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Abstract

A Lagrangian flow model is used to investigate highly nonlinear, dispersive

waves generated by moving seabed deformation (MSD) of an otherwise hori-

zontal seabed. Applications include free surface wave responses to horizontal

co-seismic displacements and to novel bed-driven wave making systems used in

surfing competitions. This paper considers gravity waves in viscous liquid, with-

out restrictions on wave steepness, dispersion coefficient, and flow regime. Nu-

merical computations are carried out using a Moving Particle Explicit method,

which provides a Lagrangian flow description with far fewer particles than ex-

isting meshless methods. We show that the MSD speed has different effects

in shallow and intermediate water depths. In shallow water, raising the MSD

speed to a transcritical value promotes generation of leading solitary waves as

expected. In supercritical flow, the highly nonlinear dynamics promotes break-

ing of the precursor soliton. In intermediate depth, wave dynamics is dominated

by nonlinearity and dispersion, which act concurrently to generate a large lead-

ing wave that travels faster than predicted by linear theory, followed by a train

of dispersive, short, steep waves. These waves break, even at subcritical val-

ues of MSD speed. We show that strongly nonlinear viscous dynamics occurs

in the presence of a steep seabed deformation. This triggers flow separation,

linked to strong amplification of wave steepness. Finally, we show that an os-
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cillating MSD is capable of generating higher harmonics by means of nonlinear

wave-wave interactions. The model is validated and verified by comparison to

previously published experimental data and approximate analytical solutions.

Keywords: Nonlinear waves, particle methods, computational fluid dynamics,

tsunamis.

1. Introduction

This paper investigates the fully nonlinear dynamics of viscous gravity waves

generated by moving seabed deformation (MSD) over an otherwise horizontal

seabed in shallow and intermediate water depths. Our motivation is as fol-

lows. (i) Although the problem has been studied extensively in the framework5

of weakly nonlinear, long-wave theories [1, 2], investigations considering highly

nonlinear, dispersive wave regimes are scarce [3]. (ii) The idealised geometry

generates robust benchmark cases for further numerical and experimental analy-

sis because waves are generated by a block moving at a prescribed speed, rather

than relying on gravity. Complications are avoided from wave reflection at a10

sloped bed, sudden deceleration at an abrupt transition between an inclined

and horizontal bed, and aquaplaning of the solid block at a smooth transition

[4]. (iii) The problem is relevant to several important practical applications.

For example, the horizontal component of co-seismic displacements contributes

significantly to the wave amplitude of earthquake-generated tsunamis, a sub-15

ject that has not been fully considered to date [5]. A second example concerns

novel wave making systems employed in surfing competitions, where waves are

generated in a controlled environment by a translating seabed deformation [6, 7].

Related work on gravity waves generated by MSD in inviscid liquid has a

long, distinguished tradition. For example, [8], [9] and [10] studied the gener-20

ation of weakly nonlinear solitary waves by an MSD translating at speed u in

shallow water of constant depth h much smaller than the typical wavelength

λ such that µ2 = (2πh/λ)
2 ≪ 1. The wave amplitude ζ considered by the

foregoing was also much smaller than λ, i.e. ϵ = ζ/λ ≪ 1. The MSD moved at
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transcritical Froude number Fr = u/
√
gh = 1±α, where g is gravity and α ≪ 125

a small nondimensional parameter. The related problem of weakly nonlinear,

non-dispersive waves excited by a running stream over an obstacle has also

been thoroughly investigated [1, 11, 12]. Recently, Michele et al. [13] developed

a weakly nonlinear, dispersive model of MSD-generated waves at low Froude

number in intermediate water depth, where ϵ ≪ 1 but µ2 = O(1). Michele et30

al. showed that nonlinearity sharpens the leading elevation wave propagating

ahead of the MSD, whereas dispersion shortens the wavelength of trailing waves

with respect to the corresponding behaviour in the shallow-water regime.

In this paper, we remove assumptions about wave steepness ϵ and dispersion

coefficient µ, and consider gravity wave propagation in a viscous liquid. Few35

studies have examined how viscosity determines the onset of vorticity in MSD

generated waves, limited to shallow water depth [14]. Investigations in this

context are also scarce concerning the onset of breaking [3]. Here we examine

the nonlinear viscous dynamics of free-surface flow generated by MSD in shallow

and intermediate water depths, for subcritical (Fr < 0.8) and transcritical (0.8 <40

Fr < 1.2) Froude numbers, using a Lagrangian description of the fluid flow.

The vast majority of existing numerical models applied to MSD are based

on an Eulerian approach using free surface tracking or capture methods on fixed

or adaptive meshes, a typical example being the volume of fluid (VOF) method.

However, Eulerian methods encounter difficulties in capturing the free surface45

when it undergoes large deformation [15]. Furthermore, mesh methods are

affected by numerical diffusion associated with the discretisation of the advec-

tion term in the governing Navier-Stokes momentum equations [16], particularly

when the flow is driven by moving objects [3, 17]. Another limitation of certain

VOF solvers, such as IHFOAM, is that the dynamic mesh used to model the50

seabed deformation has to be sufficiently smooth, i.e., it cannot have vertical

edges [3]. Finally, close to breaking, the water column may lose continuity, in

which case the free surface elevation cannot be defined. This can cause certain

VOF solvers to have a somewhat arbitrary definition of the free surface [3].

