
University of Plymouth

PEARL https://pearl.plymouth.ac.uk

Faculty of Science and Engineering School of Engineering, Computing and Mathematics

2023-03

Implications of second-order wave

generation for physical modelling of

force and run-up on a vertical wall using

wave groups

Mortimer, W

http://hdl.handle.net/10026.1/20207

10.1016/j.coastaleng.2022.104259

Coastal Engineering

Elsevier BV

All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with

publisher policies. Please cite only the published version using the details provided on the item record or

document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content

should be sought from the publisher or author.



Coastal Engineering 180 (2023) 104259

A
0

Contents lists available at ScienceDirect

Coastal Engineering

journal homepage: www.elsevier.com/locate/coastaleng

Implications of second-order wave generation for physical modelling of force
and run-up on a vertical wall using wave groups
William Mortimer a,b, Ross Calvert c,d, Alessandro Antonini e, Deborah Greaves a, Alison Raby a,
Ton S. van den Bremer c,e,∗

a Faculty of Science and Engineering, University of Plymouth, PL4 8AA, UK
b JBA Consulting Ltd., Newcastle-upon-Tyne, NE1 5JE, UK
c Department of Engineering Science, University of Oxford, OX1 3PJ, UK
d School of Engineering, University of Edinburgh, EH9 3FB, UK
e Faculty of Civil Engineering and Geosciences, Delft University of Technology, 2628CD, NL

A R T I C L E I N F O

Keywords:
Second-order
Wave generation
Error waves
Spurious waves
Set-down
Bound long-waves
Wave force
Wave run-up

A B S T R A C T

Experiments are contaminated by second-order error waves at sub- and super-harmonic frequencies when first-
order wave generation is used. Herein, we investigate by experiment the implications of second-order wave
generation theory for dynamic wave force and run-up on a vertical wall in shallow to intermediate water
depth (𝑘0𝑑 = 0.5 − 1.1). Results of short-duration experiments using focused wave groups generated according
to first- and second-order theory are compared. We isolate linear, sub-, and super-harmonic contributions using
combinations of inverted wave group time series and filtering. We derive theoretical predictions for narrow-
banded second-order wave groups interacting with a vertical wall and use this to calculate depth-integrated
force and run-up on the wall, which show close agreement with measured data. Comparisons reveal that
sub-harmonic error waves are increasingly important in shallow depth, increasing wave run-up by up to 67%
and dynamic force by up to 75% at 𝑘0𝑑 = 0.6 when compared to the case of correct (second-order) generation
in a relatively short flume.
1. Introduction

Coastal communities are increasingly reliant on engineered protec-
tion from wave-induced flooding (IPCC, 2019; Young and Ribal, 2019;
Haigh et al., 2020; Vousdoukas et al., 2020; Taherkhani et al., 2020).
Critical design parameters of such protection include the dynamic
force and run-up induced by large waves. Dynamic wave force is
the horizontal force exerted on a structure during a wave-structure
interaction which excludes the hydro-static force (Goda, 2010), and
run-up is the maximum elevation that waves reach above the still-water
level (Sorensen, 2005). Excessive wave force can lead to structural
failure (e.g., Dawson et al., 2016) and excessive run-up can lead to
overtopping and flooding (Goda, 2010).

Run-up associated with the largest waves of a given sea state has pri-
mary influence on overtopping volumes of a vertical structure (Van der
Meer et al., 2018) and therefore requires accurate estimation by coastal
engineers. Present understanding of coastal wave-structure interactions
has been gained through large databases of experimental, numerical,
and field data, which has been used to inform design guidance such
as the EurOtop manual (Pullen et al., 2007), later revised by Van der

∗ Corresponding author at: Faculty of Civil Engineering and Geosciences, Delft University of Technology, 2628CD, NL.
E-mail address: t.s.vandenbremer@tudelft.nl (T.S. van den Bremer).

Meer et al. (2018). Experiments and simulations have historically been
conducted with irregular wave trains, where long-duration simulations
ensure a statistically extreme wave occurs and provide reasonable
estimations of mean overtopping discharge. Yet, in finite-size basins,
this approach can be affected by wave reflections and thus requires
effective reflection compensation. A short-duration design wave, com-
monly in the form of a focused wave group, is a complimentary
approach to recreate extreme wave-structure interactions in a time-
efficient and repeatable manner, prior to wave reflections being mea-
sured (e.g., Borthwick et al., 2006; Hofland et al., 2014). This approach
is well established in the context of offshore engineering, within the
NewWave/Quasi-Determinism (QD) framework (Boccotti, 1983; Tro-
mans et al., 1991; Taylor and Williams, 2004), and increasingly used in
shallow-water coastal response investigations (Borthwick et al., 2006;
Hofland et al., 2014; Orszaghova et al., 2014; Antonini et al., 2017).
Whittaker et al. (2016) demonstrated that focused wave groups provide
a valid model of pre-breaking waves in relatively shallow depths.
Whittaker et al. (2018) provided further insight by showing focused
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wave groups are a robust method to investigate run-up and wave-
induced force in coastal water depths. Karmpadakis and Swan (2020)
found that wave groups, specifically those of the NewWave/QD-type,
give a good representation of all but the most extreme free surface
in shallow water, at which point high-order non-linear terms become
dominant.

Wave interaction with a vertical wall is a classical problem in
coastal engineering, given the abundance of such structures forming
seawalls and quays in ports and harbours providing wave protection
and safe berthing (Fenton, 1985; Allsop et al., 1996). Goda (1975) and
subsequently (Goda, 2010) provides widely used formulae to calculate
dynamic, non-impulsive wave loading on vertical caisson breakwaters.
The empirical formulae can be applied to different wave conditions:
i.e., standing, non-breaking and breaking waves (after Takahashi’s
(2002) extension). Oumeraci et al. (2001) proposed predictive tools
and methods for quasi-static and impulsive loading as an outcome of
the European PROVERBS research collaboration (Allsop et al., 1996).
Cuomo (2005) added further insight with a review of the prediction
methods, particularly for wave-induced forces on caisson and vertical
seawalls. Cuomo et al. (2010) experimentally investigated the effect of
scaling on quasi-static and impulsive wave loading on vertical seawalls.

The wave interaction with a vertical wall has first been investi-
gated analytically at second order in steepness using a broad-banded
frequency-summation approach by Romolo and Arena (2008), who de-
rived the second-order summation (i.e., super-harmonic) and difference
(i.e., sub-harmonic) terms of a Gaussian wavepacket reflecting on a
vertical wall. Romolo and Arena (2008) found an increase in wave run-
up due to second-order difference standing-wave pattern against the
wall. The derivation was then extended to three dimensions by Romolo
and Arena (2013), further exploring the second-order effect on wave
crests and troughs, before run-up and pressure were validated against a
variety of wave conditions, directions, and spreading functions in three-
dimensional basin experiments. Sun and Zhang (2017) formulated the
run-up problem slightly differently whilst arriving at similar results
to Romolo and Arena (2013) for the second-order formulation of three-
dimensional waves interacting with a vertical wall. The effects of
angle of incidence, wave steepness, focal positions, water depth, and
frequency bandwidth on the run-up were then studied. Finally, Laface
et al. (2018) compared the derivations of Romolo and Arena (2008)
and Sun and Zhang (2017) within a natural wind-driven flume gener-
ating irregular waves with a JONSWAP spectrum to find a significant
increase of run-up compared with the Rayleigh distribution.

Wave generation using first-order theory gives rise to free error
waves, at higher-order, both at sub- and super-harmonic frequencies,
which contaminate the wave field (Barthel et al., 1983; Schäffer, 1996;
Baldock et al., 2000; Janssen et al., 2003; Van Dongeren et al., 2003;
Battjes et al., 2004; Moura and Baldock, 2019; Eldrup and Andersen,
2019; Martins et al., 2021; Mortimer et al., 2022). Free error waves
are formed as an instantaneous compensation to a mismatch between
depth-dependent water kinematics and first-order wavemaker displace-
ment. Sub-harmonic error waves travel faster than the first-order wave
group, and super-harmonic error waves slower. In wave flume ex-
periments, sub-harmonic error waves arrive at the domain of interest
first, before the first-order and second-order super-harmonic waves, and
therefore represent the most persistent challenge. Second-order error
waves, particularly at sub-harmonic frequencies, can significantly affect
wave run-up and overtopping results (Hunt, 2003; Orszaghova et al.,
2014).

Second-order correct wave generation theory is well established
(Barthel et al., 1983; Klopman and Van Leeuwen, 1990; Schäffer, 1996;
Van Leeuwen and Klopman, 1996) and has been implemented partially
or completely in different relative water depths (Barthel et al., 1983;
Van Leeuwen and Klopman, 1996; Orszaghova et al., 2014; Sriram
et al., 2015; Fang et al., 2020; Martins et al., 2021; Mortimer et al.,
2022). However, experimental investigations carried out with first-
2

order generation remain prolific. Moreover, even in experiments with
second-order generation implemented, the second-order sub-harmonic
bound waves are often generated incorrectly due to constraints on the
extent of wavemaker displacement (e.g., Whittaker et al., 2017, 2018).
Orszaghova et al. (2014) demonstrated numerically that experimental
investigations, which do not apply second-order corrections correctly,
may be affected by the presence of second-order error waves.

