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Abstract

In recent years, conditional copulas, that allow dependence between
variables to vary according to the values of one or more covariates,
have attracted increasing attention. However, the literature mainly fo-
cused on the bivariate case, since the constraints on the multivariate
copulas correlation matrices would make the specifications of covari-
ates arduous. In high dimension, vine copulas offer greater flexibility
compared to multivariate copulas, since they are constructed using
bivariate copulas as building blocks. We present a novel inferential ap-
proach for multivariate distributions, which combines the flexibility of
vine constructions with the advantages of Bayesian nonparametrics,
not requiring the specification of parametric families for each pair cop-
ula. Expressing multivariate copulas using vines allows us to easily
account for covariate specifications driving the dependence between
response variables. We specify the vine copula density as an infinite
mixture of Gaussian copulas, defining a Dirichlet process prior on the
mixing measure, and performing posterior inference via Markov chain
Monte Carlo sampling. Our approach is successful as for clustering as
well as for density estimation. We carry out simulation studies and
apply the proposed approach to analyse a veterinary dataset and to
investigate the impact of natural disasters on financial development.
Supplementary materials are available online.

Keywords: Conditional Copulas, Dirichlet Process Prior, Heterogeneity, MCMC,
Mixtures, Vine Copulas.
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1 Introduction

In many real data applications we are often required to model jointly d ≥ 3

continuous random variables, denoted as Y1, . . . , Yd. The multivariate distri-

bution, which allows us to describe the joint behaviour of those variables, can

be denoted as F (Y1, . . . , Yd) = P (Y1 ≤ y1, . . . , Yd,≤ yd). However, complex

relations between data, particularly asymmetric and tail dependent associ-

ations, are often difficult to be modelled. The copula approach allows us to

express the multivariate distribution of a set of variables by separating the

marginals from the dependence structure. Copulas were introduced by Sklar

[1959] and, since then, they have been applied in a wide variety of fields (see,

for example, Kolev et al. [2006] for a review, and Genest et al. [2009] and Fan

and Patton [2014] for applications in finance and economics, respectively).

In recent years, the idea of modelling the effect of covariates on the de-

pendence structure described by copulas has attracted increasing attention.

However, literature contributions concentrated on the bivariate case, since the

specification of covariates for traditional multivariate copulas is challenging,

due the constraints on the correlation matrix. For example, Patton [2006],

Jondeau and Rockinger [2006] and Bartram et al. [2007] considered time-

varying dependence copula parameters in time series analysis. Acar et al.

[2011] estimated the functional relationship between copula parameters and

covariates adopting a non-parametric approach. Craiu and Sabeti [2012] in-

troduced a bivariate conditional copula model for continuous or mixed out-

comes. Abegaz et al. [2012] and Gijbels et al. [2011], respectively, suggested
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semiparametric and non-parametric approaches for the estimation of condi-

tional copulas, proving the consistency and the asymptotic normality of the

estimators.

For inference, several contributions in the literature follow the Bayesian

nonparametric approach. Wu et al. [2014] presented a Bayesian nonparamet-

ric method for estimating multivariate copulas using a DP mixture of mul-

tivariate skew-Normal copulas, and Wu et al. [2015] proposed a DP mixture

of bivariate Gaussian copulas. In both cases the authors performed posterior

inference via slice sampling [Walker, 2007, Kalli et al., 2011]. Dalla Valle

et al. [2018] extended the approach of Wu et al. [2015] to bivariate con-

ditional copulas, introducing dependence from covariates and implementing

Bayesian nonparametric inference via an infinite mixture model. Ning and

Shephard [2018] considered a different choice of prior for unconditional bi-

variate copulas, adopting a multi-partition Dirichlet-based Pólya tree prior.

In the conditional case, Levi and Craiu [2018] proposed to jointly estimate

the marginal distributions and the copula using Gaussian process (GP) mod-

els, where the calibration function follows a priori a single-index model based

on GPs, to handle high-dimensional covariates.

A different approach is followed by Grazian and Liseo [2017], who de-

scribed an approximate Bayesian inference method for semiparametric bi-

variate copulas, based on the empirical likelihood. This approach is extended

by Grazian et al. [2022], who compared several Bayesian methods to approx-

imate the posterior distribution of functionals of the dependence including
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covariates, using nonparametric models which avoid the selection of the cop-

ula function. However, these contributions are mostly limited to the bivari-

ate case, due to the challenges related to extending the conditional model in

higher dimension. Lu [2021], instead, focused on the nonparametric estima-

tion of conditional copulas employing the empirical checkerboard Bernstein

copula (ECBC) estimator, based on a hierarchical empirical Bayes model

that enables the estimation of a smooth copula function. Lu [2021]’s family

of copulas allows for both clustering and density estimation. The authors

propose nonparametric multivariate copulas for an arbitrary number of di-

mensions, with applications, in the unconditional case, to portfolios of 3 and

10 assets. In the conditional case they only focus on the bivariate conditional

copula estimation with a single covariate, underlying that the potential ex-

tensions to higher dimension and more covariates are possible. However, by

construction Lu [2021]’s approach (i) requires the covariate to be continuous

and (ii) the extensions to higher dimension and/or the accounting for more

covariates turns out to be complex. Moreover, although the functional com-

plexity helps for very accurate density estimations, on the other hand there is

a lack of interpretability of the estimates, particularly as the dimension and

the number of considered covariates increases. In this paper, we propose a

method that exploits the advantages of vine copulas and Bayesian nonpara-

metrics in terms of flexibility and, at the same time, returns easy-to-interpret

results, by providing a procedure for estimating the effect of one or more -

discrete or continuous - covariates on a d-dimensional dependence structure.
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Vines are multivariate copulas constructed by using only bivariate build-

ing blocks which can be selected independently [Czado, 2019]. This class of

flexible copula models has become very popular in the last years for many

applications in diverse fields such as finance, insurance, hydrology, marketing,

engineering, chemistry, aviation, climatology and health. The popularity of

vine copulas is due to the fact that they allow, in addition to the separation

of margins and dependence by the copula approach, tail asymmetries and

separate multivariate component modeling [Aas et al., 2009].

