (Creswell, 2014). Conducting interviews by means of a web conference facilitated 

scheduling. In addition, web conferencing eliminated possible disadvantages from the strong 

geographic distribution of the specialists. For the people who were assigned to the target group of 

professionals, it was assumed that they are used to participating in web conferences due to their 

professional activities and that they have the necessary equipment. Therefore, web conferences should 

not represent an additional barrier for these individuals. 

Furthermore, attention was given to ensure, that interviewed specialists had already published 

scientific articles in the relevant area and therefore have appeared as experts. 

In the survey, a second target group is represented by practising experts. By differentiation, persons 

in this target group were referred to as "professionals" in this study. People in this target group also 

deal intensively with the relevant topics in this area. This target group is employed in companies and 

is actively involved in the implementation of real projects. Projects can be carried out both internally 

and on behalf of customers (data science consultant). The target group therefore deals with the topic 

from a more practical and application-oriented perspective. 
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As with the specialists, the professionals focus on various key subjects within the relevant knowledge 

area and possess comprehensive knowledge in the entire subject area. The sampling of the 

professionals also had to take into account the criteria of limited time frame, willingness to participate 

and availability as well as the strong geographic distribution of the participants. The interviews were 

also performed via web conference.  

The existence of the required knowledge and practical experience was initially accepted on the basis 

of the position of the respective person within their company. In addition, the interview guidelines 

adapted for this target group included additional questions to assess their knowledge and practical 

experience. 

For the recruitment of the experts, the characteristics of the two groups of experts already listed in this 

section were used. For the group "specialists" it was defined that they typically work in the field of 

research and teaching. Their typical place of work is therefore colleges, universities, scientific 

institutes and research facilities. The group of "professionals", on the other hand, typically work as 

data scientists in IT departments of private companies. The entire recruitment of experts for the 

qualitative study was done through the author's network and his contacts with people in research 

institutions and private companies. 

5.2 Interview Guidelines 

The complete interview guide could be found in Appendix A.1. In the following the considerations 

that led to this interview guide are explained. 

Usually, expert interviews are conducted as guideline interviews and represent a partially structured 

interview (Silverman, 2016). In this type of interview, the pre-formulated questions of the interview 

guidelines are posed in an arbitrary order. Subjects arising during the individual interview process can 

be recorded at any time and explored in more detail if necessary (Atteslander, et al., 2010). Because 

of their depth, the wide range of topics covered and the comparatively minor influence of the 

interviewee through the use of unstructured or semi-structured questions, guideline interviews provide 

an abundance of valid revelations and valuable information (Silverman, 2016). 

One single interview guideline with two slightly different strands was prepared as the basis for 

conducting the expert interviews. Specifically, additional questions were introduced for the 

professionals target group, which were intended to question the knowledge and the practical 

experience of the interviewee. The complete guideline questionnaire can be found in the Appendix of 

this thesis. 

The careful design of the interview guide served to provide important intellectual support for the 

possible direction of the interview. Furthermore, a properly elaborated interview guideline is important 

for the creation of the complex interaction processes between interviewer and interviewee (Lietz, 

2010). 
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At the outset, the questionnaires contain simple questions concerning technical background, 

knowledge and experience in the topic area. This is followed by questions about the attitudes and 

opinions of the interviewee regarding the selection of suitable methods under different factors, as well 

as their assessment of the relevance of certain topics in the subject area. Basically, the questions asked 

develop from general to specific and are assigned to three logical blocks. Personal data gathered from 

interviewers included the stated job title and the self-chosen classification as a data scientist, IT 

specialist or technical specialist. This happened at the end of the survey. 

In the literature there are many references to typical challenges in the formulation of appropriate 

questions (Nunan, et al., 2013). According to the references, a simple choice of words was used 

without foreign-language expressions or highly abstract terms. The questions were formulated 

neutrally, so as not to provoke any specific answers. “Yes”-“No” questions were not used, not even as 

filter questions. Open questions were preferably used to motivate respondents towards free, 

uninfluenced narrative. In this way, it was intended that professionals, in particular, would provide 

information about habitual actions from daily life. Specific technical questions were formulated as 

concisely as possible. 

5.3 Conducting the Interviews 

This section describes how the interviews were practically conducted. 

Based on many degrees of freedom, guideline-based surveys place high demands on the interviewer 

who, depending on the direction of the interview, has to decide ad-hoc on the order of the questions 

and, if appropriate, about their omission. It is also the responsibility of the interviewer to decide when 

to return to the guidelines after any deviation. This requires a high degree of sensitivity to the 

respective interview process and to the interviewee. In addition, the interviewer is always faced with 

the dilemma of balancing between time constraints and the generally, relatively high interest in 

information (Creswell, 2014). 

As a general survey strategy, an attitude of friendly assurance has established itself as a normal form 

to be aimed at (Atteslander, et al., 2010). Supporting comments are also permitted, while the 

interviewer refrains from expressions of opinion in order not to influence the interviewees 

(Atteslander, et al., 2010). The creation of a pleasant atmosphere, corresponding to that of an everyday 

conversation, is recommended instead of the interview-type character of an artificial interrogation 

(Deppermann, 2013). Since the interviews were carried out via web conference, it was always ensured 

that the interviewer's camera was switched on and that the interviewee can see the interviewer 

throughout the conversation. The interviewee, on the other hand, was free to turn his camera on or off. 

In addition, the interview was not started directly, instead the conversation was initiated with small 

talk. As the interviewees were accustomed to taking part in web conferences in their professional life, 

it is assumed that this form of communication does not introduce factors that influence the 
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conversation. For persons who never or rarely participate in web conferences, this new situation would 

have to be taken into account during the interview. 

Despite all efforts, distortions and influences during the interview cannot be completely ruled out. 

Therefore, critical reflection, systematic control, and transparent discussion of such effects are 

required. Interference effects are known, for example, in surveys of specific age groups or target 

groups with similar characteristics and usually occur independently of the type of questioning. In 

addition, problems caused by expert and technical vocabulary, the frequent lack of imagination, 

diminishing capacity to concentrate, the feeling of being overwhelmed, incipient time pressure or 

strong digressions are often amplified by the open nature of general questioning (De Vaus, 2013). In 

the present study, the target group consisted exclusively of experts who are constantly dealing 

intensively with the subject area in their professional activities and are also accustomed to situations 

of intensive conversation via web conference. It is therefore assumed, that no relevant distortions and 

influencing factors needed to be considered during the preparation, execution or evaluation of the 

interviews. 

When conducting interviews, it is useful to reflect upon the interview guidelines after each individual 

survey. In essence, this only led to minor content-related changes and to the change in the order of two 

questions. 

5.4 Evaluation of the Interviews 

This section describes how the results of the interviews were elaborated on the basis of the information 

given by the experts. This section gives only a summary. The steps of evaluation are described in all 

details in Appendix A.2. 

As already described, there are few recommendations in literature with regard to the systematic 

evaluation and generation of information from expert interviews. Finkbeiner (2016) offers a 

recommendation for a model for the analytical evaluation of content. The order of content within 

individual interviews in this model is irrelevant for the evaluation. Instead, the emphasis is on the 

search for similar thematic units (Finkbeiner, 2016). The approach in this study was based on this. 

First, a text document with relevant thematic blocks was prepared on the basis of the questionnaire, 

before the interviews were conducted. If new issues arose during the interviews, these were 

supplemented accordingly in the document. 

All statements of the experts interviewed were recorded in writing by the Interviewer in the form of a 

protocol. This protocol was the basis for the subsequent evaluation. It was possible to make audio 

recordings of all interviews. All interviewed experts gave their consent to this in advance of the 

interview. The audio recordings were evaluated immediately after each interview and only served to 

verify and, if necessary, complete the interviewer's protocol. The audio recordings were thus only a 

tool to ensure that all statements made by the expert in the interview were completely and correctly 
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recorded in writing. The use of audio recordings only as a supporting element is often used in expert 

interviews (Al-Yateem, 2012). For this reason, no audio transcription was carried out for the audio 

recordings. The verification of the interview transcript on the basis of the audio recordings took the 

form of the interviewer listening to the audio recordings several times after the interview and, if 

necessary, adjusting the interview protocol accordingly. In accordance with the conditions under 

which the experts had agreed to the audio recording, the audio recordings were deleted after 

verification by the interviewer. 

Important passages from the interviews could be paraphrased or quoted verbatim and assigned to the 

previously defined thematic blocks, and transcribed. The respective author was colour coded. For time 

reasons a complete transcription was waived. A summary of the expert interviews and the expert 

specific answers can be found in the Appendix (see section A.2). 

After this step had been completed for all interviews, the text passages were reorganized and reduced 

to their essential components through the abstraction of common motifs. The originator of the 

respective statements remained identifiable (see section A.2.1). Based on this, superordinate 

statements or findings on the respective thematic blocks were collected in note form (see section 

A.2.2). These superordinate statements formed the outline of the following evaluation section, in 

which the respective findings were formulated in detail. 

5.5 Results and Implications 

This section summarizes the results and implications taken from the study. In the following the stated 

results and implications are ordered according to the topics indicated by the questions of the interviews 

guide. The interview guide can be found in Appendix A.1. The cumulative results of the expert 

interviews and their detailed evaluation can be found in section A.2. 

Regarding the main subjects of concern in the area of predictive analytics, stream processing and IIoT, 

the experts opinion can be summarizes as following. It was stated by nearly all experts, that the current 

projects using neural networks are more likely to be the first steps in the form of simple systems. 

Contrary to the external impression which is obtained from the topics I4.0 und IIoT, industrial projects 

are often only at the beginning. In most projects online data are not available yet. The main reason for 

this is the not adequately developed IT infrastructure in many areas. In addition to this, industrial 

customers are often missing an exact idea of what knowledge is contained in their data and how to 

explore and utilize it. 

In current maintenance systems, the goal is usually the detection of errors and the rapid initiation of 

measures. This is often based on Condition Monitoring (CBM) and Complex Event Processing (CEP). 

In addition, data analytics is also carried out with the aim of determining optimization potentials in 

the plants. 
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Regarding the significance of time-criticality and stream processing as well as the methods and 

algorithms intended to be optimal for data streams and real-time processing, the experts opinion can 

be summarizes as following. The experts agree that the current situation, which has been described 

with reference to the previous question, will change rapidly with the ongoing establishment of I4.0 

and IoT in the industrial sector (IIoT). Predictive and highly adaptive online systems that can process 

data streams in real-time will be standard in the opinion of experts in the near future. Predictive 

Maintenance (PdM) will become an important application in the area of Predictive Analytics. 

Autonomous transport and conveyor systems as well as self-organizing production plants require 

intensive communication with people (Human to Machine Communication H2M, Machine to Human 

Communication M2H) and machines (Machine to Machine Communication M2M). With increasing 

use of highly complex sensor technology and high sophisticated image processing and pattern 

perception, the amount of data increases significantly. The statements of the groups “Specialists” and 

“Professionals”, defined in the underlying study design (section 5.1) were almost identical in this 

question. 

 

Consensus opinion of the experts was that in near future the ability of highly adaptive online systems 

to process data streams in some kind of real-time will be a key factor. Because of the not yet been 

sufficiently developed communication infrastructure in industrial environments and the lack of 

experience in the field of Predictive Analytics, this is not yet the focus. Due to the rapidly advancing 

development in the area of I4.0 and IIOT, time-sensitive systems will be the normal case in the near 

future. 

According to the experts, in current projects with time-related performance requirements mostly 

hardware optimization and reduction techniques to reduce the amount of data to be processed are used. 

The design of algorithms and models do not focus on optimisation in terms of time-related 

performance and parallel processing. Here, there is still a lack of extensive knowledge and experience 

to make algorithms faster and less resource-intensive. It was also mentioned that the adaptive learning 

process must also happen with high performance and a minimum of computational resources needed. 

There were no group-specific differences in the statements of the experts from the "Specialists" and 

"Professionals" groups in the question of the high relevance of time-related performance and stream 

processing capability. 

 

The question which methods and algorithms are used most frequently by the experts has largely been 

answered in a consistent manner by the fact that this depends on the application case. Therefore, no 

general statements can be made. Certain methods and algorithms are, in principle, better or worse 

suited for a particular application. However, the real applications are usually more complex, no general 

rule can be derived from this. Usually, in real applications, several methods are combined to achieve 

specific properties. 

http://www.linguee.de/englisch-deutsch/uebersetzung/consensus+view.html
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Some experts commented that they select algorithms according to how easy they are to use and how 

well their internal operations are understandable. The experts are aware of the fact that this does not 

lead to optimal results. Many real industrial projects are still at an early stage. Therefore, it is mostly 

about carving out the knowledge contained in data and developing first, simple prediction systems. As 

a popular simple algorithm, PCA has often been called, including its combination with reduction 

techniques such as sliding windows (SWPCA). 

Methods from the field of Machine Learning (ML) and Artificial Intelligence (AI) are increasingly 

gaining acceptance, according to the opinion of the surveyed experts. Additionally, the opinion of the 

majority of the surveyed experts is that Deep Learning represents the key future procedures. An 

important feature of ANNs is the ability to create models with incomplete and partial non-existent 

expert knowledge. ANNs are therefore also suitable for analysing unknown data in an evaluation phase 

and for determining suitable methods. By permanent learning, adaptive systems are achieved, whose 

quality can be enriched with additional expert knowledge. Due to their structure, neural networks are 

also preferable for parallel and distributed processing. However, ANNs are rapidly become very 

complex and processor intensive. The combination with reduction techniques and filters may be 

advisable. 

According to the expert opinions, further knowledge about the application of neural networks in 

environments with time-relevant performance requirements and on data streams would be required. In 

particular, models are needed that can deal with long-term dependencies in data without creating a 

constantly growing demand for resources. Simple algorithms such as PCA and its know variants (e.g. 

RPCA, EWPCA, KPCA) showing competitive performance but they are not able to handle long term 

dependencies. LSTM was mentioned by nearly all of the experts as the de facto standard neural 

network model in PdM applications. In the statements on the algorithms used, there were no 

fundamental differences between the surveyed groups “Specialist” and “Professionals”. 

Regarding the question about the tools used, the experts were divided in two groups, with only one of 

the surveyed experts being assigned to the second group. The first group deals intensively with the 

underlying methods and algorithms. This group develops PdM systems individually for every 

application. For the realization of the algorithms and for mathematical functions mostly open-source 

libraries are used. Data science tools are only used by this group to visualize data at the beginning of 

the project and to determine initial findings from data. The second group uses high-level data science 

tools that severely limit or even obscure the choice of methods as well as all optimisation steps for the 

user. This second group could therefore not make any statement on the suitability of the different 

methods. It was established that the tool used (in the specific case ThingWorx Analyse of the company 

PTC Inc.) decisively uses ANNs for predictions. Since only one of the seven experts intensively uses 

tools, no conclusions can be drawn regarding the groups “Specialists” and ”Professionals”, defined in 

the underlying student design (section 5.1). 
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Regarding the question about the most important goals of Predictive Maintenance, the experts opinion 

can be summarizes as following. As the main aim of PdM applications, the experts have always 

referred to the reduction of costs (Life-Cycle-Cost and Total Cost of Ownership). From the experts 

opinion it is clear, that unscheduled failures cause the highest costs. The prediction of potential failures 

is therefore central to a PdM application. The exact strategy of a PdM system depends strongly on the 

application case and cannot generally be answered. Other objectives of PdM systems are to ensure 

reliable production, maximize asset utilization to optimise yields and minimize reject rate. Group 

specific differences in the statements of the experts from the groups “Specialists” and “Professionals” 

did not exist in the question of the objectives of a PdM system. 

In the interview guide the topic of complexity was divided into four questions. One general question 

and three specific questions about the different complexity factors dimensionality, evolving data and 

non-linearity (see Appendix A.1). Regarding the question about the significance of complexity factors 

the experts stated the following. In general, all the experts corresponded that the influence of the 

complexity factors known from data streams are massive. Since many PdM systems are not well 

developed yet, complexity factors are usually ignored. The resulting errors must be tolerated. The use 

of reduction techniques and filters was mentioned in view of the fact that complexity is largely a result 

of volume and speed. Dimensionality is not a relevant factor, as PdM systems usually only contain 

one-dimensional data (sensor data). With the use of reduction techniques, the required response times 

are still achieved in classical systems having no special real-time capabilities. However, the actual 

problem, the lack of real-time capability of the algorithms, is not solved. According to the concurring 

opinion of the experts, PdM systems have to be scalable and elastic to high loads in the future. 

In the opinion of the experts, the automatic recognition of concept drifts is not performed in current 

PdM systems. Non-linear data represent a known complexity factor in PdM systems. The modelling 

of non-linear relationships using physical models can be very complex. Therefore, this complexity is 

also mostly ignored in such projects. Non-linear regions are blanked, or simply linearized. If models 

from the field of neural networks are used, the nonlinearity is learned by the neural network, provided 

that sufficient training data is available. These statements are in line with the characteristics of the 

various complexities listed in section 2.5 as a basis and their effects on the area of application dealt 

with in this thesis. 

Regarding the questions about the significance of historical data the opinions of the experts can be 

summarized as following. According to the expert opinions, the availability of historical data is very 

important. The historical data, if available and valid, contains the entire knowledge about the industrial 

plant. Historical data is usually available in real-world projects. However, this is often faulty and has 

little significance. In particular, there is usually a lack of explicit error cases (unbalanced data). A 

critical consideration of historical data is therefore advisable. All interviewed experts thought that 

historical data should also be included in predictions. Historical data are usually processed 

incrementally in order to keep the required computing power to a minimum. However, incremental 
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processing can lead to a loss of quality and to errors. According to the experts, the processing of 

historical raw data is desirable. Adaptive models should ideally be trained with historical raw data. 

Regarding the questions about adaptive learning the opinions of the experts can be summarized as 

following. Adaptive models and adaptive learning were described as an essential property by all 

interviewed experts. In PdM systems very complex structures have to be modelled. The models, which 

are mostly simple in their initial stages, have to be constantly improved by permanent learning and 

adaptation. Only in this way valid models can be developed. A permanent learning and adaptation 

process is complex in implementation and requires high computing power. In online systems, models 

must automatically adapt themselves permanently. Automatic learning and adaptation processes must 

be scalable and react elastic. Automatic adaptation requires methods from the field of Machine 

Learning (ML), but also expert knowledge. 

Regarding the question about the validation of results from PdM systems, the interviewed experts 

agreed, that no generally valid validation methods and benchmarks exist. Because of the very different 

application cases, no general procedures can be defined according to expert opinions. In real projects, 

a subjective evaluation of the results by experts is always carried out. For an evaluation, the real data 

is usually not sufficient since in real world cases the number of representative error cases is usually 

insufficient. 

Table 6 summarises the textual results and statements once again. The column "Group-specific 

differences" indicates whether there are differences in the statements of the two groups Specialists and 

Professionals. 

 

Topic Main statements 

Group-

specific 

differences 

Approaches for PdM 

• Use of neural networks is not very common  

• Most projects are in the initial phase 

• Despite IIoT, industrial projects are often only at the 

beginning 

• Online data is often not available 

• Adequately developed IT infrastructure is often 

missing 

• Exact idea of what knowledge is contained in data 

and how to explore and utilize it is missing 

 

No 

Predictive Methods 

• Often based on CBM and CEP 

• Data analytics is also carried out to determining 

optimization potentials 

 

No 

Processing Data Streams 

• Systems must be able to process data streams in 

defined time/resources 

• Situation is changing with the ongoing establishment 

of I4.0 and IIoT 

No 



    

  

5  PdM in IIoT- a qualitative primary Research 71 

 

 

 

 

 

• Predictive and highly adaptive online systems will 

become standard  

• The use of neural networks is becoming the standard 

• Highly complex sensor technology will increase the 

amount of data significantly 

 

Time criticality 

• Highly adaptive online systems on data streams will 

become a key factor 

• In I4.0 and IIOT, time-sensitive systems will be the 

normal case in the near future 

• Hardware optimization and reduction techniques are 

the current standard 

• No algorithms focusing on optimisation in terms of 

time-related performance and parallel processing yet 

• Adaptive learning need high performance systems 

 

No 

Methods and Algorithms 

• Strongly depends on the application case 

• No general statements can be made 

• Algorithms often selected according to how easy and 

understandable they are to use 

• Machine Learning is increasingly gaining 

acceptance 

• Deep Learning represents the key future approach 

• Models needed that can deal with long-term 

dependencies in data without creating a constantly 

growing demand for resources 

• LSTM is the de facto standard of neural networks in 

PdM applications 

 

No 

Tools used 

Group Specialists: 

• Deal intensively with the underlying methods and 

algorithms 

• Develop PdM systems individually for every 

application 

• Mostly open-source libraries are used 

• Data science tools only used to visualize data and 

determine initial findings 

 

Group Professionals: 

• Intensive use of high-level data science tools 

 

Yes 

Most important goals of 

Predictive Maintenance 

• Reduction of costs (Life-Cycle-Cost, Total Cost of 

Ownership) 

• Unscheduled failures cause the highest costs 

• Prediction of potential failures is central 

• Strategy of a PdM system depends strongly on the 

application case and cannot generally be answered 

 

No 

Complexity 

• Influence of the complexity factors known from data 

streams are massive 

• Largely a result of volume and speed 

No 
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• Since many PdM systems are not well developed 

yet, complexity factors are usually ignored 

• Use of reduction techniques and filters  

• Lack of real-time capability of the algorithms 

 

Historical Data 

• Availability of historical data is very important 

• Contains the entire knowledge about the industrial 

plant 

• Often faulty 

• Normally there is a lack of explicit error cases no 

group-specific differences 

 

No 

Adaptive Learning 

• Essential property for PdM systems 

• PdM systems are very complex 

• Models for PdM are mostly simple in their initial 

stages 

 

No 

Validation of results 

from PdM Systems 

• No universally valid validation methods and 

benchmark 

• No general procedure can be defined, because of the 

very different application cases 

• In real projects, validation is often manually done by 

the experts 

 

No 

Table 6 - Summary of the results and statements of the qualitative study 

 

As the explanations in this section and their summary in Table 6 show, the results of the expert 

interviews provided extensive information on the questions of the qualitative study. The individual 

opinions differ only slightly from one another. Overall, the qualitative research fulfilled the goals of 

identifying the important methods for the given area of application, allocating advantages and 

disadvantages and ordering them according to relevance by employing the opinions of the questioned 

experts. The qualitative research made an important contribution to the selection of the relevant 

methods for this thesis. 

The order of the topics listed in this section corresponds to the order of the questions in the interview 

guide. Because the interviews were conducted openly, the interviewees were able to talk freely. 

Therefore, the order of the questions in the interviews differed and not all questions were discussed in 

each interview. 

Overall, the experts confirmed that PdM is one of the important areas in IIoT and I4.0 environments 

and is still under development in practise. Beside the fact, that current implementations are mostly 

simple, because of a lack of knowledge and experience in many areas, they also confirmed, that in 

future scenarios methods and systems are essential that are able to cope with high complexity as well 

as time-related performance demands. To handle highly complex data and ensure adaptive and flexible 

behaviour, accompanied by the ability to deal with uncertainty, the surveyed experts agree that Deep 
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Learning approaches and specifically Artificial Neural Networks (ANN) represent the key future 

procedures. From the results of the expert interviews, it can be derived, that there is a need for deeper 

research in the area of the application of ANN in PdM systems with time-related performance 

demands. Among many other issues, an important point mentioned by the experts is how to make 

ANNs better and easier to use for PdM applications, especially when streams of complex data have to 

be processed in time. 
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6 Approach for a performance-optimised Model 

The aim of this thesis is to improve the use of neural networks for PdM applications in the field of 

IIoT. In the context of this thesis, the targeted improvement refers exclusively to reducing the 

processing time required by a neural network while maintaining the same quality of results. The 

frequently used term performance in relation to neural networks usually refers to the accuracy of the 

results achieved. Less often, performance also involves the processing effort and time of neural 

networks (Akwensi, et al., 2021), (Wick, et al., 2019). In this thesis, the terms processing time and 

runtime are used instead of performance to avoid misunderstandings. The processing time or runtime 

of a neural network comprises two parts, the processing time of the forward pass and the backward 

pass. The forward pass describes the processing of input data into a result by a neural network. The 

backward pass describes the process of weight adaption through backpropagation of the calculated 

error, also named learning. On the basis of a result, the network is run through backwards and adapted 

to the expected result on the basis of a determined deviation (Wu, et al., 2018), (Hochreiter, et al., 

1997). The focus of this thesis is on the forward pass, since the goal is to improve the processing time 

of time-sensitive applications at their runtime. In the context of this thesis, however, it has already 

been shown that adaptive and self-learning systems are increasingly used in modern PdM applications 

(Krawczyk, et al., 2015), (Hu, et al., 2014), (Beyer, et al., 1999), (Shaker, et al., 2013), (Lee, et al., 

2014), (Zhang, et al., 2016a), (Zhang, et al., 2016b). The backward pass is therefore also relevant for 

the use of such systems, since the system not only learns in an upstream training period, but also during 

its use and therefore passes through the backward path. For this reason, the backward pass is also 

measured in the evaluation described below and used to assess the results.  

 

In the context of this thesis, the LSTM was determined to be the most frequently used neural network 

for PdM applications in the area of IIoT. The determination was made through intensive literature 

research and on the basis of a qualitative study with expert interviews (see chapters 5 and 3). The 

LSTM is therefore used as a reference for the comparative measurements and as a starting point for 

the optimisations in the further course of this thesis. Based on a standard LSTM, a novel approach for 

an improved LSTM will be developed in the following. This is done by changing the internal 

architecture and the underlying algorithms of the standard LSTM. The newly developed approach is 

called Sliced Long Short-Term Memory (SlicedLSTM) Neural Network. Within the framework of a 

quantitative study, a laboratory prototype with suitable measurement and validation procedures will 

be used to prove that the SlicedLSTM can bring advantages in the processing time of PdM applications 

in the area of IIoT and outperforms a standard LSTM in certain application scenarios. 

 

This chapter starts with a summary of the previous findings in the context of this thesis. Afterwards, 

the basic idea that led to the idea of the SlicedLSTM is explained. The architecture and the algorithm 
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of the SlicedLSTM is then described in the form of theoretical considerations in detail. The research 

design for the quantitative study proving the effect of the SlicedLSTM is then described. A proof of 

concept experiment is then used to get initial indications whether the approach of the SlicedLSTM can 

improve the runtime behaviour of the standard LSTM. Section 6.3 describes in detail the setup of the 

experimental Study, the selection of the data set, as well as the conduction of the laboratory tests. This 

chapter closes with an evaluation and a summary of the results of the quantitative investigation. 

