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Phenomenology from Lattice Field Theory Simulations

Gaurav Sinha Ray

Abstract

Lattice QCD is a well-established ab initio probe of the Strong
interaction in the low energy nonperturbative regime. As a system-
atically improvable numerical tool it has proven an effective means
of validating the Standard Model against observations from particle
physics experiments. In this thesis two topics of phenomenological
importance are studied on lattices generated with the Nf = 2+1+1
Highly Improved Staggered Quark action, the spectroscopy of hybrid
charmonium mesons, and the hadronic vacuum polarisation.

Chapters 1 and 2 serve as a brief introduction to the lattice and
provide the relevant background on the theoretical concepts. Basic
ingredients such as the discretisation of QCD, the Staggered fermion
formulation, and the latticisation of QED are described. The proce-
dure for generating gauge fields and measuring correlators is outlined
and the statistical concepts behind the extraction of physical informa-
tion from the correlators are explained.

Over the last two decades many resonances have been observed
that do not fit within the longstanding Quark Model. Hybrid mesons
(qqg), mesons with an excited gluonic component, have been proposed
as part of the solution to this mismatch. Chapter 3 describes the
construction and study of hybrid mesons in the charmonium sector on
the lattice. Results are presented for the mass of the JPC=1−+ state
at multiple lattice spacings, and the mass and decay constant of the
JPC=1−− state at one lattice spacing.

In the decade since the discovery of the Higgs boson few signs of
beyond the SM physics have been observed. Of those the anoma-
lous magnetic moment of the muon has garnered the most attention.
Chapter 4 describes work done to include the effects of quenched QED
on the leading order hadronic vacuum polarisation contribution to the
anomaly. Blinded results for the QED corrections to the light and
strange connected hadronic vacuum polarisation are presented.
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Chapter 1

Quantum Field

Theories on the Lattice

In this chapter and the next we review the concepts that form the

basis of the results described in chapters 3 and 4 of this work. We

highlight relevant elements of the Standard Model (SM) of particle

physics and describe how gauge theories, Quantum Chromodynamics

(QCD) in particular, are put on the lattice. The doubling problem

arising from the transition to the lattice is described and used to mo-

tivate the different ways in which fermions can be put on the lattice.

The staggered transformation is defined and its consequences are dis-

cussed. We also discuss some aspects of renormalisation of QFTs on

the lattice. We end with a brief overview of the different ways that

QED can be put on the lattice, and introduce the QEDL formulation.

The material in this chapter is by no means original and more

detailed expositions can be found in the literature [1, 2, 3, 4, 5].
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1.1 QCD on the Lattice

The SM of particle physics is our current best description of the or-

dinary matter that makes up the universe and the forces (excluding

gravity) that mediate their interactions. Developed during the second

half of the twentieth century to explain the ‘particle zoo’ uncovered

at various colliders, it has remained remarkably resilient to new ex-

perimental particle data. Nevertheless we are confident that a theory

exists which will supersede the SM and explain phenomena such as

dark matter and dark energy, for which there is plentiful cosmological

evidence [6, 7, 8, 9]. The work in this thesis has as its broad aim the

testing of one part of the SM, QCD, in order to tease out possible dis-

crepancies between the SM and the real world, and point us towards

an improved theory of nature.

QCD, developed during the 60’s and 70’s, is one of the pillars of

the SM, describing the Strong force in terms of quarks and gluons

[10, 11, 12, 13, 14, 15]. QCD is a Yang-Mills theory with non-abelian

gauge group SU(3). The quarks are spin-1/2 matter fields, represented

by Dirac spinors, ψ, in the fundamental representation of SU(3). They

have a colour charge under SU(3), and an electric charge under U(1).

The gluons have a colour charge and are massless neutral gauge bosons

that mediate the strong interactions between the quarks. The quarks

come in six flavours, {u, d}{s, c}{b, t}, of varying masses arranged into

three generations, see table 1.1. The u, d, s quarks are referred to as

the light quarks and the c, b, t are referred to as the heavy quarks.

2



The QCD Lagrangian is

LQCD = ψ (i(γµDµ)−m)ψ − 1

4
Ga
µνG

µν
a (1.1)

where ψ,ψ are the quark and antiquark fields respectively, and Ga
µν is

the SU(3) field strength tensor formed from the gluon fields Aa
µ and

labelled with a colour index, a. The gauge covariant derivative, Dµ=

∂µ− igAa
µT

a, where T a are the generators of SU(3) in the fundamental

representation, sets the strength of the quark-gluon coupling via g.

The last term of equation 1.1 encodes the fact that gluons have colour

charge and so may self-interact, in contrast to the electrically neutral

photons.

flavour mass (MeV) charge (e)
up (u) 2.16(49) 2/3

down (d) 4.67(48) -1/3
strange (s) 93.4(8.6) -1/3
charm (c) 1.27(2)×103 2/3
bottom (b) 4.18(3)×103 -1/3
top (t) 172.69(30)×103 2/3

Table 1.1: The masses and electric charges of the quarks of the SM.
Quark masses are in the MS scheme. The light quark masses are at a
scale of µ = 2 GeV, the c, b quark masses are evaluated asmq(µ = mq),
and the t quark mass is measured directly [16].

The extra non-abelian term gives rise to the phenomenon of Asymp-

totic freedom. Asymptotic freedom is used to describe the fact that

the coupling strength is small over short distances (or equivalently

large energies) and grows as the distance increases (or the energy de-

creases) [13, 14]. This means perturbative expansions in the coupling

break down at distances ∼1 fm.
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The Strong interactions dynamically generate a characteristic en-

ergy scale, ΛQCD ∼ 200 MeV, at and below which nonperturbative

effects are expected to dominate. Behaviour like hadron formation is

nonperturbative in nature, so theoretical methods that work in this

regime are crucial for validating and understanding QCD.

Wilson showed how to put QCD on a discrete spacetime lattice

while preserving gauge invariance in 1974 [17]. In Wilson’s formulation

quarks live on the sites of the lattice and gluons are associated with

gauge fields that link adjacent sites of the lattice, see figure 1.1. The

lattice acts as a regulator, imposing a UV cutoff, and thus makes the

necessary integrals calculable. In practice these computations have to

be carried out on High Performance Computing (HPC) clusters. The

first numerical calculations were carried out by Creutz in 1980 (in

SU(2) though, not SU(3)) [18]. In the intervening years huge strides

have been made, algorithmically, computationally, theoretically, to

bring the calculations closer to the real world. Lattice QCD is an

important tool because it is an ab-initio nonperturbative probe of

QCD.

1.1.1 Path Integral Formulation of QCD

Lattice QCD calculations are a nonperturbative implementation of

QCD using Feynman’s path integral approach. In a continuum gauge

theory the basic object in the path integral approach is the partition

function Z, which is given by a functional integral over configuration
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space,

Z =

∫
DADψDψ e−S, (1.2)

where the A are the gauge fields, ψ are the fermion fields, and S is

the QCD action in Euclidean coordinates.

S can be split into a gauge part and a fermion part, S = SG+ SF .

Since ψ,ψ are Grassmann-valued fields they can be integrated out,

leaving only an integral over background gauge configurations,

Z =

∫
DA detM e−SG, (1.3)

in which the fermionic contribution detM is highly non-local. Taking

this determinant into the exponential we can write the action as

S = SG + SF =

∫
d4x

1

4
FµνF

µν −
∑
i

log detMi, (1.4)

where i labels the quark flavour and Fµν is the field strength tensor in

Euclidean spacetime.

What we are generally interested in calculating are expectation

values of operators, O = O[A,ψ,ψ], that can be any combination of

time-ordered products of gluon and quark fields. In the path integral

approach these expectation values are integrals of O over the gauge

fields, weighted by a Boltzmann factor, e−SG,

⟨O⟩ = 1

Z

∫
DA detMOe−SG. (1.5)

If the action is in Minkowski spacetime the Boltzmann factor is in-
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stead a phase factor, eiS. The presence of an oscillating exponential,

also called the sign problem, makes numerical evaluation of the path

integral very difficult. This is why lattice QCD calculations are done

in Euclidean spacetime.

The Euclidean theory is connected to the Minkowski theory by

analytic continuation,

x0 ≡ t→ −iτ

p0 ≡ E → ip4,
(1.6)

where τ , p4 are the Euclidean time and energy, and this transformation

is referred to as a Wick rotation. This name comes from the clockwise

rotation by π/2 radians in the complex plane caused by multiplication

by −i.

1.1.2 Discretising the Gluon action

On the lattice we must discretise equation 1.5, we consider the gauge

action first. Wilson was motivated by the idea of a gauge field as a

path-dependent phase factor. In his formulation the degrees of free-

dom are group elements associated with straight-line paths between

adjacent lattice sites. The group element associated to an extended

path through the lattice is equal to the product of the individual links

along the path. We write the basic link fields like so,

Ux,µ = exp (iagAc
x,µTc), (1.7)

where it is understood that the link field Ux,µ joins the adjacent lattice

points x,x + µ̂. Observing that the non-abelian field strength is a
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generalised curl of the potential, suggesting integrals of Aµ around

small closed contours, Wilson proposed the following lattice gauge

action,

SG[U ] =
2

g2

∑
plaquettes

Re Tr[1− Pµν(n)], (1.8)

where Pµν=Ux,µUx+µ̂,νU
†
x+ν̂,µU

†
x,ν are oriented products of closed gauge

loops called plaquettes, see figure 1.1.

Under a local gauge transformation the link fields transforms like

so

Ux,µ → VxUx,µV
†
x+µ, (1.9)

where the V are SU(3) fields, same as the link fields. From this defini-

tion it is easy to show that the Pµν are gauge invariant objects. This

important property of the plaquette is inherited by Wilson’s lattice ac-

tion, and is the main symmetry preserved in the lattice discretisation

procedure.

By expanding equation 1.7 in the lattice spacing one can show that

equation 1.8 reduces to the gluon part of the QCD action in the a→ 0

limit.

1.1.3 Discretising the Dirac action

In the continuum the action for a free fermion, mass m, is

S =

∫
d4x

(
ψ(x)γµ∂µψ(x) +mψ(x)ψ(x)

)
. (1.10)
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Figure 1.1: Unit cell of a cubic lattice with spacing a. The quark, and
gluon fields are labelled by their positions. The gluon link fields are
represented by arrows and are also labelled by their direction.

Moving from the continuum to discrete spacetime on a lattice requires

that derivatives are replaced by finite differences,

∂µψ(x) →
1

2a
[ψ(x+ aµ̂)− ψ(x− aµ̂)], (1.11)

and integrals are replaced by sums over lattice points,
∫
d4x →

∑
x,

leaving the action

S = − 1

2a

∑
x,µ

[ψ(x)γµψ(x+ aµ̂)− ψ(x)γµψ(x− aµ̂)] +
∑
x

mψ(x)ψ(x).

(1.12)

With a suitable redefinition the fermion fields can be made dimen-

sionless, ψn = a3/2ψ(x), where now the subscript n labels points on

the lattice. Inserting gauge links, Uµ,n, to connect neighbouring sites

and preserve gauge invariance we arrive at the discretised action in
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Euclidean spacetime,

S = − 1

2a

∑
n,µ

[ψnγµUµ,nψn+µ̂ − ψnγµU
†
µ,nψn−µ̂] +

∑
n

mψnψn. (1.13)

Gauge-invariant objects may be formed either through closed loops of

link fields, such as plaquettes, or a quark-antiquark pair connected by

links.

The top quark, the most massive quark, is never included in lattice

simulations because it is too massive. In any case, the top is phe-

nomenologically irrelevant as it decays weakly before it can hadronise.

The other heavy quarks, the charm and bottom, have discretisation

errors of O(amq), leading to large errors on typical lattices where

2 GeV ≤ 1/a ≤ 5 GeV. The bottom quark is usually omitted from

lattice simulations because of its large mass. Only on very fine ensem-

bles, not available till very recently, is amb ≲ 1 and simulation directly

at the physical bottom quark mass possible [19].

1.1.4 The doubling problem

The free fermion propagator obtained by a Fourier transform is

S(p) =


a(iγµ sin pµa+ am)−1 on the lattice,

(iγµpµ +m)−1 in the continuum.

(1.14)

The lattice spacing acts as a UV cutoff with lattice momenta restricted

to pµ ∈ [−πa , πa ]. The continuum fermion propagator is large around

small values of p. In contrast, because of the periodic sine function, the
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lattice fermion propagator is large not only when ap ∼ (0, 0, 0, 0), but

also (π, 0, 0, 0), (0, π, 0, 0) . . . (π, π, π, π). These 16 momenta occupy

the corners of the Brillouin zone associated with the lattice, and are

associated to 16 fermions. This unwanted multiplicity, 16 instead of

1, of fermions brought about by the discretisation process is called the

‘doubling problem’ [20].

One solution is to ignore this artefact of the lattice and say that

the theory automatically generates multiple fermion ‘flavours’. Real

quarks do come in several flavours but it does not seem credible to

have them generated as a byproduct of lattice discretisation. Many

different ways of solving the doubling problem have been developed

by lattice theorists and we shall now briefly mention some of these

solutions before focusing on the staggered fermion formulation.

Wilson’s method works by adding a momentum dependent mass

term, which disappears in the continuum limit to the action, which

raises the masses of the unwanted doublers to the order of the cutoff,

thereby suppressing those states [21]. As originally proposed by Wil-

son this term was ∼ ψD2ψ in the free theory. The propagator of the

modified action then becomes

1

a
S(p) =

(
iγµ sin pµa+ am+ r

∑
µ

(1− cos pµa)

)−1

, (1.15)

where r is generally chosen to be 1. Close to zero momentum the (1-

cos) term vanishes and we recover the usual lattice propagator. When

apµ ∼ π, corresponding to the unwanted doublers, the cosine term

increases the mass by 2r/a. As a→ 0 these masses go to infinity with
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only the apµ = 0 species, mass m, surviving.

While this is a simple method that is convenient for calculation, a

significant drawback is the destruction of the chiral symmetry of the

action. Intuitively this is because the added term is like a mass term

for the unwanted fermions.

There are deep connections between the doublers and chiral sym-

metries of the action, via the anomaly. However this would be straying

beyond the scope of this work and so it suffices to mention that there

is a famous ‘no-go’ theorem by Nielsen and Ninomiya that describes

when a lattice fermion action can be undoubled, chiral, and local [22].

Other fermion formulations on the lattice, the domain-wall and

overlap fermions, preserve exact chiral symmetry with the drawback

of relatively expensive simulations [23, 24, 25, 26].

1.2 Staggered Quarks

Staggered fermions have a rich and storied history in the field of LQCD

[27, 28, 29, 30, 31, 32, 33, 34]. It was observed that the doubling prob-

lem may be ameliorated by defining the following local ‘staggering’

transformation,

ψn −→ Ωnψ
′
n

ψn −→ ψ
′
nΩ

†
n

(1.16)

where the 16 staggering matrices Ωn are defined as

Ωn = γn00 γ
n1
1 γ

n2
2 γ

n3
3 . (1.17)
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From the rules of the γ algebra one can show that Ω†
nΩn = 1, and that

Ω†
nγµΩn+µ̂ = (−1)n0+n1+···+nµ−1 ≡ θµ(n), (1.18)

allowing us to write SF , equation 1.10, like so,

SF =
1

2a

∑
n,µ

ψ
′
nθµ(n)(Uµ(n)ψ

′
n+µ̂ − U †

µ(n− µ̂)ψ′
n−µ̂) +m

∑
n

ψ
′
nψ

′
n,

(1.19)

with the phase θµ(n) inserted. The absence of the γ matrices mean

this action is diagonal in spinor space, with the four components of

the spinor ψ′
n independent and identical in form. Therefore we may

get rid of any three of the components of ψ′
n, and call the resulting

one-component field χn the staggered field with one-component action

S =
1

a
χM(U)χ

=
1

2a

∑
n,µ

χnθµ(n)(Uµ(n)χn+µ̂ − U †
µ(n− µ̂)χn−µ̂) +m

∑
n

χnχn.

(1.20)

By this transformation we have reduced the number of doublers by a

factor of four, from sixteen to four. The four remaining doublers are

referred to as ‘tastes’. A single staggered fermion corresponds to four

tastes of continuum fermions.

From equation 1.18 it is useful to define x<µ =
∑

ν<µ xν such that

the phase θµ(n) = (−1)x
<
µ =±1 depending on whether x<µ is even or

odd. This suggests the 24 hypercube as the natural unit cell of the

staggered fermion field.

The one-component staggered action (1.20) is invariant, at zero
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quark mass, under a modified U(1) chiral transformation,

χ −→ eiΓ5θχ

χ −→ χeiΓ5θ,
(1.21)

where Γ5 is diagonal in the site and colour indices and depends on the

evenness of
∑

µ nµ,

Γ5,n =


+1, n even

−1, n odd.

(1.22)

At non-zero mass the action satisfies,

M †(U) = Γ5M(U)Γ5. (1.23)

This remnant chiral symmetry of the staggered action produces a nat-

ural Goldstone boson and enforces multiplicative quark mass renor-

malisation. The spectrum of M †M is bounded from below by (am)2,

so that staggered simulations at small quark mass are not as costly as

with other actions. In fact staggered simulations were the first to be

done at pion masses close to the physical point [35].

1.2.1 Taste breaking effects

Each flavour of quark carries four tastes. Taste is an unphysical quan-

tum number. Different tastes of quark have the same mass, whereas

different flavours do not. However mathematically taste and flavour

can be described with the same algebra and so we may use γ matrices

to describe taste assignments as well. A unitary change of basis helps
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us see this clearly. Label the sixteen sites of the hypercube with four

component vectors η with ηµ = 0 or 1. We define a four-taste Dirac

field, ψ,

ψα,ty =
1

8

∑
η

Ωα,t
η χ2y/t+η, (1.24)

where α labels the four spinor components, t the four taste compo-

nents. ψ lives on the hypercube with origin at 2y. In this new spin-

taste basis the action becomes,

S =
∑
y,µ

b4ψy[(γµ ⊗ I)∆µ +
1

2
b(γ5 ⊗ γ∗µγ5)□µ]ψy +mb4

∑
y

ψy(I ⊗ I)ψy

(1.25)

where, the difference operators are defined as

∆µψy =
1

2b
(ψy+bµ̂ − ψy−bµ̂)

□µψy =
1

b2
(ψy+bµ̂ − 2ψy + ψy−bµ̂),

(1.26)

and we use the tensor product notation, (spin ⊗ taste), to make ex-

plicit the taste content of the operators in the action.

Equation 1.25 can be written in a way that makes clear the first or-

der taste breaking contribution contains fermion bilinears of dimension

five, so that even in the interacting theory only irrelevant operators

break the taste symmetry. The most obvious effect of this taste sym-

metry breaking is the splitting of the pion mass spectrum according

to taste, with the γ5⊗γ5 pion being the lightest of the taste multiplet.
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1.2.2 Highly Improved Staggered Quarks

All lattice actions that lie in the same universality class as the desired

action will describe the same physics in the limit of zero lattice spacing.

At non zero lattice spacing scaling violations will break the universality

with different lattice actions having discretisation effects that scale

differently. Clearly the smaller these scaling violations are the coarser

the lattices one can use and the more desirable the action. Given

a particular lattice action, Symanzik showed how to systematically

improve the action through the addition of irrelevant operators with

coefficients chosen so as to cancel the lowest order lattice artefacts

[36, 37]. These extra terms vanish in the continuum limit and so don’t

change the physical content of the theory. The coefficients must be

determined, either perturbatively or non-perturbatively, by reference

to some condition, and the cost of the simulation will increase.

Having seen how the naive staggered action is formulated we will

now recount how the HPQCD collaboration used perturbative Symanzik

improvement to create a new staggered quark action with greatly re-

duced discretisation effects [38]. The resulting O(a2) improved action,

meaning there are no tree level O(a2) discretisation errors, is called

the Highly Improved Staggered Quark, or HISQ, action, and is the

workhorse behind the results described in this thesis.

There are two sources of O(a2) discretisation errors in the naive

staggered action; the finite difference approximation to the derivatives,

and taste-exchange interactions between quarks. In the late 80s Naik

[39] had shown that the accuracy of the finite difference approximation
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Figure 1.2: Tree level and 1-loop taste-exchange Feynman diagrams.

can be improved by adding a (‘Naik’) term to the usual expression

∆µ → ∆µ −
a2

6
∆3
µ . (1.27)

The O(a2) discretisation errors coming from taste-exchange interac-

tions, see figure 1.2, were not fully appreciated until the late 90s when

it was realised that smearing the gauge links could suppress these di-

agrams. Because of the doubled nature of the staggered action two

low momentum quarks can exchange a highly virtual gluon (p ∼ π/a)

with the result still being two low momentum quarks but now with

different tastes. An improvement program could proceed by adding

four quark operators to the action to cancel these diagrams.

HPQCD took a simpler approach, effectively introducing into the

gluon-quark vertex a form factor that vanishes for gluons with mo-

menta in the corners of the Brillouin zone. Such a form factor can be

introduced by smearing the gauge fields in the action with

Fµ ≡
∏
ρ ̸=µ

(
1 +

a2δ
(2)
ρ

4

)∣∣∣∣
symm.

(1.28)

where δ
(k)
ρ approximates the covariant kth derivative. δ

(2)
ρ and δ

(1)
ρ are
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given by

δ(1)ρ Uµ(x) ≡
1

a

(
Uρ(x)Uµ(x+ aρ̂)U †

ρ(x+ aµ̂)

− U †
ρ(x− aρ̂)Uµ(x− aρ̂)Uρ(x− aρ̂+ aµ̂)

)
δ(2)ρ Uµ(x) ≡

1

a2

(
Uρ(x)Uµ(x+ aρ̂)U †

ρ(x+ aµ̂)

− 2Uµ(x)

+ U †
ρ(x− aρ̂)Uµ(x− aρ̂)Uρ(x− aρ̂+ aµ̂)

)
,

(1.29)

(cf. equation 1.26). Smearing with Fµ removes the tree level taste-

exchange interaction but introduces new O(a2) errors. These can be

removed by modifying the smearing like so,

FASQTAD
µ ≡ Fµ −

∑
ρ̸=µ

a2(δρ)
2

4
. (1.30)

FASQTAD
µ smears links in the µ direction while generating unsmeared

links in the orthogonal directions (to preserve gauge invariance). Mod-

ifying the derivative with the Naik term and smearing the link fields

with FASQTAD
µ results in the ‘ASQTAD’ action.

It was observed that repeated smearing of the gauge fields further

reduced the pion taste mass splitting and therefore suppressed one-

loop taste-changing errors. Smearing the links multiple times ensures

links in all directions are smeared and so suppresses highly virtual

taste-changing gluons. Such a smearing operator, FHISQ
µ , is defined as

FHISQ
µ ≡ FASQTAD

µ UFµ, (1.31)
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where U unitarises whatever it acts on and then projects onto SU(3).

These SU(3) fields are stored as 3x3 complex matrices and can be

paramaterised by eight real numbers. A smeared link that has been

unitarised is bounded by unity. This combination of reunitarisation

and projection stops the growth of two gluon vertices induced by the

large number of products of links in the smearing.