The present work investigates the implications of using first- and
second-order wave generation theory for dynamic wave force and wave
run-up experiments on a vertical wall using focused wave groups.
We make use of a piston-type wavemaker, developed by Edinburgh
Designs Ltd. with a long paddle displacement range. The long displace-
ment range permits the application of second-order wave generation
in shallow-water depths, where a significant sub-harmonic paddle dis-
placement range is required (Mortimer et al., 2022). We use second-
order wave generation theory derived by Van Leeuwen and Klopman
(1996) to formulate the required second-order correct displacement for
mitigating sub- and super-harmonic free error waves. The wavemaker
and application of Van Leeuwen and Klopman’s theory is described
in detail by Mortimer et al. (2022). Herein, we derive the theoretical
contributions of force and run-up from first-order and second-order sub-
and super-harmonic terms, including interaction terms. We compare
these predicted terms to experimental measurements to assess the
implications of first- and second-order wave generation.

This paper is laid out as follows. We first derive our second-order
theoretical results for run-up and dynamic wave force in Section 2. This
is followed by description of the intermediate to shallow-water wave-
flume experiments in Section 3, before comparison between theory
and experimental measurements and their dependence on the order of
wave-generation is made in Section 4. Finally, conclusions are drawn
in Section 5.

2. Second-order theory for wave groups reflecting on a vertical
wall

2.1. Governing equations and boundary conditions

We consider a two-dimensional body of water of depth 𝑑 with a co-
rdinate system (𝑥, 𝑧), where 𝑥 denotes the horizontal coordinate, and
the vertical coordinate measured from the undisturbed water level

pwards. Inviscid, incompressible, and irrotational flow is assumed
nd, as a result, the velocity vector can be defined as the gradient of the
elocity potential 𝐮 = 𝛁𝜙. The governing equation within the domain
f the fluid is then Laplace:
2𝜙 = 0 for − 𝑑 ≤ 𝑧 ≤ 𝜂(𝑥, 𝑡), (1)

here 𝜂(𝑥, 𝑡) denotes the free surface. The kinematic and dynamic
ree-surface boundary conditions are, respectively:

−
𝜕𝜂
𝜕𝑡

− 𝑢
𝜕𝜂
𝜕𝑥

, 𝑔𝜂 +
𝜕𝜙
𝜕𝑡

+ 1
2
|𝛁𝜙|2 = 0 at 𝑧 = 𝜂(𝑥, 𝑡), (2a,b)

where gravity 𝑔 acts in the negative 𝑧-direction and |𝛁𝜙|2 = 𝑢2 + 𝑤2.
vertical wall is placed at 𝑥 = 𝑥w, so that 𝑢 = 𝜕𝜙∕𝜕𝑥 = 0 at 𝑥 = 𝑥w.

inally, there is a no-flow bottom boundary condition requiring that
= 𝜕𝜙∕𝜕𝑧 = 0 at 𝑧 = −𝑑. The pressure at any depth underneath the

aves is given by the unsteady Bernoulli equation:

= −𝜌
(

𝜕𝑡𝜙 + 1
2
|𝛁𝜙|2 + 𝑔𝑧

)

for − 𝑑 < 𝑧 < 𝜂, (3)

where 𝜌 is the density of water.
We consider only the first two orders in a perturbation expansion

in steepness 𝜖, so we have for 𝜙 and 𝜂 (and similarly for all other
variables),

𝜙 = 𝜙(1) + 𝜙(2) + (𝜖3), 𝜂 = 𝜂(1) + 𝜂(2) + (𝜖3), (4a,b)

where the superscripts denote the order in steepness 𝜖. By retaining
terms up to second order in the steepness of the waves, the two
free-surface boundary conditions in (2a,b) can be combined into two
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forcing equations for the second-order potential and surface eleva-
tion (Longuet-Higgins and Stewart, 1964):
(

𝜕
𝜕𝑧

+ 1
𝑔
𝜕2

𝜕𝑡2

)

𝜙(2)
|𝑧=0

= 𝜕
𝜕𝑥

(

𝑢(1)||
|𝑧=0

𝜂(1)
)

− 1
𝑔
𝜕
𝜕𝑡

(

𝜕2𝜙(1)

𝜕𝑧𝜕𝑡
|

|

|𝑧=0
𝜂(1) + 1

2
|𝛁𝜙(1)

|

2
𝑧=0

)

, (5)

𝜂(2) = −1
𝑔

(

𝜕𝜙(2)

𝜕𝑡
|

|

|𝑧=0
+
(

𝜕2𝜙(1)

𝜕𝑧𝜕𝑡
|

|

|𝑧=0
𝜂(1) + 1

2
|𝛁𝜙(1)

|

2
|

|

|𝑧=0

))

. (6)

Similarly, we obtain for pressure at any depth, 𝑝 = 𝑝(0)+𝑝(1)+𝑝(2)+(𝜖3),
by expanding (3),

𝑝 = −𝜌
(

𝑔𝑧 + 𝜕𝑡𝜙
(1) + 𝜕𝑡𝜙

(2) + 1
2
|𝛁𝜙(1)

|

2) for − 𝑑 < 𝑧 < 𝜂, (7)

here the zeroth-order pressure is the hydrostatic pressure.

.2. First-order in steepness

Herein, we assume wave groups based on a narrow-banded (and
ater Gaussian) spectrum, consistent with the classical second-order
esults for isolated groups by Mei (1989) and the accompanying wave-
aker theory by Van Leeuwen and Klopman (1996) (and Calvert et al.,
019). The presently used wave groups can be expressed as a slow
odulation in space and time by an envelope of a carrier wave with

requency 𝜔0 and wavenumber 𝑘0, satisfying the linear dispersion rela-
ionship 𝜔2

0 = 𝑔𝑘0 tanh(𝑘0𝑑). Combination of the incident and reflected
aves gives for the first-order surface elevation:
(1)(𝑥, 𝑡) = 𝐴I(𝑋I) cos(𝜑I) + 𝐴R(𝑋R) cos(𝜑R), (8)

here 𝜑I = 𝑘0𝑥 − 𝜔0𝑡 + 𝜇I and 𝜑R = −𝑘0𝑥 − 𝜔0𝑡 + 𝜇R, indicating the
ncident (I) and reflected (R) waves travel in the positive and negative
-directions, respectively. Using multiple scales, the envelopes 𝐴I and
R vary on the slow scales 𝑋I = 𝛿(𝑥 − 𝑐𝑔,0𝑡) and 𝑋R = −𝛿(𝑥 + 𝑐𝑔,0𝑡),

espectively, where the additional small parameter 𝛿 measures the
andwidth of the underlying spectrum. The limit 𝛿 → 0 corresponds to
onochromatic waves. We only need to consider first-order solutions

n steepness up the zeroth order in bandwidth (i.e., (𝜖1, 𝛿0)) in order
to obtain leading-order solutions for the run-up and force at second
order, as consistent with the results in Mei (1989), McAllister et al.
(2018), van den Bremer et al. (2019) and Calvert et al. (2019). The
corresponding solutions for other relevant first-order quantities are
given in Table 1.

To satisfy the no-flow boundary condition at the wall, we require
𝐴R(𝑥 = 𝑥w) = 𝐴I(𝑥 = 𝑥w) and 𝜇R = 𝜇I, corresponding to perfect
reflection and 𝜂(1)w = 𝜂(1)(𝑥 = 𝑥w) = 2𝐴w(𝑡) cos(𝜑w) with 𝜑w = 𝜑I(𝑥 =
𝑥w) = −𝜔0𝑡+𝜇I and 𝐴w(𝑡) = 𝐴I(𝑥 = 𝑥w, 𝑡). To obtain the first-order force
on the wall, we simply integrate the first-order pressure from Table 1
and evaluate the result at 𝑥w:

𝐹 (1)
w ∕𝑏 = ∫

0

−𝑑
𝑝(1)(𝑥 = 𝑥w)d𝑧 =

2𝜌𝑔 tanh 𝑘0𝑑
𝑘0

𝐴w(𝑡) cos(𝜑w), (9)

where 𝑏 is the width of the wall. This simply corresponds to twice the
force from the incident wave alone.

2.3. Second-order in steepness

2.3.1. Velocity potential
Considering the velocity potential first, we note from substituting

the first-order solutions from Table 1 into the right-hand side of (5)
that the forcing of (5) on the right-hand side can be decomposed into
self-interaction terms (∼ 𝐴I𝐴I and 𝐴R𝐴R) and cross-interaction terms
(∼ 𝐴I𝐴R). We therefore decompose the solution for the second-order
potential in the same way:

𝜙(2) = 𝜙(2) + 𝜙(2) + 𝜙(2) . (10)
3

I R I,R f
Table 1
First-order solutions ((𝜖1 , 𝛿0)).