Sahin and Czado [2022] formulate a vine copula mixture model for contin-

uous data allowing all types of vine tree structures, parametric pair copulas,

and margins. However, their approach treat the number of mixture compo-

nents as known and does not account for covariates, mainly focusing on the

model selection problems. We propose a Bayesian nonparametric inferential

approach for multivariate conditional copulas, which we express using vines.

Conditional vine copulas were introduced by the frequentist work of Vatter

and Nagler [2018]. However, the Bayesian nonparametric approach proposed

in this paper circumvents the drawbacks of the frequentist approach, not re-

quiring the specification of copula families for each pair-copula in the vine.

We consider a DP mixture of vine copulas, assuming a DP prior distribu-

tion on the mixing measure of an infinite mixture of vine copulas. Bayesian

nonparametric inference for mixture copula models was adopted by Zhuang

et al. [2021] to group similar dependence structures. However, the authors

restricted their attention to the single-parameter unconditional copula func-
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tions and the bivariate scenario. Our approach has proven to be particularly

successful in the multivariate conditional case, where the effects of covariates

on the dependence structures are considered. Here, the constraints on the

correlation matrix to which traditional multivariate copulas are subjected to

would make the specifications of covariates arduous. Our approach overcomes

the limitations of multivariate copula modelling, combining the flexibility of

the vine construction with the advantages of the Bayesian nonparametric

approach and allowing for both clustering and density estimation.

Our method allows us to model the unobserved heterogeneity, which is

often present in real datasets, in a more natural and flexible way, compared to

the current state-of-the-art. Bayesian mixture models that account for het-

erogeneity were implemented for example by Buddhavarapu et al. [2016], who

incorporated heterogeneity in the model using a finite multivariate normal

mixture prior on the random parameters. Zhang and Wang [2018] adopted a

similar approach to capture heterogeneity in learning styles in a dataset col-

lected from a computer-based learning system. Following the Bayesian non-

parametric strand in the literature, Green and Richardson [2001] modelled

heterogeneity with DP based models illustrated in the context of univariate

mixtures. DP mixtures were also employed by Turek et al. [2021] to detect

heterogeneity in ecological datasets. However, to the best our knowledge,

this paper is the first to apply the Bayesian nonparametric approach to con-

ditional vine copulas mixtures for analysing heterogeneous data. The main

strength of our approach compared to traditional approaches is that it allows

6



us to capture the intrinsic heterogeneity in a more natural and flexible way.

In particular, temporal heterogeneity can be easily captured by a Bayesian

nonparametric vine model where the sequence of observations at each time

point is represented by a set of nodes in the vine linked by pair-copulas. The

vine structure is suitable, by its nature, to model the heterogeneity gener-

ated by the temporal sequence. In addition, the presence of different bivariate

copulas for each pair of variables makes the model much more flexible than

traditional approaches to capture heterogeneity in the data.

Presenting two applications, we first show how our model ensures enough

flexibility by providing accurate predictive samples. We also demonstrate

that our method allows us to capture the unobserved heterogeneity in a

real dataset that relates financial development in different countries to the

occurrence of natural disasters. Our approach identifies two distinct country

clusters. In the first one, the financial development temporal dependence is

negatively affected by natural calamities, while in the second one we observe a

positive effect. These results reflect government preparedness to face natural

hazards.

The remainder of the paper is organised as follows. Section 2 introduces

conditional vine copulas; Section 3 illustrates the DP mixture approach for

conditional vines; Section 4 focuses on the implementation of the model using

the MCMC sampler; Section 5 applies the proposed approach to simulated

datasets; while analyses of real datasets and discussions of results are reported

in Section 6.
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2 Conditional Copulas and Vines

Let us consider Y1, . . . , Yd, which are continuous random variables of in-

terest and let X = (X1, . . . , Xp) be a vector of covariates that may affect

the dependence between Y1, . . . , Yd. Then, the conditional joint distribution

function of (Y1, . . . , Yd) given X = x is

Fx(y1, . . . , yd) = P (Y1 ≤ y1, . . . , Yd ≤ yd|X = x),

under the assumption that such conditional distribution exists (see Gijbels

et al. [2012], Abegaz et al. [2012] and Acar et al. [2011]).

We denote the conditional marginals of Fx as

F1,x(y1) = P (Y1 ≤ y1|X = x),

. . .

Fd,x(yd) = P (Yd ≤ yd|X = x).

If the marginals are continuous, then Sklar’s theorem [Sklar, 1959] allows us

to write

Cx(u1, . . . , ud) = Fx
(
F−11,x (u1), . . . , F

−1
d,x (ud)

)
where F−1j,x (uj) = inf {yj : Fj,x ≥ uj}, for j = 1, . . . , d, are the conditional

quantile functions and uj = Fj,x(yj) are called pseudo-observations or u-

data. The conditional copula Cx fully describes the conditional dependence

structure of (Y1, . . . , Yd) given X = x. Therefore, the conditional joint distri-

bution of (Y1, . . . , Yd) given X = x can be written as

Fx(Y1, . . . , Yd) = Cx (F1,x(y1), . . . , Fd,x(yd)) .
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Let us denote the copula density corresponding to the distribution

Cx (F1x(y1), . . . , Fdx(yd)) as

cx (u1, . . . , ud) = cθ(u1, . . . , ud|x) = cθ(x)(u1, . . . , ud),

where θ is the parameter vector of the d-variate copula density. We assume

that the function θ(x) depends on a vector of parameters β such that

cθ(x)(u1, . . . , ud) = cθ(x|β)(u1, . . . , ud) = c1:d(u1, . . . , ud |θ(x|β)). (1)

The (1) can be written in terms of vines [Czado, 2019], where each pair-copula

depends on the vector of covariates X.