Tree-level discretisation errors in the ASQTAD action are negligi-

ble for light quarks but not for charm and bottom, being O((am)4).

Retuning the coefficient of the Naik term, ϵ, by matching to the tree-

level quark dispersion relation removes these errors,

Dµ → ∆µ −
a2

6
(1 + ϵ)∆3

µ. (1.32)

The retuning of the Naik coefficient and the double smearing of

the gauge fields transforms the ASQTAD action into the HISQ action.

The HISQ action,

∑
n,µ

χn
(
θµD

HISQ
µ +m

)
χn, (1.33)

has no tree level O(a2, (am)4) errors. The covariant derivative is

DHISQ
µ ≡ ∆µ(W )− a2

6 (1 + ϵ)∆3
µ(X)

Wµ(x) ≡ FHISQ
µ Uµ(x),Xµ ≡ UFµUµ(x).

(1.34)

The HISQ action suppresses unphysical taste-changing interactions by

3-4 times over the ASQTAD action and, as remarked earlier, is very

accurate when simulating heavy quark physics, a feature we utilise in
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our study of hybrid charmonium mesons, and light quark physics, this

property being inherited from its parent ASQTAD action.

1.2.3 The fourth root approximation

We still have the problem of the four degenerate tastes per quark

flavour in the continuum. To see how this unwanted degree of freedom

has been dealt with recall the general form of the expectation value

of an observable,

⟨O⟩ = 1

Z

∫
[dU ]O(M−1

ij ) detMe−SG. (1.35)

This equation is the same as equation 1.5 with the dependence of the

observable O on the propagators made explicit. Staggered fermions

appear in two places, sea quarks in detM , and valence quarks in

O(M−1
ij ). To collapse the multiplicity of the sea quarks the fourth root

of the fermionic determinant is taken. This rooting procedure was (and

to a small extent is) controversial [18, 40], and there is no rigorous the-

oretical proof that the continuum limit is smooth. However the weight

of practical evidence in its favour over the last 15 years, and the broad

agreement between independent calculations using staggered fermions

and other fermion formulations, gives us confidence that the rooting

procedure is not fatal to the reliability of our results. The theoreti-

cal arguments for and against the rooting procedure are discussed in

[41, 42, 43, 44].
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1.3 Renormalisation

It was realised early on in the development of the subject that QFTs

are riddled with divergences that need to be cured. In Perturbation

Theory (PT) these divergences can be dealt with by imposing a cutoff,

Λ, on the momenta being summed over in the path integrals associated

with an observable. The integrals can then be split into a finite cutoff-

independent part, and a finite cutoff-dependent part from which the

divergence arises. The divergence may then be absorbed into a param-

eter of the theory by renormalising that parameter with reference to

some physical quantity, usually the masses and couplings of the theory.

The parameters appearing in the Lagrangian are called bare param-

eters, in contrast to the renormalised parameters they are related to

through the renormalisation procedure. Renormalisable theories are

ones in which the divergences at all orders can be absorbed by a finite

number of parameters. The SM only contains renormalisable QFTs.

The cutoff is called a regulator and its imposition is referred to

as ‘regulating the theory’. There are other ways to regulate QFTs,

such as dimensional regularisation and Pauli-Villars regularisation,

and which regulator is most appropriate in a specific situation is a

choice for the theorist [45, 46]. The imposition of a regulator intro-

duces a renormalisation scale µ. Scheme-dependent quantities, for

instance the quark masses of table 1.1, vary with µ while scheme-

independent quantities do not.

Ultimately we want to remove the regulator and re-include the

missing high modes of the theory. In the perturbative case this sim-
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ply corresponds to sending Λ → ∞. After their removal calculated

observables should be independent of the choice of regulator.

The finite spacing of the lattice acts as a UV regulator, cutting out

modes with momenta greater than π
a (in addition the lattice’s finite

extent acts as an IR regulator, cutting out momenta below 1
L). Quan-

tities computed on the lattice must then be identified with physical

observables through a renormalisation procedure. Different lattice ac-

tions will have different renormalisation properties. For example, the

remnant chiral symmetry of the staggered fermion formulation means

quark masses undergo multiplicative renormalisation, where the bare

and renormalised masses are related by m0 = Zmm, whereas the non-

chiral Wilson quarks renormalise additively, m0 = (1 + δm)m.

It is the adopted practice of theorists and experimenters to ex-

press the values of scheme-dependent quantities in the modified min-

imal subtraction scheme, MS, at an appropriate scale. Therefore it is

desirable to adopt a regularisation scheme that can be implemented

in continuum PT and in lattice simulations. One could convert re-

sults from the lattice scheme directly to the MS scheme using lattice

perturbation theory. However Feynman rules for lattice actions can

be very complicated with poor convergence, and this has prompted

the creation of the Regularisation-Independent (RI) nonperturbative

matching procedure [47].

In the RI scheme renormalisation factors are defined as ratios of

expectation values of quark bilinear operators between off-shell single
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particle momentum eigenstates in the full and free theories,

⟨p|OΓ|p⟩0 = ZRI
Γ (µ2)⟨p|OΓ|p⟩p2=µ2. (1.36)

Since equation 1.36 is gauge variant these expectation values are formed

from quark and gluon Green’s functions computed in a smooth fixed

gauge. If the same RI scheme is implemented both in lattice QCD

and in continuum QCD then the continuum limit of the lattice results

will be in the continuum RI scheme. These RI results can then be

converted to the MS scheme using PT. The matching factors needed,

R(µ, a) =
ZMS
Γ (µ)

ZRI
Γ (µ, a)

, (1.37)

have been calculated to 3 loops in PT for several RI schemes [48, 49].

Converting results into the MS scheme occurs in two steps, lattice −→

RI −→ MS.

We now briefly describe a specific RI scheme, the RI-SMOM scheme,

developed by HPQCD [50], which has been used to calculate renor-

malisation factors for the local vector current that is used later on

in this work. This scheme is one of a class of so-called ‘momentum-

subtraction’ schemes.

1.3.1 Nonperturbative renormalisation of the vec-

tor current in the RI-SMOM scheme

The RI-SMOM scheme defines a vector renormalisation factor, ZSMOM
V ,

from the ratio of matrix elements calculated between external quark
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states of large virtuality in a fixed gauge,

ZSMOM
V ⟨p1|Ji|p2⟩ = ⟨p1|Ji|p2⟩tree. (1.38)

In the RI-SMOM scheme the momenta are chosen in a symmetric

configuration where p21 = p22 = q2 ≡ µ2 and q = p1 − p2 ̸= 0. There is

only a single (renormalisation) scale µ.

The RI-SMOM scheme was defined with the vector Ward-Takahashi

identity (WTI) in mind [51]. In the continuum the vector current sat-

isfies the WTI and on the lattice it can be shown that the conserved

vector current satisfies the lattice WTI,

−2i

a
sin
(aqµ

2

)
Λµ,+V (p1, p2) = −S−1(p1) + S−1(p2), (1.39)

where S is the quark propagator and Λµ,+V is the amputated vertex

function for the conserved vector current, formed by dividing the ver-

tex function on either side by quark propagators, ΛV = S−1(p2)GV S
−1(p1),

GV = ⟨ψ(p1)

(∑
x

ψ(x)γµψ(x)e
i(p1−p2)x

)
ψ(p2)⟩. (1.40)

The conserved vector current on the lattice is action dependent how-

ever and involves 1-link and 3-link pieces in the HISQ formalism. Of-

tentimes, as in this work, the local or 1-link point-split vector currents

are used instead. These vector currents don’t satisfy the lattice WTI.

Renormalisation factors for these nonconserved vector currents are de-

fined so that the renormalised currents satisfy the same WTI as the

conserved current, only differing by discretisation effects. Further-
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more, since the WTI is also satisfied by the conserved vector current

in the continuum MS scheme, matrix elements in this scheme will

agree with matrix elements of the conserved vector current on the

lattice in the continuum limit. In the continuum the wave-function

renormalisation is defined as

Zq = − i

12p2
Tr(/pS−1(p)), (1.41)

and the vector current renormalisation is defined as

ZV
Zq

1

12q2
Tr(qµΛ

µ
V (p1, p2)/q) = 1, (1.42)

where the trace over colour and spin acts on /qqµΛ
µ
V which becomes∑

µ,ν q̂ν(γν ⊗ γµ)q̂µΛ
µ
V ,loc in the HISQ formalism. The normalisations

in these definitions are set so that Zq = ZV = 1 at tree level (see

equation 1.38). By computing propagators and vertex functions at

different values of µ, and averaging over gluon fields fixed to Landau

gauge, equations 1.41 and 1.42 are used to compute ZSMOM
V (µ).

The authors of [50] found they only needed around 20 configu-

rations for small statistical uncertainties. The RI-SMOM scheme is

defined at zero valence quark mass, so for each µ the calculation is done

at multiple light quark masses before being extrapolated to zero.

1.4 QED on the lattice

QED is a quantum field theory that describes the electromagnetic in-

teractions of light and matter. QED’s origins lie in Dirac’s work on
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a quantum theory of the electron [52]. It was then developed over

a series of years into a fully fledged calculational tool by Feynman,

Schwinger, Tomonaga, and Dyson [53, 54, 55, 56, 57]. When consider-

ing hadronic observables QED effects can often be ignored because the

electromagnetic coupling α ∼ 1
137 , whilst the strong coupling αs ∼ 1

, so that QED effects contribute around 1% to hadronic observables.

Until recently the total uncertainty on many lattice observables was

greater than 1% so QED could be ignored or a rough estimate of its

effect could be included as a systematic uncertainty. But with mea-

surements on the lattice continually improving in precision, through

improved statistics and systematics, many groups are now finding they

need to include QED in their simulations if they wish to continue re-

ducing their uncertainties and improving their accuracy.

Putting QED on the lattice is non-trivial. The zero modes of the

photon propagator produce infrared divergences and cause difficulty

when trying to study charged particles. To see this consider Gauss’

law, which predicts a net flux through a surface enclosing a charged

particle. This is clearly incompatible with the periodic boundary con-

ditions we impose on the lattice. In spite of this there are many ways

to usefully define QED in a finite volume.

The QEDTL approach removes the global zero modes by hand [58].

The massive photon approach simulates with a massive photon before

removing its unphysical effects with an effective field theory [59]. A

local solution involves the imposition of so-called C∗ boundary con-

ditions, where the gauge fields are periodic up to charge conjugation,

Aµ
+L−→ −Aµ [60, 61]. These anti-periodic boundary conditions auto-
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matically remove the zero modes, while breaking flavour and charge

conservation at the boundaries.

In the work presented in this thesis, QED effects have been in-

cluded using the QEDL formalism. QEDL is popular in the literature

and its theoretical properties, such as finite volume effects, are well

studied. Finite volume effects are generally larger in QED, obeying

power laws O(1/Ln), than QCD, O(e−mπL).

1.4.1 QEDL

In the QEDL approach the problematic zero modes are removed by

hand, Aµ(k̂0, |k̂|= 0) = 0, where Aµ is the vector potential [62]. The

photon propagator in Coulomb gauge in QEDL is then

Dij(k) = ⟨Ai(k)Aj(−k)⟩ =


1
k2

(
δij − kikj

k2

)
, k ̸= 0

0, k = 0

D00(k) = ⟨A0(k)A0(−k)⟩ =


1
k2 , k ̸= 0

0, k = 0

(1.43)

This quenching of the spatial zero modes of the gauge field at any time

is non-local but unlike QEDTL the transfer matrix is well-defined. The

HPQCD collaboration have performed several QCD+qQEDL calcula-

tions on HISQ ensembles [50, 63, 64, 65, 66].
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Chapter 2

Measuring Observables

on the Lattice

In this chapter we outline the typical progression of a lattice calcula-

tion and discuss some practical considerations the lattice theorist must

make. We begin by discussing the generation of gauge fields, including

the quenched U(1) fields used in our analysis in chapter 4. Then we

describe the conjugate gradient algorithm as it is used for computing

quark propagators. Statistical methods for the analysis of correlator

data are discussed, including the Bayesian extension of least-squares

fitting. We end with a short discussion on how to connect results on

the lattice to the real world.

Lots of lattice codes are available, written in different languages

and optimised for particular computer architectures. The lattice code

primarily used in this work is the open source MILC code, written in

C and available at https://github.com/milc-qcd/milc qcd.
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2.1 Generating gauge fields

In the previous chapter we noted that the path integral formulation

of a QFT, equation 1.5, lets us write expectation values as an integral

over the gauge fields of products of quark and gluon fields weighted

by a Boltzmann factor, e−S. On a typical lattice there are, conser-

vatively, ∼ 104 lattice points with each SU(3) link field described by

8 continuous parameters. There are therefore ∼ 105 integration vari-

ables in a typical path integral. Such a high-dimensional integral is

not tractable by high-dimensional analogues of the trapezium rule.

Instead the gauge fields, Ui, are sampled from a distribution,

dP =
e−S[U ]D[U ]∫
D[U ]e−S[U ]

. (2.1)

This is called importance sampling as dP is peaked around field con-

figurations that minimise the action and contribute more to the path

integral. Expectation values then become sums over importance sam-

pled configurations,

⟨O⟩ = lim
N−→∞

1

N

N∑
i=1

O[Ui]. (2.2)

Finding Ui that vary according to dP is non-trivial and is not the focus

of this work. One algorithm, the Metropolis algorithm, generates a

Markov chain of configurations by starting from a random configura-

tion and then updating the link fields [67, 68, 69]. Successive Ui in the

chain are rejected and thrown out if S increases or does not decrease

sufficiently.
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2.1.1 Autocorrelations

The ensemble of field configurations on which an observable is mea-

sured should comprise a statistically independent sample. To this end

when these fields are generated, as part of a Markov chain, every nth

field configuration is sampled with the other fields being discarded.

However even after this process it is normally found that consecutive

configurations retain a residual correlation. These correlations in sim-

ulation time are referred to as autocorrelations. They are important

to consider as they can lead to the underestimation of uncertainties of

lattice observables.

The autocorrelation coefficient C(τ) of an observable A at simula-

tion time lag τ = ∆τ(i− j) is defined as

C(τ) = ⟨xixj⟩, xi =
Ai − ⟨A⟩

σ0
(2.3)

where the fluctuations xi are scaled by σ0, the naive sample variance.

By considering the variance of the mean fluctuation,
∑

i xi/N , and

the definition 2.3 above, one can show that the true and naive variances

of A are related by,

σ2 = σ2naive (1 + 2C(∆τ) + 2C(2∆τ) + . . . ) , (2.4)

where it can be shown that σ2 ≥ σ2naive. If the Ai are uncorrelated

then C(τ) = 0 for τ ̸= 0 and the variance does not change. If auto-

correlations are present then C(τ) is a sum of decaying exponentials.

The time constant of the slowest exponential can then be defined as
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the autocorrelation time of the system.

The usual way to deal with autocorrelations, and the method

favoured in this work, is through binning. Binning involves partition-

ing the data into blocks of Nb measurements of adjacent configurations

and averaging the data within a block. This leaves a reduced dataset

of N/Nb correlators with reduced autocorrelations. The stability of

fitted parameters against a varying bin size is an important measure

of the robustness of a fit.

Although we mainly used binning to deal with autocorrelations

we also investigated using the unew python package to measure the

extent of any autocorrelations in our data [70, 71]. Where carried

out these investigations affirmed the conclusions reached via binning

studies on the extent of autocorrelations in our data. See figure 4.13

for an example of a binning study we carried out in the course of our

research.

2.1.2 U(1) field generation

To measure QED effects on hadronic observables we need to generate

U(1) fields [72]. Gauge field generation is done with respect to the

compact U(1) action,

S =
1

4

∑
x,µ,ν

F 2
µν, (2.5)

with the U(1) lattice field strength tensor defined as

Fµν = Aµ(x) + Aν(x+µ̂)− Aµ(x+ν̂)− Aν(x). (2.6)
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Taking the Fourier transform of the vector potential and field

strength, and defining

Ãµ(k) = e−ikµ/2Aµ(k)

F̃µν(k) = e−ikµ/2−ikν/2Fµν(k)

k̂µ = 2 sin kµ/2,

(2.7)

we arrive at the action in momentum space,

S =
1

4

∑
µν

|F̃µν(k)|2 =
1

2

∑
µν

Ãµ(k)[k̂
2δµν − k̂µk̂ν]Ã

∗
ν(k). (2.8)

To generate an ensemble of fields with probability dP =exp−S(A)[dA]

we generate gaussian random complex vector fields, ηµ(k), with stochas-

tic average,

⟨ηµ(k) η∗ν(k′)⟩ = δµν δkk′. (2.9)

Then we define the Feynman gauge field as,

Ã(F )
µ (k) =

√
2

hpk̂2
ηµ(k) (2.10)

with hp = 1 if Ã
(F )
µ is real and hp = 2 otherwise. Transforming to

Landau gauge can be done by projecting out the photon field along

k̂, and the transformation to Coulomb gauge is also straightforward

[72]. Exponentiation then yields the desired U(1) fields as exp ieQAµ,

where Q is the electric charge. QEDL field generation routines for

all these have been implemented in the MILC code. Including QED

effects in our analysis is then as simple as multiplying the U(1) fields
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into the SU(3) links before computing the quark propagators. The

calculation then proceeds in the same way as a pure QCD calculation.

Since these U(1) fields have been generated independently of the

SU(3) fields they cannot have influenced the sea quark interactions.

For this reason these U(1) fields are referred to as electro-quenched.

A big advantage of this approach is that these fields can be used

with already existing pure QCD ensembles, whereas including QED

dynamics in the sea requires the costly generation of new ensembles.

2.2 Scale Setting

On the lattice one determines dimensionless quantities, like amplitudes

and masses, as a function of the bare coupling. The theory predicts

dimensionless ratios of dimensionful scales, like Ri = mi/mref, but

not the scale itself. One could stop here and list one’s results as di-

mensionless ratios against some reference scale, but this would be of

limited use. The absolute scale must be determined by associating a

quantity on the lattice with a physical quantity derived from exper-

imental observations. A natural scale we could use for QCD is the

proton mass, mp, or the pion decay constant, fπ. Once the scale has

been set every other output of the calculation may be converted into

physical units.

In lattice calculations scale setting is equivalent to fixing the lat-

tice spacing a at a particular bare coupling g0. For example, given

dimensionless masses M measured on the lattice, if we wished to set

the scale with mp we would carry out the following steps to find the
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mass, m, of a hadron of interest in physical units,

Mp = amp =⇒ a(g0) =
Mp(g0)

mp

∴ m(g0) =
M(g0)

a(g0)
.

(2.11)

When planning simulations we also need the scale since the quark

masses are usually tuned by adjusting pseudoscalar meson masses

measured on the lattice to their physical values. Any dimensionful

quantity can be used to set the relative scale between ensembles of

differing lattice spacing, and care should be taken in its choice. The

chosen scale should be derived from a quantity that is precisely com-

putable with low numerical effort, has small controlled systematic un-

certainties, and has a weak quark mass dependence. Sommer classifies

scales as either ‘phenomenological’ or ‘theory’ scales [73]. Phenomeno-

logical scales are those which require a minimal amount of theory to

connect the lattice to experiment. The pseudoscalar decay constants

are an example of such a scale and are used by many groups as pseu-

doscalar correlators have the best possible signal-to-noise ratio. The-

ory scales are quantities that are designed to be easy to calculate on

the lattice but require more theory to connect to the lattice. Com-

monly used theory scales are r0 and r1, defined from the heavy quark

potential, and t0 and w0, defined from the gradient flow. Theory scales

can more precisely set the relative scale, but a phenomenological scale

is still ultimately needed to set the absolute scale, by extrapolating

w0MΩ for instance.
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2.2.1 The gradient flow

The gradient flow equations are a set of diffusion equations that de-

scribe how a gauge field, Bµ, evolves in a fictitious flow time t [74, 75],

dBµ

dt
= −g20

∂S

∂Bµ
= DνGνµ , Bµ(0) = Aµ ,

DνX = ∂νX + [Bν, X] , Gνµ = ∂νBµ − ∂µBν + [Bν, Bµ] .

(2.12)

With increasing t the flow equations 2.12 push the gauge field towards

stationary points of the action along the path of steepest descent. In

lattice QCD the gauge fields are the SU(3) gluon fields and there is

an extra factor of the link fields to preserve gauge invariance,

dV (t)i,µ
dt

= −g20
∂S(V )

∂Vi,µ
Vi,µ , Vi,µ(0) = Ui,µ. (2.13)

The effect of the evolution in t is a smoothing of the gauge field,

pushing the gluon field towards a smooth renormalised field. This

flow introduces an independent dimensionful variable, the flow time.

Quantities calculated on the lattice from the smoothed gauge links

become functions of the flow time, and one can define a scale from

this functional dependence. A good quantity on the lattice is the

average total energy within a smoothed volume, which is ∝ t2⟨E(t)⟩

where E(t) = 1
4GµνG

µν is the gluon action density. A fiducial point

c is chosen which defines the reference time t0. Empirical evidence

suggests the slope of the energy with time has smaller discretisation

effects. This lead the BMW collaboration to introduce the parameter
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w0 [76], defined like so,

[
t
d

dt
t2⟨E(t)⟩

]
t=w2

0

= c , (2.14)

where c = 0.3 or 2/3 depending on whether one wants to minimise

discretisation effects, finite volume effects, or the amount of resources

one is willing to spend on the calculation.

In their paper introducing w0 BMW used mΩ to set the overall

scale and found w0 = 0.1755(18) fm [76]. They also found good agree-

ment for w0 calculated with the staggered and Wilson actions. As

part of their recent HVP calculation they redid the scale setting, now

including isospin breaking effects on mΩ, and produced a more precise

determination of w0 = 0.17236(70) fm [77].

The MILC and HPQCD collaborations have used w0 to fix the

relative lattice spacing on MILC’s Nf = 2+1+1 HISQ ensembles [78,

79, 80]. Both used the pion decay constant, fπ, to set the overall scale.

Both determinations are consistent with each other, with HPQCD

finding w0 = 0.1715(9) fm and MILC finding w0 = 0.1714(15) fm.

As we are using a subset of the HISQ ensembles we use the HPQCD

determination of w0 to fix the overall scale in our analyses in chapters

3 & 4. We expect the effect from QED on the lattice spacing to be

negligible and ignore it.
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2.3 Measurements on the lattice

In the path integral approach expectation values are given by time-

ordered correlation functions. Two-point correlators on the lattice

consist of a source operator which creates states that propagate on

the lattice before being terminated by a sink operator.