Quantity Incident (I) Reflected (R)

𝜑 𝜑I = 𝑘0x−𝜔0𝑡 + 𝜇I 𝜑R = −𝑘0x−𝜔0𝑡 + 𝜇R
𝑋 𝑋I = 𝛿(x−𝑐𝑔,0𝑡) 𝑋R = −𝛿(𝑥 + 𝑐𝑔,0𝑡)
𝜂(1) 𝐴I(𝑋I) cos(𝜑I) 𝐴R(𝑋R) cos(𝜑R)

𝜙(1) 𝑐𝑝,0𝐴I(𝑋I)
cosh 𝑘0(𝑧 + 𝑑)

sinh 𝑘0𝑑
sin(𝜑I) 𝑐𝑝,0𝐴R(𝑋R)

cosh 𝑘0(𝑧 + 𝑑)
sinh 𝑘0𝑑

sin(𝜑R)

𝑢(1) 𝜔0𝐴I(𝑋I)
cosh 𝑘0(𝑧 + 𝑑)

sinh 𝑘0𝑑
cos(𝜑I) −𝜔0𝐴R(𝑋R)

cosh 𝑘0(𝑧 + 𝑑)
sinh 𝑘0𝑑

cos(𝜑R)

𝑤(1) 𝜔0𝐴I(𝑋I)
sinh 𝑘0(𝑧 + 𝑑)

sinh 𝑘0𝑑
sin(𝜑I) 𝜔0𝐴R(𝑋R)

sinh 𝑘0(𝑧 + 𝑑)
sinh 𝑘0𝑑

sin(𝜑R)

𝑝(1) 𝜌𝜔0𝑐𝑝,0𝐴I(𝑋I)
cosh 𝑘0(𝑧 + 𝑑)

sinh 𝑘0𝑑
cos(𝜑I) 𝜌𝜔0𝑐𝑝,0𝐴R(𝑋R)

cosh 𝑘0(𝑧 + 𝑑)
sinh 𝑘0𝑑

cos(𝜑R)

Starting with the super-harmonic terms, as denoted by the su-
perscript +2, we readily obtain the well-known result for the self-
interaction terms (e.g., Mei, 1989):

𝜙(+2)
I =

3𝐴2
I𝜔0

8
cosh(2𝑘0(𝑧 + 𝑑))

sinh4(𝑘0𝑑)
sin(2𝜑I), (11)

which simply corresponds to the super-harmonic term for a regular
Stokes wave modulated by an envelope 𝐴I(𝑋I), and similarly for the
reflected wave (upon replacement of I by R in (11)).

By substituting first-order solutions from Table 1 into the right-hand
side of (5), it can be shown that the forcing of the cross-interaction term
(∼ 𝐴I𝐴R) is only a fast function of 𝑡 and not of 𝑥. Because the resulting
potential has to satisfy the Laplace equation, the leading-order solution
𝜙(+2)
I,R is only a function of fast time 𝑡:

𝜙(+2)
I,R = −1

4
𝜔0𝐴I𝐴R

(

3 + 1
tanh2(𝑘0𝑑)

)

sin(𝜑I + 𝜑R), (12)

where 𝜑I+𝜑R = −2𝜔0𝑡+2𝜇I. For completeness, we note that we recover
the deep-water limit given by Eq. (26) of McAllister and van den
Bremer (2019) (for the case therein when two groups cross at 𝛥𝜃 =
180◦). The sub-harmonic terms, as denoted by the superscript −2, are
readily obtained by the well-known mean flow potential for the self-
interaction terms (e.g., Calvert et al., 2019); we note an erroneous
surplus minus in Eq. (15) of Calvert et al. (2019)):

𝜙(−2)
I =

𝜔0

(

1 + 𝑐𝑔,0𝜔0
𝑔 sinh(2𝑘0𝑑)

)

4𝜋 tanh(𝑘0𝑑) ∫

∞

−∞
𝐴2
I

⋀cosh(𝑘(𝑧 + 𝑑))
sinh(𝑘𝑑)

𝑖 exp(𝑖𝑘�̃�I)

1 −
𝑘𝑐2𝑔,0

𝑔 tanh(𝑘𝑑)

d𝑘, (13)

where �̃�I = 𝑋I∕𝛿 and |𝐴I|
2

⋀

= ∫ ∞
−∞ 𝐴2

I exp(−𝑖𝑘�̃�I)d�̃�I is the Fourier
transform of 𝐴2

I . The analogous result for the reflected wave is given
by (13) upon replacement of I by R.

For the cross-interaction term, we can express (5) as
(

𝜕
𝜕𝑧

+ 1
𝑔
𝜕2

𝜕𝑡2

)

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
= 

𝜙(−2)
I,R |𝑧=0

=
𝜔2
0

2𝑔

(

1 + 1
tanh2(𝑘0𝑑)

)

𝜕
𝜕𝑡

(

𝐴I𝐴R
)

cos(𝜑I − 𝜑R)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
= I,R

, (14)

where 𝜑I − 𝜑R = 2𝑘0𝑥 includes a fast dependence on 𝑥. In the
bsence of an obvious closed-form solution, we use a bivariate Fourier
ransform in 𝑥 and 𝑡 to solve (14), seeking a solution of the form
̂I,R = 𝑓 (𝑘, 𝜔) exp(𝑖(𝑘𝑥 + 𝜔𝑡)) cosh(𝑘(𝑧 + 𝑑))∕ cosh(𝑘𝑑), and obtain:

(−2)
I,R = 1

4𝜋2 ∫

∞

−∞ ∫

∞

−∞

̂ (−2)
I,R

−𝜔2∕𝑔 + 𝑘 tanh(𝑘𝑑)
cosh(𝑘(𝑧 + 𝑑))

cosh(𝑘𝑑)
𝑒𝑖(𝑘𝑥+𝜔𝑡)d𝑘d𝜔,

(15)

here ̂ (−2)
I,R = ∫ ∞

−∞ ∫ ∞
−∞  (−2)

I,R exp(−𝑖(𝑘𝑥 + 𝜔𝑡))d𝑥d𝑡 is the Fourier trans-
orm of  (−2).
I,R
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2.3.2. Surface elevation and run-up
Starting with the super-harmonic terms, after substitution of the

first-order solutions from Table 1 and the super-harmonic
self-interaction potential (11) into (6), we readily obtain the well-
known result for the surface elevation arising from self-interaction (e.g.,
Mei, 1989):

𝜂(+2)I =
𝑘0 cosh(𝑘0𝑑)

4 sinh3(𝑘0𝑑)

(

2 cosh2(𝑘0𝑑) + 1
)

𝐴2
I cos(2𝜑I), (16)

which simply corresponds to the super-harmonic term for a regular
Stokes wave modulated by an envelope 𝐴I(𝑋I), and similarly for the
reflected wave (upon replacement of I by R in (16)).

By substituting the first-order solutions from Table 1 and the super-
harmonic cross-interaction potential (12), we can show the surface
elevation arising from cross-interaction is zero:

𝜂(+2)I,R = 0. (17)

which is consistent with the deep-water limit in McAllister et al. (2018)
and McAllister and van den Bremer (2019).

Turning to the sub-harmonic terms, by substituting the first-order
solutions from Table 1 and the sub-harmonic self-interaction potential
from (13) into (5), we recover from the self-interaction terms the
well-known set-down (Mei, 1989; Longuet-Higgins and Stewart, 1962)

𝜂(−2)I = −
𝑔|𝐴I|

2

2(𝑔𝑑 − 𝑐2𝑔,0)

[2𝑐𝑔,0
𝑐𝑝,0

− 1
2

]

, (18)

here we have additionally made the commonly made shallow-return
low assumption (see Calvert et al., 2019).

For the sub-harmonic cross-interaction potential (15) the shallow-
eturn flow assumption cannot be made, as the forcing I,R given in
14) also includes rapidly varying terms in 𝑥, which require a non-
hallow depth dependence to satisfy Laplace. We therefore obtain a
olution in the form of a bivariate inverse Fourier transform:

(−2)
I,R = 1

2

(

tanh(𝑘0𝑑) +
1

tanh(𝑘0𝑑)

)

𝑘0𝐴I𝐴R cos(𝜑I − 𝜑R)

− 1
𝑔 ∫

∞

−∞ ∫

∞

−∞

𝑖𝜔̂ (−2)
I,R

−𝜔2∕𝑔 + 𝑘 tanh(𝑘𝑑)
𝑒𝑖(𝑘𝑥+𝜔𝑡)d𝑘d𝜔, (19)

hich cannot be evaluated in closed form. However, the integral term
n (19) evaluates to zero at 𝑥 = 𝑥w, as can be shown numerically by
ncreasing the resolution of the Fourier transform.