1

1, 2

2
1, 2

2, 3
1, 3; 2

3
2, 3

Figure 1: Trivariate vine representation.

For example, considering a tri-variate vine copula, depicted in Figure 1,

we obtain

c1:3(u1, u2, u3 |θ(x|β)) = c1,2(F1,x(y1), F2,x(y2) |θ12(x|β))

× c2,3(F2,x(y2), F3,x(y3) |θ23(x|β))

× c1,3;2(F1|2,x(y1|y2), F3|2,x(y3|y2) |θ13;2(x|β)),

where θ13;2(x|β) denotes the parameter function of the pair copula c1,3;2(·, ·),

F1|2,x(·|·) is the conditional distribution of Y1 given Y2 and X = x, F3|2,x(·|·)
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is the conditional distribution of Y3 given Y2 and X = x, θ12(x|β) denotes

the parameter function of the pair copula c1,2(·, ·) and θ23(x|β) denotes the

parameter function of the pair copula c2,3(·, ·).

In higher dimension, the vine representation can be generalized to special

vine distribution classes, the most popular of which are D-vines (see Bedford

and Cooke [2001], Aas et al. [2009] and Czado [2019]). The conditional D-vine

decomposition takes the form

c1:d(u1, . . . , ud |θ(x|β)) =

d−1∏
`=1

d−∏̀
k=1

ck,`+k;k+1,...,k+`−1
{
Fk|k+1,...,k+`−1,x(yk|yk+1,...,k+`−1),

F`+k|k+1,...,k+`−1,x(y`+k|yk+1,...,k+`−1) |θk,`+k;k+1,...,k+`−1(x|β)
}
.

3 Dirichlet Process Mixture of Conditional Vine

Copulas

Vine copulas require a model selection step where a copula family is selected

for each bivariate pair-copula forming the vine. However, the complexity of

the problem increases with the vine dimension. As a solution, we propose

a hierarchical approach based on the vine construction. More specifically,

we adopt a Bayesian nonparametric approach, which overcomes the need of

specifying the families of each pair-copula. Moreover, since often it is hard

to consider the effect of the covariates on the dependence structures, par-
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ticularly when the copula matrices are unstructured, we provide a general

methodology which also allows to account for covariates in multivariate de-

pendence structures, exploiting the flexibility of the pair-copula construction.

More precisely, we consider the effect of covariates on the dependence struc-

tures between the paired variable, leveraging the information deriving from

the covariates for a more accurate clustering.

Given a set of N observations, let us consider the random vectors of inter-

est Y1, . . . ,Yd and the N×pmatrix of observed covariates X = (X1, . . . ,Xp).

As in Müller and Rosner [1997] and Müller and Quintana [2010], we define

the covariates as random variables, such that X corresponds to N realizations

of the independent random variables with densities fh(xh), with h = 1, . . . , p.

Starting from a simple example, let us consider the three-dimensional case

with d = 3 where Y1,Y2,Y3 are random vectors of interest and (X1, . . . ,Xp)

are covariate vectors influencing the dependence between the variables of in-

terest. Let F1,x(y1i), F2,x(y2i), F3,x(y3i), with i = 1, . . . , N , be the conditional

cdfs of the variables of interest, and let X = (X1, . . . ,Xp) be the N × p

matrix of observed covariates, such that xi,h corresponds to the i-th realiza-

tion of the h-th covariate. Adopting the 3-dimensional D-vine specification

illustrated in Figure 1, we model the dependence between the variables of

interest as the product of d = 3 pair-copulas indexed by the vector of pa-

rameters β =
(
β012 , β112 , . . . , βp12 , β023 , β123 , . . . , βp23 , β013;2 , β113;2 , . . . , βp13;2

)
,

where the subscripts {12}, {23}, {13; 2} denote the pair-copulas in the vine.

We assume that the covariate distributions are governed by the matrix of
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parameters φ = (φ1, . . . , φp) where the dimension of φ depends on the co-

variate kernels. For example, if we assume each covariate Xh to be Normally

distributed with parameters (µh, σh), for h = 1, . . . , p, φ will be a (p × 2)-

dimensional matrix. Let us consider a random probability measure G and a

vector of parameters ξ = (β,φ) defined on the parameter space Ξ. Let us

assume that f(x) =
∏p

h=1 fh(xh) denotes the product of the densities of the

covariates, and cξ(·, ·, ·|x) denotes the 3-variate conditional copula density

arising from the vine. We rewrite the density fG(x) · cG(·, ·, ·|x) as an infi-

nite mixture of vine copulas with kernel fξ(x) · cξ(·, ·, ·|x) with respect to the

mixing measure G, such that

fG(x)cG(F1,x(y1), F2,x(y2)|x)cG(F2,x(y2), F3,x(y3)|x)

× cG(F1|2,x(y1|y2), F3|2,x(y3|y2)|x) =∫
fξ(x)cξ(F1,x(y1), F2,x(y2)|x)cξ(F2,x(y2), F3,x(y3)|x)

× cξ(F1|2,x(y1|y2), F3|2,x(y3|y2)|x)dG(ξ).