Measuring correlators on the lattice involves inverting the Dirac

equation,

( /D −m)ψ ≡Mψ = ψ0, (2.15)

where the ψ are to be solved for after a source, ψ0, with the appropriate

quantum numbers is specified. Solving for ψ on a given background

configuration is done by inverting M . On the lattice (M−1)y,j,bx,i,a is a

finite sparse matrix labelled by site, spin, and colour indices with each

of its elements giving the amplitude for the propagation of a quark

with site-spin-colour {x, i, a} −→ {y, j, b}. Inverting M directly is

challenging as it has a very large dimension of a few times the lattice

volume, and must be done numerically on a computer. Algorithms,

such as the conjugate gradient algorithm discussed below, are needed

to perform the calculation. Instead, given a point source ψ0, we try

to find ψ = M−1ψ0. This is the quark propagator from the source

to all the other sites of the lattice and corresponds to 12 columns (or

rows) of M−1, one for each colour and spin degree of freedom. The

propagation of the state is then terminated by a sink operator, usually

with the same quantum numbers as the source.

A meson is made up of a quark and an antiquark with specific

quantum numbers. Therefore on the lattice quark bilinears with the
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appropriate γ matrices are used as interpolating operators for mesons.

The interpolating operators, ψ and ψ, create or annihilate the quark

fields. In the Wilson formulation the pseudoscalar meson operator is

ψγ5ψ. The pseudoscalar 2-point correlation function,

G(t) = ⟨0|
∑
x

ψ
a

i (x, t)γ5ψ
a
i (x, t)ψ

b

j(0, 0)γ5ψ
b
j(0, 0)|0⟩, (2.16)

where the spin, (i, j), and colour, (a, b), indices are summed over, cre-

ates the desired meson at (0,0) and annihilates it at (x, t). This is the

object we need to measure on the lattice to determine the pseudoscalar

meson mass and decay constant. The sum over space,
∑

x, projects

out the zero momentum states. Stochastic wall sources, where ran-

dom colour vector fields are generated on all the lattice points on a

specified timeslice, can be used instead of a point source. Then an

additional stochastic volume average over the wall points has to be

performed.

The state generated by the Oi=ψγ5ψ operator acting on the vac-

uum is a linear combination of all the possible eigenstates of the Hamil-

tonian that have the same quantum numbers as the pion. From quan-

tum mechanics we also know that an eigenstate of energy E picks up

a factor of e−Et after propagating for Euclidean time t. By inserting

the identity, 1 =
∑

n |n⟩⟨n| where n labels the (infinite) eigenstates,

into equation 2.16, one can show that the 2-point correlation function
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is a sum of exponentials,

G(t) = ⟨0|
∑
x

Of(x, t)Oi(0)|0⟩

= ⟨0|
∑
x

Of(x, t)
{∑

n

|n⟩⟨n|
}
Oi(0)|0⟩

...

=
∑
n

⟨0|Of |n⟩⟨n|Oi|0⟩
2En

e−Ent,

(2.17)

where the exponents are the energies of the eigenstates En, and the

size of the coefficients are related to the energies and overlap factors,

⟨0|Oi,f |n⟩. See [81] for more details.

In the staggered formalism we have the extra taste quantum num-

ber. The local pseudoscalar operator in the staggered spin-taste ba-

sis is ψ(γ5 ⊗ γ5)ψ. In the staggered single-component basis this be-

comes
∑

η(−1)ηχ2y+ηχ2y+η, where y labels the 24 staggered hyper-

cube, and η is the lattice coordinate. The phase factor, here (−1)η =

(−1)η0+η1+η2+η3, patterns the staggered fields over the lattice to pro-

duce the desired quantum numbers.

In practice it is easier to work with the quark propagators obtained

by contracting the quark fields using Wick’s theorem. The Feynman

propagator, SF , on a single background field is given by

SF (y, j, b;x, i, a) = ⟨0|ψbj(y)ψ
a

i (x)|0⟩ = (M−1)y,j,bx,i,a. (2.18)

Once the required propagators are computed they are tied together
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by tracing over their spin and colour indices,

G(t) = ⟨0|
∑
x

Tr[SF (0;x, t)γ5SF (x, t; 0)γ5]|0⟩. (2.19)

Staggered correlation functions swap out γ matrices for phase factors,

(−1)f(ηi), and can straddle two timeslices, an issue which we address

later on in this chapter. In this way a correlator is calculated on

each of the field configurations in an ensemble. In the final step the

expectation value is obtained by averaging the correlators over the

configurations.

2.3.1 The conjugate gradient algorithm

Equation 2.15 is a matrix equation of the form Ax = b, where A is a

large sparse matrix, b is a source vector, and we seek the solution x.

The conjugate gradient algorithm and its variants are sparse solution

methods for this type of equation and have been used very successfully

in lattice QCD since the field’s inception [82].

Let (x, y) be the scalar product of the vectors x, y. Then the

conjugate gradient algorithm generates a series of successively more

accurate approximate solutions xi, with residual vectors, ri = b−Axi,

shrinking in size as the algorithm advances towards the solution.

Starting from an initial guess x0, with residual r0 = b − Ax0, the

problem reduces to solving A(x − x0) = r0. Successive solutions are

constructed by adding αipi, where the pi are search vectors and the αi

are coefficients. The search vectors are drawn from an n-dimensional

Krylov space, Kn, spanned by the vectors {r0,Ar0,A2r0, · · · ,An−1r0},
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that grows in size as the algorithm advances and n increases [83].

The αi are chosen so that the solutions minimise the norms of the

residuals. The CG algorithm specifies that the search vectors must

be mutually orthogonal with respect to A, (pi,Apj) = 0 for i ̸= j.

This condition can be satisfied by requiring the search vector to be

a linear combination of the residual and previous search vector, with

coefficients βi defined below in equation 2.20.

The CG algorithm works as follows: Choose x0 =⇒ r0 = b−Ax0,

and choose p0 = r0 ∈ K0. Then for n ≥ 0

αn =
(rn, rn)

(pn,Apn)

xn+1 = xn + αnpn

rn+1 = rn − αnApn ∈ Kn+1

βn =
(rn+1, rn+1)

(rn, rn)

pn+1 = rn+1 + βnpn ∈ Kn+1.

(2.20)

The algorithm ends when the cartesian norm of the residual falls

below some threshold, ||rn|| < ϵ. ϵ is a parameter, rel error for propagator,

that can be set in the MILC template file. With exact arithmetic

the CG algorithm will terminate at some step, N , with rN = 0. In

practice however the algorithm is carried out with machine precision

arithmetic, and the resulting accumulation of rounding errors causes

two issues. The residuals, rn = rn−1−αn−1Apn−1, become less reliable

estimators of the true residual, b− Axn, and duplicate search vectors

are generated later on. Increasing the machine precision can help and

so can restarting the algorithm, using the last best solution, xn, as the
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new initial guess. In the MILC code the parameter max cg restarts

sets the maximum number of restarts the CG algorithm may take.

There are many variants of the CG algorithm with performance

varying by fermion formulation. For staggered fermions the standard

CG algorithm, equation 2.20, has been found to work well. In recent

years GPU technology has been taken advantage of to speed up the

runtime of the CG algorithm. The correlators analysed in chapter 4

were measured with GPUs.

2.3.2 Truncated Solver Method

To improve the statistics on an ensemble it is often the case that mul-

tiple measurements with time shifted sources are taken on each field

configuration. So long as the different time sources are not highly cor-

related this process can increase by an order of magnitude the amount

of data from an ensemble. It has been observed that, with stochastic

sources, solvers converge in a small number of iterations. This moti-

vated lattice theorists to reduce the residual aimed for by the solver

and so speed up their measurements. Since the solver would then

stop after fewer iterations this technique is called the truncated solver

method (TSM) [84]. To guard against any new systematic bias we

measure the correlator on one time source at two levels of precision

and compare them. The solution with the smaller residual is called

the precise solve and the one with the larger residual is called the

sloppy solve. As an example suppose we measure 16 sloppy solves and
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1 precise solve. The average over the sources is then

G(t) =
1

15

∑
i̸=j

Gi
sloppy(t) + (Gj

prec(t)−Gj
sloppy(t)) , (2.21)

where the sum is taken over the 15 sloppy-only time sources and j

labels the time source on which both sloppy and precise solves were

calculated. The TSM works by reducing the precision of the solves of

the conjugate gradient algorithm, leading to a reduction in the time

elapsed. In order to check this procedure does not introduces biases

into our results we can compare the fractional error of different com-

binations of sloppy and precise solves. Figure 4.11 illustrates how the

TSM works in practice by plotting the fractional error of the vector

correlator, computed on one of the ensembles used in the HVP anal-

ysis, for different combinations of sloppy and precise solves.

2.4 Fitting Correlators

Having measured correlators over a set of importance-sampled gauge

configurations we now turn to the question of how to extract informa-

tion from this statistical dataset. A meson correlator takes the exact

form

G(t;An,En) =
∞∑
n=1

An e
−Ent, (2.22)

where the An and En are the amplitudes and energies of the states

coupled to by the operator forming the correlator. By convention the

states are arranged in order of ascending energy, En+1 > En, E1 being

the energy of the ground state. The most common goal of a lattice
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analysis is to find the amplitudes and energies by fitting correlator

data to a model of this kind.

A slight complication arises when considering correlators formed

from staggered fermions. In general the staggered operator with quan-

tum numbers ΓS⊗Γ∗
T is not confined to a single time slice, and so the

linear combination

ΓS ⊗ Γ∗
T ± ΓSγ0γ5 ⊗ Γ∗

Tγ0γ5
, (2.23)

which is a single-time-slice operator is used [4]. The second term

generates states with opposite parity and adds an oscillating term to

the correlation function,

G(t;An,En,Aon,Eon) =
∞∑
n=1

An e
−Ent +

∞∑
n=1

(−1)tAon e
−Eont, (2.24)

where the Aon,Eon are the amplitudes and energies of the oscillating

states. The addition of the oscillating terms has benefits and draw-

backs. An obvious drawback is that the fits are harder as there are

more parameters, and the data is less smooth from timeslice to times-

lice. A benefit arises from the fact that since the oscillating states have

opposite parity one can gain extra information by fitting the Aon,Eon.

As we will see in the next chapter this is useful if the parity partner

is expected to be a conventional meson and the non-oscillating state

is exotic.

Since we cannot constrain an infinite number of parameters with a

finite number of data points, G(t), t = 0 . . . N−1, we truncate equation

2.22 to a finite number of exponentials and use this as our fit model.
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At sufficiently large t all the exponentials will have died off except for

the lowest energy one. Then the correlator ∼ e−E1t and can be fit by a

simple one exponential model, provided the increase in noise brought

about by the larger t does not drown the signal. In most cases we will

use a fit model with more than one exponential so that we can glean

information about the excited states.

With the exception of the pion we expect the correlator’s statistical

error to grow with time. The reason for this is illustrated by the fol-

lowing argument due to Lepage [85]: The error of a mesonic correlator

grows as the correlator squared, which has 4 valence quark lines. The

lowest energy state made from 4 quark lines contains two pions and is

the dominant contribution to the noise. The noise falls as exp(−Mπt)

while the signal, the lowest energy state of the correlator, in general

falls much faster as exp(−Mt). When M =Mπ, the smallest value M

can take, the signal and noise fall at the same rate so that the signal

to noise ratio is constant. This is why pseudoscalar correlators have

the best signal to noise with long plateaus and more precise results.

Traditional fits vary the fit parameters in order to minimise the

goodness-of-fit parameter χ2 defined like so,

χ2(An,En) ≡
∑
t,t′

(⟨G(t)⟩ −Gth(t, An, En)) σ
−2
t,t′(⟨G(t

′)⟩ −Gth(t
′, An, En)),

(2.25)

where ⟨G(t)⟩ is the monte-carlo averaged correlator data, and the

correlation matrix, σ2, is defined as

σ2t,t′ = ⟨G(t)G(t′)⟩ − ⟨G(t)⟩⟨G(t′)⟩. (2.26)
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As remarked earlier fitting an infinite number of parameters to a

finite dataset leads to parameters with infinite uncertainties. Con-

straints on the typical values parameters can take are needed for a

stable fit. Normally the amplitudes are assumed to be well-behaved,

|An+1| ≲ |An|, so that higher energy states are suppressed at large

t > tmin. Choosing tmin involves a trade off between statistical and

systematic errors. A larger tmin leads to greater statistical errors as

the correlator noise grows while a smaller tmin has greater systematic

errors due to the increased contribution from higher energy states [4].

Adding exponentials to the fit model leads to larger uncertainties as

the higher energy states are poorly constrained. In general one would

like the statistical error to mask the systematic error but in practice

the procedure to choose tmin is ad hoc.

2.4.1 Constrained Curve Fitting

By restricting the range of values the model parameters can take (con-

sistent with our physical understanding of the system) we can stably

fit more of the data with more exponentials. We would like to fit the

entire correlator from t = 0 to a model with infinitely many exponen-

tials but in practice will have to settle for small t and a large, ∼ 10,

number of exponentials. By throwing away as little data as possi-

ble we retain more information, which will be especially useful when

studying excited states.

The authors of [86] augmented the fitting procedure to take ac-
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count of the constraints by adding a term to χ2,

χ2 → χ2
aug ≡ χ2 + χ2

prior,

χ2
prior ≡

∑
n

(An − Ãn)
2

σ̃2An

+
∑
n

(
En − Ẽn

)2
σ̃2En

.

(2.27)

Now χ2
aug is to be minimised. This procedure is called constrained

curve fitting as the χ2
prior term punishes fits with amplitudes and en-

ergies that deviate from Ãn and Ẽn by large amounts. The Ãn, Ẽn

and σ̃An
, σ̃En

are inputs to the fit model referred to as prior values and

prior widths respectively.

This method of curve fitting can be understood from a Bayesian

point of view. In this way of probabilistic thinking any prior infor-

mation should be used to update our posterior. Under the assump-

tion that the fluctuations in the averaged correlator data is Gaussian

(which we believe to be a good approximation from the Central Limit

Theorem) the probability of the data given a set of parameters is

P (⟨G⟩|{αi}) = exp−1

2
χ2. (2.28)

The likelihood function, however, is the probability of the param-

eters conditional on the data, and this is given by Bayes’ theorem

P ({αi}|⟨G⟩) =
P (⟨G⟩|{αi})P ({αi})

P (⟨G⟩)
. (2.29)

By choosing to write the prior probability as a Gaussian we recover

equation 2.27 and the principle that χ2
aug be minimised in order to
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maximise the likelihood function.

In order to carry out a fit we choose a set of priors, {Ẽn, Ãn, σ̃En
, σ̃An

},

and then find the parameters {En,An} that minimise χ2
aug. Adding an

exponential to the fit model requires adding priors in beforehand for

that term. The imposition of priors is a way of utilising our physical

intuition about a system, directing the fit model away from unphysical

parameters. In general fitted parameter values stabilise with the addi-

tion of exponentials to the fit model. A robust fit should be insensitive

to variations in the priors and tested against prior noise. Given a prior

distribution P with mean P and width δP , we make the replacement,

P = P + δP −→ P + sample(δP ) + δP , (2.30)

before refitting. Parameters that are sensitive to such variations are

not determined by the data.

So far we have only been describing single channel fits. With mul-

tiple sources and sinks we can form a matrix of correlators by forming

different source/sink combinations. We now discuss matrix fits within

the framework of the Generalised Eigenvalue Problem (GEVP) [87].

2.4.2 Generalised EigenValue Problem

Finding the energies of the states in a correlator matrix involves solv-

ing a GEVP. Starting from the elements of a matrix of Euclidean space
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correlation functions,

Gij(t) = ⟨Oi(t)O∗
j (0)⟩ =

∞∑
n=1

e−Entψniψ
∗
nj i, j = 1 . . . N

ψni ≡ (ψn)i = ⟨0|Ôi|n⟩ En < En+1,

(2.31)

the GEVP approach amounts to solving the eigenvalue equation

G(t)vn(t, t0) = λn(t, t0)G(t0)vn(t, t0), n = 1, ...,N , t > t0. (2.32)

for the eigenvalues λn(t, t0), and eigenvectors vn(t, t0). Lüscher and

Wolff showed how to determine the ground and excited state energies

from the eigenvalues,

En = lim
t→∞

Eeff
n (t, t0),

Eeff
n (t, t0) = −∂t log λn(t, t0) ≡ −1

a
[log λn(t+ a, t0)− log λn(t, t0)].

(2.33)

Introducing dual vectors un,

(un,ψm) ≡
N∑
i=1

u∗niψmi, (2.34)

(un,ψm) = δmn m,n ≤ N , (2.35)

one can show that the GEVP is solved by,

λ(0)n (t, t0) = e−En(t−t0), vn(t, t0) ∝ un. (2.36)
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The orthogonality relations,

(um,G
(0)(t)un) = δmnρn(t), ρn(t) = e−Ent, (2.37)

hold for all t. With staggered quarks there are also oscillating eigen-

values,

λ(0)n (t, t0) = sn(t− t0)e
−En(t−t0), (2.38)

where sn(t) = 1 for non-oscillating states, and sn(t) = (−1)t for oscil-

lating states.

2.4.3 SVD cuts

When the number of correlators, NG, is insufficiently large relative

to the number of data points, NT , the quality of the fit will suffer

due to the observed underestimation of the smaller eigenvalues of the

correlation matrix. We can see this by rewriting the formula for χ2

in terms of the eigenvalues and eigenvectors of the correlation matrix,

Mcorrvn = λnvn,

χ2(p) =

NG∑
n=1

((
G−G(p)

)T
D−1vn

)2
λn

+ χ2
prior, (2.39)

where D is defined from Mcov = DMcorrD. The underestimation of

the smaller λn leads to oversized contributions to χ2 and a poorer fit.

This effect is remarked upon and a remedy offered in appendix D of

[88] which we outline here.

The basic idea is to compare the eigenvalues of the original correla-
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tion matrix and bootstrapped copies of it. The bootstrap is a common

resampling method used to generate statistics about a dataset. Given

N data points, Nboot datasets are generated, each with N data points

selected randomly with replacement from the original dataset. By con-

sidering a statistic over the bootstrapped copies of the data one can

construct a bootstrap average, say, of that statistic.

In this case each bootstrap dataset has a set of eigenvalues, λin

with i = 1 . . . Nboot. Averaging over the bootstrapped eigenvalues

yields the quantities, λbootn , along with their uncertainties. Where the

bootstrap-averaged eigenvalues fall below a certain threshold,

λbootn < (1−
√

2/NG)λ
exact
n ≡ κλexactn , (2.40)

the replacement, λn → max(λn,κλmax), is made. This is the so-called

SVD cut. It is a conservative replacement that improves the fit and

increases the uncertainty of the best fit parameters. This can be seen

explicitly by considering

G = G+ δG −→ G+ δG+ δGSVD (2.41)

where δGSVD is the extra uncertainty induced by the SVD cut,

δG ≡
NG∑
n=1

zn
√
λnDvn,

δGSVD ≡
∑

λn<κλmax

z̃n
√
κλmax − λnDvn,

(2.42)
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Then the SVD-modified covariance data is

⟨(δG+ δGSVD)(δG+ δGSVD)
T ⟩

= ⟨δGδGT ⟩+ ⟨δGSVDδG
T
SVD⟩

=
∑
n

max(λn,κλmax)Dvnv
T
nD,

(2.43)

which clearly increases the uncertainty relative to ⟨(δG)(δG)T ⟩.

A robust fit should be insensitive to SVD noise, which can be added

by sampling from δGSVD and replacing

δGSVD −→ δGSVD + sample(δGSVD) (2.44)

before refitting. Fitted parameters before and after adding SVD noise

should agree.

2.4.4 Criteria for a good fit

When evaluating a fit to the correlator data we rely on a set of

goodness-of-fit parameters, {χ2
ν, Q, logGBF}.

The reduced chi-squared, χ2
ν or χ

2, is the chi-squared per degree of

freedom, χ2
ν ≡ χ2/ν. A fit is not considered good if it does not satisfy

χ2
ν ≲ 1.

The Q value, also known as the p factor, is the probability that

the χ2 from our fit could have been larger by chance, assuming all the

data are gaussian and consistent with each other. Good fits usually

have Q > 0.1.

logGBF, the logarithm of the Gaussian Bayes Factor, is the loga-
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rithm of the probability of obtaining the fit data by randomly sam-

pling the fitted model, logP (data|model). This quantity is useful for

comparing fits of the same data to different models with different pri-

ors and fit functions. Taking the difference in this metric between two

models and exponentiating produces the ratio of the probabilities that

each model, randomly sampled, produced the data,

exp{(fit.logGBF)A − (fit.logGBF)B} =
P (data|model A)

P (data|model B)
, (2.45)

for two models labelled A and B. This ratio is known as the Bayes

factor. Clearly if the Bayes factor is greater than 1 then model A

is preferred to model B. Generally a sliding scale is employed when

using Bayes factors to evaluate the relative strength of models. There

is clearly a not insignificant element of subjectivity in the choice of

thresholds. A not unreasonable heuristic has a Bayes factor greater

than 100 being ‘decisive’, a factor of 20 being ‘strong’, and a factor of

3 being ‘Barely worth mentioning’.

A seemingly good fit might still have to be discarded if it is not

robust to changes in the fit parameters, such as the fitting range, SVD

cut, or priors.

Much of the data analysis in this thesis was done using Peter Lep-

age’s corrfitter library, which implements the statistical methods

described in the previous section and many others [89]. All the python

scripts used to perform the statistical analysis and generate the re-

sults in this thesis are available at https://github.com/gray95/lattice-

analysis.
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2.5 Extrapolating to the Real World

There are many ways in which simulations on the lattice are unphysi-

cal. Unphysical effects must be removed before a fair comparison can

be made to the natural world. Measurements on lattices are done

in discretised spacetime and a finite volume, giving rise to UV and

IR effects respectively. Lattices often have heavier-than-physical pion

masses and are isospin symmetric. To remove these unphysical effects

extrapolations, sometimes in more than one parameter, to the physi-

cal point must be made. In most case these extrapolations are done

simultaneously as in the combined continuum-chiral extrapolation in

chapter 4 of this thesis.

The extrapolation to the continuum, a −→ 0, can be done by mea-

suring an observable on ensembles of varying lattice spacing, fitting

the measurements to some f(a), then reading off f(0). The appro-

priate choice of f depends on the type of action and fermion used,

and can vary by observable (through the interpolating operator). The

HISQ action, being tree-level O(a2) improved, generally has mild a2

discretisation effects, meaning f(a2) =
∑

i cia
2i for small positive i

is usually an appropriate fit form. However specific observables may

mandate alternative fit forms, and there has been some discussion in

the context of staggered fermions about whether discretisation effects

at a > 0.12 fm are well understood [90].

The infinite volume limit, L −→ ∞, similarly can be taken by mea-

suring on ensembles of varying size, fitting to some f(1/L) before

reading off f(0). An alternative approach is to calculate a finite vol-

53



ume correction at each a using an effective field theory,

∆OFV = O(EFT)(L=∞)−O(L=L). (2.46)

This approach is taken with the precision calculations of the anoma-

lous magnetic moment of the muon, where there are multiple alterna-

tive EFTs used to determine its FV properties [91, 77].

