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Abstract  

Aim A current biogeographic paradigm states that climate regulates species 

distributions at continental scales and that biotic interactions are undetectable at 

coarse-grain extents. However, advances in spatial modelling show that 

incorporating food resource distributions are important for improving model 

predictions at large distribution scales. This is particularly relevant to understand the 

factors limiting distribution of widespread apex predators whose diets are likely to 

vary across their range.  

Location Neotropical Central and South America 

Methods The harpy eagle (Harpia harpyja) is a large raptor, whose diet is largely 

comprised of arboreal mammals, all with broad distributions across Neotropical 

lowland forest. Here, we used a hierarchical modelling approach to determine the 

relative importance of abiotic factors and prey resource distribution on harpy eagle 

range limits. Our hierarchical approach consisted of the following modelling 
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sequence of explanatory variables: (a) abiotic covariates, (b) prey resource 

distributions predicted by an equivalent modelling for each prey, (c) the combination 

of (a) and (b), and (d) as in (c) but with prey resources considered as a single 

prediction equivalent to prey species richness.  

Results Incorporating prey distributions improved model predictions but using solely 

biotic covariates still resulted in a high performing model. In the Abiotic model, 

Climatic Moisture Index (CMI) was the most important predictor, contributing 76 % to 

model prediction. Three-toed sloth (Bradypus spp.) was the most important prey 

resource, contributing 64 % in a combined Abiotic-Biotic model, followed by CMI 

contributing 30 %. Harpy eagle distribution had high environmental overlap across all 

individual prey distributions, with highest coincidence through Central America, 

eastern Colombia, and across the Guiana Shield into northern Amazonia.   

Main conclusions With strong reliance on prey distributions across its range, harpy 

eagle conservation programs must therefore consider its most important food 

resources as a key element in the protection of this threatened raptor. 

 

Keywords: biotic interactions, Harpia harpyja, harpy eagle, geographic range size, 

prey base, Species Distribution Models 

 

Introduction 

Within biogeographic theory, climate is hypothesised to be the main driver of species 

distributions at continental scales (Wiens 2011; Louthan et al. 2015). This is 

evidenced through the fossil record (Davis & Shaw 2001), and recent observed 

trends (Walther et al. 2002; Parmesan & Yohe 2003). However, the relationship 

between distribution and climate may be either indirect (Rich & Currie 2018), an 



oversimplification (Dallas et al. 2017), or due to historical biogeography (Heads 

2015). Whether biotic resources are more important determinants of species 

distributions than climatic conditions is still a central issue in ecology and 

biogeography (Andrewartha & Birch 1954; MacArthur 1972; Wisz et al. 2013; Araújo 

& Rozenfeld 2014; Heads 2015). The current paradigm postulates that biotic 

resources are most apparent at finer geographical scales (Pearson & Dawson 2003; 

Peterson et al. 2011), but this assertion may not apply across all taxa. 

 

Biotic effects may be lost at continental scales due to the coarse-grain extent, 

commonly termed the Eltonian Noise Hypothesis (Soberón & Nakamura 2009). The 

Eltonian Noise Hypothesis postulates that because biotic interactions occur at a fine-

scale individual level, modelling approaches will fail to recognize them when working 

at coarse continental scales. Alternatively, biotic resources may correlate closely 

with abiotic factors, thus the biotic signal is lost in abiotic environmental space 

(Brewer & Gaston 2003). The effect of biotic resources on species distributions can 

vary markedly across a given species geographic range (Thompson 2005). Even so, 

the overriding assumption is that biotic resources require a fine-scale spatial 

structure to be noticeable (Soberón & Nakamura 2009), because by definition biotic 

interactions occur at the individual level (Anderson 2016). This assumption is applied 

to multiple biotic interactions such as the presence or absence of mutualists, 

competitors, and predators.  

 

The relationship between the range limits of animals, such as butterflies and 

nectivorous birds being driven by the distribution of their food plants, is well 

established (Wisz et al. 2013; Kass et al. 2019). However, it is still unclear if the 



same processes act on the distribution of large vertebrate apex predators with more 

diverse diets (Sih 2005; With 2019). It is well-known that apex predators can limit the 

distribution of their prey species (Holt & Barfield 2009). However, an outstanding 

question for large vertebrates is whether the distribution of food resources limits the 

distribution of their main consumers (Sih 2005; Aragón & Sánchez‐Fernández 2013; 

Louthan et al. 2015; Schweiger et al. 2015). The expectation would be for a high 

overlap between the abiotic conditions in the predator’s distribution and those of its 

prey. Consumer (i.e., predator) distribution should be nested within their main 

resource distributions (Holt 1997), but conversely food resource distributions are not 

reliant on the distribution of their main consumers.  

 

Food resource distributions can be an important predictor for estimating avian 

distributions at regional or landscape scales (Aragón & Sánchez‐Fernández 2013; 

de Araújo et al. 2014; Aragón et al. 2018). However, whether the distribution of food 

resources can successfully predict the presence of a main consumer across 

continental extents (2000 – 10,000 km) has not been tested specifically for a 

terrestrial apex predator. The harpy eagle (Harpia harpyja) is a large Neotropical 

raptor with a continental range across Central and South America from southern 

Mexico to northern Argentina (Vargas González et al. 2006; Sutton et al. 2021, 

2022a,b). Harpy eagles are distributed across lowland tropical forest (Vargas 

González & Vargas 2011; Miranda et al. 2019; Sutton et al. 2022a,b), and in 

seasonal forest enclaves (Silva et al. 2013). A recent review summarizing harpy 

eagle diet across its range established a trend towards a semi-specialized diet 

(Miranda 2015), mainly comprised of arboreal mammals, including sloths, primates, 

and tree porcupines. However, birds, reptiles, and terrestrial mammals may also be 



taken, albeit less frequently (Aguiar-Silva et al. 2015; Miranda 2018; Miranda et al. 