The meshless Lagrangian approach is more robust than Eulerian methods55
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because particles are tracked individually, without any limitation to their move-

ment other than that imparted by physical boundaries. The ability to follow

each flow particle allows accurate simulation of large deformations and violent

flows. The absence of advection terms in the Lagrangian equations of motion

means that such methods are free from numerical diffusion [18]. Furthermore,60

there are hardly any limitations to modelling non-smooth geometries, and appli-

cation of boundary conditions is straightforward [17, 18]. The main drawback of

meshless Lagrangian models is that they require fine discretisation involving a

large number of particles, e.g. O(105−106) for a typical Smoothed Particle Hy-

drodynamics (SPH) simulation of free-surface flow. Consequently such methods65

are computationally very expensive, and therefore less popular in the context

of modelling MSD-generated waves. For example, in the last few decades, few

studies of landslide-generated waves have employed a Lagrangian approach [see

15, 19, 20, 21, 22, and references therein].

In this paper, we develop a Lagrangian Moving Particle Explicit (MPE)70

method, starting from recent work by Renzi & Dias [23] who devised a higher-

order Moving Particle Semi-Implicit (MPS) method to model design waves.

Renzi & Dias compared predictions by their MPS model with those of Didier et

al.’s SPH model and experimental data for breaking waves on a breakwater [24].

The MPS model (with 83,418 particles, 15 hours computational time) was able75

to predict the behaviour of the free surface better and with far fewer particles

than the SPH model (154,735 particles, 80 hours computational time). A draw-

back of the approach taken by [23] is the use of a semi-implicit numerical scheme

for pressure, based on empirical coefficients that require further tuning. In the

present paper, we improve the model of Ref. [23] by using an explicit algo-80

rithm to solve the pressure field. This enables accurate representation of seabed

forcing without requiring empirical pressure coefficients. The MPE model used

herein is accelerated using parallelisation and vectorisation algorithms in MAT-

LAB, which enable robust convergence with reduced computational execution

times of about 50% compared to MPS. The MPE model permits investigation85

of large free-surface deformations and the onset of vorticity, which arise in sit-
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Figure 1: System geometry.

uations where the MSD is irregular or moves at large Froude number. To date,

the majority of Lagrangian MSD models have focused on the early stages of an

evolving flow, being inefficient for large-scale computations [15, 25, 26]. The en-

hanced computational performance of the proposed MPE model allows us also90

to consider long duration wave propagation events.

Section 2 introduces the numerical model and the solution scheme. In Sec-

tion 3, the model is validated and verified against published experimental data

and approximate analytical solutions. Section 4 presents key modelling results,

including the effects of viscosity and onset of vorticity for a steep MSD. Con-95

clusions and suggestions for future work follow in Section 5.

2. Numerical model

We present a Numerical Wave Flume (NWF) based on a higher-order MPE

method. Referring to Figure 1, we consider a rigid MSD translating at speed

u(t) in the horizontal x-direction in water of depth h. The MSD generates100

gravity waves, whose free surface elevation above still water level is denoted by

ζ(x, t).

2.1. Governing equations

The NWF simulator is based on a Lagrangian description of the fluid flow,

whereby the fluid domain is discretised into computational particles, each set an105
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initial distance l0 from their immediate neighbours. We consider viscous flow of

a weakly compressible fluid in two dimensions (x, y), with the y-axis pointing

vertically upwards. The horizontal line y = 0 denotes the elevation of the seabed

(without MSD). The model solves the continuity equation

Dρ

Dt
+ ρ∇ · v = 0, (1)

and the Navier-Stokes momentum equation110

Dv

Dt
= −1

ρ
∇p+ ν∇2v + g, (2)

in which D/Dt is the Lagrangian derivative with respect to time t, ρ is density, p

is pressure, v = (u(x, y, t), v(x, y, t))T is the fluid velocity vector, ν is kinematic

viscosity and g = (0,−g)T is force per unit mass due to the geopotential; g =

9.81ms−2 is the acceleration due to gravity.

The governing equations (1)–(2) are solved using a weighted-average scheme,115

which requires definition of a weight function w(r, re). Here we use a third-order

spline kernel

w(r, re) =

(
1− r

re

)3

if r ≤ re; w(r, re) = 0, if r > re, (3)

where re is an effective radius of interaction and r =
√
x2 + y2 is the distance

of a particle located at point (x, y) from the origin. Particles lying outside

the circle of interaction, of radius re, are not considered in the calculation of120

discretised quantities for the target particle i, see [17, 25]. For a given i-th

target particle, the sum of weight functions over neighbouring particles defines

its particle number density as

ni =

Ni∑
j ̸=i

w(rji, re), (4)

where rji is the distance between the i-th and j-th particles, and Ni is the total

number of particles in the neighbourhood of the target particle i. For simplicity,125

the upper limit Ni is implicit in the summations from now on.
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2.2. Numerical solution

Once the fluid domain is discretised into N particles, the governing equa-

tions (1)–(2) are solved by means of a fully explicit algorithm, whereby time is

discretised into M intervals ∆t = tk+1 − tk, with tk denoting the k-th instant,130

k = 0, . . . ,M and t0 = 0. The discretised governing equations are solved nu-

merically using a predictor-corrector scheme. First, the ith particle velocity vi

is calculated at an intermediate time step t∗ = tk+1/2, without considering the

pressure gradient:

v∗
i = vk

i +
(
ν
〈
∇2v

〉k
i
+ g

)
∆t, (5)

where135 〈
∇2v

〉k
i
=

4∑
j ̸=l(r

0
jl)

2 w
(
r0jl, re

)∑
j ̸=i

(
vk
j − vk

i

)
w(rji, re). (6)

Then the value is corrected by accounting for the pressure contribution:

vk+1
i = v∗

i −
1

ρ
⟨∇p⟩k+1

i ∆t. (7)