Simulations can be carried out at heavier-than-physical pion masses,

mphys
π =140 MeV, in the sea or valence sectors. In the sea their effect is

small but significant and can be captured by a quark mass mistuning

term in the continuum extrapolation function, see chapter 3 for more

details. In the valence sector, provided the quarks are light enough,

chiral PT can be used to fix the form of the extrapolation in mq, see

chapter 4 for more details.
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Chapter 3

Heavy Hybrid Meson

Spectroscopy

In this chapter we present results for the masses of the 1−+ and 1−−

hybrid mesons in the charmonium sector based on lattice QCD calcu-

lations with staggered quarks. We preface our calculation with a short

review of hybrid mesons. This review covers the definition of hybrid

mesons, the models that have been used to try and understand them,

previous lattice calculations, and the experimental evidence for their

existence. The details of the simulation are described and the form of

the hybrid operators used is discussed. The methods used to fit the

correlators are outlined, in particular the GEVP method, and best fit

parameters are listed. We conclude by presenting the results and then

discussing them.
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3.1 Introduction

Independently in the 60’s, Gell-Mann and Zweig proposed the Quark

Model [11, 12]. This model classifies the hadrons by their valence

quark content and has proven successful at explaining experimental

particle data. It splits the hadrons into two groups, mesons and

baryons. Baryons are made up of three quarks, and mesons are made

up of a quark-antiquark pair. Gell-Mann’s use of the Quark Model to

successfully predict the omega baryon in 1964 demonstrated to many

its correctness.

In the Quark Model states are labelled by their JPC quantum num-

bers. For qq̄ mesons we have parity P = (−)L+1, charge conjugation

C = (−)L+S where L is orbital angular momentum, S is spin, and

the usual rules apply for addition of angular momentum, J⃗ = L⃗ + S⃗.

This leaves the disallowed combinations, 0−−, (odd)−+, (even)+−, as

the exotic quantum number states.

However, beginning in 2003 with the detection of the χc1(3872)

(JPC = 1++), a series of resonances have been observed in the char-

monium and bottomonium sectors that do not correspond neatly with

Quark model states [92, 93]. Many competing non-Quark model expla-

nations for these so-called XY Z states have been proposed, including

(but not limited to) gluonic hadrons, bound states of more than 3

quarks, and hadronic molecules [94, 95, 96]. These XY Z states have

many different JPC , both exotic and non-exotic.

Well before the experimental discovery of these resonances some

theorists had started exploring the possibility of particles with va-
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lence gluons. These are the glueballs and the hybrids. Glueballs are

composed of only gluons, and hybrids are states made of quarks and

gluons. A hybrid meson is a meson with an excited gluonic compo-

nent. Although hybrid mesons (and the other states noted) are exotic

in the sense that they fall outside the well-tested Quark model, noth-

ing in principle prevents q̄qg states in QCD. Hybrid mesons have been

studied on the lattice for many decades [97, 98, 99, 100, 101, 102].

In the early 80’s the first attempts at computing the properties

of hybrids were carried out [103]1. As the gluons can contribute to

the quantum numbers of the hybrid mesons these states can have

quantum numbers which are inaccessible to conventional qq̄ states

under the Quark Model. In particular the 1−+ quantum numbers

are not accessible by conventional mesons. Finding such exotic states

would show that the Quark Model is an incomplete description of the

bound states allowed under QCD.

It is important to note that all states with the same quantum

numbers can, in principle, mix with each other. So even though an

exotic hybrid meson will not mix with a conventional meson it will

mix with, say, a tetraquark state possessing the same JPC . Baryons

can have any quantum numbers, meaning they all could mix strongly

with hybrid baryons of the same quantum numbers. However when

the HadSpec collaboration examined hybrid and non-hybrid baryons

they found only modest mixing, and were able to easily pick hybrid

states out of a dense spectrum [104].

1Initially hybrids were called hermaphrodites or meiktons depending on the author, until an
editor intervened and gave us the name we use today
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3.2 Hybrid Mesons

3.2.1 On the Lattice

Following on from the very first calculation by Creutz [105], lattice

methods matured, available computer power grew, and groups started

performing more sophisticated calculations on increasingly large lat-

tices.

Griffiths et al. investigated mesons with excited glue by computing

adiabatic gluonic surfaces in SU(2), and found excited states, including

exotics, about 800-900 MeV above the ground state [106].

Perantonis and Michael studied the potential between heavy quarks

in the presence of an excited gluon field and used the Born-Oppenhimer

approximation to extract hybrid charmonium (lightest, 4.19 GeV) and

bottomonium (lightest, 10.81 GeV) masses[107].

The UKQCD Collaboration did a quenched calculation of the light

hybrid mesons with JPC = 1−+, 0+−, 2+−, finding the 1−+ state the

lightest at 2.0(2) GeV[98]. The MILC collaboration also performed a

similar calculation near the charm quark mass finding a 1−+ charmo-

nium state with a mass around 4.4 GeV[101]. They compared their

lattice result with various models and found broad agreement. They

also noted that mixing with tetraquarks should be partially suppressed

by the quenched approximation.

Juge, Kuti and Morningstar performed a quenched calculation of a

bottomonium hybrid and compared their result to that obtained using

the Born-Oppenheimer expansion. They found the two approaches to

be consistent and therefore evidence for a particular model interpre-
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tation of hybrid bottomonium[108].

Liao And Manke went a step further and calculated the entire ex-

cited charmonium spectrum in the quenched approximation, including

exotic states (via hybrid operators) and orbitally excited mesons up to

L = 3 [109]. They found the 1−+ lying at 4.428(41) GeV, the 0+− at

4.70(17) GeV, and the 2+− at 4.895(88) GeV, with purely statistical

errors.

The Hadron Spectrum Collaboration has performed many lattice

calculations concerning the properties of mesons. Over many papers

they have developed a series of techniques to more reliably extract

excited state energies and to overcome the reduced symmetry of the

lattice and assign continuum spin numbers. They have developed a

quark field smearing algorithm (distillation) to optimise hadron cre-

ation operators [110]. They use a large basis of covariant derivative-

based meson interpolating fields and a variational method. Through-

out their studies they have been interested in the properties of exotic

states in the charmonium sector. Initially they studied this sector

with anisotropic lattices in the quenched approximation[111], then

using 2+1 dynamical quarks[112], and finally with a less unphysical

pion mass (Mπ = 240 MeV)[102]. Their full charmonium spectrum

is reproduced in figure 3.1, with possible hybrid states highlighted in

red. They predict the lightest hybrid multiplet as consisting of the

(0, 1, 2)−+ and 1−− states.

The lattice has cubic symmetry with five irreps, A1,A2,E,T1,T2.

The continuum however has infinitely many irreps labelled by j with

dimension 2j+1. States on the lattice can therefore be easily classified
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under the irreps of the cubic group but not the JPC . The mapping

from the continuous to cubic symmetries is listed in table 3.1 up to

J = 4. The Hadron Spectrum Collaboration navigate this problem

by considering the values of vacuum-to-state matrix elements, known

as overlaps or Z values, ⟨n|O|0⟩. The operators HadSpec use have

a ‘memory’ of the continuum spin from which they were subduced.

Operators subduced from spin J are expected to overlap strongly only

onto states of continuum spin J .

J irreps
0 A1(1)
1 T1(3)
2 T2(3)⊕ E(2)
3 T1(3)⊕ T2(3)⊕ A2(1)
4 A1(1)⊕ T1(3)⊕ T2(3)⊕ E(2)

Table 3.1: How the continuum spins, J , map onto the lattice irreps
λ(dim).

More recent calculations of hybrid static potentials have been car-

ried out with lattice spacings as small as 0.040 fm, and interquark

separations as small as 0.080 fm [113]. These lattice results combined

with improved EFT methods promise improved spectra and mixing

information.

3.2.2 Models

One might wonder why, if we can compute all the observables of inter-

est on the lattice, do we bother creating and refining models of hybrid

meson structure and dynamics? The answer is twofold, firstly it is re-

source intensive and therefore expensive to calculate large numbers of

the needed quantities on the lattice. Secondly, and more importantly,
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Figure 3.1: The charmonium spectrum computed by the Hadron
Spectrum Collaboration[102]. The spectrum in individual channels
is given, including exotic channels, with many excited states. The
coloured boxes are the computed masses, the black lines the experi-
mental values from the PDG summary tables. The size of the boxes
corresponds to the uncertainty in their value. The red boxes corre-
spond to the lightest hybrid multiplet. Note that the masses are given
as differences to the pseudoscalar ηc mass.
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some complicated quantities relevant to hybrid physics are beyond the

reach of current lattice theory, like hybrid scattering amplitudes. A

good model should inform and aid in the interpretation of experimen-

tal results. Lattice results can help us choose which models represent

a more accurate picture of the hybrid meson. These models may then

provide insight into the appropriate degrees of freedom in a QCD cal-

culation. Hybrid models can be split up into two groups depending

on how they treat the gluonic degrees of freedom. One type treats

the gluons as quasiparticles, the other as collective and non-local in

nature.

Bag Models

Bag models were introduced as a way to explain the properties of

hadrons [114, 115]. In Bag models hybrids are thought of as a quark-

antiquark pair and a gluon field placed in a spherical vacuum bub-

ble with appropriate boundary conditions, producing either transverse

chromoelectric (TE) or transverse chromomagnetic (TM) modes [103].

The TE modes were found to be lighter. It was realised that heavy

quarks would not be confined in the right way in a spherical bag and so

the bag should be allowed to deform due to the heavy quark-antiquark

pair. These models were called the ‘Budapest’ variant. The derived

adiabatic energy surfaces were used in a two body Schrödinger equa-

tion to give heavy hybrid meson mass estimates of 3.9 and 10.45 GeV

for the lightest charmonium and bottomonium hybrids respectively.

Juge, Kuti and Morningstar used the Budapest variant to compare

model adiabatic energy surfaces in the static quark limit to the lattice
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results, finding surprisingly good agreement (see Figure 3.2) [116].

Since they worked in the static limit their results are of relevance to

heavy hybrids.

Figure 3.2: From [116]. The bag model predicted potentials are the
solid lines and the points are the lattice results. The different lines
correspond to the different gluon field configurations and are labelled
by their quantum numbers.

Bag models are qualitatively simple and easy to visualise. However

they suffer from problems that make their application confused. The

centre of mass introduces unphysical degrees of freedom, leading to

spurious exited states. Gluon self-energies can be ambiguous. Inter-

actions between the bag boundary and the quarks and gluons and the

subsequent change in bag shape are difficult to determine. An issue of

interpretation arises from the intrinsic ambiguity between the gluonic

degrees of freedom and the bag.
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Flux Tube Models

The Flux Tube model was developed by Paton and Isgur in response

to bag models [117]. They insisted on using nonperturbative degrees

of freedom as opposed to the perturbative gluons of the bag models.

They built such a model by taking the lattice QCD Hamiltonian and

truncating it with a series of approximations. Thus, in their model the

gluons bear similarities to the gluons of the lattice and can be thought

of as link variables connecting sites on which quarks live.

They simplified the dynamics by assuming an adiabatic separa-

tion of quark and gluon degrees of freedom, ignoring topological mix-

ing such as loop breaking or deformation, and working in the non-

relativistic limit.

They modelled the link variables with spinless, colourless particles

called ‘beads’ that undergo small oscillations in a linear potential [117].

Gluons are associated with the phonon modes of this system and so

hybrids are constructed by specifying the gluonic states with phonon

operators (apparent in the Hamiltonian) and combining these with

quark operators.

They then solved a model Hamiltonian of quark motion on a single

phonon excited surface and so obtained hybrid meson masses.

H = − 1

2µ

∂2

∂R2
+
L(L+ 1)− λ2

2µR2
− 4αs

3R
+
π

R
(1− e−f

√
bR) (3.1)

After estimating the effects of adiabatic surface mixing this gave a

final value of 4.3 GeV for cc̄g and 10.8 GeV for bb̄g.
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The lightest flux tube multiplet is larger than the lattice prediction,

predicting the usual (0, 1, 2)−+, 1−− and (0, 1, 2)+−, 1++ hybrid states.

The lowest energy TE mode bag models yield a multiplet in agreement

with the lattice. The bag model, being perturbative, does well at small

quark separation but poorly at large separation, while the flux tube

model works over a wider range of distances.

Many models are ruled out early on because they can’t produce

the required quantum numbers for the adiabatic potentials. Spinless

gluons are ruled out because they don’t contain sufficient degrees of

freedom to reproduce the spectrum. Alternatively a JP = 1− gluon

can explain the lightest multiplet if it’s in relative P wave with an S

wave qq̄. The heavier multiplet then corresponds to the the gluon in

relative P wave with a P wave qq̄.

Born-Oppenheimer Approximation

In the case of heavy quarkonium there is a natural separation of en-

ergy scales between the quark and gluon degrees of freedom. The

nonperturbative gluon dynamics happens at ΛQCD, while the heavy

quark-antiquark pair’s energy scale is at mv2 ≪ ΛQCD. This separa-

tion of scales is analogous to that between the electrons and nucleus

of an atom, and has led to the application of the Born-Oppenheimer

approximation (BO) on heavy quarkonium systems, including hy-

brids. BOEFT, an EFT formulation of the BO has been used, with

lattice data as input, to calculate the quarkonium hybrid spectrum

[118, 119, 120]. This approach has also been used to gain information

about hybrids beyond the spectrum including mixing with standard
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quarkonium, spin-dependent contributions, and semi-inclusive decays.

For completeness the masses of hybrid mesons have also been cal-

culated with a technique called QCD sum rules [121].

3.2.3 Phenomenology

By calculating transition matrix elements for hybrid transitions we

can gain a better understanding of these states and the experimental

data collected at various colliders. In order to identify an observed

exotic state with a lattice state it helps to not only have the masses

agree but the widths and decay rates too. Calculating transitions can

aid in our experimental search by discerning between different exotics

(glueball and hybrid say) that may decay differently. The light hybrid

is expected to partake in the three body decay 1−+ → ρπ → πππ.

Three body decays are very hard to simulate.

McNeile et al. did the first study of a hadronic transition on the

lattice, constraining themselves to the heavy quark limit (so more

relevant to the bottomonium sector) and using two flavours of light

dynamical quarks [122]. They focused on the 1−+ and argued that

the decay of this heavy hybrid meson into a heavy non-exotic state

and a light quark meson is particularly important. They deduced this

by arguing that the decay into two S wave mesons is forbidden by the

symmetries of the system and that decay into a Qq̄ S wave and a qQ̄ P

wave is forbidden by energy considerations, leaving as the only allowed

transition the de-excitation of the gluon field with an accompanying

emitted light meson. They discovered a small transition amplitude

for the emission of a pseudoscalar meson and a much larger amplitude
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for the emission of a scalar meson, bb̄g(1−+) −→ ηbη(ss̄)(< 1 MeV),

bb̄g(1−+) −→ χbσ(ss̄)(61(14) MeV).

HadSpec have also calculated radiative transition rates for heavy

hybrids [123]. Specifically they performed the first lattice calculation

of the exotic 1−+ηc1 radiative decay, ηc1 −→ J/ψγ, finding a large

partial width ∼ 100 keV. To do this they computed three-point cor-

relators on quenched anisotropic lattices. They found this process

dominated by a magnetic dipole transition and noted that the extra

gluonic degree of freedom in a hybrid allows such a transition without

spin-flip (spin-flip being suppressed by the large charm quark mass).

For completeness, we briefly discuss the possible hadronic decays

of hybrid charm mesons. There are possible string breaking-like de-

cays where the hybrid meson can decay into pairs such as DD, or

two P-wave D mesons, or a P-wave D and a S-wave D, as well as

similar channels with charm-strange mesons. There is a selection rule

in the heavy quark limit [124] (and some quark models [125]) that a

hybrid meson can not decay into two S-wave mesons. It is possible for

the hybrid meson to decay to a standard charmonium meson with a

light meson and there is a lattice QCD calculation in the heavy quark

limit [126].

3.2.4 Experimental status

Starting in 2002 a series of charmonium-like resonances were discov-

ered at BaBar, Belle and other experiments. Some of these states

didn’t fit neatly into the levels predicted by the Quark Model, having

either measurably exotic quantum numbers or non-exotic quantum
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numbers with other unconventional properties (branching ratios etc).

As an example consider the ψ(4260) (previously called Y (4260)),

labelled ψ because it shares the same quantum numbers as the con-

ventional vector meson, 1−−. Lying between the 2D and 4S vectors’

quark model predicted masses implies this is a non qq̄ state. Its decay

to e+e− is smaller than other vector charmonia whilst its decay to

J/ψπ+π− is larger than other vector charmonia. The mass is about

∼ 1 GeV higher than the ground state J/ψ, about what you’d expect

for a gluonic excitation. The HadSpec group found a vector hybrid

at this mass, lending weight to the hypothesis that this is a hybrid.

There are competing models that seek to explain this resonance as

hadrocharmonium2 or a diquark-antidiquark state. It could be that

this state is a mixture of all these alternatives.

There are many unexplained resonances with JPC = 1−−, where

charmonium hybrid mesons may occur. See the review by Brambilla

et al. [96]. For example it has been speculated that the ψ(4230) is

a hybrid meson, but confirmation will require accurate lattice QCD

calculations.

Relevant experimental searches include the upcoming PANDA ex-

periment at FAIR, which will search for evidence of gluonic excita-

tions in the charmed hadron spectrum, and the GlueX experiment at

Jefferson Lab, which has a complementary search in the light sector

[127, 128]. Accurate lattice QCD calculations of the properties of the

hybrid mesons in charmonium may encourage the LHCb collaboration

to search for them.

2Hadroquarkonium describes a compact state of quarkonium embedded in an excited light
meson by a QCD analog of the Van der Waals force.
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3.3 Simulation Details

The advantages of using staggered fermions is that the discretisation

errors are small and the meson spectrum has been thoroughly in-

vestigated. The HPQCD collaboration has done many comparisons

between lattice calculations and experiment in the charmonium sys-

tem [129, 130]. There are some disadvantages to using staggered

fermions over other fermion formulations. For example, because the

staggered correlators have a contribution from the parity partner, the

hybrid mesons are the first excited state, but in Wilson like formula-

tions the hybrid meson is the ground state. The initial goal of this

project was to check whether it was possible to get accurate results for

the mass of hybrid mesons made from charm quarks using staggered

fermions.

3.3.1 Interpolating operators for hybrids

Since hybrids have an excited gluonic component the operators which

we would expect to couple to them include the field strength tensor,

F ab
ij , whose components are the chromoelectric and chromomagnetic

fields (12ϵijkFjk = Bi). These are contracted, over the colour indices,

with the usual fermion bilinears (the quark-antiquark pair is in a colour

octet).

Wilson fermion hybrids

According to the Hadron Spectrum Collaboration the lightest hybrid

mesons in the charmonium sector are the {1−+, 0−+
H , 1−−

H , 2−+
H } states
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[102]. The last three states have a subscript H identifying them as

hybrids because they’re not exotic quantum number states like the

1−+. Since hybrids are defined as hadrons with an excited gluonic

component, we can write down mesonic operators for these states,

1−+ : ϵijkψγjBkψ

1−−
H : ψγ5Biψ

0−+
H : ψγiBiψ

2−+
H : |ϵijk|ψγ5γjBkψ,

(3.2)

where ϵijk is the antisymmetric levi-civita symbol and colour indices

are omitted. Other hybrid-like operators are given in table 3.2, in-

cluding examples with the chromoelectric field Ei = F0i.

JPC Operator mnemonic

1−+ ψγ0F0iψ JB ⊗ E
1−+ ψγ4γ5ϵijkγjF0kψ b1 ⊗ E
1−− ψψF0i 1⊗ E
1−− |ϵijk||ϵklm|ψγjFlmψ ρ⊗D

Table 3.2: Alternative operators involving the field strength tensor
that are expected to couple to the 1−+ and 1−− hybrid states.

Staggered Transformation

The majority of the results from lattice QCD for the masses of hy-

brid mesons have used clover or Wilson fermions. There has been one

calculation by the MILC collaboration [99] using staggered fermions,

which computed the mass of the 1−+ hybrid meson with light and

strange quarks. The previous MILC calculation used the taste sin-

glet non-local ρ when constructing hybrid operators to minimize taste
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breaking [99]. We use the local ρ operator because taste breaking is

less of an issue with charm quarks and local operators can be less noisy

than non-local operators.

As we are using staggered fermions we replace the γ matrices with

phases. These phases, along with the F ab
ij , determine the quantum

numbers of the operators. In the staggered basis the operators also

have a taste assignment. Taste breaking effects should drop out in the

continuum limit.

operator JPC PP Phase
γ5 ⊗ γ5 0−+ 0+− 1

γ0γ5 ⊗ γ0γ5 0−+ 0++ (−1)x+y+z+t

γi ⊗ γi 1−− 1+− (−1)i

γ0γi ⊗ γ0γi 1−− 1++ (−1)x+y+z+t+i

Table 3.3: Phases associated to local staggered currents of the given
quantum numbers.

The effect of the transformation to staggered fermions is to replace

Dirac’s γ matrices with phases, see table 3.3. Operators are classified

by their spin ⊗ taste. In the staggered formalism the local hybrid

operators of equation 3.2 become

1−+ : ϵijkψγjBkψ −→ γi ⊗ γi : χϵijk(−1)xjBkχ

1−−
H : ψγ5Biψ −→ γ5 ⊗ γ5 : χBiχ

0−+
H : ψγiBiψ −→ γi ⊗ γi : χ(−1)xiBiχ

2−+
H : |ϵijk|ψγjBkψ −→ γi ⊗ γi : χ|ϵijk|(−1)xjBkχ ,

(3.3)

where we have given the ‘spin ⊗ taste’ assignment for the operators

formed from staggered fields χ on the right. All the results in this

chapter are produced using these 1−+ and 1−−
H operators. We have
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neglected disentangling states due to the reduced cubic symmetry of

the lattice, such as 1−+ with 4−+ [131].

We do not present any results for non-local hybrid operators. Ex-

amples of such operators in the staggered formalism are

1−+ : γi ⊗ 1 : χϵijk(ηjDjBk +BkηjDj)χ

0−+
H : γi ⊗ 1 : χ(ηiDiBi +BiηiDi)χ

2−+
H : γi ⊗ 1 : χ|ϵijk|(ηjDjBk +BkηjDj)χ,

(3.4)

see [33] for the taste singlet ρ operator.

We use gauge fields generated with the Highly Improved Staggered

Quark (HISQ) action [132] with Nf = 2+1+1 sea quarks. The gauge

configurations were provided courtesy of the MILC Collaboration [133,

134]. The lattice spacing is set using w0 with the value calculated

by HPQCD [79]. In table 3.4 the ensembles used are listed. We

measured 1−+ correlators over all the ensembles in table 3.4, and 1−−

correlators on just the f-5 ensemble. We used the MILC code to do the

calculations. We modified the existing hybrid operators in the MILC

code and tested the correlators against our own implementation in the

Grid library [135]. In this analysis all the operators were used as point

sources when constructing the correlators.

The correlators of hybrid meson operators are typically very noisy.

We therefore employ a series of well-established techniques to reduce

this noise. On each ensemble we average the correlators over 16 evenly

spaced (starting at t = 0) time sources and 3 polarisations (x, y, z).

