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Are plankton nets a thing of
the past? An assessment of
in situ imaging of zooplankton
for large-scale ecosystem
assessment and policy
decision-making

Sarah L. C. Giering 1*, Phil F. Culverhouse 2,
David G. Johns3, Abigail McQuatters-Gollop 4

and Sophie G. Pitois 5

1Ocean BioGeoscience, National Oceanography Centre, Southampton, United Kingdom, 2Plankton
Analytics Ltd., Plymouth, United Kingdom, 3Marine Biological Association, Plymouth, United Kingdom,
4School of Biological and Marine Sciences, University of Plymouth, Plymouth, United Kingdom,
5Centre for Environment Fisheries and Aquatic Sciences (Cefas), Lowestoft, United Kingdom
Zooplankton are fundamental to aquatic ecosystem services such as carbon

and nutrient cycling. Therefore, a robust evidence base of how zooplankton

respond to changes in anthropogenic pressures, such as climate change and

nutrient loading, is key to implementing effective policy-making and

management measures. Currently, the data on which to base this evidence,

such as long time-series and large-scale datasets of zooplankton distribution

and community composition, are too sparse owing to practical limitations in

traditional collection and analysis methods. The advance of in situ imaging

technologies that can be deployed at large scales on autonomous platforms,

coupled with artificial intelligence and machine learning (AI/ML) for image

analysis, promises a solution. However, whether imaging could reasonably

replace physical samples, and whether AI/ML can achieve a taxonomic

resolution that scientists trust, is currently unclear. We here develop a

roadmap for imaging and AI/ML for future zooplankton monitoring and

research based on community consensus. To do so, we determined current

perceptions of the zooplankton community with a focus on their experience

and trust in the new technologies. Our survey revealed a clear consensus that

traditional net sampling and taxonomy must be retained, yet imaging will play

an important part in the future of zooplankton monitoring and research. A

period of overlapping use of imaging and physical sampling systems is needed

before imaging can reasonably replace physical sampling for widespread time-

series zooplankton monitoring. In addition, comprehensive improvements in

AI/ML and close collaboration between zooplankton researchers and AI

developers are needed for AI-based taxonomy to be trusted and fully

adopted. Encouragingly, the adoption of cutting-edge technologies for

zooplankton research may provide a solution to maintaining the critical
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taxonomic and ecological knowledge needed for future zooplankton

monitoring and robust evidence-based policy decision-making.
KEYWORDS

in situ imaging, artificial intelligence/machine learning, taxonomy, digital samples,
ecosystem assessment, long-term monitoring, zooplankton
Introduction

Zooplankton biodiversity contributes to multiple ecosystem

services such as carbon and nutrient cycling, as well as the role of

plankton in the marine food web. Understanding how plankton

communities respond to changes in anthropogenic pressures,

such as climate change and nutrient loading, is key to

implementing effective management measures. The new

generation of policy initiatives explicitly recognises the role

that plankton biodiversity plays in delivering a variety of

ecosystem services. These legislations, such as the United

Nations Sustainable Development Goals (UN General

Assembly, 2015), the Convention on Biological Diversity Aichi

Targets (Convention on Biological Diversity, 2011), and the

upcoming Post-2020 Global Biodiversity Framework

(Convention on Biological Diversity, 2021), focus on a holistic

view of biodiversity including the value of zooplankton. In

Europe, for example, the Marine Strategy Framework Directive

(Directive (EC) 2008/56, 2008) aims to achieve Good

Environmental Status of marine waters, with plankton

representing pelagic habitats in the legislation and

implementation (European Commission, 2008; OSPAR, 2017;

Bedford et al., 2018; McQuatters-Gollop et al., 2019;

McQuatters-Gollop et al., 2022). European Union Member

States are therefore required to monitor and assess the state of

plankton, and, if needed, to implement management measures

to achieve Good Environmental Status for pelagic habitats.

Consequently, a comprehensive understanding of plankton

communities is critically needed to inform a robust evidence

base for supporting decision-making for marine management.

Establishing a robust understanding of the relationships between

anthropogenic pressures and zooplankton, however, depends on

consistent time-series datasets, which are limited in number and

spatial scale (McQuatters-Gollop et al., 2015; Zingone et al.,

2015; McQuatters-Gollop et al., 2017). These gaps mean that

policymakers have limited evidence on which to base decisions

about enacting management measures related to plankton and

the ecosystem services they provide.

Even though plankton in European waters are better

sampled than those in many other parts of the world (O’Brien

et al., 2017), gaps in this evidence base exist due to both lack of

sampling and lack of knowledge of plankton dynamics and
02
pressure-state relationships (McQuatters-Gollop et al., 2022).

Zooplankton sampling is historically more limited than

phytoplankton sampling, resulting in more numerous

knowledge gaps around changes in zooplankton communities

and the consequent effects on the marine food web and

ecosystem services (McQuatters-Gollop et al., 2015). The UK’s

fixed-point monitoring programme, for example, has 11

phytoplankton sampling stations but only four of these also

sample zooplankton; these stations are supplemented by

phytoplankton sampling by the Environment Agency, but to

date there has been virtually no inshore zooplankton sampling

(Bedford et al., 2020). For larger spatial coverage, the

Continuous Plankton Recorder [CPR, a towed net system

(Batten et al., 2003)] provides a wealth of taxonomic data for

both zooplankton and phytoplankton, particularly in UK and

northern European waters, as well as parts of the North Atlantic,

Pacific basins, Southern Ocean, and Australian waters (Figure 1).