Generalizing, let us consider d-variables of interest Y1, . . . , Yd. Given a

set of N observations, let us assume that F1,x(y1i), . . . , Fd,x(ydi), with i =

1, . . . , N , are the conditional cdfs of the d variables of interest. The multi-

variate dependence structure is specified by a vine defined as the product of

ν = d(d− 1)/2 pair copulas, indexed by the ν× (q+ 1)-dimensional vector of

parameters β, while fh(xh), h = 1, . . . , p, are independent random variables

with parameters φ = (φ1, . . . , φp). Note that q ≥ p and its value depends

on the chosen link function; for example if the link is linear q = p. Let the
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vector of parameters ξ = (β,φ) be defined on the parameter space Ξ. As

before, we rewrite the density fG(x) · cG(·, . . . , ·|x) as an infinite mixture of

conditional vine copulas with kernel fξ(x) · cξ(·, . . . , ·|x) with respect to the

mixing measure G, that in the D-vine case is

fG(x)
d−1∏
`=1

d−∏̀
k=1

cG
(
Fk|k+1,...,k+`−1,x(yk|yk+1,...,k+`−1),

F`+k|k+1,...,k+`−1,x(y`+k|yk+1,...,k+`−1)|x
)

=∫
fξ(x)

d−1∏
`=1

d−∏̀
k=1

cξ
(
Fk|k+1,...,k+`−1,x(yk|yk+1,...,k+`−1),

F`+k|k+1,...,k+`−1,x(y`+k|yk+1,...,k+`−1)|x
)
dG(ξ) =∫

fφ(x)
d−1∏
`=1

d−∏̀
k=1

cθ(x|β)
(
Fk|k+1,...,k+`−1,x(yk|yk+1,...,k+`−1),

F`+k|k+1,...,k+`−1,x(y`+k|yk+1,...,k+`−1)|x
)
dG(φ, β).

With a Dirichlet Process (DP) prior on the mixing measure G, we get a

Dirichlet Process Mixture (DPM) of conditional vine copulas, which may be

represented as

fφ(x)cθ(x|β)(u1, . . . , ud |x) =
∞∑
j=1

ωj fφj
(x)c1:d(u1, . . . , ud |θ(x|βj)),

where the weights ωj sum to 1.

The posterior distribution Π(G|Y,X) is a mixture of DP models, mixing

with respect to the latent variables ξi specific to each observation i for i =

1, . . . , N :

G|Y,X ∼
∫
DP

(
MG0 +

N∑
i=1

δφiβi

)
dΠ(φ,β|y,x),
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where δt denotes the Dirac measure at t.

In general, the choice of the kernel for DPM models should consider two

aspects. From a computational point of view, the conjugacy between the

centering measure G0 and the kernel fφcβ is particularly convenient. A more

important feature is the flexibility of the chosen density. In our case, we

need to specify a product of bivariate copula densities and a product of in-

dependent densities for the covariates. The choice of the covariate densities

will depend on the nature of Xh, h = 1, . . . , p. On the other hand, in order

to model the dependence structure between the variables, we need a copula

which is able to capture various kinds of dependence and may approximate

different copula families. Wu et al. [2015] showed that bivariate density func-

tions on the real plain can be arbitrarily well approximated by a mixture of a

countably infinite number of bivariate normal distributions. Dalla Valle et al.

[2018] proposed a Bayesian nonparametric estimation of bivariate conditional

copulas, with a Gaussian copula as kernel of a DPM. Following the previous

approaches, we propose as kernel the product of the density of a Gaussian

vine-copula and the densities of covariates which depend on the nature of X.

4 MCMC Sampling for DPM of Conditional

Vine Copulas

We propose an MCMC sampler by using a Pólya-urn scheme for integrating

out of the model the random distribution function from the Dirichlet process.
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In DPMmodels there are two levels of conjugacy: between the DP random

measure Π(G) and its posterior Π(G|y), and between the kernel element fξcξ

and the centering measure G0, which plays the role of prior on ξ. When

considering non-conjugate DP mixtures, we refer to the case where cξ and G

are not conjugate; a sampler for this case is the no gaps sampler, proposed

by MacEachern and Müller [1998], which still relies on conjugacy of the DP

posterior. In our case, we choose as kernel the product of the density of a

Gaussian vine-copula and the densities of the covariates which depend on

the nature of X. However, we lose the conjugacy between the kernel and the

centering measure G0 because of the presence of the covariates.

Let (u1i, . . . , udi) = (F1,x(y1i), . . . , Fd,x(ydi)), for i = 1, . . . , N , be pseudo-

observations defined in the hypercube Id. Let X be the N × p matrix of

covariates. The Gaussian bivariate copula is governed by the correlation pa-

rameter ρ ∈ (−1, 1). Following the conditional copula literature, the correla-

tion parameter is associated to the covariates through a link function g, such

that

ρ(x|β) = g−1(η(x|β))

where g−1 is the inverse link function (that we assume to be the Fisher’s

transform) and η(·) is a calibration function, which, following Dalla Valle

et al. [2018], will need to be specified. An alternative approach is proposed

by Wehrhahn et al. [2020], who consider a predictor-dependent stick-breaking

prior distribution for the collection of predictor-dependent random measure,

avoiding the specification of the calibration function. From now on we will
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index the conditional copula functions with β, i.e. cβ(F (yi), F (yj)|x).

In our setting, we need to define a centering measure for the parameters

of the ν = d(d − 1)/2 pair-copulas forming the vine and the parameters of

the covariate densities. The centering measure dimension will depend on the

number of covariates and on the probability models assumed for the covari-

ates. Hence, we need to define a (ν × q + r)-dimensional centering measure,

where q represents the number of unknown parameters of the calibration

function for each pair copula and r denotes the total number of unknown

parameters of the covariate densities. Considering the general D-vine con-

struction, we assume, as kernel density of the mixture, the product of the

bivariate densities

fφ(x)
d−1∏
`=1

d−∏̀
k=1

cβ
(
Fk|k+1,...,k+`−1,x(yk|yk+1,...,k+`−1),

F`+k|k+1,...,k+`−1,x(y`+k|yk+1,...,k+`−1)|x
)
.

In this case, the model parameters are included in the (ν × q + r)-

dimensional random vector ξ = (β,φ). Since the discreteness of the DP

implies a positive probability for ties among the latent elements of the vector

ξ = (β,φ), the DPM induces a probability model on clusters. The detailed

illustration of the MCMC sampler for DPM of conditional vine copulas is

included in the Supplementary Material.