We apply covariant smearing to the quarks. We apply APE smearing
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name size a (fm) MπL Mπ (MeV) amsea
c cfgs

very coarse (vc) 323x48 0.15088(79) 3.30 131.0(1) 0.8447 1505
coarse (c-10) 323x64 0.12225(65) 4.29 216.9(2) 0.628 1000
coarse-phys (c) 483x64 0.12121(64) 3.88 131.7(1) 0.643 1059

fine (f-5) 323x96 0.09023(48) 4.50 312.7(6) 0.440 1008
fine-phys (f) 643x96 0.08787(46) 3.66 128.2(1) 0.450 620

Table 3.4: The 5 lattice ensembles used. Both the f-5 and c-10 ensem-
bles are at heavier than physical pion masses, while the others are at
the physical point. The lattice spacings are determined from w0 and
w0/a, measured by HPQCD [79, 91]. The tuned valence charm quark
masses are from [63], and Mπ is from [134].

on the gauge links in the field strength tensor and in the gaussian

smearing on the quarks. We set the smearing parameters to the same

values used in the charmonium analysis in [136]. DeTar and Lee report

on using variational smearing with staggered fermions [137].

In figures 3.3 and 3.4 we plot fractional errors for the 1−+ hybrid

correlator, 1−− hybrid correlator, and the ψγiψ correlator with charm

quarks. The hybrid correlators are considerably more noisy than the

conventional vector correlator, with the signal becoming very noisy

by t=8. In figure 3.4 we also compare the fractional error of the 1−+

hybrid correlator with the estimate from Lepage [85], which implies it

should be proportional to exp
(
− (MH −Mηc)t

)
.
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Figure 3.3: The fractional error of the unsmeared 1−+ hybrid cor-
relators on each of the physical ensembles.

Figure 3.4: The error/mean of correlators against time for 1−+,
1−− hybrid and conventional vector operators on the unphysical
fine ensemble. We include the predicted fractional error from an
argument by Lepage, using the fitted hybrid mass and experimen-
tal pseudoscalar mass.
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3.4 Fitting Procedure

The measured correlators can be formed into a matrix, turning the

problem of fitting them into a GEVP. For the 1−+ analysis we use a

2-operator basis, the hybrid operator with and without smearing, to

produce a 2× 2 matrix of correlators,

⟨HH⟩ ⟨Hh⟩

⟨hH⟩ ⟨hh⟩

 , (3.5)

where H/h is the unsmeared/smeared 1−+ operator. See chapter 2

for details on how the energies and amplitudes are extracted from this

matrix of correlators.

The effective masses, Meff , on the physical coarse ensemble are

shown in figure 3.5. For the definition of Meff see equation 4.20 in

chapter 4. Although it is obscured a little by the noisiness of the

correlators it does appear that each correlator has plateaus inMeff that

agree with each other within uncertainties. The smeared correlators

plateau earlier than the unsmeared correlator and their uncertainties

also grow at a slower rate.

Our fitting procedure is as follows: We choose a time, t0, and use

it to generate priors by diagonalising the correlator matrix with the

eigenvectors associated to the solution of the GEVP at times t0 and

t0+2. In this way we generate the priors from the data, we do not put

them in by hand. These data driven priors are listed in table 3.5. The

same prior is used for the oscillating and non-oscillating ground state

masses. Due to the noisiness of the correlators we find t0 = 1 or 3 is
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Figure 3.5: The effective masses in physical units of the local-
local (ll), local-smeared (lg), and smeared-smeared (gg) 1−+ hybrid
correlators on the physical coarse (0.12fm) ensemble.

usually a good choice, with results depending only weakly on t0. The

larger value of t0 = 3 on the f-5 ensemble leads to a wider prior, but

the effect on the fit compared to using t0 = 1 is small and well below

1σ.

B t0 prior(E1,Eo1) prior (GeV) fit/prior(E1) fit/prior(Eo1)
vc 3 1 2.68(94) 3.5(1.2) 0.066 0.14
c-10 2 1 2.83(39) 4.57(60) 0.069 0.49
c 3 1 2.81(37) 4.57(63) 0.11 0.54
f-5 2 3 2.1(1.3) 4.7(2.1) 0.018 0.075
f 2 1 2.10(94) 4.6(2.8) 0.014 0.084

Table 3.5: Priors in the 1−+ analysis. The second column lists the bin
size, B. The fourth column lists the prior for the non-oscillating (E1)
and oscillating (Eo1) ground states, generated from the correlator
matrix at timeslices t0, t0+2. The fifth column lists the priors in
physical units. The last two columns list the ratio of the width of
the fitted masses to the width of the corresponding prior.

We then apply an SVD cut and fit the data using a model consisting
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of 9+9 exponentials over a specified time region,

9∑
i=1

Aie
−Eit + Aio(−1)te−Eiot. (3.6)

For a discussion on how the SVD cut is chosen see the analysis of

the muon anomaly in chapter 4. The staggered formalism requires

a parity partner (PP) state, which oscillates in time, to be included

in the fit model. For the 1−+ channel the quantum numbers of the

parity partner are 1++. We vary the fit range until the goodness of fit

parameters indicate an acceptable fit. Where there are multiple good

choices for the fit parameters we choose the one with the smaller hy-

brid mass uncertainty. The best-fit parameters are given in table 3.6.

On some of the ensembles we use a smaller time range for the off-

diagonal correlators because later time slices tend to be more highly

correlated and removing these from the simultaneous fit can ease the

fitting procedure and result in better χ2. This was not necessary on

the two fine ensembles.

Ensemble fit range SVD cut χ2
ν/(χ

2
ν)

∗ Q/Q∗

vc [1-8]†:[1-4] 2.3× 10−7 0.86/1.3 0.63/0.15
c-10 [1-5]:[1-4] 2.9× 10−5 0.75/1.1 0.73/0.32
c [1-5]:[1-4] 2.5× 10−5 0.53/1.5 0.92/0.11
f-5 [2-12]:[2-12] 5.3× 10−4 0.76/0.98 0.83/0.49
f [1-20]:[1-20] 6.6× 10−4 0.94/1.1 0.61/0.27

Table 3.6: Summary of 1−+ fit parameters. Column 2 lists the range of
times included in the fit, the second range is used for the off-diagonal
correlators. Column three lists the SVD cuts. Columns four and five
list the reduced χ2 and the Q value of the fit, respectively. Starred (∗)
quantities are goodness of fit parameters after prior and SVD noise
have been added.
† On the vc ensemble the t = 5 timeslice was removed.
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We use a large number of exponentials in our fit models, N=9. These

fits are stable even if the number of data points fitted is ≲ 9 because

the fitting procedure is iterative, looping over 1 . . . N , and the priors

prevent unreasonably large coefficients Ai,Aio. Past N =3 the fitted

parameters generally reproduce the prior, suggesting 3+3 exponentials

is sufficient to describe the data. This is illustrated in figure 3.6, where

the masses on the unphysical fine ensemble (f-5) are plotted against

the number of exponentials in the fit model. Even though most of the

terms in the fit function are not necessary when fitting the data, we

leave the fit function unchanged as their inclusion does not hurt the

quality of the fit.

Figure 3.6: Fitted 1−+/1−− oscillating (O) and non-oscillating (NO)
masses against number of exponentials on the f-5 ensemble. The 1−−

NO mass comes from a 2x2 fit with just the hybrid operators.

We can test whether our fits are robust to changes in the fitting

region by varying (only) tmin. Figure 3.7 shows that the fitted masses

on the f-5 ensemble agree within uncertainties as tmin is varied and,
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as one expects, the uncertainty in the mass grows as tmin is increased

and the fit region is shrunk.

Figure 3.7: Variation of the fitted 1−+/1−− oscillating (O) and non-
oscillating (NO) masses with tmin on the f-5 ensemble. Beyond tmin=3
we could not extract a mass for the 1−− NO hybrid state. The 1−−

NO mass comes from a 2x2 fit with just the hybrid operators.

We add noise to the SVD cut and the priors before refitting, as

discussed in chapter 2, and we redo the fits after binning the correlators

[88]. To be considered a robust fit we require χ2
ν ∼ 1 after adding noise,

and the binned results to agree within uncertainties to the unbinned

results. Table 3.6 shows that the goodness-of-fit parameters indicate

good fits after adding SVD and prior noise. Figure 3.8 shows that the

fitted masses are stable on the f-5 ensemble when the svdcut is varied

over several orders of magnitude while holding the other fit parameters

fixed.

In table 3.5 we list the bin sizes used in the final fits. Given the

size of our ensembles we can’t go much beyond B = 3 before we have

79



Figure 3.8: Variation of the fitted 1−+/1−− masses with svdcut on
the ‘f-5’ ensemble. The dashed lines indicate the svdcuts used in the
final fit. The 1−− NO mass comes from a 2x2 fit with just the hybrid
operators.

too few correlators left over. Also in table 3.5 we show the ratio of the

widths of the fitted masses to their priors on each ensemble. Across

all the ensembles both the NO and O fitted masses are narrower, some

much narrower, than their priors. This suggests the results of the fit

are driven by the data and not the prior. Figure 3.9 illustrates the

quality of our fit on the unphysical fine ensemble, showing that the

data and fit agreeing to within 1σ across the fitting range.

To examine the 1−− hybrid state we perform a very similar GEVP

analysis, with the main difference being an expanded 4-operator basis;

the standard vector operator J , the hybrid operator H, and their
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Figure 3.9: Fractional difference between the data and fit against time
expressed in standard deviations for the unsmeared HH correlator on
the f-5 ensemble. The red shaded region shows the uncertainty of the
fit model for the best-fit parameters. The blue points are the correlator
data.

smeared (j,h) counterparts. The 4x4 matrix of correlators is then



⟨HH⟩ ⟨HJ⟩ ⟨Hh⟩ ⟨Hj⟩

⟨JH⟩ ⟨JJ⟩ ⟨Jh⟩ ⟨Jj⟩

⟨hH⟩ ⟨hJ⟩ ⟨hh⟩ ⟨hj⟩

⟨jH⟩ ⟨jJ⟩ ⟨jh⟩ ⟨jj⟩


. (3.7)

The effective masses, Meff , on the f-5 ensemble are shown in figure

3.10. All the correlators, whether formed from the vector hybrid or

conventional vector operators, have an Meff that has a plateau around

the mass of the J/ψ at 3.1 GeV. The higher energy states in the

hybrid correlators seem to become dominated by this conventional

charmonium state around t=8. This accords with the fractional error

of the correlator shown in figure 3.4.

The rest of the analysis proceeds along similar lines to the 1−+

analysis. We can also fit the 2x2 sub-matrices formed by restricting

the operator basis to either the standard vector operators (J ,j), or
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Figure 3.10: The effective mass of the hybrid local-local (HH), vector
local-local (JJ), hybrid smeared-smeared (hh), and vector smeared-
smeared (jj) 1−− correlators on the f-5 ensemble.

the hybrid operators (H,h). Fitting these smaller matrices is easier

and can provide guidance on the best fit parameters to use in the 4x4

fit. They are also useful as cross-checks, the 2x2 standard vector fit

should reproduce the conventional charmonium spectrum in the 1−−

channel and its parity partner 1+− channel. Best-fit parameters are

given in table 3.7.

Fit t0 fit range SVD cut χ2
ν Q

2x2 fit 7 6-24 1.2×10−6 0.88 0.72
2x2 hybrid fit 1 1-6 2.5×10−4 0.9 0.58

4x4 fit 3 2-6 2.2×10−4 0.81 0.82

Table 3.7: Summary of 1−− fit parameters on the f-5 ensemble.
There are three fits, the standard vector 2x2 fit, the hybrid 2x2
fit, and the full fit with all 16 correlators.

We use Lepage’s python library corrfitter, which implements a
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suite of functions to fit correlators and matrices of correlators within

a Bayesian framework [86, 89].

3.5 Results

In this section we present the results for the masses of the ground

oscillating and non-oscillating states, describe our procedure for ex-

trapolating to the continuum, and present results for the masses in the

continuum. We don’t apply any corrections, such as taste or finite-

volume corrections, to our results before extrapolating. Omitting such

corrections should not have a significant effect on our results as we

expect both effects to be small at the charm quark mass, see for in-

stance the negligible FV effects reported in [138] and the small taste

splittings reported in [139]. Taste-splittings are discretisation errors

which vanish in the continuum limit, so in any case the continuum

extrapolated value with taste corrections should be consistent with

the corresponding extrapolated value without taste corrections.

3.5.1 1−+ hybrid

Results, in lattice and physical units, for the ground state masses of

the 1−+ hybrid correlators are collected in table 3.8. The conversion

from lattice to physical units is done using values of w0 and w0/a deter-

mined on the ensembles by HPQCD in previous calculations [79, 91].

The non-oscillating ground state masses vary from 4.1−4.7 GeV across

our ensembles with uncertainties between 1 and 2%. The oscillating

ground state masses vary from 3.2−3.9 GeV with uncertainties between
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Ensemble aMNO MNO (GeV) aMO MO (GeV) MNO/MO

vc 3.144(62) 4.095(84) 2.80(13) 3.65(17) 1.123(60)
c 2.811(41) 4.577(71) 2.37(20) 3.87(32) 1.18(10)

c-10 2.858(27) 4.613(50) 2.44(19) 3.94(31) 1.169(91)
f 2.100(13) 4.716(39) 1.433(79) 3.22(18) 1.466(81)
f-5 2.144(23) 4.688(57) 1.624(98) 3.55(22) 1.320(78)

Table 3.8: Summary of 1−+ fit results. The second and fourth columns
list the ground non-oscillating (NO) and oscillating (O) energies re-
spectively in lattice units. The third and fifth columns list the cor-
responding masses in physical units. In the final column we list the
ratios of the masses of the NO to O ground states on each ensemble.

5 and 10%. These larger uncertainties are unsurprising as oscillating

states are harder to isolate, particularly so given the restricted fitting

ranges. Comparing the results on the physical and unphysical ensem-

bles there does not appear to be much variation in the masses by the

value of ml/ms in the sea. The c/c-10 results are within 0.7σ and the

f/f-5 results are within 1.2σ, with the unphysically heavy ensembles

yielding slightly larger masses in both instances.

In figure 3.11 we show the overlaps of the hybrid operators with the

hybrid states. The overlaps are related simply to the fitted coefficients,

⟨0|Ô|H⟩=
√
2MHAH . All the 1−+ overlaps agree to within 2σ. It is

notable that the overlaps on the fine ensembles are much more precise

than the coarse overlaps, which in turn are more precise than the very

coarse overlap.

If we look at the ratio of the NO:O masses we see a clear increase,

above 1, as the lattice spacing decreases, see figure 3.12. This en-

hanced separation of the oscillating and non-oscillating masses, and

the smaller uncertainties of the overlaps on the fine ensembles in fig-

ure 3.11 may suggest that identifying and obtaining information about
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Figure 3.11: Overlap of the 1−+ and 1−−
H operators with the states

identified as hybrids on all the ensembles.

hybrids with staggered fermions is easier at smaller lattice spacings.

Figure 3.12: Ratio of the non-oscillating to oscillating masses against
squared lattice spacing.

To extrapolate our masses to the continuum, a = 0, we use the

following fit form,

M = c0(1 + c1(aΛ)
2 + c2(aΛ)

4 + c3δx) (3.8)
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where the ci are the coefficients to be fitted. Both the NO and O

masses are fitted simultaneously with the same priors. This form

was chosen as it is the simplest functional form that can fit the data

well while including a term to account for the unphysical ensembles.

Attempts to fit to a function linear in a2 (ie. set c2 = 0) resulted

in poor χ2
ν. Λ = 1 GeV sets the scale of the extrapolation and the

size of the priors on c1, c2. The c3δx term is included to handle the

presence of the unphysical ensembles, δx ≡ (mphys
l −msea

l )/ms. We set

a wide prior of 4(2) GeV on c0 and 0(1) on the other coefficients. The

goodness-of-fit parameters χ2
ν = 0.47 andQ = 0.91. The extrapolation

is shown in figure 3.13. Priors and best-fit parameters for the ci are

listed in table 3.9.

prior NO posterior O posterior
c0 4(2) 4.53(15) 3.04(35)
c1 0(1) 0.39(22) 0.49(61)
c2 0(1) -0.93(33) -0.21(73)
c3 0(1) -0.0004(14) 0.011(10)

Table 3.9: Priors and fit results from the
continuum extrapolation of the 1−+ fitted
masses on all the ensembles.

Setting a = δx = 0 implies that the continuum masses are equal

to c0. Therefore the continuum NO mass is 4.53(15) GeV, and we

identify this as the mass of the 1−+ hybrid charmonium meson. This

value will be compared to other determinations of the hybrid mass in

the conclusions below. The continuum limit of the parity partner mass

is 3.04(35) GeV, which given its 1++ quantum numbers we identify

with the χc(1P ), which has a mass of 3.51 GeV [16]. This mass is

higher than our continuum determination, with a tension of around
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1.5σ.

Figure 3.13: Continuum extrapolation of the masses of
the 1−+ hybrid charmonium meson and its parity part-
ner state.

In table 3.10 we break down the total uncertainty of the extrapo-

lated masses into their component parts coming from different parts

of the analysis.

The uncertainty comes mainly from the the fits of the correlator

in the case of the hybrid, and equally from the correlator fits and

extrapolation for the PP state. The determination of the lattice spac-

ing, through w0, contributes a small amount to the final error of both

masses. Of note is the negligible contribution of the SVD cuts. By

manually changing the SVD cuts we see that we need to make the

cuts at least two orders of magnitude larger before they make a signif-

icant impact on the error. The insensitivity of our fits to SVD noise

indicates we have not been unreasonable with our chosen SVD cuts.
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NO O
vc c c-10 f f-5 vc c c-10 f f-5

statistics 1.43 0.82 0.71 0.59 0.93 4.23 2.63 2.18 5.36 5.61
prior 1.36 1.19 0.63 0.23 0.55 1.79 7.35 8.07 1.33 2.26

SVD cut 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
fit 3.03 7.67
a 0.56 0.54

a→ 0 1.25 8.45
total 3.32 11.43

Table 3.10: Percentage error budget for the oscillating and non-
oscillating ground state masses of the 1−+ correlators and their
continuum extrapolation. The error of the masses on each ensem-
ble is given in the first three rows, broken down into their statis-
tical, prior, and SVD cut contributions. These feed into the total
error from the fit, given in the fourth row. The lattice spacing
contribution to the error is given in the fifth row and the error
from the extrapolation is given in the sixth row.

3.5.2 1−− hybrid

There are many XY Z states in the 1−− channel in the charmonium

meson sector [16]. There are at least two conventional states, the

ground state J/ψ around 3 GeV and the first excited state ψ(2S)

around 3.7 GeV. Therefore we expect the hybrid state to be the (at

least) second excited state, after the J/ψ and ψ(2S), with a mass

around 4 GeV or more. When we examine the overlap of the hybrid

operator with the states we find the second excited state has the first

non zero overlap. The extraction of the properties of such a state will

be more difficult than in the 1−+ case above where the hybrid was the

ground state. Identification of the states, conventional charmonia or

hybrid, is done by examining the overlaps. The amplitude listed is

the overlap of the state with the unsmeared operator. The oscillating

component of the correlator will contain 1+− parity partner states,
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implying the hc(1P ) meson is the parity partner ground state. Our

results are shown in table 3.11 where they are broken down into the

three different fits described earlier. This is an exploratory calculation,

using only correlators measured on the f-5 ensemble, which forecloses

the possibility of a continuum extrapolation.

The ground state masses from the 2x2 vector fit agree well with

the experimentally measured masses of the J/ψ and hc(1P ) mesons,

M exp
J/ψ=3.096 GeV andM exp

hc(1P )
=3.525, however the ψ(2S) mass is larger

than observed by 3.4σ, M exp
ψ(2S)=3.686 GeV [16]. The 4x4 and 2x2 J/ψ

masses are consistent (we could not identify a ψ(2S) candidate state

in the 4x4 fit), though there is a slight tension between their ground

state amplitudes. In the full 4x4 fit the first state with significant non

zero overlap with the hybrid operators has a mass of 4.38(12) GeV,

this agrees with 4.33(16) GeV determined from the 2x2 hybrid fit.

state M [GeV] amplitude f [MeV] Γee [keV]
2x2 fit {J , j}

J/ψ 3.097(17) 0.16441(26) 417.5(2.3) 5.836(36)
ψ(2S) 3.781(28) 0.1860(78) 428(18) 5.01(42)
hc(1P ) 3.512(29) 0.0578(75) – –

2x2 fit {H,h}
Hybrid 4.33(16) 0.086(15) – –

4x4 fit {J ,H, j,h}
J/ψ 3.110(18) 0.1701(27) 431.1(7.2) 6.20(20)

Hybrid 4.38(12) 0.065(18) 9(167) 0.002(67)

Table 3.11: Summary of 1−− results for each fit on the f-5 en-
semble, see table 3.7.

The J/ψ decay constant, fJ/ψ, is defined from

⟨0|ψ̄γµψ|J/ψ⟩ = fJ/ψMJ/ψϵµ, (3.9)
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and can be calculated from the amplitude, a0, and mass, M0, of the

ground state,

fJ/ψ = ZV a0

√
2

M0
, (3.10)

where ZV is the vector current renormalisation factor. The local vec-

tor operator was used so we need to renormalise it, we take the ZV

renormalisation factors from [50]. As a check we computed the de-

cay constants of the J/ψ (see [63] for a systematic study of the lep-

tonic decay constants of the J/ψ) and ψ(2S), finding from the 2x2

fit fJ/ψ = 417.5(2.3) MeV, in good agreement with the experimental

value, f expJ/ψ = 416(6) MeV, and fψ(2S) = 428(18) MeV, significantly

larger than the experimental value, f expψ(2S) = 304(4) MeV [140]. We

can define a hybrid decay constant, fH , through the matrix element

formed by the overlap of the vector current operator into the vector

hybrid state,

⟨0|V̂i|H⟩ = fHMHϵi , (3.11)

where V̂ is the vector current operator. Using fH we can estimate

the leptonic width, Γ(Hcc̄ ↪→ e+e−), of the hybrid vector charmonium

state with the formula

Γ(Hcc̄ ↪→ e+e−) =
16π

27
α2
QED

f 2H
MH

, (3.12)

where αQED = 1/134 is the electromagnetic coupling at the charm

quark mass. The overlap of the vector operator with the hybrid state

is very small and consistent with zero, producing an implied upper

bound on its leptonic width of just 70 eV. A previous calculation of
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this leptonic width in the quenched approximation bounded it from

above at 40 eV [141].

3.6 Conclusions

We have presented the first continuum extrapolation of the mass of

the 1−+ charmonium hybrid meson in unquenched lattice QCD. Our

continuum extrapolated hybrid meson mass is 4.53(15) GeV. In fig-

ure 3.14 we plot our results on each ensemble along with the contin-

uum extrapolated value. Included in figure 3.14 are results for the

mass from other lattice calculations [102, 142, 100]. These earlier

calculations, in contrast to our staggered simulation, all used Wilson

fermions with the clover action, heavier-than-physical pions, and did

not do a continuum extrapolation.