6.1 Summary of previous Findings 

From the results of literature research summarizes in chapter 3 and the qualitative study which was 

summarized in section 5.5 of this thesis, it can be derived that PdM systems in industrial environments 

are in an even less developed state as would be expected based on the topics I4.0 and IoT. The objective 

of PdM systems is ultimately always the reduction of costs. Failures and unscheduled downtime cause 

the highest costs. Predicting failures and scheduling maintenance and repairs based on predictions is 

intended to avoid such unscheduled downtime. 

As described in section 2.2, industry frequently still lacks deep knowledge about its own data and on 

predictive procedures. Even though the degree of automation in industrial environments is very high, 

complete communication infrastructures from the field level to the higher-level IT and cloud systems 

is rare. The direct streaming of raw data from the field into an IT or cloud system is far from being 

standard. A common solution to this problem is to connect the process level equipment with edge 

gateways installed in the field. The edge gateways have independent connectivity, such as cellular, 

which they use to connect the data side of the process level with applications at a higher level. The 

data is typically transmitted in data streams. The recipients of the data are often cloud systems for 

analysing and diagnosing data (Wang, et al., 2019). The unlimited connectivity and autonomous action 

and communication of things on the principle of an IoT landscape are still rare in industrial 

environments. Barriers here are technical reasons, such as a lack of standardisation, as well as certainly 

also security concerns of the companies (Uffelmann, et al., 2021). The process towards flexible and 

globally networked production infrastructures requires a rethinking and releasing of well-known 

procedures. Terms like "digital transformation" and "disruptive technologies" are therefore often 

called in the context of I4.0 and (I)IoT. Accordingly, the Gartner Hype Cycle for Emerging Tech 2022 

also includes many topics that play a central role in IIoT. These are in particular Autonomic Systems, 

Digital Twin and Asset Shell, as well as Industry Cloud Platforms and of course Machine Learning 

(Gartner, 2022). This level of development was described in section 2.2 of this thesis and substantiated 

by the results of the study summarised in section 5.5. 

In future industrial applications, a complete interconnection with corresponding communication 

infrastructures will have to be given. Intelligent sensors and actuators will not only provide 

comprehensive data, but also have the ability to interact smart and fast. This was substantiated by the 

results of the related research stated in chapter 3 of this thesis, as well as the qualitative study which 
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was summarized in section 5.5. Additionally the demand for time-sensitive processing of data streams 

was also derived from the theoretic background described in sections 2.2, 2.4 and 2.5. 

Among the pure application data, self-diagnosis data will increasingly being added. This will provide 

even more sophisticated information on the condition of the plants and possible wearing and aging 

processes to data analytics systems. The communication has to be increasingly standardized to enable 

an unhindered interaction between different systems ad hoc. See sections 2.1 to 2.5 for detailed 

description. Emerging and pioneering standards like IO-Link can be mentioned here. IO-Link is a 

vendor independent communication standard for sensors and actuators. It provides ad-hoc connectivity 

and automatic setup functionality. The IO-link community claims to be the first standardized IO 

technology worldwide (Uffelmann, et al., 2021). 

An additional finding of the qualitative study was that PdM applications are currently mostly 

developed offline (see section 5.5). In offline analysis, runtime behaviour is usually not the most 

important issue. However, the experts questioned in the qualitative study agree that this will change 

dramatically in near future. Responsive systems that enable fast and less resource-intensive 

calculations will become the standard. 

6.2 The SlicedLSTM 

This section explains the idea behind the Sliced Long Short-Term Memory (SlicedLSTM) Neural 

Network as a new model architecture. The SlicedLSTM is based on the standard LSTM architecture 

and aims to improve processing time by keeping the accuracy of the generated results at the same level 

as the standard LSTM. First, the basic idea that leads to the SlicedLSTM is explained, followed by a 

detailed theoretical description of the model architecture. An initial PoC is carried out to give an 

indication of whether or not an impact is being achieved. 

6.2.1 Basic Idea 

In the context of the related work of this thesis, different approaches for optimising a standard LSTM 

with regard to its processing time were listed (see section 3.4). Those approaches can be divided into 

two main categories with regard to the underlying approach (see also Table 4). The first category 

optimises the layers of deep networks and the connections of the LSTM cells between the layers. The 

second category optimises the cell architecture and thus the internal structure of a single LSTM cell. 

The approaches designed to optimise the layers and their interconnection showed measurable 

reductions in the processing time required, especially with an approach so-called grouping. Grouping 

in this context means that parts of the deep neural network, i.e. certain cells across several layers, are 

combined into groups. A certain group does not necessarily have to be run through every time the 

network is processed. Depending on the context or certain parameters, groups can also skip processing 

steps. This is done, for example, if the current input data does not concern a certain subnetwork. One 
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example for this is grouping according to frequencies of the input signals. If a deep neural network 

processes a continuous data stream containing sensor data of different frequencies, not all data is 

relevant or available in each data sample. For example, if all data is transmitted at the frequency of the 

signal with the highest frequency, data with lower frequencies will not provide new sensor data 

between their cycles. Such lower frequency data therefore needs to be processed through the network 

less frequently than high frequency data. As a result, the processing of certain parts of a network is 

not necessarily required for every processing time (sample). The complexity of deep neural networks 

can therefore be reduced at certain processing times. Lower complexity leads to a reduction in the 

required processing time. Examples of this approach are the Phased LSTM (Neil, et al., 2016), SCRN 

(Mikolov, et al., 2015), TK-RNN (Sutskever, et al., 2009), CW-RNN (Koutník, et al., 2014) and 

various variants based on multi-layer or stacked LSTM (Fernandez, et al., 2007). 

The concept of grouping aims exclusively at reducing the complexity of deep networks. The behaviour 

for complexity reduction is either based on temporal dependencies (e.g. frequency-driven (Neil, et al., 

2016)), or data-driven, i.e. for specific input data or scenarios (like event-based (Sutskever, et al., 

2009) or relationship-based (Koutník, et al., 2014)). At runtime, only parts of the deep neural network 

are processed. However, the network in its entirety has the full depth and complexity that is required 

for processing the overall task. During training, the entire deep neural network must be trained with 

all aspects of the entire data spectrum. The mechanisms for managing different network parts or groups 

are added as an overhead. At training time, this generates more training overhead than with a standard 

setup. Also, this form of optimisation does not improve the deep neural network's concurrency 

capability (Neil, et al., 2016), (Mikolov, et al., 2015), (Sutskever, et al., 2009), (Koutník, et al., 2014), 

(Fernandez, et al., 2007), (van der Westhuizen, et al., 2018). 

Another approach to optimising deep neural networks includes measures to simplify the network 

structure. Models listed in section 3.4 of this thesis that follow this approach are PyraMiD-LSTM 

(Stollenga, et al., 2015), (Cardona, et al., 2010), (Mendrik, et al., 2015), CIFG (van der Westhuizen, 

et al., 2018), (Greff, et al., 2017), SCRN (Mikolov, et al., 2015), SNMSL (Fraccaro, et al., 2016) and 

Tensorized LSTM (He, et al., 2017). While the grouping approaches omit parts of a deep network at 

runtime, these approaches aim at limiting the structure of the network to the most necessary already 

by design. For example, special gates and layers are used for this purpose. The general reduction of 

the complexity of the deep network then also leads to less processing effort during training. In addition, 

less complex networks are also easier to set up and train (Stollenga, et al., 2015), (Cardona, et al., 

2010), (Mendrik, et al., 2015), (van der Westhuizen, et al., 2018), (Greff, et al., 2017), (Mikolov, et 

al., 2015), (Fraccaro, et al., 2016), (He, et al., 2017). 

 

The second category of approaches, which was explained in section 3.4 of this thesis, optimises the 

architecture and thus the internal structure of a single LSTM cell to reduce complexity. However, the 

cell itself is optimised and not the structure of the connection of the layers to each other. In an LSTM 

cell, the inner structure consists of four dense layers/gates: the input gate, the output gate with its tanh 
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gate and the forget gate. In addition, there is the cell state as an internal memory. The processing steps 

within a single LSTM cell therefore cause computational effort. Since a deep network contains a very 

large number of cells, optimisations on the cell add up (Lee, et al., 2020) (Liang, et al., 2019). Also, 

optimisation on a cell type aims at reducing complexity rather than its ability to be processed in 

parallel. In section 3.4 of this thesis, the following variants were considered, which follow this 

optimisation approach: GRU (Lu, et al., 2017), (Chung, et al., 2014), grConv (Cho, et al., 2014b), 

several generated LSTM Variants in which individual gates are missing (Greff, et al., 2017), 

(Jozefowicz, et al., 2015), RNN- and GRU-based Encoder-Decoder (Cho, et al., 2014a). 

 

All approaches explained in this section and described in detail in section 3.4 show that the complexity 

of a network has a decisive influence on its processing time. For example, PyraMiD-LSTM reduces 

the number of computing operations required in relation to the number of input data from exponential 

to linear (Stollenga, et al., 2015), (Cardona, et al., 2010), (Mendrik, et al., 2015). Reduced complexity 

also results in further advantages, such as simpler setup and training, as well as reduced impact of 

training effects such as the vanishing or exploding gradient problem (Hochreiter, et al., 1997), (Gers, 

et al., 1999). 

The aim of this thesis is to improve the processing time of an LSTM network by model optimisation 

on the inner structure of an LSTM cell. For this purpose, a novel approach of an inner cell structure is 

developed and compared with a standard LSTM. In the introductory chapters of this thesis, the 

improvement of the parallelisability of a neural network cell was stated as the basic idea. If the inner 

processes of such a cell can be processed concurrently, this does not result in less computational effort, 

but ideally in a shorter overall processing time (Asanovic, et al., 2006). The considerations of related 

work in chapter 3 and especially with regard to the LSTM in section 3.4, have shown that the reduction 

of complexity is attributed the highest optimisation potential. All the approaches listed aim at least at 

this. During the research for this thesis no approaches that aim to change the internal structure of a 

neural network cell to better support concurrency were found. 

However, the fact that parallel processing can lead to reduced processing times can be seen from other 

project work, also discussed in section 3.4. By dividing the input data into smaller, independent data 

packets, data could be processed in parallel in neural networks. The resulting concurrent processing 

leads to shorter processing times. In addition, the individual neural networks became less complex, 

since they only have to be dimensioned for processing a part of the data. This approach is basically 

similar to the approach of grouping deep networks, which has already been presented in this section. 

Dividing data into sub-packages and processing them in sub-networks thus supports parallelisability 

and reduces complexity. Section 3.4 of this thesis describes projects that follow this approach. Projects 

to be mentioned are using TS-LSTM (Ma, et al., 2018), as well as TW Deep Neural Networks (Jin, et 

al., 2022), (Ertan, 2021), (Bouaziz, et al., 2017), (Zhang, et al., 2017b), (Ding, et al., 2021), (Huang, 

et al., 2016), (Liang, et al., 2016), (Song, et al., 2016), (Wang, et al., 2019). However, all these projects 

do not describe optimisation of a deep neural network or the neural cells used, but project-specific 
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system setups. In these project setups, data is divided manually or semi-automatically according to 

specific procedures in a preceding processing step. The smaller data packets are then processed in 

standard networks in parallel. Finally, the results of the individual networks are then combined into an 

overall result in another part of the system. A neural network that already includes a segmentation of 

the input data and parallelisation capability in its internal architecture could not be found in all the 

research carried out in the context of this thesis. This, together with the other approaches to complexity 

reduction listed in this section, led to the idea of the Sliced Long Short-Term Memory Neural Network 

(SlicedLSTM). The SlicedLSTM itself should be able to split the incoming data, process it in parallel 

layers and aggregate it in a final result layer. This results in a novel form of LSTM cells that combines 

the advantages of the existing approaches explained in this section. The SlicedLSTM should 

measurably reduce the processing time compared to a standard LSTM through concurrency and by 

reducing the complexity of the inner networks. 

 

In the further course of this chapter, the basic idea of the SlicedLSTM will be continued. The inner 

structure and functioning of the SlicedLSTM will be explained and described theoretically and in all 

details. In particular, it will be explained how input data can be sliced into sub-packages by the 

SlicedLSTM. Data in a data set can have relationships of any relevance. If one splits data into 

individual packages, relationships can be lost. This could lead to a deterioration in the accuracy of the 

results provided by the network. The projects listed in section 3.4, which follow the approach of 

splitting data, do not make any statement on this. In these projects, data is split manually or semi-

automatically according to certain procedures in an upstream processing step. How data is split is 

determined on the basis of existing expert knowledge. It is therefore assumed to be known which 

relationships exist in data and which relevance these have for the neural network. As a result, in the 

projects mentioned, data from different data packages have no or negligible relationships to each other. 

This is similar to the grouping approach. In order not to impair the accuracy of the network's results, 

however, the data splits or groups must also be largely independent of each other. 

One requirement for the SlicedLSTM is that it should independently perform the slicing of the input 

data within its cell. Which strategy is used to split data in the construction of the SlicedLSTM is 

therefore an important question. The cell itself has no expert knowledge of the data and the current 

design of the cell does not allow this to be gained through training. From the projects listed in section 

3.4, however, it is also not possible to deduce how strongly an unfavourably chosen data split affects 

the quality of the network. There was complete trust in the knowledge of the experts who carried out 

the division of data. 

The SlicedLSTM receives the desired division into slices via an additional hyperparameter. The exact 

allocation of the input vector and the hidden vector to the slices must be determined. The investigations 

and tests to be carried out within this thesis are intended to show whether comparable accuracies can 

already be achieved with an empirically selected division of data. The comparison is always made 
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against the standard LSTM. If no comparable accuracy can be achieved with a random split of data, 

the architecture of the SlicedLSTM must be extended by suitable measures. 

From the explanations given in this chapter, it can already be deduced which values must be used for 

the comparative measurements. The primary goal of this thesis and the developed SlicedLSTM is to 

improve runtime of an LSTM. For the evaluation of the processing time at runtime, the time duration 

for the so-called forward pass is measured. This is the time that the network needs to determine a result 

from input data. As explained, reducing the complexity of a network or its cells also has a beneficial 

effect on the training of the network. Therefore, the processing time during training should also be 

measured. This processing time, referred to in the following as backward pass, comprises the time 

required to backpropagate training updates based on the model error. The model error is the deviation 

of a result generated by the net from the expected result. Other hyperparameters, such as the learning 

rate, are also included in the error calculation and adjustment of the weights. For the measurement of 

the backward pass, it is therefore also interesting to see how the SlicedLSTM behaves in comparison 

to the standard LSTM with different values for the hyperparameters. The requirement set for all 

comparisons in this thesis is that the accuracy of the results generated by the SlicedLSTM must remain 

comparable to those of the standard LSTM. In section 6.3.1 the term "comparable" will be defined 

precisely for this thesis. The achieved accuracy of the results of a network compared to the expected 

results is, besides the runtimes for forward and backward pass, the third relevant measured value in 

the context of the investigations carried out here. 

 

The SlicedLSTM also entails a certain overhead. Therefore, at the time of the theoretical consideration, 

it is not ensured that the advantages of the approach also outweigh the disadvantages in practical 

application. Therefore, a simple proof of concept (PoC) will be conducted in this chapter (section 

6.2.3) to find initial indications that the chosen approach of the SlicedLSTM is indeed capable of 

outperforming a standard LSTM. The following section 6.3 then describes the setup of a qualitative 

study to demonstrate the optimisation achieved by the SlicedLSTM compared to a standard LSTM. 

The design of the study is based on the research methodology described in chapter 4 and the 

quantitative study design described in section 4.4. Section 6.4 then summarise the results of the study 

and the overall results. 

6.2.2 Theoretical Considerations 

In this section, the inner structure and functioning of the SlicedLSTM is explained and described in 

all details. For this purpose, the architecture of the SlicedLSTM, which has been adapted in 

comparison to a standard LSTM, is shown with its additional split and connector layers. Then, using 

an example vector of input data, it is shown schematically how the individual data is split, processed 

and merged again in the inner layers of the SlicedLSTM. The section concludes with a mathematical 

definition of the SlicedLSTM in comparison to the standard LSTM. All examples given here use input 
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data in the form of a one-dimensional data vector. As this thesis focuses on the application of PdM in 

industrial environments, a typical form of input data is sensor data in the form of one-dimensional data 

vectors (MathWorks, 2021). In other application areas, this may be different. For example, in the field 

of image processing, input data is typically in 2D or 3D data vectors. However, the concept of 

SlicedLSTM can be easily adapted to process input data for any dimensionality. 

Figure 17 shows the schematic of a standard LSTM. According to the consideration chosen in this 

section, a standard LSTM receives the input data xt as a one-dimensional data vector at a time t. The 

length of the vector is determined by the number of features. The input data xt are concatenated with 

the hidden state of the preceding processing step ht-1 and thus represent the input data of the individual 

gates of an LSTM at time t. The meaning and functionality of the individual gates (forget gate, input 

gate, output gate) has already been explained in the basic section 2.7.  

 

Figure 17 – Standard LSTM (Hochreiter, et al., 1997) 

 

In the context of this thesis, approaches have already been explained that divide input data into partial 

packets in a manual pre-processing step, process these in parallel LSTMs and then merge them again 

into an overall result. The SlicedLSTM is intended to take up this approach. The splitting and thus the 

parallelisation achieved is to be carried out completely and automatically inside the LSTM by means 
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of a novel model architecture. In addition to a standard LSTM, a SlicedLSTM therefore requires two 

additional layers. One additional inner layer is required to calculate the results of the splits. This layer 

is referred to as the SplitLayer in the following. A second inner layer connects the results of the 

SplitLayer to an overall result in the sense of a dense layer. This layer is referred to as the 

ConnectionLayer in the following. The interfaces of an LSTM cell for incoming and outgoing data 

shall remain unchanged from the standard LSTM. Figure 18 shows a SlicedLSTM with SplitLayer 

and ConnectionLayer and a split rate of 2. 

 

Figure 18 – SlicedLSTM with SplitLayer and ConnectionLayer and a split rate of 2 

 

As shown in Figure 18, the additional SplitLayer splits xt and ht-1 into parts according to the defined 

split distributions. The SplitLayer consists of one dense layer per split (gate) which processes its slice 

of hidden and input data as specified by the user when creating the SlicedLSTM model. The data 

processed in the SplitLayers are then combined again in the ConnectionLayers. The ConnectionLayer 

is a simple dense layer that fully connects all input values (output values of the SplitLayers) and thus 

generates the result value. The update of the cell state ct and the generation of the output ht is then the 

same as with the standard LSTM. 
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At this point, the underlying concept of SlicedLSTM is recalled once again. The subnetworks shown 

in Figure 18 (here two per gate) are to become significantly smaller and more easily processable in 

parallel through the splitting. In order to process the splits, however, additional components are 

required in the SlicedLSTM in the form of the SplitLayer. Whether and under what conditions the 

advantage of a SlicedLSTM exceeds its overhead is to be determined in the quantitative study of this 

thesis. 

 

Based on the inner model architecture of a SlicedLSTM shown in Figure 18, Figure 19 shows the 

functionality of a SlicedLSTM from the perspective of the single features in the data vectors. 

 

Figure 19 - SlicedLSTM from the perspective of the data vectors 

 

In the example shown in Figure 19, the input vector x has a size of 7. The features of x are coloured 

in blue. The hidden size is 3. Features of the hidden vector are coloured red. In the SplitLayer, data is 

split into two slices. In this example, due to the user configuration, the respective left layers receive 4 

values (blue dots) from the input vector and 2 values (red dots) from the hidden vector. The respective 

right layers receive 3 values (blue dots) from the input vector and one value (red dot) from the hidden 

vector. The left layers deliver two values and the right layers one value to the ConnectionLayer. In the 

ConnectionLayer, all values of all subnetworks are connected with each other (fully connected dense 

layer). As a result, the ConnectionLayer must deliver a data vector of size hidden size. As with the 

standard LSTM, this then goes into the cell state ct or respectively the output ht. 
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To further explain the functioning of the SlicedLSTM, another example (hereafter referred to as 

example 2) will be explained. In example 2, the input vector comprises 6 features and the hidden size 

is set also to 6.  

• The input data at processing time t is 𝐱𝐭 = (x1 x2 x3 x4 x5 x6)𝑡 

• The hidden data from the last processing step is 𝐡𝐭−𝟏 = (h1 h2 h3 h4 h5 h6)𝑡−1 

• The split configuration for xt an ht-1 in this example is empirically set to [(3,2), (2,3), (1,1)] 

• Following the split configuration the input vector xt is divided into the partial vectors 

(x1 x2 x3)𝑡, (x4 x5)𝑡, (x6)𝑡 

• The hidden vector 𝒉𝒕−𝟏 is divided into the partial vectors 

(h1 h2)𝑡−1, (h3 h4 h5)𝑡−1, (h6)𝑡−1 

• Then the resulting splits are 

o Split 1: (x1 x2 x3 h1 h2)𝑡 

o Split 2: (x4 x5 h3 h4 h5)𝑡 

o Split 3: (x6 h6)𝑡 

 

The division of the input and hidden vector in example 2 is deliberately chosen uncorrelated and 

unevenly. The hidden vector was also deliberately divided unevenly and its size is not based on the 

division of the input vector. The divisions chosen in this example are intended to indicate that at first 

sight of the test there is no rule for the division for the SlicedLSTM and that this can be done arbitrarily. 

Based on the dimensions of the input data and the hidden data, one could assume that the splitting 

made in example 2 is not advantageous. However, there are no reliable indications for this at the 

moment. From the approaches presented in section 3.4 of this thesis with a manual division of data 

based on expert knowledge, it can be deduced that there is no universally correct form of division of 

data. In all cases listed in section 3.4, the optimal division has no fixed metric but is determined by 

experts based on data and its inner relationships, as well as the use case. 

Figure 20 shows the schematic representation of example 2 with the input nodes and output nodes of 

the three LSTM splits in SplitLayer and ConnectionLayer. The result vector of each SplitLayer always 

has the size of its share of the hidden vector. The output nodes of the SplitLayer are named with the 

letter 𝑆 in Figure 20. In the final (dense) ConnectionLayer, the results of the subnetworks are 

concatenated into one result. The output nodes of the ConnectionLayer are named with the letter �́� in 

Figure 20. 
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Figure 20 - Schematic Representation of the SplitLayer of Example 2* 

∗  ((S1 S2) (S3 S4 S5) S6) are the output nodes of the SplitLayer and (S1́ S2́ S3́ S4́ S5́ S6́) are the 

output nodes of the ConnectionLayer 

 

Another example 3 is used to explain how data is processed in the individual layers and assumes an 

input vector with 3 features and a hidden size of 3. The input data at the beginning of the processing 

time t is thus xt = (x1, x2, x3)t. The hidden data at the beginning of processing time t is ht-1 = (h1, h2, 

h3)t-1. In example 3, data is divided as follows: Split 1 (x1, x2, h1, h2) and Split 2 (x3, h3). Slice 1 of 

the SplitLayer thus delivers two values to the result and slice 2 one value. 

The following formulas of example 3 only show the forget gate. The procedures in the other gates are 

the same, except for the activation function of the tanh gate. The following formulas describe the 

processing of the two slices in the SplitLayer and their merging in the ConnectionLayer. In addition 

to the input data and the hidden data, the formulas also contain a weighting matrix and a bias vector. 

The weight matrix uses the letter w (SplitLayer) and u (ConnectionLayer). The bias vector uses the 
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letter b (SplitLayer) and p (ConnectionLayer). The following formulas are intended to illustrate the 

processing of the individual values of the slices in the individual layers. Weights and biases are not 

relevant for this illustration and are only listed in the formulas for the sake of completeness. The 

meaning of weights and biases is described in detail later in this section (see Forget Gate at page 88). 

SplitLayer: 

Slice 1: σ

(

 
 
(x1 x2 h1 h2) ⋅ (

w11 w12
w21 w22
w31 w32
w41 w42

)+ (b1 b2)

)

 
 
= (s1 s2) 

 

Slice 2: σ((x3 h3) ⋅ (
𝑤1
𝑤2
) + b3) = (s3) 

 

The intermediate results s1, s2 and s3 are then to be connected in the ConnectionLayer accordingly:  

σ((s1 s2 s3) ⋅ (

u11 u12 u13
u21 u22 u23
u31 u32 u33

) + (p1 p2 p3)) = (f1 f2 f3) 

 

The resulting vector at a specific time step 𝒇𝒕 = (𝑓1 𝑓2 𝑓3)
𝑡 then updates the cell state 𝐜𝐭−𝟏 by 

vector-matrix multiplication. The procedure in the other gates is correspondingly. 

 

Based on the three examples presented, the entire functionality of the SlicedLSTM will now be 

formally summarised. The SlicedLSTM will be compared with the standard LSTM. All formulas for 

the standard LSTM listed below are based on Hochreiter & Gers (Hochreiter, et al., 1997), (Gers, et 

al., 1999). In order to make the presentation of the operations in the individual gates and the 

comparison with those of the standard LSTM simpler, the division of the incoming vectors xt and ht-1 

into the individual slices is presented first. Then each gate is discussed individually and the comparison 

with the Standard LSTM is highlighted. 

For the selected representation of the following formulas, it should be mentioned that index 

specifications are always subscripted. The time intervals that were previously displayed in subscript 

are then displayed in superscript. This form of representation was chosen by the author with the idea 

of preferably using subscripted values for frequently changing values. For simple values normal font 

is used. Vectors are indicated with a lower case letter in bold. Matrices are always indicated with upper 

case letters in bold.  
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Representation of the individual slices: 

Let the input vector at time t with n features be 𝐱𝒕 = (x1, … , xn)
𝑡 

 

Let the hidden vector with m features be 𝐡𝒕−𝟏 = (h1, … , hm)
𝑡−1, where at time t=0 the hidden vector 

is initialised with zeros 𝒉𝟎 = (0, 0,… , 0) 

 

Let a slice s be defined as a tuple of index intervals 𝑠 = (α, β) with  

α = [α1, α2] ⊆ [1, n],   β = [β1, β2] ⊆ [1,m] whereby (α, β) ⊂ ℕ2 𝑎𝑛𝑑 n,m ⊂ ℕ 

 

A set of slices 𝒮 = {s1, … , s𝑘} is valid for a SlicedLSTM cell if and only if there is a permutation 

(𝑠1, 𝑠2, … , 𝑠𝑘) of �̃� that holds all of the following constraints: 

 𝑠1 = ( [ 1,  α2
1  ], [1, β2

1] ) 

 

First slice includes the first part of hidden and input 

vector. 

 𝑠k = ( [α1
k, n], [β1

k,m] ) 

 

Last slice includes the last part of hidden and input vector 

where n is the size of the input vector and m the size of the 

hidden vector. 

 α2
i = α1

i+1 − 1 whereby 

∀i ∈ [1, n) ⊂ ℕ 𝑎𝑛𝑑  

β2
i = β1

i+1 − 1 whereby 

∀i ∈ [1,m) ⊂ ℕ 

Each slice connects without gaps to the previous slice 

(except the first slice) 

 

Based on the indices defined in �̃�, xt and ht-1 can be subdivided into disjoint and exhaustive partial 

vectors. These partial vectors are then processed in the SplitLayer of the SlicedLSTM in each gate. 