2020).  

 

Species Distribution Models (SDMs) are spatial statistical models that establish the 

environmental range limits of a given species from environmental conditions and 

resources at known occurrences (Franklin 2009; Peterson et al. 2011). SDMs have 

seen rapid advances over the past 20 years, yet there are still outstanding 

conceptual and methodical issues that need addressing to improve predictions 

(Guisan et al. 2017). An important current ecological question is whether including 

biotic interactions in SDMs can increase their predictive power (Wiens 2011; Wisz et 

al. 2013; Anderson 2017; Dormann et al. 2018; Stephenson et al. 2022). 

Incorporating food resource distributions into abiotic SDMs can improve model 

predictive performance, leading to more realistic predictions at regional scales 

(Aragón et al. 2018; Atauchi et al. 2018; Palacio & Girini 2018). Moreover, including 

biotic resources in SDMs is especially relevant for species ranging over lower 

tropical latitudes with more benign abiotic conditions (Louthan et al. 2015). Indeed, it 

has long been hypothesised that species range limits in low-latitude areas are driven 

more by species interactions than climate (Biotic interactions hypothesis, 

Dobzhansky 1950; MacArthur 1972), with support for similar responses along 

altitudinal gradients (Normand et al. 2009; Dvorský et al. 2017). However, given that 

all taxa need suitable resources and conditions to survive, species distributions must 

be regulated by both conditions and resources regardless of scale (Godsoe et al. 

2015). Thus, in this tropical forest predator-prey system, biotic resources and abiotic 

conditions are expected to exert varying but accountable effects on harpy eagle 

distribution. 



 

Here, we used a hierarchical modelling approach with four SDMs fitted as functions 

of abiotic conditions and food resource covariates for the harpy eagle using: (1) 

climatic and topographical covariates (Abiotic model), (2) solely food resource 

distribution covariates (Biotic model), (3) including food resource distributions 

individually, and (4) as predicted prey species richness (both Abiotic-Biotic models). 

Last, pair-wise niche overlaps in geographical space were calculated and all 

distributions were correlated to determine commonality in distribution for all species 

in this predator-prey system. Specifically, we sought to establish if including food 

resource distributions were more important for predicting distribution at continental 

scales and meaningfully improved climate-derived model predictions. Further, we 

quantified the level of niche overlap between the harpy eagle and its main prey in 

this lowland tropical forest predator-prey system and predicted areas of highest 

environmental suitability for the harpy eagle and its main food resources. 

 

Methods 

Occurrence data 

We sourced harpy eagle occurrences from the Global Raptor Impact Network (GRIN, 

McClure et al. 2021) a data information system for monitoring populations of all 

raptor species. For the harpy eagle, GRIN consists of occurrence data from two 

previous distribution assessments (Vargas González & Vargas 2011; Miranda et al. 

2019) which give precise point localities for nests and sightings. In addition, we 

downloaded presence-only data from the Global Biodiversity Information Facility 

(GBIF 2022) but omitted eBird (Sullivan et al. 2009) data points, due to concerns 

over location accuracy because of the checklist system used in the eBird dataset. 



Food resource occurrence data were compiled from GBIF (2019a,b,c,d,e,f), using 

the five most frequent prey by genus (Miranda 2015): three and two-toed sloth 

Bradypus & Choloepus spp. (respectively; 53.2 %), capuchin monkey Cebus & 

Sapajus spp (8.0 %), howler monkey Alouatta spp. (7.3 %), and tree porcupine 

Coendou spp. (5.3 %).  

 

Food resources were combined into their respective genera to: (1) obtain a higher 

number of occurrence records for each model, and (2) as an appropriate broad scale 

representation of food resource distribution. Two genera were used for capuchin 

monkey based on a recent taxonomic assessment, with Sapajus (or robust 

capuchin) found south of the Amazon river and Cebus (or gracile capuchin) north of 

the Amazon river (Lynch Alfaro et al. 2011). Combined these five food resource 

genera comprise 73.8 % by frequency and 75.6% of biomass, representing the 

majority of food resources taken by the harpy eagle across its range. We omitted all 

other known prey types because including these would create unnecessary noise in 

our predictions and our focus was on correlating harpy eagle occurrence with its 

main food resources important for conservation applications.  

 

We cleaned occurrences by removing duplicate records, those with no geo-

referenced location and only those occurrences recorded from 1960 onwards, to 

temporally match the timeframe of the environmental covariates. Finally, a manual 

check for unlikely outliers was performed in the Quantum Geographic Information 

System software (v3.2.2., QGIS 2022). For all species occurrences, a 5-km spatial 

filter was applied between each occurrence point using the ‘geoThin’ function in the 

R package ‘enmSdm’ (Smith 2019). Using a 5-km filter approximately matches the 



resolution of the environmental raster data (~4.5-km) and reduces the effect of 

biased sampling (Kramer‐Schadt et al. 2013). After data cleaning, a total of 609 geo-

referenced records were compiled for the harpy eagle. Applying the 5-km spatial 

filter resulted in 488 harpy eagle occurrence records for use in the calibration 

models. Occurrence records used for the food resource species calibration models 

are given in Table 1. 

 

Table 1. Number of unfiltered and filtered occurrences for food resource genera used in the food 

resource distribution models (GBIF 2019a,b,c,d,e,f).  