Yet, coverage for zooplankton data is still highly inconsistent,

and wide expanses of coastlines and oceans are not covered at

all (Figure 1).

A promising way to fill these gaps in spatial coverage is

through the rapid advance of automated sampling systems and

plankton imaging capabilities. Numerous commercial and

custom-built plankton imaging systems are available (see

reviews by Lombard et al., 2019; Giering et al., 2020a), and

global roll-outs of zooplankton imaging platforms to match the

Argo float global network for physical ocean parameters are

starting (Lombard et al., 2019; Picheral et al., 2021).

While the technical abilities now exist to collect data

continuously and at fine resolution (Lombard et al., 2019), a major

bottleneck is - besides image storage and access - the processing and

interpretation, specifically the taxonomic classification of

zooplankton images (MacLeod et al., 2010; Orenstein et al., 2022).

Anobvious avenue to tackle the growingnumber of plankton images

is the use of artificial intelligence (AI) and machine learning tools

(ML) for the taxonomicclassificationofplankton.Todate,AI/MLfor

plankton has been used primarily to aid human-based classification

by presorting the images, because their ‘predicted’ taxonomic

classifications can be highly variable (Gorsky et al., 2010). Tools

available to the community that facilitate such AI/ML-augmented

manual classificationexist, suchasEcoTaxa (Picheral et al., 2017) and

MorphoCluster (Schröder et al., 2020). Yet, the reliance on human
frontiersin.org
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verification limits the speedwithwhich plankton images can be used

for science.

The move to a global plankton-monitoring network hence

heavily depends on the automation of taxonomic classification.

But challenges with the needed fully-automated taxonomy

(because of the large amounts of data) exist, such as questions

about whether AI/ML can achieve a taxonomic resolution that

scientists trust. We here develop a roadmap for future

zooplankton monitoring for policy and management,

specifically for the role of imaging and AI/ML, based on

community consensus. To do so, we determined current

perceptions by the zooplankton research and monitoring

community about the use of imaging and AI/ML for

zooplankton monitoring, with particular focus on their

experience and trust in imaging and AI/ML to produce

reliable taxonomic data. Specifically, we assessed the questions:
Fron
• Do zooplankton scientists think that images can ever

replace physical samples to generate monitoring data?

• Do zooplankton scientists think that an AI can ever

replace a human taxonomist in the role of identifying

zooplankton?
We recommend the next steps for obtaining robust

zooplankton data for large-scale ecosystem assessment and

policy decision-making.

We use the term artificial intelligence (AI) to mean the use of

computer algorithms to make decisions. In context, AI typically

performs data analysis tasks done by humans such as identifying

organisms from images. Machine learning (ML) denotes the

method of training AI whereby the algorithm improves (‘learns’)

based on experience and use of data. In context, MLmay be carried

out on images already labelled by humans (‘training data’).
tiers in Marine Science 03
Community survey on future of
zooplankton monitoring

To obtain a broad sample of responses, we developed a

questionnaire in English using JotForm (Supplementary Material).

The survey was distributed between November 2021 and January

2022 using social media and through the authors’ professional and

personal networks, resulting in 179 complete responses. The final

survey used a mixed-methods approach of 34 closed-answer

questions. The first part of the survey used classification questions

designed to provide an overview of the respondents’ background

(age, gender identity, location, education). The remainder of the

questionnaire was designed to profile respondents’ experience with

zooplankton taxonomy, plankton imaging and AI/ML

(qualifications, training, level of expertise, etc.), and their

perceptions and trust in plankton imaging and AI/ML for

zooplankton taxonomy. The latter was assessed using a series of 5-

point Likert scale questions.

All respondents completed the survey themselves and gave their

permission to use the results. Individuals were not identifiable from

the data provided. All participants were 18 years of age or older. The

survey described in this paper was reviewed and approved by the

Ethics Committee of the National Oceanography Centre, UK.
Survey analysis

Quantitativedatawere analysed inRv4.0.2 (RCoreTeam,2018).

The level of expertise for zooplankton taxonomy, zooplankton

imaging, and AI/ML was calculated as the sum of three questions

(years of experience, skill level self-assessment, and frequency of

training). Likert data were analysed using the ‘Likert’ function from

the Likert package in R. Correlations were explored using simple
FIGURE 1

World map overlaid with fixed net sampling stations and Continuous Plankton Recorder tracks (adapted from source: MBA CPR map 1958-2020
(Batten et al., 2019), with data from NOAA Copepod database (O’Brian and Oakes, 2020), Australian IMOS database 1993-2021 (Re3Data.org,
2021) and South African CPR 2005-2021 (Huggett, pers. comm.).
frontiersin.org

https://doi.org/10.3389/fmars.2022.986206
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Giering et al. 10.3389/fmars.2022.986206
linear regression. The general bias towards or against imaging and

AI/ML was calculated as follows. Each question was scored from 1

(‘stronglydisagree’) to5 (‘strongly agree’)onpositivequestions, and1

(‘strongly agree’) to 5 (‘strongly disagree’) on reverse questions. If a

participantwasneutral, theywouldhave scored18 for imagingorAI/

ML (6 questions all answeredwith neutral = 3). Consequently, a trust

score of >18 indicates a favourable disposition towards the

technology, while a score of < 18 indicates a negative disposition.