Let the concatenation of the partial vectors of xt and ht-1 defined by a slice i then be defined as: 

si
t = [ x

α1
i
t ,  x

α1
i +1
t ,  … ,  x

α2
i
t ,  h

β1
i
t−1,  h

β1
i +1
t−1 ,  … ,  h

β2
i
t−1 ] 
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Looking at the forget gate: 

The Forget Gate has the task of deciding which information from the cell status ct-1 is no longer needed 

or is classified as less important. For this purpose, the Forget Gate layer applies the sigmoid function 

as an activation function to the sum of the weighted input values xt and ht-1. Thus, for each number in 

the result vector ft, a number between 0 and 1 is created. In the later component-wise multiplication 

of ft with ct-1, ft values close to zero cause cell state components to be forgotten. Respectively ft values 

close to 1 have the effect that values remain in the cell state. All values in ft greater than 0 and less 

than 1 change the importance of the memorised value accordingly. The illustrations in Figure 21 and 

Figure 22 show the processing and its mathematical representation in the Forget Gate for the Standard 

LSTM and for the SlicedLSTM. 

 

Figure 21 – Forget Gate of Standard LSTM 

𝐟𝐭 = σ ([𝐡𝐭−𝟏, 𝐱𝐭] ⋅ 𝑾𝑭 + 𝐛𝑭) 

(the subscript capital F stands for "forget 

gate") 

(weight matrix and bias vector are not 

shown in the figures) 

 

 

 

In the standard LSTM, the result vector ft of the forget gate is obtained by the vector matrix product 

of the concatenated vectors xt and ht-1 with the weighting specified for the forget gate. Therefore, a 

weight matrix must be defined for the forget gate of an LSTM, which will be denoted by the letter W 

(SplitLayer) and U (ConnectionLayer) in the following. It should be remembered from the notation 

already explained that in this thesis simple values are shown in lower case and normal font and 

matrices with a capital letter in bold type. In the following, the letter w or u refers to a single weight 

value and W or U to a matrix of weight values. A bias is also added to the result. The vector of biases 

is indicated in the following by the letter b (SplitLayer) and p (ConnectionLayer) since vectors are 

marked with a bold lower case letter in the context of this thesis. The sigmoid function serves as the 

activation function in the forget gate. Figure 21 illustrates this.  
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Weights, biases and activation functions are also present in the other gates of an LSTM accordingly. 

The processing methods for the gates of an LSTM described here correspond to the standard definition 

of an LSTM. These have already been explained in section 2.7 of this thesis and are based on the basic 

and still current definition of the LSTM by Hochreiter and Gers (Hochreiter, et al., 1997), (Gers, et 

al., 1999). The vectors listed below are always row vectors whose components are notated next to each 

other. For two vectors 𝒙 = (𝑥1, … , 𝑥𝑛) and 𝒚 = (𝑦1, … , 𝑦𝑚) the notation [𝒙, 𝒚] means the 

concatenation of the two vectors [𝒙, 𝒚] = (𝑥1, … , 𝑥𝑛, 𝑦1, … 𝑦𝑚). 

 

The processing of the input vector in the SlicedLSTM follows the same principle as in the standard 

LSTM, but is divided into SplitLayer and ConnectionLayer. In the SplitLayer, the individual partial 

vectors 𝐬𝐢
𝐭 for the slices i for i from 1 to k are processed by individual layers with sigmoid activation. 

The division into the partial vectors 𝐬𝐢
𝐭 was explained at the beginning of this section. The resulting k 

vectors then concatenated and processed in the ConnectionLayer to the result of the forget gate 𝐟𝐭. The 

processing in the SlicedLSTM layers is a vector-matrix multiplication with the weight matrix and a 

vector-addition with the bias vector of the respective dense layers. The sigmoid function again serves 

as an activation function. As with the standard LSTM, the length of 𝐟𝐭 corresponds to the length of 

ht-1 and ct-1. 

 

 

Figure 22 - Forget Gate of SlicedLSTM 

 

∀i ∈ [1, k] ⊂ ℕ: 𝐟𝐢
𝐭 = σ (𝐬𝐢

𝐭 ⋅ 𝑾𝐅𝐢 + 𝐛𝐅𝐢) 

𝐟𝐭 = σ ([𝐟𝟏
𝐭 , 𝐟𝟐

𝐭 , … , 𝐟𝐤
𝐭 ] ⋅ 𝑼𝑭 + 𝒑𝑭) 

(the subscript capital F stands for "forget 

gate") 
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Looking at the input gate: 

The input gate decides which new information is considered important enough to be remembered for 

later processing cycles. To do this, the so-called input gate layer first decides which values of the 

current input vector are relevant. The sigmoid function again serves as the activation function. The 

result of this layer is denoted by 𝒊𝒕 (see Figure 23). In the additional tanh layer, another vector �̃�𝐭 is 

generated with the so-called candidate values. Tangent hyperbolicus (tanh) is used as the activation 

function. This layer decides which of the values determined by the input gate should actually be 

included in the new cell state and with what intensity. This is done by pointwise multiplication of the 

two vectors 𝒊𝒕 and �̃�𝐭. The resulting vector of the input gate is then added to the current cell state ct. 

Figure 23 illustrates the input gate of the standard LSTM. 

 

Figure 23 – Input Gate of Standard LSTM 

𝐢𝐭 = σ ([𝐡𝐭−𝟏, 𝐱𝐭] ⋅ 𝑾𝑰 + 𝐛𝑰) 

�̃�𝐭 = tanh([𝐡𝐭−𝟏, 𝐱𝐭] ⋅ 𝑾𝑮 + 𝐛𝑮) 

(the subscript capital I stands for 

"input gate", the subscript capital 

G stands for "tanh gate") 

 

 

With SlicedLSTM, the processing in the input gate and tanh gate again takes place in SplitLayer and 

ConnectionLayer. The ConnectionLayer again processes the concatenated results of the sub-gates into 

𝐢𝐭 and �̃�𝐭. Figure 24 illustrates this. Since the letter t has already been assigned for the time indication, 

the tanh gate is designated in the following with the letter g. 
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Figure 24 – Input Gate of SlicedLSTM 

∀j ∈ [1, k] ⊂ ℕ: 𝐢𝐣
𝐭 = σ (𝐬𝐣

𝐭 ⋅ 𝑾𝐈𝐣 + 𝐛𝐈𝐣) 

 𝐢𝐭 = σ([𝐢𝟏
𝐭 , 𝐢𝟐

𝐭 , … , 𝐢𝐤
𝐭 ] ⋅ 𝑼𝑰 + 𝒑𝑰) 

 

∀i ∈ [1, k] ⊂ ℕ: 𝐠𝐢
𝐭 = tanh (𝐬𝐢

𝐭 ⋅ 𝑾𝐆𝐢 + 𝐛𝐆𝐢) 

𝐜�̃� = tanh ([𝐠𝟏
𝐭 , 𝐠𝟐

𝐭 , … , 𝐠𝐤
𝐭 ] ⋅ 𝑼𝑮 + 𝒑𝑮) 

 

(the subscript capital I stands for "input gate", 

the subscript capital G stands for "tanh gate") 

 

The described processing steps in the forget gate and input gate determined which of the data stored 

in cell state 𝒄𝒕−𝟏 can be forgotten and which should be remembered. In the step illustrated in Figure 

25, the results of the forget gate and input gate now enter the old cell state 𝒄𝒕−𝟏 and thus transfer it to 

the new cell state 𝒄𝒕. This process is identical in the SlicedLSTM to that in the Standard LSTM. 

 

Figure 25 – Update the cell state of standard and SlicedLSTM 

𝐜𝐭 = 𝐟𝐭⊙𝐜𝐭−𝟏 + 𝐢𝐭⊙ �̃�𝐭 

⊙ stands for the component-wise 

multiplication of vectors. 

At time t = 1 a zero cell state is 

used for ct−1:  c0 = (0,  0,… ,  0) 

 

 

Looking at the output gate: 

The last of the three gates of an LSTM is the output gate. It delivers the result of the current processing 

𝒉𝒕. The output gate first determines an output vector 𝒐𝒕 on the basis of the input data. The activation 

function is again the sigmoid function. In addition, the current cell state is brought into the value range 

(-1 ,1) by means of the hyperbolic function tanh. The output vector 𝒉𝒕 is then determined by 
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component-wise multiplying the adjusted cell state by the output ot. Through this arrangement, what 

is memorised in the cell state influences the output determined on the basis of the input data at a 

specific processing step t. The following Figure 26 describes the function of the output gate of a 

standard LSTM. 

 

 

Figure 26 – Output Gate of Standard LSTM 

𝐨𝐭 = σ ([𝐡𝐭−𝟏, 𝐱𝐭] ⋅ 𝑾𝑶 + 𝐛𝑶) 

𝐡𝐭 = 𝐨𝐭⊙ tanh(𝐜𝐭) 

 

(The subscript of 𝑾𝑶 𝒂𝒏𝒅 𝐛𝑶 is an 

“O” and stands for output gate) 

 

 

In comparison, the SlicedLSTM again has the familiar division into two layers from the previously 

described gates. Figure 27 shows the output gate of a SlicedLSTM. The final determination of 𝒉𝒕 for 

the SlicedLSTM is then identical to that of the standard LSTM. 

 

 

Figure 27 - Output Gate of SlicedLSTM 

∀i ∈ [1, k] ⊂ ℕ: 𝐨𝐢
𝐭 = σ (𝐬𝐢

𝐭 ⋅ 𝑾𝐎𝐢 + 𝐛𝐎𝐢) 

 

𝐨𝐭 = σ ([𝐨𝟏
𝐭 , 𝐨𝟐

𝐭 , … , 𝐨𝐤
𝐭 ] ⋅ 𝑼𝑶 + 𝒑𝑶) 

𝐡𝐭 = 𝐨𝐭⊙ tanh(𝐜𝐭) 

 

 

Finally, all the explanations of the formal, mathematical processes of a SlicedLSTM, which have been 

shown step by step and for each gate, are to be summarised once again in Table 7. The illustration 

again contrasts the SlicedLSTM with the standard LSTM.  
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SlicedLSTM Standard LSTM 

Forget gate 

∀i ∈ [1, k] ⊂ ℕ: 𝐟𝐢
𝐭 = σ (𝐬𝐢

𝐭 ⋅ 𝑾𝐅𝐢 + 𝐛𝐅𝐢) 𝐟𝐭 = σ ([𝐡𝐭−𝟏, 𝐱𝐭] ⋅ 𝑾𝑭 + 𝐛𝑭) 

𝐟𝐭 = σ ([𝐟𝟏
𝐭 , 𝐟𝟐

𝐭 , … , 𝐟𝐤
𝐭 ] ⋅ 𝑼𝑭 + 𝒑𝑭)  

  

Input gate 

∀j ∈ [1, k] ⊂ ℕ: 𝐢𝐣
𝐭 = σ (𝐬𝐣

𝐭 ⋅ 𝑾𝐈𝐣 + 𝐛I𝐣) 𝐢𝐭 = σ ([𝐡𝐭−𝟏, 𝐱𝐭] ⋅ 𝑾𝑰 + 𝐛𝑰) 

 𝐢𝐭 = σ([𝐢𝟏
𝐭 , 𝐢𝟐

𝐭 , … , 𝐢𝐤
𝐭 ] ⋅ 𝑼𝑰 + 𝒑𝑰) �̃�𝐭 = tanh([𝐡𝐭−𝟏, 𝐱𝐭] ⋅ 𝑼𝑮 + 𝒑𝑮) 

∀i ∈ [1, k] ⊂ ℕ: 𝐠𝐢
𝐭 = tanh (𝐬𝐢

𝐭 ⋅ 𝑾𝐆𝐢 + 𝐛𝐆𝐢)  

𝐜�̃� = tanh ([𝐠𝟏
𝐭 , 𝐠𝟐

𝐭 , … , 𝐠𝐤
𝐭 ] ⋅ 𝑼𝑮 + 𝒑𝑮)  

  

Update cell state 

𝐜𝐭 = 𝐟𝐭⊙𝐜𝐭−𝟏 + 𝐢𝐭⊙ �̃�𝐭 𝐜𝐭 = 𝐟𝐭⊙𝐜𝐭−𝟏 + 𝐢𝐭⊙ �̃�𝐭 

  

Output gate 

∀𝑖 ∈ [1, 𝑘] ⊂ ℕ: 𝒐𝒊
𝒕 = 𝜎 (𝒔𝒊

𝒕 ⋅ 𝑾𝑶𝒊 + 𝒃𝑶𝒊) 𝒐𝒕 = 𝜎 ([𝒉𝒕−𝟏, 𝒙𝒕] ⋅ 𝑾𝑶 + 𝒃𝑶) 

𝒐𝒕 = 𝜎 ([𝒐𝟏
𝒕 , 𝒐𝟐

𝒕 , … , 𝒐𝒌
𝒕 ] ⋅ 𝑼𝑶 + 𝒑𝑶)  

  

Output 

𝒉𝒕 = 𝒐𝒕⊙ 𝑡𝑎𝑛ℎ(𝒄𝒕) 𝒉𝒕 = 𝒐𝒕⊙ 𝑡𝑎𝑛ℎ(𝒄𝒕) 

Table 7 – SlicedLSTM versus Standard LSTM* 

* (The subscripts F, I, G, O on the weight matrices (𝑾 𝑎𝑛𝑑 𝑼) and the bias vectors 𝒃 𝒂𝒏𝒅 𝒑 stand for F=forget gate, 

I=input gate, G = tanh gate and O= output gate) 
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6.2.3 Proof of Concept Experiment 

The concept of the SlicedLSTM entails a certain overhead due to the division into parallel networks 

and their aggregation, which can have a negative effect on the processing time. Therefore, at the time 

of the theoretical consideration, it is not ensured that the advantages of the approach outweigh the 

resulting additional effort in practical application. A simple Proof of Concept (PoC) will be used to 

find initial indications that the chosen approach of the SlicedLSTM is indeed capable of outperforming 

a standard LSTM. More specifically, the aim of the PoC is to find out whether the underlying concept 

of SlicedLSTM of processing data in multiple small LSTM splits actually speeds up the computation 

time while maintaining a similar result quality. The idea being that LSTM splits can use information 

locality while processing data to achieve comparable prediction accuracy with overall smaller models, 

thus resulting in decreased computation (and training) time. 

In the PoC we evaluate two neural networks, both using standard LSTMs. The first LSTM network 

uses a standard layer design and receives the entire input values. For the second LSTM network, the 

input data is manually halved in a preprocessing step and then processed by two independent and 

smaller LSTM networks. The first model is subsequently referred to as Normal LSTM Layout 

(NormalLSTM). The second model is subsequently referred to as Manually Split LSTM Layout 

(ManSplitLSTM). The PoC setup of the second network takes up the idea of splitting data into smaller, 

independent data packages. This approach and its potential for improvement was explained in detail 

in section 3.4 (Ma, et al., 2018), (Jin, et al., 2022), (Ertan, 2021), (Bouaziz, et al., 2017), (Zhang, et 

al., 2017b), (Ding, et al., 2021), (Huang, et al., 2016), (Liang, et al., 2016), (Song, et al., 2016), (Wang, 

et al., 2019).  

It is worth noting that simply splitting data manually in a preliminary step and passing it in separate 

LSTM cells is not the research idea of this thesis. This is only done to investigate the approximate 

behaviour of the chosen idea in a first step and with very little implementation effort. It should also be 

mentioned that the architecture and the implemented dimensions of the layers and hidden layers of the 

two LSTM networks for this PoC were chosen randomly. This PoC therefore only serves as a relative 

comparison of the two approaches and does not represent any general validity. It is also assumed that 

the version of the LSTM network that uses split data benefits from taking information locality into 

account. However, the splitting of data based on content correlations is not considered in this 

experiment. The main reason for this is that the newly developed SlicedLSTM model will also work 

with arbitrary data splits. 

 

The neural network with LSTM in this PoC is implemented with the Open Source Deep-Learning-

Library Keras (Chollet, et al., 2022) and a TensorFlow backend (Google Brain, 2022). By using these 

libraries, the implementation effort for the PoC could be reduced. In addition, both libraries are widely 

used in numerous Deep Learning applications. It can therefore be assumed that the models provided 

by Keras and TensorFlow already have a high degree of optimisation. Furthermore, in order to make 
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the PoC setup and its evaluation as efficient as possible, a data set was used that has complete 

classification data and has already been used in a well-documented PdM project. This should not only 

make the PoC easier, but also avoid errors in the test design, the test implementation, as well as in the 

preparation and application of data.  

In order to make the PoC setup as simple as possible, a search for existing and publicly available PdM 

projects with available data was carried out. Criteria for the search were the availability of a complete 

project with comprehensive documentation and fully prepared data. Projects and data that were 

referenced by additional work or were also used in other projects were preferred, as these were 

assumed to have a higher validity. An authoritative source for the search was the paper Machine 

Learning in Production, Application Areas and freely available Data Sets (Krauß, et al., 2019). This 

paper includes a search for projects and publicly available data sets with a focus on production. The 

application area refers to industrial ML applications and in particular PdM. The summary of the results 

of this paper provides an overview with an assessment of their suitability by the authors. 

Based on the above criteria, a project published by Microsoft was selected. The project work is entitled 

Predictive Maintenance Template and was published by the AzureML Team for Microsoft (AzureML 

Team, 2015). The project describes step by step how to create and use Predictive Maintenance models 

to predict equipment failures. All steps, from data preparation and feature engineering to deployment, 

are disclosed and described in detail. The entire data processing pipeline including the source code is 

made available on Github and is used as a reference for this PoC (AzureML Team, 2018). Data are 

synthetically generated data from a NASA project to predict failures using Remaining Useful Lifetime 

(RUL) as result class. This project looks at modules of aircraft gas turbines and tries to predict whether 

RUL is smaller than a specified threshold, indicating imminent failure. The data set is freely available 

and has been used in many other projects (Saxena, et al., 2008). Among others, the dataset was used 

in the Prognostics and Health Management (PHM) data competition at PHM'08 and was extensively 

used and validated in this competition (Jia, et al., 2018). The data is available through the NASA 

Prognostics Center of Excellence Data Repository (NASA, 2008b). At the time the dataset was 

selected, the only discernible drawback was that the individual data attributes (features) were 

anonymised. Thus, the meaning of the features is unknown. This form of anonymisation is present in 

all the freely available datasets considered in the selection made here. One reason for this could be 

that non-anonymised data can be used to draw conclusions about the architecture and functioning of a 

machine or system under consideration. Such conclusions usually affect the proprietary knowledge of 

a manufacturer. This also applies if data was generated synthetically for a system or machine (Krauß, 

et al., 2019). In this thesis, it is to be investigated whether a measurable improvement in computation 

time can already be achieved with a randomly selected division of data. The meaning of the individual 

features and their possible local connections to each other are not taken into account. For this reason, 

the anonymisation of data used is not a limitation in this application. 

To determine the accuracy of the results, a binary classification of the RUL available in the data is 

used in this test. Whether the values for RUL given in the data are actually valid in practice cannot be 
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proven. In particular, it should be mentioned again that this is synthetically generated data. However, 

this can be accepted since the PoC only make relative comparisons of two LSTM models. A closer 

look at the data is given in the laboratory tests in section 6.3.2. 

 

 

Figure 28 - NormalLSTM example with layers and dimensions 

 

In the following the structure of the Normal LSTM Layout (NormalLSTM) and the manually split 

LSTM Layout (ManSplitLSTM) will be explained. When creating an LSTM, its dimension must be 

specified. Required dimension in Keras are only the size of the hidden state and the cell state. 

TensorFlow assumes a data stream. For processing by the LSTM, the data stream is divided into time 

frames with a fixed time span and thus a fixed number of time intervals (samples). The number of time 

intervals in a time frame is called sequence length. The number of time windows is called Batch Size. 

The Input Dimension determines the dimension of the input data, i.e. the number of features in data. 

In the test described here, we prepared data to a sequence length of 50 in one batch. The dimensions 
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of the input data for both LSTM networks were set as (none, 50, 25). Thus, data from 50 consecutive 

time intervals are processed in this test, with each time interval having 25 features. The NormalLSTM 

network was empirically dimensioned in such a way that it has an LSTM layer with hidden size 10 

below the input layer, followed by a dropout layer with dropout rate 0.2, another LSTM layer with 

hidden size 3, another dropout layer with dropout rate 0.2 and finally a dense output layer with 1 node 

output. The output values are in the range of [0, 1] indicating the binary classification in RUL <= 30 

cycles or RUL > 30 cycles. Figure 28 shows the structure of the NormalLSTM. 

 

The ManSplitLSTM has the same input layer dimension of (none, 50, 25). Below the input layer, the 

ManSplitLSTM has a division into two separate net paths. The division is done in this PoC with 

(50, 12) and (50, 13). For this purpose, the input data is split into two parts manually, with one side 

receiving 12 features and the other 13 features. The division is chosen arbitrarily and splits data as 

equally as possible. The further processing of the two data parts then takes place in two separate 

subnetworks with the same structure. The dimension of the subnetworks is chosen with an LSTM layer 

of hidden size 4, a dropout layer with dropout rate 0.2, another LSTM layer with hidden size 2, another 

dropout layer with dropout rate 0.2. In an additional Concatenation Layer, the results of the two 

subnetworks are aggregated by concatenating the respective results. The final dense output layer has 

4 nodes, each of which represents the classification class RUL and produces the final result RUL. 

Figure 29 shows the structure of the ManSplitLSTM. 

 

In the PoC, we measured and compared training time and validation accuracy for three runs per model. 

One run consisted of 50 training epochs. The number of repetitive runs and epochs was determined 

empirically. The tests were carried out on a standard Desktop PC with Ubuntu operating system. The 

detailed specification of the test PC can be found in section 6.3.1. All tests were carried out with the 

simulated data of aircraft gas turbines already described. The result of a processing run, as well as the 

classification data, provides a RUL as a number of cycles remaining until failure. The measurement 

of the accuracy of the results carried out in this test is based on the classification of the results into the 

two result classes RUL <= 30 cycles and RUL > 30 cycles. The task that the neural network has to 

solve thus corresponds to a binary classification. This approach was adopted from the Predictive 

Maintenance Template published by the AzureML Team for Microsoft which these PoC is based on 

(AzureML Team, 2015). The complete data processing pipeline is also taken from the Predictive 

Maintenance Template and its sources published on GitHub (AzureML Team, 2018). The reason why 

the training time and not the runtime was measured in the PoC is due to the Keras framework used in 

the PoC. Keras offers a ready-made and optimised LSTM which was used in this PoC. Since the Keras 

LSTM model provides the training time but not the forward time as a result parameter, training time 

was used in the PoC for reasons of simplicity. 
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Figure 29 - ManSplitLSTM example with layers and dimensions 

 

Figure 30 shows the results of the three runs per model with 50 training epochs each. On average, the 

ManSplitLSTM required a training time of 16 seconds per epoch. The NormalLSTM, on the other 

hand, required an average of 18.3 seconds per epoch. The required training time per epoch of the 

ManSplitLSTM is thus lower than that of the Standard LSTM in all three runs. Due to the rather 

randomly chosen experimental design, however, the improvement achieved can only be evaluated 

qualitatively in the sense of "comparably better" on the basis of the measured training times. Such a 
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determination is also the aim of this PoC. The concrete measured values and the resulting improvement 

in training time of around 13% should not be used as a quantitative value. Figure 30 shows the 

measured result data in comparison. 

 

Figure 30 - Training Epoch Time of NormalLSTM and ManSplitLSTM 

 

In the tests conducted, a slower increase in accuracy was observed for the ManSplitLSTM within the 

first 50 training epochs compared to the NormalLSTM. It is noticeable that the NormalLSTM model 

reaches a stable level of accuracy after about 20 epochs. This is significantly earlier than with the 

ManSplitLSTM. The measured accuracy of the ManSplitLSTM increases steadily throughout the 

training, but much more slowly than the NormalLSTM. After 50 epochs, the ManSplitLSTM does not 

quite reach the accuracy of the NormalLSTM. This could indicate that the ManSplitLSTM model 

needs more epochs to fully train. The randomly chosen split of data without taking into account 

possible correlations could be an explanation for the increased training requirement. Depending on the 

intended use, this effect could reduce the advantage gained by the reduced epoch training time in 

practical use. 

 

Figure 31 shows the measured values for the achieved accuracies in comparison. At well over 90%, 

both models achieve a hight level of accuracy. Looking at similar PdM projects that use LSTM, an 

accuracy of over 90% can be considered a very competitive value (MathWorks, 2021). The PoC is 

only intended to provide initial indications and not exact measurement results. How high a possible 

loss of accuracy due to the splitting of data actually is, cannot be determined on the basis of this PoC. 

However, this is also not its task. The results of the PoC show that the accuracy of the ManSplitLSTM 

has the potential to reach a similar accuracy as the NormalLSTM after about 50 epochs but clearly 
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outperforms it in runtime (about 16s compared to 18.3s which is 12,6% faster). From the course of the 

measurement curves shown in Figure 31 it can be assumed that the ManSplitLSTM can achieve even 

better accuracies through a higher number of training epochs. A well-chosen division of the data 

instead of the random division chosen here in the PoC also has the potential to further improve 

accuracy without affecting runtime. 

 

Figure 31 - Developing accuracy of NormalLSTM and ManSplitLSTM 

 

The results obtained from the PoC can be evaluated as successful in relation to the goals of this thesis. 

The expectations placed on the approach of splitting data in less complex subnetworks were basically 

confirmed. It is worth mentioned that no explicit parallel processing of the subnetworks was 

implemented in the PoC. Doing this could further improve the results. In practice, however, the degree 

of improvement always depends on the use case, the structure chosen for the neural network and the 

underlying data. Motivated by the positive results of the PoC, the SlicedLSTM approach will be further 

pursued in the following sections and tested in a quantitative study. 

6.3 Experimental Study 

This section describes the setup of the quantitative research in the form of an experimental study. The 

aim of this study is to prove the optimisation achieved by the SlicedLSTM compared to a standard 

LSTM. The design of the study is based on the general research methodology described in chapter 4 

and the quantitative study design described in section 4.4.  

In the following, the experimental study and its results will be explained. The study is conducted using 

a laboratory test with a test setup explained in section 6.3.1. Section 6.3.2 explains the selection of 
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data used. The following sections 6.3.3 and 6.3.4 then explain the details of implementation. The 

evaluation of the result is done in section 6.3.5. 

6.3.1 Setup 

The test setup consists of two deep neural networks, one with standard LSTM and one with 

SlicedLSTM as cell type. The data collection method is the measurement of processing times and 

accuracies. The meaning of the terms processing time and accuracy in the context of this thesis was 

defined in section 4.4. The test setup should be such that adjustments to the structure of the nets, the 

hyperparameter values and the underlying data can be easily made for different test runs. In the course 

of test execution, a certain number of test and repeat runs are required to obtain reliable results and to 

identify any outliers. 