The total second-order run-up at the wall can now be calculated by
umming (16)–(19), including self-interacting terms for both incident
nd reflected groups, and evaluating the result at the wall 𝑥 = 𝑥w.
ig. 1 gives the non-dimensional contributions to run-up from the self-
nteracting and cross-interacting terms as a function of relative water
epth 𝑘0𝑑. All of the second-order contributions increase in magnitude
ith shallower water depth. Fig. 1a gives the contributions of the super-
armonic terms. As derived, the cross-interaction term is zero, and
hus the total super-harmonic run-up is twice the self-interaction term
resent in the absence of a wall. Fig. 1b shows the sub-harmonic run-
p contributions. The cross-interaction term is shown to give a positive
ontribution, opposite to the normal set-down under wavepackets. Note
hat this term is modulated by a standing-wave pattern that varies
apidly in space. This set-up is equivalent to that derived for crossing
eas in deep water by McAllister et al. (2018). In shallower depth the
otal sub-harmonic run-up is thus negative, whereas in deep water the
ositive set-up dominates, and the total sub-harmonic run-up becomes
ositive. Fig. 1c compares the magnitude of the total second-order sub-
nd super-harmonic run-up at the wall. Note that the temporal structure
f each is very different, with the super-harmonic run-up oscillating
t twice the carrier frequency whilst the sub-harmonic run-up changes
4

lowly in time on the group scale.
.3.3. Force on a vertical wall
The force on a vertical wall is obtained from vertically integrating

ressure. At second order, the force is comprised of three terms,

(2)∕𝑏 = +∫

𝜂(1)

0
𝑝(0)d𝑧 + ∫

𝜂(1)

0
𝑝(1)d𝑧 + ∫

0

−𝑑
𝑝(2)d𝑧, (20)

here 𝑏 is the width of the vertical wall, and the hydrostatic pressure
(0) only has to be integrated up to 𝜂(1), as including 𝜂(2) would in-
lude higher-order terms that are ignored. Below, we will consider the
hree contributions to (20) in turn, before considering sub-harmonic
𝐹 (−2)) and super-harmonic (𝐹 (+2)) force contributions individually.
hroughout this section, we will use the shorthand  ≡ cos.

First, integration of the zeroth-order (or hydrostatic) pressure up to
he first-order free-surface elevation gives,

𝜂(1)

0
𝑝(0)d𝑧 = −

𝜌𝑔
4

[

𝐴2
I (1 + (2𝜑I)) + 𝐴2

R(1 + (2𝜑R))

+ 2𝐴I𝐴R((𝜑I − 𝜑R)) + (𝜑I + 𝜑R)
]

,

= −𝜌𝑔𝐴2
w
[

1 + (2𝜑w)
]

,

(21)

here the second identity evaluates the force contribution on the wall
𝑥 = 𝑥w), with 𝜑w = −𝜔0𝑡 + 𝜇I and 𝐴w(𝑡) = 𝐴I(𝑥 = 𝑥w, 𝑡).

Second, integration of the first-order pressure up to the first-order
ree-surface elevation gives,

𝜂(1)

0
𝑝(1)d𝑧 =

𝜌𝑔
2

[

𝐴2
I (1 + (2𝜑I)) + 𝐴2

R(1 + (2𝜑R))

+ 2𝐴I𝐴R((𝜑I − 𝜑R)) + (𝜑I + 𝜑R)
]

,

= 2𝜌𝑔𝐴2
w
[

1 + (2𝜑w)
]

,

(22)

where the second identity again evaluates the force contribution on the
wall (𝑥 = 𝑥w).

From (7), the second-order pressure is given by 𝑝(2) =
−𝜌

(

𝜕𝑡𝜙(2) + 1
2 |𝛁𝜙

(1)
|

2
)

. The second term in 𝑝(2) gives for the second-
rder contribution to force:
0

−𝑑
−𝜌 1

2
|𝛁𝜙(1)

|

2d𝑧 = −
𝜌𝑔

sinh(2𝑘0𝑑)

{

1
2
[

𝐴2
I
(

1 + (2𝜑I)
)

+ 𝐴2
R
(

1 + (2𝜑R)
)]

(

𝑘0𝑑
2

+
sinh(2𝑘0𝑑)

4

)

+ 1
2
[

𝐴2
I
(

1 − (2𝜑I)
)

+ 𝐴2
R
(

1 − (2𝜑R)
)]

(

−
𝑘0𝑑
2

+
sinh(2𝑘0𝑑)

4

)

−2𝐴I𝐴R

[

(𝜑I − 𝜑R)𝑘0𝑑 + (𝜑I + 𝜑R)
sinh(2𝑘0𝑑)

2

]}

,

= 𝜌𝑔𝐴2
w

{

(

−1
2
+

2𝑘0𝑑
sinh(2𝑘0𝑑)

)

+
(

−
𝑘0𝑑

sinh(2𝑘0𝑑)
+ 1

)

(2𝜑w)
}

, (23)

here the second identity again evaluates the force contribution on the
all (𝑥 = 𝑥w). The first term in 𝑝(2) has the super-harmonic term (from
epth-integrating the time-derivative of the corresponding potentials):
0

−𝑑
−𝜌𝜕𝑡𝜙(+2)d𝑧 = 𝜌𝑔

{ 3
4 sinh2(𝑘0𝑑)

(

𝐴2
I (2𝜑I) + 𝐴2

R(2𝜑R)
)

−
𝑘0𝑑 tanh(𝑘0𝑑)

2

(

3 + 1
tanh2(𝑘0𝑑)

)

𝐴I𝐴R(𝜑I + 𝜑R)
}

,

= 𝜌𝑔𝐴2
w

{ 3
2 sinh2(𝑘0𝑑)

−
𝑘0𝑑 tanh(𝑘0𝑑)

2

(

3 + 1
tanh2(𝑘0𝑑)

)

}

(2𝜑w), (24)

and the sub-harmonic term:

∫

0

−𝑑
−𝜌𝜕𝑡𝜙(−2)d𝑧

−
𝜌𝜔0𝑐𝑔,0

2(1 − 𝑐2𝑔,0∕(𝑔𝑑)) tanh(𝑘0𝑑)

(

1 +
𝑐𝑔,0𝜔0

𝑔 sinh(2𝑘0𝑑)

)

(𝐴2
I + 𝐴2

R)

− 𝜌 1
4𝜋2 ∫

∞

−∞ ∫

∞

−∞

𝑖𝜔̂ (−2)
I,R

−𝜔2∕𝑔 + 𝑘 tanh(𝑘𝑑)
tanh(𝑘𝑑)

𝑘
𝑒𝑖(𝑘𝑥+𝜔𝑡)d𝑘d𝜔, (25)

where the second identity in (24) again evaluates the force contribution
on the wall (𝑥 = 𝑥 ). In (25), we have applied the shallow-return
w
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Fig. 1. Non-dimensional contributions to run-up from second-order self 𝜂(±2)I and cross 𝜂(±2)I,R interaction terms as well as their combined contribution for: (a) super-harmonic, (b)
sub-harmonic, and (c) comparison of the total second-order contributions of both sub- and super-harmonics. Note these values are taken when the centre of the group is at the
wall to show either a maximum or minimum.
Fig. 2. Non-dimensional contributions to force on the vertical wall from second-order terms. (a) Super-harmonic, (b) sub-harmonic, and (c) total second-order contribution. Note,
these values are taken when the centre of the group is at the wall to show either a maximum or minimum.
flow assumption (see, e.g., Calvert et al., 2019) to simplify the self-
interaction terms but not the cross-interaction terms. Similar to the
sub-harmonic surface elevation, the integral term in (25) and in (19)
evaluates to zero at 𝑥 = 𝑥w, as can be shown numerically by increasing
the resolution of the Fourier transform.

Combining the contributions in (21)–(25), the total second-order
force on the wall is given as the super-harmonic part,

𝐹 (+2)
w = 𝜌𝑔𝑏𝐴2

w

{1
2
−

𝑘0𝑑
sinh(2𝑘0𝑑)

+ 3
2 sinh2(𝑘0𝑑)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Self-interaction terms

+ 3
2
−

(

3 + 1
tanh2(𝑘0𝑑)

)

𝑘0𝑑 tanh(𝑘0𝑑)
2

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Cross-interaction terms

}

cos(2𝜑w), (26)

and the sub-harmonic part,

𝐹 (−2)
w = 𝜌𝑔𝑏𝐴2

w

[

−
𝜔0𝑐𝑔,0

𝑔(1 − 𝑐2𝑔,0∕(𝑔𝑑)) tanh(𝑘0𝑑)

(

1 +
𝑐𝑔,0𝜔0

𝑔 sinh(2𝑘0𝑑)

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Self-interaction terms

+ 1
2
+

2𝑘0𝑑
sinh(2𝑘0𝑑)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Cross-interaction term

]

− 𝜌 1
4𝜋2 ∫

∞

−∞ ∫

∞

−∞

𝑖𝜔̂ (−2)
I,R

−𝜔2∕𝑔 + 𝑘 tanh(𝑘𝑑)
tanh(𝑘𝑑)

𝑘
𝑒𝑖(𝑘𝑥w+𝜔𝑡)d𝑘d𝜔

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Cross-interaction term

, (27)

where as before 𝜑w = −𝜔0𝑡 + 𝜇I and 𝐴w(𝑡) = 𝐴I(𝑥 = 𝑥w, 𝑡), and the
integral term evaluates to zero and is only included for completeness.