 

Food resource genus Primary diet type Unfiltered Filtered 

Howler monkey Alouatta Folivore/Frugivore 1841 1003 

Capuchin monkey Cebus & Sapajus Omnivore 1160   691 

Three-toed sloth Bradypus Folivore   547   276 

Two-toed sloth Choloepus Folivore   389   223 

Tree porcupine Coendou Folivore   269   204 

 

Environmental covariates 

We downloaded thirty-seven bioclimatic and topographical abiotic raster layers from 

the WorldClim (v1.4, Hijmans et al. 2005) and ENVIREM (Title & Bemmels 2018) 

databases at a spatial resolution of 2.5 arc-minutes (~4.5-km resolution). WorldClim 

variables (n = 19) are generated through interpolation of average monthly weather 

station climate data from 1960-1990, with ENVIREM variables derived from the 

WorldClim v1.4 bioclimatic layers. Raster layers for both the harpy eagle and food 

resource models were cropped to a polygon representing the accessible area for all 

species (Barve et al. 2011). We based this on the Neotropical ecoregions (Dinerstein 

et al. 2017) where harpy eagles are known to occur (Vargas González et al. 2006). 

This polygon was then cropped to the current political borders consisting of all known 



range countries (including Formosa, Jujuy, Misiones and Salta provinces in northern 

Argentina, and Chiapas, Oaxaca and Tabasco states in southern Mexico) where the 

harpy eagle is currently distributed (Vargas González et al. 2006). This improves 

model predictive power by only including those ecoregions where harpy eagles 

would most likely be found and reducing the background area used for testing points 

used in model evaluation (Barve et al. 2011; Radosavljevic & Anderson 2014).  

 

Before building each model, all covariates for both the harpy eagle and food 

resource models were tested for multicollinearity underlying occurrences using 

Variance Inflation Factor (VIF, Hair et al. 2006) in the R package ‘fuzzySim’ (Barbosa 

2015, 2018). VIF is based on the square of multiple correlation coefficients, 

regressing a single predictor variable against all other covariates. A stepwise 

elimination of highly correlated variables was used retaining covariates with a VIF 

threshold of < 10 (Dormann et al. 2013), and Spearman’s Correlation Coefficient of rs 

≤ |0.7| retained for consideration as covariates. We selected environmental 

covariates for the food resource distribution models based on species biology and 

reducing collinearity between environmental covariates underlying the occurrences 

of each specific food resource genus (Meineri et al. 2012). Using this method all five 

food resource models used a different set of environmental covariates (Table S1), 

resulting in low collinearity between the final food resource model raster covariates 

(all tests VIF = < 10; Table S2).  

 

For the Abiotic-Biotic SDMs, these five covariates defining modelled food resource 

distributions were included in the harpy eagle model calibration as raster layers as 

has been done in previous studies (Arajúo & Luoto 2007; Preston et al. 2008; 



Ghergel et al. 2018; Stephenson et al. 2022). Finally, we combined all individual food 

resource models into a stacked SDM and the continuous suitability values summed 

for a continuous estimate of food resource species richness in the range 0.0 – 5.0. 

We standardized all raster values for the food resource distribution predictions prior 

to summing and stacking the rasters with a mean of one and standard deviation of 

zero, thus treating all prey species equally in the stacking. 

 

For the Abiotic model (A) two climatic variables, Climatic Moisture Index (CMI) and 

minimum temperature warmest month, and one topographic variable, Terrain 

Roughness Index (TRI), were included as covariates. We selected all three 

covariates a priori because combined they contributed 96 % to model prediction from 

a previous SDM (Sutton et al. 2021) and because all three presented a low level of 

spatial autocorrelation with the filtered harpy eagle occurrences when assessed with 

a Mantel correlogram (Fig. S1). Food resource distributions were used in three 

further models, with SDMs fitted using the same methodology as for the Abiotic 

model. First, only food resource distribution covariates were used in a Biotic model 

(B). Second, modelled food resource raster predictions were included as individual 

biotic covariates along with the abiotic covariates in an Abiotic + Biotic model (A+B). 

Finally, the predicted species richness was used as the sole biotic predictor along 

with the abiotic covariates in an Abiotic + (Biotic) Species Richness model (A+SR), 

for a comparison to using individual prey genera (model B) as covariates. Geospatial 

analysis and modelling was performed in R (v3.5.1; R Core Team, 2018) using the 

‘dismo’ (Hijmans et al. 2017), ‘raster’ (Hijmans 2017), ‘rgdal’ (Bivand et al. 2019), 

‘rgeos’ (Bivand & Rundle 2019) and ‘sp’ (Bivand et al. 2013) packages.  

 



Species Distribution Models 

We fitted SDMs using penalized elastic-net logistic regression (Fithian & Hastie 

2013), within a point process model (PPM) framework in the R package ‘maxnet’ 

(Philips et al. 2017). Penalized logistic regression imposes a penalty (termed 

regularization) to the model shrinking the coefficients of covariates that contribute the 

least to model prediction towards zero (or exactly zero). The complementary log-log 

(cloglog) transform was selected as a continuous index of environmental suitability, 

with 0 = low suitability and 1 = high suitability. The ‘maxnet’ package is based on the 

maximum entropy algorithm MAXENT, equivalent to an inhomogeneous Poisson 

process (IPP; Fithian & Hastie 2013; Renner & Warton 2013; Renner et al. 2015). 