Participant demographic

We collected 179 complete responses. The participant gender

distribution showed a near-equal gender balance in the field (55%

male and 43% female) with themajority of respondents between 30-

39 and 40-49 years old (31 and 26%, respectively) (Figure 2A).

Globally, the survey reached participants working in 42 countries.

The highest number of participants were from the UK and United

States (33 and 25 participants, respectively), followed by Japan (11),

Australia (10), Germany (9) and Canada (8) (Figure 2C). This

distribution likely reflects funding support and activities in

zooplankton monitoring and research as well as network

connections both within the community and with the authors, and

the use of language (English only).

The participants’ expertise in zooplankton taxonomy was well

spreadwith a slight bias towards intermediate andadvanced (median
Frontiers in Marine Science 04
of 3.2 on a scale from 1-Novice to 5-Expert) (Figure 2B). Overall, the

participants had less expertise in zooplankton imaging (median 2.3),

and least experience in AI/ML (median 1.8) with the majority

identifying themselves as novices in this field (Figure 2B). This

spread of expertise likely reflects that the field of AI/ML for

zooplankton monitoring and research is relatively young and

emerging compared to the field of zooplankton taxonomy.

Community consensus

Imaging for zooplankton monitoring and
research

When asked about their perceptions on the use of imaging

for zooplankton monitoring and research, the participants

showed strong consensus that images can provide meaningful

information (80%) and have clear advantages over net samples

(68%) (Figure 3A). Conversely, participants agreed that images

cannot provide the same level of information as physical samples

(70%) and physical samples will always be required (72%)

(Figure 3). No clear consensus emerged on whether physical

samples are preferable (39% neither agreed nor disagreed).

Finally, the survey suggested a consensus that time series can

be continued with image samples once the technology has

evolved sufficiently (62%) (Figure 3A). Overall, the majority of
frontiersin.org
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participants was optimistic about the use of images for plankton

monitoring: 53% of participants responded positively towards

images (with 12% being neutral and 35% having a negative

disposition) (Figure 4A).
AI/ML for zooplankton taxonomy

When questioned about the potential of AI/ML for

zooplankton taxonomy, respondents showed a strong

consensus that AI/ML can help to analyse zooplankton data

faster than current methods (79%; Figure 5A). However, a strong

consensus that AI/ML is limited in its abilities and will always

require human guidance and quality control was also evident

(83%). When asked whether AI/ML will ever be as good as

human taxonomists, which we assessed using both a positive and

a reverse statement, no clear consensus was evident. Participants

disagreed with the statement that AI/ML would be unbiased and

more reliable than humans in identifying images (41%;

Figure 5A). Finally, the participants strongly disagreed with

the statement that human taxonomists will not be required in

future once AI/ML has been trained sufficiently (84%). Indeed,

the consensus on this statement was strongest when compared

across all 12 questions. Overall, trust in AI/ML for correct

taxonomic classification was low: 50% of the participants

responded negatively towards AI/ML (with 13% being neutral

and 37% having a positive disposition) (Figure 4B).
Perceived trustworthiness of AI for
zooplankton taxonomy

A scientist’s perception is likely influenced by their

experience, and we observed clear patterns of this dependency

in our survey results: The more respondents were experienced in

zooplankton taxonomy, the less they trusted the use of

zooplankton images and AI/ML for accurate taxonomy

(Figures 6A, D); a significant negative trend was evident

between taxonomy expertise and trust in images (p < 0.001,

R2 = 0.10, n = 179) and AI/ML (p < 0.001, R2 = 0.10, n = 179).

The expertise level in zooplankton imaging had no significant

influence on perception of imaging and AI/ML for zooplankton

monitoring (for both: p > 0.13, R2 < 0.1, n = 179). Across all

imaging expertise levels, respondents were marginally positive

towards imaging (median trust scores ≥ 18; Figure 6B).

Conversely, the participants were marginally negative towards

AI/ML (median trust scores ≤ 18; Figure 6C). Finally, very few of

the survey participants were experienced in AI/ML (Figures 6C,

D). While novices in this field were undecided on the usefulness

of images and AI/ML, the experts tended to be optimistic about

the use of zooplankton images (Figure 6C) though less optimistic

about the use of AI/ML (Figure 6F). These trends were heavily
Frontiers in Marine Science 05
influenced by single opinions because of the small number of

participants who identified as advanced and expert users in the

field of AI/ML for zooplankton research.

The survey participants perceived humans to be good

taxonomists with 70% of the participants judging humans to

identify >80% of the zooplankton specimens accurately. Sixty-six

percent of the participants who rated both AI/ML and human

accuracy in identifying zooplankton (103 out of 159) rated AI/

ML skill lower than human skill. Only 21% of the participants

thought they were similar, and 13% thought that AI/ML was

more accurate than humans (Figure 7). Overall, the accuracy of

humans was perceived to be significantly better (average rating

of 80-90%) than that of AI/ML (average rating 70-80%; paired

Wilcoxon test: p < 0.001, n = 156).

