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Abstract 13 

To date, much effort has been placed on quantifying plastic pollution and understanding its negative 14 

environmental effects, arguably to the detriment of research and evaluation of potential 15 

interventions. This has led to piecemeal progress in interventions to reduce plastic pollution, which 16 

do not correspond to the pace of emissions. For substances that are used on a global scale and 17 

identified as hazardous, there is a need to act before irreversible damage is done. For example, the 18 

history of dichlorodiphenyltrichloethane’s (DDT) use has demonstrated that legacy chemicals with 19 

properties of persistence can still be found in the environment despite being first prohibited 50 years 20 

ago. Despite the growing evidence of harm, evidence to inform actions to abate plastic pollution lag 21 

behind. In part, this is because of the multifaceted nature of plastic pollution and understanding the 22 

connections between social, economic and environmental dimensions are complex. As such we 23 

highlight the utility of integrative systems approaches for addressing such complex issues, which 24 

unites a diversity of stakeholders (including policy, industry, academia and society), and provides a 25 

framework to identify to develop specific, measurable and time-bound international policies on plastic 26 

pollution and meet the ambitious yet necessary goals of the UN Plastic Treaty. 27 
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 30 

The continued and increasing quantities of plastic waste in managed systems and the environment 31 

has gained widespread attention and demand for change among the public, policymakers and industry 32 

(1, 2). Despite this awareness, use and generation of plastic waste continues to escalate (3). Over the 33 

past 20 years there has been a considerable body of research dedicated to understanding how plastic 34 

pollution affects the natural world. Early studies focussed on determining the sources and distribution 35 

of plastics in natural systems along with their environmental transport and fate (4-8) and they have 36 

documented the ubiquitous presence from the deepest parts of our ocean to the highest mountain 37 

peaks (9-11). 38 

Despite decades of research, our understanding of the impact of plastic pollution on the natural world 39 

remains incomplete. There is a general agreement among scientists that plastics have detrimental 40 

impacts on aquatic and terrestrial organisms and ecosystems (12-14), yet the specific mechanisms of 41 



action are not always clear at a cellular level. Given the diversity of chemical (polymer, additives) and 42 

physical (size, shape, topography) properties of plastics, concerns emerged about the ability of plastics  43 

to act as vectors for other hazardous chemicals (15) or pathogens (16) that could adversely affect 44 

organisms upon exposure. Questions exist surrounding how chronic plastic exposure at sub-lethal 45 

concentrations can lead to bioaccumulation, or even biomagnification, and how impacts may manifest 46 

when coupled with other global change stressors such as climate change or ocean acidification (17, 47 

18).  Despite these uncertainties there is a growing consensus that we have sufficient knowledge to 48 

justify action to reduce plastic leakage (19-21).   49 

For any substance that is used on a global scale and identified as hazardous, there is a need to act 50 

before irreversible damage is done to ecosystems, and lessons from other chemicals may apply to 51 

plastics. Consider two examples that are not directly linked to the issues with plastics, but which have 52 

analogies to the plastic pollution crisis. The application of dichlorodiphenyltrichloethane (DDT) is 53 

credited for preventing the spread of malaria and saving millions of people’s lives. However, concerns 54 

of its overuse leading to negative ecological effects became apparent as early as 1945 (22) just two 55 

years after industrial scale production started. However, it was not until 1970 that DDT was first 56 

banned (23), following which evidence emerged indicating links between DDT exposure and adverse 57 

human health effects (24, 25).  In recent years perfluoroalkyl and polyfluoroalkyl substances (PFAS), a 58 

broad group of >9000 chemical compounds (26), have been shown to adversely affect human health 59 

(27). Due to the number of chemical substances, it is not pragmatic to perform environmental risk 60 

assessments on each chemical (28), leaving a paucity of data and hindering the implementation of 61 

regulations, despite concerns over their potential toxicity emerging as early as the 1960s (29). A similar 62 

scenario is present with plastics, which encompass 10,000 monomers, additives and processing aids 63 

used in the life cycle of a product, many of which have not been widely studied (30), leading to a 64 

dearth of environmental risk data. It is clear that plastic products can bring societal benefit (31) and 65 

production continues at an insurmountable rate. The associated accumulation of end of life plastics  66 

has led to the breaching of the planetary boundary for novel entities (such as micro- and nanoplastics) 67 

(32); consequently business simply cannot continue as usual. However it is interesting to note that 68 

most of the benefits that are derived from the use of plastics could be achieved without the 69 

accumulation of end of life plastics in the natural environment – in short the problem is not about not 70 

using plastics it is about starting to use them more responsibly than we have to date.  71 

In all three cases presented above, it is the mismanagement of the chemicals throughout their life 72 

cycle which can lead to environmental problems. For the case of DDT, its environmental persistence 73 

has meant that 30 years after its widespread use was banned, it is still detectable in the environment 74 