Philips et al. (2017) demonstrated the cloglog transform is equivalent to an IPP and 

can be interpreted as a measure of relative occurrence probability proportional to a 

species potential abundance. We used a tuned penalized logistic regression 

algorithm because this modelling approach outperforms other SDM methods (Valavi 

et al. 2021), including ensemble-averaged models (Hao et al. 2020). 

 

We used a random sample of 10,000 background points as pseudo-absences 

recommended for regression-based modelling (Barbet-Massin et al. 2012) and to 

sufficiently sample the background calibration environment (Guevara et al. 2018). 

Optimal-model selection was based on Akaike’s Information Criterion (Akaike 1974) 

corrected for small sample sizes (AICc; Hurvich & Tsai 1989), to determine the most 

parsimonious model from two key MAXENT parameters: regularization beta multiplier 

(β; level of coefficient penalty) and feature classes (response functions, Warren & 

Seifert 2011). For all SDMs, eighteen candidate models of varying complexity were 

built by conducting a grid search comparing a range of regularization multipliers from 



1 to 5 in 0.5 increments, and two feature classes (response functions: Linear, 

Quadratic) in all possible combinations using the ‘checkerboard2’ method of cross-

validation (k-folds = 5) using a hierarchical 5x5 aggregation factor within the 

‘ENMeval’ package in R (Muscarella et al. 2014).  

 

We only used Linear and Quadratic features to produce less complex and more 

realistic predictions (Merow et al. 2013; Guevara et al. 2018). The checkerboard 

cross-validation method of partitioning masks the geographical structure of the data 

according to latitude and longitude lines, dividing all occurrences into four spatially 

independent bins of equal numbers. By masking the geographical structure of test-

data the models are projected onto an evaluation region not included in the 

calibration process. All occurrence and background test points are assigned to their 

respective bins dependent on location, thus further reducing spatial autocorrelation 

between testing and training localities (Radosavljevic & Anderson 2014). We used 

the ‘checkerboard2’ method because this is an appropriate approach when 

correlating multiple species distributions in the same analog environmental space but 

not transferring models into non-analog conditions across space and time 

(Muscarella et al. 2014). We used response curves, parameter estimates and 

percent contribution to model prediction to measure variable performance within the 

optimal calibration models. 

 

Model evaluation 

We evaluated model performance using both threshold-independent and threshold-

dependent measures (Radosavljevic & Anderson 2014). Omission rates are a 

threshold-dependent measure that report the proportion of training points that are 



outside of the model when converted into a binary prediction. Omission rates 

evaluate discriminatory ability and over-fitting at specified thresholds. Lower 

omission rates show improved discrimination between suitable and unsuitable 

habitats (indicating higher performance), whilst overfitted models show higher 

omission rates than expected by theory (Radosavljevic & Anderson 2014). A single 

threshold-dependent measure was calculated based on the 10% training presence 

omission rate (OR10) threshold. For low over-fit models the expectation for OR10 is 

a value close to 0.10 (Muscarella et al. 2014). 

 

We used Continuous Boyce index (CBI, Hirzel et al. 2006) as a threshold-

independent measure of how predictions differ from a random distribution of 

observed presences (Boyce et al. 2002). CBI is consistent with a Spearman 

correlation (rs) with CBI values ranging from -1 to +1, with positive values indicating 

predictions consistent with observed presences, values close to zero no different 

than a random model, and negative values indicating areas with frequent presences 

having low predicted environmental suitability. CBI was calculated using five-fold 

cross-validation on 20 % test data with a moving window for threshold-independence 

and 101 defined bins in the R package ‘enmSdm’ (Smith 2019). We evaluated 

models against random expectations using partial Receiver Operating Characteristic 

ratios (pROC), which estimate model performance by giving precedence to omission 

errors over commission errors (Peterson et al. 2008). Partial ROC ratios range from 

0 – 2 with 1 indicating a random model. Function parameters were set with a 10 % 

omission error rate, and 1000 bootstrap replicates on 50 % test data to determine 

significant (𝛼 = 0.05) pROC values >1.0 in the R package ‘ENMGadgets’ (Barve & 

Barve, 2013). 



 

Geographical overlap and correlation 

We measured pair-wise geographic overlaps between the harpy eagle and the five 

prey distributions using Schoener’s D (Schoener 1968, Warren et al. 2008), which 

ranges from 0 (no overlap) to 1 (identical overlap). To estimate the areas where all 

six species coincide, the three harpy eagle SDM predictions that used biotic 

covariates (models B, A+B and A+SR) were first stacked and their respective CBI 

scores used to calculate a weighted mean ensemble prediction. Second, the five 

prey distribution SDMs were also stacked into a single raster. Last, we then 

predicted a measure of commonality in species distribution by intersecting the harpy 

eagle ensemble prediction, with the stacked prey distribution rasters with a threshold 

of 0.5 using the ‘stability’ function in the R package ‘sdStaf’ (Atauchi 2018).  

 

Results 

Food resource distribution models 

Optimal model selection (ΔAICc = 0.0) for the capuchin monkey, howler monkey and 

three-toed sloth distribution models had feature classes Linear and Quadratic and a 

regularization multiplier β = 1. The best supported two-toed sloth model had a β = 

1.5 and the best supported tree porcupine model had a β = 3.5, both with linear and 

quadratic feature class functions. Discrimination ability (OR10) for all models was at 

or close to the expected threshold of 0.10 (Table 2). Final best-fit models were 

robust to random expectations (range: pROC = 1.324-1.683) with high model 

calibration accuracy (range: CBI = 0.803-0.992). Capuchin monkey had the broadest 

distribution, followed by howler monkey and tree porcupine (Fig. 1). Three-toed and 

two-toed sloths were largely restricted to Central America, Colombia, Amazonia and 



the Guiana Shield. Prey species richness was highest in Panama, north along the 

Caribbean coast of Central America, and south along the Pacific coast of Colombia. 