Eqns (5) and (7) give a time-marching algorithm that determines the velocity

field at time tk+1 from the previous time step, provided the pressure is known

for each particle at time tk+1. Hence, an additional equation is required to

calculate the pressure field.140

The original MPS method considers a Poisson pressure equation (PPE) for

incompressible fluid, leading to a sparse linear system for the pressure on each

target particle [17]. Usually, such a method is subject to strong numerical

instabilities. Suppression of spurious numerical oscillations requires the intro-

duction of corrective terms in the original PPE [23, 18]. For example, the recent145

MPS method of [23] uses two error-compensating terms in the PPE to improve

numerical stability, enabling the model to reproduce design waves of practical

interest with a 1% root-mean-square (RMS) error with respect to experimental

data. A drawback of [23]’s model is the significant computational time needed

by the semi-implicit scheme, and the presence of empirical pressure parame-150

ters that require tuning. Here we consider an alternative weakly compressible
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approach, which is much faster to implement. Allowing for slight compress-

ibility of the fluid, the governing equations (1)-(2) remain valid, in which ρ is

the reference ambient density, about which the actual density fluctuates slightly

[27, 28]. Hence, (1)-(2) are complemented by the following equation of state155

used to calculate explicitly the pressure field:

pk+1
i =

ρc2

γ

[(
n∗
i

n0

)γ

− 1

]
, (8)

where n0 is the particle number density of an internal particle at t = 0, n∗
i is the

particle number density of the i-th particle at the intermediate time step, γ = 7

is the fluid polytropic index, and c is an artificial speed of sound [17, 25, 29, 30,

31]. The equation of state (8) was originally introduced in the context of SPH160

[30, 32] and applied for the first time to MPS by Shakibaeinia & Jin [29], who

defined their method as Weakly-Compressible Moving Particle Semi-Implicit

(WC-MPS). Our method extends Shakibaeinia & Jin’s formulation by adding

further schemes for numerical stabilisation (see Section 2.3) and free-surface

stabilisation (Section 2.4). Here we denote our improved method as MPE to165

highlight the explicit nature of the numerical scheme for pressure.

In order to achieve numerical stability, the artificial speed of sound must be

at least 5 times the characteristic speed vc in the simulation. We therefore set

vc = max
{√

gh,Fr
√
gh
}
,

with

c/vc ≥ 5 (9)

ensuring that the maximum density error is of the order of 1% [17]. Others

have recommended an even more stringent criterion for numerical convergence,

whereby c/vc > 10, e.g. see [32]. We remark that (8) is a stiff equation and170

is known to introduce unphysical density fluctuations in SPH. In our MPE

calculations, we did not observe such fluctuations, so long as condition (9) was

satisfied. This is most likely because the MPE method is not based on density

per se but on particle number density, which remains more stable throughout the

numerical calculations [17]. Furthermore, use of an artificial viscosity term in the175
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MPE model (see Section 2.3) effectively reduces numerical pressure fluctuations

[23].

Once the pressure has been computed, the velocity field is calculated from

(7), where the pressure gradient is discretised by means of the following Taylor-

expansion based scheme,180

⟨∇p⟩k+1
i = D−1

i · 1

n0

∑
j ̸=i

pk+1
j − p̂k+1

i(
r∗ji
)2 r∗ji w

(
r∗ji, re

)
, (10)

where r∗ji = (rj − ri)
∗
is the displacement vector between particles i and j at in-

termediate time. The vector r∗ji is readily determined through time integration,

such that

r∗ji = rji +
(
v∗
j − v∗

i

)
∆t.

In (10), the 2× 2 matrix Di is given by

Di =
1

n0

∑
j ̸=i

r∗ji
r∗ji

⊗
(
r∗ji
)T

r∗ji
w
(
r∗ji, re

)
, (11)

[see 17, 23]. If the neighbourhood of the i-th target particle is sparsely popu-

lated, det(Di) ≃ 0, which would make (10) indeterminate. In such cases, the

stabilising matrix Di is substituted by the identity matrix.

Choice of the minimum pressure p̂k+1
i in the neighbourhood of particle i185

makes the numerator in (10) always non-negative; this prevents particle clus-

tering and improves model stability [23]. Note that this only holds for fluid

flows of homogeneous density and compressive stress-states, such as those stud-

ied here. For fluid flows involving negative pressure and tensile stress state(s),

other gradient correction schemes are needed, such as suggested by [33, 34].190

With vk+1
i known, the position of each particle is then updated by simple

time integration, as

rk+1
i = rki + vk+1

i ∆t.

The time step ∆t must satisfy the Courant conditions

Cflow = vmax∆t/l0 < 0.25 and Csound = vmax∆t/c < 1,

and a minimum requirement that ∆t < 1× 10−3 s [17, 18].
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Figure 2: Geometry of the wave flume for a typical numerical experiment. Insert shows detail

in the vicinity of the MSD. Legend shows particle types.

2.3. Artificial viscosity

Renzi & Dias [23] recently introduced a novel artificial viscosity term to

regularise the numerical calculations, and thus prevent particle explosions and

tensile instability. Applying a Moving-Particle Semi-Implicit (MPS) formalism195

to the earlier SPH formulation of [30], [23] obtained the artificial viscosity term

as 〈
Dv

Dt

〉k

i

=
ξc

n0

∑
j ̸=i

(
vk
ji · rkji(

rkji
)2

+ 0.01r2e

)(
re
rkji

)2
rkji
rkji

, (12)

where vk
ji = vk

j − vk
i , r

k
ji =

∣∣rkji∣∣, and ξ is a non-dimensional tuning parameter

that requires calibration. The artificial viscosity term (12) is evaluated at the

prediction step (5). The parameter ξ depends on the initial particle distance200

l0 and on the flow regime. Noting that the artificial viscosity is different from

physical viscosity, calibration of ξ is achieved by minimising the centred root-

mean-square error of the time series of the free-surface elevation, with respect to

available benchmark data. For free-surface wave applications, ξ is of the order

O(10−4 − 10−3), and variations within this range do not change the dynamics205

significantly [23].