Fig. 2 gives the non-dimensional contributions of self and cross-
interaction terms to force on the vertical wall as a function of 𝑘0𝑑.
In which, 𝑎0 is the offshore amplitude of the first-order wave group.
Fig. 2a provides the contributions for the super-harmonic part, Fig. 2b
5

for the sub-harmonic part and Fig. 2c compares the total second-order
harmonic contributions of sub- and super-harmonics.

2.4. Sub-harmonic error wave

When first-order generation is used, a sub-harmonic error wave is
unintentionally formed as compensation for the volume of fluid that
is normally contained in the set-down, which is not created by the
wavemaker. Due to its low frequency, the sub-harmonic error wave
travels ahead of the wave group in the flume. We can provide an
estimate of the error wave by inverting the set-down of the wavepacket,
which is created at the wavemaker and letting this travel ahead at the
shallow-water wave speed

√

𝑔𝑑:

𝜂ew =
𝑔𝐴2

I (𝑥 −
√

𝑔𝑑𝑡)

2(𝑔𝑑 − 𝑐2𝑔,0)

(2𝑐𝑔,0
𝑐𝑝,0

− 1
2

)

. (28)

The corresponding force (per unit width) for this shallow-water wave
can be computed according to linear wave theory:

𝐹w,ew∕𝑏 = 2𝜌𝑔𝑑𝜂ew(𝑥 = 𝑥w). (29)

3. Experimental methodology

3.1. Experiment set-up

The experiments are carried out in a wave flume of 20 m length,
0.6 m width and 0.25 m water depth, located in the COAST (Coastal,
Ocean And Sediment Transport) Laboratory, at the University of Ply-
mouth, UK. The experimental set-up is illustrated in Fig. 3. Wave
generation is provided by a piston-type wavemaker, designed and
built by Edinburgh Designs Ltd with an elongated paddle displacement
range for implementation of second-order wave generation (outlined
by Mortimer et al., 2022). The paddle resting position is at 𝑥 = 0 m,
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Fig. 3. The experimental set-up: (a) a schematic representation of the set-up, showing wave gauge locations (WG 1:8), vertical wall, Photron camera and load cell within the
flume; (b) a photograph of the vertical wall and Photron camera set-up.
Fig. 4. Schematic representation of the vertical wall construction: (a) front view, (b) rear view, (c) cross-sectional side view.
from where all locations are referenced. The vertical wall location is at
𝑥 = 𝑥w = 10 m. Eight resistive-type wave gauges (WG 1:8) measure the
free-surface elevation at 128 Hz. WG 1:7 are aligned along the central-
line of the flume, and WG 8 is mounted at the mid-point between WG
7 and the flume side wall at 𝑥 = 9.75 m, in order to monitor the lateral
structure of the wave field.

A single-axis load cell, mounted on an aluminium beam support
structure, is used to determine the dynamic horizontal wave force
on the vertical wall. A schematic sectional view of the vertical wall
construction is shown in Fig. 4. It comprises three horizontal panels of
18 mm thick rigid PVC sheet. The two side panels are mounted directly
onto the rigid support structure and sealed to the flume walls. The
central panel of 0.1 m width is attached to the load cell, which is then
mounted to the support structure at the still water level. The different
panels reduce the force from the full 0.6 m wall width going through
the load cell so that the instrument is kept within its operational
limit. Between the three panels are 1 mm gaps, to ensure the force
measurements on the central panel is unconstrained. These gaps are
covered with flexible plastic film to prevent unwanted flow through the
wall. Only the dynamic load, excluding hydrostatic force, is measured
6

on the vertical wall, as the set-up is wet-back, with the still water level
equal in front and behind. The horizontal displacement of the vertical
wall is sufficiently small that we can ignore the dynamic response of
the water behind the wall when wave impact on the front of the wall
occurs. Fig. 5 is a photograph of a wave group interacting with the
vertical wall. Finally, a settling period of 10 min between experiments
allows seiche effects to dissipate.

3.1.1. Video recording of wave run-up
Building on the method established by Dassanayake et al. (2019)

and Antonini et al. (2021) in the COAST laboratory, wave run-up on
the vertical wall was recorded with a Photon ultra slow-motion camera
at 400 fps. The camera focused on the vertical wall at an approximate
15◦ angle, where the closest edge of the wall was the focal point.
An LED lamp highlighted the water surface in the recorded greyscale
images. To limit unnecessarily large volumes of data, only 10 s of
video around the predicted time of the wave group-wall interaction was
recorded. A chequered calibration board enabled the focused frame to
be calibrated. Calibration involved removal of the intrinsic distortion
of the images and extrinsic rotation of the oblique focal plane, to allow
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Fig. 5. Photograph capturing the central wave crest of a group impacting the vertical wall. The Photron slow-motion camera is seen in the bottom right.
Fig. 6. Measured run-up time series for experiment 2. (a) First-order generated wave field run-up, (b) second-order generated wave field run-up.
accurate run-up distances to be determined. The run-up time series
was obtained through a manual tracking procedure in MATLAB, which
involved clicking on the maximum extent of run-up in each recorded
image.

3.2. Experimental matrix

Table 2 shows the experimental matrix of sixteen wave group
parameters. Consistent with the work presented by Mortimer et al.
(2022), the wave groups were designed to have a Gaussian shape in
space and time. The Gaussian wave packets used are expressed as

𝐴 = 𝑎0 exp
⎛

⎜

⎜

⎝

−

(

(𝑥 − 𝑥𝑓 ) − 𝑐𝑔,0(𝑡 − 𝑡𝑓 )
)2

2𝜎2

⎞

⎟

⎟

⎠

, (30)

where 𝜎 is the characteristic length scale of the wave group, and 𝑥𝑓
and 𝑡 are the location and time of focus, respectively. Although our
7

𝑓

theory is narrow-banded and thus does not include the effects of linear
focusing, we use broad-banded linear dispersive theory to generate the
linear part of the wave signal.

Three non-dimensional numbers characterise each experiment: the
non-dimensional water depth 𝑘0𝑑; the steepness 𝜖 = 𝑘0𝑎0; and the
bandwidth 𝜈 =

√

𝑚2𝑚0∕𝑚2
1 − 1, where 𝑚𝑛 is the 𝑛th moment of the

energy spectrum. For Gaussian groups, the energy spectrum 𝑆(𝜔) of
the surface elevation can be readily evaluated in closed form as

𝑆 =
𝜎2𝑎20

4
√

𝜋𝑐𝑔,0
exp

(

−
(𝜔 − 𝜔0)2𝜎2

4𝑐2𝑔,0

)

, (31)

from which the bandwidth parameter 𝜈 is obtained: 𝜈 =
√

2𝑐𝑔,0∕(𝜎𝜔0) =
√

2𝑛∕(𝑘0𝜎) with 𝑛 = 𝑐𝑔,0∕𝑐𝑝,0 = 1∕2
(

1 + 2𝑘0𝑑∕ sinh(2𝑘0𝑑)
)

. Each experi-
ment was repeated with six different phase shifts defined as the relative
phase of the carrier wave at the focus location 𝜇 = [0, 60, 120, 180, 240,
300◦], and each phase variation was generated twice, once using
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Fig. 7. Measured (M) and theoretical (T) free surface at WG 1:7 with vertical offset by gauge location 𝑥𝑔 : (a) first-order free surface, (b) first-order generated sub-harmonic free
surface, (c) second-order generated sub-harmonic free surface. First-order group speed is indicated with a dashed black line and shallow-water wave speed is indicated with dashed
red lines. Reflected speeds are indicated with dotted lines.

Fig. 8. Experiment #2 measured (M) and theoretical (T) dynamic force time series for first-order generation (FOG) and second-order generation (SOG). (a) and (e) total dynamic
force, (b) and (f) super-harmonic contributions, (c) and (g) linear contributions, (d) and (h) sub-harmonic contributions.
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Fig. 9. Maximum non-dimensional dynamic force as a function of 𝑘0𝑑 when the centre of the group is at the wall. (a) Linear force, (b) second-order sub-harmonic force, and (c)
second-order super-harmonic force.
Table 2
Experimental matrix.