Figure 3.14: Summary plot for the 1−+ hybrid meson mass as a
function of the lattice spacing, including some of the previous
determinations of the mass by other groups [102, 142, 100].
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We expect different discretisation effects from the clover action com-

pared to the HISQ action we use, this may explain why our masses are

a few hundred MeV higher than the Hadspec and Bali measurements

around 0.12 fm. The clover simulations found the 1−+ hybrid mass in-

creasing as the pion mass is decreased, from 1000 MeV in [142] to 400

MeV in [112] and 240 Mev in [102]. We do not see such a difference

in our results, where the hybrid masses are consistent within errors on

the physical and unphysical ensembles. It is interesting to note that

our result agrees with the quenched continuum extrapolated results

for the 1−+ mass in [109] and [143], suggesting the effect of quenching

the sea quarks on the mass of the hybrid is not large.

There are several ways in which our analysis could be improved and

extended. The non-linear variation of the mass with a2, see figure 3.13,

weighs heavily in favour of taking measurements on finer ensembles, to

check the extrapolation and have better control of it. Results at 0.06

fm would improve the quality of the continuum extrapolation without

incurring a large computational cost as such HISQ lattices already

exist.

Having focused on the charmonium spectrum a natural extension

would be to search for hybrids in the bottomonium spectrum where

there are also many unidentified XY Z states (though as with char-

monium, none have been seen in the 1−+ channel). In this case one

would have to measure the mass of the 1−+ hybrid meson with a series

of heavy quarks (mc < mq < mb) before extrapolating to the bottom

quark mass.

Enlarging the operator basis would improve our ability to isolate
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and identify states in the correlator. In this project we focused on sin-

gle meson operators with a small two operator basis, a more complete

analysis would include two-meson operators in the operator basis. One

could also include other four-quark operators, and/or the one-link hy-

brid operators in equation 3.4. This method, choosing a wide variety

of shapes of operators in the 1−+ channel, is similar to that carried

out by the HadSpec collaboration. Along similar lines the mixing of

hybrid and tetraquark states on the lattice seems an interesting topic

to investigate, particularly given the observed partial suppression of

such mixing in the quenched approximation [143].

Throughout this work we have treated hybrid mesons as stable par-

ticles that do not decay. In reality they would be resonances that decay

into lighter particles. Figure 3.14 includes some of the relevant physi-

cal decay thresholds in the charmonium sector, the lowest of which is

the DD at around 3.8 GeV. Clearly the hybrid charmonium masses

are distributed quite close to these thresholds. The χc1(3872) has often

been identified as a DD
∗
molecular state due to its proximity to that

threshold. Ultimately we would like to study the hadronic decays of

the hybrid mesons on the lattice using Luscher’s finite volume method

[144, 145]. Hadspec have found that an operator basis that includes

only single meson operators, like that used in this work, are not able

to capture the whole finite volume spectrum [146]. They found that

augmenting the operator basis with meson-meson like operators, like

[d̄γc][c̄γu], improved the spectrum. A calculation with a large basis

consisting of meson like, meson-meson like, and tetraquark operators

may be a promising avenue to explore. There are only a couple ex-
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ploratory calculations of hadronic decays of hybrids using staggered

fermions [147, 148], and a more advanced Hadspec calculation with

Clover fermions [149].

We also showed results for the mass and leptonic decay constant of

the 1−− charmonium hybrid meson at a single lattice spacing, 0.09 fm,

with 310 MeV pions. The result for the hybrid mass is 4.38(12) GeV

and its leptonic width is bounded from above at 70 eV. Brambilla et

al. [96] review the importance of the decay constant in probing the

properties of 1−− hybrid mesons. The mass is shown in figure 3.15

along with a selection of other results for the hybrid meson mass and

three of the XY Z states in the 1−− channel. With the size of our

Figure 3.15: Comparison of our determination of the 1−− hybrid mass
at 0.09 fm from a 4-by-4 fit to the results of three other groups, and
three resonances the PDG lists as ‘established’[102, 96, 141].

uncertainty and lack of a continuum extrapolation it is not possible

to identify the 4.38(12) GeV state with any of the experimental reso-

nances. The 1−− channel is so densely populated that a larger operator
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basis and far greater statistical precision is essential to separate out

the conventional states from the unconventional states.

Our results (see the error budget in table 3.10) make clear how

noisy correlators formed from operators including the field strength

tensor can be. It is clear that if significant progress is to be made

in determining the properties of hybrid mesons, this signal to noise

problem must be overcome. This is what motivated us to use smear-

ing and a GEVP approach in the first place. Alternatives to the point

source operator like the stochastic wall source should be investigated.

Recently the multi-level Monte-Carlo integration approach has been

used to reduce the noise in the tail of the vector correlator with impres-

sive results, applying it to hybrid correlators may be worth exploring

[150].
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Chapter 4

The QED correction to

the Hadronic Vacuum

Polarisation

4.1 Introduction

The muon is a second generation lepton with the same electric charge

and around 200 times the mass of the electron. As it has an intrinsic

spin it responds to magnetic fields by aligning its axis along the field

lines. The size of the magnetic moment associated to its spin is ∝

eℏ/2mµ, with constant of proportionality gµ. Dirac’s quantum theory

of the electron predicted that this constant of proportionality is equal

to 2 [52]. Schwinger realised quantum fluctuations would ‘correct’

this value and made the first calculation of the O(α) correction to gµ
1

using his then new formulation of QED [56]. In particular Schwinger

1the O(α) correction is independent of lepton mass and therefore the same for ge.
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calculated the quantum correction to the magnetic moment from a

virtual photon, see figure 4.1.

In fact gµ gets corrections not only from QED but also the Elec-

troweak and Strong sectors of the SM. An example of a relevant dia-

gram in the Electroweak sector is shown in figure 4.1, where a virtual

Z boson is exchanged.

The fractional difference of gµ from the naive value of 2 is called

the ‘anomalous magnetic moment of the muon’, aµ ≡ (gµ− 2)/2 . For

more than two decades now there has been a tension in the theory

and experimental values for the muon anomaly. Although not signifi-

cant enough (in the statistical sense) to be classed as a discovery, the

longevity of the discrepancy has led some to focus their search for new

beyond-the-Standard Model (BSM) physics on this observable.

Quantum corrections to (g−2)lepton from new heavy particles from

BSM are expected to be ∝ (Mlepton/Mheavy)
2, meaning such effects

should be easier to discern with gµ than ge. Of course the tau lepton

is heavier still but it decays weakly before it can hadronise.

This chapter will focus on the theory side of the calculation and, in

particular, the QED correction to the hadronic vacuum polarisation

contribution to the anomaly.
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Figure 4.1: (left) The quantum correction to the magnetic moment
of the muon coming from a virtual photon. (right) Same but for a Z
boson.

The various contributions to aµ are listed in table 4.1. They are

broken down into QED, Electroweak, and Strong contributions, with

the Strong contribution further broken down into the hadronic vacuum

polarisation (HVP) and hadronic light-by-light (HLbL) contributions.

Even though the QED contribution dwarfs the other contributions its

very precise determination means it contributes a tiny amount to the

theoretical uncertainty of aµ, just 0.1×10−11 compared with the overall

uncertainty of 40×10−11. The HVP contribution to aµ is, albeit several

orders of magnitude smaller than the QED contribution, the next

largest piece with a much larger contribution to the total uncertainty

of 40 × 10−11. It is necessary to control the HVP contribution to a

greater precision to reduce the theoretical uncertainty of aµ.
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Contribution Value ×1011 Ref

QED 116 584 718.931(104) [151]

Electroweak 153.6(1.0) [151]

Strong - HVP (data-driven) 6845(40) [151]

Strong - HVP (Lattice) 7116(184) [151]

Strong - HLbL 106.8(14.7) [152]

SM value 116 591 817(43) [151]

Exp value 116 592 061(41) [153]

Exp-Th difference 244(59) [151]

Table 4.1: The various SM contributions to aµ . Table adapted from
[151], see references therein.

4.1.1 aµ from experiment

The E821 experiment at the Brookhaven National Laboratory (BNL)

in New York made precision measurements of the anomaly, aµ, by

injecting polarised muons into a magnetic storage ring and measuring

the difference, ωa, between its precession and cyclotron frequencies

[154, 155]. In a similar manner to a spinning top the magnetic moment

of the muon precesses about its axis in the presence of a magnetic field

which is perpendicular to the muon spin direction and to the plane of

its orbit. The muons decay into positrons whose energy spectra are

measured and depend simply on ωa. Since ωa = aµ
eB
mc , this is a way to

measure the anomaly, provided the magnetic field can be mapped and

measured precisely. This is done by placing hundreds of NMR probes

around the vacuum chamber the muons travel through.
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While simple in theory several corrections are needed to take into

account systematic effects encountered in the real world, here we just

mention two of these corrections. A so-called pitch correction is re-

quired to account for vertical betatron oscillations that cause the muon

spin and magnetic field not to be perpendicular. To keep the muons

vertically confined an electric quadrupole is used to generate an elec-

tric field. This electric field can also cause the muons to precess, and

this effect also has to be corrected for. For more details on the cor-

rections and experimental setup see [154, 155]. The E821 result of

a(BNL)
µ = 116 592 089(63)× 10−11 , (4.1)

was in tension with the SM value at the level of 2.6σ [155]. This

tension warranted a follow-up experiment.

The E989 experiment at the Fermilab National Accelerator Labo-

ratory (FNAL) is a direct successor to E821 and uses the same prin-

ciples to measure aµ [153]. It uses the same storage ring as the E821

experiment, which had to be transported from New York to Illinois

via the Mississippi river as some of its components could not be bro-

ken up. By using 20 times as many muons as the E821 experiment

they are able to improve the lower bound on the achievable statis-

tical error. The E989 experiment has 2.5 times improved magnetic

field uniformity and much improved magnetic field measuring capa-

bilities. Its state-of-the-art tracking and improved calorimetry enable

it to measure the beam properties and precession frequency more pre-

cisely. Detailed beam storage simulations were used to determine the
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uncertainties in the pitch and electric field corrections arising from the

particular geometry of the setup.

The overlapping apparatus between the two experiments prompted

some to question whether their results are truly independent. The

Fermilab group performed a multitude of cross-checks and calibrations

to establish this independence [153, 156]. Their analysis was also

blinded, meaning they did not know the final result until after they

had completed their analysis, at which point they could not make any

further changes and unblinded their result. This was done to remove

the possible influence of confirmation bias. The E989 result,

a(FNAL)
µ = 116 592 040(54)× 10−11 , (4.2)

has a precision of 0.46 ppm or just under one part in two million [153].

This result is 3.3σ larger than the SM result and agrees very well with

the previous measurement by E821. E989 will collect more data over

the coming years and is aiming for a final uncertainty of around 0.1

ppm. Combining the two results lowers the uncertainty of aµ to 0.35

ppm, and increases the experiment-theory deviation to 4.2σ, not far

off the 5σ threshold at which a discovery can be claimed. Figure 4.2

summarises this information.
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Figure 4.2: Figure taken from [153] showing the difference, 4.2σ, be-
tween the average of the Fermilab and Brookhaven measurements, and
the SM prediction from the data driven dispersive approach.

The planned experiment at J-PARC by the E34 collaboration will

provide another independent measurement of the muon anomaly [157].

By using an ultra-cold muon beam they remove the need for an electric

focusing field. After accelerating the muons in a linac to 300 MeV/c

they are injected into a storage ring around 20 times smaller than the

one used in the BNL and FNAL experiments. They aim for a precision

of 0.1 ppm in their measurement of the muon anomaly, similar to the

ultimate goal of the E989 experiment.

4.1.2 Hadronic Vacuum Polarisation contribution

There are two complementary methods for determining the HVP con-

tribution to aµ, the data-driven dispersive approach and the lattice

approach. As the data-driven approach currently yields a value with

a smaller uncertainty (see table 4.1) it is used in the SM determination

of aµ.
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The data-driven determination is obtained by converting loop in-

tegrals of the HVP inserted into the photon propagator, see figure

4.3, into dispersion integrals over the cross section of a virtual photon

decaying into hadrons [158],

aHVP,LO
µ =

α2m2
µ

9π2

∫ ∞

m2
π

ds
K̂(s)

s2
R(s). (4.3)

K̂(s) = 3s
m2

µ
K(s), is a known slowly varying monotonic function that

depends on the mass of the muon,

K(s) =
x2

2
(2− x2) +

(1 + x2)(1 + x)2

x2

(
log(1 + x)− x+

x2

2

)
+

1 + x

1− x
x2 log x

where x =
1− βµ
1 + βµ

, βµ =
√

1− 4m2
µ/s.

(4.4)

The hadronic R-ratio, R(s), given by

R(s) =
σ0(e+e− → hadrons(γ))

4πα2/3s
, (4.5)

depends on the bare (excluding VP effects) cross-section for electro-

production. R(s), and therefore aHVP,LO
µ , is calculated by combining

the experimental results for e+e− → hadrons(γ) across a range of en-

ergies. The simplest way to do this, called the direct scan method,

is by measuring the hadronic cross section while varying the beam

energy of a e+e− collider. Multiple experiments and an abundance of

data mean the hadronic cross section is known precisely across a wide

range of energies [151].

The accepted data-driven SM prediction for the HVP contribution

was put forward by the g−2 Theory Initiative in a white paper authored
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by a large collection of physicists, and represents a best estimate value

against which lattice results can be compared [151]. See table 4.1 for

the value put forward by the Theory Initiative and figure 4.6 for results

from individual groups. The 4.2σ deviation is between experiment and

the SM value incorporating the data-driven HVP.

Figure 4.3: The Feynman diagram corresponding to the LO HVP
contribution to the anomalous magnetic moment of the muon.

The LO HVP contribution can be calculated on the lattice by

measuring vector current-current correlators [159, 160],

C(t) =
1

3

∑
i

∑
x

⟨ji(x, t)ji(0, 0)⟩, (4.6)

where ji = ψγiψ is the vector current. The correlators are then Fourier

transformed to obtain the quark polarisation function, Π(q2),

q2Π(q2) = a4
∑
t

eiqt
∑
x

⟨j(x, t)j(0, 0)⟩, (4.7)

which is integrated with a kinematic function to get aHVP
µ . The contri-

bution to aHVP
µ coming from a quark of flavour f can then be thought

of as coming from an insertion of the subtracted quark polarisation,
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Π̂(q2) = Π(q2)− Π(0), into the photon propagator,

a(f)HVP,LO
µ = 4α2Q2

f

∫ ∞

0

dq2F(q2) Π̂f(q
2), (4.8)

where Qf is the electric charge of the quark of flavour f , and the QED

kernel F(q2) is a kinematic function [159],

F(q2) =
m2
µq

2Z3(1− q2Z)

1 +m2
µq

2Z2

Z = −
q2−(q4+4m2

µq
2)1/2

2m2
µq

2
.

(4.9)

There are different conventions for writing down equation 4.8, this

form makes clear the LO HVP is O(α2). The O(α) Schwinger contri-

bution is simply the photon propagator without the insertion of the

quark polarisation, απ
∫∞
0 dq2F(q2).

F(q2) diverges as q2 → 0, with the integral in equation 4.8 domi-

nated by the low momentum region around q2=m2
µ. This divergence

does not cause the integral to blow up as it is cancelled by the vanish-

ing of the subtracted quark polarisation function, see figure 4.4. F(q2)

tends to 0 as q2 increases while Π̂(q2) grows larger. The overall effect

is that the integrand in equation 4.8 dies off at both large and small

q2, see figure 4.5. The HVP is nonperturbative in the low q2 region so

that the lattice is an appropriate calculational tool. Above q ∼ 1/a

Π̂(q2) is cutoff on the lattice, the small (on the order of a percent) con-

tribution to the HVP in this region can be calculated with continuum

perturbation theory [161].
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Figure 4.4: The subtracted quark polarisation function, ΠR(K
2), from

experiment (grey band) and a typical lattice (red lines) [162].

Figure 4.5: The integrand in equation 4.8 with w/Q2 ≡ F(Q2) [163].

In the time-momentum representation [164] the subtracted quark

polarisation can be obtained by integrating the correlator over time

with a kernel,

Π̂(ω2) ≡ 4π2

ω2

∫ ∞

0

dt

[
ω2t2 − 4sin2

(
ωt

2

)]
C(t). (4.10)
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On a periodic lattice this integral becomes a sum,

Π̂(q2) ≡ Π(q2)− Π(0) =
∑
t

(
cos(qt)− 1

q2
+

1

2
t2
)
C(t). (4.11)

Then equation 4.8 can be recast as a weighted sum over time of the

correlator with weights, wt, that can be calculated using equation 4.11,

aHVP,LO
µ =

∑
t

wtC(t)

=⇒ wt = 4α2

∫ ∞

0

dq2F(q2)

(
cos(qt)− 1

q2
+

1

2
t2
)

.

(4.12)

On the lattice the LO HVP contribution has been calculated pre-

viously by many groups, for recent examples see [165, 166, 77, 167].

This project is part of the HPQCD, MILC, and Fermilab Lattice col-

laborations joint effort at calculating the HVP over the last several

years [138, 168, 169, 91].

The two methods should agree on the value of the HVP. In figure

4.6 a selection of the dispersive and lattice HVP results are highlighted,

showing that the two methods agree with each other, if only because

the uncertainty of the lattice results are relatively large. Results on

the lattice are expected to continue improving and should match the

precision of the dispersive method in the future. The current state-of-

the-art lattice result, from the BMW collaboration, is around 2σ larger

than the dispersive result, and 2σ lower than the experimental result

(assuming no new physics) [77]. The evidence for a discrepancy be-

tween the dispersive and lattice HVP has been bolstered recently by a

series of papers looking at windowed values of aHVP,LO
µ [170, 171, 172].
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Windowed quantities are determined by restricting the sum in equa-

tion 4.12. By cutting out large times and/or short times from the

correlator the windowed lattice HVP has lower statistical and sys-

tematic errors, and a more stringent comparison with the (windowed)

dispersive HVP can be made.

Figure 4.6: Figure taken from [151] showing various lattice and dis-
persive calculations of the HVP. The expected value of the HVP in
the absence of any new physics is shown as a green band.

Next-to-leading (NLO) order HVP effects are further suppressed

by a power of α and will not be considered here, the joint Fermilab

Lattice, MILC, and HPQCD collaboration found the NLO HVP con-

tribution to be around 1% of the LO effect as expected, similar in size

to the HLbL contribution [173].
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4.2 QED Correction to the HVP

Reducing the theoretical uncertainty of aHVP,LO
µ , which we will now

refer to as aµ, below 1% requires the inclusion of isospin breaking

effects. These arise from the up and down quarks unequal masses,

mu ̸= md, and their unequal electric charges, Qu=2e/3 ̸= Qd=−e/3.

This project aims to calculate the QED isospin breaking correction to

the light connected HVP, see figure 4.7.

Figure 4.7: QED correction diagrams to the connected HVP at O(α).

We use the following definition for the QED correction to the HVP,

δafµ,

δafµ ≡ afµ(m
f
q ,Qf)− afµ(m

f
q , 0), (4.13)

where the difference is evaluated at equal renormalised quark mass.

The QED correction to the connected strange HVP is then simply

δasµ = asµ(ms,−1/3)− asµ(ms, 0), (4.14)

with corresponding formulas for the up and down quarks. The QED

correction to the light connected HVP is the sum of the corrections
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for the up and down quarks,

δallµ = δauµ + δadµ. (4.15)

Including QED in our simulations leads to two issues, potentially

enhanced finite volume effects, and renormalisation effects, which we

now discuss. For a short discussion on the formalisms for including

QED on the lattice and a description of our process for generating

quenched U(1) fields see the relevant sections in chapters 1 and 2.

4.2.1 QED HVP Finite Volume Effects

Finite volume effects (FVE) are an issue for QED corrections to QCD

quantities on the lattice. Whereas FVE on pure QCD quantities are

exponentially suppressed on the lattice, going like e−mπL, in QED

calculations FVE scale like 1/Ln, where n varies depending on the

observable being studied. From the physical point of view we can un-

derstand these larger power-like FVE as a manifestation of the long

ranged nature of the electromagnetic interaction. The massless, elec-

trically neutral photon can connect disparate regions of a box, size L,

in a way colour confined gluons cannot.

Given the potentially large systematic errors these power-like cor-

rections may impose on QCD+QED calculations many groups have

studied the finite volume properties of many observables on the lat-

tice, and with effective field theories confined to finite volumes. The

FVE on the lattice can then be controlled using the parameterisa-

tions gained from an EFT. For example, in [174] the authors show the
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FV electromagnetic correction to charged pseudoscalar meson masses

is O(1/L3). In [130] it was shown, with the HISQ action, that the

quenched QED correction to both the J/Ψ and ηc masses did not

vary with lattice size to within 0.01%. This was not unexpected as

these mesons are spatially small, and the FV expansion for electrically

neutral mesons begins at O(1/L4).

The authors of [175] show, using a scalar QED model, that the

O(α) QEDL FV correction to the two pion contribution to the HVP is

O(1/L3). From the physical point of view this is due to the electrically

neutral nature of the vector correlators, in a similar way to the strength

of the electric field of a dipole. More specifically, they found the QED

FVE on the quark polarisation function, ∆Π(q2) ∼ (mπL)
−3 . In

addition they showed that their result is universal in full QCD+QED.

Plugging in mπL ∼ 0.1 × 3.2, the values on our smallest lattice (and

hence where FVE will be most severe), implies an effect of 3%. This is

a much smaller systematic uncertainty than our current and forecast

statistical uncertainty. Therefore, given the precision we are aiming

for, we can safely neglect QED FVE.2 These effects on the HVP are

small overall and should not make up a significant fraction of the error

budget of δaµ in the short to medium term.

As a check we performed a brief FV study at ms, where the pre-

dicted QED FVE are ∼ 0.02%. Within our statistical uncertainties

we found no discernible effect. The ensembles we used and the results

are described in table 4.4, and figure 4.19.

2This is fortunate, carrying out a FV study at lighter valence quark masses would require a
large amount of time and resources.
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4.2.2 EM Renormalisation and Scheme Depen-

dence

We want to isolate the QED correction to the HVP and, accordingly,

all our ensembles have mu = md = ml (IsoQCD) and no strong isospin

breaking contributions to aµ are calculated. Matching the parameters

of full QCD+QED onto the real world to produce physical results pro-

ceeds in much the same way as pure QCD, the only difference being

an extra parameter to fix, the EM coupling α. An extra complication

arises because we wish to separate out the QCD and QED contribu-

tions to aµ. In writing aµ like so,

aµ = aµ + δaµ (4.16)

where aµ is the QCD part, and δaµ is the QED correction, we are

making an unphysical separation. This leads to an inescapable am-

biguity in the definition of δaµ stemming from our choices in making

that separation. Implicit in equation 4.16 is a choice of parameters

for which δm = mu −md = 0. Although in IsoQCD we simulate with

δm = 0 when QED is turned on their masses will not renormalise in

the same way because of their differing charges.