The basic task of the laboratory test is to determine processing time in relation to the accuracy achieved 

for the neural nets tested in the comparative test. The idea behind the SlicedLSTM is that the time for 

processing a given task can be shortened compared to the standard LSTM due to its inner model 

architecture. Because of the arbitrary division of data in the SlicedLSTM, it is expected that 

correlations in data will be lost. This will probably lead to a reduction in accuracy. In addition, a certain 

overhead is to be expected due to the division into parallel networks and their aggregation, which can 

have a negative effect on the processing time. The processing time measured with the help of the 

laboratory test in relation to the accuracy are on first hand to prove whether the SlicedLSTM basically 

offers an advantage over the standard LSTM. Using various test series, it will additionally be shown 

how the runtimes and accuracies of the SlicedLSTM behave under different conditions and which 

trade-offs are necessary when using it. 

As already mentioned in the PoC, the prerequisite for all comparisons in this thesis is that the accuracy 

of the results generated with the SlicedLSTM must remain comparable to those of the standard LSTM. 

An accuracy at well over 90% seems to be standard when looking at similar PdM projects using LSTM 

(MathWorks, 2021). The test results of this series of tests will show that the loss of accuracy of the 

SlicedLSTM compared to the standard LSTM is in the range of a few percentage points. However, a 

precise definition of the term "comparable" will not be given in the context of this laboratory test. The 

laboratory test will show measurement results of processing time in relation to model accuracy. The 

assessment of how much loss of accuracy can be accepted for a given improvement in runtime is not 

intended to be part of this investigation. In the end, such a decision is up to the expert who makes the 

model selection for a specific project and knows the prevailing framework conditions and objectives 

there. 
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The laboratory tests are all carried out on a standard Desktop PC with the following specifications: 

CPU AMD Ryzen 5 3600 

Motherboard MSI B450 TOMAHAWK(MS-TC02) 

Memory 32 GB DDR4 SDRAM 

GPU NVIDIA GeForce RTX 2060 Super 8GB 

Drives Samsung SSD 970 Plus 500 GB 

Operating System Ubuntu 21.04 

 

All test runs were carried out on the CPU of the computer and not on its GPU. This is because the 

performance of the CPU can be better observed. In addition, the test code does not contain any special 

measures for scheduling on a GPU, which could possibly cause further disturbances in the 

measurement results. In all tests, only the test program ran on the test computer and thus had the full 

capacity available. To compensate for interference from operating system processes, each test run was 

repeated five times. Tests on different hardware were not carried out. Since this laboratory test only 

aims at relative comparisons of the models and no generally valid statements are made, this was also 

not considered necessary. 

 

For a run of the experiment, the following steps must be carried out in the given order (see A.4).  

1. Definition of the current model in torch_curent_model.py 

a. Change the layer structure in the corresponding class to create a new model structure. 

b. Adapt forward method to new layer structure 

2. Adapt torch_lstm_experiment.py 

a. (line 352) set model_type: "reference-model" or "sliced-model". 

b. (line 353) set architecture_string: should reflect model layout 

3. Execute Torch_lstm_experiment.py 

6.3.2 Data Set 

For the experimental study, the same data set is used as of the PoC. All of the data selection criterias 

described in section 6.2.3 are also valid for the experimental study. As with the PoC not only the data 

set but the entire data processing pipeline and the source code was included from the reference project 

(AzureML Team, 2018). Data is synthetically generated data from a NASA project to predict failures 

using Remaining Useful Lifetime (RUL) as result class. 

The data are available in NASA's repository as zip-compressed text files and comprise 1,414 

multivariate time series of varying lengths between 19 and 486 operating cycles (data samples). The 

data has already been divided by NASA into training and test subsets. Each time series in data 
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represents one operational use of a turbine. The turbines are different, but all turbines are of the same 

type. The training and test data sets each comprise an equal number of 707 time series. Each row (data 

sample) in data corresponds to one operating cycle of the turbine within a time series. The test data 

comprise 104,897 samples, the training data 160,360 samples. Each column in data contains a different 

attribute or a different measured value. The data sets each comprise 26 numerical columns with the 

individual attributes. A space is used as a separator. The attributes were anonymised so that their 

meaning cannot be traced. NASA provides the following information: Column 1: unit number, Column 

2: time, in cycles, Column 3: operational setting 1, Column 4: operational setting 2, Column 5: 

operational setting 3, Column 6: sensor measurement 1, Column 7: sensor measurement 2, ..., Column 

26: sensor measurement 21. 

Each turbine starts with a different degree of initial wear and manufacturing variations. However, the 

level of initial wear and manufacturing variations are unknown and thus represent an unknown in the 

learning process of the neural network. The initial state of a turbine in a time series must therefore be 

considered normal. There are three operating settings that have a significant influence on the turbine's 

performance. These settings are also included in data but are not recognisable due to the anonymisation 

of data. The data are also contaminated with sensor noise (NASA, 2008b). 

Each turbine runs normally at the beginning of a time series and develops an error at some point during 

the series. In the training set, the error increases until the system fails (last operation cycle in the time 

series). In the test set, the time series ends some time before the system fails. The goal of a PdM 

application, or neural network, is to predict the number of operating cycles remaining before failure, 

hereinafter referred to as Remaining Useful Lifetime (RUL). The RUL determined for a time series of 

the test set thus corresponds to the number of operating cycles that the engine will continue to run after 

the last cycle present in data (Saxena, et al., 2008), (Aha, et al., 2017), (Jia, et al., 2018). 

The accuracy of the results in the laboratory tests carried out in this thesis is determined by binary 

classification. The results are assigned to one of the two result classes RUL <= 30 cycles or RUL > 30 

cycles. The NASA data set used provides a vector of true values for the remaining useful life (RUL) 

for each data sample in the test data. This is used for the binary classification and finally the calculation 

of the achieved accuracy. In terms of validating the results obtained, it is trusted that the data provided 

by NASA and already used in several projects (including the Prognostics and Health Management 

(PHM) data competition at PHM'08) are reliable (Jia, et al., 2018). However, even if the reported RUL 

cycles did not correspond to the real conditions of the underlying turbine type, data would still be 

suitable for the relative comparison of the two LSTM models Standard LSTM and SlicedLSTM with 

identical setups and data carried out in the context of this thesis. 

 

Because the data set was already prepared in the Azure project mentioned, no additional data 

preparation was necessary and the complete data processing pipeline from this project is used. 
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Nevertheless, the preparation of data should be explained here, even though it was not carried out 

within this thesis. The following information is mainly taken from this project (AzureML Team, 2018). 

The raw data are divided into 4 data sets. Each data set represents a different turbine mode. The files 

of the different turbine modes for training, testing and the associated RULs are each distinguished by 

a file suffix, as follows: 

*_FD001 • 100 Trajectories (time series) 

• Conditions: ONE (sea level) 

• Fault Modes: ONE (High-pressure compressor (HPC) Degradation) 

*_FD002 • 260 Trajectories 

• Conditions: SIX 

• Fault Modes: ONE (HPC Degradation) 

*_FD003 • 100 Trajectories 

• Conditions: ONE (sea level) 

• Fault Modes: TWO (HPC Degradation, Fan Degradation) 

*_FD004 • 248 Trajectories 

• Conditions: SIX 

• Fault Modes: TWO (HPC Degradation, Fan Degradation) 

 

The 4 data sets each for training, test and RUL classification were combined into one data set in this 

thesis (suffix *_all) to get the largest possible data set for each epoch. In this laboratory test, the epoch 

time is to be measured. In order to determine runtime differences between the two models, a larger 

dataset is advantageous. The merged data set then comprises 708 trajectories with the conditions 

ONE/SIX and fault modes ONE/TWO. Merging the different conditions and fault modes results in an 

unbalanced data set where certain conditions and fault modes are potentially overrepresented. It can 

be assumed that this reduces the quality (accuracy) achieved by the models. However, since the present 

laboratory test is a relative comparison of two models, this disadvantage was accepted as a compromise 

for more data per epoch. But this compromise is only accepted under the condition that the achieved 

model quality still reaches a value of over 90% and thus remains comparable to the Azure reference 

project. 

To simplify the later evaluation, an additional feature was introduced in the training data, which 

defines the RUL class of the current cycle (sample). For this purpose, the number of cycles remaining 

until the end of the time series and thus the failure of the turbine was calculated for each cycle. This 

value was then assigned using the binary classification RUL <= 30 cycles or RUL > 30 cycles. The 

newly introduced label has the value 1 if the cycle is to be assigned to the class RUL <= 30 cycles and 

0 otherwise. 
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Subsequently, all 21 sensor values, as well as the 3 values of the operational settings and the cycle 

number were normalised to the value range [0, 1]. The cycle number was included in data because it 

not only has an ordering function in the sequence of the data, but also provides an indication of the 

operating time of the turbine. 

The time series of data prepared in this way were then converted into feature sequences with a fixed 

length of 50 cycles per sequence. Time series shorter than the selected window were discarded. For 

example, a time series with 150 cycles 𝑧 = 𝑧1, 𝑧2, … , 𝑧150 thus results in the following 101 feature 

sequences: 

• 𝑧1, … , 𝑧50 

• 𝑧2, … , 𝑧51 

• … 

• 𝑧101, … , 𝑧150 

In general, dividing a series of n cycles into sequences of window length k results in x as the number 

of sequences defined as follows: 

𝑥 = {
0, 𝑛 < 𝑘

𝑛 − 𝑘 + 1, 𝑒𝑙𝑠𝑒
 

In the present laboratory setup, this results in 125.909 sequences. 10% of those sequences are 

randomly chosen for validation. A validation rate between 10% and 20% is a common order of 

magnitude and has been chosen in other projects using the same NASA data set (Liu, et al., 2022). 

The feature sequences represent the live processing of a data stream with a sliding window of size 50. 

In each cycle, the new data arriving is processed together with data from the 49 previous cycles. 

6.3.3 LSTM Models 

In the following, the implementation of the LSTM models for the experimental study in the form of a 

laboratory experiment will be explained. In the study design in section 4.4 it was explained that it is 

recommended to use similar studies and their results as a comparison in order to avoid errors (Duckett, 

2021). This recommendation was also taken into account when implementing the LSTM models in 

this thesis. Therefore, a suitable implementation of a standard LSTM is selected first. The 

implementation of the SlicedLSTM will then be done by adapting and extending this code base. Such 

an implementation is preferable to an own development by the author, if only to avoid errors and 

reduce effort. The implementation of both models on the same code base also supports the 

comparability of the two models. 

 

The PoC described in section 6.2.3 of this thesis was implemented using the open source Deep 

Learning library Keras (Chollet, et al., 2022) and a TensorFlow backend (Google Brain, 2022). By 

using these libraries, the implementation effort for the PoC was greatly reduced. Keras offers highlevel 
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APIs with which a neural network with LSTM cells can be created and parameterised with a few 

commands. During construction and dimensioning, Keras offers intensive assistance and optimisation 

to the user. The Keras library is widely used in many projects. 

However, Keras is not considered suitable for the implementation of the experimental study in the 

form of a laboratory test. The main argument for this is that the APIs of Keras do not allow adaptation 

of the inner model architecture. The Keras library is open source and therefore all source code is 

available. However, the implementations of an LSTM cell in Keras is very extensive and includes a 

lot of code. Many code parts seem to have nothing to do with the actual function of an LSTM and are 

probably due to the already mentioned ease of use and compatibility with other frameworks. 

Converting the code of the LSTM implementation in Keras to a SlicedLSTM would, in the author's 

opinion, involve too much effort and risk. Errors resulting from adjustments to the model architecture 

would probably be difficult to solve. In addition, it cannot be determined what influence certain code 

parts assigned to optimisation or framework compatibility would have after manipulation on the 

comparative measurements to be carried out here. 

 

For the reasons mentioned above, the open-source program library PyTorch was chosen for the 

implementation of the Standard LSTM and the SlicedLSTM. PyTorch, like Keras, uses Python as 

programming language and is also geared towards machine learning. PyTorch was developed by 

Facebook's artificial intelligence research team and is released under the Facebook Open Source 

Privacy Policy (PyTorch, 2020). However, PyTorch is much more rudimentary compared to Keras 

and allows the implementation of custom machine learning models. 

The search for an open, well-documented implementation of a standard LSTM with PyTorch, 

preferably used in a comprehensible project context, led to the project “Building a LSTM by hand on 

PyTorch”. The article associated with the project describes the implementation of an LSTM in 

PyTorch step by step and also deals with variants such as the PeepholeLSTM (Esposito, 2020a). Due 

to the extensive documentation of the implementation and the freely available sources on GitHub 

(Esposito, 2020b), this project was chosen as the basis for the implementations in this thesis. The code 

of the implemented LSTM is clear to understand and each step is comprehensible. It should be 

mentioned again that the study described here performs a relative comparison between two models. 

The results are only valid in relation and under the defined test conditions and cannot be generalised. 

From the author's point of view, the selection of the mentioned implementation is justifiable on the 

basis of the listed reasons. The SlicedLSTM will be developed by extending the selected PyTorch 

code of the standard LSTM. It can therefore be assumed that possible disadvantages or errors in the 

included implementation apply to both models and do not affect the relative comparison. 

In the following, the code-side procedure of the implementation of the SlicedLSTM will be explained. 

Appendix A.4 contains the associated code extracts of the SlicedLSTM. The implementation of the 

SlicedLSTM follows the theoretical specification from section 6.2.2. For implementation reasons, the 
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order of operations of the inner layers in the code of the SlicedLSTM deviates somewhat from its 

theoretical considerations. In particular, the intermediate storage of partial results and their structuring 

for further processing is adapted to the use of tensors in PyTorch. One significant difference in the 

implementation is that the four weight matrixes for forget gate, input gate, tanh gate and output gate 

of each slice are stored in one matrix. In the theoretical consideration in section 6.2.2., the weight 

matrices of the individual slices were shown for each gate. Even though the order of the processing 

steps in the code is slightly different, it corresponds exactly to the theoretical specification from section 

6.2.2. 

Based on the example 3 in section 6.2.2 with input and hidden size of 3 and a division into split 1 

(x1 x2 h1 h2) and split 2 (x3 h3), the following processing sequence results from an 

implementation point of view (note: “|” is not part of the formula and only used as visual separator): 

(𝑥1 𝑥2 ℎ1 ℎ2) ⋅ (𝑾𝑰
1 | 𝑾𝑭

1 | 𝑾𝑮
1 | 𝑾𝑶

1 )

= ((sI1, sI2) (sF1, sF2) (sG1, sG2) (sO1, sO2)) 

 

(x3 h3) ⋅ (WI
2 | WF

2 | WG
2 | WO

2) = (sI3 sF3 sG3 sO3) 

 

The gate slices are then merged by component-wise concatenating the individual tuples, indicated by 

the symbol ⊕: 

((sI1, sI2) (sF1, sF2) (sG1, sG2) (sO1, sO2))⊕ (sI3 sF3 sG3 sO3)

⟹ ((sI1, sI2, sI3) (sF1, sF2, sF3) (sG1, sG2, sG3) (sO1, sO2, sO3)) 

Subsequently, the ConnectionLayer generates the respective output, shown here for the forget gate: 

(sF1, sF2, sF3) ⋅ (

𝑢F11 𝑢F12 𝑢F13
𝑢F21 𝑢F22 𝑢F23
𝑢F31 𝑢F32 𝑢F33

) = (𝑓1 𝑓2 𝑓3) 

 

The following are for further explanation of the demonstrated implementation in the gates and refer to 

the first slice of a SlicedLSTM with input size 4 and hidden size 3: 

𝐱𝐭 = (𝑥1 𝑥2 𝑥3 𝑥4)𝑡 

 and 𝐡𝐭−𝟏 = (ℎ1 ℎ2 ℎ3)
𝑡−1 

As mentioned, the input data is stored in a tensor in such a way that a weight matrix with all weights 

of all gates per slice is created. The storage is done within the slice separately for input data and hidden 

data. The dimension of the tensor of the input weights therefore is (𝑙𝑖) × (4 ⋅ 𝑙ℎ) with 𝑙𝑖 as size of the 

input vector and 𝑙ℎ as size of the hidden vector (i,n  ⊂ ℕ) The tensor of the hidden weights therefore 
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is (𝑙ℎ) × (4 ⋅ 𝑙ℎ). The vector matrix product of input data and weight matrix in slice 1 for forget gate 

(f), input gate (i), tanh gate (g) and output gate (o) looks as follows: 

(x1 x2 x3 x4)

⋅

(

 

𝑤f11 𝑤f12 𝑤f13 | 𝑤i11 𝑤i12 𝑤i13 | 𝑤g11 ⋯ 𝑤g13 | 𝑤o11 ⋯ 𝑤o13
𝑤f21 𝑤f22 𝑤f23 | 𝑤i21 𝑤i22 𝑤i23 | ⋮ ⋱ ⋮ | ⋮ ⋱ ⋮
𝑤f31 𝑤f32 𝑤f33 | 𝑤i31 𝑤i32 𝑤i33 | ⋮ ⋱ ⋮ | ⋮ ⋱ ⋮
𝑤f41 𝑤f42 𝑤f43 | 𝑤i41 𝑤i42 𝑤i43 | 𝑤g41 ⋯ 𝑤g43 | 𝑤o41 ⋯ 𝑤o43)

 

= (y1 y2 y3 | y4 y5 y6 | y7 y8 y9 | y10 y11 y12) = 𝒚𝟏 

(Note: According to the syntax defined in this document for the meaning of normal font and bold font, 

𝑦1 is a scalar value and 𝒚𝟏 is a vector.) 

 

The weight matrix of the hidden data in slice 1 for forget gate (f), input gate (i), tanh gate (g) and 

output gate (o) looks as follows: 

(h1 h2 h3)

⋅  (

𝑤f11́ ⋯ 𝑤f13́ | 𝑤i11́ ⋯ 𝑤i13́ | 𝑤g11́ ⋯ 𝑤g13́ | 𝑤o11́ ⋯ 𝑤o13́

⋮ ⋱ ⋮ | ⋮ ⋱ ⋮ | ⋮ ⋱ ⋮ | ⋮ ⋱ ⋮
𝑤f31́ ⋯ 𝑤f33́ | 𝑤i31́ ⋯ 𝑤i33́ | 𝑤g31́ ⋯ 𝑤g33́ | 𝑤o31́ ⋯ 𝑤o33́

)

= (y1́ y2́ y3́ | y4́ y5́ y6́ | y7́ y8́ y9́ | y10́ y11́ y12́ ) = 𝐲�́� 

 

The next step is to connect the gate vectors of the input layer and the hidden layer with the bias vector. 

In the SlicedLSTM code, the resulting gate vector is stored in the variable named 𝐠𝐚𝐭𝐞𝐬𝒏. 

𝐲𝟏 + 𝐲�́� + 𝐛𝟏 = 𝐠𝐚𝐭𝐞𝐬𝟏 

The next step is to apply the activation function: 

𝐠𝐚𝐭𝐞𝐬𝟏 = (g1 g2 g3 | g4 g5 g6 | g7 g8 g9 | g10 g11 g12) 

• Forget gate of the first slice: 𝜎(𝑔1 𝑔2 𝑔3) = 𝐟𝟏 

• Input gate of the first slice: 𝜎(𝑔4 𝑔5 𝑔6) = 𝐢𝟏 

• Tanh gate of the first slice: 𝑡𝑎𝑛ℎ(𝑔7 𝑔8 𝑔9) = 𝐠𝟏 

• Outputgate of the first slice: 𝜎(𝑔10 𝑔11 𝑔12) = 𝐨𝟏 

All further slices are done in the same way.  
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All concatenated gate slices are then merged in the ConnectionLayer. In the code of the SlicedLSTM, 

the gate slices are designated as total_f, total_i, total_g and total_o. In the explanation so far, only 

one slice was considered, which has input data size of 4 units and hidden data size of 3 units. To 

illustrate the ConnectionLayer, two more slices are given. Slice 2 contains 3 input data units and 2 

hidden data units. Slice 3 contains 2 input data units and 1 hidden data unit. The ConnectionLayer for 

these three slices is then structured in the SlicedLSTM code as shown below.  

For a better understanding, the assignment of the vectors (𝐟𝟏 𝐟𝟐 𝐟𝟑) to the individual values 

(f1 f2 f3 f4 f5 f6) is highlighted in colour in the following at the forget gate (𝐭𝐨𝐭𝐚𝐥_𝐟). The 

values of slice 1 (𝐟𝟏) are highlighted in green colour, values belonging to slice 2 (𝐟𝟐) in turquoise and 

the values of slice 3 (𝐟𝟑) in grey. The resulting vector 𝐟𝐭 is denoted by f_t in the code of the 

SlicedLSTM. The biases have not been specified for reasons of better readability, but they do exist. 

 𝐭𝐨𝐭𝐚𝐥_𝐟 = (𝐟𝟏 𝐟𝟐 𝐟𝟑) = (f1 f2 f3 f4 f5 f6) 

 
(f1 f2 f3 f4 f5 f6) ⋅ (

𝑢f11 ⋯ 𝑢f16
⋮ ⋱ ⋮
𝑢f61 ⋯ 𝑢f66

) = 𝐟𝐭 

 

The other gates are then carried out analogously: 

 𝐭𝐨𝐭𝐚𝐥_𝐢 = (𝐢𝟏 𝐢𝟐 𝐢𝟑) = (i1 i2 i3 i4 i5 i6) 

 
(𝑖1 𝑖2 𝑖3 𝑖4 𝑖5 𝑖6) ⋅ (

𝑢i11 ⋯ 𝑢i16
⋮ ⋱ ⋮
𝑢i61 ⋯ 𝑢i66

) = 𝒊𝐭 

  

𝐭𝐨𝐭𝐚𝐥_𝐠 = (𝐠𝟏 𝐠𝟐 𝐠𝟑) = (g1 g2 g3 g4 g5 g6) 

 
(𝑔1 𝑔2 𝑔3 𝑔4 𝑔5 𝑔6) ⋅ (

𝑢g11 ⋯ 𝑢g16
⋮ ⋱ ⋮

𝑢g61 ⋯ 𝑢g66
) = 𝒈𝐭 

  

𝐭𝐨𝐭𝐚𝐥_𝐨 = (𝐨𝟏 𝐨𝟐 𝐨𝟑) = (o1 o2 o3 o4 o5 o6) 

 
(𝑜1 𝑜2 𝑜3 𝑜4 𝑜5 𝑜6) ⋅ (

𝑢o11 ⋯ 𝑢o16
⋮ ⋱ ⋮

𝑢o61 ⋯ 𝑢o66
) = 𝒐𝐭 

The resulting vectors 𝐟𝐭, 𝒊𝒕, 𝒈𝒕, 𝒐𝒕 form the result of the respective gates of the SlicedLSTM for a 

processing step. These are now processed by component-wise multiplication into the new cell state 𝒄𝒕 

and the new hidden state 𝒉𝒕 just as in the standard LSTM: 

 𝒄𝒕 = 𝒇𝒕⊙𝒄𝒕−1 + 𝒊𝒕⊙𝒈𝒕 

 𝐡𝐭 = 𝐨𝐭⊙ tanh(𝐜𝐭) 
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6.3.4 Implementation 

The aim of the laboratory test is to compare the newly developed SlicedLSTM with the standard 

LSTM. The values to be compared are the runtime required to process an epoch and the achieved 

model quality (accuracy). The measured values determined in this way are to provide quantitative 

proof that the targeted runtime improvement of the SlicedLSTM compared to the standard LSTM is 

present and significant. This thesis was originally focused only on the runtime behaviour of the 

models. During the development of the PoC and the preparation of the laboratory test, the author 

decided to include the entire training time in the measurements. This includes the processing time at 

runtime (forward pass) as well as the actual training time (backward pass). In the definition of the 

quantitative study in section 4.4 of this thesis, this fact was already taken into account in the study 

design and the reasons for this were explained. 

 

In the following, the conduct of the laboratory tests is described first. Standard LSTM and 

SlicedLSTM differ in the internal architecture of the cell. The desired optimisation should therefore 

be independent of the selected model configuration. Therefore, to compare standard LSTM and 

SlicedLSTM cells multiple model configurations were tested. The first test results show that the two 

hyperparameters dropout rate and learning rate significantly influence the results. Therefore, different 

dropout rates and learning rates were experimented with and the best ones were selected for the 

laboratory test. In this context a model A is considered better than a model B if A has better accuracy 

or lower runtime or both. The results are analysed using different methods (aggregate functions) to 

aggregate the measurements taken in the multiple runs for each model configuration. All definitions 

were made empirically, as is the state of the art in the field of machine learning (Jeyakumar, et al., 

2020). Subsequently, the test runs were carried out with the different model configurations and 

hyperparameters. A certain number of repetitions of the epochs was taken into account in order to 

allow training and compensate for perturbations and the effects of the stochastic nature of neural 

networks (Detorakis, et al., 2019). This section ends with the graphical representation and textual 

explanations of the most important measurement results and its evaluation. The graphics of all test 

runs carried out can be found in Appendix A.3. 

In the search for a suitable model configuration for the laboratory tests for both models, different layer 

configurations are to be compared and the best selected. The goal was to achieve an accuracy of at 

least 90%. In machine learning, model configurations are typically found empirically through trial and 

error (Jeyakumar, et al., 2020). A model configuration is described by the definition of its layers. The 

layers are of a certain type. In this laboratory test, the layer types used were Dense, LSTM, 

SlicedLSTM and Dropout. For a Dense layer and for the standard LSTM, the implementation requires 

the specification of input size and output size (for LSTM hidden size = output size). The SlicedLSTM 

also requires the input size and hidden size of the individual slices to be specified. Dropout layers must 

be defined for framework implementation reasons. Their input size and output size is the output size 
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of the previous layer. Dropout layers are only necessary for setting parts of the input values to 0 during 

training the network in order to mitigate overfitting effects (Jeyakumar, et al., 2020). Therefore, 

dropout layers are defined in the following layer configurations only by specifying the dropout rate as 

a percentage. For example, a dropout rate of 20 means that 20% of the input values are randomly set 

to 0. 

 

The parameters used in the laboratory test to code the layer configuration are as listed in Table 8. The 

symbol li stands for the input size and lh for the hidden size. 