Experiment 𝑓0 [Hz] 𝜖 = 𝑘0𝑎0 𝜈 𝑘0𝑑 𝑐𝑔,0 [m/s] 𝛥𝑋(−2)
𝑝,total [m]

1 0.49 0.08 0.19 0.50 1.36 −0.47
2 0.61 0.09 0.19 0.63 1.28 −0.21
3 0.61 0.12 0.19 0.63 1.28 −0.38
4 0.61 0.14 0.19 0.63 1.28 −0.52
5 0.60 0.15 0.19 0.61 1.29 −0.67
6 0.60 0.12 0.37 0.61 1.29 −0.26
7 0.60 0.15 0.37 0.61 1.29 −0.41
8 0.60 0.20 0.36 0.60 1.31 −0.81
9 0.79 0.23 0.17 0.86 1.13 −0.35

10 0.79 0.25 0.17 0.86 1.13 −0.41
11 0.79 0.27 0.17 0.86 1.13 −0.48
12 0.79 0.29 0.17 0.86 1.13 −0.55
13 0.78 0.09 0.28 0.84 1.14 −0.04
14 0.77 0.25 0.33 0.83 1.15 −0.29
15 0.99 0.25 0.15 1.15 0.95 −0.11
16 0.98 0.40 0.15 1.14 0.96 −0.32

first-order paddle displacement 𝑋(1)
𝑝 and again with the additional

second-order correction 𝑋(2)
𝑝 applied. Four peak frequencies were se-

lected (0.5, 0.6, 0.8, 1.0) Hz to correspond to relative depths of 𝑘0𝑑 =
0.5, 0.6, 0.9, 1.1. The bandwidths were chosen so that the groups re-
mained quasi-monochromatic, but sufficiently compact in time and
space for sub-harmonic error waves, which are present in the first-
order generated experimental cases, to partially separate out ahead of
the first-order group, due to their difference in celerity (see Mortimer
et al., 2022). Each experiment had a duration of 𝑇 = 128 s, and a
wave group focus location and time of 𝑥𝑓 = 10 m and 𝑡𝑓 = 𝑇 ∕2,
respectively. Finally, in the right hand column of Table 2 is the required
sub-harmonic net-backwards displacement of the wavemaker in order
to compensate for sub-harmonic error waves present for each case at
its respective relative depth 𝑘0𝑑. The paddle displacement formulation
is derived by Van Leeuwen and Klopman (1996) and outlined in full
by Mortimer et al. (2022).

3.3. Harmonic separation

In order to predict the run-up and force on the vertical wall using
the theory developed in Section 2, deconstruction of the measured
free surface into different orders in steepness is required. This section
outlines the procedure we used to isolate harmonic contributions to
the wave field at WG 1, the furthest wave gauge from 𝑥w, to minimise
the effect of reflections and non-zero terms near the wall. We use a
two-phase harmonic extraction (or phase inversion) technique outlined
by Baldock et al. (1996), Hunt (2003) and Mortimer et al. (2022). The
six phase variations of our experimental cases give three combinations
of groups, inverted by 180◦. Combination of the inverted time series
9

yields the odd or even orders in steepness respectively,

𝜂odd =
𝜂0 − 𝜂180

2
and 𝜂even =

𝜂0 + 𝜂180
2

, (32a,b)

where 𝜂0 and 𝜂180 denote a crest- and trough-focused wave group,
respectively. At the leading order, 𝜂odd is dominated by the first-order
signal, and 𝜂even by the second-order signal for an underlying Stokes
expansion. The latter comprises bound waves, which are predominantly
the bound set-down and possibly free error waves in the case of first-
order generation. The free surfaces of each harmonic component are
revealed with judicious filtering of the 𝜂odd and 𝜂even terms. Filtering
at 0.5𝑓0 – 1.5𝑓0 yields the first-order contribution; < 0.5𝑓0 yields
the sub-harmonic contribution and 1.5𝑓0 – 2.5𝑓0 yields the super-
harmonic contribution. In addition to free-surface measurements, we
have applied the same harmonic isolation method to force and run-up
measurements.

Consistent with Section 2, we denote run-up as 𝜂w, using the sub-
script notation for measured (M) and theoretical (T) results. Fig. 6
shows run-up time series for all six phase variations of experiment
#2. The figure shows run-up associated with first-order generation
(FOG) in Fig. 6a and second-order generation (SOG) in Fig. 6b. All
experimental group cases are intentionally kept beneath the breaking
limit, and therefore the run-up of all six phase variations of each
case fit within an envelope. This is important to note as the phase
of the incident wave group only changes the relative position of the
run-up within the bounds of an envelope. Therefore, for non-breaking
cases, the maximum of the envelope gives the greatest possible run-up,
which is the parameter of most interest in for the present work. The
same phase variation, bound within an envelope, is seen for the force
measurements, and so the same method is used.

Repeatability of the experimental cases is assessed from the six
phase variations of each wave group case. This is achieved through
isolation of the first-order wave group contribution to free surface, force
and run-up. The envelope of the first-order contribution is given by the
absolute of a Hilbert transform of the first-order time series. Repeata-
bility is then examined in the results section by including error bars
(shown later in the paper) indicating two standard deviations around
the mean obtained from the six phase repeats. This method is only
applicable in this instance as the wave group cases are non-breaking.

Finally, visual quality control (described in Appendix A) was applied
to all time series before the maximum theoretical force and run-up
of each case is calculated as the summation of the maximum of the
first-order contribution envelope and the phase-independent super-
harmonic and sub-harmonic contributions, where the first-order and
second-order sub- and super-harmonic contributions are appropriately
shifted in time before the summation, to account for the relative differ-
ence in speed. This theoretically predicted maximum gives the greatest
run-up and force predictions, without the influence of first-order wave
group phase.
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Fig. 10. Comparison between maximum measured and theoretical forces on a wall when first-order (𝐹FOG) or second-order wave generation (𝐹SOG) are used. The maximum of
linear and super-harmonic envelopes have been used to avoid the effect of phase.
Fig. 11. Experiment #2 measured (M) and theoretical (T) run-up time series for first-order generation (FOG) and second-order generation (SOG). (a) and (e) total run-up, (b) and
(f) super-harmonic contributions, (c) and (g) linear contributions, (d) and (h) sub-harmonic contributions.
Fig. 12. Non-dimensional run-up as a function of 𝑘0𝑑 evaluated when the centre of the group is at the wall, using the envelopes of linear and super-harmonic signals to avoid
the effect of phase. (a) First-order run-up, (b) second-order sub-harmonic run-up, (c) second-order super-harmonic run-up.
4. Results

In this section we outline the results of our experimental campaign.
First, we show the result of propagating the measured harmonic con-
tributions at WG 1 throughout the flume to recreate the free surface,
10
including reflections from the vertical wall. Following this, we outline
the harmonic contributions to dynamic force and run-up measurements
with time series of a particular experimental case before highlighting
the force and run-up at the centre of the group for all cases compared
with theory.
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Fig. 13. Measured run-up vs theoretical run-up at the centre of the first-order wave group 𝑡 = 0 s. Error bars are two standard deviations around mean of six phase repeats of each
experiment. (a) for second-order generation (b) for first-order generation and (c) the predicted run-up from by Goda (1975) using first-order and second-order generated offshore
wave conditions as input.
Fig. A.14. Raw time series of the free-surface elevation 𝜂 for all experiments for the zero phase shift (𝜑 = 0◦). The window has been chosen to only show the incoming wave
group before any reflections. The solid black line shows the raw signal at WG 1, the red line is the linear contribution, the dotted line is the envelope, and the blue solid line is
the second-order sub-harmonic free surface.
4.1. Free surface

4.1.1. First-order group
The first-order free surface at all wave gauge locations within the

flume can be recreated by propagating components, measured at WG
1, at their respective phase speed (𝑐𝑝 = 𝑘∕𝜔), given by the linear
dispersion relation 𝜔2 = 𝑔𝑘 tanh(𝑘𝑑). The component phases and am-
plitudes are given by a Fourier Transform of the measured first-order
free-surface at WG 1. The sub-harmonic free surface is evaluated using
(18) and (19) and the super-harmonic free-surface using (16) and (17).
Fig. 7 compares the measured and theoretically derived free surfaces for
experiment # 14 at WG 1:7. The time series at each gauge is vertically
11
offset according to each gauge location 𝑥𝑔 . Fig. 7a shows the first-
order group and Fig. 7b and c show the second-order sub-harmonic
terms resulting from first-order generation (FOG) and second-order
generation (SOG), respectively. Complete reflection at the wall is shown
to be a fair assumption, as the predicted and measured signals show
close agreement. The first-order group speed (±𝑐𝑔,0) is denoted as a
diagonal black dashed line to indicate the expected location of the
centre of the first-order group envelope.