2.4. Boundary and initial conditions

Figure 2 shows a typical layout of the numerical domain including the MSD

and boundaries. Boundary conditions are applied at the free surface of the liquid

and at solid boundaries. At each time step, free-surface particles are identified210
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by applying the following criteria concurrently:

nk
i < 0.97n0 ;

∑
j ̸=i

rjiw
(
rkji, re

)
< 0.88

∑
j ̸=i

r0jiw
(
r0ji, re

)
, (13)

as proposed by [23]. Note that a similar criterion, based on a nearly symmetric

arrangement of particles (ASA), was implemented in the context of SPH by

[35]. Particles that satisfy (13) are assigned a null value of pressure. The free

surface elevation ζ is then interpolated numerically using first-order Lagrange215

polynomials [36].

Solid boundaries (the bed and the two lateral walls of the flume) are mod-

elled using the wall particle method, i.e. they are represented by wall particles

that move at the speed of the objects they simulate. Thus, for any particle

p belonging to either of the two lateral walls, we apply the non-slip condition

vk
p = 0, at any arbitrary time step k. The bed boundary is represented analyt-

ically by the curve y = f(x, t), where f(x, t) is the bed perturbation, starting

from rest at t = 0 and then moving with speed u(t) for t > 0. Hence any particle

q belonging to the MSD must satisfy the initial conditions:

(y)0q = f((x)
0
q , 0), v

0
q = 0.

As time elapses, the position of each MSD particle is then updated as

(x, y)
k+1
q = (x, y)

k
q + u(tk+1)∆t.

To prevent fluid particles from penetrating solid boundaries, the thickness of

wall layers is set at least twice the initial particle distance, and wall particles

are assigned pressure in accordance with the equation of state (8). Furthermore,

at least two layers of dummy particles are placed behind the wall particles to220

avoid particle deficiency near the boundaries (see again figure 2).

3. Validation and verification

In this section, we validate and verify the foregoing MPE numerical model

against published experimental data and approximate analytical solutions.
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3.1. Free-surface elevation for semi-elliptical and Gaussian MSD225

First, we consider the seminal experiments of Lee et al. [9], performed

in an open-topped wave flume 7.5m long, containing shallow water of mean

depth h = 0.04m. The waves were generated by a two-dimensional sliding

topography of 0.049m chord and 0.0065m height at mid-chord. The exact

shape of the MSD is not given by [9], and so we assumed a semi-elliptical shape,230

which is commonly used in experimental investigations on landslide generated

tsunamis [3, 19, 20, 21, 37]. We remark that for a smooth sliding body, the

exact geometrical shape has only a minor effect on the generated waves [21, 22].

Moreover, this effect becomes negligible in the far field [38].

The MPE model was run with 94,190 particles, time step ∆t = 2 × 10−4 s235

and artificial viscosity parameter ξ = 1 × 10−3. Particle number convergence

tests were carried out using the statistical method detailed by [23]. Figure 3

shows the evolution of the non-dimensional free-surface elevation, η = ζ/h, with

non-dimensional time, T = t
√
g/h, for three Froude numbers, Fr = 0.82, 0.89,

and 1.01. There is very satisfactory agreement between the numerical and ex-240

perimental results, except for minor discrepancies in the tails of the wave trains.

Table 1 lists the relative error between predicted and measured free surface ele-

vation with respect to still water depth at the largest crest and trough, obtained

for each Froude number case considered in figure 3. Note that the relative er-

ror invariably remains lower than 10%, corresponding to an absolute error of245

order O(10−3)m. This is the same order of magnitude of the initial particle

distance l0 = 0.002m used in the simulations, and is consistent with the use of

a first-order Taylor expansion for the gradient scheme (see Section 2.2), where

the error is O(l0). It should be noted that the time series of the slide accelera-

tion is not presented in the paper by [9]. Therefore, in the numerical model we250

implemented an instantaneous acceleration from initial zero speed, which may

further explain the minor differences between the numerical and experimental

results. The unevenness of the flume floor (±0.001m) and the presence of a

small gap (5× 10−4 m) underneath the sliding mass in the experiments are ad-

ditional factors that could have contributed to the small discrepancies between255
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Figure 3: Comparison between non-dimensional free surface time histories obtained using the

present numerical model and experimental data from [9]. (a) Fr = 0.82, x/h = 49.3; (b)

Fr = 0.89, x/h = 70; and (c) Fr = 1.01, x/h = 70. Note that x is measured downstream of

the initial central location of the slide.

Fr Crest Trough

0.82 0.06 0.02

0.09 0.03 0.04

1.01 0.08 0.02

Table 1: Relative error between model predictions and experimental measurements of free

surface elevation with respect to water depth h at the largest crest and trough for each case

considered in figure 3.

the numerical predictions and published experimental data.

Next, we consider verification against the analytical solution obtained by

Michele et al. [13]. Figure 4 shows snapshots of non-dimensional free-surface

elevation η profiles against non-dimensional horizontal coordinate X = (x −

x̄c)/h, obtained using the present MPE numerical model and Michele et al.’s

analytical solution, x̄c being the initial position of the MSD centroid. In this

case, the seabed perturbation is a translating Gaussian given by

f(x, t) = Ae−σ[x−x̄c−utH(t)]2 ,

where u is the horizontal speed of the seabed perturbation, σ is a shape factor,

A is the maximum thickness of the perturbation, and H(t) is the Heaviside step

function. The parameters are: σ = 7.3m−2, A = 0.045m, h = 0.2m. The

deformation speed is u = 1m /s, corresponding to Fr = 0.71. The MPE model260

is run with 54,680 particles in a 6 m long numerical flume, the time step is

13
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Figure 4: Comparison between the non-dimensional free surface elevation profiles predicted

by the present numerical MPE model and the approximate analytical solution proposed by

[13] at three non-dimensional time instants.