The participants believed that AI/ML could reasonably

identify a copepod to family (28% of participants) or genus

level (33% of participants) Figure 8A. For gelatinous

zooplankton, the consensus appeared to be that AI/ML could

reasonably identify gelatinous zooplankton to family level (33%

of participants) (Figure 8B). For both questions (identifying

copepods and gelatinous zooplankton), we also asked the

participants whether their opinion was mostly influenced by

their understanding of the image quality, the capability of AI/

ML, or both in equal measures. The participants based their

predictions primarily on their understanding of image quality

alone or equally both on their understanding of image quality

and AI/ML.
Towards a road map

Are images the future?

Our survey results indicated a strong community consensus

that images (i.e. digital samples) are a valuable tool for plankton

monitoring with clear advantages over physical net samples

(Figure 3A), likely reflecting the financial and logistical

constraints associated with net sampling. Traditional nets

require human-centric, platform-based deployments (usually

off a ship) and are hence very limited in their spatiotemporal

resolution. The physical samples are stored, often in hazardous

chemical preservatives, and shipped to a laboratory for analysis,

leading to logistical challenges and considerable delays between

sample collection and data availability. Image samples, in

contrast, are stored digitally, which offers - amongst other

advantages - the ability to share images easily for, e.g., quality

control and additional taxonomic classifications by other

researchers. Our survey supports the notion that moving

towards automated routine image-based sampling combined

with image analysis is key to increasing the quantity of

zooplankton data to obtain the spatiotemporal coverage

required for robust decision-making.
frontiersin.org
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Yet, the survey results also revealed a strong community

consensus that, despite the logistical constraints of collecting

physical samples, physical samples cannot be replaced by images

entirely and will always be required (Figure 3). The reason for

the ongoing need for physical samples is likely twofold. First,

deeper taxonomic analyses still require physical samples as, at

this stage, microscopes offer the often required higher resolution

and, importantly, allow the user to investigate each specimen in

multiple dimensions and with different exposures. For example,

species of the same genus may be morphologically almost

indistinguishable bar minute differences in body structures

(Fleminger and Hulsemann, 1977; Frost, 1989; Wilson et al.,

2015). Considering current technology, such detailed taxonomic

information is unlikely from in situ images in the foreseeable

future. This notion is also reflected in our survey, where

participants revealed low confidence that image quality is

sufficient to resolve copepod and gelatinous zooplankton at

the species level (Figure 8). Second, physical samples are

required for information that cannot be obtained from images,

such as biochemical and molecular analyses, which have the

potential to greatly advance our understanding of zooplankton

biodiversity, ecology and connectivity (Lenz et al., 2021).

While both types of samples (physical and digital) have their

advantages, the biggest gain can likely be made when both are

used strategically in conjunction (Figure 9). We could leverage

the existing monitoring strategies and enhance these through

imaging. Ships Of Opportunity have been used by the CPR

survey since 1931 to collect physical plankton samples (Batten

et al., 2003). Initiatives are now in progress to fit CPRs with
Frontiers in Marine Science 06
holographic camera systems, allowing the simultaneous match-

up of in situ imaging data with CPR physical samples (Johns,

pers. comm.). In addition, when the physical CPR samples are

analysed under the microscope in the laboratory, taxonomists

are asked to take an image of each specimen (Johns, pers.

comm.). For physical samples, specimens can be imaged

before being analysed, e.g., for biochemical composition

(Giering et al., 2019). Bench-top instruments for net sample

imaging include ZooScan (Grosjean et al., 2004; Picheral et al.,

2010) and FlowCam (Detmer et al., 2019). Hence, all physical

samples could also be imaged, potentially providing high-quality

taxonomic training datasets and additional information on how

to translate images into biochemical parameters.

On a broader scale, an extension of the current imaging

network is the next logical step, and international initiatives to

facilitate such networks have commenced (Lombard et al., 2019;

de Vargas et al., 2022). Coverage of CPR lines, ideally coupled

with imaging, should be expanded to regions with currently poor

coverage such as the South Atlantic and Central and South

Pacific (Figure 1). As the CPR instrument has to be lowered into

the sea and towed behind, it is not suitable for use on all ships.

An alternative method is the FerryBox concept, which uses the

ship’s pumped water supply (Petersen and Colijn, 2017). While

some imaging systems have already been integrated into

FerryBoxes (Gannon, 1975), major problems remain with their

operation, reliability, size range (too small for large

zooplankton), and the development of efficient image

processing and classification [https://www.ferrybox.org/]. The

Plankton Imager (Pitois et al., 2018; Pitois et al., 2021; Scott et al.,
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2021) can use the same water source as FerryBox, allowing

images of the mesozooplankton to be collected at high speed and

moderate volume (34 L min-1) offering similar sampling volume

to the CPR (300 L [nautical mile]-1) (John et al., 2002). For

research vessels, camera systems such as the Underwater Vision

Profiler (Picheral et al., 2010) could be integrated with water
Frontiers in Marine Science 07
sampling rosettes as standard to improve vertically resolved

information on zooplankton. Finally, miniaturised camera

systems can be fitted on autonomous vehicles, such as floats

and gliders (Picheral et al., 2021).