4.1.2. Second-order sub-harmonic component
A theoretical sub-harmonic surface elevation is obtained as the

sum of the theoretical set-down, given by (18) for both incoming and
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Fig. A.15. The magnitude of the Fourier transform of the raw time series of only the incoming wave group at wave gauge 1, shown with the black line. The coloured lines
show the harmonic separation windows. The red line denotes 𝑓0, found using the maximum of the spectrum, yellow to purple lines are the linear part and the green line is the
sub-harmonic cut-off frequency.
reflected groups, which travels at the group speed 𝑐𝑔,0 and the interac-
tion term (19). For first-order generated cases, the sub-harmonic error
wave given by Eq. (28) is also included, which travels at the shallow-
water speed

√

𝑔𝑑. Fig. 7b shows the measured (𝜂M) and theoretically
reproduced (𝜂T) sub-harmonic free surface for case #14, where first-
order wave generation is used, and therefore the error wave is present,
seen as a crest at WG 1 at 𝑡 = 65 s. Fig. 7c shows the second-order
generated sub-harmonic free surface. The group speed 𝑐𝑔,0 is again
denoted as a black line to indicate the centre of the sub-harmonic set-
down and the shallow-water wave speed (

√

𝑔𝑑) is denoted as a red
dashed line to indicate the relative position of the error wave. It is
worth noting that the set-down given by the full second-order (broad-
banded) theory, is given for all our experimental cases in Fig. C.18,
included as an appendix.

4.2. Force measurements

Fig. 8 presents time series of force measurements from experiment
#2, comparing measured and theoretical dynamic force on the wall
from different harmonics, where the theoretical force is the sum of the
first- and second-order harmonic contributions derived in Section 2,
i.e., 𝐹T = 𝐹 (1)

T + 𝐹 (−2)
T + 𝐹 (+2)

T . The maximum measured dynamic force,
around 𝑡 = 0 s of 𝐹FOG and 𝐹SOG show close agreement with the
theoretically derived force. Fig. 8c and g plot the dynamic force asso-
ciated with the linear wave fields. Here, the measured and theoretical
predicted force show excellent agreement in amplitude and phase.

Fig. 8b and f show the measured super-harmonic force with the
theoretical force, given by (26). Between 𝑡 = 3 s and 7 s in Fig. 8b there
is a super-harmonic force arising from an error wave, which appears to
be mitigated with the second-order correction that has been applied
12
in Fig. 8f. Fig. 8d and h show the measured sub-harmonic force, and
the theoretically predicted force, given by (27). The theoretical second-
order generated sub-harmonic force is shown as a dotted line in Fig. 8d,
where the theoretical first-order generated (second-order) force (black
solid line) has the addition of the error wave. When the theory accounts
for the error wave force, there is good agreement with the measured
sub-harmonic force (red line). The theoretical SOG force is shown as a
black dashed line. The overall picture presented by Fig. 8 is that the
significant difference in forces measured from first and second-order
wave generated wave fields is due to force associated with the sub-
harmonic error wave. The effect of the sub-harmonic error wave is
highlighted in comparing the maximum force of Fig. 8a and e, which
shows the maximum first-order generated wave force is 30% greater
than the second-order generated wave force.

Fig. 9 plots non-dimensionalised measured force induced by first-
(FOG) and second-order generated (SOG) wave groups as a function of
relative depth 𝑘0𝑑 for all 16 experimental cases. The mean of six phase
repeats is plotted with the error bars indicating two standard devia-
tions around the mean for each case. Each panel plots dynamic force
associated with different group harmonics. The theoretically predicted
force is indicated with a dashed black line. Fig. 9a presents the force
associated with the first-order (linear) wave group, where as expected,
both FOG and SOG groups are shown to induce a similar dynamic force
on the vertical wall as there is no account for force associated with
second-order harmonics. Both FOG and SOG show close agreement with
the prediction. Fig. 9b presents the sub-harmonic force. Here, there
is good agreement between the SOG force and the prediction. In all
cases, FOG groups produce a larger force than both the SOG groups
and the predictions; in shallower water depth, the difference between
FOG and SOG groups increases. This is due to the presence of the
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Fig. A.16. Raw time series of the run-up at the wall 𝜂W for all experiments at zero phase shift. The solid black line shows the raw signal from camera processing, the red is then
the linearised part with envelope in dotted black line and the blue solid line is the second-order sub-harmonic free surface. The dotted red lines shows the centre of the group.
The raw signal has been padded with zeros before and after the ten second measured run-up time series.
sub-harmonic error wave which is greater in amplitude in shallower
depths, has had less of an opportunity to separate from the first-order
group, and therefore more superimposed upon the set-down associated
with the main group, thus reducing the minimum force measurement.
Fig. 9c presents the super-harmonic force from FOG and SOG groups,
which increase as water depth reduces. Here, the SOG cases show better
agreement with the prediction than the FOG cases. In the deepest cases,
both SOG and FOG show poor agreement with the prediction, which is
most likely due to these cases being the steepest and pushing the limit
of the predictions, meaning that second-order prediction is not enough
to recreate the measured signal.

Fig. 10 plots the maximum measured forces compared with the
theoretically predicted forces from all 16 experimental cases. The mean
of six phase variations of each case are shown with error bars indicating
two standard deviations around the mean. In each panel the black
dashed line shows a one to one agreement between predictions and
measurements. Fig. 10a plots the maximum measured forces of first-
order generated FOG and second-order generated SOG wave fields
against the theoretical second-order generated force, which is com-
posed of just the predicted first-order force and the force associated
with the set-down. This plot indicates that the maximum predicted
force for second-order generated cases are in close agreement with
the second-order generated measurements, shown in blue. The first-
order generated cases, shown in red, have the presence of the force
associated with the sub-harmonic error wave, which shows an increase
in the force measured over what is predicted. When the predicted force
of the error wave is factored into the total force prediction, as is the
case in Fig. 10b, it is seen that the predictions have better agreement
with the first-order generated force measurements. There are still a
few first-order generated force measurements which are greater than
13
the predictions in Fig. 10b, specifically the steepest cases (#11, 12, 15
and 16), where higher-order non-linearities are more prevalent and the
predictions begin to show limitations.

Fig. 10c plots the maximum dynamic wave force expected from the
empirical formula derived by Goda (1975) (replicated in Appendix B
for completeness) against the second-order predictions given by the
theory derived herein. The plot shows a comparison between using
the offshore wave condition of first-order generation, shown in red,
and second-order generation, shown in blue, as an input for Goda’s
formula. It can be seen that the predicted force given by Goda is heavily
dependent on the offshore wave condition used. When first-order wave
generation is used without any second-order corrections, the force can
be significantly over-predicted, up to 75% greater in the most extreme
cases seen here.

4.3. Run-up measurements

Fig. 11 shows the time series of different harmonic contributions to
run-up in experiment #2, corresponding to the forces shown in Fig. 8.
Fig. 11a, b, c, d plot run-up associated with the first-order generated
wave field. The run-up as a result of the sub-harmonic error wave, can
clearly be seen in Fig. 11d between 𝑡 = −4 and −2 s. Fig. 11e, f, g, h
plot the run-up time series associated with the second-order generated
wave field. Similar to what has previously been seen in Fig. 8 for force
measurements, the comparison of the harmonic contributions to run-up
of both generation types in Fig. 11 shows that the significant difference
is due to the presence of the sub-harmonic error wave.

Fig. 12 plots non-dimensionalised measured run-up induced by first-
(FOG) and second-order (SOG) generated wave groups as a function of
relative depth 𝑘 𝑑 for eleven of the sixteen experimental cases (cases
0



Coastal Engineering 180 (2023) 104259W. Mortimer et al.
Fig. A.17. The magnitude of the Fourier transform of the padded time series of only the run-up at the wall, shown with the black line. The coloured lines show the harmonic
separation windows. The red line denotes 𝑓0, found using the maximum of the spectrum, yellow to purple lines are the linear part and the green line is the sub-harmonic cut-off
frequency.
#6, 7, 8, 12 and 14 were omitted due to technical problems in the
data acquisition). The mean of six phase repeats is plotted with the
error bars indicating two standard deviations around the mean for
each case. Each panel plots run-up associated with different group
harmonics, with the theoretically predicted run-up indicated with a
dashed black line. As seen previously with the similar plot for dynamic
force, Fig. 12a presents the run-up for the first-order (linear) wave
group of FOG and SOG cases. Here the run-up is the product of the
amplitude of the incident and reflected group envelope, which when
non-dimensionalised by wave steepness should be 2, indicated by the
prediction line. The run-up for both FOG and SOG show reasonable
agreement with the predictions at all water depths. Fig. 12b presents
the sub-harmonic run-up. As expected, when water depth becomes
shallower, the predicted run-up reduces due to the sub-harmonic set-
down. Here, the SOG cases show good agreement with the predictions
where as the FOG cases show poor agreement, particularly at shallow
water depths due to the sub-harmonic error wave. Fig. 12c presents
the super-harmonic run-up where SOG shows good agreement with the
predictions at all water depths.