The charged and uncharged correlators we have computed are at

the same bare quark mass. If we assume the QCD-only bare quark

masses are tuned correctly then we only need to determine the bare

quark massesmu,md that, upon renormalisation with respect to QED,

yield ml. If the quark mass shift, δmq, induced by turning on QED is

small, the translation from differences at equal bare quark mass, ∆aµ,
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to equal renormalised quark mass, δaµ is straightforward,

δaµ = aQCD+QED

µ (mq − δmq)− aQCD

µ (mq)

= ∆aµ − δmq
∂aµ
∂mq

,
(4.17)

where we determine
∂aµ
∂mq

on each ensemble by fitting a smooth spline

through aµ. After taking the chiral and continuum limits of ∆aµ,

δmq = mqδq, and ∂aµ/∂mq we use equation 4.17 to calculate the ex-

trapolated δaµ. Alternatively we can correct the bare differences at

each mq before extrapolating in δaµ.

We adopt the nonperturbative EM renormalisation procedure first

introduced by BMW in [176], and also used by MILC in [177]. In the

QCD+qQED theory we adjust the bare masses mu,md to enforce

M 2
uu′ =M 2

dd′ =M 2
nn′ ≡M 2

π0

(M 2
uu′)

γ = 0 = (M 2
dd′)

γ
(4.18)

whereM 2
xx′ is the squared mass of the ground state pseudoscalar meson

correlator. ‘u’ here means up-like with respect to QED, ‘d’ down-like,

and ‘n’ neutral. In effect we are setting δm = 0 through a proxy,

∆M 2 = M 2
uu′ − M 2

dd′. We perform our simulations in the Strong

isospin-symmetric limit where, in QCD, ml = md = mu. After EM

renormalisation we have mu = ml(1− δu) and md = ml(1− δd) to en-

force equation 4.18. δu and δd are the fractional shifts in the u and d

bare masses needed to ensure the renormalised masses are both equal

to ml. All quarks with the same electric charge will renormalise the

same with respect to QED, so that δs = δd.
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It can be show that equation 4.18 can be written in terms of the

differences at equal bare quark mass,

∆M 2
uu′(mu) = 2Bmlδu

∆M 2
dd′(md) = 2Bmlδd,

(4.19)

where B is a parameter that can be determined from NLO SU(2) χPT

and the LEC l3 = 3.07(64) [178]. After a chiral extrapolation to find

the quantities on the LHS of equation 4.19 we can solve for δu and δd

at each lattice spacing. NNLO SrχPT suggests a chiral fit function

of the form Amq +Bm2
q. Figure 4.8 illustrates these chiral fits on the

fine and very coarse ensembles. See table 4.5 and the accompanying

discussion for more information on the pseudoscalar fits. Note that

because we have fewer statistics on the fine ensemble the extrapolated

values of δd, δu are relatively wide and dominate the error in δaµ.

Figure 4.8: Shift in the squared pseudoscalar mass due to QED as
a function of quark mass. By extrapolating to mq = ml and using
equations 4.19 we can calculate the fractional shift in the quark mass
due to QED in our chosen renormalisation scheme.

δaµ is scheme dependent, this fact must be kept in mind when

comparing results for the QED correction to aµ from different groups.
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In contrast the total quantity, aµ, is scheme independent and can be

compared across different groups after extrapolating to infinite volume

and zero lattice spacing.

An alternative renormalisation prescription called the GRS scheme

(after its proposers) has been used by the ETM collaboration in the

past [179, 180]. In the GRS scheme the quark masses and strong

coupling have their values in QCD and QCD+QED matched at 2

GeV in the MS scheme.

The electromagnetic coupling, α, will also renormalise and this too

could introduce scheme ambiguities. However these corrections, from

the running of α, are O(α2) and so can be safely neglected.

4.3 Simulation details

We measured correlators on gauge field ensembles generated with the

Highly Improved Staggered Quark (HISQ) action with 2+1+1 flavours

of dynamical sea quarks and physical pion masses [38]. In order to take

the continuum limit we took measurements on 3 ensembles with lat-

tice spacings of 0.15, 0.12, and 0.09 fm. These HISQ ensembles were

generated by the MILC collaboration with updated properties deter-

mined by the HPQCD collaboration [134, 181]. Their specifications

are given in table 4.2. The lattice spacing is fixed from w0=0.1715(9)

fm [79].
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name L3xT w0/a MπL Mπ (MeV) Ncfg

very coarse 323x48 1.13215(35) 3.30 134.73(71) 1844

coarse 483x64 1.41490(60) 3.88 132.73(70) 967

fine 643x96 1.95180(70) 3.66 128.34(68) 596

Table 4.2: Properties of the gauge field ensembles, made available to
us by the MILC collaboration, used for our measurements [134]. The
relative lattice spacings, w0/a, and pion masses were determined in
[181].

We measure pseudoscalar and vector meson correlators with equal

mass, oppositely charged quarks and antiquarks, so that all the corre-

lators are neutral overall.

To calculate the correlators we read an archived dynamical SU(3)

gauge configuration and a quenched U(1) gauge configuration before

multiplying the U(1) links fields into the SU(3) link fields, and gauge

smearing as usual. The calculation then proceeds like an ordinary

lattice QCD measurement, propagators are computed with specified

source and sink operators and then tied into meson correlators.

We use stochastic wall sources projected onto the appropriate spin-

taste quantum numbers. For the vector current we use the γi ⊗ γi

operators, and for the pseudoscalar current we use the γ5 ⊗ γ5 oper-

ator. These are both local operators, this is important in the case of

the vector operator as it is non-conserved and requires renormalising

with a renormalisation factor ZV . The required ZV , and their QED

corrections, have been calculated by HPQCD [50, 130].

In order to avoid the increased statistical noise and greater re-

source demand incurred by simulating at the light quark mass, ml ≡
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1/2(mu + md), we measure with valence quarks at multiples of ml.

We measure at 3/5/7ml as well as the strange quark mass, ms, on

each ensemble. We use a multi-shift solver so that for each charge all

the masses can be solved in a single iterative process. As it is not

prohibitively expensive we also measure at the physical mu and md

on the very coarse ensemble. The correlators measured, including the

quark masses and electric charges, are summarised in table 4.3.

name Charges (e) Quark masses (amq) sources

vc ±2/3,±1/3,0
0.001524, 0.003328,

16
0.007278, 0.01213, 0.01698, 0.0677

c ±2/3,±1/3,0 0.00552, 0.0092, 0.01288, 0.0527 16

f ±2/3,±1/3,0 0.0036, 0.006, 0.0084, 0.0364 16

Table 4.3: The valence quark masses and charges used to compute the
pseudoscalar and vector meson correlators.

Effective mass plots are shown in figure 4.9. As we are using the

staggered formalism we choose a definition of the effective mass that

smooths out the staggered oscillations by comparing only time slices

2a apart,

Meff(t) =
1

2a

{
cosh−1

(
G(t− 1)

G(T/2)

)
− cosh−1

(
G(t+ 1)

G(T/2)

)}
. (4.20)

The inverse cosh terms are used instead of the typical logs to take

better account of backward propagating states [182]. As expected the

pseudoscalar effective masses are very well behaved with long plateaus,

and the vector effective masses are noisier, though they too have easily

identifiable plateaus.
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Figure 4.9: Effective mass plots for the pseudoscalar and vector cor-
relators at 7ml on the fine ensemble. The size of the errors are em-
phasised by the zoomed in subset shown on the inset axes.

We measure three sets of correlators, one uncharged where the

SU(3) link fields are not multiplied by U(1) fields, and two charged

with opposite electric charges. All the correlators are overall electri-

cally neutral. As we are working in the Strong isospin symmetric limit

this amounts to calculating correlators where the quark and antiquark

swap charges. We calculate two sets of correlators in this way as the

charged correlators are noisier than the uncharged correlators. This is

due to the presence of a QED noise term proportional to the electric

charge, e, in the propagator. To suppress this noise term we average

over the two correlators with opposite charges.
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Figure 4.10: The variation with time of the ratio of the charged to
neutral correlators with and without charge averaging, pseudoscalar on
top and vector on the bottom. The oscillations in the vector correlator
are an artefact of the staggered formalism.

To show that this charge averaging procedure leads to a marked

reduction in uncertainty at the correlator level we can plot the correla-

tors before and after charge averaging, and compare the uncertainties.

This is shown in figure 4.10 for the pseudoscalar and vector correlators

at the md on the very coarse ensemble. It is clear that charge averag-

ing reduces the uncertainty in the pseudoscalar correlator by a factor

of 2 or more, far beyond the
√
2 reduction we expect from doubling

the statistics. This improvement holds over onto the noisier vector

correlator.

We use 16 time sources on each field configuration to improve the

statistics. All other things being equal this would increase the re-

sources needed to run the simulations by a factor of 16. To mitigate

this we use the truncated solver method (TSM). We take 16 sloppy

solves with a residual of 10−3 and 1 precise solve with a residual of

10−6 before averaging over all the solves using the TSM equation 2.21.

In figure 4.11 we show the variation in time of the fractional error of

a mu correlator on the very coarse ensemble with different combina-
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tions of sloppy and precise solves. Included are the single time source

correlators from sloppy and precise solves, the average over the sloppy

solves, and the corrected correlator from the full TSM average. The

fractional error is larger for a single source versus multiple sources,

as we would expect. Comparing the fractional errors in the average

over just the sloppy solves and the full corrected average we see no

significant difference. This indicates that the sloppy solves are not

systematically biased relative to the precise solve.

Figure 4.11: The fractional error on the very coarse ensemble of
charge-averaged vector (left) and pseudoscalar (right) correlators as
a function of time for different numbers of sources.

L3 × T L[fm] ml/ms Ncfgs

243 × 64 2.93 1/10 400

403 × 64 4.89 1/10 100

483 × 64 5.82 1/27 694

Table 4.4: Ensembles used in our finite volume study. The second
column gives the spatial length of the lattices in fermi. The third
column gives the ratio of the light quark mass to the strange quark
mass. The fourth column lists the number of configurations used in
our analysis.
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4.4 Fitting Procedure

In keeping with the practices of the larger collaboration we blind our

analysis at the correlator level. This is done by multiplying all the

correlator elements by the same randomly chosen, hidden number be-

tween 0.95 and 1.05. This number is saved to disk and hashed so it

can not be read easily or by mistake. Certain crosschecks, like the ϕ

meson mass, are done with unblinded correlators. At some point in

the near future the whole analysis will be unblinded, as that time has

not been reached the main results of this work, δa
(s)
µ and δa

(l)
µ , are

presented in their blinded form.

When using equation 4.12 to calculate aµ we encounter a problem

with noise in the tail of the correlator. The uncertainty in the cor-

relator grows exponentially with time. These noisier late-time points

lead to larger uncertainties in the polarisation function and aµ. In

the past the collaboration has mitigated this problem by replacing the

correlator data with fitted model data beyond a particular time slice,

t∗ [168, 91]. The sum in equation 4.12 is also truncated at tcut. After

replacement the correlator has the form,

C(t) =


Cdata(t) t ≤ t∗

Cmodel(t) tcut ≥ t > t∗

0 t > tcut.

(4.21)
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The vector correlators are fitted to a sum of exponentials,

Cmodel(t) =
N∑
i=0

a2i (e
−Eit + e−Ei(T−t)) + (−1)ta2i,o(e

−Ei,ot + e−Ei,o(T−t)),

(4.22)

where the a’s and E’s are the amplitudes and energies of the states

included in the model. The terms with subscript o describe the oscil-

lating states that are present in the vector correlator in the staggered

formalism. The terms with exponent T − t are needed in the model

because the correlators are periodic. There are N +N = 2N states in

this model with 2N +2N = 4N parameters. The oscillating terms are

dropped for the pseudoscalar fits. In contrast to our hybrid analysis

here all the fits are single channel.

We have a series of choices when deciding what subsection of the

correlator we wish to fit. When fitting the vector we try to exclude as

little correlator data as possible in order to capture information about

the whole correlator. This is important as we don’t want to miss out

on any late-time behaviour and means we are willing to trade precision

on the ground state for precision on the excited states. In practice we

fit all the points in the range [tmin,T−1 −tmin], with tmin small. We

use the Python libraries g2tools, corrfitter, lsqfit to do the

fits [89, 183, 184]. The fit parameters and goodness-of-fit results are

shown in table 4.5.
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ensemble fit range svdcut χ2/Q with noise*

Vector fits

very coarse [3-20] 5.4e-11 0.8/0.99 0.96/0.65

coarse [4-28] 8.3e-07 0.41/1 0.99/0.52

fine [4-40] 7.2e-05 0.2/1 0.96/0.73

Pseudoscalar fits

very coarse [2-23] 0.0007 0.32/1 0.80/0.99

coarse [2-31] 0.011 0.12/1 0.81/0.99

fine [2-47] 0.061 0.1/1 0.72/1

Table 4.5: Fit parameters and goodness-of-fit results for the vector
and pseudoscalar fits.

In figure 4.12 we show that the vector fits are stable on the very

coarse ensemble when varying tmin, and this behaviour is replicated on

the other ensembles.

Figure 4.12: How ∆aµ varies with tmin and quark mass on the very
coarse ensemble with ∆Q=1/3.
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If measurements on adjacent or nearby configurations are not inde-

pendent then the data has to be binned in order to remove autocorre-

lations. The binned data set is formed from the original by averaging

adjacent configurations in bins of size NB, leaving Ncfg/NB configura-

tions. Figure 4.13 shows the uncertainty in the bare QED correction

stays the same size as the bin size is increased on the 0.15fm ensemble

from one to eight. We observe similar behaviour on the other ensem-

bles and across all quark masses and electric charges. We conclude

from this that the extent of autocorrelations in the data is minimal,

and choose a global bin size of 2.

Figure 4.13: How ∆aµ varies with bin size and quark mass on the very
coarse ensemble with ∆Q=1/3.

We apply an SVD cut to the data before fitting. The SVD cut

is determined by comparing the eigenvalues of bootstrapped copies

of the correlation matrix and the original correlation matrix. This is

illustrated in figure 4.14 where the suggested SVD cut is given by the

red dotted line and is placed where the bootstrap-averaged eigenvalues
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fall below a certain fraction of the original eigenvalues, given by the

dotted horizontal line. The SVD cuts on our ensembles are given

in table 4.5. As one might expect, the SVD cuts are smallest on

the very coarse ensemble and largest on the fine ensemble. Greater

statistics allows the smaller eigenvalues of the correlation matrix to

be accurately estimated.

Figure 4.14: Comparison of eigenvalues of the bootstrapped and total
correlation matrix for the vector correlator on the fine ensemble.

The introduction of new parameters, t∗ and tcut, will give rise to

new systematic errors. Increasing t∗ lowers the systematic error and

increases the statistical error on aµ. To investigate this we can vary

the values of t∗ and tcut and examine the effect on the size and error of

various quantities. Figure 4.15 shows how the fractional error in aµ on

the very coarse ensemble increases as we increase t∗. This behaviour

is expected as the more noisy late time points are included in the

transformation to the polarisation function. From figure 4.15 it is also
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clear that, for a given number of configurations, the smaller the quark

mass the greater the fractional error. Lighter quark masses lead to a

much steeper increase in the fractional error of the correlator. There is

an especially sharp deterioration between 3ml and the physical point.

The error in the physical up and down quark correlators renders them

unusable much beyond 1.5 fm, which is why model replacement is

needed when calculating the light connected HVP.

Figure 4.15: The fractional error of aµ on the very coarse ensemble as
a function of t∗ for different quark masses. The lower pane is a zoomed
in version of the upper pane and omits the physical point fractional
error.
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In the course of studying the dependence of ∆aµ on t∗ and tcut we

have discovered that it may not be necessary to replace the data with

a model. Instead we can simply take the sum in equation 4.11 up to

the midpoint of the lattice. Figure 4.16 illustrates why we may do

this by plotting the cumulative QED correction as a function of time

while also varying t∗. Increasing t∗ from 2 fm to 3.5 fm, the midpoint

of the lattice, does not significantly change the value of ∆aµ although

the uncertainty does increase a small amount.

Figure 4.16: The cumulative QED correction to aµ as a function of
time at ms and 7ml on the very coarse ensemble. On the RHS t∗=2fm
and on the LHS t∗ = 3.5fm. The midpoint of the lattice is indicated
by a dashed line. The upper plots are for the ∆Q=1/3 corrections,
the bottom are the ∆Q=2/3 corrections.

∆aµ also does not change significantly as the sum is extended out

to times greater than the midpoint of the lattice, as can be seen by the

plateaus after the vertical dashed lines in figure 4.16. Both of these

observations suggest we only need to include measured correlator data

up to the midpoint of the lattice, no need for fits, model replacement,

or extension in the time direction. If the correlators have period T the
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input, C(t), into equation 4.11 is

C(t) =


Cdata(t) t ≤ T/2

0 t > T/2 .

(4.23)

4.5 Results

The QED corrections at equal bare quark mass, ∆aµ are shown in

figure 4.17. The uncertainty of ∆aµ increases when the size of the

charge is doubled and, as expected, grows rapidly with decreasing

quark mass. It is also clear from figure 4.17 that the ∆Q = 1/3 and

∆Q = 2/3 corrections are highly correlated, not unexpected as the

random wall source generated for the neutral correlator is reused for

both the charged correlators. This is also why the results across the

quark masses are correlated, with decreasing correlation the larger the

quark mass difference.
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Figure 4.17: The non-renormalised QED corrections to aµ for all the
ensembles and quark masses. The top plot just shows the difference of
the neutral and down-like (Q=−1/3) correlators, the bottom shows
both the down-like and up-like (Q=2/3) differences.

As a validation of our correlator data we can compute the values of

simple hadronic observables, meson masses and decay constants, and

compare to experiment and other lattice measurements. The strange

vector correlator has the observed ϕ meson associated to its ground

state. The energy of the ground state is one of the parameters of

the fit and can be read off straight away and the vector decay con-

stant is simply related to the ground state amplitude. The ϕ mass
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and decay constant on our ensembles are plotted in figure 4.18. For

the definition of the decay constant see equation 3.10 of chapter 3.

The decay constant needs to be renormalised with a renormalisation

factor, ZV . These factors were calculated previously by HPQCD non-

perturbatively in the RI-SMOM scheme [185]. Our results show good

agreement with a prior HPQCD calculation across our ensembles and

is consistent with experiment.

Figure 4.18: The measured mass, Mϕ, and decay constant, fϕ, of the
ground state of the vector meson correlators measured at the strange
quark mass on each ensemble. These results are in line with the pre-
vious HPQCD result and experiment [186, 16].

The ground states of the 3/5/7ml correlators do not correspond

to physical states against which we can compare masses and decay

constants. To make such a comparison we would need to perform

a chiral extrapolation on our results. A simple extrapolation was

performed on the PS ground state energy and the results agreed with

the experimental π0 mass. The light quark and strange quark masses

were tuned to reproduce physical observables so, in a sense, we are
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validating the tuning here.

Before examining the QED correction to the connected light HVP

we examine the correction to the connected strange HVP. The rea-

sons for this are twofold; the vector current-current measurements

were taken at the physical strange quark mass, so no extrapolation

in the quark mass is needed; and fewer configurations are required to

distinguish the effect of QED at heavier quark masses.

4.5.1 The strange quark contribution

In order to assess the magnitude of possible QED finite volume effects

on ∆a
(s)
µ we computed vector correlators on ensembles with varying

spatial volumes. For this analysis we re-use the coarse correlators we

calculated on the physical ensemble and add two ensembles with a

similar lattice spacing and unphysically heavy pions, see table 4.4.

The largest ensemble is around twice as long as the smallest ensemble

and therefore has around 8 times the volume. We can define the ratio

of a quantity with and without QED,

R0
QED

[X] ≡ X[QCD+qQED]

X[QCD]
at fixed ams, (4.24)

and look at how this ratio varies with lattice volume. Figure 4.19

shows how ∆a
(s)
µ and R0

QED[a
(s)
µ ] vary with the inverse lattice size, 1/Ls.

It is clear from figure 4.19 that QED FVE on ∆a
(s)
µ are negligible for

the statistics and size of ensembles used. Even with the unphysical

(for the strange quark) larger electric charge Qs = −2/3 the maximum

deviation is only slightly above 1σ.
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Figure 4.19: How R0
QED[a

(s)
µ ] and ∆a

(s)
µ vary with inverse spatial lattice

extent for ∆Q = −1/3, 2/3. The dashed lines are the mean of the three
values.

The strange quark contribution makes up around 7% of aµ. The

QED contribution, δa
(s)
µ , to a

(s)
µ is obtained by taking the Q = 0 and

Q = −1/3 strange vector correlators and computing a
(s)
µ and ∆aµ,

before applying the EM renormalisation via equation 4.17 to obtain

δaµ. We note that the scheme adjustment on the fine ensemble is very

noisy, this is because the chiral extrapolation of the PS mass to ml

needed to get the quark mass shift, δd, is less constrained on the fine

ensemble. After the scheme adjustment the continuum limit needs to

be taken. As the HISQ action has lattice artefacts of O(a2) the data

is fit to a simple function, linear in a2, before taking the a→ 0 limit.

The extrapolation function used is,

δa(s)µ (a2) = c0(1 + c1(aΛ)
2), (4.25)

where the ci are parameters to be fitted, a is the lattice spacing, and
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we multiply a by the QCD scale Λ, which we take as 0.5 GeV, in order

to make c1 dimensionless.

The extrapolation in a2 is plotted in figure 4.20 and the fitted

parameters are listed in table 4.6. The fit is satisfactory with goodness

of fit parameters χ2 = 0.21 for the a
(s)
µ extrapolation and χ2 = 0.0014

for the δa
(s)
µ extrapolation. From figure 4.20 it is clear the slope in a2

is mild and the posterior for c1 is consistent with a horizontal band.

param prior posterior

δa
(s)
µ

c0 0(1)×10−10 −0.0092(81)×10−10

c1 0(100) 0.3(6.4)

a
(s)
µ

c0 0(1)×10−8 54.38(80)×10−10

c1 0(1) -0.22(14)

Table 4.6: Priors and fitted results for the parameters of the continuum

extrapolations of δa
(s)
µ and a

(s)
µ .

Figure 4.20: The continuum extrapolations of δa
(s)
µ and a

(s)
µ . See

equation 4.25 and table 4.6 for the fit function and fitted parameter
values.
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The extrapolated continuum values are,

δa(s)µ = −0.0092(81)×10−10

a(s)µ = 54.38(80)×10−10 ,
(4.26)

where we remind the reader that these are blinded results. Our com-

puted absolute uncertainty, 0.0081× 10−10, contributes a tiny amount

to the overall uncertainty of aµ.

4.5.2 The light quark contribution contribution

The light quark contribution to aµ comes from quark loops formed

from up and down quarks. We work in the Strong isospin symmetric

limit where the up and down quarks have the same mass (in QCD),

ml = 0.5(mphys
u +mphys

d ). a
(l)
µ makes up the lion’s share, around 90%, of

the total value of aµ. Since measurements at the physical pion mass

are expensive (in time and resources) and noisy we measure vector

correlators at 3/5/7ml before extrapolating to a = 0 and mq = ml.