Zooplankton cover a wide range of diversity of organisms in

terms of size, shape, and behaviour. As a result, no plankton
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FIGURE 5

Likert plot for taxonomy sufficiency. (A) More green means consensus favours the replacement of human taxonomists with AI. More brown
means a preference for keeping the system as it is. An equal spread likely indicates no clear consensus. (B) Reverse as for a.
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sampling system - whether collecting digital or physical samples

- can estimate the abundance for all components of the plankton

at any given time, and any system will likely be biased towards a

specific component of the plankton (Owens et al., 2013).

Combining datasets from different plankton sampling systems

is hence non-trivial. The selection of a sampler and associated

sampling design will determine sampling efficiency and

selectivity (Pitois et al., 2016; Pitois et al., 2018). Practical

issues associated with the collection of physical zooplankton

samples (Sameoto et al., 2000) include: active and passive

avoidance of the net (Fleminger and Clutter, 1965; Clutter and

Anraku, 1968), net clogging, and plankton patchiness (Wiebe

and Benfield, 2003; Skjoldal et al., 2013). Imaging devices will

not have to cater for all issues associated with nets, but their

efficiency will also be dependent on system avoidance, potential

damage to fragile organisms particularly when a pumped system

is used (albeit typically less problematic compared to net

sampling), and camera performance (Pitois et al., 2018).

Comparisons between imaging systems and net samples

indicated that sampling caveats affect nets and imaging

systems in similar proportions (e.g. (Finlay and Roff, 2004;

Nogueira et al., 2004; Basedow et al., 2013; Pitois et al., 2018)).

In addition, different image processing routines (Giering et al.,

2020b) specific to each instrument can result in images that are

not directly comparable. A very important step going forward is

hence the inter-calibration of all instruments so that all datasets

can be combined (Lombard et al., 2019).

Our survey revealed a consensus that time series can be

continued with image samples once the technology has evolved
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sufficiently, indicating a general optimism about the future of

imaging for zooplankton monitoring. As we did not investigate

what the participants deemed as ‘sufficient’, two aspects need to

be considered when evaluating this statement: (1) scientific

sufficiency of state-of-the-art technologies, and (2) perceived

sufficiency. While recent reviews suggest that further

technological and methodological developments are needed to

meet the scientific needs (e.g. Lombard et al., 2019; Giering et al.,

2020), this survey suggests that the zooplankton research

community is generally willing to adopt these technologies and

methodologies. Yet, a period of overlapping use of imaging

systems and physical sampling systems, as well as thorough

intercalibration between technologies [e.g. (Lombard et al., 2019;

Giering et al., 2020a)], will be needed to establish a statistical

correlation between the methods before imaging can reasonably

replace physical sampling.
Are future taxonomists human?

Our survey results indicated that the community is less

favourable towards AI/ML for zooplankton research than

towards imaging (Figure 4), likely reflecting the challenges that

accurate zooplankton taxonomy poses. Taxonomists learn from

concepts, examples and experience, and apply context metadata

knowledge to each classification task. Zooplankton taxonomy

has a well-established framework with an extensive base of

taxonomic literature, most of which is text-based with hand

drawings of the organisms’ key features. Reference sheets (for
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example, the ICES leaflets for marine zooplankton) hold expert

keys and drawings that are both distillations and translations of

the physical properties of organisms as seen under visual

examination (Figure 10). The expert will perform the visual

mapping from the hand-drawn “type specimen” to interpret the

taxonomic features of the collected specimen, and supplement

these using the textual notes on taxonomic descriptions and

context metadata (such as size, species distribution, and life

history). Together, these information constrain the identification

of the collected specimen. The desired confidence in

classification often requires a serial search through such

taxonomic guides and the call for a second expert opinion. If a

taxonomist is not confident in their classification, the specimen

is assigned the highest taxonomic level the expert is confident in,

or the most probable identification (Choquet et al., 2018). As

such, accurate classification of zooplankton is a complex task.

This complexity likely explains why researchers with more

expertise in zooplankton taxonomy mistrust the use of AI/ML

for zooplankton research (Figures 6A, D).

Currently, AI is typically trained on image training datasets

produced specifically for the target study, including region and

instrument, annotated by the study’s primary researchers. With

image quality sometimes low (Lombard et al., 2019; Giering

et al., 2020a) and identification frequently carried out by non-

specialists (Irisson et al., 2022), confidence in human-led

annotation can be low. Sixty percent of the survey participants

(that answered the question with a rating) have only a moderate

level of trust in current zooplankton training datasets. As ML
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relies on training data quality (‘garbage in, garbage out’), low-

confidence training datasets pose a problem. Hence, we propose

that a sufficiently rigorous process, including consensus of

training data classification by multiple experts (akin to ‘quality

in, quality out’), is needed to facilitate reliable automated

classifications that are trusted by the scientific community.

One option is to programme AI to use the same cross-

referencing and matching through both visual and textual

descriptions as the taxonomy texts (Figure 10). Multimodal

approaches, which use both text and image, are now widely

applied across a variety of tasks [see reviews by (Baltrusǎitis

et al., 2019; Chen et al., 2021; Uppal et al., 2022)]. In addition, AI

could apply context metadata knowledge to each classification

task in a similar way as humans do. For seafloor mapping, for

example, the assumption that images captured close to each

other are more similar than those taken further apart improves

image classification by a factor of two (Yamada et al., 2021). For

zooplankton images, the inclusion of context metadata

(geometric, hydrographic and geo-temporal information)

significantly improves classification accuracy (Ellen et al., 2019).