In the next Sections we apply the proposed model to both simulated and

real data.
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5 Simulation Study

In order to assess the validity of the proposed model from different perspec-

tives, we ran an extensive simulation study. We considered various scenarios,

generating data from several multivariate frameworks, and we showed that

the model is reliable for both clustering and density estimation. With sim-

ulations in high dimensions, we compared the performances of our sampler,

by proving the stability of the sampler and checking for the computational

times. The procedure and the results are described in detail in Section S2

of the Supplementary Material. Finally, we compared the proposed method

with an alternative Bayesian nonparametric model. In particular, Lu [2021]

proposed the empirical checkerboard Bernstein copula (ECBC), a flexible

method for the estimation of copula functions in a multivariate framework.

However, conditional copulas are only presented in the bivariate case. There-

fore, we compared the performances of the ECBC with the DPM of uncon-

ditional vine copulas with a further simulation study, by generating data

from Hierarchical Archimedean Copulae (HAC) (for more details see Okhrin

and Ristig [2014]). Following Lu [2021], in the ECBC we have assumed hi-

erarchical shifted Poisson as emprical prior distributions on the polynomials

degrees, while in the DPM of vine copulas, we have defined total mass pa-

rameter M = 1 and flat Normal distribution centred on zero on the Fisher

transform of each pair-copula parameter. We considered four complex sce-

narios: (i) a three-dimensional structure generated from a Hierarchical Frank

Copula with parameters ζ = (1.5, 0.75), (ii) a three-dimensional Hierarchical
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Gumbel Copula with parameters ζ = (1.6, 2.1) (iii) a three-dimensional t dis-

tribution and (iv) a three-dimensional Hierarchical Ali-Mikhail-Haq Copula

with parameters ζ = (0.6, 0.9). In (i) and (ii) we generated n = 500 observa-

tions. The posterior predictive density estimates are presented in Figure S7

of the Supplementary materials. In (iii) and (iv) we considered two samples

of dimension n = 50, in order to compare the performances of the models

with few observations. The results are presented in Figure 2.

6 Applications and Discussion

In this section we present two applications to real datasets. The first one, a

veterinary application, demonstrates the potential of the proposed approach

in presence of missing data for the covariates, and its accuracy for density

estimation compared to another approaches. The second application, on the

other hand, focuses on economic data and mainly demonstrates the clustering

potential of the proposed approach. Finally, we present a short discussion.

6.1 Veterinary Dataset

We present a first application to a Veterinary Medicine (VM) dataset, used

previously by Vallée et al. [2018]. Since most New Zealand sheep flocks are not

vaccinated, we investigated the impact of Leptospira serovars Hardjo and/or

Pomona on the weight of the sheep. The dataset 1 comprises the weight at

three different time points of N = 983 sheep, together with three binary
1Available at https://data.mendeley.com.
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Figure 2: Simulated samples with Normal margins (left panels) vs posterior

predictive densities of DPM of vines (middle panels, continuous contour line)

and ECBC (right panels, dashed contour line). In the top panels (rows 1 and

2) the sample of n = 50 observations is generated from a multivariate t

distribution. In the bottom panels (rows 3 and 4) the sample of n = 50

observations is generated from a Hierarchical Ali-Mikhail-Haq Copula.
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covariates, as illustrated in Table S3 of the Supplementary Material. We de-

fined a conditional D-Vine structure to account for the effect of the covariates

on the estimation of the dependencies between the weight values over time.

In particular, after transforming the variables into pseudo-observations, we

defined the link function η(x|β) = β0 +βV xV +βHxH +βPxP , where the sub-

script V denotes vaccine, H Hardjo and P Pomona. Despite the presence of

several missing values for the covariates, our model structure allows for easily

overcoming this issue: since the model requires distributional assumptions for

the covariates, missing data imputation is immediately dealt with by sam-

pling from the posterior predictive distribution of the covariates f(x̃|x,Ψ) =∫
f(x̃|x, φ,Ψ)π(φ|x,Ψ)dφ. We set the total mass parameter as M = 1 and

define the centering measure as G0 ≡ Beta3 (aφ, bφ) × N(3×3)(µ,Σ), with

a = b = 1. We drew 10000 observations of the posterior distributions of

the model parameters with a burnin of 2000 iterations, estimating Ψ = 3

clusters. Results are reported in Table S4 of the Supplementary Material.

For comparison purposes, we also fitted the VM dataset with the Gener-

alized additive model for pair-copula constructions (GAM-PCC) by Vatter

and Nagler [2018], assuming that covariates values are missing-at-random.

In Figure S8 of the Supplementary Material we compare the predictive dis-

tributions of the DPM of conditional vines and the GAM-PCC, fitted via

the gamCopula package available in R, assuming linear covariates. Although

the GAM-PCC is fast to implement from a computational perspective, there

are two critical points to consider: (i) it does not allow to treat observations
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with missing values for the regressors, causing a reduction of the sample to

N = 548, and (ii), as it can be noticed from the predictive samples, it does

not ensure the flexibility of a mixture. Indeed, the approach of Vatter and

Nagler [2018] requires the specification of a probability density for each pair

copula via Akaike information criterion (AIC); specifically, the model selected

the the families t, Gumbel and Gaussian, respectively, for the pair copulas

c12, c13 and c13|2.