A broad belt of high prey species richness was predicted across northern Amazonia, 

east into the Guiana Shield and across the central Amazon. 

 

Table 2. Evaluation metrics for prey distribution models used as biotic covariates in the harpy eagle 

distribution models. All models selected with ΔAICc = 0.0. FC = feature classes: Linear (L) and 

Quadratic (Q), RM = regularization multiplier. OR10  = 10% training presence omission rate threshold. 

CBI = Continuous Boyce Index, pROC = partial Receiver Operating Characteristic ratios.  

 

Food resource SDM FC RM OR10 CBI pROC 

Capuchin monkey LQ 1.0 0.104 0.803 1.424 

Howler monkey  LQ 1.0 0.108 0.992 1.533 

Three-toed sloth LQ 1.0 0.122 0.960 1.604 

Tree porcupine LQ 3.5 0.098 0.977 1.324 

Two-toed sloth  LQ 1.5 0.104 0.965 1.683 



 

Figure 1. Predicted distributions for the five primary prey genera for the harpy eagle and combined 

into a summed prediction of prey species richness. Maps denote cloglog prediction with red areas 

(values closer to 1) having highest suitability. Grey borders represent ecoregions and black points are 

each respective prey species’ occurrences fitted with minimum convex hulls. 



Harpy eagle distribution models 

All four best-supported harpy eagle models (ΔAICc = 0.0) had feature classes Linear 

and Quadratic and a regularization multiplier β = 1. Optimal selected models had 

robust discrimination ability with omission rates (OR10) at expected values of 0.10 

(Table 3). The Abiotic+SpeciesRichness (A+SR) model had the highest model 

calibration performance (CBI = 0.788) but all models had good calibration accuracy 

between predicted environmental suitability and test occurrence points (range: CBI = 

0.709—0.788). All models were robust against random expectations (range: pROC = 

1.288-1.431). Visually, including prey distributions in both the Biotic (B) and 

Abiotic+Biotic (A+B) models constrainted harpy eagle distribution (Fig. 2), compared 

to using solely abiotic covariates. The Biotic (B) and Abiotic+Biotic (A+B) models 

captured more detail in defining areas of highest suitability and relative abundance 

for the harpy eagle (Fig. 2). This was noticeable especially across key areas of the 

harpy eagle range in Guyana, eastern Colombia, Panama and northern Peru and the 

central Amazon basin in Brazil. 

 

Table 3. Model selection and evaluation metrics for all four harpy eagle SDMs ranked by AICc. 

Evaluation metrics are Continuous Boyce Index (CBI) and tested against null expectations using 

partial Receiver Operating Characteristic ratios (pROC). OR10  = 10% training presence omission 

rate threshold. 

 

SDM AICc OR10 CBI pROC 

A+B 12696.13 0.107 0.766 1.431 

A+SR 12747.75 0.101 0.788 1.349 

A 12803.06 0.101 0.715 1.288 

B 12805.03 0.096 0.709 1.369 



 

Figure 2. Predicted continuous distributions for the harpy eagle using abiotic and biotic covariates. 

Maps denote cloglog prediction with red areas (values closer to 1) having higher environmental 

suitability. Grey borders represent ecoregions and black points define harpy eagle occurrences. 

 

 

 

 

 

 



Predictor importance and responses 

Climatic Moisture Index contributed the highest percentage to the Abiotic model 

prediction (76.0 %), with three-toed sloth the highest contributor in both Biotic (82.3 

%) and Abiotic+Biotic (63.7 %) models. Species richness was the most important 

predictor (63.7 %) in the Abiotic+SpeciesRichness (A+SR) model, followed by 

Climatic Moisture Index (27.2 %, Table S3). Covariate responses in the Abiotic 

model (Fig. 3) showed a unimodal response to Climatic Moisture Index peaking at 

0.4, with a positive response to minimum temperature for the warmest month 

peaking at suitable temperatures of 25°C. Harpy eagle occurrence had consistently 

high positive linear responses to predicted values of prey species occurrence in both 

the Biotic and Abiotic+Biotic models (Figs. 4-5), except for tree porcupine which had 

a unimodal response at values between 0.6-0.8. Similar positive linear responses to 

high species richness were observed in both the Biotic (Fig. 4) and 

Abiotic+SpeciesRichness models (Fig. 6). 

 

Figure 3. Response curves for covariates in the Abiotic distribution model for the harpy eagle. The 

response curves show the contribution to model prediction (y-axis) as a function of each continuous 

habitat covariate (x-axis). Maximum values in each response curve define the highest predicted 

relative suitability. The response curves reflect the partial dependence on predicted suitability for each 

covariate and the dependencies produced by interactions between the selected covariate and all 

other covariates.  

 



Figure 4. Response curves for covariates in the Biotic distribution model for the harpy eagle. The 

response curves show the contribution to model prediction (y-axis) as a function of each continuous 

habitat covariate (x-axis). Maximum values in each response curve define the highest predicted 

relative suitability. The response curves reflect the partial dependence on predicted suitability for each 

covariate and the dependencies produced by interactions between the selected covariate and all 

other covariates.  



 

Figure 5. Response curves for covariates in the A+B distribution model for the harpy eagle. The 

response curves show the contribution to model prediction (y-axis) as a function of each continuous 

habitat covariate (x-axis). Maximum values in each response curve define the highest predicted 

relative suitability. The response curves reflect the partial dependence on predicted suitability for each 

covariate and the dependencies produced by interactions between the selected covariate and all 

other covariates.  