The survey participants did not agreewith the statement thatAI/

ML is unbiased andmore reliable than humans in identifying images

(41%), suggesting that human taxonomists are considered

reasonably reliable. Yet, expert cognitive biases can contribute to

inconsistent performance when manually labelling physical

specimens, with inconsistencies in both counting and classification

(Culverhouse et al., 2014). For example, repeat analyses of physical

net samples, by the same analyst, using microscopy revealed that
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Opinions on the level that humans and AI can correctly identify zooplankton. Lines indicate whether a participant thinks humans are more
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Estimates of the highest taxonomic level an AI/ML algorithm can positively identify (A) a copepod and (B) a gelatinous zooplankton using images
generated from an appropriate imaging system. The colours show whether a participant’s answer was most influenced by their understanding of
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FIGURE 9

Future zooplankton sampling network. The biggest leverage can be made when both physical sampling, such as vertical and towed net systems,
and imaging (highlighted by yellow backgrounds) are used strategically in conjunction. Imaging systems fitted to autonomous and moored
platforms allow global coverage with reduced reliance on ships.
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human-generated repeat counts differed on average by 8%, and

taxonomic classification consistency (into 10 broad categories) was

on average 75% (Culverhouse et al., 2014). Moreover, differences in

counts varied asmuch as an order ofmagnitude for the same sample

whenanalysedbydifferent taxonomists, likelyowing topsychological

factors suchasboredom, fatigue andprior expectations (Culverhouse

et al., 2014). As such, human-led taxonomy results in non-repeatable

outputs, where the same taxonomist at the same location using the

same methodology is unlikely to arrive at the same result when

repeating sample analysis. Machine learning, in contrast, allows

repeatability of analysis results as long as the pre-trained model

and weights are used [though the implementation of repeatability

needs to be checkedprior tomodel deployment, particularly for deep

learningmodels (Alahmari et al., 2020)]. Yet, self-consistency (i.e. the

same person coming to the same conclusion every time) and peer-

consistency (i.e. several experts arrive at the same conclusion)

(Culverhouse et al., 2003) have received relatively little attention in

AI/ML for zooplankton research (Culverhouse et al., 2014).

As current AI-based classifications may be too inaccurate to be

used directly formany zooplankton research questions (Irisson et al.,

2022), a common practice is to use AI/ML to presort images into

classes and then manually verify each AI-based classification; and

several commercial and open-source platforms have been designed

specifically for this purpose, such as EcoTaxa (Picheral et al., 2017).

Alternative strategies are being developed, where unsupervised and

supervised classifications alternate to reduce the number of images

that a human has to manually verify (e.g. Schröder et al., 2020). The

benefit of such workflows is widely accepted by the community, as

indicated by our survey results (79% of survey participants agreed

that AI/ML can help to analyse images faster; Figure 5A).

AI/ML is still in its infancy and formalised assessment of bias

is largely unexplored, which partly explains our survey results

that the community is currently undecided whether AI/ML can

be as or more accurate as humans for the classification of

plankton images (Figures 5, 6D–F). Even if AI will someday be

as accurate as human taxonomists, our survey shows a strong

community consensus that taxonomists will still be needed in

future (84% of participants; Figure 5). While we did not ask

specifically why this is the case, several reasons for this

judgement are possible. First, the purpose of AI-led

classification is to help researchers address scientific questions.

Thus, an aspect of scientific quality control will always be

required, where a taxonomically literate researcher may

perform spot checks and affirm the overall classification as

appropriate for the scientific endeavour on hand. Taxonomic

experts may further oversee the expansion of current

classification algorithms to include newly discovered species or

similar amendments to reflect the current scientific knowledge

accurately. Second, zooplankton research extends far beyond

simply identifying images. Hence, physical samples will continue

to play a major role in environmental research (e.g. for

biogeochemical analysis or experimental work) and their

handling will require expert human taxonomists.
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Building human trust in AI/ML for
zooplankton research

The survey showed an overall mistrust in the use of AI/ML

for zooplankton research, which agrees with reported general

attitudes towards AI (Schepman and Rodway, 2020). In their

study, Schepman and Rodway (2020) found that participants

were positive towards AI and felt comfortable with its use when

the application helped humans carry out tasks but did not

replace humans or gain autonomy. Conversely, negative

feelings were associated with AI applications that involved

aspects of human judgement, skill, social understanding or

empathy (Schepman and Rodway, 2020). These conclusions

can explain some of the trends we observed in our survey,

suggesting that researchers consider accurate taxonomy as a

difficult skill often relying on judgement based on abstraction

and context understanding. While the survey participants felt

comfortable with using AI/ML to aid taxonomy (e.g. by

presorting images), the replacement of humans with AI was

met with scepticism even though research has documented the

inaccuracies in human-based taxonomy (Culverhouse

et al., 2014).