The procedure to obtain δa
(l)
µ is essentially the same as that de-

scribed above for δa
(s)
µ . To aid the calculation we split up δa

(l)
µ =

δa
(u)
µ + δa

(d)
µ . δa

(d)
µ is calculated using the Q = 0, 1/3 correlators and

δa
(u)
µ is calculated from the Q = 0, 2/3 correlators. To find the phys-

ical value of δa
(l)
µ we do a combined chiral-continuum extrapolation

for each piece before adding them together. We fit our data to the
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following functional form,

δa(d)µ (a2,mq/ml) = c0(1 + c1(aΛ)
2 + c2mq/ml)

δa(u)µ (a2,mq/ml) = c0(1 + c1(aΛ)
2 + c2mq/ml),

(4.27)

which has a similar form to the extrapolation used for the strange

quark contribution. The c2mq/ml term controls the extrapolation in

quark mass. We again use Λ = 0.5 GeV. We are fitting 6 parameters

to 3 masses × 3 ensembles × 2 (u/d) = 18 pieces of data. We fit

all 6 parameters simultaneously to account for correlations between

measurements on the same ensemble.

We plot both the continuum and chiral extrapolations of δa
(u)
µ , δa

(d)
µ

in figure 4.21 and list the fitted values of the ci in table 4.7.

param prior posterior

δa
(u)
µ

c0 0(1)×10−9 −1.2(1.6)×10−11

c1 0(1) -0.17(86)
c2 0(1) 0.06(23)

δa
(d)
µ

c0 0(1)×10−10 −0.5(1.0)×10−12

c1 0(1) -0.06(94)
c2 0(1) 0.14(51)

Table 4.7: Priors and fitted results for the parameters of the chiral-

continuum extrapolation of δa
(l)
µ . See equations 4.27 for fit function.
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Figure 4.21: The chiral-continuum extrapolations of δa
(u)
µ (red) and

δa
(d)
µ (blue). Bottom left is the extrapolation in the lattice spacing at

mq/ml=1 and on bottom right is the extrapolation in quark mass at
a=0, see equations 4.27 and table 4.7. The top plot shows the results
at each lattice spacing and quark mass along with the extrapolation
in the lattice spacing at mq/ml=1.

Our extrapolated value for the quenched QED correction to the

light connected HVP is

δa(l)µ (a2 = 0,mq/ml = 1) = −1.3(1.5)× 10−11 . (4.28)
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If the correlations between quark masses and charges are turned off

we find an extrapolated δa
(l)
µ = 1.9(3.4)× 10−11.

4.6 Conclusions

We have used staggered quarks, gluon fields generated with the HISQ

action, and U(1) fields generated with the QEDL prescription to mea-

sure vector correlators at a series of lattice spacings and light quark

masses. From these correlators we have computed the QED correc-

tions to the light and strange connected HVPs. Our continuum and

chiral extrapolated results complement and extend previous work by

the HPQCD/MILC/Fermilab Lattice collaborations [138, 168, 169, 91,

187].

Our results suggest the total QED correction to the connected

HVP is small, with an absolute uncertainty less than 1× 10−10. This

is well below the threshold necessary (but not sufficient) for sub per-

cent precision on the total HVP (≤ 5 × 10−10), which is the goal of

ongoing efforts by the joint HPQCD/MILC/Fermilab Lattice collab-

oration. Meeting this goal will ensure the theory uncertainty of the

HVP contribution to aµ is competitive with the experimental uncer-

tainty determined by the E989 and J-PARC collaborations.

Comparing our results with other groups’ is complicated by the

scheme dependence of the QED correction and by the fact that our

analysis is blinded. The blinding effect should not change the final

result by a large amount, say an order of magnitude, because the

numerical factor used to multiply the correlator is close to one. The
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scheme dependence of δaµ is larger at ms, and less important for the

light connected HVP where it is of a comparable size to the statistical

uncertainty. Therefore, with those qualifiers in mind, we can attempt

to compare our results to other groups, focusing on the sign and size of

the correction, and the size of the errors. We discuss the main results

of this work at the strange and light quark masses in turn. All the

numerical values are given in units of 10−10 (i.e. multiplied by 1010).

4.6.1 The strange quark contribution

Our blinded continuum extrapolated value for a
(s)
µ is 54.38(80). This

value comes from an extrapolation of the pure QCD data, the QCD+QED

number is the same to two decimal places. Our result is plotted in

figure 4.22, along with the values determined by other groups: The

earlier HPQCD value of 53.41(49) was also determined with staggered

quarks and the HISQ action [138]; the ETM value of 53.1(2.5) was de-

termined with the Iwasaki action for the gluons and Wilson Twisted

Mass action for the quarks [180]; the RBC/UKQCD value of 53.2(0.4)

was calculated using the DBW2 gauge action and domain wall valence

quarks [188]; the BMW value of 53.393(89) was determined using stag-

gered quarks and the 4stout action [77]. All these calculations used at

least three lattice spacings, except for the RBC/UKQCD value which

had two. Only ETM did not use ensembles with physical pions. The

relative precision of the BMW value is due to improved scale setting

through w0 and large statistics at 6 lattice spacings down to 0.064 fm.

These results are shown in figure 4.22, where there is clearly excel-

lent agreement between all the results for a
(s)
µ . That a wide variety
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of independent lattice calculations, using different quark formulations

and actions, agree on the value of a
(s)
µ should give us confidence in the

robustness of our result and suggests the strange connected HVP is

well understood on the lattice.

Figure 4.22: Comparison of our extrapolated value for a
(s)
µ and δa

(s)
µ

with its determination by other groups.

Our blinded result for the QED correction to the strange connected

HVP is δa
(s)
µ =−0.0092(81). This is also plotted in figure 4.22 with

other groups’ determinations. Although the computational strategy

varies from group to group, they all also used the QEDL prescription.

The ETM value of −0.0053(30) was determined with an equal quark

mass (GRS) renormalisation scheme [189]. The RBC/UKQCD value

of −0.0149(32) was determined by calculating individual Feynman di-

agrams perturbatively [188]. The BMW collaboration computed their

value of −0.0086(59) by measuring derivatives with respect to electric
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charge of fermionic determinants [77]. It is notable that all these re-

sults have the same negative sign and are of a similar size. The BMW

value is computed in the same Dashen-inspired scheme we use and so

would be directly comparable were it not for the blinding.

4.6.2 The light quark contribution

The light connected part of the HVP is the largest piece and has the

largest uncertainty. We do not present extrapolated results for a
(l)
µ as

it has large taste-breaking and FV corrections, and is not the focus of

this work. A separate effort is underway to reduce its uncertainty to

the required sub percent level with physical point measurements.

Our blinded result for the QED correction to the light connected

HVP is δa
(l)
µ = −0.13(15). This is plotted in figure 4.23 with other

groups’ results. These results are from the same papers cited above

for the δa
(s)
µ values. The ETM value of 1.1(1.0) is a chiral-continuum

extrapolation using measurements with pion masses down to 210 MeV.

The RBC/UKQCD measurement was done at the physical point and

one lattice spacing only, and yielded a value of 5.9(5.9). The BMW

collaboration computed a value of −1.23(50) in a similar manner to

this work, measuring at multiples of the light quark mass κml (κ =

3, 5, 7, 9, 11), before performing a chiral-continuum extrapolation.
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Figure 4.23: Comparison of our extrapolated value for δa
(l)
µ against its

determination by other groups.

Our result for δa
(l)
µ suggests the estimate for the QED correction by

the HPQCD, MILC, and Fermilab lattice collaboration in [91] was too

conservative. Our result, with the caveat that it is blinded, has a large

relative uncertainty in line with other calculations, but a small abso-

lute uncertainty. This appears to be due to the presence of correlations

between measurements on the same configuration, and is evidenced by

the increase in the absolute uncertainty of δa
(l)
µ by a factor of 2.3 when

these correlations are ignored.

4.6.3 Future Work

There are three areas of improvement of the present work: The lack

of lattices with spacings below 0.09 fm, the lack of measurements with
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valence quarks at ml, and the omission of QED in the sea.

Adding measurements on ensembles with smaller lattice spacings

would allow a better controlled continuum extrapolation. This is a

straightforward extension of this work as the MILC collaboration al-

ready have gluon field ensembles available at 0.06 fm and below. The

authors of [90] have suggested that 0.06 fm and finer ensembles are

necessary for a controlled extrapolation in a2 when using staggered

quarks, though it is unclear whether this applies to QED corrections.

Adding a finer ensemble, ideally at 0.06 fm, would also enable us to

drop the very coarse 0.15 fm ensemble from our extrapolations.

The smallest quark mass we simulated at on all three ensembles

was 3ml, which corresponds to a pion mass of ∼ 230 MeV. These

measurements required around 300,000 GPU-core hours of computer

time. It is clear from the size of the uncertainty of the RBC/UKQCD

determination of δa
(l)
µ = 5.9(5.9) that simulating at the physical point

would require an order of magnitude more resources and/or signif-

icant algorithmic improvements to meet our target uncertainty. A

standalone calculation of the QED corrections at the physical point

is therefore, absent algorithmic improvements, infeasible. However, it

may be that simulating closer to the physical point, say at 2ml, ought

to be considered (we note that the physical down quark mass is around

4ml/3 and the up mass is around 2ml/3).

Ultimately future calculations of QED corrections to the HVP,

and lattice observables generally, will include QED in the sea directly.

Such a calculation is a natural extension of this work. Although it will

make little impact on the values of the quantities we’ve considered
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(as suggested by estimates from PT and the BMW calculation) it

makes the interpretation of the results conceptually simpler as QED

effects are included to all orders in the valence and sea sectors. The

major drawback is that new dynamical QCD+QED ensembles must

be generated, and this is a time and resource intensive process. Even

so, that process will provide valuable experience for the inevitable

subsequent lattice calculations that require the inclusion of dynamical

QED. Starting this process sooner rather than later may be wise as it

is a matter of when not if precision lattice calculations switch over.
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[120] N. Brambilla, G. Krein, J. Tarrús Castellà, and A. Vairo, “Born-Oppenheimer approximation in an effective

field theory language,” Physical Review D 97 no. 1, (2018) 1–16.

[121] W. Chen, R. T. Kleiv, T. G. Steele, B. Bulthuis, D. Harnett, J. Ho, T. Richards, and S.-L. Zhu, “Mass

Spectrum of Heavy Quarkonium Hybrids,” JHEP 09 (2013) 019. eprint: 1304.4522.

[122] C. McNeile, C. Michael, and P. Pennanen, “Hybrid meson decay from the lattice,” Physical Review D -

Particles, Fields, Gravitation and Cosmology 65 no. 9B, (2002) 945051–945059.

[123] J. J. Dudek, R. G. Edwards, M. J. Peardon, D. G. Richards, and C. E. Thomas, “Highly excited and exotic

meson spectrum from dynamical lattice QCD,” Physical Review Letters 103 no. 26, (2009) 2–5.

[124] C. Michael, “Quarkonia and hybrids from the lattice,” PoS hf8 (1999) 001. eprint: hep-ph/9911219.

[125] P. R. Page, “Why hybrid meson coupling to two S wave mesons is suppressed,” Phys. Lett. B 402 (1997)

183–188. eprint: hep-ph/9611375.

[126] C. McNeile, C. Michael, and K. J. Sharkey, “Flavor singlet mesons in QCD,” Physical Review D 65 no. 1,

(2002) 145081–145086.

[127] G. Barucca and others, “PANDA Phase One,” Eur. Phys. J. A 57 no. 6, (2021) 184. eprint: 2101.11877.

[128] A. Hamdi, “Search for exotic states in photoproduction at GlueX,” Journal of Physics: Conference Series

1667 no. 1, (2020) 2–6. http://arxiv.org/abs/1908.11786.

[129] R. J. Dowdall, C. T. Davies, T. C. Hammant, and R. R. Horgan, “Precise heavy-light meson masses and

hyperfine splittings from lattice QCD including charm quarks in the sea,” Physical Review D - Particles,

Fields, Gravitation and Cosmology 86 no. 9, (2012) 1–19.

151

http://dx.doi.org/10.1103/PhysRevD.105.054503
http://dx.doi.org/10.1103/PhysRevD.9.3471
http://dx.doi.org/10.1016/0550-3213(79)90194-9
http://dx.doi.org/10.1016/0550-3213(79)90194-9
http://dx.doi.org/10.1016/S0920-5632(97)00828-1
http://arxiv.org/abs/hep-lat/9709132%0Ahttp://dx.doi.org/10.1016/S0920-5632(97)00828-1
http://dx.doi.org/10.1103/PhysRevD.31.2910
http://dx.doi.org/10.1103/PhysRevD.92.114019
http://dx.doi.org/10.1103/PhysRevD.92.114019
http://dx.doi.org/10.1103/PhysRevD.96.014004
http://dx.doi.org/10.1103/PhysRevD.96.014004
http://dx.doi.org/10.1103/PhysRevD.97.016016
http://dx.doi.org/10.1007/JHEP09(2013)019
http://dx.doi.org/10.1103/PhysRevD.65.094505
http://dx.doi.org/10.1103/PhysRevD.65.094505
http://dx.doi.org/10.1103/PhysRevLett.103.262001
http://dx.doi.org/10.22323/1.003.0001
http://dx.doi.org/10.1016/S0370-2693(97)00438-3
http://dx.doi.org/10.1016/S0370-2693(97)00438-3
http://dx.doi.org/10.1103/PhysRevD.65.014508
http://dx.doi.org/10.1103/PhysRevD.65.014508
http://dx.doi.org/10.1140/epja/s10050-021-00475-y
http://dx.doi.org/10.1088/1742-6596/1667/1/012012
http://dx.doi.org/10.1088/1742-6596/1667/1/012012
http://arxiv.org/abs/1908.11786
http://dx.doi.org/10.1103/PhysRevD.86.094510
http://dx.doi.org/10.1103/PhysRevD.86.094510


[130] D. Hatton, C. T. H. Davies, B. Galloway, J. Koponen, G. P. Lepage, and A. T. Lytle, “Charmonium

properties from lattice QCD+QED : Hyperfine splitting, $J/\psi$ leptonic width, charm quark mass, and

$aˆc \mu$,” Phys. Rev. D 102 no. 5, (2020) 054511. eprint: 2005.01845.

[131] J. J. Dudek, R. G. Edwards, and C. E. Thomas, “Exotic and excited-state radiative transitions in

charmonium from lattice QCD,” Physical Review D - Particles, Fields, Gravitation and Cosmology 79

no. 9, (2009) 1–33.

[132] E. Follana, A. Hart, C. T. Davies, and Q. Mason, “Low-lying Dirac spectrum of staggered quarks,” Physical

Review D - Particles, Fields, Gravitation and Cosmology 72 no. 5, (2005) 1–17.

http://arxiv.org/abs/hep-lat/0507011%0Ahttp://dx.doi.org/10.1103/PhysRevD.72.054501.

[133] A. Bazavov, C. Bernard, C. Detar, W. Freeman, S. Gottlieb, U. M. Heller, J. E. Hetrick, J. Laiho,

L. Levkova, M. Oktay, J. Osborn, R. L. Sugar, D. Toussaint, and R. S. Van De Water, “Scaling studies of

QCD with the dynamical highly improved staggered quark action,” Physical Review D - Particles, Fields,

Gravitation and Cosmology 82 no. 7, (2010) 1–36.

[134] A. Bazavov, C. Bernard, J. Komijani, C. Detar, L. Levkova, W. Freeman, S. Gottlieb, R. Zhou, U. M.

Heller, J. E. Hetrick, J. Laiho, J. Osborn, R. L. Sugar, D. Toussaint, and R. S. Van De Water, “Lattice

QCD ensembles with four flavors of highly improved staggered quarks,” Physical Review D - Particles,

Fields, Gravitation and Cosmology 87 no. 5, (2013) 1–19.

[135] P. Boyle, A. Yamaguchi, G. Cossu, and A. Portelli, “Grid: A next generation data parallel C++ QCD

library,”. eprint: 1512.03487.

[136] B. A. Galloway, Properties of charmonium and bottomonium from lattice QCD with very fine lattices. PhD

thesis.

[137] C. Detar and S. H. Lee, “Variational method with staggered fermions,” Physical Review D - Particles,

Fields, Gravitation and Cosmology 91 no. 3, (2015) 1–21.

[138] B. Chakraborty, C. T. Davies, G. C. Donald, R. J. Dowdall, J. Koponen, G. P. Lepage, and T. Teubner,

“Strange and charm quark contributions to the anomalous magnetic moment of the muon,” Physical Review

D - Particles, Fields, Gravitation and Cosmology 89 no. 11, (2014) 1–8.

[139] G. C. Donald, C. T. H. Davies, R. J. Dowdall, E. Follana, K. Hornbostel, J. Koponen, G. P. Lepage, and

C. McNeile, “Precision tests of the $J/\psi$ from full lattice QCD: mass, leptonic width and radiative decay

rate to $\eta c$,” Phys. Rev. D 86 (2012) 094501. eprint: 1208.2855.

[140] B. Azhothkaran and N. V. K, “Decay Constants of S Wave Heavy Quarkonia,” International Journal of

Theoretical Physics 59 no. 7, (2020) 2016–2028. Publisher: International Journal of Theoretical Physics.

[141] Y. Chen, W. F. Chiu, M. Gong, L. C. Gui, and Z. F. Liu, “Exotic vector charmonium and its leptonic decay

width,” Chinese Physics C 40 no. 8, (2016) 1–9.

[142] G. S. Bali, S. Collins, and C. Ehmann, “Charmonium spectroscopy and mixing with light quark and open

charm states from nF=2 lattice QCD,” Physical Review D - Particles, Fields, Gravitation and Cosmology

84 no. 9, (2011) .

152

http://dx.doi.org/10.1103/PhysRevD.102.054511
http://dx.doi.org/10.1103/PhysRevD.79.094504
http://dx.doi.org/10.1103/PhysRevD.79.094504
http://dx.doi.org/10.1103/PhysRevD.72.054501
http://dx.doi.org/10.1103/PhysRevD.72.054501
http://arxiv.org/abs/hep-lat/0507011%0Ahttp://dx.doi.org/10.1103/PhysRevD.72.054501
http://dx.doi.org/10.1103/PhysRevD.82.074501
http://dx.doi.org/10.1103/PhysRevD.82.074501
http://dx.doi.org/10.1103/PhysRevD.87.054505
http://dx.doi.org/10.1103/PhysRevD.87.054505
http://dx.doi.org/10.1103/PhysRevD.91.034504
http://dx.doi.org/10.1103/PhysRevD.91.034504
http://dx.doi.org/10.1103/PhysRevD.89.114501
http://dx.doi.org/10.1103/PhysRevD.89.114501
http://dx.doi.org/10.1103/PhysRevD.86.094501
http://dx.doi.org/10.1007/s10773-020-04474-5
http://dx.doi.org/10.1007/s10773-020-04474-5
http://dx.doi.org/10.1088/1674-1137/40/8/081002
http://dx.doi.org/10.1103/PhysRevD.84.094506
http://dx.doi.org/10.1103/PhysRevD.84.094506


[143] C. W. Bernard and others, “Quenched hadron spectroscopy with improved staggered quark action,” Phys.

Rev. D 58 (1998) 014503. eprint: hep-lat/9712010.

[144] M. Luscher, “Volume Dependence of the Energy Spectrum in Massive Quantum Field Theories. 2.

Scattering States,” Commun. Math. Phys. 105 (1986) 153–188.

[145] M. Luscher, “Volume Dependence of the Energy Spectrum in Massive Quantum Field Theories. 1. Stable

Particle States,” Commun. Math. Phys. 104 (1986) 177.

[146] D. J. Wilson, R. A. Briceno, J. J. Dudek, R. G. Edwards, and C. E. Thomas, “Coupled $\pi\pi, K\barK$

scattering in $P$-wave and the resonance from lattice QCD,” Phys. Rev. D 92 no. 9, (2015) 094502.

eprint: 1507.02599.

[147] Z. Fu, “Preliminary lattice study of meson decay width,” JHEP 07 (2012) 142. eprint: 1202.5834.

[148] Z. Fu and L. Wang, “Studying the resonance parameters with staggered fermions,” Phys. Rev. D 94 no. 3,

(2016) 034505. eprint: 1608.07478.

[149] A. J. Woss, J. J. Dudek, R. G. Edwards, C. E. Thomas, and D. J. Wilson, “Decays of an exotic 1-+ hybrid

meson resonance in QCD,” Physical Review D 103 no. 5, (2021) 1–33.

[150] M. Dalla Brida, L. Giusti, T. Harris, and M. Pepe, “Multi-level Monte Carlo computation of the hadronic

vacuum polarization contribution to (g2),” Physics Letters, Section B: Nuclear, Elementary Particle and

High-Energy Physics 816 no. 0, (2021) . http://arxiv.org/abs/2007.02973.

[151] T. Aoyama and others, “The anomalous magnetic moment of the muon in the Standard Model,” Phys.

Rept. 887 (2020) 1–166. eprint: 2006.04822.

[152] E.-H. Chao, R. J. Hudspith, A. Gérardin, J. R. Green, H. B. Meyer, and K. Ottnad, “Hadronic

light-by-light contribution to $(g-2) \mu$ from lattice QCD: a complete calculation,”.

http://arxiv.org/abs/2104.02632.

[153] B. Abi and others, “Measurement of the Positive Muon Anomalous Magnetic Moment to 0.46 ppm,” Phys.

Rev. Lett. 126 no. 14, (2021) 141801. eprint: 2104.03281.

[154] R. M. Carey and others, “New measurement of the anomalous magnetic moment of the positive muon,”

Phys. Rev. Lett. 82 (1999) 1632–1635.

[155] G. W. Bennett and others, “Measurement of the positive muon anomalous magnetic moment to 0.7 ppm,”

Phys. Rev. Lett. 89 (2002) 101804. eprint: hep-ex/0208001.

[156] T. Albahri, A. Anastasi, A. Anisenkov, K. Badgley, S. Baeßler, I. Bailey, V. A. Baranov, E. Barlas-Yucel,

T. Barrett, A. Basti, F. Bedeschi, M. Berz, M. Bhattacharya, H. P. Binney, P. Bloom, J. Bono, E. Bottalico,

T. Bowcock, G. Cantatore, R. M. Carey, B. C. Casey, D. Cauz, R. Chakraborty, S. P. Chang, A. Chapelain,

S. Charity, R. Chislett, J. Choi, Z. Chu, T. E. Chupp, S. Corrodi, L. Cotrozzi, J. D. Crnkovic, S. Dabagov,

P. T. Debevec, S. Di Falco, P. Di Meo, G. Di Sciascio, R. Di Stefano, A. Driutti, V. N. Duginov, M. Eads,

J. Esquivel, M. Farooq, R. Fatemi, C. Ferrari, M. Fertl, A. T. Fienberg, A. Fioretti, D. Flay, E. FrleŽ, N. S.
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