T Crest Trough

1.05 0.002 0.001

4.20 0.006 0.002

6.3 0.006 0.006

Table 2: Relative error between model predictions and analytical solutions of free surface

elevation with respect to water depth h at the largest crest and trough for each case considered

in figure 4.

∆t = 5× 10−4 s and the artificial viscosity parameter is ξ = 2.5× 10−3.

The numerical results in figure 4 provide a close match to the analytical

solution, in particular the times of arrival of crests and troughs, and the shape

of the wave at different instants. The maximum wave height predicted by the265

numerical model is slightly higher than that obtained analytically. It should

however be noted that the analytical model resolves the wave field up to second

order of nonlinearity and so neglects higher-order contributions which can be

important near local extrema [13]. Table 2 presents the relative error in pre-

dicted and analytical free surface elevation with respect to still water depth at270

the largest crest and trough, obtained for the cases shown in figure 4. The rela-

tive error is below 1%, with absolute error of the same order O(10−3)m as that

of the initial particle distance l0 = 0.005m used in the simulations. Appendix A

provides details of the convergence of the numerical scheme with initial particle

distance. Next, we validate the MPE model using an approximate analytical275
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solution for the case of a rectangular MSD.

3.2. Velocity field close to edge of a rectangular MSD

The velocity field close to the upper edge of a rectangular MSD can be vali-

dated against an approximate analytical solution based on a Schwarz-Christoffel

conformal mapping [2]. Consider a reference system (x̃, ỹ) moving together with280

the MSD, so that x̃ = 0 on the leading MSD edge and ỹ = y. Then the problem

becomes that of a step of height d in the bed of a uniform stream. For an

observer near the MSD edge, the free surface lies in the far field ỹ/d ≫ 1, so

that an infinite stream depth can be considered in practice.

The fluid domain is mapped to the upper half plane ζ = ξ+ iη according to

the conformal transformation

z =
d

π

{√
ζ2 − 1 + cosh−1 ζ

}
,

where z = x̃+ iỹ. The complex velocity in the z-plane with respect to the fixed

reference system (x̃, ỹ) is

dw

dz
= −U

√
ζ − 1

ζ + 1
,

where U is the flow speed at infinity directed leftwards, and w denotes the285

complex velocity potential.

Figure 5 shows analytical and MPE predictions of the velocity field close

to the edge of a rectangular MSD for the layout investigated later in Section

4. There is very good agreement between the analytical and numerical velocity

fields (magnitude and direction) near the vertical edge. However, the potential290

flow model naturally fails to render the no-slip condition at the boundary be-

tween the water and the solid body. Therefore, the results are only comparable

in the near field around the edge.

4. Results and discussion

In this section we investigate the influence of Froude number, deformation295

shape, viscosity, and time-dependent seabed oscillation on the wave field gener-

ated by an MSD.
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Figure 5: Analytical estimate (left panel, x′ = x̃ + Ut) and MPE simulation (right panel) of

the velocity field (in m/s) near the edge of a rectangular MSD. Parameters are the same as

figure 8, coordinates are in metres.

4.1. Influences of Froude number and onset of breaking

Figure 6 shows space-time contour plots of the non-dimensional free-surface

elevation in shallow water (figure 6a, b) and intermediate water depth (figure300

6c, d) for subcritical (Fr = 0.5) and transcritical (Fr = 0.89) regimes, corre-

sponding to the cases introduced in Section 3. Solid lines show the characteristic

curve of a perturbation travelling at linear long-wave speed c+ =
√
gh, whereas

dashed lines represent the MSD trajectory. Dotted lines show the characteristic

curve of a perturbation travelling at negative speed c− = −
√
gh.305

In shallow water, an MSD translating at subcritical speed generates a small

amplitude, long, leading elevation wave, travelling at near critical speed c+ (see

figure 6a). The crest is followed by a trough travelling just behind the MSD, and

then by a train of smaller, shorter waves. There is no noticeable propagation of

waves to the left of the MSD. As the Froude number approaches transcritical, the310

leading free surface elevation wave becomes taller and the depression travelling

behind the MSD broadens (see figures 3b and 6b). Further increase in Froude

number leads to periodic generation of solitary waves travelling ahead of the

disturbance, followed by a depression and a train of cnoidal waves (figure 3c).

In intermediate water depth, the physical picture is different because waves315

are generated in both directions (figure 6c, d). An MSD travelling at subcritical

speed excites a long leading wave that moves at near critical speed c+ and is
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Figure 6: Non-dimensional space-time contour plots of free-surface elevation: (a) shallow

water depth, same parameters as figure 3, Fr = 0.5; (b) shallow water depth, Fr = 0.89; (c)

intermediate water depth, same parameters as figure 4, Fr = 0.5; and (d) intermediate water

depth, Fr = 0.89.
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Figure 7: Non-dimensional vector plots of velocity field v (upper panels) and contour plots

of velocity magnitude |v| (lower panels) at the onset of breaking: (a) intermediate water

depth, Fr = 0.89, T = 21.4; and (b) shallow water, Fr = 1.12, T = 56.4. Rectangles denote

the breaking area, and ellipses highlight the MSD position. The non-dimensional coordinate

X = x/h, whereas Y = y/h.

followed by a depression. The latter travels just behind the MSD and has a

larger absolute amplitude (about 0.8) than the leading crest (about 0.4), see

figure 6c). As time progresses, a tail of weakly nonlinear, fully dispersive waves320

is generated behind the MSD. Michele et al. [13] showed that this trailing wave

train can be approximated asymptotically by means of the Airy wave solution.