6.2 Financial Development and Natural Disasters Data

The second application is to a heterogeneous dataset to study the impacts of

worldwide natural disasters on international financial development. In recent

years several authors in the literature have focused on the relationship be-

tween economic growth and natural disasters. Toya and Skidmore [2007] show

that countries with higher income, higher educational attainment, greater

openness, more advanced financial systems and smaller governments tend to

suffer fewer losses in presence of natural disasters. Felbermayr and Gröschl

[2014] built a comprehensive database of disaster events and their intensities

from primary geophysical and meteorological information, revealing a sub-

stantial negative and robust average impact effect of disasters on growth. So

far, researchers have mostly dealt with financial development studies using

several proxies as measures of financial depth, such as the ratio of private

credit to GDP or stock market capitalization to GDP. For example, Keerthi-

ratne and Tol [2017] proposed an empirical analysis of the effect of the oc-
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currence of natural disasters on financial development proxies. However, this

approach does not take into account the complex nature of financial develop-

ments. The International Monetary Fund (IFM) provides, for each country,

the Financial Development (FD) index, which summarizes how developed

financial institutions and financial markets are in that specific country. The

index considers several factors, such as size and liquidity of the markets,

ability of individuals and companies to access financial services, ability of

institutions to provide financial services at low cost and with sustainable rev-

enues and level of activity of the capital markets. We constructed a dataset

merging information from the IFM 2 and the Emergency Events Database 3

and we analyzed the impact of natural disasters on the dependence between

the FD index values in several years. In particular, we investigated how the

occurrence of a natural disaster affects the time dependence between the FD

index values in the four years following the disaster.

The original data included observations of the FD index (expressed in

percentages) in 181 countries from 1980 to 2019 with annual frequency. We

are interested in the effect of a single natural disaster on the FD index in

the 4 years following the event. Note that, if more that one natural disaster

occurred in the considered 4 years interval, the observation was discarded.

Based on the original data, we constructed a study dataset where each obser-

vation corresponds to a set of 4 consecutive year periods affected by a natural

disaster in the first year. Hence, each country may be represented by more
2Available at https://data.imf.org.
3Available at https://www.emdat.be.
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than one observation. Our final study data comprises N = 525 observations

(for n = 86 different countries) and four variables containing the FD indexes

for each one of the 4 considered years. The dataset is structured as reported

in Table S5 of the Supplementary Material, where ti denotes the number of

time periods for each country, with j = 1, . . . , ti and i denotes the country,

with i = 1, . . . , n = 86. We applied the proposed Bayesian nonparametric

unconditional vine mixture approach to the study dataset, constructing a

4-dimensional vine copula, with marginals denoting the FD index in 4 con-

secutive years. The adoption of an infinite mixture approach allows us to con-

trol for both individual and temporal heterogeneity in the dataset. Since the

marginal variables (yi,ti , yi,ti+1, yi,ti+2, yi,ti+3), with i = 1, . . . , n, are expressed

in percentages, they are defined on the support [0, 1]. Hence, we assume the

marginal distributions to be independent Beta(aj, bj) with aj and bj defined

a priori Gamma(1, 1) for j = 1, . . . , 4. Inference for the margins is separately

performed via Metropolis-Hastings. Results are reported in Table S6 of the

Supplementary Material. We consider the occurrence of a natural disaster

to be a covariate in our conditional vine copula model. Since natural disas-

ters are defined basing on their intensity, which is measured using the total

damage as proxy variable, we constructed the binary covariate taking value

X = 1 if the total damage is over 100 million dollars and X = 0 otherwise.

Since the model requires a distributional assumption on the covariate, we

defined X ∼ Bernoulli(φ) assuming a priori φ ∼ Beta(aφ, bφ). Moreover, we

chose a linear calibration function for each pair copula ηs(x|β) = β0s + β1sx,
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where s = 1, . . . , 6 denotes the pair-copulas in the vine. For the definition of

kernel of the mixture we adopt a D-vine approach, since this specific type of

vine better describes temporal sequences and easily takes the time ordering

of consecutive events into account [Barthel et al., 2019]. We therefore con-

sider a 4-dimensional D-vine, where the marginals are the FD indexes of the

4 consecutive years and with covariate given by the natural disaster intensity.

We set the total mass parameter as M = 1 and define the centering measure

as G0 ≡ Beta (aφ, bφ) × N(6×2)(µ,Σ), and we run the MCMC sampler for

10000 iterations with a burnin of 2000.

The results of the application of our model to the data are graphically

represented in Figures 3 and 4. Our model estimates two clusters, as shown in

Figure 3. In Table S7 of the Supplementary Material we report the resulting

mean, standard deviation and credibility intervals for the posterior densities

of the calibration functions parameters. The top part of the table shows the

results for the first cluster ψ = 1, while the bottom part shows the results of

the second cluster ψ = 2. Figure 4 reveals that the two mixture components

present substantial differences in terms of how they are impacted by natural

disasters. For the first cluster (ψ = 1) the model estimates a general negative

effect which tends to remain constant until the fourth year; instead, for the

second cluster (ψ = 2) the model estimates a positive effect of the natural

disaster on the time dependence between yearly FD indexes.

Let w1 and w2 be the mixture weights for the two estimated components,

i.e. the variables indicating the proportion of observations belonging to each
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Figure 3: Results from the financial development and natural disasters anal-

ysis. The top left panel shows the barplot of the mode of the number of

observed mixture components. The top right and the bottom panels show

the scatterplots of the observed u-data for the first vine tree; the dots de-

note the observations belonging to the first cluster ψ = 1, while the triangles

denote the observations belonging to the second cluster ψ = 2.
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Figure 4: Results from the financial development and natural disasters anal-

ysis. The top left panel shows the barplot of the number of observations

allocated to the two estimated mixture components. The top right panel

compares the posterior densities of the calibration function parameter β112

(which is related to the first time interval from ti to ti + 1, with i = 1, . . . , n)

for the first (solid line) and the second (dashed line) mixture components.