(33). A similar scenario is occurring for PFAS. For plastics; to avoid their increasing pollution, which has 75 

the potential for global ramifications (32) appropriate action needs to occur now, but how best do we 76 

identify and prioritise these actions? 77 

A shift in the research perspective regarding environmental safety from that of linear, sequential 78 

thinking (i.e. problem formulation/characterization and then solving it if required), to a more 79 

precautionary and integrated approach whereby solutions to potential problems are investigated 80 

earlier in hazard identification is required. Plastic pollution has commonly been defined as a waste, 81 

resource, economic and a societal problem (34, 35). Framing the plastic pollution crisis from 82 

predominantly these viewpoints promotes different solutions. For example, viewing plastic as a waste 83 

problem may encourage clean-up activities and lead to improvements in waste management 84 

infrastructure and practises. On the other hand, plastic framed as a societal problem prompts 85 

responses that raise awareness and reduce consumption of plastic (behavioural change, levies, bans) 86 

(34, 35). Defining the plastic crisis from just one viewpoint neglects the interconnections between 87 



economic, societal, and environmental dimensions of plastic pollution, and fails to make marked 88 

progress to developing effective solutions to plastic pollution (36).  89 

To date, local and national policies have largely focussed on banning specific, often single-use, items 90 

such as plastic bags, straws and cotton swabs (37-39). Legislation has been passed in a number of 91 

countries, including the UK and US, to ban microplastics in rinse-off cosmetics, e.g. microbeads in facial 92 

scrubs (37, 40). The campaign received widespread cross-sectoral support because the removal or 93 

substitution of microbeads was relatively inexpensive and straightforward (41-43). It is projected that 94 

the majority of plastics in the environment are derived from mismanaged waste (44) and therefore 95 

banning these specific items may not be tackling the root cause of the systemic issue of plastic 96 

pollution. The microbead ban has also received criticism as it only tackles one application of the 97 

diverse and complex contaminant that is ‘microplastics’, which has been compared to banning one 98 

specific use of a pesticide (i.e. in the home), while leaving the market saturated with other diverse 99 

pesticides that require continued assessment for their environmental persistence and toxicity (45). 100 

Overall, the progression of these fractional measures does not correspond with the pace of plastic 101 

emissions. 102 

Understanding the multifaceted nature of plastic pollution and the connections between social, 103 

economic and environmental dimensions are complex. How the issue of plastic pollution is framed 104 

(i.e. as a waste, resource, societal or economic problem) is largely dependent upon the views and goals 105 

of the stakeholders involved. As such, it is vital to unite a diversity of stakeholders (i.e. industries, 106 

policymakers, academics, consumers) and disciplines such as natural sciences, material design, social 107 

sciences, economics and humanities (Figure 1). Holistically drawing together these separate areas 108 

brings a greater understanding of the opportunities available and the barriers for change. On the other 109 

hand, it undoubtedly adds a complexity, and potentially competing interests, when evaluating 110 

solutions. 111 

The adoption of an integrative systems approach provides a useful tool to cut through systemic 112 

complexity and understand the dynamics and connections between processes, and as such provides 113 

an inclusive and consolidative way to look at problem-solving (46). Systems thinking has been used to 114 

better understand linkages between air pollution and non-communicable disease (47), shipping-115 

related pollution (48) and where there may be leverage points for change (49). More recently, this 116 

approach has been used to identify priority areas across different plastic life-cycle stages, e.g., within 117 

the product design, production, use and end-of-life (50) in order to achieve a circular economy, and 118 

facilitate the development of regulations (51). System approaches provide a framework for the 119 

convergence and exploration of scenarios to reduce plastic pollution from waste, resource, economic 120 

and societal perspectives, to inform where tangible and effective actions lie across the life-cycle of 121 

plastic.  122 

A life-cycle view is central to the recent resolution to establish an international legally binding treaty 123 

to end plastic pollution by 2024 (20, 52). With limited time and resources, and varying political 124 

willingness of those United Nations Member States, establishing which actions may yield the greatest 125 

reduction in plastic pollution are required. Utilising an integrative system approach will facilitate with 126 

the identification the leverage points where transformative changes can be implemented to cap virgin 127 

plastic production (19) and prevent leakage into the environment (20, 53) in order to achieve the 128 

ambitious yet necessary goals of the UN Plastic Treaty (52). 129 

In summary, a great deal of effort has been placed on understanding the negative effects of plastic 130 

pollution in ecosystems, to the detriment of the early development and evaluation of interventions. 131 

Thinking to date has predominantly  been siloed, but the adoption of integrative systems approaches 132 



that consider the interrelations between problems and solutions from a diversity of disciplines (e.g. 133 

material design, social sciences, economics and humanities, industry and policy in addition to the 134 

natural sciences) are required to change the life cycle of plastic use from linear to a circular economy, 135 

and to develop specific, collaborative, measurable and time-bound global interventions on plastic 136 

pollution. 137 

 138 

 139 

Figure1. A conceptual summary illustrating how society and stakeholders (i.e. industry, policy, 140 
academia) interact at different levels, and the unity required between disciplines such as natural 141 
science, social science, economics and humanities to ensure positive transformative change in the 142 
plastic life-cycle. Arrows depict the flow of information, which is largely a two-way process. 143 
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