 

Parameter Syntax Example 

Dropout [Identifier]+[Proportion] drop20 means 20% dropout rate 

Standard LSTM ([li]-[lh]) (25-10) for a layer with input size 25 and hidden 

size 10 

SlicedLSTM ([li Slice 1]-[ lh Slice1]_ 

[li Slice 2]-[ lh Slice2] 

_ ... _ 

[li Slice k]-[ lh Slice k]) 

(5-2_4-1_3-2) defines a SlicedLSTM with Slice 

1: li =5, lh = 2, Slice 2: li =4, lh = 1 and Slice 3: li 

=3, lh = 2. Input size and hidden size of the entire 

layer are thus the sum of the sizes of the 

individual slices, here input size =12 and hidden 

size = 5 

Table 8 - Parameters used in the laboratory test to code the layer configuration 

 

The layer configuration of the entire network is then done using the syntax (coding layer 1)_(coding 

layer 2), ... (coding the output layer). Due to the way neural networks work, a layer i+1 must always 

have the output size of layer i as its input size. The first layer of the network must have as input size 

the number of features that enter the model. The output size of the output layer is defined by the desired 

result class. In the present laboratory test, the result of the model should be a binary classification into 

the two RUL classes RUL <= 30 cycles and RUL > 30 cycles. Therefore, a dense layer with output 

size 1 (value range (0, 1) ) was always used as the output layer. 

The following examples will show the layer configuration syntax used in the laboratory test. Since the 

output dense layer is always derived from the second last layer, this is omitted in the following syntax 

definition. 

Example 1: Layer configuration (10-3)_drop10_(3-2), this results in the following model: 

• Layer 1: Standard LSTM with input size 10 and hidden size 3. 

• Layer 2: Dropout Layer with 10% Dropout 
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• Layer 3: Standard LSTM with input size 3 and hidden size 2 

• Output layer: Dense layer with input size 2 (=hidden size layer 3) and output size 1 (always 

1) 

 

Example 2: Layer configuration (8-3_5-1)_(4-2)_drop15, this results in the following model: 

• Layer 1: SlicedLSTM with Slice1: input size 8 and hidden size 3 and Slice2: input size 5 and 

hidden size 1. 

• Layer 2: Standard LSTM with input size 4 and hidden size 2 

• Layer 3: Dropout layer with 15% dropout 

• Output layer: Dense layer with input size 2 (=hidden size layer 2) and output size 1 

 

Theoretically, one could also define a SlicedLSTM with only one split. However, the coding of the 

SlicedLSTM with only one split would not be unambiguous in the chosen syntax, since a standard 

LSTM is used for a specification such as (4-2). For the comparison test of the two models carried out 

here, a test with a SlicedLSTM with only one slice is not considered necessary. For simplicity, this 

potential ambiguity in the syntax was accepted for the laboratory test. In Example 2, a SlicedLSTM 

and a standard LSTM were combined in one neural network definition. This is possible, but is only 

intended here to illustrate the chosen syntax. In the laboratory tests carried out, however, such a 

mixture was not used because of the goal of model comparison. In the laboratory tests described below, 

an output layer is always used whose input size is derived from the hidden size of the second last layer 

and which has an output size of 1. As already mentioned, the output layer is not explicitly named in 

the configurations for reasons of simplicity, but it is always present. 

 

For the empirical search for suitable model configurations, approx. 20 different model configurations 

were tested for the standard LSTM as a reference model in initial trials. From these, the following four 

best model configurations (hereinafter referred to as the reference model) were selected for more 

extensive test runs: 

• Reference model 25-8_drop20_8-4_drop20 

• Reference model 25-6_drop20_6-3_drop20 

• Reference model 25-5_drop20_5-2_drop20 

• Reference model 25-5_drop10_5-2_drop10 

Tests were then conducted for each reference model over 50 epochs, each with four different learning 

rates 0.001, 0.005, 0.01 and 0.02. Each test run was repeated five times to minimise interferences and 

outliers. The results of the five test runs were then determined once using the aggregate function 

average and once using the median. Due to the four different learning rates and the two aggregate 

functions, there are eight results per reference model, which are shown in the following plots. 
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Figure 32 shows the development of the validation accuracy over 50 epochs of all test runs for 

reference model 25-8_drop20_8-4_drop20. Each plot has the reference model configuration and the 

learning rate used as heading. Two plots are shown next to each other for each of the five tested 

learning rates. The respective left plot shows the evaluation based on the aggregate functions mean, 

the respective right plot based on median. Compared to all four tested configurations, reference model 

25-8_drop20_8-4_drop20 developed a high level of accuracy after 30-40 epochs. The best results were 

achieved with a learning rate of 0.01 (see also section A.3.1). For the model comparison carried out in 

section 6.3.5, the learning rate of 0.01 is used for this model configuration. 
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Figure 32 – Accuracy of reference model configuration 25-8_drop20_8-4_drop20 

 

Figure 33 shows a boxplot of the ordinal distribution of the epoch run times of all epochs of all runs 

of all learning rates for reference model 25-8_drop20_8-4_drop20. The learning rate influences the 

accuracy, but not the runtime behaviour of the model. Therefore, all tested learning rates are 

summarised in the boxplot. The Y-axis shows the epoch runtime in seconds and the X-axis one box 

representation each for the forward times per epoch and the backward times per epoch. For 

presentation reasons, the total time is not shown. The representation by boxplots was chosen to give a 

clear impression of the range in which the epoch times of all test variations of a model layout lie and 

how they are distributed over this range. The orange line in the box shows the median of the epoch 

times as the value at which the smallest 50 % of the measured epoch times are less than or equal to. 

The box itself describes the range in which the middle 50 % of the epoch times lie. The lower end of 

the box, also called the lower quantile, is accordingly the value at which the smallest 25 % of the 

measured epoch times are smaller or equal. The upper end of the box (upper quantile) is the value at 

which the smallest 75 % of the measured epoch times are smaller or equal. The length of the box is 

called the interquartile range (IQR) and shows the dispersion of data in the mean range of values. The 

end of each of the two antennas, also called the whiskers, define the value closest to 1.5 times the IQR 
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from the lower and upper quantiles. The epoch times shown as circles above and below the antennas 

are classified as outliers (Hunter, et al., 2022). 

 

Figure 33 – Epoch time distribution of reference model configuration 25-8_drop20_8-4_drop20 

As a result, the reference model 25-8_drop20_8-4_drop20 showed a competitive accuracy in the 

measurement comparison of the different model configurations but long epoch times compared to the 

other model configurations measured in this laboratory test. All measured values shown here 

graphically are listed in concrete form in the evaluation section 6.3.5 in Table 9 to Table 13. 

 

For the following reference models only the test results with the best learning rate in each case are 

shown below. The diagrams used to choose the best learning rate for each of the model configurations 

are shown in Appendix A.3.1. The box plots of all test results with all the different learning rates are 

shown in Appendix A.3.2. 

Figure 34 and Figure 35 show the results of the test runs with the best learning rate of 0.005 for 

reference model 25-6_drop20_6-3_drop20. The accuracy of this reference model develops better than 

those of the first reference model 25-8_drop20_8-4_drop20. The epoch time of the forward pass is on 

the same level as for model 25-8_drop20_8-4_drop20, but the epoch time of the backward pass was 

significantly lower in 25-6_drop20_6-3_drop20. Again, all measured values shown here graphically 

are listed in concrete form in the evaluation section 6.3.5 in Table 9 to Table 13. 
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Figure 34 – Accuracy of reference model configuration 25-6_drop20_6-3_drop20 

 

Figure 35 - Epoch time distribution of reference model configuration 25-6_drop20_6-3_drop20 

 

Figure 36 and Figure 37 show the results of the test runs with the best learning rate of 0.01 for reference 

model 25-5_drop20_5-2_drop20. This model configuration showed better epoch times than the two 

models tested before but significantly less accuracy than model configuration 25-6_drop20_6-

3_drop20. All measured values shown here graphically again listed in concrete form in the evaluation 

section 6.3.5 in Table 9 to Table 13. The diagrams for selecting the best learning rate are shown in 

Appendix A.3.1. The diagrams of all test results and with all learning rates can be found in 

Appendix A.3.2. 
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Figure 36 – Accuracy of reference model configuration 25-5_drop20_5-2_drop20 

 

Figure 37 - Epoch time distribution of reference model configuration 25-5_drop20_5-2_drop20 

 

Figure 38 and Figure 39 show the results of the test runs with the best learning rate of 0.01 for reference 

model 25-5_drop10_5-2_drop10. This reference model showed an early and fast development of 

accuracy to a maximum of around 96% after 50 epochs. The achieved accuracy corresponds to those 

of the best reference model 25-6_drop20_6-3_drop20 so far. Figure 38 shows very strong drops in 

accuracy for run 5 in the range of epochs 20 to 30. Such drops can also be observed in almost all runs 

of all models, but they are much less pronounced than in run 5 of the model configuration 25-

5_drop10_5-2_drop10. These drops are attributed to the stochastic component of the optimiser used 

(Adam). Depending on the aggregation function used, these drops have a greater or lesser effect on 
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the result. In addition to accuracy, reference model 25-5_drop10_5-2_drop10 was significantly faster 

than the previous fastest reference model 25-5_drop20_5-2_drop20. In the course of the empirical 

model finding carried out here, the reference model 25-5_drop10_5-2_drop10 seems to be the best 

configuration. Reference model 25-5_drop10_5-2_drop10 was therefore chosen as a strong competitor 

to the SlicedLSTM. All measured values shown here graphically again listed in concrete form in the 

evaluation section 6.3.5 in Table 9 to Table 13. The diagrams for selecting the best learning rate are 

shown in Appendix A.3.1. The diagrams of all test results and with all learning rates can be found in 

Appendix A.3.2. 

 

  

Figure 38 – Accuracy of reference model configuration 25-5_drop10_5-2_drop10 

 

Figure 39 - Epoch time distribution of reference model configuration 25-5_drop10_5-2_drop10  



    

  

6  Approach for a performance-optimised Model 119 

 

 

 

 

 

Due to the internal structure of the SlicedLSTM with SplitLayer and ConnectionLayer, one could 

assume that a neural network with a SlicedLSTM layer is similarly deep as a network with two 

standard LSTM layers. An empirical search for suitable model configurations was also conducted for 

the SlicedLSTM. Due to the splits, the SlicedLSTM results in a significantly higher number of 

possibilities for a model configuration. Therefore, the number of trials for the SlicedLSTM was 

increased in contrast to that of the standard LSTM. Approximately 40 different model configurations 

were tested in upstream experiments. Here, tests were first carried out with one SlicedLSTM layer and 

then the tests were repeated with a network with two SlicedLSTM layers. The network with two 

SlicedLSTM layers did not achieve significantly better accuracy than the network with one 

SlicedLSTM layer. Based on these initial findings, 8 model configurations with one SlicedLSTM layer 

and one model configuration with two SlicedLSTM layers (hereinafter referred to as sliced models) 

were tested in more depth. 

• Sliced model (12-4_13-4)_drop20 

• Sliced model (12-8_13-8)_drop20_(8-4_8-4)_drop20 

• Sliced model (8-3_9-3_8-3)_drop20 

• Sliced model (10-2_15-3)_drop20 

• Sliced model (10-1_15-3)_drop20 

• Sliced model (10-1_15-2)_drop15 

• Sliced model (10-1_15-2)_drop10 

• Sliced model (10-1_15-1)_drop10 

• Sliced model (11-1_14-1) 

 

The first test with the SlicedLSTM was carried out with the sliced model configuration (12-4_13-

4)_drop20. This model configuration pursues a split of the input and hidden vectors in half as far as 

possible. However, the results achieved were not high enough to make a further comparison with the 

reference model. The sliced model configuration (12-4_13-4)_drop20 was therefore not investigated 

further. 

The previous tests had already shown that more slices and more layers in SlicedLSTM do not lead to 

an improvement in accuracy, but do worsen the runtime. To verify this again, two more model 

configurations were tested. The first defines three layers with the configuration (12-8_13-

8)_drop20_(8-4_8-4)_drop20. The results showed, as expected, no significant improvement in 

accuracy with longer runtime. The second model with the configuration (8-3_9-3_8-3)_drop20 uses 

only one SlicedLSTM layer, but splits the input into three slices. Even with this configuration, the 

accuracy was not significantly better with a longer runtime. The model configurations sliced model 

(12-8_13-8)_drop20_(8-4_8-4)_drop20 and (8-3_9-3_8-3)_drop20 are therefore not competitive and 

are not considered for further investigations. 
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After the first model configuration (12-4_13-4)_drop20 with a half division of the slices did not 

produce competitive results, the configuration (10-2_15-3)_drop20 was tested, dividing the slices 

unevenly. The tests were again performed with the four learning rates 0.001, 0.005, 0.01 and 0.02 and 

again five repetitive runs per learning rate. The results of these tests are shown in Figure 40. Compared 

to the first sliced model (12-4_13-4)_drop20 with an almost half split of the slices, sliced model (10-

2_15-3)_drop20 shows significantly better accuracy. According to Figure 41 the measured epoch 

times of model configuration (10-2_15-3)_drop20 also showed competitive values compared to the 

reference model. The learning rate 0.01 performed best, as shown in details in Appendix A.3.1. For 

the model comparison carried out in section 6.3.5, the learning rate of 0.01 is used for sliced model 

configuration (10-2_15-3)_drop20. All measured values shown here graphically are listed in concrete 

form in the evaluation section 6.3.5 in Table 9 to Table 13. 
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Figure 40 - Accuracy of sliced model configuration (10-2_15-3)_drop20 

 

Figure 41 - Epoch time distribution of sliced model configuration (10-2_15-3)_drop20  
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For the sliced model configuration tested in the following, only the accuracy plots with the best 

learning rate in each case are shown below. The diagrams used to choose the best learning rate for 

each of the model configurations are shown in Appendix A.3.3. The diagrams of all test results and 

with all learning rates are shown in Appendix A.3.4. All measured values are listed in concrete form 

in the evaluation section 6.3.5 in Table 9 to Table 13. 

 

  

Figure 42 - Accuracy of sliced model configuration (10-1_15-3)_drop20 

 

Figure 43 - Epoch time distribution of sliced model configuration (10-1_15-3)_drop20 
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Motivated by the results with uneven distribution of the slices, an attempt was made with sliced model 

(10-1_15-3)_drop20 to dimension the model smaller in order to save runtime. For this purpose, the 

hidden size was reduced by 1. Figure 42 shows the measured accuracy of sliced model (10-1_15-

3)_drop20 with the best learning rate of 0.005. The model achieved an accuracy comparable to the 

previously tested sliced model (10-2_15-3)_drop20 with a smaller size of the network layers and 

therefore faster epoch times (Figure 43). For comparison with the reference model, sliced model (10-

1_15-3)_drop20 is thus better suited than sliced model (10-2_15-3)_drop20. 

 

  

Figure 44 - Accuracy of sliced model configuration (10-1_15-2)_drop15 

 

 

Figure 45 - Epoch time distribution of sliced model configuration (10-1_15-2)_drop15 
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In the next test step with sliced model (10-1_15-2)_drop15 the size of the hidden layers was reduced 

by 1 and the dropout rate was reduced from 20% to 15%, due to the lower size of the hidden layers. 

This model configuration showed faster epoch times but significantly worse accuracy was achieved 

than with the previous model configuration (10-1_15-3)_drop20. Figure 44 shows the accuracy and 

Figure 45 the measured epoch times for the model configuration (10-1_15-2)_drop15 with the best 

learning rate 0.01. 

 

  

Figure 46 - Accuracy of sliced model configuration (10-1_15-2)_drop10 

 

 

Figure 47 - Epoch time distribution of sliced model configuration (10-1_15-2)_drop10 
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With the model configuration (10-1_15-2)_drop10, only the dropout rate was further reduced from 

15% to 10% compared to sliced model (10-1_15-2)_drop15. As a result, sliced model (10-1_15-

2)_drop10 achieved better accuracy comparable to that of sliced models (10-2_15-3)_drop20 and (10-

1_15-3)_drop20 at lower epoch times. Figure 46 shows the measured accuracy, Figure 47 the epoch 

times for sliced model (10-1_15-2)_drop10 with the best learning rate 0.02. 

 

  

Figure 48 - Accuracy of sliced model configuration (10-1_15-1)_drop10 

 

 

Figure 49 - Epoch time distribution of sliced model configuration (10-1_15-1)_drop10 
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After the reduction of the dropout rate with reduced hidden size restored competitive accuracy, the 

hidden size was reduced again for sliced model (10-1_15-1)_drop10. This model provided a accuracy 

comparable to the previous model configuration (10-1_15-2)_drop10. However, the epoch times were 

again lower. Figure 48 and Figure 49 show the results for sliced model (10-1_15-1)_drop10 with the 

best performing learning rate 0.01. 

 

  

Figure 50 - Accuracy of sliced model configuration (11-1_14-1) 

 

 

Figure 51 - Epoch time distribution of sliced model configuration (11-1_14-1) 
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After the hidden size could be minimised, sliced model (11-1_14-1)_drop10 was used to change the 

distribution of the slices again. The results are comparable with those of the previous sliced model 

(10-1_15-1)_drop10. In the later comparative tests, the additional aggregate function peak accuracy 

value was introduced in addition to average and median. In this type of evaluation, however, sliced 

model (11-1_14-1) delivers significantly worse values than sliced model (10-1_15-1)_drop10. Figure 

50 and Figure 51 show the results for sliced model (11-1_14-1) with the best performing learning rate 

0.02. 

 

As a result, the model configurations (10-1_15-1)_drop10 and (11-1_14-1) appear to be best suited 

for comparison with the reference model. Both configurations achieve a comparable accuracy as the 

reference model (Standard LSTM). The extent to which the runtime of the two SlicedLSTM models 

can outperform that of the standard LSTM is determined in the following section 6.3.5. 

6.3.5 Evaluation 

For the evaluation of the measurement results for model comparison, the runs carried out in section 

6.3.4 are combined graphically. Three different aggregate functions were used to determine the results 

for the comparison of the models. These are the average and the median already used in section 6.3.4 

and additionally a self defined metric named Peak Validation Accuracy (PVA). Normally, when 

training neural networks, the value used as the result is not the maximum, but the value that was 

reached or exceeded with a certain number. This allows the sensitivity of measurement to be regulated, 

outliers are filtered out and overfitting is avoided. For all measurements in this laboratory test, the 

value of this number, designated k-best, was set to five (10% of the 50 epochs). This number was 

considered plausible by the author in order to take the best values into account and filter out outliers 

sufficiently at the same time. 

Arithmetic mean and median are proven statistical methods, also in machine learning (Melnikov, et 

al., 2016). For each of the 50 epochs performed in the experimental study, the mean of the result values 

of the five replicate runs per learning rate is calculated. The result for the aggregation function mean 

then is the k-best out of the measured mean values. The median is calculated in the same way. 

Particular in the figures Figure 44, Figure 48 and Figure 50, the accuracy of the individual runs 

fluctuates quite strongly in some cases. This shows that the results of the aggregate functions mean 

and median are noticeably negatively influenced by poorly performing runs. This disregards the motto 

often followed in the field of machine learning that only the best model counts (Melnikov, et al., 2016). 

Motivated by this motto, the self defined metric named PVA was defined. In accordance with the 

approach used to measure mean and median, the PVA is the k-best peak value of the 50 epochs. 

However, this does not have to be the accuracy at the end of the 50 epochs performed. While mean 

and median represent an aggregate of the values of all five runs per epoch, PVA always considers only 

the best value. In this sense, PVA is not an aggregate function. 
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The following plots show all the comparison models with their required runtime and the achieved 

accuracy. Figure 52 illustrates the comparative data of the models calculated with the aggregate 

function mean for the entire epoch time. The corresponding measured values are listed in Table 9. The 

Standard LSTM no. 9 achieves the highest accuracy with 96.71%. The SlicedLSTM no. 1 is the fastest 

model with 5.374 seconds for the entire epoch. The fastest SlicedLSTM no. 1 is 26.92% faster and 

with 94.73% accuracy only 2.05% less accurate than the most accurate Standard LSTM no. 9. 

Comparing the fastest SlicedLSTM no. 1 (5.374s) with the fastest Standard LSTM, which is the no. 7 

with 6.570s, the fastest SlicedLSTM is still 18.20% faster than the fastest Standard LSTM. The 

accuracy of the fastest SlicedLSTM no. 1 is only 1.18% lower than that of the fastest Standard LSTM 

Nr. 7 (94.73% to 95.86%). This measurement shows that the SlicedLSTM clearly outperforms the 

standard LSTM when the entire epoch is considered. 

 

 

Figure 52 - Model comparison total epoch time with aggregate function mean 
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Number Type Configuration LR Accuracy Time 

1 SlicedLSTM (10-1_15-1)_drop10 0.01 94.73% 5.374s 

2 SlicedLSTM (10-1_15-2)_drop10 0.02 95.50% 7.444s 

3 SlicedLSTM (10-1_15-2)_drop15 0.01 94.90% 7.436s 

4 SlicedLSTM (10-1_15-3)_drop20 0.005 95.56% 7.777s 

5 SlicedLSTM (10-2_15-3)_drop20 0.01 95.76% 8.697s 

6 SlicedLSTM (11-1_14-1) 0.02 94.56% 5.450s 

7 Standard LSTM 25-5_drop10_5-2_drop10 0.01 95.86% 6.570s 

8 Standard LSTM 25-5_drop20_5-2_drop20 0.01 94.89% 6.595s 

9 Standard LSTM 25-6_drop20_6-3_drop20 0.005 96.71% 7.354s 

10 Standard LSTM 25-8_drop20_8-4_drop20 0.01 96.31% 8.164s 

Table 9 - Model comparison total epoch time with aggregate function mean 

 

 

Figure 53 - Model comparison forward time with aggregate function mean 
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Number Type Configuration LR Accuracy Time 

1 SlicedLSTM (10-1_15-1)_drop10 0.01 94.73% 2.431s 

2 SlicedLSTM (10-1_15-2)_drop10 0.02 95.50% 3.828s 

3 SlicedLSTM (10-1_15-2)_drop15 0.01 94.90% 3.825s 

4 SlicedLSTM (10-1_15-3)_drop20 0.005 95.56% 3.955s 

5 SlicedLSTM (10-2_15-3)_drop20 0.01 95.76% 4.415s 

6 SlicedLSTM (11-1_14-1) 0.02 94.56% 2.442s 

7 Standard LSTM 25-5_drop10_5-2_drop10 0.01 95.86% 3.273s 

8 Standard LSTM 25-5_drop20_5-2_drop20 0.01 94.89% 3.280s 

9 Standard LSTM 25-6_drop20_6-3_drop20 0.005 96.71% 3.747s 

10 Standard LSTM 25-8_drop20_8-4_drop20 0.01 96.31% 3.639s 

Table 10 - Model comparison forward time with aggregate function mean 

 

Figure 53 and Table 10 show the same test series as shown in Figure 52 and Table 9 but here only the 

times of the forward path. The forward path is the processing time at runtime, which is the focus of 

this thesis. Aggregation function is still mean. Again, the SlicedLSTM no. 1 is the fastest model and 

Standard LSTM no. 9 the most accurate. SlicedLSTM no. 1 is 35.12% faster on the forward path and 

still only 2.05% less accurate than the most accurate Standard LSTM Nr 9. Standard LSTM no. 7 is 

the fastest reference model. When comparing the fastest SlicedLSTM no. 1 with the fastest Standard 

LSTM no. 7, SlicedLSTM no. 1 is still 25.73% faster than the Standard LSMT no. 7 although the 

accuracy is only 1.18% lower (2.431s compared to 3.273s and 94.73% accuracy compared to 95.86%). 

As with mean, the SlicedLSTM again clearly outperforms the standard LSTM, especially in terms of 

runtime (forward pass). 

 

Figure 54 and Table 11 again show the same test series but here only the times of the backward path. 

The SlicedLSTM no. 1 is here also clearly the fastest model during training, Standard LSTM no. 9 

still the most accurate. In the backward pass the SlicedLSTM no. 1 is 20.34% faster with only 2.05% 

lower accuracy than the most accurate standard LSTM no. 9. Compared with the fastest Standard 

LSTM no. 7, the SlicedLSTM no. 1 is 10.32% faster at only 1.18% lower accuracy (2.616s compared 

to 2.917s and 94.73% accuracy compared to 95.86%). Even though the training time (backward pass) 

is not the focus of this thesis, the results show that the SlicedLSTM is able to outperform the standard 

LSTM even while learning. 
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Figure 54 - Model comparison backward time with aggregate function mean 

 

Number Type Configuration LR Accuracy Time 

1 SlicedLSTM (10-1_15-1)_drop10 0.01 94.73% 2.616s 

2 SlicedLSTM (10-1_15-2)_drop10 0.02 95.50% 3.186s 

3 SlicedLSTM (10-1_15-2)_drop15 0.01 94.90% 3.207s 

4 SlicedLSTM (10-1_15-3)_drop20 0.005 95.56% 3.438s 

5 SlicedLSTM (10-2_15-3)_drop20 0.01 95.76% 3.906s 

6 SlicedLSTM (11-1_14-1) 0.02 94.56% 2.649s 

7 Standard LSTM 25-5_drop10_5-2_drop10 0.01 95.86% 2.917s 

8 Standard LSTM 25-5_drop20_5-2_drop20 0.01 94.89% 2.951s 

9 Standard LSTM 25-6_drop20_6-3_drop20 0.005 96.71% 3.284s 

10 Standard LSTM 25-8_drop20_8-4_drop20 0.01 96.31% 4.138s 

Table 11 - Model comparison backward time with aggregate function mean 
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The following figures and tables show the corresponding results of the comparisons with the aggregate 

function median. The times for forward, backward and total epoch time are illustrated in Figure 55, 

Figure 56 and Figure 57 and summarised in Table 12. 

 

Figure 55 - Model comparison total epoch time with aggregate function median 

 

 

Figure 56 - Model comparison forward time with aggregate function median 
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Figure 57 - Model comparison backward time with aggregate function median 

 

Number Type LR Accuracy Total 

Epoch 

Forward Backward 

1 SlicedLSTM 0.01 94.73% 5.357s 2.414s 2.616s 

2 SlicedLSTM 0.02 95.50% 7.446s 3.829s 3.186s 

3 SlicedLSTM 0.01 94.90% 7.436s 3.830s 3.209s 

4 SlicedLSTM 0.005 95.56% 7.775s 3.949s 3.434s 

5 SlicedLSTM 0.01 95.76% 8.699s 4.411s 3.905s 

6 SlicedLSTM 0.02 94.56% 5.448s 2.442s 2.644s 

7 Standard 

LSTM 

0.01 95.86% 6.573s 3.275s 2.918s 

8 Standard 

LSTM 

0.01 94.89% 6.599s 3.287s 2.949s 

9 Standard 

LSTM 

0.005 96.71% 7.342s 3.737s 3.282s 

10 Standard 

LSTM 

0.01 96.31% 8.149s 3.639s 4.128s 

Table 12 - Model comparison forward, backward and total epoch time with aggregate function median  
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Also when using median as the aggregation function, there is a clear improvement in runtime with the 

SlicedLSTM compared to the standard LSTM as the reference model. SlicedLSTM no. 1 again is 

always the fastest. For the total epoch time (see Figure 55 and Table 12), it is 18.5% faster (5.357s) 

than the fastest standard LSTM no. 7, which needs 6.573s for the same calculation. The accuracy 

achieved by the sliced LSTM no. 1 with 94.73% again is only 1.18% lower than that of the fastest 

reference model no. 7 with 95.86%. Comparing the fastest SlicedLSTM with the most accurate 

Standard LSTM no. 9, it is even 27.04% faster with only 2.05% loss of accuracy (5.357s compared to 

7.342s and 94.73% accuracy compared to 96.71%). 