 

Figure 6. Response curves for covariates in the A+SR distribution model for the harpy eagle. The 

response curves show the contribution to model prediction (y-axis) as a function of each continuous 

habitat covariate (x-axis). Maximum values in each response curve define the highest predicted 

relative suitability. The response curves reflect the partial dependence on predicted suitability for each 

covariate and the dependencies produced by interactions between the selected covariate and all 

other covariates.  

 

Model parameter estimates showed positive linear relationships with Climatic 

Moisture Index in all three models using Abiotic covariates, but negative quadratic 

relationships (Table 4), reflecting the unimodal response functions. Minimum 

temperature of the warmest month and Terrain Roughness Index beta coefficients 

were penalized close to or at zero and showed weak linear and quadratic 



relationships when biotic covariates were included. Both sloth genera had positive 

quadratic relationships in the Biotic and Abiotic+Biotic models, with a stronger 

relationship stronger for the three-toed sloth in the Abiotic+Biotic model. Tree 

porcupine had the strongest linear and quadratic relationships in the Biotic model, 

but these responses were less pronounced in the Abiotic+Biotic model. 

 

Table 4. Linear and Quadratic (with superscript 2) parameter estimates for each optimal model 

derived from penalized logistic regression beta coefficients. 

 

Predictor Abiotic Biotic A+B A+SR 

Climatic Moisture Index  2.055    0.955  1.108 

Min. temp. warmest month  0.013    0.049  0.022 

Terrain Roughness Index  0.022    -0.001   

   
  

Climatic Moisture Index2 -3.691   -6.481 -6.643 

Min. temp. warmest month2  0.000       

Terrain Roughness Index2  0.000    0.000  0.000 

   
  

Tree porcupine    7.434  4.186   

Three-toed sloth   -2.039  

Two-toed sloth   -3.540 -1.649   

Howler monkey    0.905 -1.038   

Capuchin monkey    0.203   0.734   

     
Tree porcupine2   -6.679  -3.042   

Three-toed sloth2    2.697   4.537   

Two-toed sloth2    2.413   1.544   

Howler monkey2    0.965    

Capuchin monkey2    0.902   0.476   

Species richness2    0.001    0.013 

 

Geographic overlap and correlation 

In geographic space, pair-wise overlaps between the harpy eagle and its food 

resource distributions were highest with capuchin (D = 0.871) and howler monkey (D 



= 0.855), followed by tree porcupine (D = 0.846). Three-toed sloth (D = 0.691) and 

two-toed sloth (D = 0.667) both had similar, but lower overlap scores compared to 

the primate and porcupine genera. The most correlated areas of distribution were 

first along the Caribbean coast of Central America, extending into the Chocó region 

along the Pacific coast of Colombia (Fig. 7). Second, a large but patchy area of high 

environmental suitability was predicted across Amazonia, extending from eastern 

Colombia, across the Guiana Shield and south into the northern Amazon of Brazil.  

 

Figure 7. Predicted distribution correlation for the harpy eagle given the distribution of its five main 

prey species. Values close to -2 suggest absence, -1 to 0 can be interpreted as colonisable areas, 0 

to 1 defines areas of highest suitability (prey availability) and values of 2 (dark red patches) show the 

most unsuitable (low prey availability) areas. Grey borders represent national borders and state 

boundaries for Argentina, Brazil, and Mexico. 

 



Discussion 

Recent theoretical and empirical work has demonstrated the importance of including 

resource distributions in macro-scale Species Distribution Models (SDMs, Araújo & 

Rozenfeld 2014; Atauchi et al. 2018; Ghergel et al. 2018; Palacio & Girini 2018). Our 

results show that incorporating the distribution of the harpy eagle’s five main prey 

species at a continental scale improved its distribution estimates compared to using 

solely abiotic covariates. This result further counters the Eltonian Noise Hypothesis 

(Soberón & Nakamura 2009), the assumption that biotic interactions are unimportant 

at broad spatial scales (Pearson & Dawson 2003). Including food resources as 

individual prey species distribution rasters improved the predictive performance of 

the Abiotic model but we acknowledge that this is also related to a higher number of 

parameters in the prey resource models. Moreover, using solely biotic covariates or 

combined as species richness still resulted in high performing models, but the 

combination of Abiotic+SpeciesRichness (model A+SR) had highest calibration 

accuracy. Geographic overlap ranged from moderate to high between the harpy 

eagle and its main prey species, with highest environmental suitablity for all species 

combined ranging across northern South America and Central America.  

 

The spatial pattern of species’ distributions are products of physiological constraints 

such as climate and topography, and interactions with other co-occurring species 

(MacArthur 1972). It follows then that both abiotic and biotic factors combined should 

drive species distributions, and abiotic variables alone are unable to provide 

sufficient detail for distribution estimates at coarse scales (Wisz et al. 2013; Kass et 

al. 2019). Our results support this conclusion by improving an abiotic model 

prediction with the inclusion of food resource distributions. Three-toed sloth was the 



most important biotic predictor in both the Biotic and Abiotic+Biotic (A+B) models 

(Table S3), consistent with this species being the principal prey for the harpy eagle 

across its range (Aguiar-Silva et al. 2014; Miranda 2015; Miranda 2018). However, 

the importance of three-toed sloth distribution decreased when including abiotic 

factors, with Climatic Moisture Index the second most important predictor in the 

Abiotic+Biotic (A+B) model. This indicates that only a reduced subset of climatic and 

biotic covariates are necessary to account for the major distributional constraints for 

the harpy eagle. 