Meanwhile, a shallow trough propagates in the opposite direction to the MSD,

at near-critical speed c−. As the Froude number becomes transcritical, the

leading elevation wave again becomes dominant (see figure 6d). In intermediate325

depth, the dynamics is driven by strong nonlinearity and dispersion. As time

passes, the leading crest steepens and travels faster than the linear critical speed

c+, leaving an increasingly large gap between the leading crest and the trailing

waves. The depression wave persists at MSD speed and broadens as time passes,

followed by a tail of nonlinear dispersive waves.330

Our numerical experiment shows the emergence of a narrow but steep sec-

ondary crest in the trailing wave train (see figure 7a). Steepening of the leading

crest and the first trailing wave can lead to wave breaking. In intermediate

water depth, breaking of the first trailing wave was previously observed experi-

mentally by [3] for Fr ≥ 0.625. In shallow water depth, Lee et al. [9] reported335

breaking of the first few trailing waves in shallow water depth at Fr ∼ 0.8, when
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the motion is “sufficiently forced”. However, Lee et al. also observed breaking

of precursor solitary waves at higher Froude number, Fr ∼ 1.1. The present

numerical model did not predict wave breaking in the shallow-water cases anal-

ysed in figure 3. We therefore carried out an additional simulation at Fr = 1.12,340

for which the onset of breaking of the leading soliton occurred (see figure 7b).

Figure 7 shows that, in both intermediate and shallow water depths, the parti-

cle velocity near the crest is horizontal at the point of breaking. Furthermore,

the maximum non-dimensional horizontal velocity component is close to unity.

Therefore, at the onset of breaking, the horizontal particle velocity component345

at the crest equals the linear phase speed. This agrees with Stokes’ empirical

breaking criterion, see [2].

4.2. Effects of viscosity and onset of vorticity

The experiments of [39] showed that a rectangular solid wedge sliding along

an incline is able to generate highly nonlinear wave motion along with strong350

vortices. The vast majority of studies on MSDs consider an inviscid fluid with

irrotational motion, and so are inapplicable to vortex dynamics. Recent numer-

ical studies based on a VOF approach considered viscosity [3], but were only

applied to smooth MSD.

Here we compare the velocity field generated by a Gaussian-shaped MSD355

and a rectangular MSD of similar dimensions. The Gaussian bed deformation

has the same parameters as in Section 3. The rectangular deformation travels

at the same speed as its Gaussian counterpart (u = 1m/s) and is 0.65m long

by 0.045m high, which ensures that the cross-sectional area in the (x, y) plane

is the same for both bed deformations.360

Figure 8(a, b) shows the spatial variations in magnitude of the velocity field

at the onset of motion (t = 0.2 s) for the Gaussian and the rectangular MSDs

at Fr = 0.7, h = 0.2m. The velocity field generated by the Gaussian MSD is

smooth and regular, whereas that generated by the rectangular MSD exhibits

peaks at the extremities of the rectangular deformation, especially near the365

trailing edge. Figure 8(c) shows a vector plot of the velocity field around the
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Figure 8: Free-surface elevation and velocity field for: (a) Gaussian shaped MSD; and (b)

rectangular MSD. (c) Velocity field for the rectangular MSD. Inserts show detail near the

MSD edges. Values are in m/s. (d) Vorticity field (in 1/s) for the rectangular MSD. All plots

are at t = 0.2 s, Fr = 0.7. Motion is from left to right.
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rectangular MSD. As the deformation travels along the horizontal axis, the

vertical edge at the front of the MSD pushes water ahead, producing the leading

wave crest. In the lee of the MSD, the fluid moves almost horizontally, driven

by a negative dynamic pressure gradient (total pressure p remains positive and370

so the stress state is in compression), thus generating the trailing trough. This

dynamics enhances the steepness of the wave field. Pairs of vortices rotating

counterclockwise occur near the front and end edges of the MSD.

Figure 8(d) presents a contour plot of the vorticity field near the rectangular

MSD. The Reynolds number is Re = h
√
gh/ν = 2.79 × 105. Note that the375

flow separates at the upper corner of the rectangular cylinder. It is well known

that flow past a circular cylinder at similar Reynolds numbers in an unbounded

fluid is characterised by vortex shedding behind the cylinder. However, our

numerical experiments suggest that the confinement effect due to asymmetric

boundaries (free surface on top and seabed at the bottom) suppresses vortex380

shedding in the present case. Energy that would be otherwise dissipated through

vortex shedding instead accumulates, increasing the intensity of the vorticity

field to the side of the obstacle. Our results suggest that the presence of strong

recirculating areas near the edges of the MSD is linked to the generation of

steeper waves (see again figure 8b).385

A similar confinement effect has recently been discovered by Zhong et al.

[40] for flow past a rectangular cylinder close to a free surface. We remark that

the laminar viscosity model used in (2) is appropriate to model viscous effects

directly only for low-to-moderate Reynolds numbers, e.g. at the onset of mo-

tion. When the flow becomes fully turbulent, additional numerical schemes for390

turbulence modelling are necessary. This remains a key challenge in Lagrangian

particle methods [17, 32].

4.3. Analysis of oscillatory motion

In this section, we consider the transient response of initially quiescent liquid

to the oscillatory motion of an MSD in an ocean of otherwise constant depth.395

This provides an idealised representation of horizontal earthquake oscillations,
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generating benchmark cases for further numerical and experimental analysis.