In the forward pass and backward pass, SlicedLSTM no. 1 is also the fastest SlicedLSTM whereas 

Standard LSTM no. 7 is the fastest and Standard LSTM no. 9 the most accurate reference model. In 

the forward pass (see Figure 56 and Table 12), the SlicedLSTM no. 1 needs 2.414s and is thus 26.29% 

faster than the fastest reference model no. 7 with 3.275s and 35.40% faster than the most accurate 

reference model no. 9 with 3.737s. The SlicedLSTM no. 1 completes training in the backward pass 

(see Figure 57 and Table 12) with 2.616s which is 10.35% faster than the fastest standard LSTM no. 

7 with 2.918s and 20.29% faster than the most accurate reference model no. 9 with 3.282s. The 

performance gain was thus greatest in the forward pass. The improvement in runtime targeted with the 

SlicedLSTM could thus be demonstrated. The accuracies are always the same for total epoch time, 

forward pass and backward pass. 

 

Figure 58 - Model comparison total epoch time with aggregate function PVA 
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Figure 59 - Model comparison forward time with aggregate function PVA 

 

 

Figure 60 - Model comparison backward time with aggregate function PVA 
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Number Type LR Accuracy Total 

Epoch 

Forward Backward 

1 SlicedLSTM 0.01 94.73% 5.349s 2.404s 2.619s 

2 SlicedLSTM 0.02 95.50% 7.409s 3.822s 3.185s 

3 SlicedLSTM 0.01 94.90% 7.430s 3.828s 3.207s 

4 SlicedLSTM 0.005 95.56% 7.767s 3.951s 3.439s 

5 SlicedLSTM 0.01 95.76% 8.712s 4.409s 3.908s 

6 SlicedLSTM 0.02 94.56% 5.469s 2.449s 2.655s 

7 Standard 

LSTM 

0.01 95.86% 6.555s 3.271s 2.915s 

8 Standard 

LSTM 

0.01 94.89% 6.601s 3.278s 2.940s 

9 Standard 

LSTM 

0.005 96.71% 7.334s 3.732s 3.273s 

10 Standard 

LSTM 

0.01 96.31% 8.185s 3.658s 4.137s 

Table 13 - Model comparison forward, backward and total epoch time with aggregate function PVA 

 

The evaluation with PVA as the evaluation function again clearly shows that the SlicedLSTM 

outperforms the standard LSTM, especially in terms of runtime (forward pass). Considering all 

measurements with total epoch time, forward pass and the backward pass, the sliced LSTM no. 1 is 

always the fastest sliced LSTM, while the standard LSTM no. 7 is the fastest and the standard LSTM 

no. 9 the most accurate reference model. 

At total epoch time (see Figure 58 and Table 13) SlicedLSTM no. 1 is 18.40% faster than the fastest 

Standard LSTM no. 7 (5.349s compared to 6.555s). Comparing the fastest SlicedLSTM no. 1 with the 

most accurate Standard LSTM no. 9, the measured improvement in runtime is 27.07%.  

As already established with the aggregate functions mean and median, the SlicedLSTM achieves the 

greatest runtime improvement in the forward pass (see Figure 59 and Table 13). This is a very pleasing 

result, since the focus of this thesis is on the forward pass, i.e. on the processing of the model at 

runtime. Looking at the measured results of the forward pass, the fastest SlicedLSTM no. 1 is 26.51% 

faster than the fastest Standard LSTM no. 7 and 35.58% faster than the most accurate Standard LSTM 

no. 9 (2.404s compared to 3.271s and 3.732s). With the backward pass, the measured runtime 

improvements are somewhat smaller than with the forward pass, but still significant (see Figure 60 
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and Table 13). In the backward pass, the fastest SlicedLSTM no. 1 is 10.15% faster than the fastest 

Standard LSTM no. 7 and 19.98% faster than the most accurate Standard LSTM no. 9 (2.619s 

compared to 2.915s and 3.273s). 

The loss in accuracy for all measurements is again only 1.18% when comparing the fastest 

SlicedLSTM no. 1 with the fastest Standard LSTM no. 7 (94.73% compared to 95.86%). Compared 

to the most accurate Standard LSTM no. 9, the fastest SlicedLSTM no. 1 is only 2.05% less accurate 

(94.73% compared to 96.71%). In all measurements performed in this experimental study, the 

accuracy achieved by the fastest SlicedLSTM no. 1 was always close to 95%. This is far more than 

the value of 90%, which was defined as the minimum accuracy in the context of this thesis. 

 

In all measurements with different aggregate functions, but especially when using PVA, the 

SlicedLSTM outperforms the standard LSTM as a reference model in runtime with comparable 

accuracy. The best performance values for all aggregate functions were achieved by SlicedLSTM 

model no. 1. The fastest reference model was the Standard LSTM no. 7 where the Standard LSTM 

no.9 was the most accurate of the models compared. Table 14 summarises the measurement results 

presented in this section for the best models no. 1, 7 and 9. Table 14 lists the measured accuracies and 

the epoch times determined using the different aggregate functions.  

 

Aggregate Model* Type Accuracy 
Total 

Epoch 
Forward Backward 

Mean 

1 SlicedLSTM 94.73% 5.374s 2.431s 2.616s 

7 Standard LSTM 95.86% 6.570s 3.273s 2.917s 

9 Standard LSTM 96.71% 7.354s 3.747s 3.284s 

Median 

1 SlicedLSTM 94.73% 5.357s 2.414s 2.616s 

7 Standard LSTM 95.86% 6.573s 3.275s 2.918s 

9 Standard LSTM 96.71% 7.342s 3.737s 3.282s 

PVA 

1 SlicedLSTM 94.73% 5.349s 2.404s 2.619s 

7 Standard LSTM 95.86% 6.555s 3.271s 2.915s 

9 Standard LSTM 96.71% 7.334s 3.732s 3.273s 

(* Model 1 = fastest SlicedLSTM. Model 7 = fastest reference model. Model 9 = most accurate reference model) 

Table 14 - Measurement results for the best models no. 1, 7 and 9  
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Table 15 shows the calculated percentage improvements of the SlicedLSTM no. 1 compared to the 

two reference models Standard LSTM no. 7 and no. 9 for the total epoch time, the forward pass and 

the backward pass. 

Aggregate 

function 

SlicedLSTM no. 1 

compared to: 

Loss of 

accuracy 

Level of improvement in time [%] 

Total 

Epoch 
Forward Backward 

Mean 
Standard LSTM no. 7 1.18% 18.20% 25.73% 10.32% 

Standard LSTM no. 9 2.05% 26.92% 35.12% 20.34% 

Median 
Standard LSTM no. 7 1.18% 18.50% 26.29% 10.35% 

Standard LSTM no. 9 2.05% 27.04% 35.40% 20.29% 

PVA 
Standard LSTM no. 7 1.18% 18.40% 26.51% 10.15% 

Standard LSTM no. 9 2.05% 27.07% 35.58% 19.98% 

Average* 
Standard LSTM no. 7 1.18% 18.37% 26.17% 10.27% 

Standard LSTM no. 9 2.05% 27.01% 35.37% 20.21% 

* Average as simple mean over all three aggregate functions per model 

Table 15 – Level of improvement achieved by SlicedLSTM no. 1 

 

It is worth mentioning that SlicedLSTM no 1 was the fastest SlicedLSTM model, but closely followed 

by SlicedLSTM model no 6. This was to be expected, as these two models have the smallest internal 

size and yet offer comparable accuracy. These two model configurations already delivered the best 

results when selecting the model configurations in section 6.3.3. 

 

During the measurements, it was noticed that the accuracy achieved by the SlicedLSTM converge 

more slowly during training compared to the reference model. This effect is attributed to the fact that 

the inner SplitLayer and ConnectionLayer of the SlicedLSTM require more training effort at the 

beginning of the training than the standard LSTM. After about 20 epochs, however, this effect is 

almost completely balanced and the accuracy of the two model approaches develops similarly well. In 

the laboratory test, 50 epochs were performed and measured for each of the test runs. If the laboratory 

test were extended to significantly more than 50 epochs, even better PVA values will be expected with 

the SlicedLSTM. However, the accuracy values of always more than 94.5% achieved in the laboratory 

test are considered sufficient for the comparison test and the objective of this thesis. 
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6.4 Summary 

As expected in the theoretical definition of the SlicedLSTM in section 6.2.2, the deeper inner structure 

of a SlicedLSTM cell allows a certain task to be solved with a less complex neural network structure 

than is the case when using standard LSTM cells. This confirms hypothesis 2 set out in the research 

design in section 5.5: if a neural cell has a deeper inner structure, this leads to less complex networks. 

The lower complexity of the SlicedLSTM then results in reductions in the required runtime, which 

confirms hypothesis 1 set out in the research design in section 5.5: if the input data of a neural cell is 

divided into several simpler sub-layers, the neural cell can process data faster overall despite the 

resulting overhead and with comparable quality of results. The reduction of the runtime was first 

proven in the PoC in section 6.2.3 and then confirmed in the laboratory test and under the described 

conditions and data. According to research question RQ4 (see section 1.2), the aim of this thesis, to 

find a novel model type that significantly improves runtime behaviour with comparable result quality, 

was achieved with the SlicedLSTM and proven in the quantitative Study in this thesis. Even in the 

backward pass, the fastest SlicedLSTM was always more than 10% faster than all reference models. 

The greatest improvements in runtime were achieved in the forward pass, i.e. the processing time at 

runtime. The average improvement in processing time (forward pass) of the fastest SlicedLSTM no 1 

over the three aggregation functions was 26.17% compared to the fastest reference model Standard 

LSTM no. 7 and 35.37% compared to the most accurate reference model Standard LSTM no. 9 while 

the loss in accuracy was only between 1.18% and 2.05%. 
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7 Conclusion & Future Work 

The use of neural networks for Predictive Maintenance systems in IIoT environments is becoming 

increasingly widespread. The reasons for this were comprehensively elaborated and presented in the 

basic chapters of this thesis. It was also explained and confirmed by means of a qualitative study that 

almost all currently used model architectures of neural networks focus exclusively on achieving the 

highest possible result accuracy. In contrast, the runtime behaviour and resource requirements of a 

network do not play a significant role. In the basic chapters of this thesis, it was shown that in the area 

of Predictive Maintenance applications there are definitely use cases in which the performance of 

neural networks is a decisive factor for their usability. This was also confirmed by the statements of 

the experts interviewed during the qualitative study. Especially in IIoT environments and Predictive 

Maintenance systems, it was proven that such a need exists. Since there is currently no architecture 

for neural networks that is explicitly geared towards performance, the corresponding technologies are 

lacking for these application areas. This inhibits the use of neural networks in the area of Predictive 

Maintenance and IIoT or leads to the application of optimisation approaches that introduce more 

complexity into the network and thus complicate its trainability and applicability. In the context of 

this thesis, the question was raised whether it is possible to achieve better runtimes with similar result 

quality using a new architecture of neural network cells. At the same time, however, the complexity 

of the neural network should not be further increased by the new architecture. Additional mechanisms 

or pre-processing steps purely for performance optimisation, whether executed manually or 

automatically, should be avoided. 

 

From the basic chapters of this thesis, and in particular from the related works listed, it is evident that 

reducing the complexity of a neural network represents the greatest lever for performance 

improvements. Improved parallelisability also leads to an improvement in performance, but the effect 

of reduced complexity may be estimated to be much higher. This fact has already been pointed out in 

the chapter on related work. It was also shown in the chapter on related work that existing optimisation 

approaches either refer to the optimisation of the network structure or accelerate the processing in the 

actual network by means of data-side pre-processing steps. A neural cell whose architecture is 

designed for use in time-critical Predictive Maintenance applications and IIoT environments did not 

exist until now. Furthermore, this was also shown in the chapter on related work and in the qualitative 

study. 

Based on the approaches of performance optimisation by splitting data in an upstream, usually 

manually performed, processing step, the Sliced Long Short-Term Memory (SlicedLSTM) emerged 

as a new model architecture of a neural cell in the context of this thesis. The SlicedLSTM is based on 

the architecture of the Standard Long Short-Term Memory Neural Network (Standard LSTM) with its 

advantages in the application field. However, due to a new inner architecture of the SlicedLSTM, the 

focus is on the processing time and the resource requirements of the cell and not on its maximum result 
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quality. The basic principle here is to already map a segmentation of the input data and the ability for 

parallelisation in the internal architecture. A similarly oriented procedure could not be found in all the 

research carried out in the context of this work. The SlicedLSTM cell itself is capable of independently 

splitting the incoming data, processing it in parallel layers and aggregating it again in a final result 

layer. 

Within the framework of a quantitative study, the improvement of the runtime behaviour of the 

SlicedLSTM was verified. In this study, the SlicedLSTM was able to clearly outperform the standard 

LSTM under the given framework conditions. The general framework conditions include in particular 

the use case of Predictive Maintenance and the data used in the study. However, a general validity 

cannot be derived from the results of this study. The improvements achieved by the SlicedLSTM 

developed in this thesis should be further tested in future research activities. This should be done under 

further use cases and with other data. From the basic idea of the SlicedLSTM, it may also be possible 

to derive other cell architectures that further improve the effect of the SlicedLSTM as part of future 

research. 

 

The standard LSTM is an established and widely used model architecture. Various forms of 

optimisation (e.g. Peephole or GRU) improve its capabilities. Highly developed frameworks offer 

ready-made LSTM implementations whose programming and framework compatibility are well 

developed. The application case and the data are always a determining factor for the performance of a 

particular model type. The newly developed SlicedLSTM approach outperforms the Standard LSTM 

as a reference model in the framework of this thesis. All measurements and interpretations of the 

results are only made under the framework conditions of this thesis. The results achieved in this thesis 

were not examined for their general validity. However, the results of this thesis provide strong 

evidence that the SlicedLSTM is a competitive model architecture that can achieve significant runtime 

improvements. 

 

For all measurements carried out in the context of this thesis the measured improvements in runtime 

result solely from the reduction in complexity. The SplitLayer of the SlicedLSTM consists of the 

parallel arrangement of several sublayers in which the split input data are processed independently of 

each other. The parallel and independent arrangement of the SplitLayer is an ideal prerequisite for 

parallel processing. Additional performance improvements can be expected from this. Programming 

parallel processing functions for the SplitLayer of the SlicedLSTM would exceed the scope of this 

thesis in terms of time and programming effort. However, the SlicedLSTM model developed within 

the scope of this thesis offers the starting point for making use of this further potential of the 

SlicedLSTM. 
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In section 3.4 of this thesis, approaches are described in which the input data are manually split in an 

upstream step. The split data leads to a simplification of the subnetworks and thus to shorter processing 

times overall. In this, the manual division of data is done by expert knowledge. The experts know the 

data and the meaning precisely and take this into account when splitting. Data that have strong 

dependencies on each other with regard to the result to be determined by the neural network are ideally 

placed in the same data sub-package. This form of partitioning should result in as little information as 

possible being lost from the relationships between data, which improves the quality of the results 

achieved (Ma, et al., 2018). (Jin, et al., 2022). The splitting of the input and hidden data in the 

SlicedLSTM was done arbitrarily for the purpose of this thesis. The data used are anonymised and do 

not allow any conclusions to be drawn about dependencies within data. If the distribution of data in 

the SlicedLSTM were to be carried out on the basis of deep expert knowledge, it can be assumed that 

the quality (accuracy) of the SlicedLSTM would increase further compared to the standard LSTM. In 

turn, the complexity of the SlicedLSTM model is expected to be further reduced while still achieving 

comparable accuracy. It can be assumed that this will lead to a further significant improvement in the 

runtimes of the SlicedLSTM. 

 

The SlicedLSTM was developed in such a way that the splitting of the slices can be specified in detail. 

A user-defined division of the data is already possible with the current implementation, which was 

carried out as part of the experimental study of this thesis. It is also conceivable to extend the splitting 

mechanism of the SlicedLSTM so that instead of an expert, an intelligent mechanism automatically 

finds an optimal splitting of the data. For example, an advantageous slice partitioning and appropriate 

model configurations could possibly be found automatically by applying Automated Machine 

Learning (AutoML) processes (AutoML, 2022). The SlicedLSTM will in any case be able to benefit 

from such future research in these topics. 
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A Appendix 

A.1 Interview Guide 

These guidelines are intended to serve as a framework and support for conducting interviews. The 

questions listed here help the interviewer to head the interview and to order the relevant questions in 

the meeting thematically. The interview is conducted openly. The interviewee should be able to talk 

freely. Not all questions listed here need to be asked and other subjects may be broached spontaneously 

by the interviewee. 

A.1.1 Introduction 

As part of my scientific work I am currently performing a study in the form of qualitative and 

explorative interviews of experts. The study deals with the subject area of predictive analytics in 

industrial applications (IIoT). The focus is on methods and algorithms for predicting certain results 

under the conditions associated with data streams and real-critical applications.  

The aim of the study is to identify those methods and algorithms relevant to the application field and 

to determine the need for optimisation and development of new methods and algorithms.  

This is an open interview. The questions asked are merely a framework. The main purpose is to learn 

your personal opinion as an expert. The themes discussed in the interview are determined by you and 

you can always skip questions and switch between topics. 

You formally gave your consent to this interview. I would like to reiterate that all the information from 

this interview will be processed anonymously. You may refuse to answer individual questions and 

terminate the interview at any time as you wish. You may also revoke your consent to evaluation of 

your data. However, since data will be anonymised, at a later stage it cannot be deleted anymore (as it 

will be impossible to be identified). 

I would like to make an audio recording of our conversation. The recording is only used for evaluation 

of this interview. No names will be used in the report written. Your information will be kept 

confidential. The primary data will be kept on a CD and stored with data of this study for 10 years. It 

will subsequently be destroyed. 

This interview will take about 45 minutes to one hour. 

By way of an introduction. I will pose a couple of specific questions. This will be followed by open 

questions, which are only intended to set up a framework for the interview. 
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A.1.1.1 Question: subject area 

What are your main subjects of concern in the area of predictive analytics, stream processing and IIoT? 

Follow-up question: To what extent do you deal professionally with the subject and with what kind of 

projects have you been involved recently? You do not have to name any specific projects, only the 

general activities and methods used are of interest. 

A.1.1.2 Question: algorithms 

In your opinion, which methods and algorithms are optimal for data streams and real-time processing? 

Which of them are used in predictive maintenance (PdM) applications and why do you think of these 

specifically? 

Follow-up question: Which of these algorithms are you familiar with from practical applications? 

A.1.1.3 Question: Predictive Maintenance 

• What are the most important goals of predictive maintenance and why? [If examples are 

requested: RUL, maximum lifetime, early point …] 

• How relevant, in your opinion, is real-time processing in PdM, particularly today and in the 

future and why? 

A.1.2 Predictive Systems 

A.1.2.1 Question: Approaches for PdM 

What basic approach do you regard as important for a predictive system tasked with predictive 

maintenance in IIoT environments, data streams and real-time requirements and why? [If a definition 

of "basic" is requested: "Approaches such as regression techniques, machine learning techniques ...] 

A.1.2.2 Question: Predictive Methods 

From your experience, are you aware of any predictive methods that work with mathematical 

formulas, or rather with classifications, or with other techniques? 

A.1.2.3 Question: Learning 

In the area of machine learning, training methods exist in which data is classified by an expert. The 

model is therefore trained on the basis of expert knowledge. In contrast, there are also approaches 

where no expert knowledge is required. In these cases, patterns are automatically recognised in data 
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by algorithms without the use of knowledge. One often talks about unsupervised learning or supervised 

learning. 

Which of the two approaches to training models is more appropriate in your opinion and why? 

Follow-up question: What are the advantages and disadvantages of the two approaches and why? 

A.1.2.4 Question: Experts 

For supervised learning: in your opinion, how available are experienced experts in the area of PdM to 

perform supervised learning? 

Follow-up question: How comprehensive, in your opinion, is the knowledge of experts on average in 

the area of PdM? Is their knowledge sufficient to generate competitive models, or should, in your 

opinion, self-learning processes complement expert knowledge? 

A.1.2.5 Question: Supervised learning 

Supervised learning is performed either by data classification or regression analyses.  

• Which of the two methods do you think is more important for PdM in IIoT environments or, 

in other words, is better to which applications in your opinion and why? 

• Are there any other, relevant processes in your opinion? 

• In your opinion, what are the most important classification processes for PdM in IIoT 

environments and why? [If examples are requested: nearest neighbours classification, 

support vector machines (SVM), naive Bayesian classification, classification trees, neural 

networks, discriminant analysis. …)]? 

• Which of these processes do you consider already suitable for processing data streams in real-

time and why? 

• What in your opinion is necessary to make the processes you stated ready for processing data 

streams in real-time? 

A.1.2.6 Question: Machine Learning (ML) 

What approaches in machine learning do you consider being the most important and how do you 

justify your opinion? [If examples are requested: neural networks, support vector machines (SVM). 

Density-based approaches …] 

A.1.2.7 Question: Unsupervised Learning 

Which methods in the area of unsupervised machine learning are the most relevant in your opinion, 

why and for which applications? 
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A.1.2.8 Question: Adaptive Models 

Concept drifts exist for example in behavioural research, where behavioural patterns change gradually 

or abruptly depending on developments and influences. 

• How relevant, in your opinion, are concept drifts in IIoT environments and, in particular, in 

PdM applications and why? 

• Apart from concept drift, how adaptive do PdM models need to be in IIoT environments in 

general and why? 

• Do you see any other reasons why adaptive models are required? 

A.1.2.9 Question: Data Complexity 

In IIoT environments, data streams with high dimensionality are created due to the existence of many 

heterogeneous data sources and continuous sensor data. This rapidly increasing dimensionality places 

high demands on data processing and on algorithms, especially when real-time behaviour is desired. 

• How relevant are the problem of high dimensionality in PdM systems and IIoT and what do 

you base your opinion on? 

• What processes do they know and/or recommend and why? 

• Follow-up question: What do you think about approaches to reduce data dimensionality via a 

preceding step and why? 

A.1.2.10 Question: Non-Linearity 

Non-linear data streams also place high demands on methods and algorithms. 

• Do industrial processes, in your opinion, generate a relevant number of non-linear data why 

are you this opinion? 

• Do methods and algorithms have to deal with non-linearity in your opinion and why are you 

this opinion? 

• What processes do you know and/or recommend and why? 

A.1.2.11 Question: Data Quality with respect to Historical Data 

In order to process data streams within distributed and scalable systems in real-time (stream 

processing), the individual calculations for each data set (sample) must be as simple and as 

inexpensive, in terms of resources, as possible (CPU. MEM. I/O). Stream processing is a discipline in 

which data streams are continuously processed. Approaches such as onepass (reading, processing and 

forgetting data only once) or time series mean that historical data can only be conditionally included. 

This is different for classic batch-oriented big data systems since the entire data history is included 

here for each calculation, which leads to absolute truth, but also to arbitrary latency when used 
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correctly. Missing or compromised history reduces the quality of predictions. In addition, certain 

knowledge, such as the re-learning of already forgotten patterns (recurrent concept), cannot be 

achieved. 

• What is your experience concerning the importance of historical data and on what do you 

base your opinion? 

• What, in your opinion, is more important in PdM systems: prediction quality or real-time 

behaviour, and why? 

• To what extent do you see opportunities for improvement through the use of modern IT 

technologies and in which areas? 

A.1.2.12 Question: Validation 

The evaluation of the prediction quality of methods and algorithms in a specific use case is of great 

importance. 

• What basic approaches to testing the prediction quality do you recommend and why? [If 

examples are requested; false-positive rate, positive-false rate. …] 

• Which specific approaches do you recommend and why? 

• Do you know any approaches that are specially designed for data streams and real-time 

behaviour are which of their characteristics do see as most important? 

• In your opinion, do you think that prediction quality should be evaluated on the basis of real 

data or on specially produced synthetic data, and why? 

A.1.2.13 Question: Methods and Algorithms in general 

To sum up: 

• Which algorithms are, in your opinion, the most important and for what type of applications? 

• How suitable do you think the current methods and algorithms are for analysis of data streams 

in real-time and why? 

• What optimisation potential do you see here and why? 

• In your opinion, how can the possibilities provided by modern IT systems for optimisation of 

existing methods and algorithms contribute and why? 

• Which methods and algorithms do you think are specifically applicable here and which 

approaches may lead to optimisation in your opinion? 

A.1.2.14 Question: Other Subjects 

Is there anything associated with this subject that we haven’t discussed which you consider relevant?  



    

  

1   161 

 

 

 

 

 

A.1.3 Wrapping up and table 

Finally. I would like to ask you to answer some specific questions using a table. [Table will be handed 

out to the interviewee] 

What are the most relevant analytics techniques?   

Regression techniques     

Machine learning 

techniques     

Others / more? 

      

 

What are the most relevant regression techniques?   

Linear regression model     

Discrete choice models     

Logistic regression     

Multinomial logistic regression     

Probit regression     

Time series models     

Survival or duration analysis     

Classification and regression trees 

(CART)     

Multivariate adaptive regression splines     

Others / more? 

      

 

What are the most relevant Machine learning techniques?   

Neural networks     

  supervised learning   

  unsupervised learning   

  reinforcement learning   

Multilayer perceptron (MLP)     

Radial basis functions (RBF)     

Support vector machines 

(SVM)     

Naïve Bayes     

k-nearest neighbours (KNN)     
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Geospatial predictive 

modelling     

Others / more? 

      

 

I would like to thank you very much for the interview, your time and for the many, important answers 

and opinions. You have been a great help to me and my work. 

If you are interested in the subsequent course of my work and its results. I’d be happy to provide you 

with information. You can contact me at any time regarding this project. 

 

Contact information: 

Thomas Rieger. Mphil/PhD Student 

Faculty of Science and Environment. DTC: Computing and Mathematics. Enrolment N.: 10536298 

E-Mail: thomas.rieger@plymouth.ac.uk 

Phone: +49 160 3616461 
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A.2 Evaluation of Interviews 

The following details the steps taken to evaluate the expert interviews. The selected procedure is 

described in section 5.4. 

First evaluation step was the search for similar thematic units. In the run-up to the interviews, a text 

document was compiled for this purpose, which contains the thematic blocks and a box for hand-

written entries per block. The thematic units are listed in Table 5. 

 

Thematic unit Description 

Experts Main Areas of Interest Expert’s main subjects of concern in the area of Predictive 

Analytics. Data Streams and IIoT; professional experience. 

Targets of Predictive 

Maintenance Applications 

Find out the most important goals of predictive maintenance. 