The left and right bottom panels show, for the first and second mixture com-

ponents, the boxplots of the calibration function parameters β112 (left; first

time interval from ti to ti + 1), β123 (middle; second time interval from ti + 1

to ti + 2) and β134 (right; third time interval from ti + 2 to ti + 3) for the first

vine tree.
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group. Table S8 shows, on the left, the mean, standard deviation and credibil-

ity intervals for the posterior densities of the covariate parameter for the two

estimated mixture components (ψ = 1 in the left column, ψ = 2 in the right

column). On the right, Table S8 shows the same statistics for the mixture

weights. As reported in Table S8, and in the barplot of Figure 4, the 85%

of the observations belong to the first cluster, meaning that in most of the

cases natural disasters are expected to have a negative effect on the financial

development. However, from Table S8 we can get another interesting point:

the expected value of the posterior probability of natural disasters E(φ|x)

is very low in the first and very high in the second cluster. This result may

suggest a further insight: the less a natural disaster was expected, the less the

government was prepared for that event. On the contrary, if the occurrence

of a natural disaster was expected, governments and financial institutions

were prepared for that event and were able to face the possible effects on the

financial structure of the country. In Table S9 of the Supplementary Material

we report the list of countries, years and type of natural disasters which had

an estimated positive effect on the FD index.

6.3 Discussion

The results of the applications show that the proposed approach allows us

to model individual as well as temporal heterogeneity in a natural way. Our

method is based on the use of a single DP for all the copulas in the vines.

An alternative approach would be to model each pair copula as a DPM,
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by assuming a vector of independent random probability measures on the

vine copulas mixing measures. This approach is introduced and discussed by

Griffin and Leisen [2017] and Griffin and Leisen [2018], who use normalised

versions as priors in Bayesian non-parametric mixture models. Also, Camer-

lenghi et al. [2019] propose a class of latent nested processes, which preserve

heterogeneity a posteriori, even when distinct values are shared by different

samples. This approach would ensure more flexibility, with benefits to den-

sity estimation and heterogeneity control. Vectors of independent random

probability measures would allow us to extend our methodology and will be

object of future work. However, there are two issues to consider: first, the

computational cost would further increase, making it extremely challenging

to implement this approach in high dimension or with large sample sizes;

secondly, if applied to clustering problems, the interpretation of the results

would be harder.

Supplementary Material

Appendix: the supplemental files include an overview of the computational

methods for DPM, a detailed illustration of MCMC sampling for DPM

of conditional vine copulas, extensive simulation studies and the Tables

and Figures of the applications and discussion Section.

R code: the supplemental files include a folder with the R scripts imple-

menting the methodology described in the paper and a readme file.

28



Acknowledgments

The authors are grateful to the Editor, Associate Editor and Reviewers for

their comments which have considerably improved the quality of the article.

The authors also thanks Prof. Elena De Giuli, for stimulating discussions on

an earlier version of the paper, and Lu Lu for kindly sharing the R code of the

model developed by her. The second author was supported by EPSRC project

Dependence Modelling with Vine Copulas for the Integration of Unstructured

and Structured Data, grant number EP/W021986/1.

Declarations of interest

The authors report there are no competing interests to declare.

References

Kjersti Aas, Claudia Czado, Arnoldo Frigessi, and Henrik Bakken. Pair-

copula constructions of multiple dependence. Insurance: Mathematics and

economics, 44(2):182–198, 2009.

Fentaw Abegaz, Irène Gijbels, and Noël Veraverbeke. Semiparametric esti-

mation of conditional copulas. Journal of Multivariate Analysis, 110:43–73,

2012.

Elif F Acar, Radu V Craiu, and Fang Yao. Dependence calibration in con-

29



ditional copulas: A nonparametric approach. Biometrics, 67(2):445–453,

2011.

Nicole Barthel, Candida Geerdens, Claudia Czado, and Paul Janssen. Depen-

dence modeling for recurrent event times subject to right-censoring with

d-vine copulas. Biometrics, 75(2):439–451, 2019.

Söhnke M Bartram, Stephen J Taylor, and Yaw-Huei Wang. The euro and

european financial market dependence. Journal of Banking & Finance, 31

(5):1461–1481, 2007.

Tim Bedford and Roger M Cooke. Probability density decomposition for

conditionally dependent random variables modeled by vines. Annals of

Mathematics and Artificial intelligence, 32(1-4):245–268, 2001.

Prasad Buddhavarapu, James G Scott, and Jorge A Prozzi. Modeling unob-

served heterogeneity using finite mixture random parameters for spatially

correlated discrete count data. Transportation Research Part B: Method-

ological, 91:492–510, 2016.

Federico Camerlenghi, David B Dunson, Antonio Lijoi, Igor Prünster, and

Abel Rodríguez. Latent nested nonparametric priors (with discussion).

Bayesian Analysis, 14(4):1303–1356, 2019.

V Radu Craiu and Avideh Sabeti. In mixed company: Bayesian inference for

bivariate conditional copula models with discrete and continuous outcomes.

Journal of Multivariate Analysis, 110:106–120, 2012.

30



Claudia Czado. Analyzing Dependent Data with Vine Copulas. Springer,

2019.

Luciana Dalla Valle, Fabrizio Leisen, and Luca Rossini. Bayesian non-

parametric conditional copula estimation of twin data. Journal of the Royal

Statistical Society: Series C (Applied Statistics), 67(3):523–548, 2018.

Yanqin Fan and Andrew J Patton. Copulas in econometrics. Annu. Rev.

Econ., 6(1):179–200, 2014.

Gabriel Felbermayr and Jasmin Gröschl. Naturally negative: The growth

effects of natural disasters. Journal of development economics, 111:92–

106, 2014.

Christian Genest, Michel Gendron, and Michaël Bourdeau-Brien. The advent

of copulas in finance. The European Journal of Finance, 15(7-8):609–618,

2009.

Irène Gijbels, Noël Veraverbeke, and Marel Omelka. Conditional copulas,

association measures and their applications. Computational Statistics &

Data Analysis, 55(5):1919–1932, 2011.