 

In the Abiotic+SpeciesRichness (A+SR) model, prey species richness was the most 

important predictor (63.7 %), followed by Climatic Moisture Index (27.2 %). 

Combined, these two covariates accounted for nearly 91 % of model prediction, 

further supporting the inclusion of food resource species richness as a predictor in 

SDMs. Yet, when including species richness in the Biotic model its importance was 

low, probably due to any predictive power lost amongst the other biotic noise from 

the individual food resource covariates. For SDMs food resource distributions should 

thus be included as single covariates where predator-prey interactions are well 

established, and occurrence data are available. However, if occurrence data for 

single prey species are lacking (as is often the case), then combining all known food 

resource species into a single species richness predictor is a valid method (Kass et 

al. 2019), confirmed by our highest performing model (A+SR) including species 

richness as a predictor.  

 

Our results confirm the importance of sloth distribution as one of the main drivers for 

harpy eagle distribution. There were high positive responses between harpy eagle 



distribution and three-toed sloth occurrence and with the highest percent 

contributions to the Biotic model prediction. Indeed, in some parts of their range 

harpy eagles have narrow diets comprised of 80 to 95 % sloths (Miranda et al. 

2020), in central and eastern Amazonia (Galetti & de Carvalho 2000; Aguiar-Silva et 

al. 2014) and north-east Ecuador (Muñiz-López 2008). However, the harpy eagle is 

not so specialized on a diet of three-toed sloths as to be absent from areas where 

sloths are not present. It seems likely that in the southern and eastern parts of the 

harpy eagle range primates and porcupines are the key prey species, replacing 

sloths as the primary food source (Miranda 2015). Thus, our models are able to 

capture the spatial variation in predator-prey distribution across a continental tropical 

forest system by using a range of key prey genera and not relying solely on a single 

biotic predictor. 

 

Using response curves to interpret model outputs is a useful though underused 

aspect of model evaluation in many SDMs (Guevara et al. 2018; Kass et al. 2019). 

Here, modelled partial responses for the three-toed and two-toed sloth were strongly 

positive in both the Biotic and Abiotic+Biotic (A+B) models, peaking at 1.0 as 

expected (Figs. 4-5). Capuchin and howler monkey followed similar positive linear 

responses, peaking between 0.9-1.0. Tree porcupine had unimodal responses in 

both the Biotic and Abiotic+Biotic models peaking at 0.7, suggesting this prey type is 

less important for driving harpy eagle range limits. This consistency in model 

response functions suggests a strong reliance on all prey types for the distribution of 

the harpy eagle and adds further weight to conservation programs that take a wider 

landscape approach to conserving all elements of this tropical forest predator-prey 

system.  



  

Pair-wise geographic overlaps supported strong relationships in distribution between 

the harpy eagle and its main food resources. High overlaps with most of its main 

prey suggests harpy eagle distribution is largely dependent on where its main food 

resources exist. Both primate prey genera (capuchin and howler monkey) had higher 

overlap values than the other main prey species. This could be partly explained by 

both primate genera having similar broad distributions across the Neotropics to the 

harpy eagle, thus overlap values would be expected to be high. Conversely, overlaps 

for both sloth genera were lower, even though in many areas of the harpy eagle 

range sloths are often the primary food resource. However, both sloth genera have 

more restricted ranges than both the primate genera, thus overlap values would be 

expected to be lower.  

 

The correlation model predicted the most common areas of distribution across 

Amazonia, the Guiana Shield, and the Caribbean coast of Central America. Given 

the high reliance that harpy eagle distribution has with its main food resources, we 

recommend conserving extensive tropical lowland forest habitat and prioritizing 

research in these key regions. Further, due to its reliance on lowland tropical forests 

the harpy eagle may act as a surrogate example, enabling greater understanding of 

how the range limits of an apex predator may point to how other tropical forest biota 

are predicted to respond to a changing climate (Urban et al. 2017). Our results show 

predictive models can identify those areas of highest environmental suitability, and 

where the main coincidence of the taxa in this predator-prey system is concentrated. 

This then leads into where preventative conservation action would have the most 

benefit – not reactive conservation but proactive planning. The overall picture is of 



highest climate stability and food resources in northern Amazonia and the Guiana 

shield, along with eastern and western Colombia, extending into eastern Panama. 

Thus, conservation efforts for the harpy eagle need extending beyond current 

programs to focus on these regions, some of which have seen little conservation 

action.  

 

The biotic interactions hypothesis states that species interactions are the main driver 

for species distribution in the relatively stable climates of the tropics (MacArthur 

1972; Louthan et al. 2015). Our results in general support this, though abiotic 

processes are clearly important, with Climatic Moisture Index (CMI) still the key 

abiotic predictor in the Abiotic (A+B) and Abiotic+SpeciesRichness (A+SR) models. 

Because CMI is closely correlated with the primary vegetation types in Neotropical 

forests (Beck et al. 2018), it seems likely that CMI is acting as a proxy for lowland 

tropical forest, which by definition is the key vegetation type for all species 

distributions in this tropical forest system. Thus, both specific food resources and 

habitat type are likely the main drivers on harpy eagle distribution, which hardly 

seems unexpected. A useful next step would be to include direct habitat variables, 

competitor distributions and human impacts, along with food resources, to provide a 

broader perspective on the main influences determining harpy eagle distribution 

(Joint-SDMs, Pollock et al. 2014). 