Oscillatory motion of the seabed is also interesting from a theoretical fluid dy-

namics viewpoint, because resulting wave-wave interactions could promote the

generation of higher order wave harmonics.400

We consider an MSD moving with variable speed u(t) and fundamental fre-

quency ω. The Keulegan-Carpenter number is KC = Uτ/L, where τ = 2π/ω

is the characteristic period of oscillation and L is the characteristic length scale

of the MSD. The KC number could be viewed as the ratio of the amplitude

of motion (of the moving bed deformation) to characteristic length of the bed405

deformation [41]. For oscillatory flow past a bluff cylindrical body (where L is

taken to be the cylinder diameter) KC is the ratio of drag to inertia, with [42]

reporting that drag becomes significant when KC > 15. Consider a Gaussian-

shaped MSD described by

f(x) = Ae−σ(x−x̄c)
2

. (14)

The characteristic dimension L can be taken as the distance between the points410

where f(x) becomes 1% of its maximum amplitude A, i.e. L = 3
√
2/
√
σ.

Let us investigate the simple case where the Gaussian MSD moves with

horizontal speed

u(t) = U sin(ωt). (15)

The MSD is initially centred in the middle of the tank, with centroid located at

xc(t) = x̄c +
U

ω
[1− cos(ωt)] , (16)

where xc(0) = x̄c = 6m. As an example, we consider U = 0.9m/s, and ω =415

1.22 rad/s. All other parameters are the same as in Section 3. The Froude

number is Fr = U/
√
gh ∼ 0.65. The Keulegan-Carpenter number is KC ∼ 3,

therefore inertia effects of an oscillating MSD on the generated wave field are

dominant. The contribution of viscous drag for an oscillating MSD will be

considered in future work.420

In the numerical simulations, the initial particle distance is set at l0 =

0.005m, the flume is 12m long and the number of particles is 108,680. The
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Figure 9: (a) Space-time plot of the free surface elevation non-dimensionalised with respect

to the MSD height A, for a Gaussian shaped landslide moving with speed u(t) given by (15).

(b) Energy spectrum of the free surface elevation at X = 12.5, corresponding to x = 8.5m.

The initial position (X = 0) of the MSD centroid is x̄c = 6m.

simulation runs over two full oscillation periods, the duration selected to cover

the transient regime immediately after the MSD starts to move (of interest in

more practical applications). Numerical damping zones of length 5h are inserted425

near the end walls of the flume to minimise reflection. The zones effectively act

as dissipative beaches at the ends of the tank. Here the velocity field is pre-

scribed to decrease quadratically [for details see 23].

Figure 9(a) shows that wave trains are generated alternately in both direc-

tions. Each wave train features the usual pattern of leading crest, trough and430

a tail of shorter dispersive waves. Each leading crest travels faster than the

trailing waves, and so catches up with the tails of the previous wave train and

amplifies the wave height as evident at (X,T ) = (10.5, 50). Nonlinear wave-

wave interactions give rise to higher harmonic components, as can be seen in

the energy spectrum of the free surface elevation depicted in figure 9(b). Most435

of the energy is carried by the first harmonic component at a forcing frequency

f = ω
2π ∼ 0.2 Hz, with second and third harmonics also generated by nonlinear

wave-wave interactions.
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Figure 10: Plots of the centroid speed Eq. (17) and position Eq. (18) in non-dimensional

variables.

We remark that the MSD invariably generates a wave train containing mul-

tiple frequencies [2, 13]. Dispersion causes individual waves in the wave train to440

travel at different speeds and have the capacity to interact with waves in preced-

ing or following wave trains, leading to amplification phenomena. The physical

picture becomes even more complicated in the nonlinear case, as wave-wave

interactions give rise to harmonic generation.

This phenomenon is exemplified by445

u(t) = U sin (ωt) sin (2ωt) =
U

2
[cos(ωt)− cos(3ωt)] . (17)

This represents a fast oscillation of frequency 2ω modulated by a slower oscilla-

tion of sub-multiple frequency ω, which can be also written as the cosine Fourier

sum of first and third harmonics. The centroid position is

xc(t) = x̄c +
U

2ω

[
sin(ωt)− 1

3
sin(3ωt)

]
, (18)

where again x̄c = 6m. The time-series of u(t) and xc(t) is plotted in figure 10.

A space-time plot of the free surface elevation in nondimensional coordinates is450

shown in figure 11. Note that leading crests and troughs are generated contin-

uously in both directions, as the MSD cyclically reverses its motion, and the

wave pattern is more complex than the previous cases.

24



0 1 2 3 4 5
0

1

2

3

4

5 10-5

Figure 11: (a) Space-time plot of the free surface elevation non-dimensionalised with respect

to the MSD height A, for a Gaussian shaped landslide moving with speed u(t) given by (17).

(b) Energy spectrum of the free surface elevation at X = 12.5, corresponding to x = 8.5m.

The initial position (X = 0) of the MSD centroid is xc = 6m.

After an initial transient, from T = 10 wave trains consisting of large crest-

trough groups propagate alternately on either side of the flume (indicated as455

C-T-C-T in figure 11a). In all these groups, the first crest is more pronounced

than the second one, whereas the second trough is deeper than the first one.

Figure 11(b) shows the energy spectrum of the free surface elevation atX = 42.5,

corresponding to x = 8.5m. Although most of the energy is concentrated at the

forcing frequencies f ∼ 0.2 Hz and 3f ∼ 0.6 Hz, even harmonics 2f and 4f are460

also generated as a result of nonlinear wave-wave interactions. Note also that

the 3rd harmonic is the most energetic, suggesting that 3rd order harmonics are

generated through nonlinear amplification.

This analysis can be extended to a spectrum of components comprising mul-

tiples of the fundamental frequency ω, i.e. by extending the Fourier series (17) to465

higher harmonics. This would allow modelling more realistic horizontal seabed

motions. A method for the separation of the underlying harmonic structure of

focused wave groups was proposed by [43] in the context of Stokes-like waves.