Irene Gijbels, Marek Omelka, Noël Veraverbeke, et al. Multivariate and func-

tional covariates and conditional copulas. Electronic Journal of Statistics,

6:1273–1306, 2012.

Clara Grazian and Brunero Liseo. Approximate bayesian inference in semi-

parametric copula models. Bayesian Analysis, 12(4):991–1016, 2017.

31



Clara Grazian, Luciana Dalla Valle, and Brunero Liseo. Approximate

Bayesian conditional copulas. Computational Statistics and Data Anal-

ysis, 169:107417, 2022.

Peter J Green and Sylvia Richardson. Modelling heterogeneity with and

without the dirichlet process. Scandinavian journal of statistics, 28(2):

355–375, 2001.

Jim Griffin and Fabrizio Leisen. Modelling and computation using ncorm

mixtures for density regression. Bayesian Analysis, 13(3):897–916, 2018.

Jim E Griffin and Fabrizio Leisen. Compound random measures and their

use in bayesian non-parametrics. Journal of the Royal Statistical Society:

Series B (Statistical Methodology), 79(2):525–545, 2017.

Eric Jondeau and Michael Rockinger. The copula-garch model of conditional

dependencies: An international stock market application. Journal of in-

ternational money and finance, 25(5):827–853, 2006.

Maria Kalli, Jim E Griffin, and Stephen G Walker. Slice sampling mixture

models. Statistics and computing, 21(1):93–105, 2011.

Subhani Keerthiratne and Richard SJ Tol. Impact of natural disasters on

financial development. Economics of Disasters and Climate Change, 1(1):

33–54, 2017.

Nikolai Kolev, Ulisses dos Anjos, and Beatriz Vaz de M Mendes. Copulas: a

review and recent developments. Stochastic models, 22(4):617–660, 2006.

32



Evgeny Levi and Radu V Craiu. Bayesian inference for conditional copulas

using gaussian process single index models. Computational Statistics &

Data Analysis, 122:115–134, 2018.

Lu Lu. Multivariate Dependence Using Nonparametric Copula Models. North

Carolina State University, 2021.

Steven N MacEachern and Peter Müller. Estimating mixture of dirichlet

process models. Journal of Computational and Graphical Statistics, 7(2):

223–238, 1998.

Peter Müller and Fernando Quintana. Random partition models with regres-

sion on covariates. Journal of statistical planning and inference, 140(10):

2801–2808, 2010.

Peter Müller and Gary L Rosner. A bayesian population model with hierar-

chical mixture priors applied to blood count data. Journal of the American

Statistical Association, 92(440):1279–1292, 1997.

Shaoyang Ning and Neil Shephard. A nonparametric bayesian approach to

copula estimation. Journal of Statistical Computation and Simulation, 88

(6):1081–1105, 2018.

Ostap Okhrin and Alexander Ristig. Hierarchical archimedean copulae: the

hac package. Journal of Statistical Software, 58:1–20, 2014.

Andrew J Patton. Modelling asymmetric exchange rate dependence. Inter-

national economic review, 47(2):527–556, 2006.

33



Özge Sahin and Claudia Czado. Vine copula mixture models and clustering

for non-gaussian data. Econometrics and Statistics, 22:136–158, 2022.

A Sklar. Fonctions dé repartition à n dimension et leurs marges. Université

Paris, 8(3.2):1–3, 1959.

Hideki Toya and Mark Skidmore. Economic development and the impacts of

natural disasters. Economics letters, 94(1):20–25, 2007.

Daniel Turek, Claudia Wehrhahn, and Olivier Gimenez. Bayesian non-

parametric detection heterogeneity in ecological models. Environmental

and Ecological Statistics, 28(2):355–381, 2021.

Emilie Vallée, Cord Heuer, Julie M. Collins-Emerson, Jackie Benschop,

Anne L. Ridler, and Peter R. Wilson. Effects of natural infection by l.

borgpetersenii serovar hardjo type hardjo-bovis and l. interrogans serovar

pomona, and leptospiral vaccination, on sheep growth. Preventive Veteri-

nary Medicine, 159:196–202, 2018. ISSN 0167-5877. doi: https://doi.org/

10.1016/j.prevetmed.2018.09.017. URL https://www.sciencedirect.

com/science/article/pii/S0167587718302113.

Thibault Vatter and Thomas Nagler. Generalized additive models for pair-

copula constructions. Journal of Computational and Graphical Statistics,

27(4):715–727, 2018.

Stephen G Walker. Sampling the dirichlet mixture model with slices. Com-

34

https://www.sciencedirect.com/science/article/pii/S0167587718302113
https://www.sciencedirect.com/science/article/pii/S0167587718302113


munications in Statistics—Simulation and Computation R©, 36(1):45–54,

2007.

Claudia Wehrhahn, Ruth Fuentes-García, Ramsés H Mena, Fabrizio Leisen,

Maria Elena González-Villalpando, and Clicerio González-Villalpando.

A copula-based fully bayesian nonparametric evaluation of cardiovas-

cular risk markers in the mexico city diabetes study. arXiv preprint

arXiv:2007.11700, 2020.

Juan Wu, Xue Wang, and Stephen G Walker. Bayesian nonparametric in-

ference for a multivariate copula function. Methodology and Computing in

Applied Probability, 16(3):747–763, 2014.

Juan Wu, Xue Wang, and Stephen G Walker. Bayesian nonparametric es-

timation of a copula. Journal of Statistical Computation and Simulation,

85(1):103–116, 2015.

Susu Zhang and Shiyu Wang. Modeling learner heterogeneity: A mixture

learning model with responses and response times. Frontiers in psychology,

9:2339, 2018.

Haoxin Zhuang, Liqun Diao, and Y Yi Grace. A bayesian nonparametric

mixture model for grouping dependence structures and selecting copula

functions. Econometrics and Statistics, 2021.

35