Methods and Algorithms used 

by the Experts 

Expert’s opinion which methods and algorithms are widely 

used and/or optimal for PdM and real-time processing. 

Tools used by the Experts What tools and software libraries are known and/or used by 

the expert? 

The Relevance of Real-time 

Demands and Stream 

Processing 

How relevant is real-time and stream processing in PdM 

today and in the future? 

Assessment of Complexity 

Factors 

How important are the known complexities for PdM 

applications and are these already considered in practice? 

The Relevance of Historical 

Data 

Value of historical data and its use and impact on the 

forecast quality 

Learning Methods and 

Adaptive Models 

Relevance of continuous learning and adaptive models in 

practice. 

Table 16 - Thematic units of the expert interviews 

At the end of the text document, sufficient space was provided for possible further topics. During the 

interview, most important statements were entered manually into the fields. Each interviewed expert 

was assigned an individual colour in order to distinguish statements (see Table 6). It was possible to 

make audio recordings of all interviews. Using the audio recording, handwritten entries were 

subsequently verified and supplemented. This was respectively done promptly after each interview.   
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Interview Colour 

Interview 1 Black 

Interview 2 Red 

Interview 3 Green 

Interview 4 Blue 

Interview 5 Olive 

Interview 6 Purple 

Interview 7 Magenta 

Table 17 - Colour coding of interviews 

After all interviews were performed, important passages were paraphrased or quoted verbatim within 

the defined thematic blocks. The respective author was still colour coded. For time reasons a complete 

transcription was waived. 

After this step had been completed for all interviews, the text passages were reorganized and reduced 

to their essential components through the abstraction of common motifs. Based on this, superordinate 

statements or findings on the respective thematic blocks were collected in note form. These 

superordinate statements formed the outline of the evaluation section 5.5. 

A.2.1 Thematic blocks with quotations 

A.2.1.1 Experts Main Areas of Interest 

Mainly engaged in the field of data mining and manual preparation of data using various methods. 

... The goal in the current projects is to identify optimization potential based on data. 

Optimizations can be design-related, operational, or maintenance-oriented. These findings are 

sold to customers. Online systems pending, currently not yet in use, but the topic will come. 

… 

Active in the field of maintenance of offshore wind turbines (WTG); ... methods are usually based 

on image processing and analysis of the image data; ... increasingly also Augmented Reality (AR) 

and thus real-time and streaming requirements for processing image data; ... performs very 

intensive analytics and predictions for failures and maintenance tasks ... failures are very 

expensive as offshore wind turbines are very difficult to reach and are accessible only in good 

weather. 
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Further topics are safety assistance systems in robotics. Also here only offline analytics because 

still in testing phase … for later use online operation in real-time is necessary. 

… 

Active in port facilities and offshore wind turbines; ...a great deal of sensor data available ... 

extensive PdM solutions in use, as failures are very expensive ... data mostly delivered á block 

and analysed manually in batch processing 

… 

Performs various industrial projects as a consultant. ... the focus is on analysis of existing data 

and processes and advice on possible improvements. ... maintenance strategies and the design of 

PdM systems is everyday business ... previously mostly offline analyses with batch-oriented 

processes ... real-time and data streams will become standard in the near future ... currently, 

systems and communication infrastructure within industry are not advanced enough to be able to 

deliver online data ... but this will change soon 

… 

Works mainly as an expert consultant for industrial projects... anomaly detection is currently the 

most frequent requirement of the customers ...for streaming analytics, the environments of the 

customers are usually not yet sufficiently developed ...currently data are still predominantly 

supplied manual and in packages, therefore mainly batch processing is used ... Industry 4.0 will 

fundamentally change this ...concepts for online and stream processing are already being worked 

on internally, especially in the area of ML 

… 

Active in Industry 4.0 projects ... main objectives of current applications are predictions and 

anomaly detection ... predictions are made for reliability and probability of failures and flow into 

the customer's maintenance strategies ... predictions are also made for other areas, for example 

an application for predicting water consumption with automatic pump control was developed ... 

currently, data are mostly delivered in packages, for example, in 1-year samples, therefore offline 

evaluation ...however real-time is the future topic which is currently being worked on internally 

... mostly the customers are not yet advanced enough and still require basic knowledge about 

what they can learn from their data ...therefore currently mostly condition monitoring solutions 

as a first step ... real-time anomaly detection will be the next step ... PdM with data streams will 

definitely be the standard of the future. 
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A.2.1.2 Methods and Algorithms used by the Experts 

Methods of sensor fusion and data fusion are often used, since data preparation is part of the 

activity … in image processing methods from the field of ANNs are mainly used, also because 

potential errors are mostly unknown; 

Camera systems are installed, and then one begins to examine what might be relevant within the 

image data. This is done together with the experts (customers) ... only when the relevant 

features have been identified can one start to consider which models fit best; 

Applied processes are the Wiener Process for determination of degression in the case of known 

physical wear and for simple systems such as wind turbines ... but can only be used when 

material behaviour is known or for simple processes such as rotating machine parts ... ANNs 

are preferred for complex problems; 

The knowledge of the experts usually has to be worked out first ... in particular the question of 

which parameters are actually relevant is of importance ... ANNs are preferred for this purpose; 

Classifications are rarely applied because data are not classifiable due to a variety of factors that 

are often not deterministic ... this is especially true in the offshore environment; 

… 

For security assistance systems usually ANNs used, since only the relevant features have to be 

ascertained and no valid training data is available ... in the practical application usually 

combinations of algorithms are used ... which ones they are, depends on the application case ... 

for each system a special application case is created with its own strategies and objectives ... 

Algorithms have to be selected for each application case ... selection is usually done iteratively 

and according to t“e "trial and error” approach; 

A combination of ANN and reduction techniques (in an upstream step) is often used ... especially 

for image and video data, the reduction of data is decisive .... often semantic reduction, for 

example, certain layers, colours or shapes are filtered out before the actual pattern recognition 

takes place; 

Conclusion: if behaviour is known, then usually the Wiener Process is used, otherwise ANNs; 

… 

In the area of port facilities, mostly short-term forecasts using statistical methods such as ARMA 

models (ARIMA. ARMAX) ... otherwise data mining. ML and CEP procedures are used ... 

Procedures usually two-step, first attempt is made to roughly identify relevant features and 

relationships using statistical methods, then mathematical models are used when 

behaviour/degression is known precisely and is deterministic ... if not. ANNs are applied; 

From experience, application of supervised ANN provides the best results … this requires that 

the results of an ANN is constantly discussed with experts and the ANN is optimised using their 
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evaluation ... SVM would theoretically be suitable for many applications (pattern recognition), 

but application is too complicated; 

Which method is used depends on the application and varies widely ...  no general statements are 

possible, as to which methods can be used for which requirements ... only general suitability of 

the methods (for example linear degressive or non-linear degressive) is taken into account upon 

selection 

… 

Using the ThingWorx tool for analytics and PdM ... Algorithms are not directly visible in the tool 

... in everyday project work, the used algorithms are rarely followed, mostly the automatic 

selection and the recommendations of the tool are followed ... the tool analyses all data and 

specifies which areas should be classified; 

ThingWorx automatically displays 5 algorithms that are best and worst suited to the task, based 

on the provided and classified data … based on this suggestion, one could now decide which 

algorithms are applied ... but usually the ThingWorx proposal is followed ... Neural Net (ANN) 

is most often suggested as a suitable solution, next to it is Decision Tree. Gradient Boost. 

Linear/Logistic Regression. Random Forest ... a table outlining the suitability of the above 

procedures for specific applications is given on the help pages of ThingWorx 

(https://support.ptc.com/help/thingworx_hc/thingworx_analytics_8), in the "ThingWorx 

Analytics Functionality / Prediction Model Generation" section ... the statements of ThingWorx 

are not valid for all applications however; 

Classification is mostly binary in the first step and then multiclass in the second step ... classes 

are mostly events, which are defined and specified by ThingWorx ... learning is fully automated 

by means of iterative classification ... evaluation of the results with experts and then adaptation 

of the classifications for subsequent continuous improvements ... corresponds to a supervised 

approach. 

… 

Use mainly of PCA and the various modifications thereof ... often also clustering and sliding 

window to reduce data to the relevant features ... in current projects it is usually about 

customers taking the first step in the direction of data analytics and PdM ... therefore only 

simple steps can be implemented at first ... the customer first needs to learn what is possible and 

what goals are important for him ... in addition, the infrastructure is usually not sufficiently 

advanced to allow data to be transmitted online in streams … therefore, data first needs to be 

analysed and discussed with the customer ... this requires simple standard procedures, even if it 

is not possible to achieve 100% valid results; 

https://support.ptc.com/help/thingworx_hc/thingworx_analytics_8
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Pre-processing for complexity reduction is very important (clustering, sliding window) ... 

GMM and decision trees for estimating features in statistical models ... ANN have not been 

used really, because of missing data, but are certainly relevant in the future; 

… 

At the beginning a project, mostly binary classifications in order to become familiar with data 

and to take the first steps ... Naive Bayes classifiers and decision trees are often used here ... 

decision trees are very good, because of understandable representation for discussion with experts 

... decision trees especially when causal connections between failures and causative component 

can be represented ... always iterative process with the customers experts, consisting of intensive 

pre-processing of data, evaluation of the results by the experts and renewed processing with the 

new findings ... sometimes the customer also provides the classification. 

For anomaly detection. Gaussian Mixture Models (GMM) are mostly used ... also used for pre-

processing of data to separate relevant data from non-relevant ... this currently serves primarily 

to detect relevant signals and eliminate noise, less to reduce the complexity ... in real time 

applications, the reduction of complexity is important ... but currently, real projects only offline; 

Application of linear methods when conclusions on the cause are desired ... this only works with 

simple systems ... usually non-linear methods are used for more complex applications ... ANNs 

are used in complex applications, for example auto-encoders are used. 

In general, the choice of methods depends strongly on the application and should be selected 

individually ... ANNs will become the most common method for complex online systems in the 

future...  

 

A.2.1.3 Tools used by the Experts 

No tools in use ... a special application is implemented for each project ... projects very different 

and usually very special application areas, such as offshore wind turbines ... algorithms are not 

implemented themselves, use of open-source libraries; 

… 

No tool in use, only libraries for the known algorithms 

… 

RapidMiner. WeKa and various libraries for algorithms, as well as aforge vb.net for image 

processing 

… 
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ThingWorx Analyse as a tool for Predictive Analytics and PdM applications ... but only deals 

with the algorithms, data is stored in an upstream IoT platform and transferred in a pre-processed 

and reduced form to ThingWorx ... as an IoT platform for data management. Cloudera Data Hub 

is used ... here full pre-processing of data takes place ... data streams are processed and stored 

here and then passed on in prepared batches to ThingWorx … since one works only in 

ThingWorx, one does not come into contact with data streams ... so far with real-time one never 

came into contact … this is performed by the Cloudera Data Hub … data processing in data hub 

and response times of ThingWorx have been sufficient in all projects so far; 

Within the company, it is generally believed that ThingWorx cuts out the data scientist ... 

therefore only IT professionals are involved in projects; 

Partly cloud-based platforms such as Microsoft Azure, currently still very few, but strongly 

increasing demand for cloud solutions; 

… 

Own software solution / analytics product, which uses open source libraries ... is the core product 

of the company, so all projects are implemented with this tool ... own solution uses a specially 

developed data format, which is part of the company's IP ... in projects, all heterogeneous data 

sources and formats are converted into the internal format … in this conversion step, data is 

classified with the involvement of the customer's experts; 

… 

Scikit-learn (machine learning library for Python) is used ... scikit already has numerous 

algorithms for classification, regression and clustering ... mathematical libraries like NumPy and 

SciPy can be integrated directly ... for those working in science, this is the ideal tool since it is 

highly flexible and open source ... since being open source, the code can be viewed and analysed 

in case of problems ... errors can be identified by compiling the entire source code; 

 

A.2.1.4 Targets of Predictive Maintenance Applications 

RUL and TTF are the most frequent objectives of PdM applications ... further objectives depend 

on the specific application ... costs of failures are certainly the most important, as unplanned 

failures cause the highest costs ... often though, indirect costs are also relevant ... for example, for 

rapid mass production of small parts, a fast forecast is important, since a lot of costly rejects can 

be produced very quickly ... avoid follow-on costs caused by heavy and therefore expensive 

accessibility … example: offshore wind turbines, in this case cheap parts, such as the carbon 

brushes of the generator, are exchanged at every entry regardless of their wear; 
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Achieve pre-set numbers, reliable production, avoid interruptions in production processes with 

just in time and just in sequence; 

Profit optimization ... in case of wind turbines, maintenance planned in the low yield seasons … 

planning subject to weather conditions and weather periods providing high-yield; 

… 

In case of offshore wind turbines the most important goal is to prevent breakdowns ... system 

standstills and unplanned offshore operations are very expensive ... in case of unfavourable 

weather conditions it may be that, after an unscheduled failure, the system cannot reached and 

services for days ... optimal planning of maintenance work is required due to difficult accessibility 

and many other external influences; 

… 

Objectives vary greatly and depend on the application ... the most common objectives are RUL 

and TTF to avoid unplanned failures while maximizing possible useful lifespan ... the original 

goal is usually to reduce life cycle costs;  

… 

At the beginning, there is always the reduction of production costs ... unplanned failures and 

reactive maintenance strategies generate the highest costs (production losses, required 

maintenance personnel, storage of spare parts e.g.) ... therefore PdM always aims at predicting 

RUL and TTF ... the predictions of the PdM system should also be made available to higher-level 

planning systems (EAM. ERP); 

A further goal is analysis of when and how often a system can be operated at maximum load or 

even over it ... this is one of the analyses that our company offers its customers ... through such 

peak load analyses, companies are able to meet production peaks without requiring additional 

systems ... maximization of system utilization is an important cost factor in the industry ... 

nevertheless, it must also be possible to fully meet production peaks ... the knowledge of how 

long you can operate a system at its limits and how long any interim recuperation phases are, is 

determined through physical knowledge and historical data and model calculations/simulations; 

… 

Prediction of failures (TTF) and the remaining useful lifetime (RUL) are most important ... in a 

specific project, the aim was to save on sensors and to replace many sensors with a few 

multifunctional sensors with integrated diagnostic functions 

… 

Avoiding unplanned failures ... prediction of RUL and TTF ... causality analyses in real time; the 

aim is to use patterns to determine which components or which state of a system caused the error; 
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In spite of very mature procedures and ever-increasing knowledge in predictive analytics, one 

must realize that not everything is predictable ... even if ideal data would be available in an 

unlimited quantity, there are events in industrial systems that cannot be explained by data ... the 

topics Predictive Analytics. PdM. IIoT, and I4.0 have been very hyped, which is why there are 

often large expectations which are cannot always be met in practice; 

 

A.2.1.5 The Relevance of Real-time Demands and Stream Processing 

Very important for systems for the production of micro components, as large quantities are 

produced in a very short time ... this area is mainly dominated by CBM and CEP. PdM even less; 

With offshore wind turbines, data volume is currently not quite as high ... but this will be changed 

by more and more sensor technology ... precisely because failures in the offshore area are so 

expensive, the sensor technology is greatly expanded here ... data streams will also be available 

at wind turbines ... for the rotating parts of a wind turbine, the predictions are not time-critical; 

here simple degression analyses are sufficient ... but, for carbon fibre components, very time-

critical predictions (fractures) could be necessary with availability of appropriate sensors; 

… 

Whether real-time is required depends on the objectives and the physical properties of the 

system... but also the existing IT infrastructure is important ... mobile service teams need 

information in real-time 

… 

Real-time is still rarely a special requirement ... so far, the prerequisites have not been met in 

most projects ... in the future, most systems will have to deal with data streams and meet real-

time requirements ... Esper has been used so far, especially for event stream processing (ESP) ... 

otherwise OPC UA was used; 

… 

Response times are given by the platform Thing Worx ... streaming techniques are already 

included ... as an IoT platform for data storage. Cloudera Data Hub is used ... the entire pre-

processing of data takes place here ... Data streams are processed and stored here and then passed 

on as prepared batches to ThingWorx. … because you work only in ThingWorx, one does not 

come into contact with data streams ... real-time has never been an explicit requirement ... Data 

processing in data hub and response times of ThingWorx have so far been sufficient in all 

projects; 
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Applications for face detection have already developed ... here real-time is very important ... will 

be achieved mostly by data reduction ... the algorithms themselves were not precisely real-time 

capable ... here was missing a procedure, or the knowledge how to process the algorithms more 

quickly; 

… 

So far no real-time was not an explicit requirement ... response times have been sufficient with 

batch approach so far ... in the future, this will certainly be more relevant ... in feedback loops 

and adaptive online systems real-time is essential; 

OPC UA is currently used as a communication protocol and so far fulfils the time requirements 

... so far stream processing has no application field, but projects in planning alongside or with 

OPC UPA 

… 

Currently, our own product is already being developed with real-time support ... real-time 

processing is to be implemented in manageable application scenarios with OPC UA ... for 

complex applications and data streams, a streaming platform (Apache Spark Streaming, including 

ML functions) is being integrated; 

Previous real-time requirements had the goal of providing result data very quickly in SCADA 

systems ... otherwise, the requirements are currently mostly in minutes or hours ... the desire for 

visualization of data and forecasts is increasingly expressed by customers ... reactive web front 

ends also need correspondingly fast systems to provide data; 

 

A.2.1.6 Assessment of Complexity Factors 

High dimensionality 

In PdM applications, image processing is used and there is a high dimensionality in data 

(resolution, depths, planes, contrasts) ... a preliminary step to reduction is common here ... but 

leads to problems in the models ... superordinate relationships are often lost ... overfitting and 

underfitting problems ... multi-sensors generate enormous amounts of data, so dimensionality 

will become relevant in systems without image processing; 

With available raw data, high dimensionality is created quickly ... current methods are partly 

useless for this ... reduction techniques can help here but can’t solve the problem of lacking real-

time support of the algorithms ... in reduction, the question "what are the relevant data" is an 

endless research topic; 
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Classification for reduction to the relevant data is required ... mostly multi-level ... in the first 

step binary, then multiclass; 

Reduction by clustering and window technologies ... in ThingWorx no topic, is done by upstream 

Cloudera Data Hub; 

In real projects dimensionality was a problem, the combination of high data availability and too 

few meaningful data ... reduction techniques must recognize the relevant data ... then 

dimensionality in current systems is no problem ... in industrial systems, a lot of sensors are 

installed and lots of data are generated, but often the knowledge of which data are relevant for 

analytics applications is missing; 

 

Concept Drifts - non-stationary or evolving data 

Rarely occurs in production plants … in the field of work safety, spatial monitoring for robots - 

human interaction ... movement of people can change rapidly ... movement forecasts drift ... 

currently it’s not attempted to solve methods for recognizing concept drifts, but via probability 

calculations  

Concept drifts are also present in adaptive systems. ... own project with autonomous conveyor 

vehicles ... so far, only autonomous vehicles with defined behaviour patterns were travelling in a 

closed environment ... so far no adaptive systems were necessary ... now also humans can move 

in the same environment ... the control systems of the autonomous Vehicles must now become 

adaptive and can react to unforeseeable events; 

This is a very difficult topic ... with PdM for production plants, this rarely occurs, so this is hardly 

taken into account in practice and is often interpreted as an anomaly; 

Known from energy installations here, sometimes basic behaviour changes, for example by 

energy trading ... with PdM for industrial system is not so dynamic ... changes in industrial system 

are known ... therefore not usually considered in the modelling; 

Concept-drifts are rather rare in PdM ... usually these are in fact errors in data interpretation which 

have been erroneously interpreted as drift ... they are hardly considered in real applications; 

Is treated implicitly by Thing Worx 

Concept drifts are little known or not at all in real projects ... seldom is a permanent validation of 

the models on drifts ... therefore they would not even be detected ... drifts arise in production 

plants mostly by changing the hardware or calibration of sensors ... the models have to be adjusted 

thereafter ... special operating modes, such as maintenance operations, look like concept drifts ... 

special operating modes are usually suppressed in the PdM system;  
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Concept drifts are rare in industrial systems ... data analytics is usually carried out on stationary 

data 

 

 

Non-linear data 

In offshore wind turbines data are often missing due to non-transmission ... this makes the 

forecast very difficult and leads to non-linear situations and misinterpretations ... systematic 

treatment of non-linearity currently not available ... in the case of forecasts based on image data, 

missing data is not acceptable ; 

Non-linear data generate higher modelling effort ... relationships are determined step-by-step 

through simulations and validated again and again ... most systems assume linearity and, for 

example, ignore non-linear areas ... in image processing, this is often modelled over probabilities 

and events ... It’s a critical topic also for PdM applications ... but difficult to handle, always has 

to be considered for the respective application ... this has so far been little handled in previously 

known systems ... if not handled, this can lead to errors in the prediction; 

Non-linearity is rarely considered in PdM applications ... often non-linear relationships are 

erroneously interpreted as errors in data interpretation 

Non-linearity is treated implicitly by Thing Worx, how exactly is not known ... actually, all 

factors of complexity are treated implicitly by ThingWorx ... so far no own measures have been 

carried out; 

Simple systems contain mostly linear relationships ... in complex systems, relationships are 

mostly non-linear ... maintenance slots also produce such effects, in which other values are 

measured or not all sensors are active ... special operating modes are excluded in the modelling 

or specially modelled; 

For the modelling of non-linear regressions methods like MLP. ANN. SVM are used ... is 

however a very complex topic ... in particular the correct parametrisation is very difficult ... errors 

in the parametrisation quickly lead to incorrect results ... causes for non-linearity are often 

different operating modes ... less frequent changes in the hardware or calibrations ... non-linear 

physical properties are usually ignored in PdM applications and the resulting errors are accepted 
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A.2.1.7 The Relevance of Historical Data 

Is strongly dependent on the application ... with online systems, historical data are usually 

processed incrementally ... loss of quality must be accepted ... with offshore wind turbines, the 

full history of data is currently being processed as no real time is required; 

… 

Very important for training the models ... rarely available in practical projects, since the systems 

already exist, but so far data from the process control systems were not saved ... if historical data 

were present, then these were often wrong or incomplete ... if systems were rebuilt in the past, 

then this must be known, otherwise this leads to incorrect interpretation ... in practice it often 

happens that such evens in the historical data are not known as such ... historical data are therefore 

to be considered very critical at the beginning of a project; 

… 

Availability of valid historical data is extremely important in projects ... it serves as a basis for 

extracting the expert knowledge for supervised learning ... in adaptive systems, forecasting 

models must be used, which can also handle the historical data ... dealing with historical data in 

online systems is usually incremental 

… 

Data is stored in the IoT platform (Cloudera Data Hub) ... database technology is selectable (MS 

SQL. H2. Hive. PostgreSQL. No SQL) ... historical data are incrementally transferred to 

ThingWorx as part of the current data ... the overall historical data can be queried by ThingWorx 

in the IoT platform, but is only made with manual analysis (manually create, adapt or extend the 

models); 

Historical knowledge about the system is very important and usually not available or only 

incomplete ... must be critical validated at the start of the project ... events in historical data are 

always discussed with the experts ... in modelling, an attempt is made to explain the relationship 

between historical data and the physical model; 

… 

Historical data are very important in order to gain knowledge about the system ... in most cases 

few or incomplete historical data are available ... analytics applications always includes all 

historical data ... no incremental procedure ... current applications are all operated in batch mode 

... response times are currently no problem ... in projects, data sets are not too large ... data 

volumes will increase in the future and thus also the amount of historical data ... then certainly 

other approaches will be required ... incremental treatment of historical data is certainly a way; 

… 
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Historical data is very important ... often only incomplete and not valid ... based on historical 

data, the feasibility of the desired application is often checked in projects at the beginning ... 

feasibility studies often only use historical data ... in current projects, historical data are streamed 

from a database using a software to simulate the effect of data streams; 

 

A.2.1.8 Learning Methods and Adaptive Models 

In solutions based on image processing, data patterns of errors are unknown ... camera systems 

are installed and then one begins to examine what could be relevant in the image data ... this is 

done together with the experts (customers) ... models can only be generated if the relevant features 

are identified ... the process starts initially unsupervised and is then enriched with expert 

knowledge ... non-adaptive models are only suitable for initial data familiarisation with a stable 

model ... otherwise the models have to be adaptive ... either manually or online ... in current 

projects not online, therefore also no problems with computing capacities; 

… 

In the case of security assistance systems, the training data is very important ... to have enough 

training data, image databases are usually connected to supply additional (synthetic) training data 

... these are, for example, people from different perspectives ... such external training sources are 

not available in industrial systems; 

In PdM applications, adaptive models are important but not as critical as in image processing, 

since industrial systems do not change their behaviour so abruptly; 

… 

Adaptive learning is very important ... supervised learning takes place in many loops for 

optimization ... models must always adapt themselves automatically ... in the operation of a 

system, the conditions rarely change ... here it is more about constantly improving the model ... 

adaptive models come with heavy processing requirements, and always cause load spikes in the 

system ... in real-time systems, special measures are required, such as parallel processing and 

scalable infrastructures; 

… 

Adaptive behaviour is important for permanent training of models ... at the beginning of the 

project, only about 50 % of the errors are detected (false positive rate) in addition, 

misinterpretations are added (false negative rate) ... ThingWorx learns permanently and adapts 

the models automatically ... ThingWorx decides how adaptive models are and how often they are 

adapted ... presumably this happens with every new sample ... the learning process is based on 
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classifications of the results, which have to be done by the user in ThingWorx ... learning is based 

on ANNs; 

… 

Adaptive learning is essential to develop valid models ... expert knowledge is always required ... 

training is a constant process ... mostly concerning classifications ... because currently only batch 

systems are in use, the updating of the models is triggered manually ... in online systems this must 

be done automatically ... for real-time requirements, the underlying system must be able to adapt 

the models in time ... this is a difficult problem where real-time IT infrastructures and processing 

techniques are required; 

… 

Right now, only batch systems are actually used ... model adaptation is performed manually ... 

it’s a constant process, as new insights are always being gained from the system results ... the 

system is constantly being improved ... online systems with real-time requirements are currently 

under internal development ... to overcome overloading the system with continuous model 

adaptations, incremental learning was selected as an approach ... in addition, learning processes 

are processed in micro-batches using parallel processing; 

The adaptive models also learn concept drifts ... depending on the application, this is either 

desirable or leads to errors ... adaptive learning is therefore a complex task and must be adapted 

to the particular application; 

In real projects, the amount of really relevant data is often too small ... unbalanced data, missing 

data from errors and worst case scenarios make it difficult to develop adaptive learning processes 

... with missing historical data it will also be very difficult to develop adaptive models; 

 

A.2.1.9 Validation of Prediction Quality 

Mostly on the basis of synthetically generated data, since the necessary error scenarios are rarely 

present in real data … tests are often done by simulations ... real tests on the live system rarely 

possible (example offshore wind turbines) ... synthetic data are easy to generate and can all known 

error scenarios cover…  

… 

Within image processing by using visual control (false positive rate) ... this is only possible in 

this area, as a tester without special knowledge can, for example, recognize whether a person is 

in a picture or not ... in industrial systems, the matching of results always takes place with experts 

(was this error recognized correctly, was the measure taken correct. ...) ... field tests are also 

carried out, although rarely, thanks to the availability of the equipment and possible damage 
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caused by provoked errors ... validation is mostly done in simulations ... ideally validation is 

performed with real data, but they rarely have the necessary characteristics; 

… 

Validation with current and historical data, if available ... usually error scenarios have to be 

inserted into data ... 80/20-rule for AN–s - 80% of data are used for training. 20% for validation 

of the results ... since data is often unbalanced, this approach often does not work … validation 

always requires expert knowledge ... no automatic procedures for validation or benchmarking are 

known; 

… 

In practice, validation is often not based on data, but on monitoring the results, in specific terms, 

the failure rates are in operation ... if the failure rate drops, the model seems to be getting better 

… the failure rate increases, manual search is performed for modelling errors ... ultimately it’s 

always about trying out and gaining experience; 

… 

Results are evaluated by experts, new findings are incorporated into the model ... mathematical 

or statistical procedures for validation are not known ... presumably, they do not exist, as results 

are always very much dependent on the application and no valid assessment is possible ... indeed 

studies have already been developed on this subject and approaches for validation procedures 

have also been developed, but these are not generally valid 

… 

Validation is always by expert knowledge ... manual assessment and evaluation of results by 

experts ... used methods include cross-validations and classifications ... no methods for automatic 

validation are known ... it’s probably also not possible due to strong application-dependence; 

 

A.2.2 Superordinate Statements 

In this section the superordinate statements or findings on the respective thematic blocks were 

presented in note form. These superordinate statements formed the outline of the evaluation section 

5.5. 