The reason for the apparent negative perception of AI/ML

for zooplankton research is likely founded on a combination of

aspects. For those who have not had successful experiences with

AI-based classifications and required further taxonomic

verification by human taxonomists, trust in automated

classification may be weak. Such experiences could explain

why 66% of the survey participants that answered the question

thought that humans can achieve higher levels of taxonomic

accuracy than AI/ML (Figure 7). Yet, ring trials using

microscopy on physical samples (community-driven

comparison of taxonomic classification across different

zooplankton laboratories) show that even highly trained

professional zooplankton taxonomists often achieve an

identification accuracy of only ~80%, with the identification of

copepods to species level posing the biggest challenge (Wootton

and Johns, 2019). In contrast, plankton classifiers with an

accuracy of >90% have already been developed (Dai et al.,

2016; Wang et al., 2018; Ellen et al., 2019; Kerr et al., 2020);

though it is seldomly reported whether these classifiers

successfully identify key and indicator species, which may be

rare (Xue et al., 2018). Another aspect that will influence the

trust in AI/ML is previous experience with this technology. Even

though we tried to distribute our survey widely, 62% of the

participants rated themselves as ‘novice’ in AI/ML for

zooplankton image identification and only 9% rated

themselves as ‘advanced’ or ‘expert’, reflecting that AI/ML is

young in this field and has had limited uptake by

the community.

Trust, experience and expertise in AI within the zooplankton

research community need to increase for AI-based taxonomy to

become fully adopted. Trust is influenced by both the perception of
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the technology’s competence and emotional factors, and actions to

facilitate theadoptionofnewcomplex technology, suchasAI,need to

address both (Hoff and Bashir, 2015; Glikson and Woolley, 2020).

Experiments suggested that interaction with AI can significantly

increase trust in the observed AI and in future uses (Ullman and

Malle, 2017). A visual presence of the AI (rather than an embedded,

‘black box’ feature) also builds trust (Glikson and Woolley, 2020).

Visual presence could include visual interfaces as well as visual

representations of the results, such as group collages that can be

exploredby the researcher. Inaddition, generating theperceptionof a

‘persona’, the use of human-like behaviour, and personalization to

the user’s needs and preferences can help to build emotional trust

(Glikson and Woolley, 2020).

In addition, investing in a good reputation and transparency

of how the algorithm works also increases trust in the AI’s

competence (Glikson and Woolley, 2020). A key step in this

process is an increased effort in the development of explainable

AI (often referred to as XAI), which provides explanations for

the algorithm’s decisions and outputs that are understandable

for non-AI experts (in this case, a zooplankton researcher).

Keystones for explainability include (1) transparency of how the

algorithm works, (2) explanation of the underlying rules for the

decision (‘causality’), (3) quantification of bias that could have

originated from shortcomings of the training data or choice in

algorithm, and (4) confidence in the reliability of the predictions

(Hagras, 2018). XAI has gained attention only in the past decade

(Carvalho et al., 2019) but is now considered critical for the

widespread adoption of AI (e.g. UK Parliament, 2017). However,

how exactly XAI for plankton classification could be

implemented to maximize trust and confidence by

zooplankton researchers is yet unclear, and an appropriate

framework needs to be developed through close collaboration

between zooplankton taxonomists and researchers (‘users’) and

AI developers. Finally, matching users’ expectations and AI

performance by providing clear explanations about the AI’s

functionality both in terms of how the algorithms work and

why they should be used (compared to alternatives) is important.

Possible avenues to build cognitive trust thus include

demonstration and quantification of reliability of the AI,

development of XAI, and close collaboration and dedicated

workshops for zooplankton researchers and AI developers.
A new face for zooplankton taxonomy

The exciting developments in cutting-edge information

technology for zooplankton research further offer the

opportunity of a ‘face-lift’ for the field of taxonomy. The

number of taxonomists has declined worldwide (MacLeod

et al., 2010; Culverhouse, 2015; McQuatters-Gollop et al.,

2017), and fewer trained taxonomists and plankton analysts

are recruited each year to replace the previous generation as it

retires (McQuatters-Gollop et al., 2017). One solution to this
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‘brain drain’ in plankton taxonomy could be to engage

traditional taxonomists in training in AL/ML. Such

engagement would build trust in the new techniques and also

enhance the field of taxonomy with innovative, cutting-edge

engineering and informatics technologies. The added

interdisciplinary flavour could increase interest in the field of

plankton taxonomy because the skills used to collect and analyse

in situ imaging data are globally in demand and widely

transferable across many non-scientific sectors such as

business, economics, and computing. A starting point for

merging taxonomy with engineering and computer sciences

could be the development of courses that teach the combined

skills of AI/imaging/plankton taxonomy at universities. By

teaching these skills together, students may start to recognise

the links between taxonomy and technology, helping to rebrand

zooplankton taxonomy as ‘exciting and relevant’ rather than a

career ‘dead end’. This ‘new face’ for zooplankton taxonomy and

research may provide a solution to securing, into the future,

critical taxonomic and ecological knowledge needed for future

zooplankton monitoring and robust evidence-based decision-

making and policy.
Robust evidence base for
decision-making

To enable policymakers to best make informed decisions

about enacting management measures, we require a robust

evidence base founded on consistent time-series datasets and

broad global coverage. Currently, understanding of plankton

dynamics, particularly in response to climate change and direct

anthropogenic pressures, is limited due to gaps in data coverage

or taxonomic mismatches between time-series with different

methodologies. The result is a lack of confidence in the evidence

base underpinning decision making (McQuatters-Gollop et al.,

2015; McQuatters-Gollop et al., 2017). A big challenge here is

how to combine different datasets of varying taxonomic levels.