 

Consistent with previous smaller scale regional studies (e.g. Hof et al. 2012; Aragón 

et al. 2018; Ghergel et al. 2018), our results support including food resources in 

SDMs, but also that including the main food resource distributions for apex predators 

is important at continental scales. Further, our results dispute the Eltonian Noise 



Hypothesis, similar to conclusions from landscape to regional scale studies (Araújo 

et al. 2014; Atauchi et al. 2018). However, it is recognised that increases in 

predictive power were relatively slight and the Abiotic SDM still had high predictive 

accuracy. Including resource distributions has much practical value for advancing 

SDM predictions across a range of applications in space (spread of invasive species) 

and time (climate change range shifts). As demonstrated here, predictions were 

improved when applied to basic model interpolation, thus not including resource 

distributions may result in poorer model transferability when extrapolating in space 

and time. However, we recognise limitations with interpreting model outputs, with the 

prey model for two-toed sloth over-predicting in northern Central America, beyond 

the species’ known northern range limits (McCarthy et al. 1999), which will have 

subsequent impacts on harpy eagle range predictions.  

 

We recognise the potential limitations in our modelling approach for selecting a 

varying number of environmental covariates a priori for each harpy eagle SDM even 

though this is an established and biologically driven method for variable selection 

(Fourcade et al. 2017). The inconsistent model structure and number of parameters 

could lead to over-fitting, with a potential solution to generate randomly permuted 

variables (Niittynen & Luoto 2018). However, in this case all four harpy eagle models 

had 10 % omission rates at or near to the recommended OR10 value (0.10), 

demonstrating low over-fitting in all models including the A+B model with the highest 

number of parameters. Thus, selecting biologically plausible variables based on 

based on current knowledge was effective in this case rather than relying on random 

generation of covariates. In addition, we acknowledge the limitations of using 

community science data which often does not sample over the entire extent of a 



species range (Beck et al. 2014). This lack of occurrence coverage has implications 

for producing accurate and realistic models, reflected in regional variation in prey 

availability. However, as shown here, the point process model framework using 

penalized logistic regression produces reliable and useful predictions for species 

range limits in the absence of detailed distributional information for tropical forest 

species. 

 

We show how incorporating food resource distributions improves model predictive 

power and circumscribes the spatial complexity in harpy eagle distribution. Adding 

food resource distributions revealed the crucial role of predator-prey interactions in 

harpy eagle distribution. Given the wide variation in food type taken by the harpy 

eagle across its range (Aguiar-Silva et al. 2014; Miranda 2018), maintaining these 

prey resources should also be a priority in conservation programs for the harpy 

eagle. Conserving habitat for the key arboreal mammal prey populations along with 

one of their main predators as a complete tropical forest system seems a viable 

approach given the reliance on harpy eagle presence with their main food resource 

distributions. We encourage practitioners to incorporate known biotic interactions into 

SDMs, but modellers should recognise that understanding the complex interactions 

inherent in natural systems is a challenge (Aragón et al 2018). Whilst we 

demonstrate that using resource distributions improves model predictions at macro-

scales, this needs further testing across multiple taxa and ecosystems to determine if 

this finding is consistent elsewhere. 
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Supplementary Information 

Supplementary Tables 

Table S1. Environmental variables (predictors) used in the species distribution model of each prey species. Black points indicate which environmental 

variables were used in each respective species distribution model. 

 

Predictor Capuchin monkey Howler monkey Three-toed sloth Tree porcupine Two-toed sloth 

Mean diurnal temperature range     ●   ● 

Isothermality ● ● ●   

Mean temperature wettest quarter ●  
 

  

Precipitation wettest month    ●  

Precipitation driest month ● ●    

Precipitation warmest quarter ● ● ● ● ● 

Precipitation coldest quarter      

Climatic Moisture Index  ● ● ● ● 

Minimum temperature warmest month  ●    

Maximum temperature coldest month 
  

● 
  

PET driest quarter 
 

  ● ● 

PET seasonality 
    

 

PET warmest quarter ● ● 
   

PET wettest quarter ● ● ● ● ● 

Topographic wetness  
 

  
 

Terrain Roughness Index ● ● ● ● ● 



Table S2. Multi-collinearity test using stepwise elimination Variance Inflation Factor (VIF) for 

correlation between food resource distribution models used as biotic covariates. 

 

Resource distribution model VIF 

Two-toed sloth Choloepus 7.834 

Three-toed sloth Bradypus 6.286 

Capuchin monkey Cebus & Sapajus 4.138 

Howler monkey Alouatta 2.624 

Tree porcupine Coendou 2.634 

 

 

 

 

 

Table S3. Percent contribution to model prediction for environmental covariates used in all SDMs for 

the harpy eagle (ranked by % contribution in the Abiotic and Biotic models). 

 

Predictor Abiotic Biotic A+B A+SR 

Climatic Moisture Index 76.0  29.8 27.2 

Minimum temperature warmest month 11.4    0.2   2.5 

Terrain Roughness Index 12.6    1.3   6.6 

Three-toed sloth  82.3 63.7  

Tree porcupine    7.9   0.5  

Capuchin monkey    4.8   1.1  

Two-toed sloth    3.3   0.8  

Howler monkey    1.2   2.6  

Species Richness    0.6   63.7 

 

 

 

 

 

 



Supplementary Figures 

 

Figure S1. Mantel correlogram showing level of spatial autocorrelation between the filtered harpy 

eagle occurrences and three abiotic covariates (Climatic Moisture Index, minimum temperature 

warmest month, Terrain Roughness Index) using 50 distance classes over 999 permutations. Mantel r 

values of zero indicate no correlation between the two distance matrices. Black points indicate 

statistically significant correlation at alpha 0.05, white points indicate non-significant correlation at the 

specified distance class.  

 

 