Fig. 13 plots the run-up induced at the centre of the wave group
against the theoretical run-up. In panels a and b, the mean of all six
phase repeats of each experimental case are plotted with two standard
deviations indicated with error bars, where the mean is of the first-
order group envelope which is then combined with the second-order
free-surface elevation. In doing so, removing the phase dependence of
each case. Fig. 13a plots the measured run-up for both FOG groups,
in red, and SOG groups, in blue, against the theoretical second-order
run-up according to our prediction. The black dashed line indicates
one to one agreement between measured data and predictions. The plot
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shows that the second-order generated SOG cases have close agreement
with the theory with the error bars of all but two cases overlapping the
black dashed line. The measured first-order generated FOG cases are
all greater than the theory predicts. This is important as the predicted
run-up for a second-order generated case does not include contribution
from the sub and super-harmonic free error waves. On average across
all cases there is a 25% increase in run-up when using first-order
generation; up to 67% increase for the shallowest cases. Fig. 13b plots
the measured first-order generated run-up against the predictions of
first-order generated run-up, where the predictions now include second-
order sub- and super harmonic free error wave contributions. Here, we
see that the first-order generated cases all overlap the black dashed line
which indicates perfect agreement. Fig. 13c plots the predictions of run-
up according to Goda’s (1975) formula for run-up, where first-order
generated and second-order generated offshore wave heights are used
as the input for the formula. The values of both predictions are then
plotted against the second-order corrected run-up predictions. Here, we
see that using a measured first-order input, which has the free error
waves within it, gives a significantly greater run-up prediction than if
a second-order generated input is used, which does not include free
error waves. Across all predictions given by Goda’s formula, there is an
average increase of 31% when using a first-order input; up to 64% for
the shallowest cases.

5. Conclusions

In the present work we have experimentally investigated the im-
plications of using second-order wave generation for wave structure
interactions. In addition, we have derived narrow-banded theoretical
solutions, which predict measurements well. We have examined the
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Fig. C.18. The measured sub-harmonic free-surface of all first-order generated (FOG) and second-order generated (SOG) experiments with a theoretical broad-banded subharmonic
and the narrow-banded subharmonic given by Mei (1989). Results are measured at the location of WG 1.
difference in run-up and dynamic wave force on a vertical wall when
using first- and second-order wave generation theory to create focused
wave groups. Focused wave groups were selected as they offer a multi-
frequency wave field in a short-duration, minimising the influence of
wave reflections in the experimental setup.

Building on the numerical findings of Orszaghova et al. (2014),
we have found that without correct application of second-order wave
generation for wave-structure interaction experiments, the measured
wave run-up and forces are significantly higher than they should be
due to the preceding sub-harmonic error wave. Moreover, we show that
using the measured offshore free-surface elevation, and propagating
each harmonic contribution at its respective phase speed to the location
of the vertical wall (where we assume full reflection and include
interactions between incident and reflected wave groups), we are able
to predict the dynamic wave force and run-up with a high degree of
accuracy.

The assumption in our theoretical solutions of complete wave reflec-
tion at the vertical wall is shown to be valid, as we are able to recreate
the measured incident and reflected wave fields, as well as predict run-
up and force with good agreement. The interactions between incoming
and reflected wave groups are important, as they result in an increase
in the run-up.

The findings of the present work are important to consider before
experimental results, generated according to first-order wave gener-
ation theory, are used to inform structure designs. Not accounting
for second-order error waves in such scenario could lead to greater
expected wave-induced run-up and force and subsequently, overly
conservative design parameters. In the context of expected increasing
hostility of conditions due to climate change, a level of conservatism re-
garding designs may be beneficial. Yet, the increase in run-up and force
15
measurements given by the sub-harmonic error wave is erroneous and
should therefore be compensated for in all wave-structure interaction
experiments, particularly in shallow water depths.
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Appendix A. Raw time series, processing, and quality control

A.1. Free-surface elevation

The free-surface elevation at WG 1 of all 16 experiments are shown
in Fig. A.14 for the zero phase shift (𝜑 = 0◦). The time series at WG 1
are truncated to only include the incoming wave group. However, the
signal does not go to zero after the incoming group due to reflections.
This affects the spectrum seen in Fig. A.15, which have significant
sub-harmonic energy corresponding to a mean in the time series. The
correct carrier frequency 𝑓0 is always the largest peak in spectra,
but there are often significant peaks at other frequencies. The linear
and sub-harmonic filters between the coloured bands in Fig. A.15
correspond to the time series in Fig. A.14.

A.2. Run-up on vertical wall

The video camera recorded the run-up against the wall for only 10 s
before and during the peak run-up due to memory restrictions when
using the high-speed camera. However, the window did not always
capture the tail end of the group, as can be seen in Fig. A.16. In order
to separate orders in steepness, the time series was padded out with
zeros, and frequency-filtering of the spectrum is illustrated in Fig. A.17,
which resulted in the linear and sub-harmonic run-up in Fig. A.16. The
separation of the linear group is successful. However, the sometimes
asymmetric and short time series resulted in difficulty when examining
the sub-harmonic component. The short time series affects the lowest
frequencies, and the asymmetry results in spurious negative signals,
which are shifted towards the front of the group. Note that there is
no run-up data for experiments 12 or 13.

To compare the sub-harmonic part to theoretical predictions, vi-
sual quality control of all experiments and phases was carried out.
Experiments 6, 7, and 8 were eliminated because the high bandwidth
combined with the short time series length for run-up (10 s) did
not allow for successful processing. The values of the sub-harmonic
run-up at the centre of the group, defined by the maximum of the
linear envelope, were compared to theory to avoid any errors from the
asymmetry.

Appendix B. Predicted run-up and force on a vertical wall by Goda
(1975)

A widely used method to calculate wave force on a vertical wall is
given by Goda (1975), originally developed for caisson breakwaters in
Japan. The calculation integrates three predicted pressures, 𝑝1, 𝑝2 and
𝑝3 over a trapezoidal distribution, with the maximum pressure 𝑝1 at
the still water level, 𝑝2 at the extent of the maximum run-up and 𝑝3 at
he base of the vertical wall. The maximum predicted run-up is given
y Goda (1975) as,

w,Goda = 0.75(1 + cos 𝛽)𝐻, (B.1)

here 𝛽 is the angle of incidence, equal to zero in our case, and 𝐻 is
he maximum offshore wave height. Due to the perpendicular angle of
ncidence in the present experiments, this simplifies to 𝜂w,Goda = 1.5𝐻 .
erein, 𝐻 is measured at WG 1, and given as a summation of the

irst-order group envelope and second-order super-harmonic envelope
nd sub-harmonic set-down contributions. This is done to remove the
16

hase dependence of the wave group. The component pressures given
y Goda (1975) are,

1 =
1
2
(1 + cos 𝛽)(𝛼1 + 𝛼2 cos2 𝛽)𝜌𝑔𝐻,

2 =
𝑝1

cosh(2𝜋𝑑∕𝜆0)
,

𝑝3 = 𝛼3𝑝1,

(B.2)

where 𝜆0 = 2𝜋∕𝑘0 is the wave length associated with the carrier wave
frequency. The coefficients 𝛼1, 𝛼2 and 𝛼3 are given by Goda (2010) as,

𝛼1 = 0.6 + 1
2

[

4𝜋𝑑∕𝜆0
sinh(4𝜋𝑑∕𝜆0)

]2
,

𝛼2 = min
(

𝑑𝑏 − 𝑑
3𝑑𝑏

(𝐻
𝑑

)2 2𝑑
𝐻

)

,

𝛼3 = 1 − 𝑑′

𝑑

[

1 − 1
cosh(2𝜋𝑑∕𝜆)

]

,

(B.3)

where 𝑑𝑏 is the water depth at the base of the wall and 𝑑′ is the offshore
water depth, here both equal to 𝑑.

The maximum force on the wall predicted by Goda’s formula 𝐹Goda
is obtained by integrating 𝑝1, 𝑝2 and 𝑝3 over a trapezoidal distribution,
providing the wall height exceeds 𝜂w,Goda, as,

𝐹Goda∕𝑏 =
1
2
(𝑝2)𝜂w,Goda +

1
2
(𝑝1 + 𝑝3)𝑑. (B.4)

Appendix C. Narrow and broad-banded subharmonic comparison

Fig. C.18 compares the measured FOG and SOG result of all sixteen
experimental cases with the narrow-banded theoretical second-order
sub-harmonic free surface given by Mei (1989) and the correspond-
ing broad-banded free surface, which is given as the wave-averaged
free-surface of a broad banded group in Longuet-Higgins and Stewart
(1964), we use the implementation in Dalzell (1999) as also used
in McAllister et al. (2018). Fig. C.18, demonstrates a good agreement
between the broad-banded theoretical subharmonic and the majority of
the sixteen second-order generated (SOG) experimental cases.
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