An example of how merged datasets can work is the UK’s and

OSPAR’s approach to assessing pelagic habitats in the Northeast

Atlantic and the North Sea, which uses flexible indicators that

work with a variety of plankton datasets, regardless of differences

in sampling method or taxonomic resolution (McQuatters-

Gollop et al., 2017; Rombouts et al., 2019; Bedford et al., 2020;

McQuatters-Gollop et al., 2022). For example, the “Change in

Plankton Communities” indicator applies a plankton lifeform

indicator approach that uses functional traits to group plankton

taxa into ecologically-relevant lifeform pairs where changes in

relative abundance indicate an alteration in ecosystem

functioning (McQuatters-Gollop et al., 2019; McQuatters-

Gollop et al., 2022). This approach uses taxonomic

phytoplankton and zooplankton data that do not need to be

refined to the species level. Rather, because of the aggregative

nature of lifeforms, data at the order, family, and genus levels can
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still inform the indicator. Similarly, the “Change in Plankton

Biomass and Abundance” indicator is partially informed by data

on copepod abundance (OSPAR, 2017). For these indicators,

sufficient information is hence broad zooplankton lifeforms

identification (e.g. large and small copepods, meroplankton)

and abundance. Zooplankton image data therefore has great

potential to contribute to these indicators as our survey results

indicated a community consensus that images can reasonably

inform on the family and genus level (Figure 8).

To retrieve such information from the growing amount of

image data swiftly, however, we will have to come up with a

strategy to extract relevant taxonomic and abundance

information from the images in an automated way. In the

foreseeable future, AI will likely be able to classify and count

from image datasets with limited input from human

taxonomists. Image data could hence be used at a coarse

taxonomic level to provide information on lifeforms, or other

easily identifiable zooplankton groups, over large spatial scales,

akin to Argo data (Roemmich et al., 2019). Thus, the combined

use of imaging and automated classification will likely be

appropriate to answer questions that require taxonomic

resolution that is consistent with the accuracy of the available

AI/ML. With AI automation, data can be analysed on-board, for

example on the ship during a survey or on a platform, and sent

via satellite to provide near-real-time information.

Clear guidelines on quality assurance are required for such a

workflow. Algorithms have to follow the FAIR principles

(Findability, Accessibility, Interoperability, Reusability) (Hartley

and Olsson, 2020). Taxonomic classifications need to link image

labels to machine-readable taxonomic trees, such as WoRMS. Data

should contain all sources and contributors, including information
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on both the human and AI who carried out the classifications (i.e. a

‘taxonomist ID’). Finally, the accuracy and certainty of all

classifications should be clearly documented (e.g. how sure is the

algorithm/human about the identification).
Conclusion and roadmap

The ultimate goal is a cost-effective global zooplankton

monitoring programme with comprehensive spatiotemporal

coverage that can answer scientific questions and contribute to

the robust evidence base required to inform decision making for

environmental management. Our survey revealed a clear

community consensus that net sampling and traditional

taxonomy must be retained in future, yet imaging will play an

increasingly important part in the future of zooplankton

monitoring and research. For imaging, challenges to address

will include, besides technical hurdles such as the transfer of

large data and image processing speed, the integration of the

outputs from both physical and digital sampling methods. A

period of overlapping use of imaging systems and physical

sampling systems will be needed before imaging can

reasonably replace physical sampling for widespread time-

series zooplankton monitoring. In addition, improvements in

AI/ML are needed for these to be trusted and fully adopted by

zooplankton researchers, particularly taxonomists. The key step

forward is parallel programmes that complement each other,

while efforts are focussed on bringing imaging technologies on

par with traditional taxonomy. This long-term goal will no

doubt mean overcoming several challenges, and only then can

nets for routine monitoring become a thing of the past.
A B

FIGURE 10

Multimodal learning uses both image and text data. (A) Image of Calanus hyperboreus (Source: Hopcroft at arcodiv.org). (B) Taxonomic
description of Calanus hyperboreus (Rose, 1933).
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Based on our discussion above, we recommend the

following roadmap:
Fron
1. Evidence-based science for decision-making: Use all

available plankton datasets to form a robust evidence

base for decision-making. Collated and curated datasets

will offer unprecedented opportunities to explore

differences between collecting instruments. Moreover,

large-scale intercomparable datasets can already be used

to explore important ecological questions.

2. Technical validation: Enable long-term overlap of

imaging and traditional techniques to secure

continuity and quality control for high-quality

continuous zooplankton monitoring and research.

3. Quality assurance:High-quality robust sciencedemandshigh

levels of self-consistency and peer-consistency. Routines to

ensure consistency by humans and AI/ML need to be

developed, and the adoption of XAI is required.

4. Interdisciplinary expertise: Invest in training in modern

techniques for traditional taxonomists. Support workshops

and collaboration between AI/ML and human taxonomists

to offer (1) a way of exposing taxonomic experts to AI/ML

data and (2) feedback from zooplankton researchers to

instrument and AI/ML developers.

5. Capacity building: Invest in retaining taxonomists in the

scientific community. Teach combined imaging/AI/

taxonomy in university (currently taught independently

and traditionally).
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