A.2.2.1 Experts Main Areas of Interest 

Field of work are usually concentrated on the implementation of basic steps. 

Feature extraction, i.e. the determination of the relevant features, is an important task area. 
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Currently still frequent anomaly detection and rarely predictions. 

In addition to prediction of failures, data analyses are also performed to identify optimization 

potentials in the industrial plants. 

Currently mostly offline systems with batch processing in practical use. 

 

Online systems with real-time requirements are not yet widespread, the industry is not yet as far 

as one would assume due to the topics IIoT and I4.0. 

In the future, online and real-time systems will be the most important applications. 

Autonomous systems and image processing require real-time processing. 

Many people are already working on solutions for online systems with streaming analytics, real-

time and ML. 

I4.0 applications are the innovation drivers for such technologies. 

The top 5 mostly mentioned terms in this area were: depends on data (8), online systems (4), 

batch-approach (3), fault detection (3), real-time approaches (3) 

 

A.2.2.2 Methods and Algorithms used by the Experts 

Data pre-processing and reduction techniques to reduce to the relevant features are always 

advisable. 

ANNs can help identify relevant features when no expert knowledge is available. 

Loops, consisting of the steps of analysing data, evaluating results by experts, and optimizing 

models. 

No general rules for selecting the methods, deep expert knowledge and trial-and-error, always 

depending on the application. 

Mostly advanced step to reduction or filtering, often statistical methods or SW upstream to an 

ANN. 

If physical behaviour is known and low complexity, then linear regressions like Wiener 

process. 

In deterministic systems and existing expert knowledge classifications or PCA. 

For complex systems and many unknowns, primary ANNs 

In case of bad training data, use ANNs 
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Expert knowledge facilitates the modelling of the layers of ANN's and improves their results. 

SVM too difficult to parametrize in real applications. 

In real systems usually combinations of several algorithms apply, strongly depends on the 

application case, no general statement about combinations possible. 

Prognosis horizon has an influence on the selection of the method. 

Tools are very powerful and adaptive, but the internal functionality is opaque. 

The top 5 mostly mentioned terms in this area were: ANN (14). Application case (11). 

Classification (6). Feature and feature extraction (5) and decision trees (4) 

A.2.2.3 Tools used by the Experts 

Often no data science tool is used. 

Development of systems takes place individually for every application 

Open-source libraries for algorithms and mathematical functions. 

Open-source data science tools in the preparation phase of projects to analyse data and find 

suitable methods. 

If a commercial data science tool is used, it is completely entrusted to it. 

Cloud-based platforms are the future environment. 

In addition to the tool used, data formats and protocols used are also relevant (OPC UA). 

In research and science primarily open-source libraries and tools are used. 

 

A.2.2.4 Targets of Predictive Maintenance Applications 

Ultimately, the goal is always to reduce the Lifecycle Costs (LCC) and Total Cost of Ownership 

(TCO). 

Unplanned failures cause the highest costs, so the prediction of the errors and the calculation of 

the remaining useful lifetime is the focus. 

The goals of a PdM system always depend on the application. 

Costs that cause an unscheduled failure always depend on the application case. 
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Other objectives are to optimise the maintenance strategy in order to reduce costs and ensure 

reliable production, maximize plant utilization / yield optimization, minimising the reject rate 

and other qualitative criteria. 

The predictions from the PdM system should be transferred to the higher-level planning systems 

(EAM. ERP) and used there for overall planning. 

 

A.2.2.5 The Relevance of Real-time Demands and Stream Processing 

At the moment still relatively rare, as the necessary communication infrastructure and the 

development of the sensor systems in industrial environments is only just beginning. 

At the moment, often concentrating on real-time-capable CMB and CEP systems. PdM systems 

will then build on it. 

Whether real-time is required depends on the application case and the physical properties of the 

system. 

For simple systems and with linear regression, the processing speed is sufficient to date. 

PdM systems are often are only at the beginning, concentrate on first simple steps using batch 

processing. 

Industry has yet to gain experience until complex online systems with stream processing in real 

time become reality. 

For autonomous systems (I4.0) in IIoT environments, the PdM system must provide fast response 

times. 

Future mobile service teams that interact with systems (M2M Communication. OPCUA) need 

real-time information. 

Online systems and real-time processing will be the dominant form in the future. 

However, there will always be applications where offline and batch processing is sufficient. 

Technologically, streaming platforms and real-time OPC UA servers will be relevant. 

Data science tools often integrate an IoT platform (IoT hub) to realize stream processing and 

provide real-time results. 

Reduction techniques are very important at real-time because the actual algorithms are rarely 

real-time capable and not suitable for distributed and parallel processing. 

Methods and knowledge are missing in order to make algorithms real-time. 
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In the case of adaptive online systems, the permanent learning process must be simple and 

therefore very efficient. Real-time techniques would certainly help. 

 

A.2.2.6 Assessment of Complexity Factors 

High dimensionality 

Whether dimensionality is a relevant complexity depends on the application. 

In current applications it is usually not yet clear which data is relevant at all. 

Data volume, however, increases very strongly in industrial environments (IIoT. I4.0), so the 

dimensionality of data will increase steadily. 

Reduction techniques are very important in order to liberate the relevant data. 

Reduction of the relevant data can also lead to problems, e.g. the meaning of data can be lost. 

In complex systems, reduction is a complex and error-prone task. 

With reduction techniques, good response times are still being achieved, but this will change with 

increasing data volume. 

Reduction techniques reduce the complexity for the following algorithms, but the lack of real-

time capability of the algorithms themselves is not solved. 

In the future, the entire PdM system must be scalable and must be able to react elastically to high 

loads. 

 

Concept Drifts - non-stationary or evolving data 

Until now, concept drifts are rarely considered in PdM systems. 

In industrial plants, relevant drifts do not actually occur. 

Methods for the automatic detection of drifts are not known. 

If changes to the hardware or recalibrations of the system are carried out, the model is also 

adapted. 

Effects of external factors (e.g. humidity) are treated as measured values and not as concept drifts. 

In the case of highly adaptive systems, drifts are relevant and are currently usually dealt with by 

probability calculations and CEP. 

When concept drifts occur, these are usually interpreted as anomaly. 
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Adaptive models learn drifts automatically. It must be decided whether this is desired or have to 

be prevented. 

 

Non-linear data 

The problem of non-linear data is often ignored in practical applications. 

For non-linear data, the effort involved in creating the model increases. 

Non-linear physical properties are often simply ignored or linearly modelled. 

This causes errors in the results, the cause of which is often not interpreted correctly. 

Often, non-linear data is simply filtered out to apply linear models. 

Special operating modes and maintenance operations can cause non-linear data and are usually 

not handled, or handled via separate sub-models. 

For nonlinear models, methods from the area of neural networks (ANN. MLP) and ML (SVM) 

are used. 

Modelling is very complex; imprecise parameterization can quickly lead to wrong results. 

How precisely high-level data science tools deal with non-linearity is not known. 

 

A.2.2.7 The Relevance of Historical Data 

The historical data, if available and valid, comprises the entire knowledge of the industrial plant. 

Historical data are very important for predictions and should always be included. 

On the basis of the historical data, the existing knowledge can be worked out in dialogue with 

experts. 

With batch systems with any latency, all historical raw data can be processed easily. 

In the case of online systems and real-time requirements, historical data are usually processed 

incrementally in order to keep the computational effort to a minimum. 

In the case of incremental treatment of historical data, important details or connections can be 

lost. 

The resulting loss of quality in the results must still be accepted at the moment. 

Ideally, historical data should be processed in raw form. 
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In future with highly optimised and very powerful PdM systems, it would be desirable to process 

historical data also in its raw form. 

Adaptive models should be trained with historical raw data. 

High-level data science tools often use IoT platforms (IoT Hub) to store all raw data. 

A.2.2.8 Learning Methods and Adaptive Models 

Adaptive learning is essential to develop a valid model. 

The main goal is to improve the model permanently. 

The learning of new conditions (e.g. concept drifts) is less important. 

Often, a lot of data is available, but few are errors. This is problematic for the learning process. 

In batch systems, models are adapted manually. 

In online systems, models must automatically and permanently adapt themselves. 

A permanent learning and adaptation process is complex in implementation. 

Requires high computing power. 

Automatic learning and adaptation processes must be scalable and elastic. 

Required scalability is highly dependent on the application case. 

Manual adaptation usually takes place by classification with expert knowledge. 

Automatic adaptation requires methods from the ML area, but also expert knowledge. 

 

A.2.2.9 Validation of Prediction Quality 

Validation of the results of a PdM system is very important. 

Expert knowledge is always required for validation. 

From the evaluation of the results further expert knowledge for the adaptation of the models can 

be gained. 

Assessment depends on the application case. 

Evaluation mostly by simulations. 

Real data usually contains too few errors, especially critical errors. 

Usually use of synthetic data, or enrichment of real data with artificial errors. 
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If data contain sufficient errors. 80/20 rule (80% of data for training the model. 20% for 

validation). 

Validation mostly through visual control and through discussions with the experts. 

No universal procedure known, no general mathematical or statistical procedures. 

No way for benchmarks known. 

The evaluation criteria are methods such as type I error and type II error or indirect values such 

as, for example, failure rates. 

Evaluation by cross-validation and classifications of results. 
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A.3 Laboratory Test Plots 

A.3.1 Comparison of the Reference Model Learning Rates 

Comparison of the different learning rates for reference model configuration 25-8_drop20_8-

4_drop20. Learning rate 0.01 was chosen as the best one. 

  

 

Comparison of the different learning rates for reference model configuration 25-6_drop20_6-

3_drop20. Learning rate 0.005 was chosen as the best one. 

  

 

Comparison of the different learning rates for reference model configuration 25-5_drop20_5-

2_drop20. Learning rate 0.01 was chosen as the best one. 
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Comparison of the different learning rates for reference model configuration 25-5_drop10_5-

2_drop10. Learning rate 0.01 was chosen as the best one. 
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A.3.2 Comparison of the Reference Model Runs 

Results for reference model configuration 25-6_drop20_6-3_drop20 with all different learning rates. 

Learning rate 0.005 was chosen as the best one. 

  

  

  



    

  

1   189 

 

 

 

 

 

  

 

Results for reference model configuration 25-5_drop20_5-2_drop20 with all different learning rates. 

Learning rate 0.01 was chosen as the best one. 
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Results for reference model configuration 25-5_drop10_5-2_drop10 with all different learning rates. 

Learning rate 0.01 was chosen as the best one. 
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A.3.3 Comparison of the SlicedLSTM Model Learning Rates 

Comparison of the different learning rates for SlicedLSTM model configuration (10-2_15-3)_drop20. 

Learning rate 0.01 was chosen as the best one. 

  

 

Comparison of the different learning rates for SlicedLSTM model configuration (10-1_15-3)_drop20. 

Learning rate 0.005 was chosen as the best one. 

  

 

Comparison of the different learning rates for SlicedLSTM model configuration (10-1_15-2)_drop15. 

Learning rate 0.01 was chosen as the best one. 
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Comparison of the different learning rates for SlicedLSTM model configuration (10-1_15-2)_drop10. 

Learning rate 0.02 was chosen as the best one. 

  

 

Comparison of the different learning rates for SlicedLSTM model configuration (10-1_15-1)_drop10. 

Learning rate 0.01 was chosen as the best one. 
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Comparison of the different learning rates for SlicedLSTM model configuration (11-1_14-1). 

Learning rate 0.02 was chosen as the best one. 
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A.3.4 Comparison of the SlicedLSTM Models Runs 

Results for SlicedLSTM model configuration (10-1_15-3)_drop20 with all different learning rates. 

Learning rate 0.005 was chosen as the best one. 
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Results for SlicedLSTM model configuration (10-1_15-2)_drop15 with all different learning rates. 

Learning rate 0.01 was chosen as the best one. 
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Results for SlicedLSTM model configuration (10-1_15-2)_drop10 with all different learning rates. 

Learning rate 0.02 was chosen as the best one. 
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Results for SlicedLSTM model configuration (10-1_15-1)_drop10 with all different learning rates. 

Learning rate 0.01 was chosen as the best one. 
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Results for SlicedLSTM model configuration (11-1_14-1) with all different learning rates. Learning 

rate 0.02 was chosen as the best one. 
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A.4 Important extracts of the Program Code 

A.4.1 SlicedLSTM 

The following source code shows the implementation of the SlicedLSTM in python. 

# Slice LSTM implementation 

# inspired by example from https://towardsdatascience.com/building-a-lstm-by-hand-on-pytorch-59c02a4ec091 

# The LSTM-Cell uses the optimization of calculating the weights of all four LSTM gates in one big matrix 

# (for input and hidden state units respective). Since gates are sliced, this results in a list of matrices. 

 

Import math 

import torch 

import torch.nn as nn 

 

 

class SlicedLSTM(nn.Module): 

    “”” Experimental new version of an LSTM layer, in which data slices of the input are processed by ‘slices’ 

        of the typical LSTM gates (input gate i/g, forward gate f, output gate o) and afterwards connected by a dense 

         ConnectorLayer  “”” 

 

    def __init__(self, lstm_slices: list[tuple]): 

        super().__init__() 

        # list with tuples: (input units for this slice, hidden units for this slice) for each slice of the layer 

        self.slices = lstm_slices 

        # amount of slices in this layer 

        self.num_slices = len(lstm_slices) 

        # hidden size of the entire layer (sum of length of slices) 

        self.hidden_size = sum(x[1] for x in self.slices) 

        # list of matrices of weights for input unit slices. Concatenation of weight matrix of all four gates 

        # (i, f, g, o). One matrix contains weights for one slice of  i, f, g and o. 

        self.Ws = nn.ParameterList([nn.Parameter(torch.Tensor(input_size, hidden_size * 4)) for input_size, hidden_size in lstm_slices]) 

        # list of matrices of weights for hidden unit slices. Concatenation of weight matrix of all four gates 

        # (i, f, g, o). One matrix contains weights for one slice of  i, f, g and o. 

        self.Us = nn.ParameterList([nn.Parameter(torch.Tensor(hidden_size, hidden_size * 4)) for _, hidden_size in lstm_slices]) 

        # list of bias vectors for each slice. One vector contains concatenated biases for all four gates i, f, g and o. 

        self.biases = nn.ParameterList([nn.Parameter(torch.Tensor(hidden_size * 4)) for _, hidden_size in lstm_slices]) 

        # weight matrix for the dense connector layer connecting the gate slices. Contains concatenated weights for all 

        # four gates i, f, g and o. 

        self.connector_Ws = nn.Parameter(torch.Tensor(self.hidden_size, self.hidden_size * 4)) 

        # bias vector for the dense connector layer connecting the gate slices. Contains concatenated biases for all 

        # four gates i, f, g and o. 

        self.connector_biases = nn.Parameter(torch.Tensor(self.hidden_size * 4)) 

        self.init_weights() 

 

    def init_weights(self): 

        stdv = 1.0 / math.sqrt(self.hidden_size) 

        for weight in self.parameters(): 

            weight.data.uniform_(-stdv, stdv) 

 

    def forward(self, x. 

                init_states=None): 

 

        # assumes x is of shape (batch, sequence, feature) !!!! 

        bs, seq_sz, feat_sz = x.size() 

 

        # some input sanity checks 

        # print(f”input shape: {x.size()}”) 

        # print(f”batch size: {batch_size}, sequence_length: {sequence_length}, feature size: {feature_size}”) 

        total_input_size = sum(x[0] for x in self.slices) 

        assert(feat_sz == total_input_size) 

 

        hidden_seq = [] 

        # non-zero initialization also possible 

        if init_states is None: 

            init_states = (torch.zeros(bs, self.hidden_size).to(x.device). 

                        torch.zeros(bs, self.hidden_size).to(x.device)) 

        h_t, c_t = init_states 

 

        gate_shape = (x.shape[0], self.hidden_size) 

 

        # iterate over time steps in sequence 

        for t in range(seq_sz): 

            in_start = 0 

            hid_start = 0 

 

            # aggregate lists to store resulting gate tensors for each slice 

            slice_is: list[torch.Tensor] = [None] * self.num_slices 

            slice_fs: list[torch.Tensor] = [None] * self.num_slices 

            slice_gs: list[torch.Tensor] = [None] * self.num_slices 

            slice_os: list[torch.Tensor] = [None] * self.num_slices 

 

            # iterate over slices for each timestep 

            for index. (input_size, hidden_size) in enumerate(self.slices): 

                in_end = in_start + input_size          # end index exclusive in slicing 

                hid_end = hid_start + hidden_size       # end index exclusive in slicing 

 

                cur_x_t = x[:, t, in_start:in_end]      # input units for current slice (for entire batch) 

                cur_h_t = h_t[:, hid_start:hid_end]     # hidden units for current slice (batch independent) 

 

                # batch the computations for each slice into one single matrix multiplication 

                gates = cur_x_t @ self.Ws[index] + cur_h_t @ self.Us[index] + self.biases[index] 

 

                # apply activation functions for each gate slice 

                i_t = torch.sigmoid(gates[:. :hidden_size])                    # input gate slice 

                f_t = torch.sigmoid(gates[:, hidden_size: hidden_size * 2])    # forget gate slice 

                g_t = torch.tanh(gates[:, hidden_size * 2: hidden_size * 3])  # ‘gate gate’ slice 

                o_t = torch.sigmoid(gates[:, hidden_size * 3:])  # output gate slice 

 

                slice_is[index] = i_t 

                slice_fs[index] = f_t 

https://towardsdatascience.com/building-a-lstm-by-hand-on-pytorch-59c02a4ec091


    

  

1   203 

 

 

 

 

 

                slice_gs[index] = g_t 

                slice_os[index] = o_t 

 

                # start index (inclusive) of next slice is previous (exclusive) end index 

                in_start = in_end 

                hid_start = hid_end 

 

            total_i = torch.cat(slice_is, dim=1) 

            total_f = torch.cat(slice_fs, dim=1) 

            total_g = torch.cat(slice_gs, dim=1) 

            total_o = torch.cat(slice_os, dim=1) 

 

            # apply dense connector-layer 

            i_t = torch.sigmoid(total_i @ self.connector_Ws[:. :self.hidden_size] 

                                + self.connector_biases[:self.hidden_size]) 

            f_t = torch.sigmoid(total_f @ self.connector_Ws[:, self.hidden_size:self.hidden_size * 2] 

                                + self.connector_biases[self.hidden_size:self.hidden_size * 2]) 

            g_t = torch.tanh(total_g @ self.connector_Ws[:, self.hidden_size * 2:self.hidden_size * 3] 

                             + self.connector_biases[self.hidden_size * 2:self.hidden_size * 3]) 

            o_t = torch.sigmoid(total_o @ self.connector_Ws[:, self.hidden_size * 3:] 

                                + self.connector_biases[self.hidden_size * 3:]) 

 

            c_t = f_t * c_t + i_t * g_t 

            h_t = o_t * torch.tanh(c_t) 

 

            hidden_seq.append(h_t.unsqueeze(0)) 

 

        hidden_seq = torch.cat(hidden_seq, dim=0) 

        # reshape from shape (sequence, batch, feature) to (batch, sequence, feature) 

        hidden_seq = hidden_seq.transpose(0. 1).contiguous() 

 

        return hidden_seq. (h_t, c_t) 

 

 

A.4.2 Excerpt experimental Study 

The following code excerpt shows the data processing pipeline for the experimental study. The 

implementation was based on the code of and inspired by the two available GitHub projects Predictive-

Maintenance-Using-LSTM by by the author Praveena1809 and pytorch-lstm-by-hand by the author Pi 

Esposito (Praveena1809, 2020) (Esposito, 2020a). 

    ... 

    # STEP 1: READING DATA 

    # read training data 

    train_df = pd.read_csv(current_train_filepath, sep=" ", header=None) 

    # train_df.drop(train_df.columns[[26. 27]], axis=1, inplace=True) 

    train_df.columns = ['id'. 'cycle'. 'setting1'. 'setting2'. 'setting3'. 's1'. 's2'. 's3'. 

                        's4'. 's5'. 's6'. 's7'. 's8'. 's9'. 's10'. 's11'. 's12'. 's13'. 's14'. 

                        's15'. 's16'. 's17'. 's18'. 's19'. 's20'. 's21'] 

 

    # read test data 

    test_df = pd.read_csv(current_test_filepath, sep=" ", header=None) 

    # test_df.drop(test_df.columns[[26. 27]], axis=1, inplace=True) 

    test_df.columns = train_df.columns 

 

    # read ground truth data 

    truth_df = pd.read_csv(current_groundtruth_filepath, sep=" ", header=None) 

    # truth_df.drop(truth_df.columns[[1]], axis=1, inplace=True) 

 

 

    # STEP 2: DATA LABELING 

    # Data Labeling - generate column RUL 

    rul = pd.DataFrame(train_df.groupby('id')['cycle'].max()).reset_index() 

    rul.columns = ['id'. 'max'] 

    train_df = train_df.merge(rul, on=['id'], how='left') 

    train_df['RUL'] = train_df['max'] - train_df['cycle'] 

    train_df.drop('max', axis=1, inplace=True) 

 

    # generate label columns for training data 

    w1 = 30 

    w0 = 15 

 

    # Label1 == 1 indicates a failure will occur within the next 30 cycles (otherwise: 0). 

    train_df['label1'] = np.where(train_df['RUL'] <= w1. 1. 0 ) 

 

    # label2 is multiclass, value 1 is identical to label1. 

    # value 2 indicates failure within 15 cycles 

    train_df['label2'] = train_df['label1'] 

    train_df.loc[train_df['RUL'] <= w0. 'label2'] = 2 

 

 

    # STEP 3: DATA NORMALIZATION (values within [0.0.1.0]) 

    # MinMax normalization - train data 

    train_df['cycle_norm'] = train_df['cycle'] 
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    cols_normalize = train_df.columns.difference(['id'. 'cycle'. 'RUL'. 'label1'. 'label2']) 

    min_max_scaler = MinMaxScaler() 

    norm_train_df = pd.DataFrame(min_max_scaler.fit_transform(train_df[cols_normalize]). 

                                 columns=cols_normalize. 

                                 index=train_df.index) 

    join_df = train_df[train_df.columns.difference(cols_normalize)].join(norm_train_df) 

    train_df = join_df.reindex(columns=train_df.columns) 

 

    # MinMax normalization - test data 

    test_df['cycle_norm'] = test_df['cycle'] 

    norm_test_df = pd.DataFrame(min_max_scaler.transform(test_df[cols_normalize]). 

                                columns=cols_normalize. 

                                index=test_df.index) 

    test_join_df = test_df[test_df.columns.difference(cols_normalize)].join(norm_test_df) 

    test_df = test_join_df.reindex(columns=test_df.columns) 

    test_df = test_df.reset_index(drop=True) 

 

 

    # STEP 4: GENERATE CLASS LABELS 

    # generate column max for test data 

    rul = pd.DataFrame(test_df.groupby('id')['cycle'].max()).reset_index() 

    rul.columns = ['id'. 'max'] 

    truth_df.columns = ['more'] 

    truth_df['id'] = truth_df.index + 1 

    truth_df['max'] = rul['max'] + truth_df['more'] 

    truth_df.drop('more', axis=1, inplace=True) 

 

    # generate RUL for test data 

    test_df = test_df.merge(truth_df, on=['id'], how='left') 

    test_df['RUL'] = test_df['max'] - test_df['cycle'] 

    test_df.drop('max', axis=1, inplace=True) 

 

    # generate label columns w0 and w1 for test data 

    test_df['label1'] = np.where(test_df['RUL'] <= w1. 1. 0) 

    test_df['label2'] = test_df['label1'] 

    test_df.loc[test_df['RUL'] <= w0. 'label2'] = 2 

 

 

    # FILE 2: MODEL BUILDING AND TRAINING 

    # pick a large window size of 50 cycles 

    sequence_length = 50 

 

    # pick the feature columns 

    sequence_cols = ['setting1'. 'setting2'. 'setting3'. 'cycle_norm'] 

    key_cols = ['id'. 'cycle'] 

    label_cols = ['label1'. 'label2'. 'RUL'] 

 

    input_features = test_df.columns.values.tolist() 

    sensor_cols = [x for x in input_features if x not in set(key_cols)] 

    sensor_cols = [x for x in sensor_cols if x not in set(label_cols)] 

    sensor_cols = [x for x in sensor_cols if x not in set(sequence_cols)] 

 

    # The time is sequenced along 

    # This may be a silly way to get these column names, but it's relatively clear 

    sequence_cols.extend(sensor_cols) 

 

    # generator for the sequences 

    seq_gen = (list(gen_sequence(train_df[train_df['id']==id], sequence_length, sequence_cols)) 

               for id in train_df['id'].unique()) 

 

    # generate sequences and convert to numpy array 

    seq_array = np.concatenate(list(seq_gen)).astype(np.float32) 

 

    # generate labels and convert to numpy array 

    label_gen = [gen_labels(train_df[train_df['id']==id], sequence_length. ['label1']) 

                 for id in train_df['id'].unique()] 

    label_array = np.concatenate(label_gen).astype(np.float32) 

    ... 

 