The method is based on the use of inverse simulations. In an extension of the

present work, the moving hump seabed profiles would be replaced by mirror-470
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image moving trough seabed profiles. The resulting wave elevation time series

could be added/ subtracted to give even/odd harmonics, following [43]. Such an

analysis has yet to be applied to MSD and would therefore offer an intriguing

future research direction.

5. Conclusions475

A Lagrangian particle-based model has been used to investigate the highly

nonlinear, viscous flow generated by a moving seabed deformation (MSD).

We find that bed deformation speed exerts different influences in shallow

and intermediate water depths. In shallow water, transcritical Fr promotes the

occurrence of leading solitary waves that travel at near critical speed. Weak480

nonlinearity is then balanced by weak dispersion, as discussed by [8, 9]. Highly

nonlinear dynamics leading to breaking of the precursor soliton occurs in super-

critical flow. In intermediate water depth, the dynamics is invariably dominated

by nonlinearity and dispersion even at low Froude number. As Fr increases, the

leading elevation wave becomes steeper and travels faster than the linear critical485

speed. Trailing dispersive waves also become increasingly steep, up to the point

of breaking.

In both shallow and intermediate water depths, breaking occurs when the

horizontal velocity component of a particle at the crest approaches the critical

speed. Our results suggest that the first wave to break is the leading solitary490

wave in shallow water and one of the trailing waves in intermediate water. Fur-

thermore, breaking appears to occur in intermediate water depth at lower values

of Froude number than in shallow water. This is a result of the interplay between

nonlinearity and full dispersion, which steepens the trailing waves in intermedi-

ate water. This result was recently demonstrated analytically by Michele et al.495

[13] and is now confirmed numerically by our model.

Our Lagrangian MPE model allows the simulation of highly nonlinear waves

generated by a steep seabed deformation, which was not possible to model using

previous Eulerian VOF methods, see for example [3]. Strong nonlinear dynam-
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ics occurs in the presence of a rectangular MSD. Pairs of separated vortexes500

develop near the upper corners of the deformation. Interestingly, the confine-

ment effect of the free surface and seabed prevents vortex shedding, while energy

accumulates near the edges of the MSD. Our model suggests that such vortex

dynamics is linked to strong amplification of wave steepness even at subcritical

Froude numbers.505

In this paper, we halted the simulations at the onset of wave breaking. Future

investigations are recommended in which the air phase is added to the model

so as to reproduce correctly air entrainment in breaking, viscous waves.

Finally, we investigated two cases where the MSD moves with variable speed

in an oscillatory motion. The results confirm that dispersive dynamics in in-510

termediate water promotes nonlinear wave-wave interactions which are in turn

responsible for the generation of higher harmonic wave components and wave

amplification. A theoretical analysis is underway to investigate the underlying

harmonic structure of such amplified groups.

Appendix A. Numerical convergence analysis515

In this section we examine the numerical convergence of the MPE results.

For non-negligible bed deformation and very small kinematic viscosity of water,

it is reasonable to expect that the largest contributions to the velocity field in

the Navier-Stokes equations (2) are given by the pressure gradient and grav-

ity. Given that the gravity term is calculated exactly, convergence of the MPS520

model is governed by the numerical approximation of the pressure gradient. As

discussed in [23], the error of the Taylor-based expansion (10) for the pressure

gradient is of order O(l0). Hence we expect the numerical results to converge

almost linearly with l0.

For example, consider the case in figure 4, where the initial particle spacing525

is l0 = 0.005m, corresponding to 54,680 particles. Here we carry out the same

simulation, but with l0 = 0.01, corresponding to 15,360 particles.

Figure A.12 shows free surface elevation profiles obtained for the analytical
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Figure A.12: Comparison between non-dimensional free surface elevation profiles predicted

by the present numerical MPE model and the approximate analytical solution proposed by

[13] at three non-dimensional time instants.

Coarse: l0/h = 0.05 Fine: l0/h = 0.025

R E R E

0.9572 0.0149 0.9614 0.0140

Table A.3: Correlation coefficient R and centred root-mean square (RMS) error between

present prediction and approximate analytical solution of free surface elevation with respect

to depth h = 0.2m for the cases considered in figure A.12.

solution of [13], a coarse-grained simulation using the present model with 15,360

particles (orange line), and a fine-grained simulation with 54,680 particles (black530

line). Though the plots are very similar, differences appear close to the extremes.

Quantitative analysis of the relative error is presented in tables A.3 and A.4.

Table A.3 lists the correlation coefficient R and the centred root-mean-square

(RMS) error, calculated according to the method described in [23], for the simu-

lations in figure A.12. Note that in both simulations the RMS error is E ≃ 1%.535

Increasing the number of particles has the beneficial effect of increasing the cor-

relation coefficient R and decreasing the RMS error E. Table A.4 shows that

the maximum relative error in free surface elevation with respect to depth at the

wave crest and trough for the fine-grained simulations is 0.006, corresponding to

an absolute error of 1.2× 10−3 m, as already discussed. On the other hand, the540

maximum relative error for the coarse-grained simulations is 0.01, corresponding

to an absolute error of 2 × 10−3 m. Hence halving the initial particle distance
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T Coarse: l0/h = 0.05 Fine: l0/h = 0.025

Crest Trough Crest Trough

1.05 0.003 0.002 0.002 0.001

4.20 0.008 0.004 0.006 0.002

6.3 0.01 0.008 0.006 0.006

Table A.4: Relative error between model predictions and analytical solutions of free surface

elevation with respect to water depth h at the largest crest and trough for each case considered

in figure A.12.

approximately halves the maximum relative error. This is in accordance with

the theoretical error analysis discussed above and demonstrates that the MPE

simulations converge almost linearly with initial particle distance.545
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